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Abstract

Recurrence is a common phenomenon in natural systems: A system enters and leaves a

state, but after a given period of time, passes near that same state again. Many complex

signals, such as weather cycles, heartbeats, or neuron firing patterns, all show recurrence.

The recurrence plot (RP) displays all times j where a system returns near a state it has

occupied at time i, giving rise to upward-sloping diagonal lines where a system follows a

recurrent path, orthogonal lines when the system changes very slowly, or many disconnected

points where a system’s behavior is unpredictable. Investigation of the RP can then proceed

through recurrence quantification analysis (RQA).

Three new measures for RQA were developed: diagonality, quantifying diagonal lines,

verticality, quantifying vertical lines, and periodicity quantifying the arrangement of recur-

rence points in periodic structures. These new measures were applied alongside classical

recurrence measures to explore trends in random data, identify periodicity and chaotic

behavior in the logistic map, estimate the dimensionality of the Lorenz attractor, and dis-

criminate between persistent data signals.

In collaboration with biologist Dr. Michael Harris, RQA methods were applied to the

discrimination of two neuron types: serotonergic cells are believed to stimulate respiration,

while nonserotonergic cells are implicated in respiratory inhibition. Typical discrimination

methods compare mean and standard deviation of firing rates to a reference line, which cor-

rectly classifies serotonergic cells but incorrectly classifies many nonserotonergic cells. Volt-

age signals from such cells were converted into inter-spike intervals. Convergence required

trials containing over 300 spikes for biological methods, and over 1000 for full investigation

using RQA. Whether such cells can be discriminated from baseline firing patterns remains

an open question.
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Chapter 1

Introduction

“And this slow spider which creepeth in the moonlight, and this moonlight it-

self, and thou and I in this gateway whispering together, whispering of eternal

things—must we not all have already existed? And must we not return and run

in that other lane out before us, that long weird lane—must we not eternally

return?”

—Friedrich Nietzsche, Also Sprach Zarathustra

Recurrence is a common phenomenon in natural systems: A system enters and leaves

a state, but, after a given period of time, comes near that same state once again. Such

recurrence is not always regular, and the time interval between recurrences may be infinite

in some systems, meaning that a given state will never recur. Nevertheless, many com-

mon systems, such as weather cycles, heartbeats, or neuron firing patterns, may be highly

complex, and yet highly repetitive.

Not all deterministic systems are capable of producing complex recurrence. One-dimen-

sional systems always either diverge, or converge to a steady state of perpetual recurrence.

And two-dimensional systems at most give rise to simple periodicity. But in systems with

greater than two dimensions, chaos may arise, characterized by topological folding in phase

space, combined with stretching through sensitivity to initial conditions. The Lyapunov

exponent is a measure of the strength of this sensitivity (see, e.g., Schmitz, 2001 or Rosen-

stein et al., 1993). In systems exhibiting a chaotic attractor, such sensitivity causes even

adjacent trajectories to diverge. But such trajectories are ultimately recurrent because they

are bounded; with nowhere else to go, they must eventually return near previously visited

states. Yet in a chaotic system, the time between such recurrences can vary wildly, as the

system shifts between chaotic regions, or in transient systems even escapes the chaotic sad-

dle into a steady state where there is no time between recurrences, or to a divergent path

that never returns.
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1.1 The Recurrence Plot

When faced with a system exhibiting complex behavior, the scientific approach is to

analyze, quantify, and particularly distinguish it from other systems; the recurrence plot

(RP) is excellently suited to this purpose.

First introduced by Eckmann, the RP is a two-dimensional plot of a time series, with

black dots at every i,j coordinate where the value of the series x at time i is approximately

equal to the value of x at time j (Eckmann, Kamphorst, & Ruelle, 1987). Such a plot

shows, at a glance, all places where a state in a time series loosely returns to a previously

occupied state.

Consider for instance the lyrics to “Surfin’ Bird” (Frazier, White, Harris, & Wilson, 1963,

side A, The Trashmen), with letters converted to numbers (Fig. 1.1 a). The recurrence plot

(Fig. 1.1 b) is rich with recurrent points, shown here as black dots. The lower left corner

corresponds to the start of the series, where the singer tells us that “b-bird’s the word.”

Midway through the song, the singer goes into a seizure, singing “Bbbbbbbbbbbb...” and

then many repeats of “papapapa...;” the cross at approximately (800, 800) represents this

interruption before the song moves into its last half, where the singer repeats “papa ooma

mow mow,” corresponding to the upper-right portion of the RP. Note a momentary return to

“bird is the word” near (1400, 1400), which echoes into the upper-left and lower-right areas

of the RP. The entire upper left and lower right triangle of any RP must be symmetric, since

a recurrence between (i, j) entails recurrence at (j, i). Note also the diagonal line running

from the lower left to upper right corner. This main diagonal is referred to as the line of

interest (LOI), and exists in all RPs because x(i) = x(j) must always be satisfied when

i = j.

To formalize the concept of the RP, we begin with a dynamical system ẋ = f(x) with

x ∈ R being a state of the system.1 Then the recurrence plot R(i, j) is described by

R(i, j) = Θ(ε− |x(i)− x(j)|). (1)

1In principle, one may consider a dynamical system in multiple dimensions, ~̇x = ~f(~x), with ~x ∈ Rn. This
is not a problem for generating the recurrence plot, but throughout this document the one-dimensional time
series is used as a basis for analysis.
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a

b

Figure 1.1: Lyrics to the Trashmen’s “Surfin’ Bird,” with letters converted into numbers

where a = 1, b = 2, c = 3, etc. (a), and recurrence plot (b).
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This process compares two states at time i and j, plotting a black dot (R(i, j) = 1)

wherever the states come arbitrarily close to one another, and a white dot (R(i, j) = 0)

otherwise. Here, “arbitrarily close” is defined by the tolerance threshold, ε. This user-

selected threshold describes the radius of the neighborhood in phase space, within which a

state is said to recur.

To see how the RP looks when applied to continuous time series, Fig. 1.2 shows periodic

(a) and chaotic (b) signals, with RPs below (c, d). Crosses in the RPs arise in the main

diagonal where the signal has a peak or valley; here, x(i+ ∆i) ∼ x(i−∆i). Further crosses

also appear above and below the main diagonal. In the sinusoidal plot (c), they appear

regularly because, for period T , x(i+ T ) ∼ x(i); in the chaotic signal (d) their appearance

is more erratic.

Notice also in the chaotic signal, Fig 1.2 (d), that the positive values past i = 300 create

a dark region in the upper right corner similar to the RP of the sinusoidal signal (Fig 1.2

a). Recurrences in the lower right and upper left corners of Fig. 1.2 (d) result from the

positive spike at the start of the series echoing these positive values later on.

1.2 Tolerance Threshold and Embedding Dimension

Critical to the generation of an RP is the tolerance parameter, ε. It is this value that

allows the RP to interpret whether recurrence has occurred anywhere in a time series or

not. Recurrent trajectories in phase space can be described by an ε-tube, enclosing similar

paths as shown in Fig. 1.3. For larger values of ε, these tubes will be wider and more

recurrences may be counted, though even for small ε, the restricted range of possible states

occupied by the system ensures that recurrence in a chaotic system is inevitable.

One must carefully consider what value for ε to choose when analyzing a time series. If

the tolerance threshold is too large, then almost every point will be interpreted as neigh-

boring almost every other point without reflecting genuine recurrence. This leads to a plot

which is very dark, or even flat black. Figure 1.4 shows the RPs for the same sinusoidal

and chaotic signals with much higher values for ε. The lines in (a) thicken, obscuring any

possible fluctuations in the signal, while areas of spurious recurrence appear in (b) near

i = 200, j = 400. Conversely, if the tolerance threshold is chosen too strictly, the RP may

miss genuine periods of recurrence, as shown in Fig 1.4 (c, d).
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Figure 1.2: Position (x(i)) vs. time (i) for (a) Sinusoid (x(i) = sin(0.02x + 0.3)) and

(b) Lorenz attractor, ρ = 28, σ = 10, and β = 8/3. Associated RPs are shown below,

for (c) sinusoid, with tolerance ε = 0.02 and (d) Lorenz attractor with tolerance ε = 1.

