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Abstract 

Waste management practices currently employed in many rural Alaska communities are 

potentially contributing to human and environmental health impacts, and this problem may be 

exacerbated with the anticipated warming climate. For rural communities, factors that contribute 

to insufficient waste management practices include climate and environmental conditions, 

limitation of federal and state capital funding for construction, and the continuing financial 

burden associated with providing adequate operations and maintenance. As a response, federal 

regulatory exemptions are granted for construction and design of solid waste sites and limited 

state regulations are in place for wastewater discharge criteria. Due to the absence of proper site 

assessment and monitoring, very little is known about the fate and transport of point source 

pollutants arising from these wastewater and solid waste sites. Moreover, these fate and transport 

processes may be susceptible to changes resulting from human activity or a warming climate. 

Thus, this knowledge gap associated with waste-related pollutants in rural Alaska could obscure 

potential threats to human and environmental health by concealing impacts to freshwater systems. 

This research was intended to achieve a better understanding of rural Alaska waste leachate 

compositions by evaluating contaminant prevalence and diversity, quantifying contaminant 

concentration levels, and evaluating their potential migration into nearby freshwater systems. 

Over the course of three years, waste sites at five rural Alaska communities were sampled and 

tested for heavy metals, organic constituents, and microbial indicator organisms. The purpose of 

the analysis was to evaluate the impact of waste sites on soil, surface, and subsurface waters in 

the vicinity of the sites. The resulting findings are assembled into three chapters describing 1) the 

assessment of heavy metal leachate in rural Alaska solid waste sites, 2) the identification of new 

emerging organic pollutants in rural Alaska waste sites, and 3) the partitioning and transport 

behavior of pathogen indicator organisms in cold regions. The research outcome of E.coli and 

Enterococcus sp. were observed in waste impacted water and soil samples, heavy metal migration 

into nearby freshwaters, and pharmaceuticals, phthalates, and benzotriazole in waste impacted 

water samples. The research findings highlight the need to apply state regulations to remove 

potentially hazardous components from rural Alaska wastewater and municipal solid waste 

streams. Additionally, there is a need to establish effective solid waste and wastewater leachate 

monitoring and assessment strategies for active and closed rural Alaska waste sites.  
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Chapter I 

1. General Introduction

1.1.1 Waste Management Practice Issues 

In the United States, solid waste and wastewater management practices are guided primarily by 

the Resource and Conservation and Recovery Act (RCRA) and the Comprehensive 

Environmental Response, Compensation and Liability Act (CERCLA). Waste management is 

defined as the distinct practice of collection, transport, disposal, management and monitoring of 

waste material produced by human activity to prevent any adverse effects for future human and 

environmental health (LaGrega et al., 1994). Generally, wastewater and solid waste generated by 

human activity are classified into three groups i) solid waste, ii) liquid waste and iii) gaseous 

waste (Freeman and Lounsburg, 1990). The environmental regulations require waste management 

practices to mediate hazardous liquid, solid and gaseous waste material (LaGrega et al., 1994), 

and focuses on designs and processes for treating, minimizing, remediating and disposing of 

waste material (Watts, 1997). Factors considered for potential waste facilities include haul 

distance, location restrictions, available land area, site access, soil conditions, topography, 

climatological conditions, surface water hydrology, hydrogeological conditions, local 

environmental conditions, long-term disposal and end use after site closure (Tchobanoglous et al., 

2003). Poorly designed waste facilities can often produce leaking liquids, termed leachate. The 

most common way in which waste leachate affects the surrounding environment is through 

migration into the nearby surface and ground waters.  

Specific federal and state regulations are emplaced for landfill technology and construction based 

upon the volume and makeup of the waste material. The types of regulated waste include 

industrial waste, nonhazardous municipal waste and hazardous waste (Fetter, 1999). As 

hazardous wastes are generally the most difficult and/or expensive to manage, solid waste 

practices are developed to minimize the volume of hazardous waste in a waste stream.  Such 

processes include waste segregation, reuse, recycling and modification (Freeman and Lounsburg, 

1990; Watts, 1997). Solid waste leachate results from precipitation that has infiltrated and 

percolated through the waste material, then been subjected to physical and chemical 

transformation processes in the waste itself (Kjeldsen et al., 2002; Tchobanoglous et al., 2003). 
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The waste leachate concentration is dependent on several factors including waste constituents, 

waste age and density, treatment and disposal technology, amount of precipitation, groundwater 

and surface water infiltration, moisture content and surface flow patterns, gas production, and 

climatic conditions such as evapotranspiration (Åkesson and Nilsson, 1997; Chu et al., 1994; 

Sundsbak, 1971; Tchobanoglous et al., 2003).  

Wastewater treatment systems are constructed to treat domestic, industrial or municipal 

wastewater sources generated by storm runoff, bathroom, laundry, and kitchen facilities (Eriksson 

et al., 2002; Imhof and Muehlemann, 2005; NSWHealth, 2000). Wastewater management 

practices are established for design and operation of centralized or decentralized collection using 

treatment and disposal technologies to remove chemical and biological pollutants in order to meet 

required federal and state discharge permit standards (Tchobanoglous et al., 2003). Different 

levels of wastewater treatment units are available, including primary, secondary and tertiary 

treatment processes. Such unit processes utilize physical, chemical, and/or biological processes to 

reduce noxious constituents in wastewater discharge to levels adequate to ensure human and 

environmental health (Imhof and Muehlemann, 2005; Tchobanoglous et al., 2003). Primary 

treatment provides physical removal via sedimentation. Advanced primary treatment enhances 

suspended and dissolved solids removal. Secondary treatment is based on biological and chemical 

processes for organic matter removal. Tertiary treatment utilizes additional biological, chemical, 

or physical processes to remove residual suspended solid and hazardous material beyond the 

secondary treatment level (Tchobanoglous et al., 2003). The concentration of chemical 

compounds in wastewater treatment effluent is highly influenced by the individual unit processes 

(Vieno et al., 2005). Wastewater pollution is often associated with poorly operated or designed 

wastewater treatment systems, system failure, impacts of stormwater and sanitation overflow, 

municipal wastewater collection system and septic tanks leakage, reuse of  wastewater for 

landscaping and agriculture, and discharge into surface waters, as well as recharge of 

groundwater (Tchobanoglous et al., 2003). Pollutants emerging from a wastewater treatment plant 

or contained in solid waste leachate can vary significantly, and are characterized into four 

pollutant groups: i) heavy metals, ii) dissolved organic matter, iii) inorganic matter, and iv) 

xenobiotic organic compounds (Kjeldsen et al., 2002; Tchobanoglous et al., 2003).  

A robust waste management strategy is needed to ensure human and environmental health. In 

rural Alaska communities many factors contribute to insufficient collection, transport, treatment, 
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and disposal of waste material. In order to more fully understand the issues surrounding 

inadequate waste management practices in rural Alaska, it is necessary to describe the factors 

contributing to those conditions. The following sections describe 1) the current waste 

management practices and conditions in rural Alaska communities;  2) the principle concepts of 

contaminant transport in cold regions; 3) arctic and subarctic environmental conditions that 

contribute to migration of waste derived pollutants into nearby water resources and environment; 

4) the potential impacts of climatic-induced changes to permafrost and precipitation on

contaminant transport pathways and mobility; and 5) the human and environmental health 

impacts associated with waste derived pollutants.  

1.1.2 Research Objective 

The goal of this study was to evaluate the current state of rural Alaska waste management 

facilities with respect to the migration of waste-derived contaminants into nearby water resources.  

This was not intended to be an exhaustive study encompassing all rural Alaska waste sites, but 

rather an exploratory effort intended to inform future, more comprehensive studies.  By 

identifying typical contaminant composition and concentrations as well as evaluating potential 

migration pathways into nearby freshwater systems, this work seeks to provide recommendations 

that will inform management strategies now and in the future. The resulting findings are 

assembled into three chapters describing 1) the assessment of heavy metal leachate in rural 

Alaska solid waste sites, 2) the identification of new emerging organic pollutants in rural Alaska 

waste sites, and 3) the partitioning and transport behavior of pathogen indicator organisms in cold 

regions. 
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1.2 Literature Review 
1.2.1 Rural Alaska Communities 

Alaska is the largest state in the United States with 1,477.000 square kilometers of land, 

approximately 75,000 square kilometers of glaciated area, more than 12, 000 rivers, more than 3 

million lakes, and countless streams, creeks and ponds (Shulski and Wendler, 2007). Alaska is 

sparsely populated with 710,231 residents, of which 60% are concentrated in or around the Kenai 

Peninsula, Anchorage, Matanuska-Susitna, Fairbanks, or Juneau areas (Census, Bureau, 2010). 

The remaining 40% are scattered throughout the state in over 300 rural communities, which are 

home to approximately 229 federally recognized tribes including Alutiq, Yup’ik, Chup’ik, 

Sugpiaq, Tlingit, Haida, Eyak, Tsimpsian, Inupiat, and Athabascan.  Indeed, Alaska’s federally-

recognized tribes represent more than 40% of the tribes in the United States (BIA, 2003; 

Patterson et al., 2012). Most Alaska’s rural communities are not connected by road system and 

are located in diverse geographic areas, ranging from the coasts to the mountains to the open 

tundra (Olofsson and Schroeder, 1993; Patterson et al., 2012). In addition, Alaska has five distinct 

climate zones and precipitation patterns: arctic, interior, west central, south central, and maritime 

(Table 1). Each climate zone is presented with difference in environmental settings such as 

underlying bedrock, occurrence of permafrost, and fast wetlands. This geographic disparity and 

Alaska’s extreme environmental settings present a unique challenge to waste management 

practices (Patterson et al., 2012).  

Besides climatic and geographical factors, socioeconomic conditions such as small local 

economies and tax bases, high fuel and shipping prices, short construction seasons, and lack of 

sufficient local knowledge (i.e. trained personnel and local servicing expertise) contribute to 

inadequate waste management practices among rural communities (ANTHC, 2007; Duigou, 

2006; EPA, 2012). In particular, many communities have limited access to state and federal 

funding for operation and maintenance of waste facilities (Black and Logan, 2000; Colt et al., 

2003; Ritter, 2007). Another common obstacle is the inflexibility of the regulatory review and 

permitting process.  It is reported that the regulatory process is ill-suited to meet the needs of 

small, remote communities (ANTHC, 2007; Duigou, 2006; Troy, 2007). As a consequence, 

modern water, sewer, and solid waste disposal services are still lacking in 34% of rural Alaska 

Native communities (ANTHC, 2007). To establish a more sustainable waste management 
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practices for rural Alaska communities, Haley (2000) recommended acquiring information from 

other northern nations about policies, specific practices and system processes.  

Improving rural Alaska wastewater management practices is particularly important due to the 

close proximity of many waste facilities to local water resources or other subsistence areas.  To 

achieve a better understanding of rural Alaska solid waste and wastewater impacts, this research 

focused on establishing chemical and microbial baseline data to assess the extent and nature of 

waste derived pollutants, and attempted to evaluate the existing transport pathways between 

waste facilities and surrounding surface water resources. Identifying and characterizing waste 

derived pollutants along with their transport pathways is expected to help people in remote 

northern communities reduce the environmental and human health risk associated with 

insufficient waste management practices. The research addressed two general questions regarding 

the status of waste management practices in rural Alaska communities. The first question 

addresses current environmental impacts of waste derived pollutants and the second question 

evaluates whether current or future waste disposal practices are sufficient and sustainable to 

guarantee human and environmental health in light of a changing climate. Rural Alaska 

communities are especially affected by these climatic changes resulting in more frequent 

occurrence of flooding and erosion, and permafrost degradation due to rising temperature (GAO, 

2003; Jeffries et al., 2013). Considering that 50% of rural Alaska waste disposal facilities are 

currently underlain by permafrost (Kellems et al., 1991), new regulations and designs for arctic 

and subarctic waste disposal practices have may be require to address these environmental 

changes (White, 2008). 

1.2.2 Rural Solid Waste Management 

The solid waste management program for rural Alaska communities is regulated and 

implemented under the primacy of Alaska Department of Environmental Conservation (ADEC) 

through the Alaska Administrative Code (AAC) 18 AAC 60.  In Alaska, there are three types of 

permitted municipal solid waste landfills (MSWLF), including Class I, II, and III.  In addition, 

there are approximately 1,104 unpermitted Class III landfills (EPA, 2008). In response to high 

construction, operation and maintenance costs of landfills, the State of Alaska specifically 

designated a Class III landfill category to accommodate rural communities with a population size 
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less than 500, (Black and Logan, 2000; Colt, 1994; Ritter, 2007). A Class III MSWLF is defined 

“as a landfill that is not connected to a Class I MSWLF or, if connected by road is located more 

than 50 miles from a Class I MSWLF; accepts for disposal, ash from incinerated municipal waste 

in quantities less than one ton daily on an annual average, or receives less than five tons daily of 

municipal solid waste, based on an annual average, and is not located in a place where public 

access is restricted” (18 AAC 60.300(3)). Federal regulatory exemptions are granted for Class III 

landfill construction and design. These include construction without a landfill liner, construction 

without a leachate collection system, minimal capping requirements, and operation without 

groundwater and methane gas monitoring (EPA, 2008). Consequently, Class III landfills in 

Alaska are often described as “open dumps”. The three most common open dump designs for 

waste disposal in rural Alaska are: landfills located above ground, landfills contained within 

trenches, and landfills located in tundra ponds. The three most common landfill designs in rural 

Alaska are illustrated in Figure I-1. 

In rural Alaska most communities have low municipal incomes, and lack the equipment and 

economic resources to properly manage their solid waste. As a consequence, only a fraction of 

rural communities dispose of their refuse in permitted landfills (Zender et al., 2003a). The 

remaining communities dispose their household and hazardous waste material (i.e. cleaning 

products, antifreeze, lead batteries, electrical waste, etc.) in open dumps. For at least 30% of the 

communities, human waste is discharged together with solid waste, posing an additional 

pathogenic risk (Zender et al., 2003a). Historically, these open dumps were operated without site 

control or routine maintenance, little or no waste separation, and without the knowledge of waste 

leachate generation and migration in standing water, wetland sites, or seasonal flooding 

(Patterson et al., 2012). In 2001-2003, the Central Council of Tlingit and Haida Indian Tribes of 

Alaska (CCTHITA) conducted a statewide evaluation to assess solid waste management 

conditions and practices of rural Alaska communities. The comprehensive survey of 229 federally 

recognized Tribes indicated that 60% of communities have access to heavy equipment to 

consolidate and compact wastes, 32% can afford a part-time operator to manage their solid waste, 

6% apply cover material, and in 55% of open dumps, the waste uploading area is already covered 

with disposed waste (CCTHITA, 2003; Zender and Sebalo, 2001a). In addition, in the near future 

a large fraction of Alaska communities will face open dump closures that attributed to limited 

space availability and their close proximity to the communities (ADEC., 2004b.). Although 



11 

Alaska appears to have sufficient land available for waste facilities, rural communities experience 

space limitations caused by complicated land ownership arrangements. The most suitable land 

available for a landfill is often desirable for housing development or traditional subsistence 

harvesting areas (Matsuura et al., 2008). Given these circumstances, closing a community’s open 

dump site is an important issue, with 29% of polled communities listing site closure as one of 

their top waste management concerns (ADEC, 2004b). The conditions and extend of rural Alaska 

open dumps are illustrated in Figure I-2. 

In most rural Alaska communities, almost all of the generated waste is deposited in these open 

dumps. While a waste generation rate of 5 lbs/person/day is reported for the US as a whole 

(Smith and Low, 1996), a higher rate of 6 to 7 lbs/person/day is estimated for larger rural Alaska 

communities (EPA, 2008). Moreover, the waste composition in rural Alaska communities has 

changed over recent decades from traditional organic materials associated with a subsistence 

lifestyle to more recalcitrant or hazardous waste products such as antifreeze, gasoline, batteries 

paints, synthetic packaging material, electronics, construction and demolition debris, personal 

hygiene products, and pharmaceutical products (Duigou, 2006; Lincoln et al., 2007; Matsuura et 

al., 2008; Slack et al., 2005; Townsend, 2011; Vrijheid, 2000). Considering the increased 

generation rate and the change in waste composition, traditional open dumps in rural Alaska 

present a more severe threat to surrounding water resources than originally thought. In light of 

this, the ADEC listed approximately 250 rural Alaska landfills as posing a reasonable threat to 

public and environment health (ADEC, 2004b).  

Leachate generated in rural Alaska open dumps is generally not monitored or contained.  Thus, 

the environmental impacts of the leachate are unknown. As many communities dispose their 

minimally-treated or untreated solid waste directly in tundra ponds or on wet tundra, there is a 

high probability that waste-generated leachate mobilizes into the surrounding surface or ground 

waters (EPA, 2009; Patterson et al., 2012). Moreover, arctic and subarctic rural dumps are often 

subjected to seasonal flooding during the snow melt period, runoff events from warm-season 

precipitation or thawing of underlying permafrost (Jeffries et al., 2013; Patterson et al., 2012), 

and illustrated in Figure I-3. These factors can combine to promote the offsite migration of 

leachate (Patterson et al., 2012). Furthermore, many rural Alaska dumps are constructed above 

ground, rising up to 3-10 meters above surrounding grade. Thus, this creates a topography that 



12 

encourages downslope migration of waste leachate pollutants. Finally, many rural communities 

have active dumps as well as multiple abandoned dumps located in close proximity to the 

community and water resources, which can act as additional point sources releasing pollutants 

(EPA, 2008). 

 Numerous studies have been performed to evaluate the impacts on surface and groundwater by 

landfill leachate in temperate climatic regions (Gounaris and Anderson, 1993; Haertling, 1989; 

Iwegbue et al., 2010; Lunde and Young, 2005; Øygard et al., 2004). However, fewer such studies 

have been conducted in permafrost regions. One study intended to evaluate cadmium and lead 

contamination in a Canadian Arctic waste site demonstrated a higher concentration of cadmium 

in water, while lead concentrations were low due to particulate adsorption (Young and Lund, 

2006). A similar study conducted at a Central Arctic municipal waste site in Pangnirung Nunavut, 

Canada observed trace metal concentrations (Cd, Pb, Cu, Fe, and Zn) in water and sediment 

samples (Haertling, 1989). In addition, hazardous waste leachate containing high heavy metal 

concentrations originating from e-waste, batteries, paints, and vehicle maintenance products have 

been documented in moderate climate region municipal landfills  (Ha et al., 2009; Lincoln et al., 

2007; Slack et al., 2005; Townsend, 2011; Vrijheid, 2000). 

1.2.3  Rural Alaska Sanitation Issues 

The major driver in providing sanitation to rural Alaska communities was initiated by the federal 

Village Safe Water Act, passed in 1970. The Village Safe Water Act set strict chemical and 

microbiological requirements to ensure clean drinking water for rural residents (Duigou, 2006). In 

many instances, improving wastewater practices was an essential component of providing safe 

drinking water. Many rural Alaska communities rely on traditional water resources such as tundra 

ponds, streams, and rivers for their drinking water. These local water bodies are subject to 

pollutants resulting from inadequate sanitation practices and therefore, their environmental health 

has been identified as a critical human health issue (ANTHC, 2009). This situation led to federal 

and state missions to implement and construct drinking water treatment facilities and wastewater 

treatment systems as combined projects. The regulatory agencies involved with planning, 

designing and constructing rural Alaska wastewater treatment systems include the federal Indian 

Health Service, Army Corps of Engineers, Alaska Native Tribal Health Consortium, and the State 
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of Alaska Department of Environmental Conservation and Village Safe Water agencies 

(Herdman, 1994b; Williams, 1993). The sanitation designs and construction methods are 

proposed by Indian Health Service, Alaska Native Tribal Health Consortium and Village Safe 

Water. The State of Alaska DEC and Army Corps of Engineers approves the state water quality 

standards for wastewater discharge permits under the federal Clean Water Act (CWA) Section 

404 (Herdman, 1994b; Williams, 1993).   

Although a wide variety of wastewater treatment systems designs are available for rural 

communities elsewhere (EPA, 1994a), the selection and implementation of optimum systems for 

rural Alaska’s extreme environment is a difficult task.  Wastewater treatment systems in rural 

Alaska are influenced by freezing temperatures, inadequate water supply, challenging 

topography, high seasonal flooding potential, and poorly-drained, permafrost-impacted soils 

(CSCE., 1986; EPA, 1994b; Olofsson and Schroeder, 1993; Troy, 2007; Williams, 1993). 

Unfortunately, many of the designs originally selected for use in rural Alaska were based on 

conventional temperate sanitation systems (Herdman, 1994a; Percival et al., 2003). Consequently, 

many of these systems have failed to adequately treat the wastewater (ANTHC, 2007; Cowater., 

1993). 

Currently, piped sewage systems, septic tanks and waste hauling systems are utilized in rural 

communities (Duigou, 2006). Larger rural communities (>1,000 residents) are usually equipped 

with in-home piped sewage and municipal piped distribution systems. In smaller communities 

piped sewage systems are available only for schools and washeterias (i.e. community buildings in 

which people can shower and do their laundry) (ANTHC, 2007; EPA, 1994b). In-home piped 

sewage systems are operated either through pressure, gravity, or vacuum technology (Duigou, 

2006; EPA, 1994a). The disadvantages of installing piped in-house systems connected to 

municipal piped distribution systems include higher operation and maintenance costs (i.e. 

powering the pressure system and heat service lines) and problems related to distribution across 

varied terrain (Olofsson and Schroeder, 1993). Moreover, poor soil drainage, periodic flooding 

and ice-rich soils restrict the installation of affordable septic tanks (Olofsson and Schroeder, 

1993). As a consequence of high installation and operation costs of piped systems, more than 

35% of rural communities are lacked sufficient wastewater services as of 2008 (Duigou, 2006; 

Haley, 2000). In these communities, native residents are still using honeybuckets (5 gallon bucket 
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lined with a plastic bag used for human waste), as well as pit toilets and privies (ANTHC, 2007; 

Hennessy, 2008).  

Disposal of wastewater is facilitated in constructed sewage lagoon systems (lined either with 

synthetic or sand material), non-constructed natural tundra ponds termed honeybucket lagoons, or 

septic tanks (Williamson, 2010). Constructed and non-constructed sewage lagoons treat the 

wastewater based on long term storage combined with sedimentation and natural facultative (i.e. 

anaerobic and aerobic) microbial degradation (Duigou, 2006; Williamson, 2010). The physical 

and chemical wastewater treatment requires proper operation and maintenance to ensure 

consistent secondary treatment process; however most rural communities lacking the technical, 

logistical, and administrative support to operate and maintain such basic utilities (Herdman, 

1994b; Puchtler, 1978). The sewage lagoon discharge commonly depends upon the regional 

environmental settings and takes place either by direct release into an adjacent wetlands, surface 

waters or subsurface soil absorption. The wastewater accumulated in septic tanks is disposed by 

soil absorption systems, trenches, or pumped and disposed in a sewage lagoon (Duigou, 2006; 

Williamson, 2010). In rural communities with no piped in-home sanitation systems, wastewater 

and human waste materials are hauled manually or by truck, snowmobile, or all-terrain vehicle 

prior to disposal on the ground surface, in nearby pit bunkers, on frozen rivers, in the ocean or 

tidal plains, in tundra ponds or sewage lagoons (ANTHC, 2007; Hennessy, 2008).  

The difference between unmanaged and managed constructed sewage lagoon, and non-

constructed natural honeybucket sewage lagoon is illustrated in Figure I-4.   

Improper wastewater disposal has been recognized as one of most critical threats to 

environmental pollution and human health (Imhof and Muehlemann, 2005). Particular concern 

has been expressed about the organic compositional change in wastewater, with the increased use 

and disposal of pharmaceutical substances, personal hygiene products and surfactants (Barnes et 

al., 2008; Cahill et al., 2004; Focazio et al., 2008; Glassmeyer et al., 2005; Kolpin et al., 2002; 

Kuemmerer, 2001; Musson and Townsend, 2009; Ternes, 1998). Synthetic organic compounds 

associated with wastewater such as personal hygiene and pharmaceutical products, surfactants, 

and flame retardants have been detected in ground and surface waters across the United States 

(Barnes et al., 2008; Cahill et al., 2004; Castiglioni et al., 2005; Ferguson et al., 2001; Focazio et 

al., 2008; Glassmeyer et al., 2005; Lajeunesse et al., 2008). In recent years, the US Geological 
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Survey collected and tested samples from streams, untreated drinking water sources and 

groundwater sites known or suspected to be influenced by human and agricultural waste. These 

sources, representing a cross section of US freshwater sources, were tested for approximately 100 

organic wastewater contaminants (Barnes et al., 2008; Cahill et al., 2004; Focazio et al., 2008; 

Glassmeyer et al., 2005; Kolpin et al., 2002). These studies detected surfactant metabolites, 

pharmaceuticals and personal care products in 61% of tested streams and rivers (Barnes et al., 

2008; Focazio et al., 2008; Kolpin et al., 2002). In Europe, pharmaceutical substances such as 

anti-inflammatory medications, antibiotics, stimulants, and antidepressant drugs have been 

detected in raw sewage, treatment plant effluents, surface and groundwater, manure, and soils 

since the 1980’s (Kuemmerer, 2001, 2004).  

Very little is known about these organic pollutants regarding transport processes, toxicological 

impacts posed to human and environmental health, and their ability to persist in the environment 

following offsite migration in cold regions (Ahel et al., 1994; Metcalfe et al., 2003; Nahir and 

Biggar, 1997). Therefore, their environmental impacts in rural Alaska, where treatment and 

disposal of wastewater is less controlled than other regions of the United States, is currently 

unknown. It is likely that organic constituents and pathogenic microbes originating from 

uncontrolled and untreated wastewater effluents and leaking systems are migrating into 

surrounding water resources. In addition, the concentration of microbial and organic constituents 

of untreated and uncontrolled wastewater discharge and leachate can be potentially higher than 

the concentrations observed in modern treatment plant effluents. Moreover, in arctic and subarctic 

communities underlain by permafrost, the hydrologic separation between drinking water sources 

and wastewater discharge facilities are often not well understood due to the interconnectedness of 

overly abundant surface water.  Thus, this poses an additional risk of wastewater constituents co-

mingling with drinking water sources.  

1.2.4 Contaminant Transport Processes 

Improperly designed and managed waste facilities can give rise to wide range of leachate 

constituents. In order to predict the possible environmental impacts of rural Alaska wastewater 

and solid waste leachate and to design suitable facilities, information is essential to create 

baseline knowledge of the chemical composition of leachate and to delineate potential transport 
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pathways. While numerical models exist to predict contaminant migration in temperate 

environments, little information is currently available on the movement and fate of contaminants 

in cold climate regions. The contaminant transport pathways evaluated in this study include 

transport of dissolved and particulate pollutants in surface waters, infiltration and migration of 

water borne pollutants into soils, and subsurface transport processes in frozen and unfrozen soils. 

Conceptually, environmental contaminant transport is a function i) of chemical and physical 

properties of the pollutant itself and transport media (water, soil, or air), ii) the rate of pollutant 

migration or mass flux, ii) the matrix  resistance to mass transfer across interface or no-interface 

boundaries, iv) the diffusion or dispersion properties influenced by conductivity, mass, heat, 

momentum, and v) the physical, chemical and biological transformation processes influencing 

persistence in the environment (Alloway and Ayres, 1997; Holdgate, 1979; Schwarzenbach et al., 

2003).  

In surface waters, contaminant transport and dispersion processes are controlled by advection 

(mass movement) and diffusion (without net movement of water). These transport processes are 

driven by water temperature, density or salinity and water solubility of the pollutant (Alloway and 

Ayres, 1997; Schwarzenbach et al., 2003). The water-soluble pollutants are mobilized and 

transported as a function of stream discharge, water flow direction, concentration of soluble 

pollutants present in the water, biochemical or physical degradation processes, and the extent of 

retardation due to sorption on mineral surfaces (Alloway and Ayres, 1997; Maidment, 1993). 

Insoluble pollutants, in addition to the processes above, are also influenced by adsorption process 

on organic matter solids and colloids (small <0.001 mm charged soil particle complex of clay 

minerals, organic matter, and hydrous oxides) on soils and suspended sediments (Alloway and 

Ayres, 1997; Maidment, 1993). In arctic and subarctic regions, seasonal flush events play a large 

role in pollutant transport. Such seasonal flush events result from relatively intense snowmelt and 

rainfall events, which can either wash-off of adsorbed soil colloids at the surface of the topsoil or 

increase the soil moisture content to allow infiltration and percolation into the vadose zone 

(Alloway and Ayres, 1997; Maidment, 1993). Hence, a flush phenomenon not only increases the 

infiltration and percolation of soluble pollutants into soil profile, but also increases insoluble 

pollutant migration through sorption onto migrating soil colloids and organic matter (Maidment, 

1993). In both frozen and unfrozen soils, infiltration is driven by the matrix potential (pore 

pressure) and the gravitational potential (Kane, 1983).  
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Soil particles are comprised of a mixture of liquid, gaseous, organic, and mineral constituents 

inhabited by a wide range of microbial organisms. Microbial organisms play a significant 

transformation role for physical, chemical, and biological decomposition processes (Alloway and 

Ayres, 1997). The liquid and gaseous phases occupy pores within and surrounding the aggregated 

soil particles (Brady and Ray, 2001). The liquid phase contains ions and soluble organic 

compounds, the concentration of which are determined by oxidation, reduction, adsorption, 

precipitation and desorption processes (Alloway and Ayres, 1997). Soil water movement through 

the soil matrix is determined by hydraulic conductivity (a measure of the soil’s ability to transmit 

water) and water-retention characteristics (matrix potential and hysteresis) (Alloway and Ayres, 

1997; Maidment, 1993). The soil physical and chemical properties affect soil water movement 

through differences in soil texture (sand, silt, and clay) and their associated water-retention 

characteristics (Alloway and Ayres, 1997). Specifically, contaminant transport in soil media is 

subject to processes driven by pH, soil moisture, soil texture and organic content (Lunde and 

Young, 2005; Selim and Iskandar, 2000). In unsaturated soils contaminant transport processes are 

affected by sorption and ion exchange effects, retardation, diffusion (movement due to a 

concentration gradient), or mechanical dispersion (mixing of the chemicals due to different flow 

velocities at the microscopic level) (Maidment, 1993). In saturated soil, contaminant transport 

through the soil matrix occurs within the liquid phase through connected pores by advection 

(movement with the average flow velocity of the liquid phase), diffusion or mechanical 

dispersion (Alloway and Ayres, 1997; Selim et al., 1999; Troide et al., 1993).  

In arctic and subarctic regions, contaminant transport processes are also affected by frozen soils, 

including the active layer (e.g. topmost layer of the soils subject to seasonal freezing and 

thawing) and the permafrost layer (e.g. soils beneath the active layer, which remains frozen 

throughout the year).  In the active layer, water movement and its phase changes are subject to 

natural cycles of freezing and thawing, and exhibit distinct hydrogeochemical characteristics such 

as heterogeneous soil structure, surface-related fluxes, low temperatures, peat-originating humus, 

soil acidity, and enrichment of dissolved ions (Hatva, 1989; Soveri, 1985), along with infiltration 

and percolation related to local precipitation events and surface hydrology (Michel, 1994). 

Freeze-thaw effects can include changes in pH and redox potential of the soil solution, thus 

initiating changes in transport and exclusion of dissolved ions during freezing (Maidment, 1993). 

Moreover, pollutants can redistributed during the freezing process by moving through the 
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conduits of unfrozen pore fluid that persist along soil particle surfaces (Han et al., 1999) or 

remaining in enriched water phase due to solute exclusion and migration along the freezing front 

(Ershov et al., 1994; Hallet, 1978; Ostroumov, 2001). In the active layer of arctic and antarctic 

soils, ionic transport was illustrated through the use of lithium (Li+) tracer experiments. During 

freezing, it was demonstrated that ions mobilize in the active layer and migrate along 

concentration and temperature gradients (Claridge et al., 1996 b; Lunde and Young, 2005).  

Volumetric moisture or ice content is a significant factor influencing transport processes through 

permafrost-affected soils. The volumetric moisture content of arctic and subarctic permafrost can 

vary substantially between 0 to 100%. In ice-rich permafrost (with high moisture content), the 

frozen soil acts as a barrier to subsurface liquid flow, thus limiting the majority of flow to lateral 

movement within the active layer (Dyke, 2001). In unsaturated permafrost with an average ice 

content of 10-15% (Boike, 1997; Mckay and and Black, 1973), a number of studies demonstrated 

that unfrozen water exists due to surface forces of soil particles and solute exclusion (Anderson 

and Morgenstern, 1973; Anderson et al., 1973; Tice et al., 1984). Unfrozen water can migrate at 

subzero temperatures along thermal, osmotic and pressure gradients (Burt and Williams, 1976; 

Claridge et al., 1996b; Horiguchi and Miller; Murrmann, 1973; Nakano, 1987, 1990; Smith, 

1985), and solutes in soil water are subject to the same forces (Claridge et al., 1996a; Murrman, 

1973). Murrmann (1973) concluded that because ions are mobile in unfrozen interstitial water, 

ion mobility is controlled by the same soil properties that determine unfrozen water content (grain 

size, solute content, bacterial activity). Nevertheless, the phase change between unfrozen and 

frozen water along the lower boundary of the active layer can inhibit diffusion by a factor of 10, 

thus leading to an accumulation of contaminants in upper permafrost (Murrmann, 1973).  

 

1.2.5 Waste Leachate and the Impacts on Rural Alaska Environment 

In addition to the previously-described challenges surrounding solid waste and wastewater 

management, the predicted changes in climate (ACIA 2004) pose additional challenges to rural 

Alaska communities in the coming decades. Rural communities underlain by permafrost are 

particularly vulnerable to landscape degradation imposed by a warming climate due to the 

sensitive hydrological system and their close location to pollutant sources. Although arctic and 

subarctic regions have received increasing attention to preserve or restore their perceived pristine 
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condition (Dyke, 2001), remediation efforts in rural areas have been directed primarily to oil and 

mine tailing contamination (Jensen et al., 1999). Historically, waste management practices have 

relied upon the perception that soils in permafrost areas are impermeable to miscible and 

immiscible contaminant mobility (Dyke, 2001; Kellems et al., 1991). However, studies have 

demonstrated several processes that can promote contaminant transport off of waste disposal sites 

in permafrost areas (Biggar et al., 2003; Dyke, 2001; Lunde and Young, 2005; Magee and and 

Rice, 2002). In discontinuous permafrost regions Benzene, Toluene, Ethylbenzene, and Xylene 

(BTEX) have been both modeled and observed to move with the water phase along channels in 

the permafrost (Farris A. et al.; Hinzman et al., 2005). Moreover, free- phase hydrocarbons have 

been observed to migrate readily through unsaturated permafrost (Biggar et al., 2003; McCarthy 

et al., 2004). A laboratory experiment in frozen ground confirmed vertical and horizontal 

movement by ethylene glycol (Han et al., 1999). A lithium chloride tracer used as a proxy for 

heavy metal mobility concluded that contaminants tend to accumulate at the interface between the 

active layer and permafrost layer, and are subject to transport processes driven by soil moisture, 

texture, organic content, and topography (Lunde and Young, 2005). These studies all indicate that 

the perception of permafrost soils as impenetrable to contaminant transport is a flawed 

perception.    

Observed climatic trends in arctic and subarctic regions include warmer temperatures over land 

and sea ice, a reduction in arctic sea ice coverage, a reduction in the extent of areas underlain by 

permafrost, increased ground temperatures, and changes in precipitation patterns across the arctic 

and subarctic region (AMPA, 2003). Long-term records of the near-surface permafrost 

temperature demonstrate a significant warming trend over the last 30 years. Recent data reveals 

an increase in soil temperatures of 1 to 3 degrees Celsius compared to long-term averages 

(Osterkamp and Romanovsky, 1999). As permafrost degrades in response to mechanical 

distribution (Yesiller et al., 2005), or climate change, thawed channels in the permafrost (taliks) 

can serve as conduits for rapid contaminant transport (Yoshikawa and Hinzman, 2003). The 

predicted change in subsurface flow regime due to permafrost degradation can potentially 

increase the mobility of waste pollutants into nearby water resources in arctic and subarctic 

regions. In areas where previously-frozen permafrost has recently thawed, soils conduct water 

and contaminants at significantly higher rates compared to continuously-thawed soils due to 

structural changes resulting from the thawing process (Dyke, 2001). In addition, as climate 
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warms, the depth and seasonal duration of the unfrozen soils will increase and with an anticipated 

increase of precipitation, thus increase the mobility of associated pollutants proximal to rural 

Alaska waste facilities. 

Some studies have predicted a potential increase in surface water dissolved organic matter and 

inorganic constituents with permafrost thaw (Frey and McClelland, 2009), leading to an increased 

mass flux of  ionic constituents delivered into arctic and subarctic watersheds (Nelson, 2003; 

Smith, 2005). As inorganic and nonpolar organic constituents can have a strong affinity for 

organic matter and soil colloids (Gounaris, 1993; Kjaergaard, 2003), these constituents can 

migrate with increased thaw-related sediment transport to surround water resources (Kjaergaard, 

2003). In addition, sorption processes are often pH-dependent (Dixit, 1982; Kjaergaard, 2003), 

and sorption decreases in the presence of humic acids associated with tundra soils. Thus, the 

relative increase in unfrozen tundra soil volume associated with permafrost thaw may lead to an 

increase in the mobility of dissolved pollutants, especially given the anticipated increase in 

precipitation. Likewise, existing contaminants currently immobilized in frozen soils have the 

potential to be released as a consequence of permafrost degradation or erosion. These inorganic 

and organic contaminants may be expected to persist in the environment following offsite 

migration due to low temperatures and slow degradation rates (Kjeldsen et al., 2002; Vieno et al., 

2005). 

1.2.6 Waste Pollutant Impacts on Human Health and Subsistence Activities 

Arctic and subarctic rural communities are particularly sensitive to pollutant exposure due to their 

subsistence activities, living environment, and use of traditional drinking water resources (Duffy 

et al., 1998; Egeland et al., 1998; Zender et al., 2003a). In the past, little attention was directed 

towards point source pollutants as their impacts were assumed to be insignificant considering the 

size and remoteness of rural Alaska communities. This assumption was based upon general 

notions relating the environmental impacts of point source pollutants to parameters less often 

observed in arctic and subarctic regions including high population density, relative affluence, the 

use of advanced industrial technologies, and high-yield agricultural practices (Alloway and 

Ayres, 1997; Meadows et al., 1992). Due to the lack of regular monitoring, limited information is 

available in cold regions regarding pollutant constituents in wastewater discharge and waste 

leachate, and their toxic effects and persistence. Thus, it is a difficult task to elucidate symptoms 



21 

 

of poor human and environment health resulting from cold region point-source pollutants 

(Hennessy, 2008).  

Historically, Alaska Natives have a higher disease rate compared to U.S. or Alaskan whites, and 

the Alaska Native infant mortality rate is twice as high as that of Alaskan whites (ANTHC, 2009). 

Moreover, the incidence of cancer in Alaska Native populations is above the national average 

(ACR, 2002; ADHSS, 2006). Many outbreaks of diseases (e.g. Hepatitis A, bronchitis, impetigo, 

rashes, pneumonia, and endemic enteric, meningitis) in rural Alaska communities are associated 

with limited amounts of treated water available for drinking, personal hygiene, and removing 

human waste (Egeland et al., 1998; Esrey et al., 1990; Hennessy, 2008; Herdman, 1994b).  