Figure 1.3: Graphical representation of an ε-tube in phase space with radius ε, enclosing

the trajectory during an initial and later pass through the same region.
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Figure 1.4: Recurrence plots for sinusoidal signals from Fig. 1.1, generated with toler-

ance ε = 2 (a) and tolerance ε = 0.002 (c). To the right, RPs are shown for the Lorenz

attractor, with tolerance ε = 6 (b) and tolerance ε = 0.01 (d).

Although there are no hard-and-fast rules for the choice of ε, it is generally selected so

that more than 1% (Mindlin & Gilmore, 1992), but no more than 10% (Koebbe & Mayer-

Kress, 1992; Zbilut & Webber, 1992) of the points in the RP are darkened. Beyond this,

the choice of ε depends on the kind of signal under analysis. In a data series formed from

a signal with observational noise of standard deviation σ, it is desirable to pick out the

signal underlying the noise, so ε should be chosen as significantly larger than the standard

deviation of the noise; since 99% of the points under a Gaussian distribution fall within a

window 5-standard deviations wide, ε > 5σ is a common choice. (Marwan, Romano, Thiel,
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& Kurths, 2007). This does not work well for highly noisy data, but for such cases trying

to derive more information than the average value or mean frequency may not be possible.

A further choice in generating a recurrence plot is represented by the embedding dimen-

sion. If a system progresses from x(i) to a new value x(i + 1), and at a later time j, has

the same value as at x(i), but progresses to a state x(j + 1) having the same value seen

at x(i − 1), the RP will show downward-sloping diagonal lines. The rising and falling of

the signals in Fig. 1.1 produce these downward-sloped diagonals in the RPs. Although

these runs can easily arise in a random signal, such behavior is not possible in a deter-

ministic system where every state originates directly from the preceding state. Here, such

downward-sloping diagonal lines indicate that the raw signal must come from a system of

higher dimensionality than 1.

The determinism of the underlying system can be recovered through a higher dimen-

sional embedding of the scalar signal, by selecting a characteristic time constant, τ , and

then generating a recurrence plot in n-dimensions by

R(i, j) = Θ

ε−
√√√√n−1∑

k=0

[x(i+ kτ)− x(j + kτ)]2

 . (2)

Here k = 0 refers to the first coordinate, k = 1 to the second coordinate, and so on

up to k = n − 1 corresponding to the nth coordinate. So for example, the RP for a signal

with two-dimensional embedding would examine the Euclidian distance between the state

at x(i), x(i+ τ) and x(j), x(j+ τ), returning a 1 if the distance were no greater than ε, and

a 0 otherwise.

Figure 1.5 shows RPs for the signals from Fig. 1.1 with a two-dimensional embedding

which eliminates the downward-sloped diagonals from both the sinusoidal (Fig. 1.5 a) and

chaotic (Fig. 1.5 b) signals, to resolve the underlying determinism in each system with

upward-sloping diagonals.



8

Figure 1.5: Recurrence plots for signals from Fig. 1.1 in a two dimensional embedding.

a) Sinusoid, with tolerance ε = 0.01 and time constant τ = 78. b) Lorenz attractor,

with tolerance ε = 1.5 and time constant τ = 13.

1.3 Features of Recurrence Plots

The most basic feature of an RP is the upward-sloping diagonal line parallel to the

LOI. Any time a diagonal line is observed parallel to the LOI, this indicates recurrence,

not only of an isolated point but of a path through an ε-tube in phase space. The longer

the diagonal line, the longer the two paths are similar. Diagonal lines may be repeatedly

spaced parallel to one another, indicating periodic runs along the same path, or they may

be staggered, indicating complex returns to many different paths. Like the different words

in an infant’s babbling, or the different routes a fox takes in the evenings as it leaves its lair,

every repeated sequence will appear in the RP as a diagonal line. The more diagonals in

the RP, and the longer these diagonals are, the more regularity is contained in the signal.

Compare the chaotic signals in Fig. 1.6; (a) is more regular, and shows longer diagonals

in its RP than (b). The LOI itself, however, never contains any information; all states are

equal to themselves at time i = j. Long diagonal lines can occur directly below and above

the LOI, particularly when dealing with high-resolution data. Since ε is nonzero, these false

“points of recurrence” may be darkened in the RP, but actually represent the system slowly

changing from one state to another within the same ε tube. So it is customary to exclude

not only the LOI, but this entire corridor of points falling a distance W or less from the

LOI, known as the Theiler window (Marwan et. al, 2007). Theiler recommends choosing for
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exclusion all points within W = τ steps from the LOI, where τ is the autocorrelation time

of the raw data series. (Theiler, 1986) Diagonal lines within this region may be excluded

from analysis.
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Figure 1.6: Recurrence plots for the logistic map, x(i + 1) = r x(i) [1− x(i)], with (a)

r = 3.65, tolerance ε = 0.003, and (b) r = 4.0, tolerance ε = 0.006.

Recurrence plots contain other features besides upward-sloping diagonal lines, however.

Vertical and horizontal lines may appear where a state changes only very slowly, so that

each successive state is within ε of the preceding states. This occurs when a time series

becomes “trapped” in a state for some time before moving on. Downward sloping diagonals

occur where the time series shows the same pattern running forwards and backwards, as in

the sinusoidal signals seen previously (Fig. 1.1), suggesting the need for a higher embedding

dimension. White bands appear when there is an anomalous point in the RP. In a heavily

recurrent RP, such “odd men out” indicate either that some states are exceptional, or else

that some kind of transition has occurred. Squarish mats of diagonals appear when a system

enters an area of temporary periodicity; this is often seen in chaotic systems such as the

Rössler system (Rössler, 1976) or Lorenz system (Lorenz, 1963). Lastly, the RP may show

a fading to white in the upper left and upper right corners; this indicates a long term trend

for the data to consistently rise, or consistently fall, over time.

As a glance at the figures above will show, the recurrence plot is often worth having

simply for what it reveals to us visually. However, it is best if we have some means of

quantifying point distributions in an RP. Therefore, after generating the recurrence plot for

a data series, the next step is to analyze its behavior.





11

Chapter 2

Methods

Recurrence quantification analysis (RQA) is the process of investigating the behavior

of a data series with length N by numerically analyzing the features of its recurrence plot.

Physicists and mathematicians have developed several common measures for analyzing these

features (Marwan et. al, 2007).

2.1 Classic Recurrence Measures

These measures, as defined here, consider the entire recurrence plot of area N2, even

though the RP is symmetric above and below the main diagonal (that is, the “line of inter-

est,” or LOI). But in practice, RPs may be generated using different tolerance thresholds

(ε) above and below the LOI (see for example Eckmann et al., 1987), or the analysis can

focus only on the upper left half of the RP for better computational speed.

The recurrence rate (RR) represents the recurrence point density,

RR =
1

N2

N∑
i,j=1

Ri,j . (3)

RR is calculated by summing up all black points and dividing by the plot area, to give

a proportion ranging from 0 to 1. In practice, the summation usually excludes the LOI

and all points within the Theiler Window. RR gives the chance that any point chosen at

random from a recurrence plot will be black.

The diagonal histogram,

P (l) =

N∑
i,j=1

(1−Ri−1,j−1)(1−Ri+l,j+l)
l−1∏
k=0

Ri+k,j+k, (4)

returns the number of diagonal lines of precisely a given length, l. Here, diagonal lines

are defined as a run of upward-sloping dark points bracketed by white points on either end.