Several studies have examined the relationship between human health and solid waste sites.  In 

one study, the CCTHITA surveyed residents about symptoms of poor health, personal 

characteristics, and solid waste disposals practices. Due to concerns over solid waste 

contamination, 57% of the respondents changed their subsistence practices (hunting, fishing, and 

gathering foods), and 52% changed their cultural/traditional activities (performing ceremonies, 

making baskets and other art/tools, and making traditional medicine) (CCTHITA, 2003; Zender 

and Sebalo, 2001a). In addition, 45% of the communities reported that at least some of their 

subsistence activities take place in the vicinity of the dumps, and 34% reported that drinking 

water resources are located with ¼ mile of their dumps (CCTHITA, 2003). Gilbreath et al. (2006) 

performed the first statistical study to evaluate pregnancy outcomes associated with rural dumps 

in Alaska Native villages. The result of the analysis indicated a correlation between high levels of 

anthropogenic chemicals in blood of pregnant women and proximity to waste sites.  The authors 

indicated that this may be contributing to the newly discovered gender imbalance in the Arctic. 

Nationwide, the number of males being born is declining. Twice as many girls than boys are born 

in some Arctic villages in Greenland and Russia, and in some Greenland villages near the Thule 

American military base no boys are being born at all. The outcomes of this study also include, a 

low or very low birth weight, preterm birth, and intrauterine growth retardation (Gilbreath and 

and Kass, 2006). Moreover, mothers in villages with hazardous waste landfills had a higher 

proportion of low birth weight infants than mothers who were not exposed to hazardous waste 

facilities (CCTHITA, 2003; Gilbreath and Kass, 2006; Zender et al., 2001b; Zender and Sebalo, 

2001a).  
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In 2004, a study at UAF confirmed that microbial indicators of fecal contamination (Escherichia 

coli, total coliform and Enterococcus sp.) are tracked from open dump sites back into the 

community on ATV tires and footwear. Indicators of fecal contamination, which portend the 

presence of human pathogens, were found throughout the community, in the local school, and at 

boardwalk locations directly adjacent to homes (Chambers et al., 2008). Source water 

assessments recently conducted by the ADEC rated the majority of public water systems utilizing 

surface sources in the Kuskokwim Delta region as being “highly” or “very highly” vulnerable to 

bacterial/viral impacts (ADEC, 2008).  

Studies performed to assess wastewater and landfill leachate in moderate climates demonstrated 

the presence of hazardous pollutants and described the implication for the aquatic environment 

and human health (Jjemba, 2006; Koch and Calafat, 2009; Kuemmerer, 2001, 2009; Lincoln et 

al., 2007; Minh et al., 2006; Slack et al., 2005; Teuten et al., 2009; Vrijheid, 2000; Yu, 2005). 

Many of these pollutants are toxic and can accumulate in soil or sediments or percolate into 

nearby surface waters or down to the groundwater, where they have the ability to enter the food 

chain directly (Alloway and Ayres, 1997). For instance, heavy metals that are found in paint, car 

batteries, light bulbs, electronics (computers, TVs, cell phones, etc.) are known to cause renal 

disease and neurological harm in mammalian organisms and aquatic life (Yu, 2005). Cadmium 

and mercury in particular are known to bioaccumulate in mammalian and fish adipose tissue, 

where they are subject to biomagnification through the food web (Yu, 2005). Heavy metal 

exposure pathways have also been described in soils, based upon their uptake by plant roots and 

subsequent consumption by wildlife (Yu, 2005).  

In recent years new emerging organic pollutants, such as surfactants found in many consumer 

products (laundry detergents, shampoos, cosmetics, household cleaners, and latex paints) 

(Metcalfe et al 1996), and personal hygiene and pharmaceutical products (Ferguson et al., 2001; 

Jjemba, 2006; Kuemmerer, 2008; Teuten et al., 2009) have received increasing attention. These 

organic pollutants biodegrade into more persistent short-chain molecules and occur widely in the 

environment due to their low water solubility and strong adsorption to suspended material (Tsuda 

et al., 2000). Their exposure to organisms can occur by extravascular routes either through 

absorption or ingestion and are influenced by the concentration of the metabolite at the site of 

action (Jjemba, 2006; Teuten et al., 2009). Because their toxicity remains constant even at low 

concentrations (Ferguson et al., 2001) these organic pollutants can interfere with normal 



23 

 

development in aquatic species or have the ability to disrupt the endocrine system (Newman and 

and Unger, 2003). Endocrine disruptors have chemical structures resembling estrogenic 

compounds, and can interfere with the transport, metabolism, elimination, binding action, 

synthesis, or secretion of natural hormones (Jjemba, 2006; Kuemmerer, 2008). For example 

studies have demonstrated that soft plastic materials can leach organic constituents including 

phthalates and bisphenol A (Mersiowsky et al., 2001; PHS, 2002). Phthalate metabolites and 

bisphenol A have been shown to disrupt the endocrine system and act as carcinogens in mammals 

and aquatic life (Teuten et al., 2009) (vom Saal et al., 2010).  

 

1.3 Study Site Locations and Methods  

1.3.1 Onsite Collection  

In 2008, in collaboration with the EPA RARE team and the University entities performed a 

survey to a set of rural Alaska communities, requesting information about open dump conditions 

and concerns, and gaging community interest in further research. Five communities were 

ultimately selected for further research (Ekwok, Eek, White Mountain, Allakaket and Fort 

Yukon)  based in part upon the environmental setting of their open dumps (open tundra, ponded 

site, and permafrost-impacted). Furthermore, two rural sewage systems were chosen to identify 

and quantify surface water concentration levels for selected organic compounds. This was 

intended to help formulate a better understanding of solid waste and wastewater processes across 

the broader region. Each selected community’s waste site reportedly located less than 1-1.5 miles 

from their respective community therefore constituted a proximal nuisance. Moreover each waste 

site was located less than 1,000 feet from a water resource and potentially impacted by seasonal 

flooding from rain or snowmelt runoff. The selected community dumps included a 30+ year old 

trench-fill design on tundra ground (Ekwok), a 30+ old tundra pond in discontinuous permafrost 

region (Eek), a 30+ year old above ground dump located on bedrock (White Mountain), a 10+ 

year old above ground dump located on permafrost (Allakaket), and a 30+ year old above ground 

dump located on permafrost (Fort Yukon). The two wastewater systems studied are a constructed 

sand lined sewage lagoon and an existing pond used as a honeybucket lagoon. For each sample 

event, soil, surface and subsurface water samples were collected in and around the perimeter of 

dumps along with raw sewage water samples on two consecutive days in May and August over 
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duration of two years. Soil, surface and subsurface water detailed sampling method for microbial 

and chemical analysis are described in the following chapters. Additional community background 

and sample site specific information are presented in Appendix A. 

 

1.3.2 Chemical Contaminants Tested  

Chemical and microbial analyses were performed to identify potentially noxious constituents and 

pathogenic organisms in waste impacted soil, surface and subsurface water samples. The selected 

inorganic, organic and microbial indictor organisms are intended to serve as proxies for a wide 

range of contaminants with varying levels of migration potential. All analysis was conducted at 

the UAA, ASET and/or the UAF, WERC laboratory. The analytes investigated in this study are: 

Heavy Metals (As, Cd, Cu, Hg, Pb, Zn): The heavy metal analysis results obtained from waste 

derived leachate and soil samples are represented in Chapter 1, a journal paper on “Assessment of 

heavy metals in rural Alaska landfill leachate”. Heavy metal analysis results are described in 

Appendix C.   

Microbial Analyses: Microbial indicator organisms were enumerated in soil and surface waters in 

and around the perimeter of selected communities’ dumps and two sewage lagoons. The findings 

of the microbial analysis are presented in Chapter 2 journal paper on “Partitioning and Transport 

Behavior of Pathogen Indicator Organisms in Cold Regions”. Microbial indicator organism data 

are described in Appendix D. 

Organic Pollutant Compounds: Solid-phase extraction and high pressure liquid chromatography- 

mass spectrometry (LC-MSMS) methods were developed for detecting low-level concentrations 

of pharmaceuticals, phthalates, and benzotriazole metabolites. The findings are presented in 

Chapter 3 journal paper on “Detection of new emerging organic pollutants in rural Alaska landfill 

and wastewater system.”  Additional organic analytical data are depicted in Appendix E.  
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1.5   Figures 

Figure I-1: Illustrates the three most common landfill designs in rural Alaska (left) above ground; (mid) 
trench-filling; and (right) tundra pond. 

Figure I-2: Illustration of rural Alaska open dumps extends. 

Figure I-3: Surface water at landfill site (left) standing water; and seasonal flooding event at the landfill 
site (right). 
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Figure I-4: Illustration of rural Alaska unmanaged (right) and managed (left) constructed and non-
constructed natural honeybucket (mid) sewage lagoons. 
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1.6   Tables 

Table I-1: Alaska climate zones reported average temperature and precipitation (Shulski and Wendler, 
2007). 

Location Average 
Temperature 

High (0C) 

Average 
Temperature 

Low (0C) 

Average 
Precipitation 

Snowfall 
(mm) 

Average 
Precipitation 

Rainfall 
(mm) 

Arctic 6 - 29 686 76 
Interior 20 -27 1,702 178 
West Central 13 -19 1,400 279 
South Central 17 -14 1,600 660 
Maritime 17 -9 1,700 711 
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Chapter II 

Assessment of Heavy Metals in Rural Alaskan Landfill Leachate 

Abstract 

Many rural Alaskan communities are small, remote and lack adequate infrastructure or economic 

resources to properly manage solid waste. As a consequence, solid waste material is often 

disposed in rudimentary landfills from which leachate is neither collected nor monitored.  Thus, 

these landfills pose a potential risk to the communities’ proximal water and ecological resources. 

This study was intended to investigate heavy metal abundance and composition in four rural 

Alaska landfills, and evaluate the potential of heavy metals to leach and migrate offsite. 

Physiochemical parameters and metal constituents were analyzed in soils, surface waters, and 

subsurface waters collected in and around the rural landfills. The results indicate locally elevated 

heavy metal concentrations in all analyzed media. Mean enrichment factors (EFs) were calculated 

based upon control samples obtained up-gradient from each landfill. EFs in surface and 

subsurface waters at the landfills and at offsite locations within 50 meters down-gradient of the 

landfills were elevated in Co, Cu, Ni, Mn, Zn, Fe, Cr, Cd, and Pb. The mean EFs for waste 

impacted soils were significantly enriched in Pb and Cd. Metals were shown to leach from soils 

and solid waste materials into surface water preferentially during seasonal high water events such 

as snowmelt and heavy rain. As surface waters proximal to rural Alaska communities are closely 

linked to food and drinking water sources, contamination through leaching of landfills can 

potentially impact human health. The results of this study strongly recommend implementation of 

adequate monitoring and management practices to reduce this risk.  

1 Mutter, E.A., Hagedorn, B., and Schnabel, W. Fairbanks 2014.  Assessment of Heavy Metals in Rural Alaskan Landfill Leachate. 
Prepared for submission in Environmental Geochemistry and Health. 
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1. Introduction 

Rural Alaska arctic and subarctic communities are small (< 1,000 population), remote and located 

in diverse geographic areas. These areas range from coastal to open tundra to mountainous 

regions, and can be composed of different bedrock lithologies. In addition, rural communities are 

scattered across five distinct climate zones including arctic, interior, west central, south central, 

and maritime.  Moreover, rural Alaska communities exhibit differences in abundance and depth 

of permafrost, as well as differences in the abundance and distribution of wetlands (Olofsson and 

Schroeder, 1993; Patterson et al., 2012), both of which have strong influence on the transport and 

fate of pollutants. While the climatic and geographic differences between rural Alaska 

communities are vast, many share a common socioeconomic milieu such as small local 

economies and tax bases, high fuel and shipping prices, short construction seasons, and lack of 

sufficient local engineering expertise (i.e. trained personnel and local servicing expertise).  These 

conditions, in addition to the stark physiographic and climatic conditions, can pose a significant 

challenge to adequate waste disposal practices (ANTHC, 2007; Duigou, 2006; Patterson et al., 

2012; Troy, 2007).  

Historically, many rural Alaska landfills have been open dumps developed without proper site 

assessment, landfill liners, leachate collection systems, or capping and monitoring requirements 

(EPA, 1998). In many instances, generated waste materials are deposited directly with little or no 

waste separation. Landfills are located in tundra ponds, above ground, or in pre-existing or 

constructed, often depressions, which are often water saturated and underlined by permafrost. 

Moreover, traditional dumps are operated without site control and hydrological consideration to 

minimize environmental contamination through leachate (Patterson et al., 2012; Zender et al., 

2003). In arctic and subarctic dump sites, migration of leachate into the environment has been 

observed to occur most frequently in conjunction with seasonal flooding resulting from ice-dams, 

snowmelt, and/or heavy rain events (Patterson et al., 2012). The excess water during these events 

infiltrates the waste material, dissolves inorganic and organic constituents and percolates into the 

surrounding environment (EPA, 2009; Kjeldsen et al., 2002). In addition to these seasonal events, 

climate change-related thawing of permafrost and mass wasting can potentially create new 

hydrologic pathways for offsite migration of waste leachates.  

In the past, heavy metal contamination of water resources and the surrounding environment by 

waste leachate was assumed to be insignificant considering the size and remoteness of rural 
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Alaska communities (Alloway and Ayres, 1997). However, the close proximity of community 

landfills to local food and water resources could pose a threat to these areas, especially given the 

recent changes in waste streams that now include the residues of modern lifestyles (Matsuura et 

al., 2008). Studies of  municipal landfills have demonstrated abundant  heavy metals in leachates 

from a high variety of waste materials including electronic wastes, paints, cleaners, vehicle 

maintenance products, batteries, food packaging containers (plastics, tin and aluminum), as well 

as construction and demolition materials (Dyke, 2001; Gounaris and Anderson, 1993; Kalyuzhnyi 

and Gladchenko, 2004; Kjeldsen et al., 2002; Lincoln et al., 2007; Øygard et al., 2004; Slack et 

al., 2005; Townsend, 2011; Vrijheid, 2000). 

Landfills constructed without engineered liners, leachate collection systems, and adequate 

leachate treatment have a demonstrated propensity to leach metal constituents into the 

surrounding water resources (Christensen et al., 1994, 2001), but only few cases have been 

described for rural landfills in cold climates (Kjeldsen et al., 2002). Young and Lund (2006) 

studied an arctic waste site in Canada to evaluate cadmium and lead mobility from an open 

landfill. Their results demonstrated a higher mobility of cadmium compared to lead due to 

differences in adsorption coefficient of these elements (Ahel et al., 1994; Buol and Hole, 1961; 

Gounaris and Anderson, 1993; Kjaergaard et al., 2004; Young and Lund, 2006). A similar study 

conducted at a central arctic municipal waste site in Pangnirung Nunavut, Canada observed 

increased trace metal concentrations (Cd, Pb, Cu, Fe, and Zn) in water and sediment samples 

(Haertling, 1989). Both studies indicate heavy metal migration from a point source to the 

surrounding environment in cold climates with limited rainfall and permafrost abundance. 

Mobility of heavy metals strongly depends on pH and redox condition as well as hydrologic 

conditions such as water saturation and soil porosity. In permafrost affected areas, only the 

uppermost layer of soil is thawed during summer (active layer), while the underlying soils remain 

perennially frozen (permafrost).  In many instances, the pore space in the underlying frozen layer 

contains a large fraction of frozen water, thus limiting its effective porosity. Due to its limited 

depth (0.2 m to 1.5 m) and the relative impermeability of frozen ice-rich soils, the active layer is 

often water saturated or water logged in lowlands. As a result of the permafrost barrier, transport 

of water is often restricted to surface processes, and thus more highly dependent upon surface 

topography compared to hydrologic systems in warmer climates where deep percolation plays a 
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larger role (Alloway and Ayres, 1997; Lunde and Young, 2005; Maidment, 1993; Michel, 1994). 

Therefore, in permafrost areas with sloped topography, rain or snowmelt events can have an 

exaggerated impact upon the mobility of metals through mobilization of soluble species, or 

mobilization of metal species adsorbed to eroded sediments or organic colloids (Kjaergaard et al., 

2004; Ledin, 1993).  

In unsaturated soils most heavy metals are adsorbed to soil grain surfaces and their mobility is 

limited to mechanical dispersion (Maidment, 1993). However in saturated soils, heavy metals are 

also present in the dissolved phase, so transport also occurs by advection and diffusion (Dash et 

al., 1997; Alloway and Ayres, 1997; Impellitteri et al., 2001; Selim et al., 1999; Troide et al., 

1993). In arctic and subarctic regions, hydrogeochemical processes are often affected by cycles of 

freezing and thawing of the active layer.  The active layer itself is typified by heterogeneous soil 

structure, low turnover rates of organic matter leading to peat-originating humus and soil acidity, 

and enrichment in iron oxyhydroxides and oxides in aerobic horizons (Alloway and Ayres, 1997; 

Hatva, 1989; Lunde and Young, 2005; Selim and Iskandar, 2000; Soveri, 1985). Furthermore, 

solute exclusion Langmuir (1997) during active layer freeze-back can lead to a change of solute 

speciation caused by changes in pH and redox potential (Maidment, 1993). Moreover, active 

layer freeze-back can also concentrate metals in the unfrozen water phase (Boike, 1997; Boike et 

al., 2008) and re-distribute them via the conduits of unfrozen pore water that persist along frozen 

soil particle surfaces (Han et al., 1999), or along with newly-excluded metal species located at the 

freezing front (Ershov et al., 1994; Hallet, 1978; Ostroumov et al., 2001). Such migration 

processes have been demonstrated in tracer experiments using Li+ ions (Claridge et al., 1996; 

Lunde and Young, 2005). Finally, heavy metal persistence in cold region soils may also be 

influenced by the relatively low biological activity present in such soils (Kjeldsen et al., 2002; 

Vieno et al., 2005).  

In order to predict the possible environmental impacts of rural Alaska landfills, this study 

attempted to create baseline knowledge regarding the abundance and composition of heavy 

metals in waste leachate at rural Alaskan open waste sites during specific seasonal events 

(snowmelt, rain events). Four rural landfills in arctic and subarctic environments were sampled 

during different seasons of the year. Soil, surface and subsurface water were collected along 

potential hydrological pathways at increasing distances from the landfills themselves. Samples 

were analyzed for metals in the dissolved and particle-bound form, and extracted to evaluate 
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metal mobility and bioavailablity. Control sites outside the catchment area of the waste sites were 

collected to evaluate the geogenic background concentrations.   

2. Study Sites

The study sites are located in the vicinity of four rural Alaska communities: Ekwok, Eek, Fort 

Yukon, and White Mountain landfills. The selected landfills are situated in different arctic and 

subarctic environments (e.g., open tundra, ponded site, permafrost and permafrost-impacted) and 

reported to be in close proximity to the community as well as impacted by seasonal flooding 

during rain events or snowmelt. Location of the study communities as well as photographs of the 

dump sites are illustrated in Figure 1. 

Ekwok a community of 130 residents is located along the Nushagak River, 69 km northeast of 

Dillingham and 302 km southwest of Anchorage (Census, Bureau, 2010). Ekwok’s coastal region 

geology is characterized by granitic rocks and alluvial, fluvial, and glacial deposits comprised of 

gravels, sands, silts, and clays (Glass, 1987). The soils are typified by poorly drained acidic silty 

soils on south-facing highland slopes that remains frozen until mid-summer, and poorly drained 

organic matter and peat rich soils on north-facing slopes with permafrost at approximately  70-

130 cm depth (Rieger, 1965; Rieger et al., 1979). Ekwok is primary influenced by a maritime and 

continental climate with temperature ranging from -43°C to 29°C, and average precipitation of 

140 mm rain and 140.2 cm of snowfall (Shulski and Wendler, 2007). The approximately 30 year 

old below ground landfill (trench-fill design) is located in tundra approximately 2.4 km northeast 

and upland of the village. The landfill covers an area of 2.3 km2 and is 3-5 m deep creating a 22% 

slope towards the lowland area.  

Eek is located on the south bank of the Eek River within the Yukon-Kuskokwim delta. The 

community of 208 residents is situated 19 km east of the mouth of Kuskokwim River and 

approximately 56 km south of Bethel (Census, Bureau, 2010). Geology of the region is 

characterized by igneous metamorphic and sedimentary rocks units ranging in age from 

Ordovican to Cretaceous and alluvial and fluvial deposits of gravel, sand, silt, and clay (ADEC, 

2011). The surrounding region is mostly flat, with a few meters of elevation marking the 

delineation of major drainage basins.  Tundra ponds are heavily distributed throughout the region, 
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and the larger ponds are generally underlain by thawed soils.  Smaller ponds and drier areas may 

or may not be underlain by permafrost.  Consequently, the area represents a complex hydrological 

system that is influenced by tides, permafrost, and surface water (ADEC, 2011). The climate is 

characterized by west central climate with temperatures ranging from -44°C to 30°C, and average 

precipitation of 406.4 mm rain and 134.4 cm snow (Shulski and Wendler, 2007). The 

approximately 30 year old, ponded landfill covers an area of 0.8 km2 and is located less than 1.6 

km away from the community. Perennially-saturated tundra ground with standing water occurs 

around the landfill, but no flooding is observed (Patterson et al., 2012).  

White Mountain is located 100 km east of Nome on the Seward Peninsula on the west bank of 

Fish River and has a population of 224 residents (Census, Bureau, 2010). The regional geology is 

described as Ordovician and Devonian sedimentary rocks and alluvial and fluvial deposits of 

sand, silt, and gravel (West and White, 1952). White Mountain is characterized by shallow 

continuous permafrost and wet tundra ground; however, south-facing slopes may contain 

permafrost discontinuities below the vegetative layer (Shulski and Wendler, 2007). The climate is 

influenced by transitional west coastal climate with temperature ranging from -48°C to 37°C, and 

average precipitation of 432 mm rain and 172.7 cm snow (Shulski and Wendler, 2007). The 

approximately 30 year old landfill is situated above ground in an upland area approximately 400 

m east of the village and north of Fish River. The landfill covers an area of 0.6 km2 that rises up 

to approximately 4.5 m, creating 18% slope east/southeast towards the lowland area. Soil at the 

landfill is described as silty-clay and gravel underlain by limestone at approximately 1.5 m depth. 

Standing water occurs during snowmelt and rain events. The natural drainage area lies to the 

east/southeast side of the landfill.  

Fort Yukon is a community of 600 residents located at the confluence of the Yukon River and 

Porcupine River, approximately 233 km northeast of Fairbanks (Census, Bureau, 2010). Fort 

Yukon is situated in the low-lying Yukon Flats characterized by vast areas of forested wetlands 

and bogs underlain by discontinuous permafrost. The region is characterized by Cenozoic 

sedimentary rocks of sandstone, siltstone, shale and alluvium, glacial, eolian and beach deposits, 

which is composed of fine clay-loam and is affected by cryoturbation in permafrost areas 

(Timothy et al., 2000). The climate is a cold continental climate with temperatures ranging from -

54°C to 33°C, and an average precipitation of 304.8 mm rain and 157.5 cm snow (Shulski and 

Wendler, 2007). The approximately 30 year old above-ground landfill is located in an upland area 
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2.4 km from the community. The landfill encompasses an area of approximately 0.2 km2 and is 

situated along the edge of an old river bank 8-15 m higher than the lowland area, creating a 32% 

slope. At the lowland area shallow soil consists of organic peat material with a permafrost table at 

approximately 40 cm in depth. Currently the landfill is reported as closed and covered with 

gravel; however establishment of a new permitted constructed landfill is in progress. Meanwhile, 

waste material is disposed on the outside border of the old landfill, and is treated via above-

ground burning.  

 

3. Methods and Materials  

3.1 Onsite Sample Collection 

A general site evaluation was conducted at each location using pre-existing maps, well-logs, and 

local knowledge to identify likely hydrologic pathways and to identify locations for control sites. 

Surface waters were collected at the landfill, 1-50 m down-gradient, 50 to 3,000 m down-gradient 

and 1-50 m up-gradient from each landfill. To evaluate heavy metal leachate produced by waste 

at different stages of decomposition, soil and surface water samples were collected proximal to 

newly disposed waste material as well as proximal to waste that had been in place for a long 

period of time and subject to at least partial degradation. In addition, samples were collected at 

burn boxes or open burned area. Soil samples (100 g) were obtained from the organic and mineral 

horizon (up to 30 cm depth) for soil water content, soil pH, and metal analysis. Control samples 

of soil and surface water were collected from undisturbed sites at each location. Surface water 

samples were collected along hydrological pathways on the surface and subsurface. Subsurface 

water was obtained above the permafrost table using piezometer (Solinst Probe System) and 

Rigid Porous Polyethylene (RPP) passive samplers at each landfill. Surface and subsurface waters 

were measured in situ for pH, electrical conductivity (EC) and temperature using an YSI 

Professional Plus or Combo Hanna meter, and alkalinity was determined with AquaCheck® Test 

Strips. Soil pH was measured in the laboratory in a 1:2.5 (v/v) water-soil suspension using a 

digital pH meter following the method procedure of Radojevic and Bashkin (1999). The number 

of samples obtained from each location and sample site are listed in Table 1. 
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3.2 Laboratory Analyses  

For dissolved metals, 60 mL of water was filtered through 0.45 µm nylon syringe filter 

immediately in the field and acidified with 1 mL of 65-70% (v/v) OmniTrace Ultra nitric acid 

(HNO3) after arrival in the laboratory. Surface and subsurface water samples for total dissolved 

solutes were acidified in the field before filtration and filtered after arrival in the laboratory. 

Acidification before filtration ensures to recover metals that are adsorbed to mineral surfaces or 

bound to colloids. All filtered and acidified samples were stored at 4oC until analysis. Anion 

samples were filtered in the field and stored at 4oC until analysis. Soil samples were oven dried in 

43oC. Approximately 1 gram of dried soil sample was weight out for digestion to 1 mg accuracy 

and extracted following EPA method 3050b. Cation analysis for soil and water samples were 

conducted based on EPA method 200.8 using the Inductively Coupled Plasma-Mass 

Spectrometry (ICP-MS, Agilent 7500c) with reaction cell. Total organic carbon (TOC) was 

measured using Shimatzu TOC-VHCN analyzer. Total suspended solids (TSS) were determined 

by weight difference between empty filter and filter with oven dried (105oC) sediment using 0.7 

µm glass fiber filters (GC-C, Whatman). Soil water content was verified by weight difference 

between wet and oven dried soils at 110oC for 24 hours. Standardized sieves with the size of 2 

mm to 62 µm for sand, 62 to 3.9 µm for silt and < 3.9 µm for clay faction) was used to determine 

soil particle distribution.  

 

3.3 Data Reduction  

Normalization to element was performed to eliminate changes in metal concentration caused by 

dilution during heavy rain events and snowmelt, or through concentration during dry periods. In 

addition element ratios were normalized to the same element ratio measured in control sites to 

distinguish between the leachate derived increases of metal concentration from the geogenic 

background. The normalizing element ratios from potential affected sites to element ratio of 

control sites were then used to calculate an enrichment factor (EF) as described by Baut-Menard 

and Chesselet (1979): EF = [(C1Me/C1n)/(C2Me/C2n),  

where C1Me is the observed metal content in the environment; C2Me  = the observed metal content 

in the control sites; C1n is  Na  for  water and Al for soils in observed environment, and C2n is Na 
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for water and Al for soils in the control sample. The five contaminant categories established for 

EFs are listed in Table 2.  

4. Results and Discussion

4.1 Physiochemical Characteristics of Surface and Subsurface Waters 

Physiochemical characteristics of surface and subsurface water are listed in Table 2. The pH 

levels in leachate impacted surface and subsurface waters (see Table 1 A, B, and D) ranged from 

5.7 to 8.7. The pH range of surface water samples collected 1-50 m down-gradient from Ekwok 

and 50-3,000 m down-gradient from Eek were generally lower than pH values observed in White 

Mountain and Fort Yukon at any specific sampling site (A-D). The sampling sites (B) from 

Ekwok and (C) from Eek are situated in lowland areas with poorly drained organic rich soils and 

peat, which have a high abundance of humic acids that lower the pH values and potentially can 

increase metal mobility. A pH range of 6.8 to 10.3 was measured for subsurface water at the Eek 

tundra pond, located adjacent to the community sewage lagoon. The higher pH could indicate that 

sewage seepage of organic nitrogen and ammonia nitrogen resulting from anaerobic processes are 

migrating into subsurface waters (Maidment, 1993). The higher pH values for White Mountain 

and Fort Yukon reflect the occurrence of limestone in these locations, which can buffer the soils 

and inhibiting mobility of metals. Infiltration of rain and snowmelt, with nominal pH values in 

equilibrium with atmospheric CO2 (pH 5.4), can potentially increase metal mobility. High levels 

of specific electrical conductivity (EC), total suspended solids (TSS), and total organic content 

(TOC) were observed in surface waters directly in the landfill (A), in close proximity to the 

landfill (1-50 m down-gradient, B) and  in subsurface waters (D) compared to the control sites 

(Table 2). The EC in waters at the landfills ranged between 178.0 and 2,232.0 µS/cm, between 

77.0-1,920.0 µS/cm for water in close proximity to the landfills (1-50 m down-gradient), and  

between 400.0-2,300.0 µS/cm for subsurface waters. The variability is likely due to dilution by a 

high volume of water resulting from rain and snowmelt, or concentration due to evaporation 

during the dry season. In addition, with respect to waste composition a lower pH in the range of 

6.1 to 7.2 and higher range of EC between 1,220.0 and 1,350.0 µS/cm were observed in surface 

waters in close proximity to burned and newly disposed waste material at each landfill location. 

The TSS in surface and subsurface waters at landfills and in close proximity to the landfills was 
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approximately 100 times higher than the surface water TSS observed in areas further away from 

the landfills (50-3,000 m), and approximately 1,000 times higher than the TSS observed in the 

waters at the control sites. The TSS at control sites was in the range of rainwater < 10 mg L-1 

(Maidment, 1993). TOC and alkalinity (reported as CaCO3) were only measured once throughout 

the sampling events. Total alkalinity in surface and subsurface water ranged between 37.5 and 

432 mg L-1 with higher values in White Mountain and Fort Yukon landfills. While the high 

alkalinity and pH seems to coincide with the abundance of limestone, it is noted that control sites 

in White Mountain and Fort Yukon landfills are not elevated, and therefore increased alkalinity 

may partly be related to landfill material. A large variability in physiochemical characteristics 

was observed within the individual landfills during the same sampling event, thus indicating a 

high degree of variability and limited mixing within individual landfills (Table 3). 

4.2 Physiochemical Characteristics of Soils 

The physiochemical characteristics for soil profiles are reported in Table 4. The pH values for all 

soil samples obtained from the organic and mineral layer (0-30 cm in depth) ranged from 5.1 to 

8.6, with higher pH values in soils from White Mountain and Fort Yukon landfills. The soils at 

Eek, by comparison, which were collected in saturated tundra ground composed of poorly drained 

and organic rich soil, had a lower pH likely due to the presence of organic acids (Ping et al., 

2008). In general, the control soil pH values were slightly lower than the landfill affected soils. 

Low pH and/or changing redox conditions due to presence of organic acids and/or water 

saturation of soils during rain and snowmelt events can increase mobility of heavy metals (Brady 

and Ray, 2001). Mobility of some metals decreases with increasing pH as a consequence of 

adsorption to grain surfaces or due to precipitation or complex formation of insoluble carbonates 

and organic hydroxides (Dixit, 1982; Johnson et al., 1996; Yu et al., 1997). Soil pH values below 

6 can lead to desorption of some of these metals and prevent carbonate precipitation, thus 

favoring metal mobility. The predominant particle size was observed to be clay (< 3.9 µm) and 

silt (62-3.9 µm) fractions for all landfill impacted and control samples. The high clay size fraction 

provides a high surface area, thus enhancing adsorption capacity of metals in the soil (Alloway, 

1990; Ledin, 1993). In addition to changes in pH and redox, heavy rain can lead to flushing of 

soils and increase colloid transport to surface water through surface runoff (Kjaergaard et al., 

2004) 
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4.3 Metal Distribution in Surface and Subsurface Waters 

The distribution of metal concentrations in surface and subsurface waters are presented in Table 

5. The common elevated trace metal concentrations observed in waste leachate impacted waters

compared to control sites were Al, V, Co, Fe, Cu, Mn, Cr, Zn, Pb, Cd, and Ni. All trace metal 

concentrations yielded a significant variability (Analysis of variance p < 0.05). The variability in 

leachate can be attributed to a variety of factors including differences in waste constituents, waste 

age, waste density, and differences in treatment and disposal practices (Kjeldsen et al., 2002; 

Yesiller et al., 2005). In addition, natural factors including the amount of precipitation and site-

specific soil characteristics, which determine moisture retardation, surface water infiltration, and 

flow pathways (Åkesson and Nilsson, 1997; Christensen et al., 1994; Chu et al., 1994; Kjeldsen et 

al., 2002; Sundsbak, 1971), contribute to variability as well. Overall a lower mean concentration 

of trace metals in control and leachate impacted water samples was observed in surface waters 

during snowmelt, when the ground was still frozen and infiltration was likely limited. In the fall 

during rain precipitation, dilution is only minimal. The absence of dilution in fall indicates the 

accumulation of trace metals on and in the soil during the dry summer season and better 

mobilization of metals due to larger infiltration of water into the ground and is in agreement with 

observations made by (Kjaergaard et al., 2004). The metal concentrations detected in this study 

(Table 3) were consistently lower than those observed in municipal landfill leachate in other 

regions with moderate climate (Christensen et al., 1994; Kjeldsen et al., 2002) with an average 

concentrations of Cd (2-20 µg L-1), Ni (100-200 µg L-1), Zn (500-2,000 mg L-1), Cu (20-100 µg 

L-1), Pb (50-200 µg L-1), and Fe (10-200 mg L-1) (Christensen et al, 1994; Jensen et al., 1999). 

The average metal concentration detected in surface and subsurface water in and around rural 

landfills generally followed the order Al > Fe > Mn > Zn > V > Cu > Cr > Pb > Cr > Ni > Co > 

Cd (Table 5). Overall, the highest metal concentrations were observed in landfill subsurface 

waters ( group D), followed by surface waters 1-50 m down-gradient of the landfills (group B), 

followed by landfill surface waters (group A), surface waters 50-3,000 m down-gradient from the 

landfills (group C), and finally surface waters at the control sites (group E). The overall metal 

concentrations were highest in the Ekwok landfill, followed by the Fort Yukon landfill, the White 

Mountain landfill, and the Eek landfill. A significant positive correlation (R2 > 0.8) of metals 

existed between Cr, Co, and Cd, Mn and Ni, and between Al, Cu and P, presumably attributable 
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to contributions from waste material (Table 6). Heavy metals typical for household waste and 

machinery including paint, car batteries, light bulbs or electronics are known to cause health 

impacts in humans, mammalian organisms and aquatic life when introduced into the environment 

(Clement et al., 1996; Fagbote and Olanipekum, 2010; Ha et al., 2009; Klinck and Stuart, 1999; 

Vrijheid, 2000; Yu, 2005). For example Cd and Pb are known to bioaccumulate in mammalian 

and fish adipose tissue, where they are subject to biomagnification through the food web (Huu et 

al., 2010; Peramaki and Decker, 2000; Yu, 2005). Heavy metal exposure pathways have also 

been described in soils, based upon their uptake by plant roots and subsequent consumption by 

wildlife (Huu et al., 2010; Peramaki and Decker, 2000; Yu, 2005).  

4.4 Trace Metal Distribution in Soils 

The average concentrations of acid leachable metals in this study’s landfill-impacted soils were 1 

to 2 orders of magnitude higher than the concentrations observed in surface and subsurface 

waters. The distribution of trace metal concentration in soils is presented in Table 7. The metal 

concentrations in the landfill impacted soils were highly variable compared to the concentrations 

in the control site soils. Due to the variability in the landfill soils, the average metals 

concentrations were not clearly distinguishable from the control samples in all instances. While 

landfill soil concentrations of Cd (0.5-4.2 mg kg -1), Ni (18.8- 27.1 mg kg -1), Pb (8.7-106.1 mg 

kg -1) and Zn (56.0-453.9 mg kg -1) generally appeared to be higher than the controls, the 

concentrations of  Al (10.3-16.0 kg kg -1), Co (6.0-7.7 mg kg -1), Cr (19.0-38.3 mg kg -1), Cu 

(14.5-172.4 mg kg -1), Fe (5.2-29.5 kg kg -1), and Mn (249.8-522.8 mg kg -1) in the landfills 

generally did not appear to be higher than the controls. The highest average metal concentrations 

were found in Eek landfill soils. This landfill is a ponded site in saturated tundra ground underlain 

by permafrost and influenced by coastal tides. The subsurface water in this landfill has high pH 

and alkalinity (Table 3) and therefore low metal mobility is expected. Significant correlations 

were observed between soil concentrations of Cr, Zn, Pb and Cd, supporting the notion that they 

arose from common sources (Table 8).  Lower regression coefficients were observed between Ni, 

Cu and Fe (Table 8). As a positive correlation was found between Cr, Cd and clay size fraction, 

due to high surface area and general neutral to light alkaline pH. 
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4.5 Metal Enrichment Factor (EF) 

Enrichment factors (EF) are generally used to identify areas in an environmental setting where 

elements are enriched over the background concentrations in selected control sites. EFs of 

leachate impacted surface and subsurface waters are calculated based on the average total and 

dissolved load (Baut-Menard and Chesselet, 1979). Control samples are considered to be 

unaffected by waste deposits and thus reflect the geogenic background metal concentrations. Na 

and Al were selected as normalizing elements for water and soil samples, respectively. The 

selection of these elements was based upon their chemical and geochemical characteristics.  Na is 

a conservative element in aquatic environments, while Al is a stable and relatively immobile 

element in soil environments. EFs of the total load indicate if metals are transported or 

accumulated with particles or colloids, while EFs of dissolved load indicate if metals are 

transported or accumulated specifically in the water phase. The Log-EFs distribution of metals for 

each sampling location is illustrated in Figure 2 for total metals, Figure 3 for dissolved metals and 

in Figure 4 for soils. 

EFs for total and dissolved heavy metals were observed in the following decreasing order, based 

upon site type: subsurface water (group D) < surface waters 1-50 m down-gradient from the 

landfill (group B) < landfill surface waters (group A) < surface waters 50-3,000 m down-gradient 

(group C). The highest EFs for total metals were observed at the White Mountain landfill, 

followed in decreasing order by the landfills in Fort Yukon, Ekwok, and Eek. The highest EFs for 

dissolved metals were observed in the Ekwok landfill, followed in decreasing order by the 

landfills in Eek, Fort Yukon, and White Mountain. The trends of metal concentrations closely 

followed the trends observed with respect to pH: higher total metal loads were observed in 

landfills that had higher pH, therefore higher tendency to adsorb metals to soil surfaces. Higher 

EF’s in dissolved metals was observed in more acidic environments where metal adsorption to 

surfaces would be expected to be lower (Ekwok and Eek landfills). 

EFs for total and dissolved heavy metals were observed in the following decreasing order, based 

upon site type: subsurface water (group D) < surface waters 1-50 m down-gradient from the 

landfill (group B) < landfill surface waters (group A) < surface waters 50-3,000 m down-gradient 

(group C). The highest EFs for total metals were observed at the White Mountain landfill, 
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followed in decreasing order by the landfills in Fort Yukon, Ekwok, and Eek. The highest EFs for 

dissolved metals were observed in the Ekwok landfill, followed in decreasing order by the 

landfills in Eek, Fort Yukon, and White Mountain in accordance with increasing trend in pH. The 

trends of metal concentrations in the total load (dissolved and adsorbed) closely follow the trends 

observed with respect to pH: higher total metal loads were observed in landfills that had higher 

pH, therefore higher tendency to adsorb metals to soil surfaces.  

In general, the surface waters were more highly enriched in total metal concentrations compared 

to dissolved metal concentrations (Figures 2 and 3). This result supports observations from Jensen 

et al. (1999) that with exception of Zn, heavy metals in leachate polluted surface and subsurface 

waters are strongly associated with soil particles, and that heavy metals can form complexes with 

organic molecules and mobilize with the water phase (Ostroumov et al., 2001). The average EF’s 

for landfill soils were Pb (22.0) > Cd (17.7) > Mo (4.5) > Zn > (4.0) > Cu > (3.5) > Ni (2.1) > Fe 

(2.4). Although the EF’s appeared to be highest in Eek landfill soils, the values were not found by 

analysis of variance (p < 0.05) to be higher than the other tested landfills. Potential sources of 

metal species indicated in other studies include  Ni from tin cans, Fe from steel scraps, Zn and 

Mo from batteries and fluorescent lamps, and Pb from Pb batteries, chemicals for photograph 

processing, lead-based paints and pipes (Iwegbue et al., 2010; Mor et al., 2006; Zwiener et al., 

2002). 

4.6 Implications for Human Health and Climate Change 

Heavy metals can be toxic, can persistence in soil or sediments, can mobilize in surface and 

subsurface waters, and can biomagnify in the food web (Huu et al., 2010; King, 1999; Peramaki 

and Decker, 2000; Purves, 1985). The mobilization of metal constituents from rural Alaska waste 

sites into nearby waters may be exacerbated with a warming climate and/or an increase in 

precipitation. It is anticipated that the depth of the active layer (seasonal unfrozen top soil layer) 

will increase, as well as the fraction of the year in which it remains unfrozen. Especially in the 

presence of increased liquid precipitation, this would increase the mobility of the associated 

heavy metals. This study’s results strongly indicate a need for increased assessment and 

monitoring of open landfills in rural Alaska. A step towards reducing the risk of further 
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contamination would be to initiate a state regulation designed to promote active removal of heavy 

metal constituents from the solid waste stream. 

5. Conclusions

Metal concentrations observed in water and soils proximal to the rural Alaska landfills were 

highly variable. The metal concentrations in surface waters showed an overall decreasing trend 

downward from the landfill locations. Strong seasonal weather patterns including snowmelt and 

heavy rains influenced metal concentration and distribution. During snowmelt, metal 

concentrations in surface water were relatively low, presumably due to limited interaction 

between meltwaters and frozen soils. Accumulation of heavy metals on the soil surface during the 

drier summer season resulted in higher concentrations during fall rain events. In those instances, 

the rainfall runoff mobilized metals due to their association with soil particles. Sites with 

relatively high pH values yielded relatively low metal concentration in the dissolved load, thus 

indicating adsorption of metals to soil surfaces. The enrichment analysis indicated moderate to 

extreme enrichment of metals including Cu, Ni, Mn, Cd, Co, V, Zn, Al, and Pb in surface and 

subsurface waters, while the soils were found to be highly enriched (EF > 5) in Cd, Cu, Zn, and 

Pb. 

This study indicated that uncontrolled snowmelt and rainwater runoff from rural Alaska landfills 

can transport heavy metals into the surrounding environment either as dissolved species or 

adsorbed to particles. The mobility of metals is strongly controlled by pH which is depends on 

vicinity of sewage lagoons and lithology. The detected metal concentrations are high enough to 

potentially impact rural communities’ traditional drinking water and subsistence food resources, 

which can even increase due to climate change in the future.  
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7. Figures

Figure II-1: Illustration of sampling location, region and landfill design: upper left White 
Mountain, upper right Fort Yukon, lower left Eek, lower right Ekwok. 
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8. Tables 
 

Table II-1: Samples collected at each sample locations over the duration of two years 
Sample 

ID Sample Locations Ekwok Eek 
White 

Mountain 
Fort 

Yukon 
A Landfill surface water 5 9 8 7 
B Surface water 1-50 meters down-gradient 6 5 5 9 
C Surface water 50-3,000 meters down-gradient 11 15 6 10 
D Subsurface water 11 4 0 10 
E Surface water control 9 7 4 6 
aa Landfill impacted soils 3 7 3 4 
ab Control soils 2 3 2 2 

 

 

Table II-2: Five contaminant categories are established for the EFs (Sutherland 2000; Loska and Wiechula 
2003) 

EF = 2-5  Moderate enrichment  

EF = 5-20  Significant enrichment  

EF = 20-40  Very high enrichment  

EF = > 40  Extremely high enrichment  
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Table II-3: Range and values of physiochemical characteristics for all surface and subsurface waters 

Location ID 
pH 

(unit) 
Temperature  

(0C) 
Conductivity 

 (µS cm-) 
TSS 

(mg L-) 
TOC* 
(mg L-) 

CaCO3 * 
(mg L-) 

Ekwok 

A 6.4 - 7.7 5.2 - 19.5 194.2 - 282.4 670.3 - 4,247.0 42.4 37.5 
B 5.8 - 7.4 2.2 - 9.3 435 - 507.0 130.5 - 210.6 22.4 22.5 
C 6.3 - 7.5 1.9 - 11.3 14.6 - 228.6 7.5 - 30.3 4.0 26.7 
D 6.2 - 7.5 3.5 - 9.3 179.0 - 569.0 240.0 - 11,616.0 60.9 20.0 
E 7.2 - 7.8 1.1 - 11.1 18.6 - 228.6 4.5 - 5.1 3.5 20.0 

Eek 

A 6.4 - 7.6 0.2 - 12.0 185.8 - 567.4 73.3- 514.3 37.9 80.0 
B 6.4 - 7.7 0.2 - 13.9 77.0 - 130.4 137.5 - 550.0 13.1 120.0 
C 5.7 - 7.7 0.4 - 13.9 14.0 - 150.1 6.7 - 8.1 4.4 84.4 
D 6.8 - 10.3 n.a. 400.0 - 2,300 581.2 - 5,189.1 60.9 80.0 
E 6.3 - 7.7 0.7 - 13.9 17.8 - 136.7 8.1 - 12.1 7.0 40.0 

White Mountain 

A 7.3 - 8.2 4.7 - 21.6 200.2 - 2,200.0 185.1 - 1,700.3 45.2 131.4 
B 6.7 - 8.7 3.2 - 20.7 574.0 - 1,920.0 208.5- 710.1 56.2 186.7 
C 6.7 - 8.7 3.2 - 11.5 245.3 - 580.0 10.0 - 270.0 n.a 113.3 
E 7.8 - 8.1 2.3 - 13.4 65.2 - 136.5 8.7 - 10.0 4.2 40.0 

Fort Yukon 

A 6.8 - 8.6 5.2 - 21.5 178.0 - 1,855.0 50.0 - 1,400.3 13.9 432.0 
B 7.2 - 8.4 5.2 - 15.5 748.9 - 1,980.0 186.2 - 4,962.0 51.4 196.0 
C 7.8 - 8.6 12.8 - 21.3 22.0 - 214.6 5.7 - 50.0 8.8 100.0 
D 6.7 - 8.2 8.0 - 14.0 1,480.0 - 3,063.0 676.0 - 6,578.2 53.7 253.2 
E 6.8 - 8.6 13.0 - 18.9 19.0 - 526.7 70.0 - 171.4 9.7 90.0 

where  A represents landfill surface water, B surface water 1-50 meters down-gradient, C surface water 50-3,000 
meters down-gradient, D subsurface water,  E surface water controls, * samples only measured one time, and n.a. for  
not analyzed. 

Table II-4: Average and values of soil physical parameters 

Location ID 
pH 

(unit) 
Moisture Content 

(wet %) 
Sand 
(%) 

Silt 
(%) 

Clay 
(%) 

Ekwok aa 7.1 + 0.3 35.1 + 9.6 3.1 28.6 68.3 
ab 6.9 + 0.1 36.2 + 8.5 2.5 30.9 66.7 

Eek aa 6.0 + 1.4 47.7 + 1.2 2.3 19.4 78.3 
ab 5.1 + 0.1 28.1 + 1.2 0.1 13.6 86.3 

White Mountain aa 7.7 + 0.2 31.9 + 6.5 4.9 44.4 50.6 
ab 7.8 + 0.1 22.9 + 1.0 0.3 41.2 58.4 

Fort Yukon aa 8.7 + 0.2 41.7 + 3.8 2.9 27.0 70.1 
ab 7.3 + 0.4 30.7 + 2.8 2.1 19.6   78.3 

where aa represents landfill impacted soil samples and ab control soil samples. For soil particle distribution 
standardized sieves were used with the size of 2 mm to 62 µm for sand, 62 to 3.9 µm for silt and < 3.9 µm for 
clay faction.  
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Table II-5: ICP-MS average metal concentrations and their representing standard deviations with 95% confidence levels of surface and subsurface 
waters 
Location I

D
n Al V Cr Mn Fe Co Ni Cu Zn Cd Pb 

(ppm) (ppb) (ppb) (ppm) (ppm) (ppb) (ppb) (ppb) (ppm) (ppb) (ppb) 

LOD 0.4 0.6 0.1 0.2 11.5 0.3 0.4 0.3 0.5 0.1 0.2 

A 4 8.4+1.7 44.6+7.0 13.7+16.3 1.1+2.7 4.9+10.7 8.6+13.8 11.5+17.7 32.5+72.9 0.09+0.2 0.2+0.2 11.6+20.8 
B 6 26.8+27.1 87.8+47.9 20.5+15.9 3.2+4.8 15.4+16.7 19.6+18.8 22.8+27.2 90.6+116.8 0.3+0.3 ND 29.1+27.9 
C 9 0.2+247.6 1.2+0.9 3.7+4.6 0.09+0.1 1.2+1.9 0.4+* ND 1.8+1.4 0.07+0.2 0.2+* 1.6+1.9 

Ekwok D 13 30.8+37.2 27.8+23.7 36.8+38.9 0.8+0.5 90.8+90.2 14.6+15.5 207.8+547.8 75.0+59.5 5.5+10.0 0.3+0.2 11.4+10.7 
E 5 1.0+0.9 1.5+0.7 0.6+* 0.04+0.03 0.8+0.06 ND ND ND 0.04+0.03 ND ND 

A 5 0.2+0.4 2.5+1.9 6.5+10.1 0.1+0.08 3.1+1.4 0.8+0.5 4.0+3.5 14.0+13.6 0.2+0.2 0.3+* 1.8+0.7 
B 12 0.8+0.6 1.7+1.0 6.1+11.2 0.3+0.2 12.3+27.9 1.1+0.5 6.3+7.0 53.8+116.9 0.6+1.5 0.6+0.5 5.5+6.9 

Eek C 6 0.1+0.09 1.0+0.9 0.8+0.5 0.1+0.1 0.9+0.8 1.0+0.3 1.4+0.3 3.4+1.4 0.01+0.01 0.1+* 0.9+* 
D 6 2.8+4.6 94.5+* 15.2+16.0 2.1+1.3 154.5+140.1 16.2+11.5 64.7+55.6 65.0+31.2 3.6+3.8 ND 29.0+* 
E 13 0.1+0.05 0.7+0.4 0.8+* 0.09+ 0.03 1.3+0.7 0.4+* 2.2+2.1 2.4+0.8 0.01+0.01 ND 0.6+* 

White 
Mountain 

A 5 1.0+1.1 7.0+43.5 9.1+9.8 2.4+4.6 6.7+11.4 12.8+22.3 33.6+48.0 21.7+33.4 0.1+0.2 1.2+2.5 3.2+15.4 
B 7 5.2+5.5 17.4+4.8 11.1+ 6.8 3.1+5.1 4.3+2.5 24.3+19.1 60.6+47.6 39.3+36.8 0.1+0.2 1.9+0.9 12.2+6.4 
C 6 3.2+2.4 5.1+* 7.6+2.7 0.3+0.4 21.8+0.1 1.9+* 32.0+24.8 4.8+* 0.08+0.03 ND 9.8+10.1 
E 4 0.2+0.2 1.2+0.3 0.9+0.6 0.08+0.1 9.0+15.2 0.7+0.6 3.9+2.9 3.7+1.3 0.03+0.01 0.2+0.02 1.1+0.7 

Fort 
Yukon 

A 6 0.3+0.5 3.1+4.0 0.6+0.4 2.4+2.1 10.6+13.7 10.4+11.9 34.4+22.4 14.3+7.3 0.4+0.9 0.4+0.3 12.8 + 5.6 
B 9 15.1+39.3 13.0+27.5 40.7+65.6 2.6+3.0 1.2+36.5 20.4+26.7 352.1+722.7 57.3+62.8 0.2+0.3 3.1+0.4 17.0+15.8 
C 6 0.6+1.0 4.2+3.4 2.8+2.0 1.5+3.5 1.5+1.6 3.8+5.3 15.8+16.8 7.4+4.0 0.01+0.01 0.3+0.1 1.7+1.5 
D 16 13.7+22.6 40.2+21.7 131.6+294.9 3.2+2.6 284.4+567.0 28.8+21.8 194.4+186.2 94.0+103.8 2.6+3.2 8.4+10.1 23.4+16.2 
E 6 0.5+0.5 2.7+1.4 1.2+0.8 0.2+0.4 1.2+0.8 1.5+1.1 11.4+5.8 4.3+1.7 0.05+0.08 0.2+0.03 1.2+0.8 

where A represents landfill surface water, B surface water 1-50 meters down-gradient from the landfill, C surface water 50-3,000 meters down-gradient from the landfill, 
D subsurface water, E surface water controls, ND for samples not detected, and * no standard deviation due to few detected samples.  
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Table II-6: Pearson correlation matrix of physicochemical characteristics and metals of surface and subsurface waters 
pH Cond Alk TOC TSS Al  V Cr Mn Fe  Co  Ni Cu Zn Cd Pb 

pH 1 
Cond -0.135 1 
Alk 0.292 0.144 1 

TOC 0.084 0.520 0.362 1 
TSS -0.091 0.506 0.246 0.175 1 
Al 0.035 0.019 -0.090 0.203 -0.140 1 

 V -0.046 0.344 -0.182 -0.239 -0.072 0.986 1 
 Cr 0.072 0.215 0.126 0.011 0.173 0.611 0.639 1 

 Mn 0.086 0.141 0.152 -0.083 0.113 0.109 0.516 0.565 1 
 Fe 0.120 0.212 0.142 -0.064 0.055 0.218 0.790 0.102 0.204 1 

 Co 0.089 0.105 0.102 0.183 0.193 0.445 0.636 0.919 0.777 0.438 1 
 Ni 0.021 0.184 0.047 0.048 0.003 0.064 0.256 0.569 0.964 0.397 0.852 1 

 Cu -0.006 0.266 0.006 0.137 0.306 0.500 0.841 0.682 0.138 0.305 0.609 0.096 1 
 Zn -0.027 -0.038 -0.175 0.119 0.005 0.047 0.726 0.398 0.010 0.152 0.740 -0.026 0.844 1 

 Cd 0.107 0.330 0.234 0.402 0.160 0.511 0.782 0.942 0.650 0.559 0.921 0.737 0.237 0.075 1 
 Pb 0.030 0.099 0.145 -0.071 0.297 0.969 0.979 0.626 0.458 0.561 0.599 0.261 0.610 0.191 0.676 1 

*p = 0.05
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Table II-7: ICP-MS average metal concentrations and their representing standard deviations with 95% confidence levels in landfill impacted 
soils and controls. 

Location ID n Al 
(kg kg-1) 

V 
(mg kg-1) 

Cr 
(mg kg-1) 

Mn 
(mg kg-1) 

Fe 
(kg kg-1) 

Co 
(mg kg-1) 

Ni 
(mg kg-1) 

Cu 
(mg kg-1) 

Zn 
(mg kg-1) 

Cd 
(mg kg-1) 

Pb 
(mg kg-1) 

LOD 1.0 1.5 0.7 0.7 80.0 0.8 0.1 0.3 0.2 0.6 0.4 
Ekwok aa 4 16.0+2.2 45.1+8.1 19.0+1.7 407.1+217.9 19.0+1.9 6.6+1.9 18.8+7.7 14.5+4.1 56.0+22.5 0.6+* 8.7+1.8 

ab 3 14.7+0.7 42.2+4.2 16.4+27.1 248.2+102.3 15.1+0.8 5.3+0.8 11.3+0.4 11.6+0.4 41.4+1.0 <LOD 5.3+1.0 

Eek aa 8 15.7+6.0 38.9+9.6 38.3+18.6 332.0+182.3 29.5+18.4 7.3+2.0 26.2+11.9 172.4+222.9 453.9+527.4 4.2+3.6 106.1+137.8 
ab 3 13.0+3.6 38.8+14.9 22.4+8.1 224.3+135.1 17.0+7.1 6.7+2.5 17.1+5.4 15.2+9.5 51.3+15.1 0.7+* 5.4+3.2 

White 
Mountain 

aa 3 15.2+5.1 38.2+11.5 20.6+6.9 522.8+94.4 19.5+5.7 7.7+1.4 27.1+2.2 15.2+3.3 58.7+12.4 0.5+* 13.0+2.8 
ab 3 10.7+0.8 27.0+2.3 14.6+1.5 381.7+19.8 14.3+0.5 5.7+0.1 24.7+2.0 13.1+0.9 47.3+1.2 <LOD 8.7+1.8 

Fort 
Yukon 

aa 4 10.3+1.5 40.1+3.4 20.4+6.6 249.8+46.1 15.2+1.2 6.0+0.6 20.6+3.6 18.4+8.9 72.6+20.3 0.6+0.3 11.2+5.4 
ab 3 9.2+1.4 36.2+1.3 14.6+1.5 171.8+3.0 13.2+1.1 5.3+0.2 14.2+0.7 8.4+0.4 52.0+2.2 <LOD 6.0+0.1 

where aa - Soil impacted samples, ab - Soil control samples, < LOD - below detection limit and*no standard deviation due to few detected samples 
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Table II-8: Pearson correlation matrix of heavy metals in landfill impacted soils 
Al V Cr Mn Fe Co Ni Cu Zn Cd Pb pH sand silt clay 

Al 1 
 V 0.469 1 

 Cr 0.677 0.128 1 
 Mn 0.498 -0.173 0.260 1 

 Fe 0.758 0.033 0.882 0.452 1 
 Co 0.531 -0.136 0.470 0.795 0.656 1 

 Ni 0.445 -0.388 0.657 0.639 0.780 0.743 1 
 Cu 0.592 -0.139 0.881 0.301 0.927 0.435 0.773 1 

 Zn 0.581 -0.117 0.902 0.322 0.925 0.430 0.742 0.982 1 
 Cd 0.970 -0.042 0.935 0.911 0.995 0.769 0.974 0.998 0.986 1 

 Pb 0.576 -0.076 0.916 0.365 0.856 0.413 0.675 0.892 0.949 0.873 1 
 pH -0.190 -0.181 -0.110 0.260 -0.012 0.131 0.288 0.028 -0.002 -0.210 0.011 1 

 sand  0.063 0.017 -0.400 0.461 -0.226 0.163 0.063 -0.345 -0.359 -0.615 -0.328 0.378 1 
 silt  -0.075 0.080 -0.545 0.371 -0.366 0.026 -0.069 -0.464 -0.482 -0.615 -0.450 0.560 0.934 1 

 clay 0.066 -0.076 0.537 -0.379 0.358 -0.036 0.061 0.458 0.476 0.615 0.443 -0.550 -0.942 -1.00 1 
*p = 0.05
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Chapter III 

Partitioning and Transport Behavior of Pathogen Indicator Organisms in Cold 
Region Waste Sites 

Abstract 

Community health in rural Alaska is dependent upon the provision of clean, safe drinking water. 

Rural Alaska communities, especially those underlain by permafrost, often have freshwater 

resources that are particularly vulnerable to impacts from nearby waste facilities. Frequent 

exposure of rural communities to pathogenic contaminants is attributed to inadequate sanitation 

facilities, direct discharge of untreated human waste and wastewater, and close contact with 

human waste. Identifying specific point sources of fecal contamination is critical to preventing 

exposure, mitigating human and environmental health risks, and for developing management 

plans to protect freshwater resources. This study investigated the connection between rural waste 

facilities and the transmission of pathogenic organisms into nearby water resources using 

Escherichia coli (E. coli) and Enterococcus sp. as indicator organisms. In addition, the viability 

of E. coli and Enterococcus sp. in cold climate regions was evaluated, and the partitioning 

behavior of both organisms in meltwater was examined. The results reveal that E. coli and 

Enterococcus sp. tend to preferentially attach and migrate with soil particles in surface waters, 

and are frequently transported offsite during snowmelt runoff. Enterococcus sp. was observed to 

have higher and more sustained viability in cold environmental conditions, and therefore may be 

a more suitable indicator organism compared to E. coli for cold climate regions. Waste sites in 

rural communities were found to transmit E. coli and Enterococcus sp. into nearby water 

resources. E. coli and Enterococcus sp. were found in surface waters and soils in the 

concentration range of 0.7 - 3.5 mean Log MPN/100 mL H2O. All microbial samples indicated 

strong site-specific variability. 

1 Mutter, E.A., Schnabel, W., Duddleston K.N. Fairbanks 2014. Partitioning and Transport Behavior of Pathogen Indicator Organisms 
in Cold Region Waste Sites. Prepared for submission in Cold Region Science and Technology. 



72 

 

1. Introduction 

Alaska is the largest state in the U.S., and 40% of the state’s population resides in more than 300 

rural communities (BIA, 2003; Patterson et al., 2012). Because of Alaska’s size, its rural 

communities are located across diverse geographic areas and climate zones, and most of these 

communities are not connected by a road system. These factors, combined with socioeconomic 

challenges resulting from a small tax base, create challenges for solid waste and wastewater 

management (Black and Logan, 2000; Herdman, 1994; Patterson et al., 2012; Puchtler, 1978). 

Historically, many rural Alaska waste facilities have had minimal site control, irregular 

maintenance, little or no waste treatment, inadequate monitoring of leachate generation to nearby 

water resources, and have been subjected to seasonal flooding (ANTHC, 2007; Crum, 1993; 

Friedman et al., 1999; Patterson et al., 2012). 

Intentional or unintentional discharges waste from inadequately managed waste facilities can lead 

to transmission of pathogens to surface water resources, posing a risk to human and 

environmental health (Smith and Low, 1996; Zender et al., 2003). Among Alaska Natives, 

frequent exposure to pathogenic bacteria is implicated in reports of hepatitis A and B, bronchitis, 

impetigo, rashes, pneumonia, and endemic enteric meningitis. In particular, young children and 

elder residents are affected (ANTHC, 2009; DHSS, 2005; Hennessy, 2008). Disease outbreaks 

have been attributed to conditions such as insufficient drinking water and wastewater services in 

35% of communities and to the use and handling of five-gallon in-home wastewater receptacles 

known as “honey buckets” (ANTHC, 2009; Hennessy, 2008). Spillage of human waste from 

honey buckets during transport to disposal sites has been demonstrated to promote dispersion of 

waste-related organisms across community roads and boardwalks (ANSC, 2004; Chambers et al., 

2008; EPA, 1994). In addition, at least 30% of the rural communities dispose of human waste 

together with solid waste directly into tundra ponds, on ground underlain by permafrost, or on 

saturated tundra (Patterson et al., 2012; Zender et al., 2003), which poses an additional pathogen 

risk. Finally, studies have identified an association between storm water events and the outbreak 

of waterborne pathogenic organisms in human population (Currieo et al., 2001; Rose et al., 2001). 

For rural Alaska communities, pollution from fecal contamination is a critical health issue, given 

the proximity of many waste disposal sites to community centers as well as their food and 

drinking water resources (Patterson et al., 2012). For example, a source-water assessment in the 

Kuskokwim Delta region rated the majority of public water systems employing surface water 
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sources as “highly” or “very highly” vulnerable to bacterial/viral impacts (ADEC, 2008). A 

different study conducted to evaluate the presence of pathogen indicator organisms in a rural 

community setting illustrated the wide dispersion of pathogen indicators across the rural 

landscape during and after the spring melt due to the prevalence of standing water (Chambers et 

al., 2008). In Canada, a study performed to assess microbial load and rain runoff events 

established a correlation between increase of runoff and cryotolerant coliform (e.g., E.coli) load 

(Hyland et al., 2003). A study by Adhikari et al. (2007) on fecal coliform survivability in frozen 

soils demonstrated that fecal coliform bacteria can survive outside a host for prolonged periods 

under cold conditions, and (Wang and Marchin, 1996) conducted a study in temperate regions 

suggesting that pathogens released from raw sewage can survive in the soils and surface water for 

a year or longer. Payment et al. (2003) found that, despite research efforts, very little is known 

about the degree of freshwater contamination and the potential for transmitting disease-causing 

bacteria and other microorganisms in cold climate regions, due to the lack of understanding 

regarding the persistence of different microbial types in the environment (Hrishikesh et al., 2007; 

Miettinen et al., 2001; Okoh et al., 2007). 

It is a challenging task to elucidate the spatial and temporal transmission of source-specific 

pathogenic organisms into freshwater resources near rural communities. In cold climate regions, 

the transport of pathogenic organisms within a community is affected by the waste disposal 

practices of individuals (Patterson et al., 2012), the complex hydrologic pathways associated with 

permafrost-affected soils, and the tolerance of microbial organisms to long periods of subzero 

temperatures (Balaban et al., 2004). Arctic and subarctic regions are affected by permafrost, 

which consists of two physically distinct compartments: the active layer (which thaws during 

summer) and the permafrost layer (perennially frozen, often ice-rich ground). Due to the limited 

thaw depth of the active layer and the restricted permeability of permafrost, the transport of 

stormwater and snowmelt is often restricted to the surface (Alloway and Ayres, 1997; Lunde and 

Young, 2005; Maidment, 1993). Thus, seasonal events such as snowmelt and rain can have a 

significant effect on the transport of free-living or particle-bound microbes through the surface 

water.  

Previous studies have demonstrated that microbes entrained within or lying underneath snow are 

often kept viable by the cold (Adhikari et al., 2007; Price and and Sowers, 2004), thus indicating 

that viable pathogens may reach higher concentrations in meltwater compared to concentrations 
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in rainwater runoff. Indeed, a study describing an Anchorage, AK stream reported springtime 

fecal coliform concentrations that were orders of magnitude higher than concentrations observed 

during the remainder of the year (Schnabel et al., 2010). Other studies have shown that 

pathogenic indicator bacteria found in surface waters tend to associate with particles (Characklis 

et al., 2005; Fries et al., 2006), and that particulate-attached microbes can form microbial 

reservoirs in stream beds that become re-suspended during periods of high flow (Jamieson et al., 

2003). Thus, the snowmelt runoff events at rural Alaska waste sites may carry particularly high 

loads of pathogenic organisms and deposit them into surrounding surface waters. 

The objectives of this study were to evaluate the source-specific potential to transmit pathogenic 

organisms into freshwater resources near rural Alaska communities, and to investigate the 

transport pathways of pathogenic organisms during seasonal precipitation events. As a measure of 

fecal contamination, Escherichia coli (E. coli, or EC) and Enterococcus sp. (ENT) microbial 

indicator organisms (MIO) were enumerated in surface waters and soil samples collected in the 

vicinity of five rural Alaska landfills, two sewage lagoons, and their natural drainage areas. The 

direct counts of MIO were used to evaluate the temporal and spatial distribution of indicator 

organisms with respect to seasonal precipitation events and differences in arctic and subarctic 

environmental settings. In addition, a snowmelt lysimeter facility on the University of Alaska 

Fairbanks campus was employed to help illuminate MIO survivability, partitioning, and transport 

processes associated with winter storage and snowmelt runoff in a controlled setting. The 

lysimeter results were utilized to help inform and interpret the MIO data collected in the field. 

Rural Alaska waste facility conditions are illustrated in Figure 1.  

2. Study Sites

2.1 Lysimeter Experiment 

A freestanding lysimeter was constructed at the University of Alaska Fairbanks Experiment Farm 

based upon a design reported by (Kattelmann, 1984). The lysimeter encompassed a surface area 

of 8 m2, and was framed with 6 mm plastic sheeting (clear visqueen) fixed to the bottom and 

sides. An approximate 2% downhill slope was constructed to capture all of the moisture emerging 

from the snowpack either through infiltration or runoff. Rain gutters were installed to facilitate 

water collection. The lysimeter contained a homogenized mixture of 33.3 kg of fecal coliform 
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source (manure) placed on top of a designed soil matrix, composed of 6.4 cm of silt underlain by 

a 5.1 cm sand.  The sand underlying the silt was intended to serve as a drainage layer. The 

manure mixture consisted of 23% muskox manure obtained from Robert G. White Large Animal 

Research Station at UAF, 73% cattle manure obtained from the UAF Palmer Research & 

Extension Center, and 4% reindeer manure obtained at the Fairbanks Experiment Farm. The 

lysimeter was completed in October 2008, and allowed to accumulate snow until the subsequent 

snowmelt in April 2009. Naturally accumulated snowfall of 55.9 cm was measured immediately 

prior to the 2009 snowmelt. The constructed lysimeter experiment setting is illustrated in Figure 

2. 

 

2.2 Rural Communities  

In order to evaluate the prevalence of MIO associated with rural Alaska waste facilities, soil and 

water samples were obtained proximal to the landfills and sewage lagoons in five separate 

communities. These arctic and subarctic facilities encompass a variety of environmental settings 

representing the presence/absence of permafrost, and the presence/absence of tundra ponds. The 

waste facilities of each community are located relatively close to the community center and are 

impacted by seasonal snowmelt and rainwater runoff.  Annual temperature and precipitation data 

for the sampling locations are reported in Table 1.  

Ekwok is a community of 130 residents, located along the Nushagak River, 69 km northeast of 

Dillingham and 302 km southwest of Anchorage (Census, Bureau, 2010). The community is 

situated in a non-permafrost area, and most residential homes are equipped with in-home 

plumbing system for waste and drinking water. Drinking water is obtained from shallow 

groundwater wells and wastewater discharge occurs through a sanitation systems, which includes 

piped a septic system connected to a sewage lift station or a flush/haul system (DHHS, 1992). 

Sewage collection and wastewater hauling services are provided to the community weekly. The 

approximately 30 year’s old landfill is constructed belowground on excavated tundra 

approximately 2.4 km northeast upland of the village. The landfill is 0.4 km2 in size and 3.0-4.5 m 

deep, creating a 22% slope toward the lowland area. The constructed sewage lagoon, which is 

lined with sand material and heavily overgrown with vegetation, is located 500 m from the 
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community and approximately 800 m from the Nushagak River. The community is on a pump-

hauling system for sewage and wastewater. 

Eek is a community of 208 residents, located on the south bank of the Eek River, 19 km east of 

the mouth of the Kuskokwim River and approximately 56 km south of Bethel in the Yukon-

Kuskokwim Delta (Census, Bureau, 2010). The community is situated in discontinuous 

permafrost region, comprising saturated tundra and many tundra ponds with only a few meters of 

elevation marking the boundaries of major drainages (ADEC, 2011). The community derives 

water from Eek River for its primary domestic water supply source, which is treated and stored at 

the washeteria. Rain entrapment systems and ice melt are utilized for secondary portable drinking 

water sources. Only the community school, school housing and washeteria are connected with in-

home plumbing for water and wastewater. Individual households haul their drinking water from 

the washeteria or from traditional drinking water sources. Household wastewater is discharged 

directly onto the tundra or into the nearby sewage lagoon. Honey buckets are used to transport 

human waste and discharged into the traditional sewage lagoon. The sample locations are an 

approximately 30-year-old ponded landfill and a honey bucket lagoon located adjacent to the 

landfill, both 0.8 km2 in size. The two waste sites are located less than 1.6 km from the 

community. Based on a reconnaissance of the waste sites, the hydrologic system is complex and 

is influenced by tides, permafrost, and surface water. Saturated tundra ground with standing water 

is encountered around the landfill and honey bucket lagoon year-round.  

White Mountain, a community of 224 residents, is located 100 km east of Nome on the Seward 

Peninsula on the west bank of Fish River (Census, Bureau, 2010). White Mountain is 

distinguished with shallow permafrost and wet tundra; however, south-facing slopes were 

identified with the presence of discontinuous permafrost below the vegetative layer (Chambers et 

al., 2007). The community obtains its treated domestic water supply from groundwater wells 

located in the village. The majority of the community is connected to the piped water and sewer 

system. Nonetheless, 25% of residents still haul honey buckets for human waste and wastewater. 

The approximately 30-year-old aboveground landfill is located in an upland area approximately 

400 m east of the village and north of the river. The landfill is 0.6 km2 in size and rises 

approximately 4.5 m to create an 18% slope east/southeast toward a lowland area. Standing water 

occurs during snowmelt and rain events forming a natural drainage area to the east/southeast of 

the landfill.  
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Fort Yukon, a community of 600 residents, is located at the confluence of the Yukon River and 

the Porcupine River, approximately 233 km northeast of Fairbanks (Census, Bureau, 2010). Fort 

Yukon is situated in the low-lying Yukon Flats region, which is characterized by vast areas of 

forested wetlands and bogs underlined by discontinuous permafrost. The community obtains its 

domestic water supply from two groundwater wells located in the village. The domestic water is 

tank-stored and treated before being supplied through a piped system to residents’ homes. 

Residential homes are provided with piped sewage systems connected to lift stations and pumped 

to a newly constructed, lined sewage lagoon located approximately 2.4 km east of town. An 

approximately 30-year-old aboveground landfill is located in an upland area 2.4 km from the 

community. The 0.2 km2 landfill is situated along the edge of an old riverbank 8-15 m higher than 

the lowland area, creating a 32% slope towards the lowland. At the time of this study, the landfill 

that had been used by the community was closed and covered with gravel, while a new permitted 

landfill was under construction. In the meantime, solid waste material was being placed on the 

outside border of the closed landfill and managed primarily through aboveground burning. The 

close-capped sewage lagoon is located adjacent to the landfill.  

Allakaket is a community of 190 residents, located approximately 306 km northwest of 

Fairbanks, on the south bank of the Koyukuk River (Census, Bureau, 2010). The land is 

characterized by shallow permafrost and tundra ground. Domestic drinking water is supplied by 

treated Koyukuk River water at the community washeteria (Patterson et al., 2012). Only the 

community school, school housing and washeteria are connected to in-home pluming for water 

and wastewater. Individual households haul drinking water from the washeteria or from 

traditional drinking water resources. Household wastewater is discharged directly onto the tundra 

or into local tundra ponds. Honey buckets and pit privies are used for human waste. The 

approximately 10-year-old aboveground landfill is located in an upland area along a ridge 

approximately 1.6 km south from the old village site, and approximately 1.2 km from the new 

village site. The landfill is 0.7 km2 in size. A natural drainage area is formed by an approximate 

4% slope to the south. Rural Alaska communities and representative region is illustrated in Figure 

3.  
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3. Methods and Materials

3.1 Snowmelt Lysimeter MIO Partitioning Study 

Discharge from the snowmelt lysimeter was collected daily throughout the April 2009 snowmelt 

event. Daily runoff was quantified in a graduated cylinder following initial measurements of pH, 

electrical conductivity, and temperature via Combo Hanna meter (Hanna Instruments). 

Subsamples of the daily accumulated meltwater were collected in sterile 200 mL HDPE bottles 

for analysis of total suspended solids (TSS) and MIO. Total suspended solids were determined 

gravimetrically using 0.7 µm glass fiber filters (GC-C, Whatman). The method described by Fries 

et al. (2006) for MIO analysis was employed to discriminate between particle-bound and 

dissociated microbes. Subsamples (50 mL) of collected meltwater were centrifuged (Beckman 

Coulter, Allegra 25 R) at 500 × g for 10 minutes at room temperature. The centrifugation velocity 

was chosen to ensure particle separation based on settling velocity; based on the premise that 

particle-bound organisms will settle to the centrifuge bottom (Bratbak and Dundas, 1984; 

USFDS, 2003). The top volume was considered to contain only dissociated microbes or free-

living microbes in water, while the lower portion of the centrifuge tube was considered to contain 

both particle-bound and dissociated microbes. Settled particles were often visible on the bottom 

of the centrifuge tubes and required careful separation from the top 35 mL portion to avoid re-

suspension. The 35 mL top volume (dissociated fraction) and 15 mL bottom volume (particle-

bound fraction) were carefully removed using a 50 mL pipette, redistributed into 100 mL sterile 

bottles containing thiosulfate, and diluted with sterile water to a total volume of 100 mL. 

Enumeration of microbial samples was performed using Colilert® for EC and Enterolert® for 

ENT (Idexx Laboratories, Westbrook, ME), following an EPA-approved most probable number 

(MPN) method supplied by the manufacturer. The 100 mL meltwater samples were incubated at 

35°C for EC and 41°C for ENT for 24 to 28 hours. A 6-watt, 365 nm UV light was used to 

identify the positive wells for enumeration. 

3.2 Microbial Viability 

For the microbial survivability study, 0.4 g of muskox manure, 0.6 g of caribou manure, and 0.5 g 

of cattle manure were mixed together. The subsamples were submerged in 200 mL of sterile 

water and thoroughly mixed. A ten-step dilution series of 50, 40, 30, and 20 mL was performed 
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and brought to 100 mL with sterile water. Diluted manure samples were enumerated and 

incubated for EC and ENT using the Idexx MPN method. Manure water content was verified by 

weight difference between wet and oven-dried manure at 110°C for 24 hours. For the microbial 

survivability study, 10 manure subsamples were frozen at -40°C for 6 months. Manure samples 

were gently thawed for 6-8 hours and placed on a shaker for 10 minutes to allow complete 

mixing. The same dilution series, incubation, and enumeration methods for ENT and EC bacteria 

were performed as described above.  

 

3.3 Rural Community Sample Collection and Analysis 

On two consecutive days in spring 2010, fall 2010, spring 2011, and fall 2011, snowmelt and 

rainwater runoff along with soils were collected in sterile 200 mL HDPE bottles near the five 

rural community landfills and two sewage lagoons. Sampling efforts were limited at Ekwok after 

a new trench was constructed at the landfill in fall 2010, at Eek due to frozen ground and surface 

water in spring 2010 and fall 2010, and at Fort Yukon because of the closed and covered landfill. 

At White Mountain, surface water and soil were only obtained in spring 2010 and 2011; in 

Allakaket surface water and soil were obtained in June 2010 and August 2011. The same 

sampling procedure was utilized throughout the sampling events to ensure consistency throughout 

the study. Waste leachate surface water was collected according to the observed hydrologic 

pathways at the landfills, 1-50 m down-gradient, 50-3,000 m down-gradient, and 1-50 m up-

gradient from each landfill. Raw sewage water samples were collected from a honey bucket and a 

constructed sewage lagoon, along with samples collected 1-50 m down-gradient of a new 

constructed sewage lagoon. Water pH, electrical conductivity, and temperature were measured in 

situ using a YSI Professional Plus or Combo Hanna meter. Approximately 100 g of soil samples 

were obtained from the soil organic and mineral layer (depth of 30 cm) for MIO analysis, pH 

analysis, and determination of water content. MIO analysis was performed either at the 

University of Alaska Anchorage, Applied Science Engineering and Technology (ASET) or 

University of Alaska Fairbanks, Water and Environmental Research Center (WERC) laboratory 

facilities within 12 hours of collection. Surface water samples were redistributed into 100 mL 

sterile bottles containing thiosulfate, and soil samples were thoroughly mixed to obtain the best 

representative distribution of microbial indictor load, and dissolved in 100 mL of sterile water. 
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Enumeration and incubation of microbial samples is described in Section 3.2. A determination of 

TSS was made using the method described in Section 3.1. Soil pH was measured in a 1:2.5 (v/v) 

ratio of water and soil suspension with a digital pH meter following the method procedure of 

Radojevic and Bashkin (1999). Control soil and surface water samples were assembled from 

undisturbed sites at each location. Total soil water content was verified by weight difference 

between wet soils and oven-dried soils at 110°C for 24 hours. Standardized sieves of < 2.36 mm 

for sand, < 2.00 mm for silt, and 149 µm for clay was used to determine soil particle distribution. 