The vertical histogram is defined analogously as
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P (v) =

N∑
i,j=1

(1−Ri,j−1)(1−Ri,j+v)
v−1∏
k=0

Ri,j+k, (5)

representing the number of vertical lines of a given length, v.

The average diagonal line length is defined as

L =

∑N
l=Lmin

lP (l)∑N
l=Lmin

P (l)
. (6)

L sums up every point in each diagonal line of length Lmin or greater, and then divides

by the total number of such diagonal lines. Although L may be calculated for any Lmin,

choosing Lmin = 1 gives the overall average diagonal line length, and can thus be interpreted

as the mean prediction time (Marwan et al., 2007).

Trapping time (TT) represents the average vertical line length,

TT =

∑N
v=Vmin

vP (v)∑N
v=Vmin

P (v)
. (7)

It is calculated analogously to L, by summing every point in every vertical line, and

then averaging over all vertical lines. This measure indicates the amount of time that the

system remains in the same state, or the tendency for adjacent points in the original time

series to take the same value.

The determinism (DET) reflects how often a sequence recurs in a dataset, and for how

long. (Marwan, 2011). It is defined by

DET =

∑N
l=Lmin

lP (l)∑N
i,j=1Ri,j

, (8)

which gives the proportion of recurrence points forming diagonal structures of a given

length Lmin or longer. It sums over all points contained in these lines and then divides

by the total number of recurrence points. Despite its name, determinism does not provide

proof of physical determinism in the sense of each point leading to one unique subsequent

point; data signals may be generated with nondeterministic features and still return high

DET values.
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The laminarity is a measure of the overall tendency of the system to remain in the same

state,

LAM =

∑N
v=Vmin

vP (v)∑N
i,j=1Ri,j

. (9)

Laminarity gives the proportion of recurrence points forming vertical structures of a

given length Vmin or longer.

The Shannon entropy (ENTR) is a way to quantify the probability distribution of di-

agonal lines. It is calculated as

ENTR = −
N∑

l=Lmin

P (l)

Nl
ln

(
P (l)

Nl

)
, (10)

which evaluates the frequency distribution of the diagonal line lengths. It reflects the

complexity of the RP with respect to diagonal lines. For uncorrelated noise the value of

ENTR is rather small, whereas a regular signal such as a sine wave returns a much higher

ENTR (Marwan, 2007). In contrast, Shannon entropy as originally introduced (Shannon,

1948) describes the information encoded in a data signal (Ihara, 1993) which is highest when

the values in the signal are evenly distributed. But here, a high value for ENTR indicates

regularity in a signal, returning values near zero for random signals.

The tau recurrence rate (RRτ ), describes the dynamics on a fixed timescale τ , with

j = i+ τ ,

RRτ =
1

N − τ

N−τ∑
i=1

Ri,i+τ . (11)

The tau recurrence rate determines the recurrence rate along each diagonal separated

from the LOI by a distance τ . So τ = 0 corresponds to the main diagonal itself, where

RR0 = 1. τ > 0 corresponds to a positive time delay, for diagonals a distance τ above the

main diagonal, and τ < 0 to a negative time delay, below the main diagonal. RRτ is a

type of autocorrelation function, giving information on the time scales separating recurrent

paths. It can be interpreted as the probability that a state recurs after τ time steps (Marwan

et. al, 2007).
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Trend quantifies long-term changes by the degree to which the recurrence density drops

off with distance from the main diagonal. Trend discriminates between broadly homoge-

neous RPs and those with an overall “fading out” away from the LOI; such RPs result from

nonstationary time series with data values that, on average, increase or decrease with time.

Trend is defined by

TREND =

∑Ñ
τ=1(τ − Ñ/2)(RRτ − 〈RRτ 〉)∑Ñ

τ=1(τ − Ñ/2)2
, (12)

which sums over all RRτ for changing τ , multiplying by the distance each diagonal is

from the LOI, and then averaging by dividing by the square of these distances. Note that

Ñ < N is used instead of just N, in order to exclude the edges of the recurrence plot where

few recurrences will be found. The choice of Ñ is up to the user; Ñ = N − 10 is claimed to

be sufficient for noise, but in a more regular signal, it is suggested to subtract as much as 10

times the order of magnitude of the autocorrelation time (Marwan et. al, 2007). Trend is

closely related to the Pearson product-moment correlation coefficient, (Stigler, 1989) except

that the denominator only references the variance in τ rather than normalizing with the

standard deviation in each variable. Trend commonly returns small values on the order of

−10−6, since τ ranges from 1 to Ñ while RRτ ranges only from 0 to 1.

Figure 2.1 shows TREND for three typical signals. In purely random data (a) the

TREND is −1.41 × 10−8, increasing in magnitude to −3.79 × 10−6 for data with a subtle

upward tendency (b). Even in data with a strong linear trend (c), the TREND measure is

still only 7× 10−6.
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Figure 2.1: x(i) and TREND values for three Gaussian noise signals with mean µ and

standard deviation σ. a) µ = 0.000, σ = 1; TREND = −1.41×10−8. b) µ = 0.001i, σ =

1; TREND = −3.79× 10−6. c) µ = 0.002i, σ = 1); TREND = −6.93× 10−6.

2.2 Dependence of Classic RQA Measures on Changing RR

That the choice of tolerance (ε) remains open to the analyst sometimes creates difficulties

interpreting RQA results, because the above measures are strongly influenced by the basic

recurrence rate (RR). A higher ε will give rise to a more densely populated RP, which will



16

inevitably contain more and longer diagonal and vertical lines, thereby increasing the values

for P (l) and P (v), and all measures based on them (DET, LAM, ENTR, L, TT).

Using a random signal, the dependence of RQA measures on ε and RR were investi-

gated. As Fig. 2.2 shows, RR has a virtually linear relationship with ε. Figure 2.3 shows

the dependence of other RQA outcomes on changing RR; all measures increase with RR.

Determinism (Fig. 2.3 a) shows some fluctuations at low RR values; as ε increases, it creates

more points in the RP, but in an RP with few existing recurrences, these new points may

be disconnected from others. This fluctuation is minimal past RR = 0.02. Laminarity and

Shannon entropy (Fig. 2.3 b and c) show a more direct dependence on RR, rising by over

an order of magnitude. Note that DET (a) and LAM (b) return lower values for higher

Lmin and Vmin, since shorter structures will be discounted as Lmin and Vmin are increased.

The maximum lengths of diagonal and vertical lines (Lmax and Vmax; Fig. 2.3 d) likewise

increase with RR, by a factor of approximately 3. The reciprocal of the longest diagonal line

length is claimed to relate directly to the Lyapunov exponent in a dynamical series (Trulla

et al., 1996; Webber and Zbilut, 1994). However, the Lyapunov exponent is a dynamical

invariant, but Lmax is not, and their relationship has been described as “not as simple as

it was mostly stated in the literature” (Marwan et al., 2007).
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Figure 2.2: Recurrence rate (RR) vs. tolerance threshold (ε) for a time series of uniform

random data, x ∈ [0, 1], N = 2000. ε varies from 0.001 to 0.1 in steps of 0.001.
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Figure 2.3: RQA measures vs. recurrence rate (RR) for the random time series from

Fig. 2.2, showing determinism (DET) for three minimum diagonal lengths (Lmin, a),

Laminarity (LAM) for three minimum vertical lengths (Vmin, b), Shannon entropy

(ENTR, c), and Longest Diagonal (Lmax, black) and Vertical (Vmax, blue) Lines (d).

This behavior is not restricted to random signals; a similar relationship between ε, RR,

and other RQA outcomes can be seen in other series. Figure 2.4 shows RR vs. ε in a

nonlinear signal. Although the relationship shows slightly more curvature, RR still rises

monotonically with rising ε.