The sample numbers obtained from each location and sample site are listed in Table 2. 

 

4. Results and Discussion 

4.1.1 MIO Survivability 

The concentration of EC in a manure mixture decreased by approximately four orders of 

magnitude when stored at -40°C for a six month period (Figure 4), whereas the concentration of 

ENT decreased by approximately one order of magnitude over the same period. Thus, this result 

constitutes one line of evidence indicating that ENT may be more persistent in a cold environment 

than EC, and therefore may be a more appropriate indicator organism compared to EC for use in 

rural Alaska.  

 

4.1.2 MIO Partitioning and Viability Results 

Springtime meltwater was collected from the lysimeter to evaluate EC and ENT viability and 

partitioning behavior. Samples were collected daily throughout the month of April 2009. The 

meltwater pH ranged from 7.0-8.5 units; temperature ranged from 0.6-15.5°C; specific 

conductivity ranged from 63.4-96.0 µS/cm; and TSS ranged from 31.8-482.0 mg/L (Table 3).  

The particle bound MIO concentration in the daily accumulation of lysimeter meltwater exceeded 

the dissociated MIO concentration in all samples collected throughout April, 2009 (Figure 5). In 

some instances, the particle-bound load was found to be approximately two orders of magnitude 

higher than the dissociated load. In most instances, however, the particle bound load was less than 

one order of magnitude greater than the dissociated load. Plotting the total daily lysimeter 

meltwater MIO load against the TSS load showed that increased TSS loading was associated in 
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some fashion to increased MIO loading, although the data did not conform particularly well to 

the logarithmic curve used to model the relationship (ENT r2 = 0.65; EC r2 = 0.40; Figure 6).  

The purpose of the lysimeter study was not to specifically define the numeric relationship 

between TSS and MIO, but rather to confirm that such a relationship exits in snowmelt. In 

previous studies, Characklis et al. (2005) and Fries et al. (2006) demonstrated that pathogenic 

indicator bacteria found in surface water tend to associate with particles. This study indicated 

that snowmelt is similar to other surface waters with respect to microbial partitioning. 

Thus, mitigating the TSS load in meltwaters may help to reduce the flux of MIO in the 

runoff water. However, since at least some fraction of the MIO observed in this study was not 

particle-bound, TSS-mitigation measures would not be expected to contain all of the 

MIO. Moreover, the tendency of microbes to associate with particulates may have other 

relevant consequences as well. For instance, microbes associated with particles have been 

shown to survive longer in natural waters (Howell et al., 1996). Therefore, preferential 

partitioning of MIO to particulates in snowmelt may impact the length of time these 

organisms remain a threat to public health (Characklis et al., 2005).  

4.2 Physiochemical Characteristics of Surface Waters – Rural Community Study 

The pH of leachate-impacted surface waters ranged from 6.1-8.4 (Table 3). The pH values of 

landfill impacted surface water samples collected directly offsite the landfill (B) from Ekwok and 

in areas further away (50-3,000 m) from landfill in Eek (C) are lower than any specific sampling 

sites. (A, B, or C) observed in White Mountain and Fort Yukon. Location These (B) in Ekwok 

and location (C) in Eek are situated in lowland areas with poorly drained organic rich soils and 

peat, which have a high abundance of humic acid, that lower the pH values. The higher pH value 

for White Mountain, Fort Yukon and Allakaket landfills reflect the occurrence of limestone in 

these locations. The wide range of water temperature variability is related to the different 

sampling events performed from spring to freeze-back in early fall.  

Higher conductivity and TSS concentrations tended to be associated with the samples collected at 

the landfills (location A), landfill adjacent drainage areas (location B), and sewage lagoon 

drainage areas (location E) compared to the control areas (Table 3). The electrical conductivity of 
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waters impacted by waste ranged between 77.0 and 3,063.0 µS/cm. This wide variability may 

have been associated with dilution from rain and snowmelt water, or concentration due to 

evaporation during the dry season. Additionally, large variability was observed within one 

location during a single sampling event, indicating a high degree of variability and limited mixing 

within a single landfill (Table 3). Total suspended solids were only measured once throughout the 

sampling events. Total suspended solids in the landfills and areas directly adjacent to the landfills 

were approximately 100 times higher than in areas further away from landfills (50-3,000 m), and 

approximately 10 times higher than at control sites. The low TSS concentrations observed at most 

of the control sites (<10 mg/L) were similar to the TSS commonly found in rainwater (Maidment, 

1993). 

4.3 Physiochemical Characteristics of Soils 

The pH of all soil samples collected from the organic and mineral layer (0-30 cm in depth) ranged 

from 5.1-8.6, with higher values in soils from White Mountain, Fort Yukon, and Allakaket (Table 

4). The pH of control soils was slightly lower than that of the landfill-affected soils. The control 

soil at Eek was collected from saturated tundra ground composed of poorly drained organic-rich 

tundra soil, which generally has a higher abundance of humic acid and lower pH (Ping et al., 

2008). The pH of soil and the soil solution are critical for microbial growth, activity, and 

mobility, and individual organisms depend on a tolerable range. The waste impacted soils with 

the pH ranged from 5.1-8.6 provides suitable habitat for EC and ENT, which are both facultative 

anaerobic organisms with a wide range of pH (3.5-10.0) tolerance (Balaban et al., 2004; 

Miettinen et al., 2001). The predominant particle size in landfill-impacted and control samples 

was clay and silt (Table 4). Soil structure and texture are also important factors influencing the 

transport of water, air, nutrient, and microorganisms (Maier et al., 2009). Given the fine texture of 

the landfill-impacted and control soils, they are assumed to provide supportive habitats for 

microbial growth due to their water and nutrient retention capacity, as well as their ability to 

provide microbial attachment sites (Characklis et al., 2005; Fries et al., 2006). However, further 

analysis of the relationship between soil characteristics and microbial loading was not within the 

scope of this study. 
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4.4 Source-Specific MIO Study 

A thorough examination of EC and ENT enumerated in soils and surface waters proximal to the 

waste sites reveals a number of trends (Table 5). First, the soil samples collected from the waste 

sites contained significantly higher concentrations of EC and ENT than did the control soils in 

every instance. Given that MIO tend to associate with soil particles (as demonstrated by the 

lysimeter study as well as previous research findings), this indicates a potential source (waste site 

soils) and mechanism (offsite migration of particle-laden water) for mobilization of MIO into the 

surrounding waters. Second, the MIO concentrations in surface waters from the landfills (and 

sewage lagoons) were significantly higher than the MIO concentrations in the control waters in 

every instance. Again, this result is not surprising, but does support the notion that water 

associated with the landfill can serve as a source of pathogens to the surrounding waters. Third, 

the surface waters directly adjacent to the landfills were not always significantly different from 

the MIO concentrations within the landfills themselves. Thus, in some instances at least, there 

was a clear pattern of MIO migration into the surrounding waters. Finally, there was a general 

downward trend in MIO concentrations associated with increased distance from the landfills. 

The EC and ENT concentrations in surface water within the landfill footprints ranged between 

1.5-3.0 and 2.1-3.0 mean Log MPN/100 mL H2O, respectively, while the concentrations in offsite 

locations within 50 m of the footprint ranged from 0.7-3.2 (EC) and 0.9-3.0 (ENT) mean Log 

MPN/100 mL H2O (Table 5). The constructed sewage lagoon and honey bucket lagoon surface 

water EC and ENT concentrations ranged from 2.4-3.4 and 2.9-3.4 mean Log MPN/100 mL H2O, 

respectively. We did find it notable that no significant statistical difference was observed between 

the landfill and the sewage lagoon surface waters with respect to EC concentrations in Eek and 

ENT concentrations in Ekwok (Table 5). However, this observation is tempered to some extent by 

the limitations of the analytical test. In both cases, the MIO concentrations in numerous samples 

were found to be higher than the quantifiable range offered by the test, thus the finding of no 

significant difference is not strongly supported.    

This study did not identify demonstrable differences in soil or water MIO concentrations based 

upon environmental settings such as frozen/unfrozen soils or wet/dry soil conditions. While the 

environmental setting potentially influenced the observed MIO concentrations, other variables 

such as seasonality were important as well. For instance, a higher volume of water runoff was 
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observed during snowmelt runoff when ground was still frozen and infiltration was limited, 

resulting in higher EC and ENT concentrations at Eek (ponded landfill in saturated tundra ground 

underlain by discontinuous permafrost) and Allakaket (newly constructed landfill underlain by 

permafrost), compared with Ekwok (belowground landfill underlain by discontinuous permafrost) 

and White Mountain and Fort Yukon (aboveground landfill and permafrost). 

A significant relationship was found to exist between MIO for waste-impacted surface waters and 

TSS (Table 6). This agrees with the findings in the lysimeter component of this study, supporting 

the notion that sorption to particulates is an important factor in the mobilization of cold region 

microbes. With respect to soils, EC concentrations were found to be correlated to soil moisture as 

well as pH, while ENT were found to be correlated to soil moisture and soil type (Table 7). These 

findings merit further study.  

5. Conclusions

This study was segregated into two components intended to evaluate the offsite migration of 

microbes from rural Alaska landfills. The first component was a controlled snowmelt lysimeter 

study demonstrating that MIO in snowmelt tend to preferentially associate with particulates in 

surface flows. This finding suggests that rural communities could potentially limit offsite 

migration of microbial contaminants by controlling snowmelt and rainwater runoff with berms, 

and/or creating vegetative buffer areas to capture particulates. The lysimeter study also showed 

that ENT survived cold storage in the field and laboratory in greater numbers than did EC 

bacteria, thus indicating that ENT may serve as a more robust indicator organism in Alaskan 

environmental conditions. 

The second component of the study was an evaluation of MIO concentrations in and around five 

rural Alaska landfills. The results also confirm the suggestion by Adhikari et al. (2007) that, due 

to the ability of fecal bacteria to survive long periods of storage in subzero temperatures, sewage 

lagoons and landfills in rural Alaska are significant probable sources of fecal bacteria migrating 

to offsite water resources during snowmelt runoff. This study demonstrated that uncontrolled 

snowmelt and rainwater runoff at waste sites can transmit indicator organisms, and potentially 

pathogenic organisms as well, into nearby water resources. Moreover, it is likely that in many 



85 

instances, the surface waters immediately down gradient of waste sites would not meet state 

microbial water quality standards for any designated use.  Further study is recommended in areas 

such as sewage lagoons and mixed solid waste/human waste sites where microbial communities 

may persist for long periods in the presence of discarded pharmaceuticals. In these instances, the 

microbes could potentially develop resistances to antibiotic/antiviral drugs, thus imposing an even 

greater risk to community health. As similar results have been demonstrated in marine 

environments (Neela et al., 2007) and in bacteria living in coastal fresh water sites (Kimiran-

Erdem et al., 2007; Kuemmerer, 2004) impacted by sewage runoff, it seems likely that rural 

Alaska’s microbial-impacted sites may represent a similar public and environmental health 

concern. 
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7. Figures

Figure III-1: Rural Alaska waste facility conditions. 

Figure III-2: Constructed lysimeters setting on October 2008. 
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Figure III-3: Illustration of rural Alaska communities region. 
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Figure III-4: MIO survivability in manure before and after storage (-40 °C) for six months. 
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Figure III-5: Lysimeter Total MIO Load per Day collected in meltwater runoff during the month of April 
2009. 
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Figure III-6: Lysimeter MIO particulate fraction correlation with total suspended solids associated with 
snowmelt discharge per day. An exponential correlation was found for ENT MIO and TSS 
with a y = 0.614 ln(x) + 3.76 and a R2 value of 0.65, whereas EC MIO and TSS with y = 
0.37 ln(x) + 3.90 and a R2 value of 0.41.  
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Figure III-7a: Spring and fall observed EC and ENT mean Log MPN in surface water samples. 
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Figure III-7b: Spring and fall observed EC and ENT mean Log MPN in surface water samples. 
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8. Tables

Table III-1: Climatic conditions at each sampling location (Shulske and Wendler 2007) 

Location Region Representative Temperature 
Ranges °C 

Annual 
Average 

Rain 
Precipitation 

(mm) 

Annual 
Average 

Snow 
Precipitation 

(cm) 
Ekwok Discontinuous Permafrost on wet tundra ground -43 to 29 140.0 140.2 

Eek Discontinuous Permafrost on saturated tundra 
ground 

-44 to 30 406.4 134.4 

White Mountain Permafrost impacted on bedrock and wet tundra 
ground 

-48 to 37 432 172.7 

Fort Yukon Discontinuous permafrost on wet tundra ground -54 to 33 304.8 157.5 
Allakaket Permafrost impacted on wet tundra ground -57 to 34 604.2 22.4 

Table III-2: Samples collected at each sample location 
Sample 

ID Sample Locations Ekwok Eek 
White 

Mountain 
Fort 

Yukon Allakaket 
A Surface water within the landfill   22* 46 29 0 9 
B Surface water directly offsite the 

landfill 14 36 12 21 
12 

C Surface water 50-3,000 m down-
gradient 16 37 12 35 

20 

D Surface water controls 28 41 15 42 11 
E Sewage lagoon 10 8 0 7 0 
aa Landfill impacted soils 20 36 20 31 20 
ab Control soils 12 13 10 12 8 
*Sample number at each specific sampling site
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Table III-3: Range of physical characteristics for all waters 

Location 
ID pH 

(unit) 
Temperature 

(0C) 
Conductivity 

(µS cm-) 
TSS 

(mg L-) 

Ekwok 

A 6.4 - 7.7 5.2 - 19.5 194.2 - 282.4 670.3 - 4,247.0 
B 5.8 - 7.4 2.2 - 9.3 435 - 507.0 130.5 - 210.6 
C 6.3 - 7.5 1.9 - 11.3 14.6 - 228.6 7.5 - 30.3 
D 7.2 - 7.8 1.1 - 11.1 18.6 - 228.6 4.5 - 5.1 
E 7.4 - 8.4 0.6 - 9.2 810.0 - η 300.0 - η 

Eek 

A 6.4 -7.6 0.2 - 12.0 185.8 - 567.4 73.3 - 514.3 
B 6.4 - 7.7 0.2 - 13.9 77.0 - 130.4 137.5 - 550.0 
C 5.7 - 7.7 0.4 - 13.9 14.0 - 150.1 6.7 - 8.1 
D 6.3 - 7.7 0.7 - 13.9 17.8 – 136.7 8.1 - 12.1 
E 6.5 - 8.2 1.6 - 12.9 175.8 - 212.5 514.3 - η 

White 
Mountain 

A 7.3 - 8.2 4.7 - 21.6 200.2 - 2,200.0 71.1 - 309.3 
B 6.7 - 8.7 3.2 - 20.7 574.0 - 1,920.0 130.3 - 208.5 
C 6.7 - 8.7 3.2 - 11.5 245.3 - 580.0 10.0 - 27.0 
D 7.8 - 8.1 2.3 - 13.4 65.2 - 136.5 8.7 - 10.0 

Fort Yukon 
B 7.2 - 8.4 5.2 - 15.5 748.9 - 1,980.0 186.0 - 4,962.0 
C 7.8 - 8.6 12.8 - 21.3 22.0 - 214.6 26.7 - 50.0 
D 6.8 - 8.6 13.0 - 18.9 19.0 - 526.7 5.7 -171.4 
A 6.1 - 7.9 11.3 - 17.4 178.0 - 2,232.0 110.1 - 170.8 

Allakaket B 7.8 - 8.4 13.4 - 16.6 449.2 - 922.0 21.0 -125.33 
C 7.1 - 7.7 16.7 - 17.2 150.0 - 310.0 22.7 - η 
D 7.5 - 7.9 14.7 - 16.1 290.0 - 444.0 2.7 - 22.50 

Lysimeter 7.0 - 8.7 0.6 - 15.5 63.4 - 968.0 31.8- 482.0 
*A - Surface water samples within the landfill; B - Surface water samples directly offsite the landfill; C -
Surface water 50-3,000 m down-gradient of the landfill; D - Surface water controls; E - Sewage Lagoon and 
η - only measured one time. 

Table III-4: Average physiochemical parameters of all soils 

Location ID 
pH 

(unit) 
Moisture Content 

(wet %) 
Sand 
(%) 

Silt 
(%) 

Clay 
(%) 

Ekwok aa 6.9 35.1 3.1 28.6 68.3 
ab 6.8 36.2 2.5 30.9 66.7 

Eek aa 6.0 47.4 2.3 19.4 78.3 
ab 5.1 28.1 0.1 13.6 86.3 

White Mountain aa 7.7 31.9 4.9 44.4 50.6 
ab 7.8 22.9 0.3 41.2 58.4 

Fort Yukon aa 8.7 41.7 2.9 27.0 70.1 
ab 7.0 30.7 2.1 19.6 78.3 

Allakaket aa 8.6 33.8 6.0 26.4 67.6 
ab 7.0 23.5 3.3 34.0 62.7 

Lysimeter 7.4 11.2 44.4 55.6 0.0 
* aa - Landfill impacted soil samples and ab - Control soil samples
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Table III-5: Average Log MPN/100 mL H2O for MIO in surface water and soil samples 
with reported confidence interval (CI) of the population mean 

Location ID**    n 

Mean Log* 
MPN/100m

L H2O E.coli 
     CI 

E.coli  ID** n 

Mean Log* 
MPN/100m
L H2O ENT 

CI 
ENT 

Ekwok 

A 23 > 3.0 + 0.3 A1,2 23 > 3.1 + 0.3 
B 15 > 2.2 + 0.4 B1 15 > 2.8 + 0.3 
C 17 1.1 + 0.3 C 17 1.2 + 0.4 
D 29 0.7 + 0.2 D 29 0.7 + 0.3 
E 11 > 3.5 + 0.1 E2 11 > 3.5 + 0.1 
aa 31 1.5 + 0.6 aa 31 2.4 + 0.4 
ab 13 0.2 + 0.1 ab 13 1.0 + 0.3 

Eek 

A1 47 > 2.3 + 0.2 A 47 > 2.5 + 0.3 
B 37 1.3 + 0.2 B1 37 1.1 + 0.3 
C2 38 0.8 + 0.2 C1,2 38 1.2 + 0.4 
D2 43 0.3 + 0.1 D2 43 0.5 + 0.2 
E1 13 > 2.1 + 0.5 E 13 > 3.1 + 0.3 
aa 37 1.4 + 0.4 aa 37 3.0 + 0.3 
ab 14 0.2 + 0.1 ab 14 1.5 + 0.3 

White 
Mountain 

A1 30 3.0 + 0.2 A1 30 3.0 + 0.2 
B1 13 2.7 + 0.5 B1 13 3.0 + 0.4 
C 13 1.2 + 0.2 C2 13 1.4 + 0.3 
D 16 0.8 + 0.2 D2 16 1.2 + 0.4 
aa 21 2.4 + 0.5 aa 21 3.1 + 0.4 
ab 11 0.6 + 0.2 ab 11 1.7 + 0.2 

Fort Yukon 
B 22 1.6 + 0.4 B 22 > 2.1 + 0.5 
C1 36 0.7 + 0.1 C1 36 1.0 + 0.2 
D1 43 0.6 + 0.1 D1 43 0.9 + 0.2 
aa 32 1.7 + 0.4 aa 32 3.1 + 0.3 
ab 13 0.1 + 0.1 ab 13 1.4 + 0.5 
A1 9 2.6 + 0.5 A1 9 > 2.8 + 0.6 

Allakaket B1 12 1.8 + 0.3 B1 12 > 2.1 + 0.7 
C1 21 1.4 + 0.4 C 21 1.2 + 0.3 
D 12 0.5 + 0.2 D 12 0.6 + 0.3 
aa 20 1.9 + 0.4 aa 20 2.6 + 0.4 
ab 8 0.6 + 0.1 ab 8 0.8 + 0.2 

Lysimeter 4.5 + 0.7 4.8 + 0.9 
*MPN number refers to the number of E. coli or ENT colony forming units found in 100mL of water enumerated via
the most probable number method.  Mean Log MPN values preceded by a “greater than” sign indicate that at least one 
sample in the set yielded results exceeding the detection capacity of the MPN test (Log MPN 3.4/100 mL H2O).  In 
these instances, the sample values were assumed to equal the upper detection limit of the test.   

**Numerical subscripts following site ID indicate the results of means testing via one-tailed Student t test.  Sample IDs 
within each analyte/location group having common numerical subscripts were not shown to have significantly different 
means at the p=0.05 level.  Sample IDs with no subscript indicate that their mean values were significantly different 
from all others in their analyte/location group.   

*** where A - Surface water samples within the landfill, B - Surface water samples directly offsite the landfill, C - 
Surface water 50-3,000 m down-gradient of the landfill, D - Surface water controls, E - Sewage Lagoon, aa - Landfill 
impacted soils and ab - Control soils. 

  Confidence interval (CI) for the population mean via using population standard deviation with 95% confidence level. 
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Table III-6: Pearson Correlation of physiochemical characteristics and MIO density load in waters 
MPN ENT pH Temperature Conductivity TSS 

MPN EC 0.844 0.0548 0.007 0.004 0.505 
3.5E-055 0.442 0.917 0.956 2.9E-014 
 199 199      199 199 199 

 MPN ENT 0.0564 0.0830 0.004 0.508 
0.429 0.244 0.961 1.9E-014 
199 199 199 199 

pH 0.282 0.356 0.085 
5.1E-06 2.5E-08 0.232 
199 199 199 

Temperature 0.260 0.214 
2.1E-05 0.003 
199 199 

Conductivity 0.370 
7.5E-09 
 199 

*For pairs with P values greater than 0.050, there is no significant relationship between the two variables.

Cell Contents: 
Correlation Coefficient 
P Value 
Number of Samples 
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Table III-7: Pearson Correlation of physiochemical characteristics and MIO density load in soils 

MPN ENT pH 
Moisture 
Content Sand Silt Clay 

MPN EC 0.492 0.234 0.214 0.111 0.099 0.007 
5.50E-07 0.024 0.038 0.291 0.344 0.945 

165 165 165 165 165 165 

MPN ENT 0.172 0.501 0.168 0.129 0.294 
0.099 3.20E-07 0.108 0.217 0.004 
165 165 165 165 165 

pH   0.123 0.802 0.779 0.571 
0.239 4.90E-22 3.90E-20 2.20E-09 
165 165 165 165 

 Moisture 
Content -0.750 -0.109 0.444 

0.475 0.296 8.40E-06 
165 165 165 

Sand 0.991 0.68 
2.40E-81 6.80E-14 

165 165 

Silt 0.617 
4.50E-11 

      
165 

*For pairs with P values greater than 0.050, there is no significant relationship between the two variables.

Cell Contents: 
Correlation Coefficient 
P Value 
Number of Samples 
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Chapter IV 

Detection of Organic Pollutants in Rural Alaskan Landfill 
&  

Wastewater Systems 

Abstract 
In rural Alaska, small communities’ landfill and sewage lagoon were tested for potential of 

release of organic pollutants to surrounding freshwater systems. Since wastewater and/or landfill 

leachates in rural Alaska receive minimal treatment, poorly-maintained sewage lagoons and solid 

waste facilities are potential sources of xenobiotic organic compounds to the surrounding 

environment. This study intended to identify and characterize trace levels of benzotriazoles (BT), 

pharmaceutical and phthalates in landfill leachate and raw sewage samples by liquid 

chromatograph tandem mass spectrometry. The results of this study identified the presence of 

pharmaceuticals (sulfamethoxazole, trimethoprim, ibuprofen and acetaminophen, bupropion, 

caffeine or 1,7-dimethylxanthine), benzotriazoles (1 H-benzotriazole (BT) or 4&5-

methylbenzotriazole (tolyltriazole TT), and phthalates (DEP, DEHP, DNOP, DBP, DMP or 

BBP). The concentration levels detected were similar or elevated in and around traditional 

landfills and sewage lagoons compared to modern constructed landfills and wastewater treatment 

effluents. The results highlight the relevance of further and more comprehensive studies to assess 

xenobiotic (XOC) emissions caused by direct discharge or leaking of rural waste facilities and by 

climatic factors such as snowmelt and rainstorms, which can lead to migration of XOCs into 

adjacent water bodies and potentially impact water quality.  

1 Mutter E.M., Hagedorn B., Barnes D., and William Schnabel W. Fairbanks 2014. Detection of Organic Pollutants in Rural Alaskan 
Landfill & Wastewater Systems. Prepared for submission in Journal of Water and Health. 



104 

 

1. Introduction 
In rural Alaska, communities are especially sensitive to changes in their surrounding ecosystem 

due to the subsistence activities of community members. Ineffective solid waste and wastewater 

disposal pose a potential threat to the environment and subsistence lifestyle as a result of high 

concentrations of uncontrolled hazardous and toxic waste that can contaminate drinking water 

and traditional food resources. Currently, rural Alaska waste facilities are poorly constructed, 

operated and maintained (ANTHC, 2007; Duigou, 2006). Activities associated with the design, 

construction, operation and management of rural arctic and subarctic waste facilities are 

challenged by many communities’ geographic isolation, socioeconomic factors and extreme 

climatic and geomorphological conditions (i.e. underlying bedrock or permafrost and poorly 

drained soils). Most rural Alaskan communities are sparsely populated, have only small local 

economies and tax bases, and struggle with high energy costs, transportation costs, short 

construction seasons, and lack of sufficient local knowledge to maintain and operate a functional 

wastewater and/or solid waste facility (Gunnarsdottir et al., 2013; Patterson et al., 2012). These 

geographic, socioeconomic, extreme climatic and environmental conditions, contribute to 

traditional town dump sites, which are constructed and operated without proper site assessment or 

monitoring (EPA, 1998). 

In rural Alaska, communities with 55% or fewer homes served by piped septic or other means of 

transporting human waste from the home besides hand carrying the waste in buckets (known as 

honeybuckets) are considered to be unserved communities (ADEC, 2013).  Of the approximately 

240 rural Alaskan communities, 42 are unserved (ADEC, 2013).  For homes that do not have 

sanitary means of disposing of human waste (e.g. piped septic)  the waste is manually hauled in 

honeybuckets and discharged together with solid waste in dump sites (Zender et al., 2003). Some 

communities rely on individual septic systems, while relatively larger communities will have 

some form of a sewage system with a constructed sewage lagoon. In small rural communities 

(<1,000 residents) untreated, uncontrolled, and unmonitored wastewater is allowed to discharge 

directly into surface waters, or allowed to infiltrate directly into ground (ADEC, 2009; Duigou, 

2006; Troy, 2007).  

The pharmaceuticals, phthalates and benzotrialzole compounds were selected for this study 

because they were identified and reported as xenobiotic organic compounds (XOCs) related to 

household waste and wastewater (Jjemba, 2006; Kuemmerer, 2008; Kuemmerer, 2009). The 
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composition of waste generated in rural Alaska communities has changed over recent decades 

from traditional organic materials associated with a subsistence lifestyle to more recalcitrant or 

hazardous waste products such as antifreeze, gasoline, batteries, paints, synthetic packaging 

material, electronics, construction and demolition debris, personal hygiene products, and 

pharmaceutical products (Gunnarsdottir et al., 2013; Matsuura et al., 2008; Vrijheid, 2000). 

Considering the increase of rural communities’ waste generation rate and the change in waste 

composition, traditional open dumps in rural Alaska present a more severe threat to surrounding 

water resources and environments than originally thought. The possible exposure of these 

environments to chemical pollutants is of particular concern given their low assimilative capacity.  

Studies have shown that freshwater systems in arctic and subarctic regions are particularly 

vulnerable to direct release of untreated wastewater and waste leachate, due to the low biological 

diversity, low amount of nutrients and extreme seasonal variation in light (Bach et al., 2009; 

Bergheim et al., 2010; Kallenborn et al., 2008; Schubert and Heintzman, 1994). Furthermore a 

changing climate with increasing temperature and precipitation in arctic and subarctic regions is 

impacting rural waste facilities, sewage-piping systems and natural wetland utilized as leach 

fields, as a result of more frequent flooding and erosion as well as permafrost degradation 

(AMPA, 2003; GAO, 2003; Jeffries et al., 2013). The purpose of this study was to determine the 

occurrence of select pharmaceuticals, phthalates, and benzotriazoles in sewage lagoons and open 

dumps and surrounding surface waters in rural Alaska. This is the first study that has documented 

the presence of these compounds in rural Alaskan waste impacted surface waters. 

2. Background
Environmental concerns related to pharmaceuticals, phthalates, and benzotrialzoles are associated 

with their chemical, physical, and biological properties related to fate and transport (e.g., 

partitioning coefficients and pH) (Jjemba, 2006; Kümmerer, 2009). Therefore, to understand 

XOCs proliferation in the environment, the entire biogeochemical cycle from initial use up to 

their effects on humans or on other target organisms or their environmental fate have to be 

considered. For example metabolized or unmetabolized pharmaceuticals excreted by humans can 

be either active or inactive in the environment, depending on polarity of the compound and 

environmental physiochemical conditions such as pH and organic matter content (Kuemmerer, 

2009). As described by Richardson and Ternes (2005), there are several pathways that 
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pharmaceuticals can follow once they are in the environment. For instance biodegradation and 

biotransformation via metabolism or other mechanisms can result in pharmaceutical break-down 

into other compounds, which can possibly be more harmful than the parent compound and 

bioavailable to non-target organisms.  A good example of this process is  acetaminophen, which 

can be transformed into two toxicants, 1,4-benzoquinone and n-acetyl-p-benoquinone imine, 

(Botitis et al., 2007; Castro et al., 2001). Phthalates found in products such as perfumes and 

cosmetics (DMP, DEP), cellulose (DEP), as well as inks, polymer dispersions and coatings (DBP, 

BBP) (Furtmann, 1993; OSPARCOM., 1997), have been found  in waste impacted water bodies 

in moderate climate regions with concentrations that are sufficient enough to disrupt endocrine 

functions in human and wildlife (Koch and Calafat, 2009; Kuemmerer, 2009; Meeker et al., 2009; 

Oeman et al., 1997; Teuten et al., 2009; vom Saal and Welshons, 2006).  

Studies performed to assess wastewater and landfill leachate in moderate climates demonstrated 

the presence of XOCs in effluents and described their implications to the aquatic environment and 

human health (Imhof and Muehlemann, 2005; Jjemba, 2006; Koch and Calafat, 2009; 

Kuemmerer, 2008; Lincoln et al., 2007; Minh et al., 2006; Slack et al., 2005; Vrijheid, 2000; Yu, 

2005). Pharmaceuticals from unused or outdated products such as acetaminophen, ibuprofen, 

lincomycin, metformin (Kallenborn et al., 2008; Musson and Townsend, 2009; Trischler et al., 

2012; Vrijheid, 2000), personal hygiene and household cleaning products (Christensen et al., 

2001; Coors et al., 2003; Kawagoshi et al., 2003; Mersiowsky, 2002; Mor et al., 2006), and 

plasticizers (Kjeldsen et al., 2002; Mersiowsky, 2002; Slack et al., 2005) have been detected in 

landfill leachate and impacted surface and ground waters. A landfill leachate study conducted in 

Germany found that ibuprofen, propenazone, and phanzone were the most abundant drugs among 

the analgesics and anti-inflammatory drugs. Anxiolytic sedatives and antipsychotic drugs, 

particular primidone, carbamazepine, and diazepam were detected in concentrations that were 

often higher than typical average concentration levels found in German wastewater and surface 

water (Kuemmerer, 2008).  

Pharmaceuticals such as anti-inflammatory (ibuprofen), antibiotics (chlortetracycline, 

thiabandazole), stimulants (coffee, nicotine), reproductive hormones (17-β-estradiol and 17 α-

ethinyl-estradiol) and antidepressant drugs have been detected in raw sewage, treatment plant 

effluents, surface and groundwater, manure, and soil in Europe since the 1980’s (Kuemmerer, 

2008; Kuemmerer, 2009). Synthetic organic compounds, such as personal hygiene and 
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pharmaceuticals, surfactants, and flame retardants discharged from wastewater treatment effluent 

have also been detected in ground and surface waters in the United States (Barnes et al., 2008; 

Cahill et al., 2004; Focazio et al., 2008; Glassmeyer et al., 2005; Lajeunesse et al., 2008). The 

United States Geological Survey (USGS) collected and tested samples from streams, raw 

untreated drinking water sources and groundwater sites, which are known or suspected to be 

influenced by human and agricultural waste across the United States for about 100 organic 

wastewater contaminants (Barnes et al., 2008; Focazio et al., 2008; Glassmeyer et al., 2005; 

Kolpin et al., 2002). The stream studies detected surfactant metabolites, pharmaceuticals and 

personal care products in 61% of tested streams and rivers, with a concentration range of 0.2 to 

40 ppb (Ferguson et al., 2001; Klecka et al., 2007; Kolpin et al., 2002). A study conducted in 

Sisimiut, Greenland found pharmaceuticals in domestic and hospital wastewater (Bach et al., 

2010). 

Benzotriazole and its methylated form (4- and 5 -ethyl Benzotriazole) are used as a corrosion 

inhibitor in a number of automotive and household substances such as coolant, antifreeze in 

windshield wiper and dishwasher soap. In addition it can be found as a UV stabilizer in a number 

of rubber and plastic parts. It has been found to be one of the 10 most abundant contaminants in 

surface waters in Europe (Loos et al., 2009), and determined to be highly toxic to aquatic 

organisms (Giger et al., 2006a; Pillard et al., 2001).While not regulated in the US, the reporting 

level in Europe is 0.1 μg L-1 in aquatic environments. The high solubility of Benzotriazoles in 

water promotes rapid mobilization during snowmelt into waterways where they can be distributed 

to water bodies and soils.  

A list of the analyzed XOCs and their predominant occurrence is given in Table 1. 

There is very little known about these organic pollutants regarding transport processes, 

toxicological impacts posed to human and environmental health, and their ability to persist in 

cold environments such as Alaska (Ahel et al., 1994; Giger et al., 2006b; Ternes et al., 2004). 

Most studies on the impact of XOCs on freshwater systems have been conducted on wastewater 

treatment effluents and landfill leachates in highly populated areas with moderate climates. In 

rural Alaska, where treatment and disposal of wastewater is less controlled than other regions of 

the United States, it is likely that XOC’s are migrating into surrounding water resources, which 

are often primary drinking water sources. It is hypothesized that concentrations of XOC’s in these 
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untreated and uncontrolled wastewater discharges and leachates will be higher than the 

concentrations observed in modern treatment plant effluents. In addition climatic factors such as 

snowmelt and rainstorms will lead to migration of these constituents into adjacent water 

resources. This study provides the first indication of XOCs in dump leachate, sewage lagoons and 

freshwater bodies in rural Alaska, and is intended to create a baseline for future investigations. 

The focus of this study was to identify and quantify concentration levels for selected 

pharmaceuticals, phthalates and benzotriazoles in rural open dumps, sewage lagoons, proximal 

surface water, and downstream surface waters. The selected organic pollutants were chosen based 

upon observed concentration levels and frequency of occurrence in streams, raw untreated 

drinking water sources and groundwater sites reported by the United States Geological Survey 

(USGS) (Barnes et al., 2008; Focazio et al., 2008; Glassmeyer et al., 2005; Kolpin et al., 2002; 

Loos et al., 2009).  

3. Methodology

3.1 Study Sites 

Five rural Alaskan communities were chosen for this study: Ekwok, Eek, White Mountain, Fort 

Yukon, and Allakaket. The communities were intended to represent a cross section of remote 

communities in rural Alaska. Furthermore, the communities’ open dumps and sewage lagoons are 

situated in four different arctic and subarctic environments (e.g. open tundra, ponded sites, 

permafrost and permafrost impacted). At the time of this study, each community had an open 

dump, and one village (Fort Yukon) also had a closed dump.  A honeybucket lagoon was located 

in Eek and a constructed sewage lagoon in Ekwok. The open dumps and sewage lagoons in each 

of these communities were sampled to evaluate the presence of pharmaceuticals, phthalates and 

benzotriazoles. Each waste facility is in close proximity to the community and impacted by 

seasonal snowmelt and rain water runoff. Rural Alaska communities and their representative 

regions are illustrated in Figure 1.  Following is a description of the waste facility sampled in 

each community. 

Ekwok is a served community of approximately 130 residents and located along the Nushagak 

River, 69 km northeast of Dillingham and 302 km southwest of Anchorage (Census, Bureau, 

2010). The sampling site is an approximately 30 year old below ground dump constructed on 
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excavated tundra located approximately 2.4 km northeast of the village. The open dump is 2.3 

km2 in area and 3 to 4.5 m deep, creating a 22% slope towards lowland area. The soil-lined 

constructed sewage lagoon is heavily overgrown with vegetation and located 500 m from the 

community, and approximately 800 m from the Nushagak River. 

The community of Eek is located on the south bank of the Eek River and has approximately 208 

residents.  Eek is located 19 km east of the mouth of Kuskokwim River and approximately 56 km 

south of Bethel in the Yukon-Kuskokwim Delta (Census, Bureau, 2010). The samples were 

obtained at an approximately 30 year old ponded landfill and an adjacently located honeybucket 

lagoon, both with the dimension of 0.8 km2. Both waste sites are located less than 1.6 km away 

from the community. Based on a survey of the waste sites, the hydrologic system is complex and 

influenced by tides, permafrost, and surface water. Saturated tundra ground with standing water is 

encountered around the waste sites all year round, but the site itself is not subject to flooding 

(Patterson et al., 2012).  

White Mountain a community of 224 residents, and is located 100 km east of Nome on the 

Seward Peninsula on the west bank of Fish River (Census, Bureau, 2010). The approximately 30 

year old above ground dump is located in an upland area approximately 400 m east of the village 

and north of the river. The open dump is 0.6 km2 in area and rises up approximately 4.5 m to 

create 18% slope east/southeast towards a lowland area. Standing water occurs during snowmelt 

and rain events. The natural drainage area is observed to the east/southeast side of the open dump 

site.  

The largest community in the study, Fort Yukon, is a community of approximately 600 residents 

(Census, Bureau, 2010). Fort Yukon is located at the confluence of the Yukon River and 

Porcupine River approximately 233 km northeast of Fairbanks. An approximately 30 year old 

above-ground dump is located in an upland area 2.4 km from the community. The 0.2 km2 open 

dump is situated along the edge of an old river bank 8 to 15 m higher than the lowland area, 

creating an approximate 32% slope towards the river. The dump was closed and covered with 

gravel prior to the start of the study. The lagoon sampled in this study is a lined system located 

approximated 3 km from the community.  
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Allakaket is a community of 190 residents located approximately 306 km northwest of Fairbanks, 

on the south bank of the Koyukuk River (Census, Bureau, 2010). The approximately 10 year old 

above ground dump is located on an upland area along a ridge approximately 1.6km south from 

the old village area, and approximately 1.2 km from the new village area. The open dump has an 

area of 0.7 km2. A natural drainage area is formed with a slope of approximately 4% incline to the 

south; characterized by shallow permafrost and tundra ground.  