Figure 2.5 gives a similar picture for other measures. In the chaotic signal, DET (Fig

2.5 a), LAM (Fig 2.5 b), and ENTR (Fig 2.5 c) each rise almost linearly with RR. These

higher values are expected given the higher regularity in the RP. We also observe higher
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values for Lmax than in the random series. But both Lmax and Vmax increase monotonically

with RR, just as observed in the random signal.

In both random and chaotic data, higher ε gives rise to a higher RR, in turn increasing

other RQA measures. Since the finite-time recurrence rate can fluctuate within a single

signal, or within different signals generated from different conditions (e.g. stimulated and

unstimulated neurons), interpretation of RQA values can be difficult.

One solution is to cary out analyses using a fixed RR. (This is not always an option,

however; with signals taking only m discrete values, RR can never fall below 1/m.) Another

solution is to develop RQA measures which are more stable with respect to RR. The follow-

ing section details three new RQA measures created in an attempt to minimize the effects

of variability in RP density.
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Figure 2.4: Recurrence rate (RR) vs. tolerance threshold (ε) for a chaotic signal (logistic

map, xn+1 = r xn(1− xn), with r = 4). ε varies in steps of 0.001.
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Figure 2.5: RQA measures vs. recurrence rate (RR) for the chaotic time series from

Fig. 2.4, showing determinism (DET) for three minimum diagonal lengths (Lmin, a),

Laminarity (LAM) for three minimum vertical lengths (Vmin, b), Shannon entropy

(ENTR, c), and longest diagonal (Lmax, black) and vertical (Vmax, blue) lines (d).
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2.3 New Measures For Recurrence Quantification Analysis

We now define new measures, similar to the classical tools used in RQA, but more robust

with regards to changing RR. The first of these is diagonality,

D =

∑N
i,j=2Ri,jRi−1,j−1∑N

i,j=2Ri,j
−RR, (13)

which represents the overall degree to which points in an RP are arranged in upward-

sloping diagonal lines. The first term in D describes the number of dark points in the

RP with dark lower-left neighbors, normalized by the total number of black points. The

recurrence rate is subtracted away from this, because RR is the convergent value of the first

term in D for a large RP of uniform random noise. Simulations verify that D does indeed

go to zero with increasing N for recurrence plots of uniform random noise. Inspection of

the fraction in the first term in D reveals why; the chance for the lower-left neighbor of any

given point to be black in a random RP is RR.

D returns a positive result only if there are more points present in upward-sloping

diagonals in an RP than in a reference signal of infinitely long uniform random noise. The

result is a measure of the overall tendency of a system to follow recurrent paths, which is

more robust to fluctuations in the recurrence rate than classical measures.

Verticality is defined as

V =

∑N
i=1

∑N
j=2Ri,jRi,j−1∑N

i=1

∑N
j=2Ri,j

−RR. (14)

V represents the number of dark points having dark neighbors directly underneath. Like

LAM, verticality measures the overall tendency of the system to remain in the same state

from time i to i + 1. V (and also D) can return the same value if an RP had many short

lines or a few long lines.

Period-n measures the periodicity in a time series. It is defined as

Pn =

∑N
i=1

∑N
j=n+1Ri,jRi,j−n∑N

i=1

∑N
j=n+1Ri,j

−RR. (15)
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Period-n returns the black points with a black neighbor exactly n spaces below them,

normalized by the total number of black points, with RR subtracted away. Pn yields

information similar to RRτ for a fixed τ ; for instance, a recurrence plot with a period 5

orbit should be expected to return a high value for P5, but lower values for P4 or P6. If the

periodic behavior extends over a long enough time, high values will be found for many Pkn

where k = 1, 2, 3... and n is the period length. Note that P1 is identical to V.
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Figure 2.6: RQA measures vs. recurrence rate (RR) for the random time series from

Fig. 2.2, showing (a) diagonality (D) and verticality (V), and (b) period-n (Pn).
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Figure 2.7: RQA measures vs. recurrence rate (RR) for the chaotic time series from

Fig. 2.4, showing (a) diagonality (D) and verticality (V), and (b) period-n (Pn).
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To investigate the properties of these new RQA measures, each was applied to the

random signal from section 2.2. Figure 2.6 shows the behavior of these measures with

changing RR. All measures are confined to ±0.006 of the average value regardless of the

recurrence rate in the random signal.

A greater dependence on RR was found in the chaotic signal. Although the relationship

between RR and the new RQA measures is not perfectly attenuated, the measures do not

increase monotonically with RR. Instead, Fig. 3.4 shows they are confined to fairly narrow

envelopes, particularly in the typical range where RR ∈ (0.01, 0.10).

V and Pn vary no more than ± .025. For diagonality, where non-zero values are ex-

pected due to the organization in the signal, the total variation is no more than ±.05. The

diagonality curve in Fig 2.7 (a) is promising in being virtually flat between RR = 0.01 and

0.10, which is the typically suggested range for RQA. Thus, while these new measures do

not eliminate the dependency on RR, they do allow comparisons to be made even across

signals with slightly different recurrence rates.

2.4 Convergence Behavior of RQA Measures

The length of the available time series is an important consideration throughout time

series analysis. Sometimes it is not possible to obtain long signals, e.g. when checking the

short-term effects of a sudden stimulus on a neural network, and in such cases one must

work with the data as it exists.

As the following figures show, most RQA measures do not converge for short lengths.

RQA methods were repeatedly applied to a signal of uniform random noise with increasing

data length, starting with a length N = 1000 up to 20,000 points.

For random data, the recurrence rate, determinism, diagonality, verticality, trend, and

Shannon entropy are shown in Fig. 2.8. While there is some fluctuation even as far out as

N = 15, 000, these measures generally fall near their final values by N = 2000. Even as

early as N = 1000, all measures were confined to within 0.01 of their final value. However,

verticality shows more fluctuations than the other measures, and does not clearly converge

by N = 15, 000.
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Figure 2.8: Convergence behavior for selected RQA measures applied to a random

signal (uniform over the interval [0,1], with ε = 0.01), showing recurrence rate (RR, a),

determinism (DET, b), diagonality and verticality (D and V, c), and Shannon entropy

(ENTR, d) all vs. time (N). Horizontal lines show final values to guide the eyes.

RQA will typically be applied to signals containing more structure than found in random

noise. Figure 2.9 shows RQA measures applied to a chaotic signal. Convergence is less clear

for this signal, with V fluctuating as much as 0.03 past N = 2000. The other measures were

more stable, with variation below 0.01 by N = 1000, similar to that seen in the random

signal. Therefore, N = 1000 appears to be generally sufficient for accuracy of two decimal

places, though verticality may still fluctuate by 0.03 or higher.

For shorter time series, recurrence quantification analysis can still be used, particularly

if the circumstances surrounding a non-stationary phenomenon are well understood (e.g. a

heartbeat after stimulus). In such cases, RQA measures only represent the behavior of a

specific response over a specific time period, which may change at other times. This is most
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relevant when applying RQA to short time series, where N may not be sufficient at the

chosen sampling rate to fully represent the dynamics of the system; inferences regarding

the overall characteristics of a less well-known signal typically cannon be drawn without

sampling for a longer time. For the signals investigated here, N = 1000 was usually suf-

ficient, although extremely long data series with N > 20,000 would remain beneficial for

measuring long-run behavior to high precision.
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Figure 2.9: Convergence behavior for selected RQA measures applied to a chaotic signal

(Logistic map, r = 4, xn+1 = r xn(1 − xn), ε = 0.05). Shown are the recurrence rate

(RR, a), determinism (DET, b), diagonality and verticality (D and V, c), and Shannon

entropy (ENTR, d).
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Chapter 3

Application to Synthetic Data

To develop an intuition for RQA, we can analyze synthetic data with known dynamical

properties. Three signals are investigated, generated from the logistic map (May, 1976), the

Lorenz system (Lorenz, 1963), and persistence data (Newman, 2013).