3.2 Onsite Surface Water and Wastewater Sample Collection 

On two consecutive days in spring 2010, fall 2010, spring 2011 and fall 2011 surface water 

samples were collected from the five rural open dumps, from the proximal waters located within a 

50 m radius of the landfills, and from the sewage lagoons. All water samples were collected in 

250 mL glass bottles (previously cleaned and baked at 400oC) and preserved with HCL to pH 2 

after arrival in the laboratory. For this study, the sampling procedure was consistent throughout 

each sampling event and sample location to ensure consistency. Landfill impacted surface waters 

were collected after considering individual hydrologic pathways at the landfills, and 1-20 m 

down-gradient. Raw sewage water samples were obtained approximately 1m from the edge of 

honeybucket and a constructed sewage lagoon. Control surface water samples were collected 

from undisturbed sites least 1 km away from waste site at each location. The sample numbers 

obtained from each location and sample site are listed in Table 2. 

3.3 Analytical Methods 

For this baseline study a total of twenty-three organic pollutants: 14 pharmaceuticals, 3 

benzotriazoles and 7 phthalates were selected to identify and quantify concentration levels in five 

rural landfill impacted surface water and raw sewage samples. The organic pollutants and 

analytical details are listed in Table 3. 

All analytical work was performed in-house at the Applied Science Engineering Technology 

laboratory, University of Alaska Anchorage. Upon arrival at the laboratory the samples were 

acidified with HCL to pH 2 within 12 hrs. and spiked with 100 ng of Caffeine-d3, 200 ng DEHP-

d4, 200 ng DBP-d4, 200ng BPA-d16, and 200 ng 5,6 dimethylbenzotriazole (Sigma Aldrich) 
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surrogates. Waste leachate surface water and raw sewage samples contained a large amount of 

suspended materials. To remove all organic and suspended particulates and exclude microbial 

organisms, the samples were filtered first through 0.7 µm and then through 0.45 µm Whatman 

GF/C membrane filters. The samples were then stored at 4oC until further preparation.  

Solid phase extraction (SPE) and purification of surface water and raw samples for 

pharmaceuticals and benzotriazoles were performed using an Oasis hydrophobic lipophilic 

balanced (HLB) (6cc/500 mg) cartridge (Waters Ltd., Watford, UK) following methods described 

in Hagedorn et al. (2013). The hydrophobic lipophilic balanced sorbent was chosen due to the 

ability to retain the analysts of interest upon a variety of physicochemical properties (e.g. pKa and 

polarity). SPE cartridges were pre-conditioned with 3x2 mL of methanol followed by 3x2 mL of 

dH2O (LC MS grade) prior to separation. Up to 250 mL of water sample were passed through the 

cartridge using a high volume vacuum SPE manifold at a rate of 1 to 2 mL/min for extraction. 

Difficulties were experienced with the complex matrix containing high organic content plugging 

SPE cartridge. Water samples volume was adjusted accordingly between 100 mL to 250 mL to 

avoid overloading the SPE cartridge. SPE cartridge was rinsed after sample passed through with 2 

mL H2O:Methanol (95/5 v.v.) and vacuum dried for 5 min to remove excess water. 

Pharmaceuticals and benzotriazoles were eluted with 5 mL Methanol:Dichloromethane (90/10 

v.v.) and evaporated under steady nitrogen flow using (Nitro Vap) to near dryness at 30oC.

Residue were spiked with 200 ng caffeine-d3, 500 ng ibuprofen-d3, 200 ng carbamazepine 

C13N15, 500 ng cotinine-d3, 500 ng nicotine-d3, and 200 ng 1H-benzotriazole-d4 (obtained from 

Sigma Aldrich) as internal standards and reconstituted to 1 mL with using Methanol:H2O (50/50 

v.v.) mixture. Samples were vortexted for 30 seconds for complete mixing and transferred to a 1

mL auto sample vial by filtering through 0.2 µm polytetrafluoroethylene/Teflon syringe filter and 

store at 2°C until HLC/MSMS analysis. Blanks and spiked samples were added to each batch for 

quality control.  

For the phthalate analysis a stringent cleaning procedure was applied due to the prevalence of 

phthalate constituents in the laboratory environment. The laboratory equipment cleaning 

procedure for glassware to remove any organic residues, as well as analytical grade anhydrous 

primary-secondary amine sorbent (PSA), MgSO4 and NaSO4 followed the method described in 

Ali et al, (in review). For phthalate analysis a liquid-liquid extraction was performed using 

hexane. Approximately 150 mL of water sample was filled into a 200 mL separation funnel with 
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10 mL of hexane ND. The samples were shaken for 1hr using a long-arm rotator shaker and then 

rested for 2 hrs. to allow full separation of hexane from the water phase. The layer of hexane was 

removed and transferred into a pre-cleaned 60 mL glass vial; the process was repeated 3 times for 

best recovery. The extraction and purification for phthalates followed Ali et al., (in review) using 

a dispersive solid phase extraction with  200 mg MgSO4 and 50 mg PSA added to the extract and 

vortexed for 2 min followed by 2 min centrifugation. The extract was transferred to a TurboVap 

tube (Parker Blaston) by passing the solvent through freshly cleaned NaSO4 contained in a 

sintered glass filter and rinsed with 2x20 mL of LC grade acetone J.T. Baker (PA, USA), to 

remove any residual water. The eluent was evaporated under steady nitrogen flow using a 

NitroVap (Parker Balston) at 30oC to near dryness. Residues were spiked with 100 ng DEP-d4 

and reconstituted to 1 mL with methanol/H2O (50/50 v.v.). Samples were then filtered through 

0.2 µm polytetrafluoroethylene/Teflon syringe filter into a 1 mL auto sample and store at 2°C 

until HPLC/MSMS analysis.  

Instrumentation methods for pharmaceutical, benzotriazoles, and phthalates are described by Ede 

(2012), Hagedorn et al. (2013), and Ali et al., (in review), respectively. A Liquid Chromatograph 

(Agilent 1200) Tandem Mass spectrometer (Agilent® 6140B) with electron spray ionization 

(ESI) source was used for pharmaceutical and benzotrialzole identification. An Agilent Zorbax 

SB-C-18 Rapid Resolution Cartridge (2.1 x 30 mm, 3.5 mm) connected to a Zorbax Extend C18 

guard column was used for compound separation. Column separation of compounds was 

achieved with gradients of A: Methanol and B: Water both spiked with 10 mM formic acid. The 

gradient was set by a gradient of A: 0-10 min 90%, 10-18min 15%, 18-19.0 min 10%, 19-23 min 

10% and 25 min 90%. Post-run was set for A: 5 min- 90% to equilibrate the column before next 

injection. 2 µL of sample were injected for analysis. The instrumentation optimization was set to 

+3.5 kV  for capillary voltage, gas temperature 325oC, gas flow 12 L min-1, nebulizer pressure 35 

psi, vaporizer temperature 330 0C.  

Phthalates were measured with an atmospheric pressure photoionization (APPI) source. 

Compound separation was performed with an Agilent® ZORBAX Eclipse XDB-C18 analytical 

column of 30 mm length, 2.1 mm internal diameter and a 3.5 μm particle size and run with a 

gradient of A: methanol and B: water with 5 mM ammonium format set to A: 0-6 min. 85 to 90%; 

6-8 min. 90 to 95%; 8-9 min. 95 to 100%; 9-19 min. 100%; 19-20 min. 100 to 85%. Post-run 

selected with 5 min to equilibrate the column before next injection of 1μl. The optimized settings 



113 

for HPLC MSMS are: capillary voltage 2000V, gas temperature 325 0C, gas flow 7 L min-1, 

nebulizer pressure 40 psi, vaporizer temperature 350oC. HPLC-MSMS instrumentation methods 

for organic compounds are presented in Table 3.  

4. Results and Discussion

The individual organic pollutants were observed to occur at highly varying concentrations 

between rural dumps and sewage lagoons, potentially owing to factors such as heterogeneous 

waste distribution of different compounds, random sample collection within the dumps and 

sewage lagoons, the environmental settings of the waste facilities (e.g., hydrologic or permafrost 

impacts), dilution from rain and snowmelt water, and biodegradation and transformation of the 

organic compounds. A summary of the pharmaceuticals, phthalates, and benzontrialzoles 

concentrations measured in this study are presented in Table 4 and Figure 2 and 3.  

4.1  Pharmaceuticals 

The analyzed wastewater had very high levels of organic material and suspended solids, along 

with a high abundance of humic acids typical for arctic and subarctic surface waters. The 

complex matrix resulted in overloading of the SPE cartridge, and also posed challenges for 

HPLC-MSMS method development due to matrix interference and ionization suppression. The 

difficulties of removing interfering substances during SPE and HPLC-MSMS ionization 

suppression lead to reduced extraction recovery and instrumentation limit of detection for 

lincomycin, enrofloxacin, carbamazepine, sertraline, cotinine and erythromecin-H2O. For further 

studies it is recommended that the analysis account for the amphoteric nature of pharmaceutical 

compounds in order to optimize SPE method recovery percentage. For example pharmaceuticals 

change their ionic form depending on the pH of the surrounding environment. Ionized states of 

compounds are always more polar than the uncharged form such as amines and carboxylic acids, 

therefore the presence of acids such as humic acids in the water can enhance solubility and 

stability of hydrophobic organic pollutants (Chiou et al., 1986). The wide range of pKa values 

associated with the pharmaceuticals studied here are listed in Table 4. Furthermore, to overcome 

HPLC-MSMS matrix interferences and ionization suppression it is advised to follow the 



114 

recommendation of Chu and Metcalfe (2007) to perform the method of standard additions. Only 

pharmaceutical compounds that had >65% recovery (SPE and instrumentation) are considered in 

this study. The control surface water samples showed no presence above detection limits of any 

of the tested pharmaceuticals. The detected analytes (and mean concentrations) in waste impacted 

surface water and raw sewage were sulfamethoxazole (4.95 µg L-), trimethoprim (1.08 µg L-), 

ibuprofen (16.96 µg L-), acetaminophen (26.87 µg L-), bupropion (0.74 µg L-), caffeine 

(112.40 µg L-) and the caffeine metabolite 1,7-dimethylxanthine (53.71 µg L-). These 

pharmaceutical compounds were also identified in other studies conducted on impacted surface 

waters obtained from engineered constructed landfill leachate and modern treatment plant 

effluents (Barnes et al., 2008; Brun et al., 2006; Cahill et al., 2004; Focazio et al., 2008; 

Glassmeyer et al., 2005; Gömez et al., 2007; Klecka et al., 2007; Kolpin et al., 2002; Lopez-Serna 

et al., 2011; Renew and Huang, 2004) with concentration ranges for sulfamethoxazole (0.02 - 

0.57 µg L-), trimethoprim (0.02 - 0.70 µg L-), acetaminophen (0.01 - 0.87 µg L-), caffeine (0.01- 

6.00 µg L-), 1,7-dimethylxanthine (0.019 µg L-) and ibuprofen (0.02 - 840.00 µg L-). The 

prevalence of caffeine and ibuprofen and/or its metabolites in the environment is highlighted by 

their occurrence in seawater samples from Tromso Norway, despite strong tidal current and 

dilution with the presumably non-polluted North Atlantic water (Weigel et al., 2004). Anti-

inflammatory drugs, antidepressants and antibiotics were detected in Greenland wastewater 

treatment effluent (Kallenborn et al., 2008; Vasskog et al., 2009).  

The high concentration levels and abundance of ibuprofen, acetaminophen, caffeine, and 1,7-

dimethylxanthine in rural waste impacted surface waters highlight their usage in these rural 

communities and reflect the worldwide consumption pattern and abundance of these drugs  (Fent 

et al., 2006; WHO, 2010). The high water solubility of these compounds (Bendz et al., 2005; 

Breton and Boxall, 2003; Kuemmerer et al., 2000) likely promotes their abundance in aquatic 

ecosystems (Han et al., 2010) and is most likely the reason why these compounds were found in 

high concentration levels in leachate and surface water samples directly adjacent to the waste 

facilities. 

In particular, ibuprofen concentration levels are of concern due to the ability of ibuprofen to alter 

the reproduction of vertebrates and invertebrates (Flippin et al., 2007; Han et al., 2010; Hayashi et 

al., 2008). Studies have also shown that in areas with high microbial densities (i.e. sewage 
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lagoons and solid waste mixed with human/honey bucket waste), microbial communities can 

develop resistance to antibiotic/antiviral/antifungal drugs  in the presence of pharmaceuticals such 

as sulfamethoxazole and trimethoprim (Kuemmerer, 2009; Neela et al., 2007; Tendencia and de 

la Pena, 2001; Torrella et al., 2003; Turkdogan and Yetilmezsoy, 2009; Zhang et al., 2009). Such 

antibiotic resistance bacteria have been found in coastal waters impacted by sewage water 

(Kimiran-Erdem et al., 2007; Kuemmerer, 2004; Neela et al., 2007) and can potentially be 

transmitted from sewage lagoons and dump sites into the communities and impose an even 

greater health risk (Chambers et al., 2008).   

4.2 Benzotriazoles 

Benzotriazoles is one of the ubiquitous compounds used in corrosion products, rubber material, 

UV stabilizers and in household cleaning products. Despite the universal use of these organic 

compounds, their ecotoxicology effect on surface water quality or aquatic life has not been 

studied in detail. However, many triazoles are reported to be fungicides and studies have 

demonstrated that triazoles have the ability to disrupt the endocrine system in aquatic organisms 

and mammals (Taxvig et al., 2007). The concentration levels detected in rural leachate impacted 

surface waters and raw sewage lagoon  for the selected compounds Benzotriazole (BT) and 4&5-

Methylbenzotriazole (TT) were up to 4.09 µg L- (BT) and 0.88 µg L- (4 & 5-TT). While control 

surface water samples obtained from undisturbed sites indicated no presence of TT; BT was 

found in all tested samples with concentration ranged between 0.02 - 0.09 µg L-. The presence of 

BT in all controls may suggest that either the controls were polluted through different activities 

(e.g. ATV and airplane traffic) or can be attributed to the high solubility of BT in water, which 

enhances offsite migration during snow melt and flood events.  

In contrast to observed concentrations in rural waste facilities impacted waters, a comprehensive 

study performed in the Netherlands to determine benzotrialzoles in effluents of two sewage 

treatment plants, surface waters and drinking water samples found maximum concentration levels 

for BT of 8.0 µg L- and for methyl-1H-benzotriazole of 3.0 µg L-1 (summed concentration of two 

isomers) in wastewater effluent, between 0.1-1.0 µg L-1 in surface, and 0.01 -0.2 µg L-1 drinking 

water (Leerdam et al., 2009). Hagedorn et al. (2013) observed concentrations levels up to 0.31 µg 

L-1 for BT and 4.49 µg L-1 for 4-5, TT study conducted in Anchorage Alaska municipal creeks 
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and snowmelt runoff. These studies indicate the pervasive abundance of these compounds and 

their vast distribution in the environment. 

4.3 Phthalates 

Of particular environmental concern for rural Alaska subsistence foods and freshwater are the 

detected phthalate metabolites (DEP, DEHP, DNOP, DBP, and BBP), which are known to act as 

an endocrine disruptor and carcinogens in mammal and aquatic organisms (Teuten et al., 2009; 

vom Saal et al., 2010). The concentration levels detected for phthalate metabolites in solid waste 

impacted surface waters and raw sewage samples are 8.04 µg L- for DBP, 5.51 µg L-1 for DEHP, 

4.05 µg L-1 for DEP, 2.24 µg L-1 for DNOP, and 1.45 µg L-1 BBP. While these concentrations are 

substantial for a remote site with low occupancy, they are low compared to concentrations 

identified in eight different landfill sites (Sweden, Italy and Germany) of various ages with 

concentrations of:: DMP 300 µg L-, DEP 540 µg L-, DBP 23 µg L-, BBP 7 µg L-, and DEHP with 

460 µg L- (Mersiowsky et al., 2001).  

All phthalate compounds were observed in all tested controls and only DEP was not detected in 

the dump drainage waters. The concentrations found in control sites may indicate that these 

phthalates may not entirely be attributed through leaching of local dump and sewage sites but 

may also be contributed through atmospheric transport of nano-particulate plastic palettes 

followed by leaching (Teuten et al., 2009). Another alternative source of distributing phthalates 

into adjacent surface water bodies is open burning of trash, a common method of waste reduction 

in rural communities.  
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5. Conclusions

This study intended to provide a first step in characterizing of wastewater and solid waste derived 

organic pollutants and their potential impacts on freshwater systems in the vicinity of rural Alaska 

waste sites. For all tested rural Alaska landfill leachate and raw sewage samples, HPLC-MSMS 

analysis revealed the presence of pharmaceuticals (sulfamethoxazole, trimethoprim, ibuprofen 

and Tylenol, bupropion, caffeine and 1,7-dimethylxanthine), benzotriazole and 4&5-

methylbenzotriazole, and phthalate metabolites (DEP, DEHP, DNOP, DBP, and BBP). The 

detected organic pollutants provide evidence that direct discharge or leaking rural Alaska waste 

facilities are sources of XOCs, and their respective concentration levels can be detected by 

HPLC-MSMS analysis. Moreover, the study highlights that sanitation conditions and practices of 

minimal or no treatment to their wastewater, along with poorly maintained or leaking sewage 

lagoons and septic tanks, or uncontrolled and untreated leachate discharge could potentially 

impact surface water quality.  

The result of this study highlights the need for further and more comprehensive studies to assess 

XOC’s emission from rural Alaska waste facilities. At this time, we lack information to achieve a 

better understanding regarding XOCs transport processes, toxicological impacts posed to human 

and environmental health, and their ability to persist in the environment in cold regions.  
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7. Figures

Figure IV-1: Rural Alaska communities and their representative regions 
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Figure IV-2: Concentrations of analyzed pharmaceuticals in rural Alaska impacted leachate and raw sewage samples, no pharmaceutical was 
found in the control sites. The error bars represent the 95% confidence interval. 
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Figure VI-3: Concentrations of phthalates and benzotriazoles in rural Alaska impacted leachate and raw sewage samples and control sites. The 
error bars represent the 95% confidence interval. 
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8. Tables

Table IV-1: Organic pollutants and their characteristics in waste impacted surface water samples 
No. Compound formula MW pka typical use 
1 Sulfamethoxazole C10H11N3O3S 253.28 5.7 antibiotic 
2 Trimethoprim C14H18N4O3 290.32 7.12 antibiotic 
3 Lincomycin C18H34N2O6S 406.54 12.9 antibiotic 
4 Enrofloxacin C19H22FN3O3 359.40 8.90 antibiotic 
5 Carbamazepine C15H12NO2 236.20 13.94 anticonvulsant 
6 Venlafaxine C17H27NO2•HCl 313.86 9.40 antidepressant 
7 Sertraline C17H17NCl•HCl 342.69 9.8 antidepressant 
8 Bupropion C13H18ClNO•HCl 276.20 8.25 antidepressant 
9 Ibuprophen C13H18O2 206.28 4.91 anti-inflammatory 

10 Acetaminophen C8H9NO2 151.17 9.9 antipyretic 
11 1,7 Dimethylxanthine C7H8N4O2 180.16 10.7 caffeine metabolite 
12 Cotinine C10H12N2O 176.22 8.80 nicotine metabolite 
13 Erythromecin-H2O C37H67NO13•H2O 751.93 8.80 Erythromecin metabolite 
14 Caffeine C8H10N4O2 194.19 10.4 stimulant 
15 1H-Benzothriazole C7H5NS 119.12 8.2 anticorrosive, plastic stabilizer 
16  4,5 Methylbenzotriazole C7H7N3 133.15 8.7 anticorrosive, plastic stabilizer 
18 Dimethyl phthalate C6H5(CO2CH3)2 194.18 2.89, 5.51 plasticizer and stabilizer 
19 Diethyl phthalate C6H4(CO2C2H5)2 222.24 NA plasticizer and stabilizer 
20 Dibuthyl phthalate C6H4[CO2(CH2)2CH3]2 278.34 NA plasticizer and stabilizer 
21 Benzyl butyl phthalate CH3(CH2)3O2C7H4CO2C7H7 312.36 NA plasticizer and stabilizer 
22 Diethylhexyl phthalate C6H4[CO2C2H3(C2H5)C4H9]2 390.56 NA plasticizer and stabilizer 
23 Di(n-octyl) phthalate C6H4[CO2(CH2)7CH3]2  390.56      NA plasticizer and stabilizer 

* NA : Not Available; Sources: Staples et al., 1997; Wang and Barlaz, 1998; Karlsson et al., 1999; Oman, 2001
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Table IV-2: Sample number and location of collected surface waters and raw sewage samples 
LOCATIONS 

OrganicCompounds 
Impacted 

Surface Water 
Raw 

Sewage Control Total 
Phthalates 8 3 5 16 
Pharmaceuticals 13 6 7 26 
Benzotrialzole 13 6 7 26 
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Table IV-3: LC-MSMS HPLC-MSMS Instrumentation Method 
Compound Name Precursor mass 

(M –H+) 
Product Ions 

 (M –H+) 
Fragmentation 

Voltage 
Collision 
Energy 

Quantifier Qualifier (V) (V) 
Dimethyl phthalate (DMP) 163 92 77 130 30 

Diethyl phthalate (DEP) 223 149 177 70 10 
Di-n-butyl phthalate (DBP) 279 149 205 75 5 

Benzyl butyl phthalate (BBP) 313 149.1 91 85 15 
Diethylhexyl phthalate (DEHP) 391 149.1 167 90 10 
Di-n-octyl phthalate (DNOP) 391 261.1 149 110 7 

Dibutyl phthalate-d4 (DBP-d4) 281 153 209 80 5 
Diethylhexyl phthalate-d4 (DEHP-d4) 395 153 171 100 10 

Diethyl phthalate-d4 (DEP-d4) 277 181 153 70 10 
Sulfamethoxazole 254 92 65 90 26/50 

Trimethoprim 291 123 110 135 34 
Lincomycin 407 126 42 120 30/88 
Enrofloxacin 360 342 286 110 24/36 

Carbamazepine 237 194 179 115 20/20 
Carbamazepine C13N15 239 193 167 120 41/37 

Venlafaxine 278 121 58 90 30/16 
Sertraline 306 275 159 75 10/24 
Bupropion 240 130 77 95 60/72 
Ibuprofen 205 161 60 1 

Ibuprofen-d3 208 164 90 3 
Acetaminophen 110 152 65 110 25/32 

1,7 Dimethylxanthine 181 69 55 110 32 
Cotinine 177 98 80 115 30 

Cotinine-d3 180 101 115 30 
Erythromecin-H2O 734 158 83 195 34/62 

Caffeine 195 138 42 115 28/38 
Caffeine-d3 198 140 43 115 29/40 

1H-Benzothriazole (BT) 120 92 65 125 20/25 
1H-Benzothriazole-d4 (BT-d4) 124 96 69 125 20/25 

4,5 Methylbenzotriazole (4-5 TT) 134 134 79 77 20/35 
5,6-Dimethylbenzotriazole 148 148 77 130 35 

*LC MS/MS methods were developed: for benzotriazole constitutes by Hagedorn et al., 2013, pharmaceutical constitutes Ede 2012 and phthalates constitutes by Ali et
al., (in review). 
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Table IV-4: Concentrations (ppb) for pharmaceutical, benzotriazole and phthalate compounds detected in waste impacted waters 
Waste Impacted Surface Waters 

Waste Impacted Surface Waters Landfill 
Landfill  
Drainage 

Sewage 
Lagoon 

Control 
Waters 

 
Concentration Levels (ppb) 

No. Compound n LOD LOQ Minimum Maximum Mean Mean     Mean Mean Mean 
1 Sulfamethoxazole 26 0.04 0.13 0.22 4.95 1.06 1.50 + 2.19 0.42 + 0.13 0.52 + 0.08 N/D 
2 Trimethoprim 26 0.05 0.14 0.52 1.08 0.75 0.54 + 0.03 N/D 0.96 + 0.17 N/D 
3 Bupropion 26 0.03 0.1 0.23 0.84 0.53 0.53 + 0.31 N/D <LOD N/D 
4 Ibuprophen 26 0.04 0.11 0.33 16.96 5.19 10.40 + 5.79 3.94 + 0.21 8.23 + 4.27 N/D 
5 Acetaminophen 26 0.03 0.09 1.21 26.87 14.95 13.25 + 6.98 9.31 + 5.81 15.97 + 10.07 N/D 
6 1,7Dimethylxanthine 26 0.04 0.12 2.34 53.71 27.65 26.31 + 7.12 <LOD 28.73 + 24.15 N/D 
7 Caffeine 26 0.04 0.12 0.24 112.4 22.98 50.14 + 51.14 1.32 + 2.16 13.86 + 15.81 N/D 
8 4&5 Methylbenzotriazole (TT) 26 0.04 0.06 N/D 0.88 0.25 0.37 + 0.44 N/D 0.06 + 0.003 N/D 
9 Benzotriazole (BT) 26 0.04 0.07 N/D 4.08 0.76 0.92 + 1.22 0.37 + 0.10 1.33 + 1.39 0.11 + 0.06 

10 Diethyl phthalate (DEP) 16 0.01 0.03 N/D 4.05 2.35 0.74 + 1.14 <LOD  2.03 + 2.85 0.42 + 0.26 
11 Diethylhexyl phthalate (DEHP) 16 0.01 0.04 N/D 5.51 1.85 2.69 + 1.72 1.12 + 0.58 0.71 + 0.71 0.70 + 0.47 
12 Di-n-octyl phthalate (DNOP) 16 0.01 0.04 N/D 2.24 0.5 0.51 + 0.11 0.20 + 0.20 1.43 + 1.14 0.16 + 0.14 
13 Di-n-butyl phthalate (DBP) 16 0.01 0.03 N/D 8.04 1.78 2.73 + 1.63 0.97 + 0.16 4.58 + 4.89 0.61 + 0.40 
14 Dimethyl phthalate (DMP) 16 0.004 0.03 N/D <LOD <LOD <LOD <LOD  <LOD  <LOD  
15 Butylbenzyl phthalate (BBP) 16 0.01 0.03 N/D 1.45 0.38 0.82 + 0.15 0.38 + 0.25 1.26 + 0.26 0.57 + 0.19 

* Instrumentation quantification for pharmaceutical, benzotriazole, and phthalates species were calculated based on a 6 level calibration using the specific internal standards described above.
The limit of detection (LOD) for each compound was calculated based on the standard deviation of the response (SD) and the slope of the calibration curve (S) according to the formula: LOD 
= 3.3*(SD/S). The limit of quantification (LOQ) calculation method was performed according to the formula: LOQ = 10*(SD/S). The compound concentration standard deviation was 
calculated based on 95% confidence level. 

**N/D - not detected and LOD below HPLC-MS/MS detection limit 

*** n.a. - no data are available 
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Chapter V 

General Conclusion 

This research was conducted to assess the status of waste management practices in rural 

Alaska communities. Two general questions were examined 1) what are typical 

composition and concentrations of waste-derived pollutants in and around rural Alaska 

waste sites, and 2) what are the major transport pathways that may impact migration of 

waste-derived pollutants now and in the future. This study focused on three broad 

categories of pollutants, including heavy metals, pathogen indicator organisms, and 

xenobiotic organic compounds. The research findings were described in three chapters 1) 

assessment of heavy metal leachate in rural Alaska solid waste sites, 2) the partitioning 

and transport behavior of pathogen indicator organisms in cold regions waste sites, and 3) 

detection of organic pollutants in rural Alaska landfills and wastewater systems. The 

most significant findings for each individual Chapters are listed below: 

Chapter 1) heavy metal leachate in rural Alaska solid waste sites 

 Enrichment factors (EFs) in surface and subsurface waters at the landfills and at

offsite locations within 50 meters down-gradient of the landfills were elevated in

Co, Cu, Ni, Mn, Zn, Fe, Cr, Cd, and Pb.

 The mean EFs for waste impacted soils were significantly enriched in Pb and Cd.

 Metals were shown to leach from soils and solid waste materials into surface

water preferentially during seasonal high water events such as snowmelt and

heavy rain.

 The detected metal concentrations are high enough to potentially impact rural

communities’ traditional drinking water and subsistence food resources, and

may increase due to climate-related hydrologic changes in the future.
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Chapter 2) the partitioning and transport behavior of pathogen indicator organisms in 

cold regions waste sites  

 E. coli and Enterococcus sp. tend to preferentially attach and migrate with soil

particles in surface waters, and are frequently transported offsite during

snowmelt runoff.

 Enterococcus sp. was observed to have higher and more sustained viability in

cold environmental conditions, and therefore may be a more suitable indicator

organism compared to E. coli for cold climate regions.

 Waste sites in rural communities were found to transmit E. coli and

Enterococcus sp. into nearby water resources.

Chapter 3) the detection of organic pollutants in rural Alaska landfills and wastewater 

system   

 HPLC-MSMS analysis revealed the presence of pharmaceutical

(sulfamethoxazole, trimethoprim, ibuprofen and acetaminophen, bupropion,

caffeine and 1,7-dimethylxanthine), benzotriazoles (1 H-benzotriazole (BT) and

4&5-methylbenzotriazole (tolyltriazole TT), and phthalates (DEP, DEHP,

DNOP, DBP, DMP and BBP) in  tested rural Alaska landfill leachate and raw

sewage samples.

 The concentration levels detected were similar or lower in and around traditional

landfills and sewage lagoons compared to modern constructed landfills and

wastewater treatment effluents.

 The detected organic pollutants are evidence that direct discharge or leaking rural

Alaska waste facilities are sources of XOCs, and their respective concentrations

levels can have a considerable impact on surface water quality.

The results of this research indicate that the current waste disposal practices are not 

sufficient to prevent offsite migration of waste-derived pollutants and guarantee human 

and environmental health now and in the future. The observed proliferation of heavy 
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metals, pathogen indicator organisms and xenobiotics indicates that waste management 

facilities and practices could potentially have an impact on surface water quality proximal 

to rural Alaska waste facilities.  

The results highlight the relevance of further and more comprehensive studies to assess 

waste derived pollutant emissions caused by direct or indirect discharge of water from 

rural Alaska waste facilities. As surface waters proximal to rural Alaska communities are 

closely linked to food and drinking water sources, contamination through leaching of 

open dumps and sewage lagoons can potentially impact human health.  

The results of this study strongly recommend enhancement management practices to 

reduce this risk. Furthermore, our research findings highlight the need to apply state 

regulations to remove potentially hazardous components from rural Alaska wastewater 

and municipal solid waste streams. Finally, there is a need to establish solid waste and 

wastewater leachate monitoring and assessment practices for active and closed rural 

Alaska waste sites.  
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Appendix A: Sample Locations Background and Site Description 

A-i: Allakaket 

Allakaket is a small federally recognized tribe with a population of 190 residents. The 

Athabascan community is located approximately 306 km northwest of Fairbanks, Alaska on the 

south bank of the Koyukuk River (Census, Bureau, 2010). Subsistence hunting and fishing are the 

primary food source. Allakaket is underlain by Koyukuk terrain composed of unconsolidated 

Quaternary deposit of plutonic rock and deep bedrock rock unit (Hamilton, 1969). The region is 

encountered with eolian and lacustrine soil material, which is composed of a fine clay-silt-sand 

and organic sedimentation (Hamilton, 1969), and overlies permafrost observed at approximately 

15 m below ground surface (bgs) (Timothy et al., 2000). The climate is characterized by a cold, 

continental climate with extreme temperature ranging between of -57°C to 34°C, with an average 

freeze-free period of 64 days, and has an average of 604.2 mm in rain and 22.4 cm of snowfall 

(Shulski and Wendler, 2007).  

Most public facilities and community’s homes were severely damaged in the 1994 Koyukuk 

River flood. Most of the damaged homes were replaced, including a constructed underlined 

sewage lagoon and a drinking water treatment plant. Domestic drinking water is supplied by 

treated Koyukuk River water at the community washeteria (Patterson et al., 2012). Only the 

community school, school housing and washeteria are connected to in-home pluming for water 

and wastewater.  Individual households are hauling their drinking water from the washeteria or 

from traditional drinking water resources. Households’ wastewater is discharged directly onto the 

tundra or into local tundra ponds. Honeybuckets and pit privies are used for human waste. At the 

community six wells were identified using historic well logs. These well logs indicate that silt and 

gravel are encountered at depths up to 21 m bgs before a bedrock layer and a shallow aquifer is 

observed approximately 6 m bgs (ADCCED; ADNR, 2009).  

The community of Allakaket received Indian Environmental General Assistance Program funding 

sponsored by the Environmental Protection Agency (EPA) to establish an environmental 

program. With respect to solid waste, the community is currently in the progress to complete a 

solid waste management plan, therefore no management practices are instated for solid waste 

separation or segregation such as recycling and backhauling, public access restriction, or soil 
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cover material application. Due to unrestricted public access and a broken burnbox, uncontrolled 

open burning of waste material is commonly performed on ground at the dump site. During the 

dump site visits, observations were made of many animal carcasses disposed and the presence of 

demolition and construction material were also detected. This above-ground dump site is 

approximately 10 years old with the dimension of 0.01 km2 dump site and is constructed on an 

upland area along a ridge approximately 1.2 km from the village area (Figures A.i-2). The dump 

site is characterized by shallow permafrost (0.3-1.2 m) and saturated tundra. A natural drainage 

area is formed with a slope of 4% decline to the south. The lowland area at the dump site is 

covered with woody peat tundra vegetated with Sphagnum moss, cottonwood, tussocks, and other 

sedges, willow saplings, and stunted spruce. The highland area is typically vegetated with 

horsetail, grasses, Sphagnum moss, cottonwood and other sedges, Labrador tea, lowbush 

cranberries, blueberry, birch, alder, willow saplings, and black spruce. The village residents are 

concerned about natural drainage channels forming during spring break-up and the potential 

environmental impacts due to waste leachate.  

Figure A.i-1: Illustration of scope and extent Allakaket’s dump condition 
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Table A.i-1: Sampling collection date and on-site field locations 
Date* Sample Location  GPS Elevation 

a,c Standing water Dump left - D1 N 66o 31.702' W 152o 39.329' 184m 
a,c Standing water Dump mid-left - D2 N 66o 31.727' W 152o 39.892' 185m 
a,c Standing water mid Dump - D3 N 66o 31.719' W 152o 39.868' 183m 
a,c Standing water lowland right - D4 N 66o 31.704' W 152o 39.866' 181m 
a,c Standing water lowland left - D5 N 66o 32.724'  W 152o 39.812' 182m 
a Drinking Water-Washeteria N 66o 32.925'  W 152o 39.669' 134m 
a Slough behind tribal office N 66o 32.860'  W 152o 38.723' 140m 

a,c Koyukuk River N 66o 32.933'  W 152o 39.772' 127m 
a,c Koyukuk /Drinking Water Well N 66o 32.939'  W 152o 39.711' 132m 
a,c Airport-Slough/ Old Dump-Site N 66o 32.876'  W 152o 38.062' 134m 
a,c Airport-Slough N 66o 33.893'  W 152o 38.442' 134m 
a Slough outlet into Koyukuk River  N 66o 32.953'  W 152o 38.539' 136m 
b AEK_Sump_01 N 66o 31.810'  W 152o 39.804' 184m 
c AEK_Sump_02 N 66o 31.902'  W 152o 39.819' 182m 
c AEKPZ-01 N 66o 31.898'  W 152o 39.817' 182m 
c AEKPZ-02 N 66o 32.732'  W 152o 39.799' 184m 
c AEKPZ-03 N 66o 31.812'  W 152o 39.804' 185m 

* Data for sample collection a) July 2010; b) June 2011, and c) August 2011 
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A-ii: Eek 

Eek, a federal recognized tribe of Yup’ik Eskimo community has a population of 286 residents. 

The community is located on the south bank of the Eek River, 19 km east of the mouth of 

Kuskokwim River and approximately 56 km south of Bethel on the Yukon-Kuskokwim Delta 

(Census, Bureau, 2010). The community of Eek is primarily subsistence-based with 80 - 90% of 

their diet consisting of salmon (all five Pacific salmon species spawn in the Eek River) (Census 

and Bureau, 2010). The region is characterized by alluvial and fluvial deposits of gravel, sand, silt 

and clay, overlying with igneous metamorphic and sedimentary rock units ranging in age from 

Ordovician to the Cretaceous eras (ADEC, 2011). Discontinuous permafrost is encountered 

mostly in the flats, which are portrayed with saturated tundra ground and many tundra ponds with 

only a few meters of elevation marking the boundaries of major drainages (ADEC, 2011). The 

historic well log search identified two wells within the Eek community. The well logs reported a 

static water depth range from 5 to 7 m bgs, as well as showed saltwater seepage at depths greater 

than 21 m (ADCCED; ADNR, 2009). The climate is characterized by an Alaskan west-central 

climate with temperature ranges of -44°C to 30°C; an average freeze-free period of 87 days, and 

an average of 406.4 mm in rain and 13.4 cm of snowfall (Shulski and Wendler, 2007).  

 
The community derives water from Eek River for its primary domestic water supply source, 

which is treated and stored at the washeteria. Also utilized rain entrapment systems and ice melt 

for secondary portable drinking water sources. Only the community school, school housing and 

washeteria are connected to in-home plumbing for water and wastewater.  Individual households 

haul their drinking water from the washeteria or from traditional drinking water sources. 

Households’ wastewater is discharged directly onto the tundra or into the nearby sewage lagoon. 

Human waste is also discharged using honeybuckets into the traditional sewage lagoon.  

 
In 1996 Eek received funding from the EPA to clean-up the solid waste site and the honeybucket 

lagoon. Prior to 1996, both waste sites were assessed by the Alaska Department of Environmental 

Conservation (ADEC) as highly vulnerable for microbial contamination. Additionally, Eek 

obtained Indian Environmental General Assistance Program funding sponsored by the EPA to 

establish an environmental program. The community implemented a recycling program for 

batteries and aluminum cans, and annual backhaul for electrical equipment such as TV’s, washing 

machines, refrigerators etc. Furthermore, the community hired a solid waste operator for weekly 
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household waste collection, operating the burnbox, and assembling and packaging of residual 

burned and ash material into supersacks. For waste reduction most household waste is burned at 

the community burnbox located at the dump site twice a week. The filled supersacks are stored 

around the dump site as a wind-barrier to prevent unconsolidated waste from being blown away 

from the dump site. Currently, the community’s residents have unrestricted public access to the 

dump site and honeybucket lagoon. Due to unrestricted public access uncontrolled open burning 

of waste material is commonly performed on ground at the dump site. 

 
The approximately 33 year old ponded solid waste site is 0.07 km2 in size and located adjacent to 

the community honeybucket lagoon. Both sites are less than 1.6 km away from the community 

and approximately 2.4 km away from the drinking water source and subsistence source (berry 

picking and fishing). The pollutant sources reportedly leach into two connected tundra ponds that 

are hydrologically connected to the Eek River (Patterson et al., 2012). Based on a reconnaissance 

of the waste sites, the groundwater system was determined to be complex and influenced by tides, 

surface water and topography. In addition, saturated tundra was reported with standing water 

around the waste sites year round but with no flooding (Patterson et al., 2012). The vegetation is 

characterized as Sphagnum moss, cottonwood, tussocks and other sedges, Labrador tea, lowbush 

cranberries and blueberry bushes at the sites. This community is highly concerned about exposure 

to microbial and chemical contamination from both waste sites due to the close location to 

traditional drinking water and subsistence food sources.  

 

 
Figure A.ii-1: Illustration of scope and extent Eek’s dump conditions 



141 

 
 
 

Table A.ii: Sample collection dates and on-site field locations 
Date* Sample Location GPS Elevation 
a,c,d,e Eek River N60010.140'   W1620 01.515' - 8m 
a,c,d,e Honeybucket Lagoon N 60012.832'  W1620 01.892' -5m 

a Tundra Lake  N 60012.602'  W1620 01.503' +1m 
a,b,c,d,e Big Lake N 60012.680'  W1620 01.886' -11m 
a,b,c,d,e Airport Lake N 60012.707'  W1620 01.904' -3m 
a,b,c,d,e Dump Drainage  N 60012.736'  W1620 01.563' +8m 
a,b,c,d,e Dump N 60o 12.751' W 162o 01.641' -8m 
a,b,c,d,e Village Creek N 60013.197'  W1620 02.086' -13m 

b Drinking Water - Washeteria 
  e Rain-Catchment/ Drinking Water 
  b Drinking/Ice Water 
  b,c,d,e Village Pond (mid-village/flood area) N 60013.015'  W1620 01.700' +3m 

b,d Tundra Pond -Old Runway ~ 1km  N 60012.704' W1620 00.773' +1m 
e EEKPZ-01 N 60012.486' W1620 01.477' -11m 
e EEKPZ-02 N 60012.445' W1620 01.351' +1m 
e EEkPZ-03 N 60012.437' W1620 01.448' +1m 
e EEkPZ-04 N 60012.440' W1620 01.410' +1m 

* Data for sample collection a) August 2009, b) April 2010,  c) October 2010, d) May 2011, and e) August 2011 
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A-iii: Ekwok 

Ekwok is a community with a population size of 130 residents is located along the 

Nushagak River, 69 km northeast of Dillingham and 302 km southwest of Anchorage 

(Census, Bureau, 2010). The inhabitants are a federal recognized tribe of Yup'ik Eskimo. 

The Ekwok community depends mostly on subsistence activities for various food sources 

such as salmon, moose, caribou, duck and berries. The coastal area is geological 

characterized by granitic and sedimentary rock units that date between the Ordovician 

and Cretaceous eras (Palcsak and Dorava, 1994). The alluvial, fluvial, and glacial soil 

deposits comprises of gravels, sands, silts, and clays, which extend at least 90 cm in 

depth (Glass, 1987). The soils are described as Nushagak and Hyer. Nushagak soils are 

featured as poorly drained acidic silt soil located at the south-facing slopes and highland 

area, which are generally frozen until midsummer. Hyer soil typically is present on north-

facing slopes composed as poorly drained organic matter and peat and perennially frozen 

at depths of approximately 70 - 130 cm bgs (Rieger, 1965; Rieger et al., 1979). Ekwok is 

located in a climatic transition zone, a zone is primary influenced by maritime and 

continental climate with temperature range of -43°C to 29°C, an average freeze-free 

period of 134 days, an average of 140 mm in rain and 140.2 cm of snowfall (Shulski and 

Wendler, 2007).  

 
Most of the community is served by 36 individual shallow domestic wells 2 to 3 m bgs. 

The community households are located more than 1 km away from the dump site. The 

nearest domestic well located approximately 0.4 km south away from the dump site is the 

newly constructed health clinic. Twelve wells were identified using historic well log 

search, which indicate a static water depths range from 0.9 to 3 m bgs. The logs show 

frozen ground is encountered at a depth of approximated 6 m bgs and groundwater was 

typically encountered at drilled depths greater than 6 to 10 m bgs (ADCCED; ADNR, 

2009).  

 
Residential homes are mostly equipped with sanitation systems including piped a septic 

system connected to a sewage lift station or a flush/haul system (DHHS, 1992). Sewage 

collection and wastewater hauling services is provided to the community weekly. Ekwok 

received Indian Environmental General Assistance Program funding sponsored by the 
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EPA to establish an environmental program. The community implemented a recycling 

program for batteries and aluminum cans, and annual backhaul for hazardous waste 

material such as electrical equipment such as TV’s, washing machines, refrigerators etc. 

Furthermore, the community is in search for additional funding to expand their backhaul 

program for hazardous material including paints, unused and old heating and machinery 

oil, and construction material. The community has a solid waste operator, who is 

responsible for operating the burnbox and using machinery for waste compaction and soil 

cover application. Currently, there is no fence or infrastructure installed around the dump 

perimeter to control and restrict animal and public access.  Due to unrestricted public 

access, uncontrolled open burning of waste material is commonly performed on ground at 

the dump site. 

 
 The 20 to 30 year old below ground dump site (trench-filling design) is located on 

excavated tundra approximately 2.4 km northeast upland of the community. The dump 

site is described with the dimension of 2.3 km2 and 3-4.5 m deep, which is creating a 

22% slope towards lowland area. During the site visit evidence of shallow soils of gravel, 

sand and silt and saturated tundra ground at the dump lowland area. The vegetation at the 

dump site is encompassed with Sphagnum mosses, lichens, tufted hair grass, low-bush 

blueberry and cranberries, willow saplings, Labrador tea, and black spruce. The highland 

area is covered with low-bush blueberry and cranberries, willow saplings, Labrador tea, 

birch and black spruce. No flooding or standing water issues were noticed in the past. 

The residents expressed concern regarding potential leachate from the open dump site 

into the shallow ground water system during spring snowmelt and rain runoff, hence a 

potential impact on the shallow drinking water wells (Patterson et al., 2012).   

 

 
  

Figure Aiii-1: Illustration of scope and extent Ekwok’s dump conditions 
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Table A.iii-1: Sample collection dates and on-site field locations 

Date* Sample Location  GPS Elevation 
a,b,c.d Standing Water at Health Clinic N 59o 21.738'  W 157o 28.423' 34m 
a,b.c Klutuk Creek  N 59o 21.792'  W 157o 28.859' 34m 
b,c,d Nushagak River N 59o 20.785'  W 157o 28.729 19m 
a,b,d Gravel Pit behind homes N 59o 21.243'  W 157o 29.046' 31m 

a,b,c.d Gravel Pit at Lagoon N 59o 21.277'  W 157o 29.031' 33m 
b,c,d Sewage Lagoon N 59o 20. 838'  W 157o 29.034 30m 

d Standing water at dump entrance -D1 N 59o 21.717'  W 157o 28.396' 43m 
d Standing water at dump excess - D4 N 59o 21.689'  W 157o 28.366' 39m 

a,c Standing water at EKWPZ-01 N 59o 21.738'  W 157o 28.423' 34m 
a,c Standing water at EKWPZ-02 N 59o 21.702'  W 157o 28.554' 34m 
a,c Standing water at EKWPZ-03 N 59o 21.713'  W 157o 28.497' 35m 
a,c Standing Water at Dump Trench N 590 21.702'  W1570 28.429' 46m 
a,c Standing Water Dump -D2 N 590 21.708'  W1570 28.433' 39m 
a,c Standing Water Dump -D3 N 590 21.711'  W1570 28.453' 39m 
a,d Home-Drinking Water Well     
c ICAP Office-Well Water     
c Health Clinic-Drinking Water     

a,b,c EKWPZ-01 N 59o 21.750'  W 157o 28.428' 34m 
a,b,c,d EKWPZ-02 N 59o 21.704'  W 157o 28.559' 34m 
a,b,c,d EKWPZ-03 N 590 21.712'  W1570 28.454' 39m 
* Data for sample collection a) April 2010, b) September 2010, c) May 2011, and d) August 2011 
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A-iv: Fort Yukon 

Fort Yukon, a federally recognized tribe of Gwichyaa Zhee Gwich'in with a population of 

approximately 600 residents is located at the confluence of the Yukon River and Porcupine River 

approximately 233 km northeast of Fairbanks (Census, Bureau, 2010). Subsistence activities are 

an important component of the local culture and most residents rely on subsistence food. Fort 

Yukon operates as an emergency fire-fighting base and houses a former White Alice radar station 

for the U.S. Air Force. The community obtains its domestic water supply from two groundwater 

wells located in the village. The domestic water is tank-stored and treated before being supplied 

through a piped system to residents’ homes. Residential homes are provided with piped sewage 

systems connected to lift stations and pumped to a newly constructed sewage lagoons located 

approximately 2.4 km east of town. Seven wells in Fort Yukon were identified using historic well 

log search. The well logs indicate that silt, sand, and gravel are encountered at depths up to 46 m 

bgs, underlain by lacustrine silts. Water was encountered at drilled depths ranging from 4 to 7 m 

bgs well log search (ADCCED; ADNR, 2009).  

Fort Yukon is situated in the low-lying Yukon Flats region, which is characterized by vast areas 

of forested wetlands and bogs underlined by discontinuous permafrost. Vegetation observed at 

the region is commonly white and black spruce, tall and low shrubs, lichens, moss, grass, alder 

and white birch. The soil deposit is considered a thick accumulations primarily of alluvium, 

glacial, eolian composed of fine clay-loam, and gelisole consisting of mineral and organic soil 

material (Timothy et al., 2000). The different soil deposits are underlying with Cenozoic 

sedimentary composed of sandstone, siltstone, and shale rock unit (Timothy et al., 2000). The 

climate is characterized by a cold, continental climate with temperature range of -54°C to 33°C, 

an average freeze-free period of 64 days, an average of 304.8 mm in rain and 15.7 cm of snowfall 

(Shulski and Wendler, 2007).  

Fort Yukon received Indian Environmental General Assistance Program funding sponsored by 

the EPA to establish an environmental program. The environmental program coordinator 

implemented recycling programs for batteries and aluminum cans and plastic bags are banned 

from local grocery stores. A specific constructed heating device is installed at the community 

center to utilize used heating and machinery oil. An annual backhaul program is instated for 

electrical equipment, old machinery, and used cars. Otherwise, no other waste separation or 
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segregation is implemented to manage hazardous waste such paints, construction or household 

maintenance material, unused cleaning products or old pharmaceutical products, etc. The solid 

waste program is overseen by the City of Fort Yukon. Solid waste collection and transfer to the 

dump is available for residents twice a week. Public access is still available for waste dumping. 

No fencing is installed to control and restrict animal or public access.  Due to unrestricted public 

access uncontrolled open burning of waste material is commonly performed on ground at the 

dump site. 

 
The approximately 30 year old, 0.02 km2 above-ground dump site is located in an upland area 2.4 

km from the community and approximately 300 m from the river system and berry trails. The 

dump site is situated along the edge of an old river bank 8-15 m higher than the lowland area, 

which is creating a 32% slope. Waste debris is pushed over the dump edge onto the lowland. The 

dump site border is distinguished by lowland area stretching in a north to south direction having 

the western side with a filled and covered sewage lagoon, and a stand of mixed forest (aspen, 

spruce, scrub willow and high grass) on the eastern side. At the lowland area, shallow soil 

consists of organic peat material and saturated tundra with underlining permafrost was 

encountered within 40 cm bgs. Currently the dump site is closed and covered with gravel; 

however a new permitted constructed landfill is in process. Meanwhile, waste material is 

disposed on the outside border of the dump site where and open burning takes place. The 

community expressed concerns regarding the dump waste composition of old military and 

construction waste, the elevation of the dump, and the natural drainage channel formed during 

strong water runoff events, which could result into migrating of hazardous waste leachate into the 

environment.  A sign of potential waste leachate impact are visible with dying standing trees 

extending a distance of approximately 15-30 m of the dump area.  
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Figure A.iv-1: Illustration of scope and extent Fort Yukon’s dump condition 

 

 

Table: A.iv-1: Sample collection dates and on-site field location 
Date* Sample Location  GPS Elevation 

b,c Standing Water Old Lagoon N 66o 34.929'  W 145o 12.926' 140m 
b,c Drainage Old Lagoon N 66o 34.890'  W 145o 12.991' 142m 

a,b,c Standing Water at FYWPZ-03 N 66o 34.914'  W 145o 12.995' 128m 
a,b,c Standing Water at FYWPZ-02 N 66o 34.938'  W 145o 13.085' 137m 
a,b,c Standing Water at FYWPZ-01 N 66o 34.929'  W 145o 13.125' 130m 
a,b,c Standing Water Dump-D-1 N 66o 34.890'  W 145o 12.991' 129m 
a,b,c Standing Water Dump-D-2 N 66o 34.929'  W 145o 13.114' 138m 

a Porcupine River  N 66o 35.595'  W 145o 13.368' 138m 
a,c Hospital Lake -Slough N 66o 34.331'  W 145o 13.112' 129m 

a,b,c Hospital Lake N 66o 34.322'  W 145o 13.260' 129m 
a,b,c Drainage   New Sewage Lagoon N 66o 34.123'  W 145o 10.840' 142m 
a,b,c  Yukon River N 66o 34.938'  W 145o 13.084' 133m 

c Sump1 N 66o 34.532'  W 145o 13.129' 129m 
c Sump2 N 66o 34.532'  W 145o 13.339' 129m 

a,c FYWPZ-01 N 66o 34.955'  W 145o 13.178’ 130m 
a,c FYWPZ-02 N 66o 34.855'  W 145o 13.612’ 137m 
a,c FYWPZ-03 N 66o 34.759'  W 145o 12.591’ 128m 
a,c FYWPZ-04 N 66o 34.812'  W 145o 12.024’ 140m 

* Data for sample collection a) July 2010, b) May 2011, d) August 2011 
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A-v: White Mountain 

White Mountain, a federally-recognized tribe of Kawerak Eskimo with a population of 

approximately 224 residents is located on the Fish River 100 km east of Nome on the Seward 

Peninsula (Census, Bureau, 2010). Subsistence activities are prevalent in the community. The 

climate in the region is influenced by a transitional west coastal climate with temperature range of 

-48°C to 37°C, an average freeze-free period of 80 days, an average of 432 mm in rain and 17.3 

cm of snowfall (Shulski and Wendler, 2007). The White Mountain region consists of alluvial and 

fluvial soil deposit composed of sand, silt, and gravel material, which are underlined with shallow 

outcroppings of Ordovician and Devonian sedimentary rock units. The region is distinguished 

with shallow permafrost and wet tundra; however, south-facing slopes were identified with the 

presence of discontinuous permafrost below the vegetative layer (Chambers et al., 2007).  

 
The community obtains its treated domestic water supply from groundwater wells located in the 

village. The majority of the community is connected to the piped water and sewer system even so 

25% of residents’ still haul honeybuckets for human waste and wastewater. Two wells in White 

Mountain were reported using a historic well log search. The well logs reports described static 

water depths range between 8 to 27 m bgs, groundwater is encountered in the fractured limestone 

at depths greater than 6 m bgs, and a permafrost depths at least 2 m in the summer (ADCCED; 

ADNR, 2009).   

 
White Mountain received Indian Environmental General Assistance Program funding sponsored 

by the EPA to establish an environmental program the past five years. The environmental 

program coordinator implemented recycling programs for batteries, aluminum cans and used 

machinery oil. An annual backhaul program was instated for electrical equipment and old 

machinery (ATV, snow-machines and used cars). The solid waste program is operated through 

the city of White Mountain. The solid waste management practices include publicly restricted 

access for waste dumping but no enforcement is ordained. Double fencing is installed to control 

public and to restrict animal access around the dump perimeter as well as draining trenches were 

constructed to divert runoff water around the dump site. Soil cover material is applied and heavy 

machinery is used for waste compaction. A burnbox is used for waste reduction and no, 

uncontrolled open burning of waste material is at the dump site. 
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The approximately 30 year old above-ground dump is located in an upland area east of the village 

and north of Fish River. The distance between the dump site and community is approximately 

400 m with 300 m to the drinking water source, river system, and berry trails. The dump 

dimensions are 0.6 km2 and approximately 4.5 m deep, which creates a 28% slope east/southeast 

towards lowland area. The dump is observed with shallow soils material composed of silt and 

gravel underlined by limestone that is encountered at approximately 1.5 m bgs. Standing water 

and runoff surface water is reported during snowmelt and major rain events. At the dump site a 

natural drainage channel has formed to the east/southeast side. The community expressed 

concerns about the dump site’s elevated location and the natural drainage channel formed during 

spring break-up and major rain events resulting into a potential migration of hazardous leachate 

into the environment.  

Figure A.v-1: Illustration of scope and extent White Mountain’s dump conditions 

Table: A.v-1: Sample collection dates and on-site field locations 
Date* Sample Location GPS Elevation 

a,b Surface Water at WMOPZ-01 N 64o 40.588'  W 163o 23.289' 25m 
a,b Surface Water at Dump Drainage N 64o 40.600'  W 163o 23.329' 25m 
a,b Surface Water at Burnbox N 64o 40.600'  W 163o 23.326' 28m 
a,b Surface Water at Decomposed Waste N 64o 40.588'  W 163o 23.289' 21m 
a,b Village Creek N 64o 40.588'  W 163o 23.289' 16m 
a,b Fish River N 64o 40.588'  W 163o 23.289' 12m 
a Drinking Water N 64o 40.588'  W 163o 23.289' 

 a,b Surface Water  at Mid Dump -Mixed Waste N 64o 40.629'  W 163o 23.352' 31m 
a,b Surface Water at Dump Drainage 2 N 64o 40.625'  W 163o 23.350' 28m 
a,b Surface Water at Dump Up-gradient N 64o 40.632'  W 163o 23.454' 31m 
a Surface Water at Fenced Area N 64o 40.651'  W 163o 23.330' 37m 

a,b Surface Water at Metal Drums N 64o 40.653'  W 163o 23.358' 36m 
a WMO-Sump 2 N 64o 40.627'  W 163o 23.392' 29m 
a WMO-Sump1 N 64o 40.588'  W 163o 23.289' 25m 

* Data for sample collection a) May 2010, and b) May 2011
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Appendix B: Physiochemical Data 

Appendix B-i: Allakaket 

Date Sampling Location pH 
Temperature 

(0C) 
Conductivity 

(µS/cm) 
Alkalinity 

(ppm) 
Total Hardness 

(ppm) 
TOC 
(ppm) 

TSS 
(mg/L) 

Su10 Surface Water Dump-1 7.8 16.9 178.0 240 120 
Surface Water Dump-2 6.1 11.3 400.0 120 120 
Surface Water Dump-3 6.2 14.6 1140.0 120 120 
Drinking Water  7.3 

 
51.0 120 250 

Slough behind Tribal Office 7.2 17.2 200.0 80 120 
Koyukuk River 7.8 16.1 290.0 120 120 
Koyukuk River - Drinking Water Well 7.5 14.7 290.0 80 120 
Slough Old Dump 7.4 17.6 280.0 120 120  22.7 
Slough before Airport  7.1 19.3 150.0 120 120 

 
Slough outlet into Koyukuk River  7.7 16.7 310.0 80 120 

Su11 AEK-Sump01 7.2 
 

449.2 80  120 
Fa11 Surface Water Dump-4 7.8 13.4 580.3 240 425  310.1 

Surface Water Dump-5 8.4 16.6 473.4 180 250  210.0 
Surface Water Dump-1 7.9 15.8 2232.0 240 425  1,600.7 
Surface Water Dump-2 7.4 15.9 1064.0 240 425  1,100.1 
Surface Water Dump-3 7.7 17.4 1642.0 240 425 70.00  1,700.8 
AEKPZ-03 7.2 13.1 484.8 240 425 

 
763.6 

AEK-Sump 02 7.8 14.6 922.0 180 120 148.70  1250.3 
AEKPZ-01 7.4 17.6 899.0 240 240 167.45  19,090.6 
AEKPZ-02 7.4 17.9 4,390.3 180 120 174.75  29,012.5 
Koyukuk River 7.9 15.2 444.0 120 250  22.5 
Slough outlet into Koyukuk River  7.7 17.3 377.1 80 250  2.7 
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Appendix B-ii: Eek 

Date Sampling Location  pH Temperature 
(0C) 

Conductivity 
(µS/cm) 

Resistivity 
(mV) 

Alkalinity 
(ppm) 

Total 
Hardness 

(ppm) 

TOC 
(ppm) 

TSS 
(mg/L) 

Fa09 E_PZ-01 6.5 6.0 644.0 
E_PZ-02 6.5 3.1 447.1 

Sp10 Dump Pond 7.6 0.4 123.3 80 
Surface Water at Dump Drainage  7.3 0.2 150.1 80 
Big Lake 6.8 0.2 119.3 40 
Drinking Water - Washeteria 7.1 

 
98.4 

 Airport Lake 5.7 0.4 59.9 40 
Village Pond  6.7 0.6 136.8 40 
Tundra Pond -Old Runway  6.3 0.7 101.0 40 

Fa10 Eek River 7.5 4.7 136.7 40 120 
Village Pond  7.6 1.6 150.1 40 120 
Surface Water at Dump Drainage 7.0 1.1 175.3 80 120 
Big Lake 7.4 2.1 130.4 40 25 
Dump Pond 7.5 1.8 147.2 80 120 
Honeybucket Lagoon 8.2  1.6 175.8  120 
Airport Lake 7.4 2.7 136.8 40 25 

Sp11 Eek River 7.4 2.9 24.7 40 25 
Village Pond  6.7 1.8 150.1 40 25 
Village Creek 6.2 1.2 36.7 40 25 
Tundra Pond -Old Runway  6.8 1.6 31.3 40 25 
Surface Water at Dump Drainage 6.4 2.2 85.8 80 25 
Big Lake 6.4 2.2 115.8 40 25 
Dump 7.1 4.5 145.0 80 25  73.33 
Honeybucket Lagoon 8.2  2.8  184.5 40 25 
Airport Lake 7.4 1.6 140.0 40 25 

Fa 11 Eek River 7.0 13 71.7 179.9 40 50  7.04  12.12 
Village Pond  6.6 11.3 89.2 176.8 80 50  8.11 
Surface at Dump Drainage 6.8 10.1 567.4 27.8 240 250  13.12  550.00 
Big Lake 6.9 12.9 77.0 69.2 80 50 4.17  137.85 
Dump Pond 7.2 12.0 224.1 79.9 80 50  37.91  144.44 
Honeybucket Lagoon 6.5 12.9  212.5  80 25  514.29 
Airport Lake 7.7 13.9 170.6 74 20 25  4.45  6.67 
E_PZ-04 7.4 1,090.0 120 180  28.00  581.25 
E_PZ-03 6.8 400.0 40 25  12.99  5,189.09 
E_PZ-02 10.3 2,300.0 80 50  1,632.00 
E_PZ-03 6.9 710.0 0.36  2,433.00 
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Appendix B-iii: Ekwok 

Date Sampling Location  pH 
Temperature 

(0C) 
Conductivity 

(µS/cm) 
Resistivity 

(mV) 
Alkalinity 

(ppm) 

Total 
Hardness 

(ppm) 
TOC 
(ppm) 

TSS 
(mg/L) 

Sp10 Surface Water at Health Clinic 6.8 1.9 20 
Klutuk Creek 6.2 2.9 20 
Surface Water at EKW_PZ-01 5.8 9.3 20 
Surface Water at EKW_PZ-02 6.2 3.5 20 
Surface Water at EKW_PZ-03 7.2 2.2 20 
Surface Water at Gravel Pit 6.9 6.9 20 
Surface Water Dump-1 6.4 5.2 20 
Home-Drinking Water Well 7.2 13.1 
EKWPZ-02 

 
13.2  240.00 

Fa10 Klutuk Creek  6.2 4.7 
 

20 25 
Surface Water at Health Clinic  6.3 6.6 110.2 20 25 
Surface Water at Gravel Pit/Homes 6.9 8.7 118.9 20 25 
Surface Water at Gravel Pit  7.2 5.8 228.6 20 25 
Nushagak River 7.3 5.3 114.6 20 25 
Sewage Lagoon 8.4 9.2 180 25 
EKWPZ-03 
EKWPZ-02 
EKWPZ-02 

   Sp11 Surface Water at EKWPZ-03 7.4 6.8 507 20 25  210.62 
Surface Water at EKWPZ-02 6.3 3.5 435 20 25  150.00 
Surface Water at EKWPZ-01 6.2 6.0 498 20 25  130.51 
EKWPZ-03 7.5 4.8 179 20 25 
EKWPZ-01 6.2 6.0 498 20 25  530.33 
EKWPZ-02 6.3 3.5 435 20 25  620.22 
Surface Water Dump-1 6.7 11 171 20 25  42.40 
Surface Water Dump-2 7.2 12.9 282.4 40 50  670.27 
Klutuk Creek  7.6 3.4 18.6 20 25  7.50 
Nushagak River 7.8 1.1 36.5 20 25  5.10 
Surface Water at Health Clinic 7.5 9.2 227.0 20 25 
Sewage Lagoon 7.4 0.6 810.0 180 25 
ICAP Office-Well Water 6.7  10.4 145.0 

 Fa11 EKWPZ-03 7.5 8.9 569 20 25  60.95  958.89 
EKWPZ-02 6.3 9.3 435 20 25  11,616.00 
Surface Water Dump -2 7.0 19.5 1220.0 9.8 180 120  4,247.00 
Surface Water Dump -3 7.7 19.5 940.2 327.0 80 120  22.44  3,184.44 
Surface Water at Gravel Pit 7.0 12.4 37.5 18.3 40 25  30.33 
Nushagak River 7.4 11.1 61.6 13.3 40 50  3.48  4.49 
Surface Water at Health Clinic 7.0 11.3 14.6 11.5 

  
 4.01 

Sewage Lagoon 7.8 11.4 
 

810.9  180 25  300.00 
Home-Drinking Water Well 7.0 122 9.8 
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Appendix B-iv: Fort Yukon 

Date Sampling Location  pH Temperature 0C 
Conductivity 

mS/cm 
Alkalinity 

ppm 

Total 
Hardness 

ppm TOC (ppm) 
TSS 

(mg/L) 
Su10 Surface Water Old Lagoon 8.4 12.9 178.0 180 60 

Drainage-Old Lagoon 6.8 9.4 278.0 240 60 
Porcupine River  7.9 18.9 19.0 80 120 
Hospital Lake -Slough 6.8 16.8 42.0 180 120  5.71 
Yukon River 7.9 17.7 19.0 120 120  159.52 
Hospital Lake  8.6 21.3 22.0 80 120  42.86 
Drainage-New Sewage Lagoon 8.4 23.3 128.0 240 425 
FYPZ-04 399 676.00 
FY-Sump 01 318 2,333.00 

Sp11 Drainage-New Sewage Lagoon 8.1 16.9 526.7 180 250  90.52 
Hospital Lake 8.3 12.8 195.4 120 120   26.67 
Yukon River 8.4 13 176.2 80 120  5.62  171.43 
Hospital Lake -Slough 8.4 14.2 178.7 80 120 
Surface Water Old Lagoon 8.6 21.5 740.0 240 250  50.00 
Surface Water at FYPZ-03 7.2 15.5 1,071.0 40 120  1,400.29 
FYPZ-01 7.8 14.0 3,063.0 240 425  36.38  2,920.00 
Surface  Water at FYPZ-02 8.4 5.6 748.9 240  1,776.19 
Surface Water at FYPZ-01 7.7 5.2 1,855.0 240   4,962.00 
Drainage-Old Sewage Lagoon 8.6 21.5 740.0 240 250  13.87 100.00 

Fa11 Drainage-Old Sewage Lagoon 8.1 16.9 526.7 180 250  95.00 
Hospital Lake 7.8 16.0 214.6 40 120   8.79  50.00 
Yukon River 8.6 15.3 236.2 80 120  70.00 
Surface Water at FYPZ-01 7.9 14.2 1,429.0 240 250  95.38  429.00 
Surface Water at FYPZ-02 8.6 5.6 1,990.0 240 425  186.05 
FY-Sump2 7.9 7.1 1,812.0 240 425  12.00 
FYPZ-01 6.7 1,363.0 240 250  111.60  6,578.18 
FYPZ-02 7.2 1,749.0 240 250  56.48  5,193.00 
FYPZ-03 7.5 1,237.0 120 180  42.40  3,065.00 
FYPZ-04 7.8 688.0 240 425  1,103.00 
FY-Sump1 8.0 9.9 1,980.0  30.91 1,226.00 
FYSump2 8.2 8.0 1,890.0  27.08 900.00 
FYPZ-02 7.1 2,150.0 16,061.2 
FYPZ-03 7.4 1,480.0 
FYPZ-04 8.2 8.0 1,890.0 
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Appendix B-v: White Mountain 

Date Sampling Location  pH 
Temperature 

(0C) 
Conductivity 

(µS/cm) 
Alkalinity 

(ppm) 
Total Hardness 

(ppm) 
TOC 
(ppm) 

TSS 
(mg/L) 

Sp10 Surface Water at WMOPZ-01 6.7 3.2 580 80 120 
Surface Water at Dump Drainage 7.9 6.0 574 80 120 
Surface Water at Burnbox 7.3 4.7 1350 80 120 
Surface Water at Dump Drainage 2 8.4 4.2 1920 240 250 
Surface Water at Mid Dump -Mixed Waste 7.3 9.5 1350 120 120 
Surface water at Metal Drums 7.6 10.1 2200 120 120 
Village Creek 7.8 5.6 80.5 40 50 
Fish River 7.8 2.3 65.2 40 50  
Drinking Water 7.2 RT 

  Sp11 Standing water at WMOPZ-01 8.7 11.5 245.3 40 50 
Dump Drainage 2 7.9 20.7 538.1 240 425  208.51 
Surface Water at Burnbox 7.8 21.6 623 240 425  1,700.27 
Surface Water at Dump Drainage 7.7 14.1 878 240 425 45.18  710.11 
Surface Water at Dump Upgradient 8.2 12.4 143.9 40 50  10.00 
Surface Water at Mid Dump -Mixed Waste 8.1 6.2 175.1 40 120  309.30 
Surface Water at Metal Drums 8.2 19.6 200.2 240 425 

 
 185.11 

WMO-Sump 2 8.4 1.5 72.9 40 50  56.25  130.33 
WMO-Sump1 8.4 3.7 198.9 40 50 

 
 270.03 

Fish River 8.1 7.8 69.1 40 50  4.25  10.00 
Village Creek 8.1 13.4 136.5  40 50   8.57 
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Appendix B-vi: Sampling Location Summary and Physiochemical Data 

LOCATIONS 

Allakaket  
Permafrost Region 

Eek  
Discontinuous  

Permafrost Region 
Ekwok  

Tundra Ground Region 

Parameters 
Subsurface 

Water 
Surface 
Water Control 

Subsurface 
Water 

Surface 
Water Control 

Subsurface 
Water 

Surface 
Water Control 

Metal 5 9 8 6 22 18 11 13 18 
Anion 5 7 7 4 17 13 8 11 12 

Microbe 4 6 8 2 26 19 3 16 13 
TOC 5 4 1 2 2 2 1 1 1 
TSS 5 5 3 6 4 5 4 6 4 

Fort Yukon  
Permafrost Region 

White Mountain  
Bedrock Region 

Parameters 
Subsurface 

Water 
Surface 
Water Control 

Subsurface 
Water 

Surface 
Water Control 

Metal 13 8 11 2 12 6 
Anion 18 7 8 2 11 2 
Microbe 2 13 11 1 11 5 
TOC 4 4 4 1 1 1 
TSS 10 10 5 0 6 4 

LOCATIONS 

Allakaket Permafrost 
Region 

Eek Discontinuous 
Permafrost Region 

Ekwok  
Tundra Ground 

Region 
Fort Yukon 

Permafrost Region 
White Mountain 
Bedrock Region 

Parameters 
Impacted 

Soils Control 
Impacted 

Soils Control 
Impacted 

Soils Control 
Impacted 

Soils Control 
Impacted 

Soils Control Total 
Metal 3 2 6 3 3 3 3 2 3 2 30 

Microbe 8 3 15 6 13 5 13 5 8 4 80 
Soil Moisture Content 2 1 4 1 3 1 3 1 4 1 21 
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Appendix C: Soil, Surface and Subsurface Water Inorganic Analysis Data 

Appendix C-i: ICP-MS Metal Analysis Data for Allakaket 

Table 1: Summer 2010 Total (T) and Dissolved (D) Metal Analysis (ppb) 

Analyte 

 

LOD D-1 
(T) 

 

D-1 
(D) 

 

D-2 
(T) 

 

 

D-2 
(D) 

 

D-3 
(T) 

 

 

D-3 
(D) 

 

T. O. 
(T) 

 

K. R. 
(T) 

 

D.W.W 
(T) 

 

A. 
(T) 

 

K. R. 
(T) 

 

O. D 
(T) 

 

Be 0.3 0.29 0.29 0.29 <LOD 0.58 <LOD 0.35 0.29 0.31 0.30 0.29 0.34 
Na 26.0 31085.2 27067.8 25797.9 29288.0 213208.0 216151.8 2532.7 7180.4 805.0 2568.3 669.8 2471.4 
Mg 41.2 13917.5 11053.6 10935.1 11459.1 66575.9 75891.2 19825.5 16127.5 6347.2 19097.8 11341.3 19760.9 
Al 0.4 101.7 24.3 123.1 17.6 1526.5 19.9 595.916 1.3 21.5 110.3 151.5 317.2 
K 37.0 196.5 852.2 998.6 848.7 20267.0 24528.6 412.4 2485.7 308.6 1679.7 1281.1 432.0 
Ca 16.4 29830.5 43809.8 43300.3 36123.2 317172.1 300434.5 48702.0 72492.6 38187.9 46094.0 65751.6 54039.3 
V 0.6 0.7 0.6 0.9 <LOD 7.8 <LOD 0.8 0.6 0.6 0.6 0.6 1.1 
Cr 0.1 0.4 0.4 0.4 <LOD 1.0 <LOD 0.3 <LOD 0.2 0.2 <LOD 0.3 
Mn 0.2 19.5 2065.5 2633.9 2299.8 6437.1 6135.9 179.5 3.3 651.6 79.3 272.2 290.0 
Fe 11.5 45.1 868.7 2872.3 933.8 36808.3 31632.7 830.0 <LOD 2139.6 324.6 853.7 1314.9 
Co 0.3 0.8 4.5 6.7 <LOD 23.7 18.9 2.1 0.3 1.4 0.9 1.4 3.3 
Ni 0.4 13.2 7.9 8.8 <LOD 52.1 18.8 11.6 9.1 7.9 9.1 10.0 14.5 
Cu 0.3 15.0 1.3 6.7 <LOD 21.3 <LOD 4.7 430.2 0.8 2.5 <LOD 6.3 
Zn 0.5 5.6 22.9 180.6 43.4 22.6 13.9 43.5 26.5 9.4 20.3 7.8 67.4 
As 0.2 2.3 4.1 5.1 <LOD 9.5 1.6 1.5 0.6 2.5 1.0 2.7 1.7 
Se 0.5 <LOD <LOD 0.1 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Mo 0.1 2.3 0.7 0.4 <LOD 0.9 2.2 0.4 0.2 0.4 0.4 0.5 0.4 
Ag 0.1 0.1 0.1 0.1 1.4 0.2 1.5 0.1 0.1 0.1 0.1 <LOD 0.1 
Cd 0.1 0.1 0.4 0.4 <LOD 0.7 <LOD 0.4 <LOD <LOD 0.2 <LOD 0.5 
Sb 0.3 2.1 0.8 0.9 <LOD 1.4 <LOD 0.6 0.4 0.5 0.5 0.5 0.6 
Ba 0.2 29.0 44.1 72.6 45.4 118.5 154.9 26.2 112.5 35.1 20.0 20.0 30.3 
Tl 0.8 <LOD <LOD 0.2 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Pb 0.3 <LOD 14.6 16.8 <LOD 8.8 <LOD 1.7 1.6 2.1 0.4 <LOD 4.4 
Th 0.6 <LOD <LOD 0.5 <LOD 1.0 <LOD 0.7 <LOD <LOD <LOD <LOD <LOD 
U 0.9 2.2 <LOD 0.3 <LOD 1.2 <LOD 1.7 <LOD <LOD 1.6 <LOD 1.8 

D. - Surface Water at the Dump Site 
D.W.W. - Slough at Koyukuk River near Drinking Water Well 
T.O. - Slough at the Tribal Office 
A. - Slough at the Airport 
K.R. - Koyukuk River 
O.D. - Surface Water at the Old Dump Site 
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Table 2: Fall 2010 Total (T) and Dissolved (D) Metal Analysis (ppb) 

Analyte LOD 
D-1 
(T) 

D-1 
(D) 

D-2 
(T) 

D-2 
(D) 

D-3 
(T) 

D-3 
(D) 

D-4 
(T) 

K.R. 
(T) 

K.R. 
(D) 

D.W.W. 
(T) 

D.W.W. 
(D) 

Be 0.01 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Na 128.07 67196.5 67180.2 374457.5 386331.4 248104.9 12127.2 14343.9 3638.3 3576.3 3556.9 3510.0 
Mg 30.13 38144.9 38376.9 69625.7 69173.2 62688.1 24275.9 29313.6 25551.4 26672.7 23374.4 23689.4 
Al 1.22 29.7 <LOD 178.3 65.2 76.1 <LOD 17.9 188.6 57.9 44.1 16.8 
Si 167.06 13439.3 12511.4 3787.6 3031.6 <LOD 4337.9 5755.4 2141.3 1941.2 1952.8 1901.1 
K 22.59 10559.0 10364.4 147915.8 139597.0 84529.3 4942.7 6133.3 529.1 491.3 1000.6 970.4 
Ca 27.61 265416.8 274389.5 126748.2 116619.9 259127.7 124468.4 151467.2 58582.6 57250.9 61520.4 61734.2 
V 1.80 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cr 0.29 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Mn 0.36 3578.4 3523.4 1251.9 1178.9 2418.3 297.8 617.7 54.8 26.9 45.5 23.0 
Fe 52.48 13765.7 1109.6 4686.2 974.6 5157.8 <LOD <LOD 429.2 <LOD 72.0 <LOD 
Co 0.93 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ni 2.04 67.4 65.2 24.9 23.1 51.2 <LOD 23.4 15.3 14.2 12.7 13.0 
Cu 1.85 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 2.0 2.4 <LOD <LOD 
Zn 1.26 2447.2 1118.2 185.5 43.0 126.6 22.2 51.8 67.8 6.4 5.5 5.9 
As 0.37 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Se 0.50 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Mo 0.60 <LOD <LOD <LOD <LOD <LOD 15.4 15.3 <LOD <LOD <LOD <LOD 
Ag 0.83 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cd 0.38 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Sb 1.72 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ba 1.05 129.5 102.0 138.8 111.9 118.1 50.9 63.1 25.4 24.6 26.8 26.6 
Tl 1.33 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Pb 0.90 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Th 1.18 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
U 0.23 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 1.9 1.9 1.6 1.7 

D. - Surface Water at the Dump Site 
D.W.W. - Slough at Koyukuk River near Drinking Water Well 
T.O. - Slough at the Tribal Office 
A. - Slough at the Airport 
K.R. - Koyukuk River 
O.D. - Surface Water at the Old Dump Site 
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Table 3: Fall 2010 Total (T) and Dissolved (D) Metal Analysis (ppb) 

Analyte 
LOD AKPZ_01 

(T) 
AKPZ_01 

(T) 
AKPZ_02 

(T) 
AKPZ_03 

(T) 
AKPZ_03 

(D) 
AK-Sump-02 

(T) 
AK-Sump-02 

(D) 
AK-Sump-01 

(D) 
Be 0.01 3.82 3.61 4.41 2.17 <LOD <LOD <LOD <LOD 
Na 128.07 71645.35 20074.99 55687.54 9957.41 16153.4 124046.75 139455.9 14859.1 
Mg 30.13 19531.16 85046.89 30484.23 52650.04 41868.6 29527.53 33111.4 44460.2 
Al 1.22 165.94 44156.48 32828.21 28499.56 <LOD 43.52 19.2 22.5 
Si 167.06 6654.41 32778.48 21997.05 33193.59 2696.6 5700.76 5357.5 1469.4 
K 22.59 8302.98 1031.61 265.64 1199.47 7441.1 6545.68 7165.6 333.6 
Ca 27.61 82793.84 329397.58 203982.94 286858.71 127680.2 125315.41 133383.0 135025.5 
V 1.80 <LOD 82.63 25.22 50.41 <LOD <LOD <LOD <LOD 
Cr 0.29 <LOD 134.18 67.26 69.15 4.0 <LOD <LOD 1.1 
Mn 0.36 1715.01 2351.01 2787.10 4898.39 1761.2 1778.51 1945.4 450.2 
Fe 52.48 3235.71 37845.92 113452.99 49729.81 <LOD 5007.01 2720.9 1915.7 
Co 0.93 <LOD 52.11 44.49 55.79 <LOD <LOD <LOD 1.7 
Ni 2.04 <LOD 323.24 152.75 143.18 30.2 <LOD 21.8 40.6 
Cu 1.85 <LOD 129.06 175.69 281.82 <LOD <LOD <LOD <LOD 
Zn 1.26 112.95 1439.76 6374.14 1353.60 <LOD <LOD <LOD 9.3 
As 0.37 8.23 3.94 <LOD 5.57 <LOD 6.79 <LOD 0.7 
Se 0.50 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Mo 0.60 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 4.3 
Ag 0.83 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cd 0.38 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Sb 1.72 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ba 1.05 53.48 283.87 1189.85 1243.83 84.8 66.35 62.8 79.3 
Tl 1.33 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Pb 0.90 <LOD 28.10 26.77 63.21 <LOD <LOD <LOD <LOD 
Th 1.18 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
U 0.23 6.47 21.58 6.29 <LOD <LOD <LOD <LOD 7.8 

AKPZ - Subsurface Water Well Samples 
AK-Sump - Recharged Subsurface Water obtained from Soil Pits 
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Table 4: Summer 2010 Anion Metal Analysis (ppm) 
 
 

Analyte LOD 
 

D-1 
 

D-2 
 

D-3 
 

T. O. 
 

K. R. 
 

D.W.W 
 

 

A. 
 