3.1 The Logistic Map

Though popularized as a chaotic system by Robert May in the 1970s, the Logistic

Map was introduced as a model for population fluctuations before the development of

chaos theory (Ausloos and Dirickx, 2006). It is today one of the best studied systems in

nonlinear dynamics, and remains a highly attractive equation for its complex behavior,

arising paradoxically from extreme simplicity (May, 1976). In the logistic map, each state

xn+1 at discrete time n+ 1 depends on the state at time n by

xn+1 = rxn(1− xn). (16)

This equation maps xn on the interval [0,1] to xn+1 on the same interval. Figure 3.1 a)

shows a typical orbit, or sequence of successive states {xn}∞0 , for r ∈ [0, 3]. In this range, xn

reaches a stable fixed point. As r increases, a period-doubling bifurcation occurs at r = 3,

giving rise to a period-2 orbit for x ∈
[
3, 1 +

√
6
]
, in Fig. 3.1 (b). As r increases, the period

doubles to four, eight, and any number 2k. Figure 3.1 (c) shows a typical period-8 orbit.

This period doubling continues to the accumulation point, r∞ ∼ 3.570, where the period is

infinite; beyond this point the dynamics become chaotic, as seen in Fig. 3.1 (d).
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Figure 3.1: Orbits of the logistic map for typical initial values, with r = 2.7 (a), r = 3.56

(b), r = 3.2 (c), and r = 3.6 (d). Transient behavior is in dashed lines.
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Figure 3.2: Orbit diagram for the logistic map, where r ranges from 3.55 to 4, showing

all possible long-term values for the system in black. Darker areas indicate values visited

more frequently by the system.

Plotting the long term behavior for varying r results in the orbit diagram, Fig. 3.2;

orbits are visible in the vertical direction. When r > r∞ the dynamics become chaotic,

interspersed with periodic windows. This chaotic regime is of particular interest, exhibiting

islands of periodicity. The logistic map returns values at superstable points with much

greater probability than others. These superstable points are visible as oscillating dark lines

in Fig. 3.1.4, which merge near r ∼ 3.68. To identify the periodic windows, transitions,

band merging points, and other features of the logistic map is an important challenge for

RQA.
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3.1.1 RQA of the Logistic Map

Figure 3.3 shows the RQA for the chaotic regime of the logistic map. The RR (Fig. 3.3

a) varies considerably across r-values. The tolerance parameter, ε, was chosen to give a

modest recurrence rate based on analysis of the logistic map at r = 4, but RR rose almost

to 0.35 in the periodic regions. This is not entirely unexpected, as xn is constrained to m

specific values in windows with orbit of period m; regardless of the value chosen for ε, RR

can never be lower than 1/m in a long signal with only m possible values. We may infer the

number of possible values for x in the region near r = 3.83; RR is 0.33 there, so this may

be a period 3 orbit. But it is not possible to know that the orbit is periodic from RR alone.

The changing values for RR also make it difficult to use either DET or ENTR as direct

measures of the regularity in the system, since both are highly influenced by RR. The spikes

in each measure do correspond with areas of regularity in the logistic map, but all three

plots look very much the same, with the exception of DET for Lmin = 3 which returns very

low values. Knowing the characteristics of the logistic map, the x-values are quantized only

where the system’s behavior is periodic; thus the close relationships between DET, ENTR,

and RR are entirely expected, reflecting the signal’s high regularity in low-period orbits.

Diagonality (Fig. 3.6 d) confirms the predictability of the signal yielding diagonal lines

in the RP. Excluding the periodic windows, D declines throughout the chaotic regime, re-

flecting the increasing chaos as the Lyapunov exponent increases. A dip in diagonality

immediately after r = 3.85 reveals the irregularity of the signal during the chaos-chaos

transition just past the period-3 window’s bifurcations, when the chaotic attractor sponta-

neously increases in size.

Each visible periodic window has some representation in D, DET, and ENTR. Measures

based on vertical lines are low in these areas because the values always change from time n

to n+ 1; verticality (Fig. 3.6 d) remains near zero, but dips into negative values in periodic

regimes.2 The curious positive spikes in verticality at r = 3.68 and r = 4.0 are seen also in

the DET plot for Lmin = 3. The orbit diagram at Fig. 3.2 reveals that the first such spike

corresponds to the band-merging point where the superstable points merge; when r = 3.68,

it the system lingers by x = 0.73. The second spike occurs when the superstable points

merge at r = 4.0. Smaller spikes in V occur at r = 3.76, r = 3.79, r = 3.88, r = 3.93, and

r = 4.0, corresponding to the crossing of superstable points in Fig. 3.2.

2Note that D, V, or Pn may be negative due to the subtraction of RR; a negative value in one of these
measures may indicate that points in the RP are organized according to another pattern. For instance, V
and P4 are negative at r = 3.83, because this is the highly predictable period-3 window; D and P3 return
strong positive values there.
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Figure 3.3: Selected RQA measures applied to the chaotic regime of the logistic map,

showing the recurrence rate (RR, a), determinism (DET, b), Shannon entropy (ENTR,

c), diagonality and verticality (D and V, d), TREND (e), and Period-n (Pn, f) all vs.

r varying from 3.55 to 4 in 200 steps. Length N = 10,000 and tolerance ε = 0.001.
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TREND appears to be largely independent of r, probably because it is insensitive to the

changing Lyapunov exponent in the system; TREND returns significant values when the

average values in a signal rise or fall with time, but the logistic map returns high and low

values without any long-term dependence on time. TREND returns unusual values near

r = 3.70 and r = 3.83. The first of these appears to correspond with a narrow period-7

window, and the next with the start of the large period-3 window, although the significance

of these areas is unclear. They may have appeared randomly due to the length of the time

series used, but could also be genuine features not fully resolved because of the resolution.

The Pn measures pick out and classify periodic windows. The windows identified are

given in Table 3.1; checking these against the orbit diagram of the logistic map (Fig. 3.2)

verifies that these classifications are correct.

Table 3.1: Classification of Periodic Windows

r Period

3.63 6

3.74 5

3.83 3

3.96 4

There are many more periodic windows that went unclassified by Pn. For example,

a narrow period-10 window is visible in the bifurcation diagram close to r = 3.60, and a

period-7 window can be seen near r = 3.70. These were not found by Pn because n was

only plotted for n ∈ [1, 6]. However, these windows do show up as spikes in the plots of

DET, ENTR, and DET (Figs. 3.3 b-d); they were not undiscovered, simply unclassified.

In conclusion, an analyst lacking any knowledge of the logistic map could use RQA to

identify the features of the system at different parameter values. One cannot classify the

signal as chaotic, or determine system invariants, but values for D and DET in these inter-

mediate ranges do give a sense of aperiodicity. The band merging, chaos-chaos transitions,

periodic windows, and increasing chaos throughout the typical regions of the map can also

be identified through analysis of the recurrence plot. This suggests RQA measures will also

be effective for investigating new and unknown time series.
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3.2 The Lorenz System

Edward Lorenz was one of the founding thinkers in the field of Nonlinear Dynamics.

Building a twelve-dimensional computer model for atmospheric motion, he gradually noticed

the patterns did not always change as predicted. When he tried to re-run the system from

a previous time, the model gave different behavior—tiny rounding errors in his re-entered

data compounded to produce completely new behavior (Gleick, 2011). This sensitivity to

initial conditions shown by all chaotic systems is known today as the “butterfly effect.”

(Hilborn, 2004)

As Lorenz went on to investigate chaos, he discovered much simpler systems that can

give rise to chaotic behavior. One of these chaotic systems, published in his 1963 article,

Deterministic Nonperiodic Flow (Lorenz, 1963), consisted of only three coupled differential

equations, which are known today as the Lorenz System,

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y (17)

dz

dt
= xy − βz.