 

K. R. 
 

S.O. D 
 

F- 0.03 0.15 0.61 0.08 0.05 0.05 1.52 0.05 0.08 <LOD 
Cl- 0.1 3.5 51.8 278.4 <LOD <LOD 18.2 <LOD <LOD <LOD 

NO2
- 0.08 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

SO4
-2 0.2 <LOD 0.4 <LOD 110.2 109.3 3.9 113.2 <LOD <LOD 

Br- 0.2 <LOD <LOD 3.0 <LOD <LOD <LOD <LOD <LOD <LOD 
NO3

- 0.2 <LOD <LOD <LOD 0.5 0.6 <LOD 0.4 <LOD <LOD 
PO4

-3 0.5 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
D - Surface Water at the Dump Site 
D.W.W. - Slough at Koyukuk River near Drinking Water Well 
T.O. - Slough at the Tribal Office 
A. - Slough at the Airport 
K.R. - Koyukuk River 
S. O.D. - Surface Water at the Old Dump Site 

Table 5: Fall 2011 Anion Metal Analysis (ppm) 
Analyte LOD 

 

D-1 
 

D-2 
 

D-3 
 

D-4 
 

K.R. 
 

AKPZ_01 
 

AKPZ_02 
 

AKPZ_03 
 

AK_Sump-02 
 

F- 0.03 0.65 129.54 0.04 15.97 13.58 0.13 0.40 0.12 2.27 
Cl- 0.1 29.65 2655.71 5.17 157.75 0.32 10.18 19.70 6.07 109.79 

NO2
- 0.08 <LOD 381.58 <LOD <LOD 12.30 <LOD 11.52 <LOD <LOD 

SO4
-2 0.2 147.26 746.51 3.05 433.56 164.57 246.30 65.08 6.94 8.64 

Br- 0.2 <LOD 3.32 <LOD 1.35 <LOD <LOD <LOD <LOD <LOD 
NO3

- 0.2 <LOD <LOD <LOD <LOD <LOD <LOD 0.21 <LOD <LOD 
PO4

-3 0.5 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
D - Surface Water at the Dump Site 
K.R. - Koyukuk River 
AKPZ - Subsurface Water Samples 
AK_Sump - Recharged Subsurface Water obtained from Soil Pits 
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Appendix C- ii: ICP-MS Metal Analysis Data for Eek 

Table 1: Fall 2009- Spring 2010 Total (T) Metal Analysis (ppb) 
Analyte LOD D09 

 

B.L.09  
 

D.D.09  
 

E.R.09  
 

T.P.09  
 

A.L. 09 
 

H.L. 09 
 

D10  
 

V.P.10 
 

B.L.10  
 

D.D.10  
 

A.L.10 
 

O.A.L.10 
 

Be 0.01 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.4 0.4 0.4 0.4 0.5 0.5 
Na 128.07 6012.5 250180.5 2657.9 23022.4 2699.5 2683.1 27004.1 10923.2 5317.8 5838.3 12261.3 2617.8 1254.6 
Mg 30.13 3926.9 35536.1 585.8 3806.4 658.2 627.4 3658.4 677.8 1278.5 4412.9 1119.2 228.0 545.2 
Al 1.22 908.0 96.7 98.6 106.1 68.9 109.3 84.3 43.9 69.6 2.3 38.8 41.0 73.5 
Si 167.06 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD  <LOD <LOD <LOD <LOD <LOD 
K 22.59 961.8 9983.3 469.7 9230.3 163.1 468.6 13159.6 7368.2 7089.3 1171.8 8484.5 1933.3 1798.6 
Ca 27.61 18401.5 24695.4 991.4 22100.4 1136.9 1020.5 23157.0 4075.8 4714.0 14382.1 6593.3 477.4 948.5 
V 1.80 3.8 2.8 0.4 0.4 0.4 0.4 0.4 <LOD  <LOD <LOD <LOD <LOD <LOD 
Cr 0.29 1.1 0.4 <LOD <LOD <LOD <LOD <LOD 0.3 0.7 <LOD 0.5 <LOD <LOD 
Mn 0.36 146.2 293.0 14.2 50.1 40.6 10.5 102.9 221.4 441.9 99.3 249.1 112.8 94.4 
Fe 52.48 4008.6 2604.1 347.1 580.8 391.1 334.9 2295.1 1167.8 3699.2 41.2 4253.5 414.4 415.5 
Co 0.93 1.17 0.67 <LOD <LOD <LOD <LOD <LOD 0.4 1.6 <LOD 0.6 0.5 0.5 
Ni 2.04 6.5 5.4 1.1 4.6 0.7 1.2 5.0 1.5 2.1 2.1 2.9 <LOD <LOD 
Cu 1.85 5.3 4.0 2.8 2.6 <LOD 3.4 <LOD 7.1 7.5 292.3 12.6 1.3 1.3 
Zn 1.26 22.2 8.4 6.6 31.2 11.2 3.8 10.6 40.9 51.1 5290.0 146.1 8.6 6.8 
As 0.37 3.6 2.2 0.9 0.8 <LOD 0.9 1.2 <LOD  5.8 <LOD 0.8 <LOD <LOD 
Se 0.50 <LOD <LOD <LOD <LOD <LOD <LOD <LOD  <LOD <LOD <LOD <LOD <LOD <LOD 
Mo 0.60 0.3 0.2 <LOD 0.4 <LOD <LOD 0.4 0.4 0.3 <LOD 0.7 <LOD <LOD 
Ag 0.83 <LOD <LOD <LOD <LOD <LOD <LOD <LOD  <LOD <LOD <LOD <LOD <LOD <LOD 
Cd 0.38 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.3 0.2 1.1 0.4 0.1 0.1 
Sb 1.72 0.5 <LOD <LOD 0.4 <LOD <LOD 0.3 1.0 0.5 0.5 1.0 0.4 <LOD 
Ba 1.05 39.3 43.9 4.3 29.9 1.8 4.0 21.9 13.0 10.8 27.7 23.9 2.8 6.0 
Tl 1.33 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD  <LOD <LOD <LOD <LOD <LOD 
Pb 0.90 1.8 <LOD <LOD 0.7 <LOD <LOD <LOD 0.7 2.2 15.7 3.8 <LOD <LOD 
Th 1.18 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD  <LOD <LOD <LOD <LOD <LOD 
U 0.23 <LOD <LOD <LOD <LOD <LOD <LOD <LOD  <LOD <LOD <LOD <LOD <LOD <LOD 

D - Ponded Dump  T.P. - Tundra Pond 
H.L. - Honeybucket Lagoon E.R. - Eek River 
D.D. - Dump Drainage B.L. - Big Lake 
A.R. - Airport Lake  O.A.L. - Old Airport Lake 
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Table 2: Fall 2010 Total (T) and Dissolved (D) Metal Analysis (ppb) 
Analyte LOD E.R 

(T) 
D.D 
(T) 

B.L. 
(T) 

D. 
(T) 

A.L. 
(T) 

S.L. 
(T) 

E.R. 
(D) 

A.L. 
(D) 

D. 
(D) 

D.D. 
(D) 

B.L. 
(D) 

Be 1.40 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Na 53.61 3771.5 24510.4 8598.4 24066.2 205.0 21433.2 3721.8 2235.9 18717.2 21430.6 9086.9 
Mg 57.83 3448.6 3601.3 1588.0 3683.9 1265.1 3963.3 3352.1 680.3 2864.8 3102.0 1630.3 
Al 0.39 160.2 65.5 53.1 28.8 265.4 864.3 13.0 91.5 11.7 6.7 40.0 
K 51.99 579.2 11935.0 3037.3 10695.2 329.8 13794.7 554.3 445.6 8943.3 10081.5 3076.5 
Ca 46.94 10830.9 16899.0 5782.8 17123.6 1366.9 19832.8 10446.4 823.0 14593.0 14445.1 5610.4 
V 0.12 1.1 1.2 1.0 1.2 1.7 5.7 0.6 2.2 1.2 1.2 0.8 
Cr 0.69 <LOD <LOD 28.7 18.1 1.2 <LOD 34.2 250.0 30.5 36.6 34.7 
Mn 0.43 109.5 211.3 24.8 51.0 362.8 324.8 94.7 48.6 19.5 95.5 11.9 
Fe 53.68 1967.5 7050.8 1776.6 2383.8 2174.6 33280.4 952.6 1591.1 1005.1 1108.7 1464.1 
Co 0.65 <LOD <LOD <LOD <LOD 1.0 <LOD <LOD 4.6 <LOD <LOD <LOD 
Ni 1.21 1.5 <LOD 20.2 <LOD 1.6 <LOD 21.4 135.8 15.8 19.3 21.8 
Cu 1.54 <LOD <LOD 2.3 <LOD 4.4 16.4 <LOD 4.2 <LOD <LOD 1.8 
Zn 0.51 2.5 34.8 49.2 155.2 25.9 141.0 24.3 111.3 82.9 27.0 21.5 
As 0.20 1.0 <LOD 1.2 <LOD 1.5 6.2 0.6 0.9 <LOD <LOD 1.1 
Se 0.50 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Mo 1.91 <LOD <LOD 3.0 <LOD <LOD <LOD 4.2 33.7 <LOD <LOD 4.4 
Ag 1.79 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cd 0.41 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 1.3 <LOD <LOD <LOD 
Sb 0.55 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Pb 0.29 <LOD <LOD 0.2 <LOD 0.9 11.6 <LOD <LOD <LOD <LOD <LOD 
Th 0.55 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
U 1.43 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

 D. - Ponded Dump  D.W. - Drinking Water from Washeterria 
V.P. - Village Pond  O.A.L. - Old Airport Lake 
B.L. - Big Lake S.D.S - Secondary Drinking Water Source (Ice-Meltwater) 
D.D. - Dump Drainage E.R. - Eek River 
A.L. - Airport Lake  S.L. - Sewage Lagoon 
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Table 3: Spring 2011 Total (T) Metal Analysis (ppb) 
Analyte LOD D. 

 

D.D. 
 

V.C. 
 

S.L.             

B.L. 
 

O.A.L. E.R. 
 

A.L. 
 

V.P. 
 

Be 0.01 2.43 2.44 0.25 0.25 2.44 0.25 0.26 0.25 2.43 
Na 128.07 18375.08 10182.30 3383.71 7900.32 1971.12 1930.97 1888.31 820.07 7596.57 
Mg  30.13 3243.91 662.16 615.80 893.70 <LOD 744.39 1011.75 186.93 1598.35 
Al  1.22 127.19 74.79 83.86 107.19 69.05 59.58 171.72 39.66 168.00 
Si 167.06 <LOD <LOD 525.74 339.71 <LOD 874.86 1843.67 <LOD <LOD 
K 22.59 11603.81 6708.14 2213.74 6769.85 977.49 1646.37 758.83 826.19 7169.61 
Ca  27.61 15398.03 3961.18 1250.41 3199.20 1298.93 1210.10 2592.54 344.68 6444.00 
V  1.80 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cr 0.29 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Mn  0.36 241.74 131.99 132.64 119.74 89.41 82.26 129.52 68.80 657.41 
Fe 52.48 3126.08 4092.16 2194.05 2461.05 <LOD 1458.22 1464.73 248.22 8054.78 
Co 0.93 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ni 2.04 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cu 1.85 29.75 <LOD 3.04 7.24 <LOD <LOD 2.93 <LOD <LOD 
Zn 1.26 413.62 67.73 14.64 26.27 28.60 7.00 8.89 12.53 127.25 
As 1.85 <LOD <LOD 2.63 3.46 <LOD <LOD <LOD <LOD <LOD 
Se  0.50 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Mo 0.60 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ag 0.83 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cd  0.38 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Sb  1.72 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ba 1.05 22.13 14.04 5.29 8.10 <LOD 5.38 11.82 2.57 18.40 
Ti 1.33 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Pb  0.90 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Th 1.18 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
U  0.23 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

D - Ponded Dump  D.W. - Drinking Water from Washeterria 
V.P. - Village Pond  O.A.L. - Old Airport Lake 
B.L. - Big Lake S.D.S - Secondary Drinking Water Source (Ice-Meltwater) 
D.D. - Dump Drainage E.R. - Eek River 
A.L. - Airport Lake  S.L. - Sewage Lagoon 
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Table 4: Spring 2011: Dissolved (D) Metal Analysis (ppb) 
Analyte LOD D. 

 

D.D. 
 

V.C. 
 

S.L. 
 

B.L. 
 

O.A.L. E.R. 
 

A.L. 
 

V.P. 
 

Be 0.01 0.25 0.25 0.25 0.24 0.24 0.25 0.25 0.25 0.25 
Na 128.07 9001.58 6300.99 3430.43 8264.51 1045.77 1909.18 1875.34 812.57 4762.24 
Mg  30.13 1659.42 536.46 604.92 850.99 151.37 737.78 969.78 161.72 1117.03 
Al  1.22 28.32 20.74 49.99 30.41 8.62 41.55 25.81 19.84 55.37 
Si 167.06 326.04 200.62 468.80 283.88 <LOD 875.97 1764.00 <LOD 818.76 
K 22.59 5633.75 4184.02 2213.33 6951.45 556.05 1631.40 746.58 823.77 4616.27 
Ca  27.61 7787.56 2677.34 1268.51 2922.38 709.25 1238.27 2721.40 315.68 4282.74 
V  1.80 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cr 0.29 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Mn  0.36 112.56 81.09 130.28 102.45 45.56 81.66 121.41 65.18 416.96 
Fe 52.48 932.25 1817.77 1501.41 1657.61 140.91 1066.01 615.26 160.05 3606.31 
Co 0.93 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 1.76 
Ni 2.04 2.66 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 2.36 
Cu 1.85 10.72 4.67 10.54 2.96 2.18 <LOD <LOD <LOD 6.55 
Zn 1.26 134.25 17.67 23.90 11.45 6.62 3.80 2.56 5.46 59.53 
As 1.85 <LOD <LOD <LOD 2.06 <LOD <LOD <LOD <LOD 8.01 
Se  0.50 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Mo 0.60 1.03 0.64 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ag 0.83 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cd  0.38 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Sb  1.72 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ba 1.05 7.77 6.23 4.08 4.36 1.92 4.26 8.93 1.96 8.19 
Ti 1.33 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Pb  0.90 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Th 1.18 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
U  0.23 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

D - Ponded Dump  D.W. - Drinking Water from Washeterria 
V.P. - Village Pond  O.A.L. - Old Airport Lake 
B.L. - Big Lake S.D.S - Secondary Drinking Water Source (Ice-Meltwater) 
D.D. - Dump Drainage E.R. - Eek River 
A.L. - Airport Lake  S.L. - Sewage Lagoon 
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Table 5: Fall 2011 Total (T) Metal Analysis (ppb) 
Analyte LOD B.L. 

 

E.R. 
 

D. 
 

V.P. 
 

D.D. 
 

A.L. 
 

S.L. 
 

S.D.S. 
 

EPZ-01 
 

EPZ-02 
 

EPZ-03 
 

EPZ-03 
 

EPZ-02 
 

EPZ-01 
 

Be 0.01 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.11 
Na 128.07 8829.9 3350.1 38615.6 7401.9 45915.7 2137.0 23160.4 590.8 90847.66 2806.41 109530.10 81545.57 11710.12 31721.05 
Mg  30.13 1634.7 2672.4 5479.2 2200.3 10946.9 546.0 2838.2 <LOD 25090.96 502.38 <LOD 25513.73 1445.02 9012.84 
Al  1.22 54.4 204.0 92.9 223.2 91.7 110.6 1174.7 14.7 409.51 2798.35 1365.95 488.31 615.58 12168.97 
Si 167.06 442.2 4884.1 <LOD 2183.0 3745.7 <LOD 1496.5 <LOD 5669.35 3940.76 <LOD <LOD 2450.16 16450.02 
K 22.59 2906.9 440.0 16032.7 1351.3 16126.7 426.2 10629.1 <LOD 12093.29 <LOD <LOD 10401.37 406.35 2616.25 
Ca  27.61 5161.2 8672.5 27570.3 9727.5 55662.7 818.6 15707.0 50.4 43012.60 5577.16 1652.51 36268.39 10871.47 25267.58 
V  1.80 <LOD <LOD <LOD <LOD <LOD <LOD 3.5 <LOD <LOD <LOD <LOD <LOD <LOD 94.50 
Cr 0.29 <LOD 0.8 <LOD 1.0 5.2 0.4 1.5 <LOD <LOD 5.70 6.02 <LOD 10.15 38.97 
Mn  0.36 49.6 83.9 88.2 328.9 692.3 19.9 330.8 3.3 2915.81 1317.46 1070.05 1047.66 1596.96 4426.69 
Fe 52.48 1383.2 1731.6 4760.6 6763.6 96165.0 889.4 6812.9 <LOD 130770.35 85645.23 81018.80 9559.36 215266.37 404956.67 
Co 0.93 <LOD <LOD <LOD 1.5 <LOD <LOD 1.1 <LOD 11.32 10.45 <LOD <LOD 9.72 33.51 
Ni 2.04 <LOD <LOD <LOD 4.9 <LOD <LOD 5.9 <LOD <LOD <LOD <LOD <LOD 25.35 104.04 
Cu 1.85 <LOD <LOD <LOD 4.4 <LOD 2.3 28.7 <LOD 42.96 <LOD <LOD <LOD <LOD 87.13 
Zn 1.26 2.9 1.8 231.4 36.2 1144.2 11.4 102.2 8203.4 297.62 9584.81 1547.20 1776.15 7245.41 1007.75 
As 1.85 1.0 0.8 <LOD 11.6 <LOD 0.6 6.8 <LOD <LOD <LOD <LOD <LOD <LOD 5.53 
Se  0.50 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Mo 0.60 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ag 0.83 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cd  0.38 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Sb  1.72 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ba 1.05 13.6 19.2 43.7 15.3 174.9 4.3 57.4 <LOD 237.64 56.26 58.62 93.01 43.98 455.57 
Ti 1.33 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Pb  0.90 <LOD <LOD <LOD <LOD <LOD <LOD 6.3 <LOD <LOD <LOD <LOD <LOD <LOD 29.04 
Th 1.18 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
U  0.23 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 7.25 <LOD <LOD <LOD 
D - Ponded Dump  E.R. - Eek River 
V.P. - Village Pond  S.L. - Sewage Lagoon  
B.L. - Big Lake EPZ - Subsurface Water Samples 
D.D. - Dump Drainage S.D.S - Secondary Drinking Water Source (Rain Catchment) 
A.L. - Airport Lake 
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Table 6: Fall 2011: Dissolved (D) Metal Analysis (ppb) 
Analyte LOD B.L. 

 

E.R 
 

D. 
 

V.P. 
 

D.D. 
 

A.L. 
 

S.D.S. 
 

EPZ-01 
 

EPZ-02 
 

EPZ-03 
 

Be 0.01 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Na 128.07 8879.9 3341.8 17098.8 7531.1 48692.3 2092.0 529.6 3034.1 9028.7 607.1 
Mg  30.13 1628.8 2651.1 2089.7 2172.3 11703.0 525.5 <LOD 516.2 2379.6 <LOD 
Al  1.22 33.9 33.8 <LOD 89.1 <LOD 79.7 2.0 <LOD <LOD <LOD 
Si 167.06 440.3 4481.4 <LOD 2085.3 3072.6 <LOD <LOD 343.8 171.4 <LOD 
K 22.59 2930.4 418.3 6926.0 1310.1 17588.1 381.3 <LOD 134.8 1225.6 <LOD 
Ca  27.61 5028.2 8125.8 12504.8 9389.8 56319.7 679.3 55.9 1334.4 3292.9 297.7 
V  1.80 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cr 0.29 0.3 <LOD <LOD 0.9 6.4 0.3 <LOD <LOD <LOD <LOD 
Mn  0.36 18.2 58.9 24.9 264.9 712.4 11.8 2.7 220.7 92.6 90.1 
Fe 52.48 914.3 635.0 <LOD 3975.3 43044.6 537.1 <LOD 7778.5 <LOD <LOD 
Co 0.93 <LOD <LOD <LOD 1.1 <LOD <LOD <LOD <LOD <LOD <LOD 
Ni 2.04 <LOD <LOD <LOD 4.5 <LOD <LOD <LOD <LOD <LOD <LOD 
Cu 1.85 <LOD <LOD <LOD 3.6 <LOD 2.1 <LOD <LOD <LOD <LOD 
Zn 1.26 6.2 3.3 67.2 27.9 424.5 3.3 7357.9 13.3 <LOD 50.2 
As 1.85 0.9 <LOD <LOD 8.2 <LOD 0.5 <LOD <LOD <LOD <LOD 
Se  0.50 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Mo 0.60 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ag 0.83 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cd  0.38 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Sb  1.72 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ba 1.05 12.7 15.7 18.6 11.9 98.9 3.3 1.2 7.4 3.8 <LOD 
Ti 1.33 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Pb  0.90 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Th 1.18 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
U  0.23 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

D - Ponded Dump  E.R. - Eek River 
V.P. - Village Pond  S.L. - Sewage Lagoon  
B.L. - Big Lake EPZ - Subsurface Water Samples 
D.D. - Dump Drainage S.D.S - Secondary Drinking Water Source (Rain Catchment) 
A.L. - Airport Lake  



171 

Table 7: Spring and Fall 2010 Anion Metal Analysis (ppm) 

Analyte 
LOD D. 

Sp10 
D.D. 
Sp10 

B.L. 
Sp10 

A.L. 
Sp10 

V.P. 
Sp10 

S.D.S. 
Sp10 

E.R. 
Fa10 

V.P. 
Fa10 

A.L. 
Fa10 

S.L. 
Fa10 

D. 
Fa10 

D.D. 
Fa10 

B.L. 
Fa10 

F- 0.03 0.04 0.04 <LOD 0.06 <LOD <LOD 0.06 0.04 0.04 0.04 0.06 <LOD 0.04 
Cl- 0.17 14.73 15.79 7.69 5.76 3.98 10.10 2.05 9.55 2.59 26.99 26.50 28.76 11.04 

NO2
- 0.02 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.40 <LOD <LOD <LOD <LOD 

SO4
-2 0.14 8.17 11.71 0.86 8.59 0.52 1.94 9.04 0.83 0.79 1.37 1.94 3.12 1.31 

Br- 0.11 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
NO3

- 0.04 0.25 0.15 <LOD 0.40 <LOD <LOD <LOD <LOD <LOD <LOD 0.90 <LOD <LOD 
PO4

-3 0.28 2.28 2.28 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
D - Ponded Dump S.D.S - Secondary Drinking Water Source (Ice-Meltwater) B.L. - Big Lake A.L. - Airport Lake  
V.P. - Village Pond D.D. - Dump Drainage E.R. - Eek River S.L. - Sewage Lagoon  

Table 8: Spring 2011 Anion Metal Analysis (ppm) 
Analyte LOD E.R. S.L. D. D.D. B.L. A.L. V.P. V.C. O.A.L. 

F- 0.06 0.05 0.03 0.03 0.04 0.03 0.02 0.03 0.03 0.03 
Cl- 0.10 1.92 10.62 9.70 7.76 1.50 1.20 4.58 6.19 2.85 

NO2
- 0.04 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

SO4
-2 0.23 2.55 2.69 8.02 2.87 0.59 0.42 1.21 1.45 0.82 

Br- 0.07 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
NO3

- 0.30 <LOD 1.67 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
PO4

-3 0.31 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
D - Ponded Dump O.A.L. - Old Airport Lake B.L. - Big Lake A.L. - Airport Lake 
V.P. - Village Pond D.D. - Dump Drainage E.R. - Eek River S.L. - Sewage Lagoon  
V.C. - Village Creek 

Table 9: Fall 2011 Anion Metal Analysis (ppm) 
Analyte LOD 

 

B.L. E.R. D. V.P. D.D. A.L. S.L. S.D.S EPZ-01 
 

EPZ-03 
 

EPZ-02 
 

EPZ-03 
 

F- 0.06 0.06 0.06 0.08 0.05 0.10 0.05 <LOD <LOD 0.03 0.13 <LOD 0.10 
Cl- 0.10 9.06 1.65 28.01 6.53 32.77 2.03 53.03 1.39 1.44 6.54 1.47 5.22 

NO2
- 0.04 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

SO4
-2 0.23 0.85 7.30 0.56 0.51 0.93 0.74 2.89 0.71 1.62 1.97 0.79 3.41 

Br- 0.07 <LOD <LOD <LOD <LOD <LOD <LOD 0.42 <LOD <LOD <LOD <LOD <LOD 
NO3

- 0.30 <LOD <LOD <LOD <LOD 0.50 0.02 0.60 <LOD 0.16 0.59 0.22 0.08 
PO4

-3 0.31 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
D - Ponded Dump  E.R. - Eek River A.L. - Airport Lake 
V.P. - Village Pond  S.L. - Sewage Lagoon  
B.L. - Big Lake EPZ - Subsurface Water Samples 
D.D. - Dump Drainage S.D.S - Secondary Drinking Water Source (Rain Catchment) 
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Appendix C-iii: ICP-MS Metal Analysis Data for Ekwok 

Table 1: Spring - Summer 2010 Total (T) Metal Analysis (ppb) 

Analyte LOD 
D. #3 K.C. D. #1 EKPZ 

_02 
D. #2 G.P. D. D.S. EKWPZ 

_02 
EKWPZ

_02 
EKWPZ

_03 
EKWPZ

_03 
EKWPZ

_02 
EKWPZ

_02 
Be 0.28 0.4 0.4 0.4 0.6 0.4 0.5 0.5 0.4 <LOD 0.3 0.6 2.6 2.1 0.4 
Na 25.96 683.3 1718.3 916.2 1490.8 1015.7 442.5 649.8 3142.6 1939.7 1533.2 2079.9 4483.1 4891.3 4919.0 
Mg  41.18 454.0 792.2 685.6 495.9 560.1 361.7 307.1 1921.3 526.7 647.0 657.9 1291.4 953.2 310.6 
Al  0.36 130.7 31.6 186.6 3564.4 43.3 689.9 279.1 0.6 4495.6 5433.2 5593.5 98358.8 56571.0 105.9 
K 37.03 2803.2 552.1 2451.2 310.3 2137.3 1834.0 850.0 404.0 365.3 427.0 460.1 1344.1 925.6 286.2 
Ca  16.38 1985.2 2742.2 1830.3 1697.1 7207.5 1427.0 908.2 5540.6 1958.1 2239.4 2045.6 8254.9 6655.0 1274.3 
V  0.57 0.2 <LOD <LOD 8.8 <LOD 1.8 <LOD <LOD 6.7 8.6 11.2 48.7 44.2 <LOD 
Cr 0.11 0.0 <LOD <LOD 27.3 <LOD 0.6 <LOD <LOD 11.2 8.8 16.6 76.0 58.2 1.0 
Mn  0.15 62.2 74.3 177.3 386.9 267.6 93.4 39.0 1.6 469.5 604.5 815.9 890.1 708.2 326.8 
Fe 11.51 125.5 299.9 295.1 27183.8 141.4 805.3 320.2 39.6 17915.4 9872.4 21267.8 282960.5 97788.3 58557.8 
Co 0.30 0.1 <LOD <LOD 7.4 0.8 0.4 <LOD <LOD 8.9 10.9 13.4 15.2 11.4 4.9 
Ni 0.41 0.1 <LOD <LOD 102.3 0.6 <LOD <LOD <LOD 60.9 20.0 26.9 74.1 68.1 6.4 
Cu 0.31 3.0 0.7 2.0 196.5 7.6 2.8 0.9 56.4 44.1 23.4 34.9 124.8 119.6 12.6 
Zn 0.54 20.6 5.1 19.5 318.3 24.4 27.4 5.2 3.7 162.7 83.8 185.9 5968.8 3617.0 142.5 
As 0.15 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 1.4 0.9 <LOD 
Se  0.50 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Mo 0.13 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.6 0.7 0.3 
Ag 0.14 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.3 0.2 <LOD 
Cd  0.07 0.1 <LOD 0.1 0.1 0.1 0.2 <LOD <LOD 0.1 <LOD <LOD 0.7 0.4 0.3 
Sb  0.34 0.5 <LOD 0.4 0.4 0.5 0.4 <LOD <LOD <LOD <LOD <LOD 0.5 <LOD 0.4 
Ba 0.21 7.2 7.6 6.9 57.1 18.9 13.2 7.4 2.4 78.4 123.0 88.0 338.7 306.3 8.5 
Ti 0.84 0.2 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Pb  0.25 0.8 <LOD 0.5 4.0 0.5 3.0 <LOD <LOD 2.6 2.4 4.1 21.3 15.1 0.6 
Th 0.61 0.8 0.8 0.8 0.9 0.8 0.8 0.8 0.8 <LOD <LOD 0.7 3.7 2.0 <LOD 
U  0.92 0.2 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 3.8 3.4 <LOD 

D. #3 - Surface Water at EKWPZ-03 D.S. - Drinking Water Source EKWPZ - Subsurface Water Well Samples 
D. #2 - Surface Water at EKWPZ-02 G.P. - Lagoon at Gravel Pit 
D. #1 - Surface Water at EKWPZ-01 D. - Surface Water between old and new Dump Trench 
K.C. - Klutuk Creek 
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Table 2: Fall 2010 Total (T) and Dissolved (D) Metal Analysis (ppb) 

Analyte LOD 
S.L. 
(T) 

D.S. 
(T) 

O.D. 
(T) 

G.P. 
(T) 

N.R. 
(T) 

G.L. 
(T) 

K.C. 
(T) 

D.S.-1 
(D) 

K.C. 
(D) 

O.D. 
(D) 

G.P. 
(D) 

Be 1.40 <LOD <LOD <LOD <LOD <LOD 5.23 <LOD <LOD <LOD <LOD <LOD 
Na 53.61 102808.39 3259.77 2107.42 2855.99 1829.48 2983.62 1870.41 3362.28 1872.83 1031.94 2223.61 
Mg  57.83 5256.30 1976.62 1439.47 947.42 1917.55 1053.25 702.78 2080.68 729.01 977.80 796.22 
Al  0.39 657.47 1.88 23.74 64.44 44.87 24.51 10.45 1.17 13.09 28.07 5.32 
K 51.99 20063.34 439.59 2213.65 773.24 331.13 660.37 494.75 442.43 599.07 1592.73 599.02 
Ca  46.94 15440.04 5654.06 5250.69 4120.29 7834.33 4686.61 2806.13 5598.19 2743.99 3692.41 3618.73 
V  0.12 1.88 0.20 2.08 1.16 0.41 0.77 0.17 0.20 0.21 1.16 1.16 
Cr 0.69 <LOD <LOD 8.90 <LOD <LOD 1.50 <LOD <LOD <LOD <LOD <LOD 
Mn  0.43 244.05 6.11 358.02 18.53 22.19 2.57 4.68 5.65 8.13 240.80 <LOD 
Fe 53.68 2850.33 73.43 5093.03 <LOD 490.25 216.47 <LOD <LOD 83.21 810.76 <LOD 
Co 0.65 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ni 1.21 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cu 1.54 153.12 2137.95 <LOD <LOD <LOD <LOD <LOD 314.38 <LOD <LOD <LOD 
Zn 0.51 85.64 47.39 430.95 72.23 4.14 3.75 4.87 15.20 1.32 <LOD <LOD 
As 0.20 3.15 0.28 2.44 <LOD 0.72 0.92 <LOD <LOD <LOD <LOD <LOD 
Se  0.50 <LOD <LOD <LOD <LOD <LOD 0.50 <LOD <LOD <LOD <LOD <LOD 
Mo 1.91 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ag 1.79 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cd  0.41 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Sb  0.55 <LOD <LOD <LOD <LOD <LOD 0.02 <LOD <LOD <LOD <LOD <LOD 
Ba 0.22 13.77 2.84 19.20 8.96 6.88 6.02 6.11 2.68 7.15 13.54 6.13 
Ti 0.71 <LOD <LOD <LOD <LOD <LOD 0.20 <LOD <LOD <LOD <LOD <LOD 
Pb  0.29 <LOD 1.24 <LOD <LOD <LOD 0.19 <LOD <LOD <LOD <LOD <LOD 
Th 0.55 <LOD <LOD <LOD <LOD <LOD 0.09 <LOD <LOD <LOD <LOD <LOD 
U  1.43 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

D. #3 - Surface Water at EKW_PZ-03 D.S. - Drinking Water Source 
D. #2 - Surface Water at EKW_PZ-02 G.P. - Surface Water from Gravel Pit 
D. #1 - Surface Water at EKW_PZ-01 D. - Surface Water between old and new Dump Trench 
N.R. - Nushagak River S.L. - Sewage Lagoon 
K.C. - Klutuk Creek  G.L. - Gravel Pit Lagoon 
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Table 3: Spring 2011 Total (T) Metal Analysis (ppb) 

Analyte LOD 
D.S.-2 N.R. EKWPZ

_01 
EKWPZ_

02 
EKWPZ

_03 
D. #1 D. #2 D. #3 D.-1 D.-2 O.D. K.C. D.S.-3 S.L. 

Be 0.01 0.26 0.26 4.15 2.47 3.23 0.25 0.25 0.25 0.28 0.27 0.25 0.25 0.24 0.36 
Na 128.07 1782.00 1455.28 25458.29 1912.28 6225.48 701.59 746.65 1828.21 1024.75 6133.43 805.38 1816.12 3996.44 5107.97 
Mg  30.13 465.58 1077.11 748.37 <LOD <LOD 374.23 539.99 667.38 331.76 2545.83 407.58 859.62 3434.76 1881.11 
Al  1.22 170.90 235.31 5004.24 714.41 29607.28 75.49 131.04 199.20 2309.23 363.66 266.36 137.80 3.65 5867.58 
Si 167.06 3814.65 3228.77 5633.93 7085.84 12221.92 512.18 598.18 1529.92 1820.34 3212.75 334.57 4243.12 9392.65 7730.05 
K 22.59 234.53 679.53 834.25 <LOD 811.60 1265.22 2028.46 4903.19 454.73 4189.30 1619.87 467.44 670.47 2670.39 
Ca  27.61 1750.97 3575.02 2681.18 1496.05 1581.66 1035.87 1398.30 2842.94 1121.43 51474.48 950.13 2462.71 10158.50 7685.47 
V  1.80 <LOD <LOD <LOD <LOD 27.94 <LOD <LOD <LOD 2.59 <LOD <LOD <LOD <LOD 4.73 
Cr 0.29 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.29 
Mn  0.36 32.16 57.67 1007.00 206.73 524.65 35.81 56.93 79.69 25.07 1321.27 70.09 43.54 81.54 240.02 
Fe 52.48 1182.82 842.68 96715.08 62442.49 50780.91 209.47 242.74 510.48 1462.24 477.87 427.59 289.01 15347.88 8016.93 
Co 0.93 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 2.78 <LOD <LOD <LOD 1.29 
Ni 2.04 2.47 <LOD 21.22 22.99 <LOD <LOD <LOD <LOD <LOD 11.18 <LOD <LOD 3.50 5.48 
Cu 1.85 387.68 <LOD 74.17 71.52 19.84 1.90 <LOD 9.30 2.06 4.48 <LOD <LOD 43.56 602.39 
Zn 1.26 1743.75 9.81 36405.74 728.49 6511.58 20.46 22.93 44.08 22.29 30.29 8.79 7.07 43.36 352.55 
As 1.85 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 3.18 
Se  0.50 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Mo 0.60 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ag 0.83 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cd  0.38 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.56 
Sb  1.72 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ba 1.05 8.44 6.96 57.99 15.18 44.78 3.03 5.21 7.59 19.70 60.76 5.68 5.69 6.53 70.10 
Ti 1.33 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Pb  0.90 25.98 <LOD 18.40 <LOD <LOD <LOD <LOD 1.05 1.07 2.24 <LOD <LOD 1.38 7.53 
Th 1.18 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
U  0.23 <LOD <LOD 6.37 2.46 3.48 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

D. #3 - Surface water at EKWPZ-03 D.S. 2- Drinking Water Source at Health Center D.-1 - Surface Water between old and new Dump Trench 
D. #2 - Surface water at EKWPZ-02 D.S. 3- Drinking Water Source at ICAP Center D.-2 - Surface Water at new Dump Trench 
K.C. - Klutuk Creek  S.L. - Sewage Lagoon  EKWPZ - Subsurface Water Well Samples 
D. #1 - Surface water at EKWPZ-01 N.R. - Nushagak River 
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Table 4: Spring 2011 Dissolved (D) Metal Analysis (ppb) 

Analyte LOD 
D.S.-2 N.R. EKWPZ

_01 
EKWPZ 

_02 
EKWPZ

_03 
D. #1 D. #2 D. #3 D.-1 D.-2 O.D. K.C. D.S.-3 S.L. 