Figure 3.4: Lorenz Attractor for ρ = 28,

σ = 10, and β = 8/3, pictured in x and z.

For specific parameter values, the system exhibits a strange attractor, generated with

time step ∆t ∼ 0.0164 and shown in Fig. 3.4 in two dimensions.
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Figure 3.5: Recurrence plots for the Lorenz system, generated from a timestep ∆t ∼
0.0164, with (a) no embedding, ε = 0.8 and (b) two-dimensional embedding, τ = 2 ∆t,

ε = 2.0 (b). Different values of ε were chosen to match recurrence rates across RPs.
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3.2.1 RQA for the Lorenz System

The RP for the x-component of the Lorenz System in Fig. 3.5 (a) shows downward-

sloping diagonals, which might seem to imply the system runs backwards and forwards in

time. But recall from the RPs of the sine curve seen in Fig. 1.1 (c) and 1.5 (a) that, in

a deterministic system, such downward sloping diagonals indicate an improper embedding

dimension.

The Lorenz attractor has a fractal dimension of 2.06 (i.e., very slightly greater than two).

Two dimensions alone are insufficient to generate chaos in a deterministic system, but a two-

dimensional embedding yields an acceptable approximation for RQA. Embedding the signal

in two dimensions can be accomplished by plotting the signal as x(i + τ) vs. x(i), where

τ is the characteristic time-scale of the system.3 Then, the RP is generated by measuring

the Euclidian distance between ((x(i), x(i + τ)) and (x(j), x(j + τ)) for all i, j = 1 to N .

Using the characteristic time separation τ = 2∆t, ε = 2 resolves the determinism of the

system, as shown in Fig. 3.5 (b). The squarish mats from the first RP (Fig. 3.5 a) are

echoed in the RP for the embedded signal as only upward-sloping diagonals, verifying that

the dimensionality of the system is approximately two.

The 2D-embedded Lorenz system shows similar relationships between RQA measures

and tolerance to those seen on other signals. RR and DET increase steadily with increasing

ε, as shown in Fig. 3.6 (a, b). ENTR (not shown) also rises virtually linearly with ε.

Diagonality, plotted in Fig. 3.6 (c) reaches a plateau for ε ∈ [0.5, 1.5]; again, this is the

region where RR ∈ [0.01, 0.10], where RQA is normally applied. Pn returns the highest

values for P2, as expected given the characteristic time-scale τ = 2∆t.

3τ is determined from the first zero-crossing of the autocorrelation function (Kim, Eykholt, & Salas,
1999); this is also the time separation for which a two-dimensional plot from one-dimensional data, x(i+ τ)
vs. x(i), approximately recovers the shape of the strange attractor.



34

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

ε

R
R

a

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ε

D
 &

 V

 

 

D

V
c

0 0.5 1 1.5 2

10
−4

10
−3

10
−2

10
−1

ε

D
E

T

 

 

L
min

 = 2

L
min

 = 3

b

0 0.5 1 1.5 2 2.5
−0.1

−0.05

0

0.05

0.1

ε

P
e
ri
o
d
−

n

 

 

P
2

P
3

P
4

P
5

P
6

d

Figure 3.6: RQA measures applied to the two-dimensionally embedded signal from Fig.

3.5, showing recurrence rate (RR, a); determinism (DET, b), diagonality and verticality

(D and V, c) and Period-n (Pn, d) as a function of tolerance (ε). RR values range from

0.0 to 0.14.
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3.3 Persistence Data

Rearranging random data can create an information-rich signal. Beginning with a time

series of Gaussian noise, the sequence of data points may be shuffled to create a persistent

signal where similar x-values follow one another. An antipersistent signal was generated

analogously, such that x-values tend to oscillate across the mean (Newman, 2013).
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Figure 3.7: First 500 dataspoints in a) persistent, b) random, and c) antipersistent

signals.
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These three signal types (Fig. 3.7) have identical probability distributions, but can be

readily discriminated by plotting x(i+ 1) vs. x(i) (Figs. 3.8 a, b, c). Persistent data form

an upward slope, random data form a centered scatterplot, and antipersistent data form a

downward slope. This arises high x(i) in a persistent series tends to be followed by another

high x(i+1), while high x(i) in an antipersistent series tends to be followed by a low x(i+1).

Recurrence plots for each dataset are shown in Fig. 3.8 (d, e, f). Small squarish mats

of diagonals appear in the RPs for persistent (d) and antipersistent (f) data, with a more

disorganized RP for random data (e). This visual difference suggests the possibility of signal

discrimination through RQA.
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Figure 3.8: x(i + 1) plotted against x(i) for (a) persistent, (b) random (b), and (c)

antipersistent series. RPs are shown below for the first 300 data points of the same (d)

persistent, (e) random, and (f) antipersistent series, with tolerance ε = 1.7. Each signal

originated from the same Gaussian noise function with mean µ = 0, standard deviation

σ = 1, and length N = 10,000.

3.3.1 RQA for Persistence Data

The clear visual differentiation of signal types in two-dimensional plots of x(i + 1) vs.
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x(i) (Fig. 3.8) suggests that two dimensions may be sufficient for embedding, with a time

separation of τ = 1. After attempting different embeddings, it was found that the signals

could be indeed discriminated well under a two-dimensional embedding with τ = 1.

Figure 3.9 a) shows the results for diagonality only, though all diagonal-based measures

(DET, ENTR, L, and D) discriminated between the random and rearranged signal types

similarly, with both persistent and antipersistent signals showing higher values than the

random signal. Because the antipersistent signal tends to switch from high to low values, it

is more likely to follow recurrent paths from low to high and high to low, producing more

diagonal lines in the RP.

Figure 3.10 gives the results for verticality. All vertical-based measures (LAM, TT, and

V) discriminated well between the three signal types. The tendency in persistent data for

each data value to remain near the preceding value results in longer vertical lines, while

antipersistent data tends to change values even more often than random data.

Figure 3.9. Comparison of diagonality (D, a) and verticality (V, b) from the RP of the

three signals in Fig. 3.8, embedded in two dimensions with τ = 1, ε = 1.7.

All three signals returned values above zero for D and V; this is likely a consequence of

the two-dimensional embedding, as the values for D and V were near zero for RPs of the

one-dimensional signals. Since all three embedded signals had very similar recurrence rates

(persistent, RR = 0.105; random, RR = 0.097; and antipersistent, RR = 0.105) the values

for D and V are comparable across time series.

The RQA measures for these time series showed no unusual dependence on ε. To provide

a sample, Fig. 3.10 shows selected RQA plots for persistent data, with all measures rising
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monotonically as ε increases from 0.1 to 2.0. No significant changes in the discrimination

were observed for any values of ε within this range.
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Figure 3.10. Selected RQA measures vs. tolerance (ε) for persistent data, showing the

recurrence rate (RR, a), diagonality and verticality (D and V, b), Shannon entropy

(ENTR, c), and Period-n (Pn, d).
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3.4 Summary of Synthetic Data Investigation

When interpreting RQA values, the classic measures of Shannon entropy, determinism,

and laminarity return values in the range [0, 1], with high values indicating more organi-

zation of the RP in the form of diagonal or vertical lines. But user selection of shorter or

longer Lmin and Vmin can push the results closer to 0 or 1. Similarly, these measures are

highly dependent on RR, so that choosing very small or large ε can also push these values

close to 0 or 1. Because of this, ENTR, DET, and LAM should be interpreted in a relative

sense to reveal differences between signal types or parameter values in the system under

study.

Diagonality, verticality, and period-n return values in a similar range, though shifted

downward by the subtraction of the recurrence rate. Higher values again indicate more reg-

ularity in the form of more time spent following recurrent paths, remaining near a previous

value, or following periodic trajectories. These new measures are more robust with respect

to the recurrence rate in the typical range of RR ∈ [0.01, 0.1], allowing for somewhat more

objective interpretation; for the signals studied here, values from approximately 0.2 to 0.6

corresponded to chaos, with higher values seen only in periodic signals. Values near 0 are

found in uniform random noise, although small negative values can also occur when the

arrangement of the RP contains fewer lines or periodic values than uniform random noise.

Overall, we have seen that RQA provides a tool for investigating and discriminating

between time series. RQA may not be ideal for all applications; persistence datatypes were

very easily discriminated by plotting x(i+ 1) vs. x(i). There are many alternative methods

for investigating time series, such as statistical analysis (Anderson, 2011) or spectral analysis

(Marple, 1987).

Each step in the RQA process results in a loss of information. Converting a raw signal

into a recurrence plot, and further reducing this signal to a few values, represents a massive

reduction in the information available—two very different signals can have highly similar

values for DET, LAM, and other measures. If discrimination is the goal, however, removing

extraneous information can be highly useful to produce a clear picture. Ultimately RQA

represents one tool among many, and there is no reason to believe that data analysis begins

and ends with the recurrence plot.
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Chapter 4

Application to Natural Data

The neurological structure underlying respiration, though complex, is gradually yield-

ing to investigation (DePuy, Kanbar, Coates, Stornetta, & Guyenet, 2011; Messier, Li, &

Nattie, 2008). An emerging model has serotonergic neurons firing with increased frequency

in response to elevated blood serum levels of CO2 (Richerson, 2004), with nonserotoner-

gic neurons firing with decreased frequency in response to the same stimulus (Messier et

al., 2004). Although these neuron types can be discriminated by their response to CO2

challenges, it is also useful to discriminate between them according to baseline behavior.

The standard means for discrimination used in biology involves calculating the mean and

standard deviation of inter-spike intervals and comparing these to a reference line (Mason,

1997). Although serotonergic cells are typically classified using this method, many non-

serotonergic cells are misclassified as serotonergic. RQA may allow classification of these

cells.

We used raw data that were collected by Dr. Harris’ research group (Institute of Arctic

Biology, University of Alaska Fairbanks). Voltage spikes were recorded from the brains of

anesthetized rats, as shown in Fig. 4.1 (Harris & Iceman, 2012). Raw data were then

converted into inter-spike intervals (ISI) by measuring the time delay between spikes; spikes

were counted as any voltage increase past a given threshold, set above the noise band. This

threshold was not identical across signals because of sampling differences changing the size

of the noise band. Although noise presented a problem in some datasets, genuine voltage

spikes had a characteristic pattern (Fig. 4.1 b): a rise of increasing steepness, followed by a

plunge below baseline, and final relaxation to baseline. In difficult cases, true voltage spikes

could be distinguished from noise by this characteristic shape.
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Figure 4.1. Voltage signal for a typical neuron (a) and close-up (b). A horizontal line

marks the 7µV threshold for determining spike positions, marked with red crosses.
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Figure 4.2. Standard deviation (σ) vs. mean (µ) for serotonergic neurons (blue trian-

gles), nonserotonergic neurons (pink circles) and misclassified nonserotonergic neurons

(red crosses). The discriminant line σ = (µ− 146)/0.98 is plotted in black.
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4.1 Preliminary Analysis

Thirty-nine data runs were received and separated into three categories: serotonergic,

nonserotonergic, and misclassified nonserotonergic. Most runs were short, taken at lengths

below 5 minutes and containing fewer than 200 spikes, although one run contained 1365

spikes due to very high firing frequency.

The discrimination method typically used in biology was applied, comparing the stan-

dard deviation (σ) and mean (µ) of a cell’s ISI to a threshold as seen in Fig. 4.2; the line

σ = (µ − 146)/0.98 is the classical discriminant criterion for classifying serotonergic and

nonserotonergic cells (Mason, 1997). All signals from serotonergic cells are confined to the

region on or below the discriminant line, although signals from nonserotonergic cells are

scattered both above and below the line. One cell, originally misclassified in the biologists’

dataset (red cross at (102.4 ms, 102.3 ms)), was correctly classified here, possibly due to dif-

ferences in threshold selection, although most of the initially misclassified nonserotonergic

cells remained on the lower (serotonergic) side of the line.

The Pearson correlation of xn against xn+1, can be a quick method for discrimination

in many time series (Fig. 3.8). As a biological argument for this method of analysis, some

cells might require longer relaxation times after firing rapidly twice in a row. However, as

shown in Fig. 4.3 for two typical signals, the plots were relatively diffuse, and the available

time series were generally too short to reveal significant correlations between successive

inter-spike-intervals.

Figure 4.3. Typical return plots of inter-spike interval (xn+1) vs. (xn) for a misclassified

serotonergic cell (a) and nonserotonergic cell (b). Pearson correlation coefficients (r)

with significance levels (p) are shown in each figure.
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Turning to RQA, Fig. 4.4 shows RPs for three typical signals. The plots appear random

or nearly so, with D and V returning values near or below 0. It might be argued that the

nonserotonergic cell (Fig. 3.3 b) lingers somewhat longer in the same state with V = 0.03

vs. V = 0.01 for the serotonergic cell (Fig. 3.3 a) and V = -0.01 for the misclassified

nonserotonergic cell (Fig. 3.3 c). But such small differences are not necessarily meaningful,

given that none of the plots were greater than length N = 250.
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Figure 4.4. Typical recurrence plots for a serotonergic cell (a), nonserotonergic cell (b),

and misclassified nonserotonergic cell (c), with tolerance (ε) chosen to give a recurrence

rate of RR = 0.1 across all cases.
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Overall findings are summarized in Fig. 4.5. RQA values for all serotonergic cells are

confined to low values, in a way that suggests the possibility for discrimination. But most

nonserotonergic cells also return values in a similar range. The signal with the highest

recurrence rate originated from the nonserotonergic cell previously mentioned with a very

high firing rate, leading to a reduced ISI range.
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Figure 4.5. Recurrence rate (RR), diagonality (D), verticality (V) and Period-n (P2-P5)

for serotonergic (blue dots), misclassified serotonergic (red crosses), and nonserotonergic

cells (green). Dotted lines connect values for same data series. All measures were

calculated from recurrence plots using a tolerance threshold (ε) of 1 ms.

4.2 Minimum Trial Length

Throughout the analysis, the difference in the lengths of the data series were striking.

Some time series had fewer than 50 data values, raising the question of whether they were

long enough for analysis, and what the minimum usable data length should be.
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To investigate the robustness of classification, the time series were split into parts and

re-plotted according to each part’s mean and standard deviation. Figure 4.6 shows the pro-

cess for a longer dataset; the discriminant line was crossed when the entire series of length

N = 353 was split into lengths below N = 200. Given that only 12 of the 29 available time

series were above this length, the number of ISI counted for any given neuron was clearly a

problem for discrimination.
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Figure 4.6. Log-Log plot of ISI standard deviation (σ) vs. mean (µ) for a single time

series (black circle) split into segments of length 50 (blue crosses), 100 (green dots), and

200 (red triangles). The discriminant line σ = (µ− 146)/0.98 is plotted in black.
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Figure 4.7. Voltage signal for high frequency neuron. A horizontal line marks the 7µV

threshold used to determine spike positions, marked with red crosses.
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Figure 4.8. ISI standard deviation (σ, blue) and mean (µ, black) vs. data length (N)

for the high-frequency cell. Horizontal lines are added to guide the eyes.
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Figure 4.9. Convergence behavior of RQA measures for the signal from Fig. 4.7. a)

determinism (DET) for varying Lmin. b) Diagonality (D, blue) and verticality (V, red).

Convergence behavior was explored by starting from the beginning of the series (solid

lines) and from the end (dashed lines); horizontal lines are added to guide the eyes.
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In order to determine the minimum length necessary for convergence, the high-frequency

nonserotonergic series with 1365 spikes was used (Fig. 4.7). Figure 4.8 shows convergence

of mean and standard deviation with increasing series length. These measures, typically

used in biology, did not converge until 300 ISI, suggesting that classification of other cells

with more typical firing rates by mean and standard deviation also requires longer runs

than were available. This, together with the analysis of segments from Fig. 4.6, suggests

that longer time series are necessary to accurately classify neuron types.

The convergence of diagonality and determinism with series length were investigated

for the same dataset. Determinism (Fig 4.9 a) increases with increasing data length; the

longest diagonal line also increased steadily towards 600 and then jumped from Lmax = 6

to Lmax = 11 between N = 600 and N = 700. Convergence behavior of diagonality and

verticality are shown in Fig. 4.9 (b), starting from the beginning and the end of the signal;

as is typical for these measures, D and V do not converge until N > 600.

4.3 Conclusions

The minimum data length for typical classification methods is at least 200 ISI, and longer

series are necessary for evaluation via RQA. Although longer runs were not available, this

result remains informative for research methods in biology. The problem of misclassified

serotonergic cells by plotting mean and standard deviation might only be a consequence of

insufficient sampling time; if so, this issue could be resolved by sampling out to ISIs of 300

or more.

The deeper question of whether the cell types can be distinguished by their firing pat-

terns remains unresolved. RQA measures generally returned low values, indicating that

the signals could be so complex as to be indistinguishable from random noise. Yet the

sample size, and particularly the trial lengths, were too small to draw any conclusions.

Further research in this direction will require ISIs of 1000 or greater; given typical firing

frequencies, trial runs of ten minutes are recommended. Although such data are required

for the analysis, they might not be feasibly achieved experimentally if the “brain condition”

is non-stationary over such lengths.
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Chapter 5

Conclusion

The recurrence plot provides a method for time series analysis by displaying all points

in a time series that have similar values at time i and j. Diagonal lines and other features

in the recurrence plot reveal underlying organization in the time series, and can be used

in recurrence quantification analysis (RQA) to identify characteristics of a single signal, or

discriminate between different signal types.

Three new RQA measures were developed: Diagonality quantifies recurrent points in

diagonal lines, verticality quantifies recurrent points in vertical lines, and period-n quantifies

recurrent points in periodic trajectories. These and classical RQA measures were applied to

the logistic map (May, 1976), identifying band merging points, periodic windows, increasing

chaos, and other transitions with changing parameter values. RQA quantified the dimen-

sionality of the Lorenz attractor (Lorenz, 1963) as roughly two, and discriminated between

persistent, random, and antipersistent data series of differing Hurst exponents (Hurst, 1951).

After examining convergence behavior of RQA measures on these well-studied systems, the

same methods were applied to neuron data with the goal of classifying different cell types

on the basis of their firing patterns. The available data, however, were of insufficient length

for classification, with a minimum series length of 600 spikes being required. Whether such

neurons can be discriminated on the basis of RQA remains an open question.

When first approaching a new signal, it helps to select a reasonable tolerance threshold

(ε) and visually inspect the recurrence plot of the signal without embedding before deciding

how to move forward. Many upward-sloping diagonal lines indicate a highly regular sig-

nal, and the characteristic time-scale can be inferred from the spacing between such lines.

Downward sloping diagonals suggest the need for a higher embedding dimension. And areas

without recurrence indicate the presence of exceptional points taking different values from

most of the data series.

Technical finesse is required in selecting the appropriate tolerance parameter, since the

choice of tolerance threshold determines the number of recurrence points in the recurrence

plot. In comparing signals, the option exists to standardize plots for different signals on

the recurrence rate, tolerance threshold, or neither. The analyses discussed here generally

controlled for the recurrence rate by selecting the tolerance to give recurrence rates near

0.03. However, it is not necessary to standardize either the recurrence rate or the tolerance;
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if datasets vary greatly in range, one option is to standardize the tolerance as a varying

fraction of the signal range or multiple of the standard deviation of the signal’s noise.

The length of the series must also be considered. In the signals investigated here, gross

features were detected on the recurrence plot of even very short series of about 200 points,

but convergence behavior of RQA measures were insufficient for fine discrimination in time

series of length below 1000, as was concluded for the neuron signals analyzed in this work.

This may not be the case with other signals; more datapoints would be needed to resolve

the dynamics from a signal with high resolution. Long data series are not always available,

however. In signals with intermittent behavior, or in experiments with short-term response,

RQA measures can only be taken as a representation of the system during that transitory

state.

Even given a series of appropriate length, the choice of the embedding dimension re-

mains. Given a scalar signal from an n-dimensional system, the series may be embedded in

higher dimensions to recover the dynamics. Deterministic systems should not show down-

ward sloping diagonals in their recurrence plots. Finding the characteristic time-scale of

the signal and embedding on that scale is required.

Lastly, interpretation of the results may not be straightforward. For instance, chaotic

signals seem to give values for diagonality in the range from 0.2 to 0.6, with random noise

returning lower values, and periodic signals returning higher values, but these are not fixed

limits. Classical measures, such as determinism, can give any value from 0, for random

signals with a low tolerance threshold, to 1, for regular signals or recurrence plots generated

with very high tolerance. There are also conceptual pitfalls in the terminology of Recurrence

Quantification Analysis. The RQA measures for “entropy” and “determinism” have unusual

meanings. The Shannon entropy as introduced by Shannon (1948) describes the information

encoded in a data signal (Ihara, 1993), whereas here the Shannon entropy is a measure of

structural regularity; and a high value on determinism indicates regularity in the signal and

recurrence plot, but not necessarily determinism in the classical sense of cause and effect.

5.1 Outview

Discrimination between serotonergic and nonserotonergic neuron types remains a subject

for further investigation, since these two cells play different roles in respiration, specifically,

excitation and inhibition of breathing rate. Current datasets were not long enough to

achieve convergence in RQA measures. Longer time series of baseline behavior would allow
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for the nature of these cells and their differences to be fully explored.

Some outstanding methodological issues remain in the field of Recurrence Quantifica-

tion Analysis. The measure TREND, as defined in RQA, reflects nonstationarity in signals

with rising or falling values over time, measuring this through a formula very similar to the

Pearson product-moment correlation coefficient, (Stigler, 1989) except that it is normalized

differently to return very small results, below 10−5 in absolute magnitude. Further work

may be worthwhile to produce a measure returning values on a similar scale as the oth-

ers, and corresponding more clearly to the Pearson product-moment correlation coefficient.

Regarding the new measures of diagonality, verticality, and period-n, there is currently no

clear way of determining whether a small positive reading indicates a significant deviation

from random noise. Determining statistical p-values for these measures in data series of

different lengths would also be useful in order to apply rigorous hypothesis tests to the

results of RQA.

Compared to other quantities, such as the Lyapunov exponent or fractal dimension,

which determine dynamical invariants of a system (Strogatz, 2001). RQA measures do

not classify time series in such a mathematical sense. Ultimately it would be desirable to

ground RQA measures on a rigorous mathematical foundation. The Lyapunov exponent

identifies the existence of, and quantifies the degree of, chaos, but it is not clear whether

RQA measures can do this. They remain highly useful from a purely empirical standpoint,

but much could be gained from theoretical work establishing the relationship such measures

have to existing dynamical invariants.

Finally, the values within time series investigated here have generally fallen within a con-

tinuous range. But text, musical scores, dice-rolls, codes, and other quantized signals offer

rich areas for exploration. Particularly, differences in musical genres could be investigated

to create algorithms for discriminating between types of music. Or, questions regarding the

difference in composer eminence could be explored by using RQA. e.g., would Mozart or

Beethoven show more irregularity in their music scores than less well-known composers such

as Schulhoff? Ultimately, any phenomenon displaying recurrent behavior is a candidate for

analysis via the recurrence plot.
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