Be 0.01 0.25 0.25 1.23 0.24 0.25 0.25 0.25 0.27 0.26 0.26 0.25 0.25 0.25 0.26 
Na 128.07 1846.80 1456.69 43794.59 1697.44 4261.68 775.88 770.25 1848.47 1010.19 6228.65 854.97 1829.56 4074.26 5146.62 
Mg  30.13 428.07 978.72 <LOD 284.03 <LOD 377.04 493.61 635.08 243.67 2339.06 386.10 895.12 3283.78 1100.94 
Al  1.22 20.22 35.48 87.86 5.57 12.35 65.29 98.16 143.30 508.99 88.27 140.72 50.23 5.73 82.03 
Si 167.06 4527.11 2516.15 <LOD 3410.58 <LOD 499.61 567.97 1509.80 1107.94 3197.40 291.20 4007.54 8695.44 5787.40 
K 22.59 227.72 650.23 718.22 880.25 1126.91 1261.51 1922.85 5045.56 429.68 4026.99 1615.40 460.25 791.06 1989.70 
Ca  27.61 1725.29 3095.67 194.82 1100.80 66.70 1007.87 1309.30 2650.56 1117.48 44825.68 929.59 2505.89 10078.23 3765.65 
V  1.80 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cr 0.29 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Mn  0.36 28.33 31.65 7.69 40.32 24.01 38.28 42.30 76.79 24.78 1129.41 58.09 35.60 76.28 127.60 
Fe 52.48 418.67 267.49 <LOD 566.70 149.06 167.98 199.70 382.26 323.59 204.54 165.97 218.28 12616.59 497.15 
Co 0.93 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 2.56 <LOD <LOD <LOD <LOD 
Ni 2.04 2.38 <LOD <LOD 4.41 <LOD <LOD <LOD <LOD <LOD 9.50 <LOD <LOD 2.50 <LOD 
Cu 1.85 306.10 <LOD <LOD <LOD <LOD <LOD <LOD 8.98 <LOD 3.93 2.23 <LOD 8.50 12.24 
Zn 1.26 1534.82 3.57 128.43 80.21 165.41 16.00 16.43 37.03 4.46 111.54 6.85 3.25 13.60 36.53 
As 1.85 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Se  0.50 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Mo 0.60 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.60 
Ag 0.83 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cd  0.38 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Sb  1.72 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ba 1.05 7.04 4.00 <LOD 3.67 <LOD 2.76 4.05 6.90 9.29 52.46 4.15 4.41 6.70 3.16 
Ti 1.33 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Pb  0.90 8.44 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Th 1.18 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
U  0.23 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

D. #3 - Surface Water at EKWPZ-03 D.S. 2- Drinking Water Source at Health Center EKWPZ - Subsurface Water Well Samples 
D. #2 - Surface Water at EKWPZ-02 D.S. 3- Drinking Water Source at ICAP Center K.C. - Klutuk Creek  
O.D. - Surface Water at Old Dump  S.L. - Sewage Lagoon  D.-2 - Surface Water at new Dump Trench  
D. #1 - Surface water at EKWPZ-01 N.R. - Nushagak River D.-1 - Surface Water between old and new Dump Trench 
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Table 5: Summer - Fall 2011 Total (T) Metal Analysis (ppb) 
Analyte LOD EKWPZ_01 EKWPZ_02 EKWPZ_03 EKWPZ_03 EKWPZ_02 EKWPZ_03 S.L. O.D. N.R. D.S. D. #2 G.P. 

Be 0.01 4.15 2.47 3.23 1.74 1.09 1.17 <LOD <LOD <LOD <LOD 0.70 <LOD 
Na 128.07 25458.29 1912.28 6225.48 1214.66 8181.79 5106.17 73719.61 1348.22 2845.62 6501.23 1817.55 3131.08 
Mg  30.13 748.37 <LOD <LOD 878.47 6005.68 1903.58 6658.44 505.67 2501.89 3955.95 1248.15 803.04 
Al  1.22 5004.24 714.41 29607.28 21156.92 95132.59 74482.20 3403.24 1024.91 146.87 22.48 25945.41 18.72 
Si 167.06 5633.93 7085.84 12221.92 10412.62 59762.45 50224.75 14840.95 2205.68 4989.15 16485.21 10164.67 7961.01 
K 22.59 834.25 <LOD 811.60 390.20 2596.03 1347.12 21319.65 935.61 <LOD 828.60 1502.80 527.26 
Ca  27.61 2681.18 1496.05 1581.66 4639.46 15624.69 8470.31 17683.65 1797.21 10912.29 12710.30 3685.88 3444.73 
V  1.80 <LOD <LOD 27.94 2.20 70.19 49.11 <LOD <LOD <LOD <LOD 53.91 <LOD 
Cr 0.29 <LOD <LOD <LOD 7.82 123.74 37.22 <LOD <LOD <LOD <LOD 9.24 <LOD 
Mn  0.36 1007.00 206.73 524.65 721.98 2327.58 1075.71 316.16 92.18 28.88 <LOD 703.60 9.97 
Fe 52.48 96715.08 62442.49 50780.91 27680.71 248165.62 178483.56 6743.12 1828.71 720.60 <LOD 12077.25 <LOD 
Co 0.93 <LOD <LOD <LOD 4.69 54.99 <LOD <LOD <LOD <LOD <LOD 6.24 <LOD 
Ni 2.04 21.22 22.99 <LOD 25.62 1857.20 <LOD <LOD <LOD <LOD <LOD 3.54 <LOD 
Cu 1.85 74.17 71.52 19.84 22.97 166.15 63.90 452.12 <LOD <LOD 31.99 38.12 <LOD 
Zn 1.26 36405.74 728.49 6511.58 3912.69 703.40 12587.05 375.25 <LOD <LOD 16.81 76.16 <LOD 
As 1.85 <LOD <LOD <LOD 0.81 <LOD <LOD <LOD <LOD <LOD <LOD 1.98 <LOD 
Se  0.50 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Mo 0.60 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ag 0.83 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cd  0.38 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.51 <LOD 
Sb  1.72 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ba 1.05 57.99 15.18 44.78 102.67 757.85 220.61 51.80 15.29 11.07 <LOD 181.74 4.42 
Ti 1.33 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Pb  0.90 18.40 <LOD <LOD 3.00 32.29 21.20 <LOD <LOD <LOD <LOD 29.44 <LOD 
Th 1.18 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
U  0.23 6.37 2.46 3.48 1.66 7.32 7.82 <LOD <LOD <LOD <LOD <LOD <LOD 

D. #2 - Surface Water at EKWPZ-02 D.S. - Drinking Water Source at ICAP Center 
S.L. - Sewage Lagoon  EKWPZ - Subsurface Water Well Sample  
N.R. - Nushagak River G.P. - Surface Water from Gravel Pit  
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Table 6: Summer - Fall 2011 Dissolved (D) Metal Analysis (ppb) 
Analyte LOD D. #2 G.P. S.L. O.D. N.R. 

Be 0.01 <LOD <LOD <LOD <LOD <LOD 
Na 128.07 1415.20 3135.47 20585.48 746.38 2012.83 
Mg  30.13 80.93 760.79 1100.01 314.04 2041.37 
Al  1.22 235.93 3.00 37.77 106.76 26.05 
Si 167.06 554.56 7748.53 4855.53 1384.20 4110.65 
K 22.59 761.28 479.59 4640.22 917.88 334.80 
Ca  27.61 578.74 3359.11 3815.04 1252.18 8455.34 
V  1.80 <LOD <LOD <LOD <LOD <LOD 
Cr 0.29 <LOD <LOD <LOD <LOD <LOD 
Mn  0.36 64.44 10.24 36.92 20.93 9.94 
Fe 52.48 281.69 <LOD 291.52 192.23 273.30 
Co 0.93 <LOD <LOD <LOD <LOD <LOD 
Ni 2.04 <LOD <LOD <LOD <LOD <LOD 
Cu 1.85 10.46 <LOD 22.00 <LOD <LOD 
Zn 1.26 6.63 <LOD 6.91 2.54 10.94 
As 1.85 0.43 <LOD <LOD <LOD 0.57 
Se  0.50 <LOD <LOD <LOD <LOD <LOD 
Mo 0.60 <LOD <LOD <LOD <LOD <LOD 
Ag 0.83 <LOD <LOD <LOD <LOD <LOD 
Cd  0.38 <LOD <LOD <LOD <LOD <LOD 
Sb  1.72 <LOD <LOD <LOD <LOD <LOD 
Ba 1.05 3.89 4.68 2.66 4.29 6.59 
Ti 1.33 <LOD <LOD <LOD <LOD <LOD 
Pb  0.90 <LOD <LOD <LOD <LOD <LOD 
Th 1.18 <LOD <LOD <LOD <LOD <LOD 
U  0.23 <LOD <LOD <LOD <LOD <LOD 
D. #2 - Surface Water at EKWPZ-02 
S.L. - Sewage Lagoon  
N.R. - Nushagak River 
EKW_PZ - Subsurface Water Well Sample 
G.P. - Surface Water from Gravel Pit  
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Table 7: Spring - Fall 2010 Anion Metal Analysis (ppm) 

Analyte 
LOD O.D. 

Sp10 
D. #1 
Sp10 

EKWPZ_02 
Sp10 

D. #3 
Sp10 

D.-2 
Sp10 

O.D. 
Fa10 

N.R. 
Fa10 

S.L. 
Fa10 

G.P. 
Fa10 

F- 0.01 <LOD 0.03 <LOD 0.02 <LOD 0.04 0.05 0.09 0.07 
Cl- 0.18 0.28 0.36 0.47 0.25 0.28 2.79 0.40 62.30 1.31 

NO2
- 0.03 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 1.30 

SO4
-2 0.03 2.92 1.15 1.60 1.57 9.80 1.18 5.87 8.10 1.36 

Br- 0.07 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
NO3

- 0.15 0.21 0.30 <LOD 0.42 0.15 <LOD 0.51 <LOD <LOD 
PO4

-3 0.29 0.40 <LOD 0.56 <LOD <LOD <LOD <LOD 8.02 <LOD 
D. #1 - Surface Water at EKW_PZ-02 D. #3 - Surface Water at EKW_PZ_03 EKW_PZ - Subsurface Water Well Sample 
S.L. - Sewage Lagoon  D.-2 - Surface Water at new Dump Trench G.P. - Surface Water from Gravel Pit 
N.R. - Nushagak River O.D. - Surface Water at Old Dump 

Table 8: Spring 11 Anion Metal Analysis (ppm) 

Analyte LOD 
 

EKWPZ_
01 

 

EKWPZ_
02 

 

EKWPZ_
03 

D. #1 D. #2 D. #3 D. -1 D. -2 O.D. K.C. D.S.-3 N.R. S.L. D.S.-2 

F- 0.06 0.06 0.04 0.05 0.01 <LOD 0.02 0.01 0.03 0.01 0.05 0.04 0.05 0.03 0.04 
Cl- 0.10 0.77 1.47 1.20 0.91 1.01 2.39 1.32 8.05 1.40 1.17 1.82 0.94 3.41 1.92 

NO2
- 0.04 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

SO4
-2 0.23 5.26 1.07 0.83 0.46 0.64 3.78 1.68 68.00 0.65 1.09 1.48 2.37 1.88 1.62 

Br- 0.07 <LOD <LOD 0.17 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
NO3

- 0.30 0.55 0.06 <LOD <LOD <LOD 0.93 0.12 3.99 <LOD <LOD <LOD 0.13 <LOD <LOD 
PO4

-3 0.31 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
D. #1 - Surface Water at EKW_PZ-02 D. #3 - Surface Water at EKW_PZ_03 EKWPZ - Subsurface Water Well Sample 
S.L. - Sewage Lagoon  D.-2 - Surface Water at new Dump Trench 
N.R. - Nushagak River O.D. - Surface Water at Old Dump 

Table 9: Fall 11 Anion Metal Analysis (ppm) 
Analyte LOD 

 

D.-2 
 

G.P. S.L. O.D. N.R. 
F- 0.06 0.04 0.06 0.15 0.03 0.07 
Cl- 0.10 1.13 1.31 56.82 0.52 1.16 

NO2
- 0.04 <LOD <LOD <LOD <LOD <LOD 

SO4
-2 0.23 1.36 1.37 4.00 0.52 7.29 

Br- 0.07 <LOD <LOD <LOD <LOD <LOD 
NO3

- 0.30 0.44 <LOD <LOD <LOD 0.15 
PO4

-3 0.31 <LOD <LOD 13.19 <LOD <LOD 
D. -2 - Surface Water at new Dump Trench G.P. - Surface Water from Gravel Pit 
S.L. - Sewage Lagoon   O.D. - Surface Water at Old Dump 
N.R. - Nushagak River 
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Appendix C- iv: ICP-MS Metal Analysis Data for Fort Yukon 

Table 1: Spring 2010 Total (T) Metal Analysis (ppb) 
Analyte LOD FYPZ_04 FYPZ_02 FYPZ_01 D. #1 H.L.S. S.L. P.R. H.L. D.#2 D.#3 Y.R. FYPZ_01 FYPZ_04 FYPZ_02 FYPZ_01 

Be 0.3 0.8 1.3 1.5 3.9 0.3 <LOD <LOD <LOD 3.9 3.9 <LOD <LOD 0.5 1.0 1.2 
Na 26.0 181616.1 184746.4 21356.2 298936.9 34564.4 6735.1 3003.3 2765.6 178113.4 287784.3 2569.7 298936.9 181616.1 184746.4 21431.2 
Mg  41.2 125383.7 102451.8 115151.7 113015.3 94802.4 18061.8 7177.4 8322.7 87707.1 113693.2 9168.6 142323.7 157066.9 124484.9 155253.7 
Al  0.4 3062.2 5263.1 1311.5 126.7 14.2 15.0 41.2 12.3 41.3 494.2 214.9 127.5 3440.8 5829.0 1534.4 
K 37.0 36885.2 24611.1 5236.7 49405.0 7664.6 3947.4 690.5 2677.8 52882.9 48106.8 1032.8 55609.4 42639.4 27933.6 5245.8 
Ca  16.4 177551.2 136685.1 430527.9 171403.9 162612.5 68926.0 35611.3 36981.2 122977.5 181270.3 34898.3 <LOD 179160.9 131783.7 446653.3 
V  0.6 23.7 39.5 20.8 1.3 1.8 1.0 1.0 1.1 1.3 2.2 1.6 <LOD 23.6 39.5 20.8 
Cr 0.1 26.1 57.4 13.1 3.9 2.3 0.5 0.5 0.4 2.2 3.4 0.8 <LOD 26.0 57.5 12.8 
Mn  0.2 1672.1 1508.6 8932.8 1357.7 8691.7 430.0 26.2 13.7 629.9 1543.8 48.4 1359.4 1816.3 1654.3 10664.7 
Fe 11.5 68368.9 36375.2 24985.2 12569.5 1840.0 540.0 229.5 113.9 5454.8 14811.3 463.7 <LOD 76903.7 41747.8 28973.1 
Co 0.3 14.5 16.3 30.9 2.4 13.0 1.1 0.6 0.6 3.2 2.7 0.8 2.0 14.2 16.0 30.7 
Ni 0.4 111.0 223.9 152.4 33.3 48.1 12.2 6.7 7.2 28.3 36.5 6.7 32.3 132.3 278.1 196.3 
Cu 0.3 20.0 25.2 11.6 13.4 8.8 3.8 2.0 1.4 8.1 25.8 3.1 <LOD 19.8 25.0 11.3 
Zn 0.5 361.5 414.5 178.7 48.8 5.9 6.1 6.9 2.6 68.9 113.0 7.9 47.0 503.7 564.2 260.0 
As 0.6 8.9 12.6 22.2 4.2 6.8 3.5 0.7 2.4 2.4 5.7 1.0 <LOD 7.3 10.7 15.4 
Se  0.5 0.6 0.7 1.2 <LOD 3.8 0.5 <LOD <LOD <LOD 0.5 0.9 <LOD <LOD <LOD 0.9 
Mo 0.1 4.6 4.9 1.6 2.6 6.3 2.0 0.7 1.2 2.2 1.8 1.1 2.3 4.4 4.7 1.4 
Ag 0.1 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.3 <LOD <LOD <LOD <LOD 
Cd  0.1 0.9 1.0 20.0 0.3 0.4 0.2 0.2 0.2 2.8 3.4 0.3 <LOD <LOD 0.7 19.8 
Sb  0.3 1.4 1.8 1.9 3.3 1.6 0.7 0.6 0.7 3.4 3.2 0.7 3.0 1.2 1.6 1.7 
Ba 0.2 356.6 747.2 684.8 319.7 384.8 299.3 58.7 69.7 147.6 252.1 58.1 291.6 358.0 721.0 648.5 
Ti 0.8 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Pb  0.3 13.7 12.4 3.3 5.0 <LOD <LOD 0.6 <LOD 1.0 17.3 0.6 4.8 13.5 12.2 3.1 
Th 0.6 1.4 0.8 4.1 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 1.1 <LOD 3.8 
U  0.9 37.8 10.5 3.5 <LOD 15.3 1.2 <LOD <LOD <LOD <LOD 1.2 <LOD 37.7 10.3 3.3 

FYPZ - Subsurface Water Well Samples Y.R. - Yukon River D. #1 - Surface Water at FYPZ-01 
H.L.S. - Hospital Lake Slough P.R. - Porcupine River D. #2 - Surface Water at FYPZ-02 
H.L. - Hospital Lake  S.L. - Sewage Lagoon  D. #3 - Surface Water at FYPZ-03 
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Table 2: Spring 2010 Dissolved (D) Metal Analysis (ppb) 
Analyte LOD D. #1 D. #2 H.L.S. 

Be 0.3 4.0 4.0 <LOD 
Na 26.0 167612.6 267428.1 6969.9 
Mg  41.2 83688.6 111142.6 18073.0 
Al  0.4 8.5 14.8 5.4 
K 37.0 50636.6 47377.7 3914.3 
Ca  16.4 106867.3 175199.4 68731.0 
V  0.6 0.9 1.3 0.9 
Cr 0.1 2.2 2.3 0.4 
Mn  0.2 210.5 1413.5 371.3 
Fe 11.5 197.4 14707.9 122.3 
Co 0.3 2.1 2.3 1.0 
Ni 0.4 25.8 34.3 11.6 
Cu 0.3 5.9 4.1 3.0 
Zn 0.5 16.0 12.4 4.9 
As 0.6 1.3 4.4 2.6 
Se  0.5 0.6 0.5 <LOD 
Mo 0.1 2.6 1.6 2.0 
Ag 0.1 0.3 0.3 0.3 
Cd  0.1 0.3 0.2 0.2 
Sb  0.3 4.5 1.6 0.7 
Ba 0.2 79.0 317.8 284.2 
Ti 0.8 <LOD <LOD <LOD 
Pb  0.3 <LOD 1.2 <LOD 
Th 0.6 <LOD <LOD <LOD 
U  0.9 <LOD <LOD 1.0 

D. #1 - Surface Water at FYPZ-01 
D. #2 - Surface Water at FYPZ-02 
H.L.S. - Hospital Lake Slough  
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Table 3: Spring 2011 Total (T) Metal Analysis (ppb) 
Analyte LOD S.L. H.L. H.L.S. O.S.L. D. #2 D. #3 D. #1 Y.R. FYPZ_01 FYPZ_02 FYPZ_03 FYPZ_04 

Be 0.01 0.40 0.45 0.52 0.39 3.79 2.52 3.79 0.44 4.23 3.96 3.98 4.26 
Na 128.07 18823.72 2528.71 2650.44 41278.16 89023.37 9135.34 475834.33 2462.79 51261.09 135350.50 658495.48 162069.20 
Mg 30.13 39662.25 9043.68 10804.85 76031.70 105231.59 7021.73 195176.38 8225.32 28450.64 107187.87 113039.31 183252.66 
Al 1.22 234.22 1350.78 2429.34 35.46 72.69 104220.20 91.84 1132.73 5229.99 1298.56 325.30 3305.28 
Si 167.06 4098.65 5049.41 6075.87 5981.18 8711.29 59165.85 16053.31 4006.53 7406.07 6195.23 5635.39 7901.21 
K 22.59 3882.41 2385.05 1918.19 18574.94 35066.23 2812.51 197393.34 1519.14 8415.62 19390.90 8825.08 8164.84 
Ca 27.61 59785.99 38977.83 43864.09 30040.75 236759.17 16440.72 330630.21 30803.94 55528.36 96328.41 289725.94 123839.82 
V 1.80 3.92 5.22 8.52 <LOD <LOD 69.24 <LOD 4.02 20.66 <LOD <LOD 18.04 
Cr 0.29 0.51 3.19 5.31 <LOD <LOD 116.45 <LOD 2.06 1061.20 106.01 14.08 16.28 
Mn 0.36 1045.92 171.42 187.31 111.85 7026.99 2427.19 4002.45 90.16 6710.94 5445.88 2546.61 1553.21 
Fe 52.48 1760.92 2294.89 4253.86 328.24 4997.95 265358.95 1912.80 1882.72 1879840.84 1663372.43 47135.07 155745.08 
Co 0.93 3.27 1.97 3.40 <LOD 16.09 59.32 <LOD 1.64 71.31 19.87 18.74 14.30 
Ni 2.04 20.31 13.05 17.82 9.07 50.46 1826.10 61.42 11.40 704.73 132.34 165.03 77.37 
Cu 1.85 5.41 9.27 9.96 2.93 <LOD 148.51 <LOD 6.61 371.23 54.49 54.76 43.89 
Zn 1.26 208.30 24.02 29.01 15.69 100.33 689.80 36.93 34.29 4369.86 4065.75 922.45 4116.88 
As 0.37 4.79 2.58 2.92 2.41 8.87 4.09 8.08 1.81 10.13 5.41 6.13 5.47 
Se 0.50 0.60 <LOD <LOD 0.67 <LOD <LOD <LOD 0.50 <LOD <LOD <LOD <LOD 
Mo 0.60 3.86 0.89 0.85 4.11 <LOD <LOD 13.54 0.98 7.75 <LOD 16.94 6.26 
Ag 0.83 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cd 0.38 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Sb 1.72 1.73 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ba 1.05 172.50 98.70 129.55 75.63 179.22 818.91 188.02 80.33 265.50 485.06 65.36 199.32 
Ti 1.33 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Pb 0.90 <LOD 1.93 3.15 <LOD <LOD 32.68 <LOD 1.84 18.89 <LOD <LOD 15.07 
Th 1.18 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
U 0.23 7.07 1.38 1.62 5.40 6.53 8.41 11.32 1.48 12.56 11.28 9.04 11.50 

FYPZ - Subsurface Water Well Samples Y.R. - Yukon River D. #1 - Surface Water at FYPZ-01 
H.L.S. - Hospital Lake Slough O.S.L - Old Sewage Lagoon D. #2 - Surface Water at FYPZ-02 
H.L. - Hospital Lake  S.L. - Sewage Lagoon  D. #3 - Surface Water at FYPZ-03 
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Table 4: Spring 2011 Dissolved (D) Metal Analysis (ppb) 
Analyte LOD H.L.S. O.S.L. D. #2 Y.R.1 D. #3 S.L. H.L. Y.R.2 D. #1 FYPZ_02 FYPZ_01 FYPZ_03 

Be 0.01 0.40 0.38 0.39 0.39 0.38 0.23 0.21 0.19 0.71 0.59 0.71 0.38 
Na 128.07 2672.15 40919.81 62911.43 2436.58 58626.71 32152.97 34853.73 16698.62 227017.44 987355.87 227017.44 74105.64 
Mg 30.13 8212.73 76937.08 59524.25 7510.87 36252.85 23824.09 4654.66 38165.20 184035.09 1007539.42 184035.09 45043.25 
Al 1.22 116.65 16.79 41.29 89.38 22.04 1274.43 456.41 226.20 487.29 260.60 487.29 13.99 
Si 167.06 2706.63 5634.28 4404.40 2684.17 2490.56 1810.56 1179.39 767.78 10085.58 53250.02 10085.58 2179.59 
K 22.59 1665.46 18409.18 11791.39 1416.58 13284.07 3077.58 492.47 1466.38 71974.64 463766.27 71974.64 16888.37 
Ca 27.61 31037.65 28441.28 125597.80 28061.00 48136.64 21897.89 13414.62 14233.76 230711.21 1824592.70 230711.21 42103.92 
V 1.80 <LOD <LOD <LOD <LOD <LOD 5.76 <LOD <LOD <LOD <LOD <LOD <LOD 
Cr 0.29 1.30 1.20 1.00 <LOD <LOD 2.30 <LOD <LOD <LOD <LOD <LOD 1.44 
Mn 0.36 22.99 72.40 3198.79 21.31 270.30 275.44 132.21 151.34 2136.97 52272.49 2136.97 98.74 
Fe 52.48 247.84 232.63 1947.78 222.75 3916.50 26768.16 6062.99 16008.05 11470.34 23683.33 11470.34 467.94 
Co 0.93 <LOD <LOD 8.87 <LOD 1.16 1.78 <LOD <LOD <LOD 52.64 <LOD 1.23 
Ni 2.04 9.29 10.08 33.69 7.90 14.44 14.42 4.51 <LOD 52.19 321.86 52.19 15.44 
Cu 1.85 4.58 2.92 2.62 5.21 5.03 <LOD <LOD <LOD <LOD 30.63 <LOD 4.63 
Zn 1.26 5.76 7.25 26.63 3.93 24.86 57.98 526.27 129.33 153.78 153.46 153.78 9.25 
As 0.37 0.98 2.45 3.52 0.92 1.39 0.78 0.67 <LOD <LOD 29.56 <LOD 1.09 
Se 0.50 0.51 0.69 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 6.73 <LOD <LOD 
Mo 0.60 1.20 5.86 1.10 1.12 2.36 <LOD 0.68 <LOD <LOD 35.80 <LOD 3.29 
Ag 0.83 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cd 0.38 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 4.53 <LOD <LOD 
Sb 1.72 <LOD <LOD <LOD <LOD 3.01 <LOD <LOD <LOD <LOD 20.55 <LOD 3.45 
Ba 1.05 38.96 70.97 170.95 40.56 58.88 200.38 12.95 49.05 1037.39 1688.57 1037.39 33.40 
Ti 1.33 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Pb 0.90 <LOD <LOD <LOD <LOD <LOD 1.20 4.00 <LOD <LOD <LOD <LOD <LOD 
Th 1.18 <LOD <LOD <LOD <LOD <LOD <LOD 1.58 <LOD <LOD <LOD <LOD <LOD 
U 0.23 1.43 9.28 0.73 1.40 0.98 0.79 1.83 <LOD <LOD 27.82 <LOD 1.10 

FYPZ - Subsurface Water Well Samples Y.R. - Yukon River D. #1 - Surface Water at FYPZ-01 
H.L.S. - Hospital Lake Slough O.S.L - Old Sewage Lagoon D. #2 - Surface Water at FYPZ-02 
H.L. - Hospital Lake  S.L. - Sewage Lagoon  D. #3 - Surface Water at FYPZ-03 
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Table 4: Fall 2011 Total (T) Metal Analysis (ppb) 

Analyte LOD 
H.L. Y.R. D. #1 FY-

Sump_01 
FY-

Sump_02 
FYPZ_01 FYPZ_02 FYPZ_03 FYPZ_04 FYPZ_02 FYPZ_03 FYPZ_04 FY-

Sump_01 
FY-

Sump_02 
Be 0.01 <LOD <LOD <LOD 2.87 5.30 5.99 3.61 0.46 <LOD 0.5 0.5 <LOD <LOD <LOD 
Na 128.07 2495.9 3301.3 144039.6 5818.88 21720.92 60043.13 10513.45 135335.96 58720.2 281824.4 316925.6 43215.8 208797.0 87044.6 
Mg 30.13 9345.4 11608.7 131738.4 2445.06 91494.59 32727.45 56092.09 32310.20 112497.0 209772.0 42811.0 100278.3 171282.6 89476.4 
Al 1.22 29.2 1213.5 504.3 82134.15 46841.05 35498.40 30057.27 37.90 4106.5 11327.7 4195.7 597.4 456.2 22.1 
Si 167.06 1922.2 5311.2 51776.4 50011.03 33726.82 24232.10 28607.35 6070.64 9478.9 18832.9 10705.7 <LOD 9079.8 5676.0 
K 22.59 1984.4 1467.4 26928.3 1465.80 1018.28 254.32 1180.93 6725.95 4680.5 28449.5 4804.8 4051.4 70119.1 44333.6 
Ca 27.61 36690.2 38980.8 429435.9 9242.60 332585.46 185964.59 250971.47 130039.77 68096.2 240999.7 128900.5 41541.4 221078.1 147413.8 
V 1.80 <LOD 3.9 <LOD 49.35 81.09 22.36 54.42 <LOD <LOD 55.4 <LOD <LOD <LOD <LOD 
Cr 0.29 <LOD 2.2 <LOD 33.01 121.23 61.51 48.36 <LOD 18.1 28.7 <LOD <LOD <LOD <LOD 
Mn 0.36 79.4 79.0 7599.8 1150.20 2378.50 2909.78 4884.11 1848.22 2029.7 2492.5 1246.8 409.9 2031.4 4999.2 
Fe 52.48 656.8 1925.7 979469.0 180035.14 40872.93 117419.23 45455.46 5462.26 239572.3 277993.7 54737.4 44873.5 10169.2 2210.7 
Co 0.93 <LOD 1.1 <LOD 9.56 54.80 48.42 58.73 <LOD 12.7 14.9 <LOD <LOD <LOD 4.9 
Ni 2.04 7.6 11.7 110.1 52.67 383.76 213.77 204.11 24.56 <LOD 74.0 <LOD <LOD <LOD 20.0 
Cu 1.85 <LOD 4.3 46.7 52.02 116.23 138.49 198.26 <LOD 59.4 <LOD <LOD <LOD <LOD 3.1 
Zn 1.26 2.7 13.0 421.7 11882.55 1391.24 5880.40 1283.26 <LOD 433.6 551.5 5506.8 376.4 156.6 14.9 
As 0.37 2.0 1.2 9.0 <LOD 5.21 <LOD 6.67 7.22 <LOD 7.1 6.2 <LOD <LOD 2.5 
Se 0.50 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Mo 0.60 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 7.2 <LOD <LOD 3.4 
Ag 0.83 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cd 0.38 <LOD <LOD <LOD <LOD <LOD <LOD 4.66 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Sb 1.72 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 1.9 
Ba 1.05 76.0 72.2 10328.8 234.04 310.32 1339.53 1340.65 74.94 399.3 1667.9 111.4 119.7 962.0 163.9 
Ti 1.33 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Pb 0.90 <LOD 0.8 <LOD 19.45 27.04 27.08 63.49 <LOD 19.7 12.8 38.7 <LOD <LOD <LOD 
Th 1.18 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 12.0 <LOD <LOD <LOD 
U 0.23 0.3 1.1 3.9 8.41 22.59 7.21 <LOD <LOD 10.6 6.9 16.9 <LOD <LOD 2.6 

FYPZ - Subsurface Water Well Samples Y.R. - Yukon River 
FY-Sump - Subsurface Water Soil Pit D. #1 - Surface Water at FYPZ-01 
H.L. - Hospital Lake 
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Table 5: Fall 2011 Dissolved (D) Metal Analysis (ppb) 

Analyte LOD 
H.L. Y.R. D. #1 FY-

Sump_01 
FY-

Sump_02 
FYPZ_01 FYPZ_02 FYPZ_03 FYPZ_04 

Be 0.01 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Na 128.07 2402.6 3111.2 12702.5 22573.6 15248.0 17968.0 13747.3 24122.5 6181.4 
Mg 30.13 9166.1 10461.2 10549.8 18203.5 11528.7 10024.1 7108.3 3522.7 3971.3 
Al 1.22 5.6 52.4 <LOD <LOD <LOD 1.8 <LOD 5.2 <LOD 
Si 167.06 1780.4 3615.1 696.5 753.4 419.4 260.2 314.0 <LOD <LOD 
K 22.59 1971.9 1273.6 1883.5 5476.1 11946.1 1735.4 840.6 180.3 349.5 
Ca 27.61 34559.0 33898.9 15196.2 14607.3 16932.9 11231.8 9332.7 10312.8 1659.3 
V 1.80 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cr 0.29 <LOD <LOD <LOD <LOD <LOD 0.4 <LOD <LOD <LOD 
Mn 0.36 7.1 11.4 199.4 76.0 95.0 87.9 69.4 52.5 2.1 
Fe 52.48 467.9 <LOD 1747.7 565.7 251.8 188.5 <LOD <LOD <LOD 
Co 0.93 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ni 2.04 7.7 7.2 3.9 3.5 3.2 3.5 2.6 <LOD <LOD 
Cu 1.85 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Zn 1.26 1.5 1.6 <LOD 2.1 <LOD 2.5 <LOD <LOD <LOD 
As 0.37 1.6 0.4 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Se 0.50 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Mo 0.60 <LOD 1.1 <LOD <LOD <LOD <LOD <LOD 0.9 2.7 
Ag 0.83 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cd 0.38 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Sb 1.72 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ba 1.05 74.1 46.3 34.6 32.1 13.9 13.2 12.0 5.1 1.6 
Ti 1.33 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Pb 0.90 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Th 1.18 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
U 0.23 0.3 1.1 <LOD 0.3 0.8 <LOD <LOD 1.2 <LOD 

FYPZ - Subsurface Water Well Samples Y.R. - Yukon River 
FY-Sump - Subsurface Water Soil Pit D. #1 - Surface Water at FYPZ-01 
H.L. - Hospital Lake 
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Table 6: Summer 2010 Anion Metal Analysis (ppm) 
Analyte LOD 

 

FY-Sump_01 FYPZ_04 D. #1 D. #2 
 

S.L. 
 

Y.R. 
 

H.L.S. 
 

F- 0.01 0.07 0.27 0.18 0.16 0.31 0.12 0.12 
Cl- 0.17 710.97 52.41 224.41 634.55 13.35 0.57 1.68 

NO2
- 0.06 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

SO4
-2 0.14 408.71 75.07 384.00 482.58 42.04 43.00 14.36 

Br- 0.11 12.50 <LOD 0.92 10.58 0.45 <LOD <LOD 
NO3

- 0.04 5.44 <LOD 4.64 4.47 <LOD <LOD <LOD 
PO4

-3 0.28 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
FYPZ - Subsurface Water Well Samples D. #1 - Surface Water at FYPZ-01 
H.L.S. - Hospital Lake Slough  D. #2 - Surface Water at FYPZ-02 
FY-Sump - Subsurface Water Soil Pit D. #3 - Surface Water at FYPZ-03 
Y.R. - Yukon River   S.L. - Sewage Lagoon  

Table 7: Spring 2011 Anion Metal Analysis (ppm) 
Analyte LOD 

 

S.L. 
 

H.L. 
 

D. #2 
 

Y.R. O.S.L. FYPZ_03 FYPZ_01 FYPZ_02 D. #1 
F- 0.06 0.38 0.11 0.08 0.11 0.30 0.12 0.31 0.07 0.09 
Cl- 0.10 14.99 0.58 34.90 0.64 50.14 99.33 389.60 93.29 240.61 

NO2
- 0.04 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 1.30 

SO4
-2 0.23 26.34 21.49 2.18 30.63 84.17 438.41 804.24 49.22 210.76 

Br- 0.07 <LOD <LOD <LOD <LOD <LOD <LOD 0.20 0.28 1.32 
NO3

- 0.30 <LOD <LOD 0.49 <LOD  <LOD <LOD <LOD <LOD 6.66 
PO4

-3 0.31 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
FYPZ - Subsurface Water Well Samples D. #1 - Surface Water at FYPZ-01 Y.R. - Yukon River 
H.L. - Hospital Lake    D. #2 - Surface Water at FYPZ-02 S.L. - Sewage Lagoon  
FY-Sump - Subsurface Water Soil Pit 

Table 8: Fall 2011 Anion Metal Analysis (ppm) 

Analyte 
LOD H.L. Y.R. D. #1 FY-

Sump_01 
FY-

Sump_02 
FYPZ_01 FYPZ_02 FYPZ_03 FYPZ_04 FYPZ_02 FYPZ_03 FYPZ_04 FY-

Sump_01 
FY-

Sump_02 
F- 0.06 0.11 0.16 0.07 0.08 0.10 0.07 5.50 0.36 0.25 0.17 0.42 0.42 0.06 <LOD 
Cl- 0.10 0.69 0.58 97.82 223.41 188.66 272.81 214.38 524.87 28.06 210.63 125.92 43.47 201.53 6.89 

NO2
- 0.04 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

SO4
-2 0.23 13.21 39.75 4.24 22.13 131.52 16.24 7.07 1573.21 35.56 17.92 331.42 27.49 70.31 1.78 

Br- 0.07 <LOD <LOD <LOD 1.59 1.68 1.92 0.81 <LOD <LOD 1.04 <LOD 0.13 0.80 <LOD 
NO3

- 0.30 <LOD <LOD <LOD <LOD 0.58 0.95 0.47 0.74 0.62 <LOD 0.31 <LOD 24.04 <LOD 
PO4

-3 0.31 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
FYPZ - Subsurface Water Well Samples D. #1 - Surface Water at FYPZ-01 FY-Sump - Subsurface Water Soil Pit 
H.L. - Hospital Lake    Y.R. - Yukon River  
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Appendix C-v: ICP-MS Metal Analysis Data for White Mountain 

Table 1: Spring 2010 Total (T) Metal Analysis (ppb) 
Analyte LOD D.S. F.R. V.C. D. 1 D.2 D.3 D.4 D.D. D.#1 

Be 0.3 <LOD <LOD <LOD 0.3 0.6 4.1 7.4 2.4 1.9 
Na 26.0 39580.6 2070.1 2403.4 3280.0 3384.7 633359.9 4665.0 2340.3 2266.0 
Mg  41.2 33468.4 3649.8 6872.3 4427.2 8464.0 177627.8 88629.5 113514.6 110465.4 
Al  0.4 2.1 253.3 54.1 289.7 2922.5 554.6 32352.8 12178.9 9815.2 
K 37.0 277.0 1862.9 1755.1 992.0 672.7 263638.8 2914.4 693.6 926.9 
Ca  16.4 76186.4 10178.7 13230.5 10806.6 24883.4 463479.5 307675.4 247912.7 242599.0 
V  0.6 0.9 1.4 1.0 1.6 9.1 10.3 93.6 18.8 19.5 
Cr 0.1 0.6 0.7 0.5 1.1 3.7 21.0 25.7 9.6 8.2 
Mn  0.2 1.0 27.2 7.1 81.2 491.2 13397.1 4708.1 1484.8 1299.3 
Fe 11.5 41.4 393.6 105.3 529.2 2859.0 5656.9 8138.9 2717.3 2806.5 
Co 0.3 0.8 0.5 0.3 0.7 2.9 46.3 37.5 13.8 12.6 
Ni 0.4 11.4 1.9 2.5 2.7 7.5 144.1 67.4 47.7 46.1 
Cu 0.3 16.6 2.9 3.1 8.4 8.6 81.7 57.3 18.9 17.2 
Zn 0.5 68.0 11.2 25.1 11.4 31.8 523.9 291.5 71.2 74.6 
As 0.6 0.7 1.0 1.1 1.1 1.7 7.4 3.0 1.7 1.8 
Se  0.5 <LOD <LOD 0.8 <LOD 1.4 10.4 3.6 1.9 1.8 
Mo 0.1 <LOD <LOD <LOD <LOD <LOD 4.6 <LOD <LOD <LOD 
Ag 0.1 0.3 0.3 0.4 0.4 0.4 32.1 0.3 0.3 0.3 
Cd  0.1 0.3 0.3 0.3 0.3 0.3 0.5 0.3 0.3 0.3 
Sb  0.3 0.2 0.3 0.2 0.3 0.4 2.9 5.6 1.4 1.3 
Ba 0.2 0.6 0.6 0.7 0.9 0.8 195.8 1.1 0.7 0.7 
Ti 0.8 40.3 10.0 11.4 13.0 111.2 309.1 2270.8 648.1 512.4 
Pb  0.3 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Th 0.6 0.7 0.9 0.6 1.7 6.5 3.1 37.3 13.0 18.2 
U  0.9 <LOD <LOD <LOD <LOD <LOD <LOD 0.6 0.6 0.6 

<LOD <LOD <LOD <LOD <LOD 2.6 1.2 <LOD <LOD 
D.S. - Drinking Water Source D.1 - Surface Water at Decomposed Waste D-4 - Surface Water at Burnbox 
F.R. - Fish River D-2 - Surface Water at Newly Disposed Waste D. #1 - Surface Water at WMOPZ 
V.C. - Village Creek D-3 - Surface Water at Dump Drainage D.D. - Surface at Dump Drainage 
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Table 2: Spring 2011 Total (T) Metal Analysis (ppb) 

Analyte LOD 
D.4 D.3 D.D. D.1 D.5 D.6 D.2 F.R. WMO-

Sump-02 
WMO-

Sump-02 
Be 0.01 0.44 0.39 1.03 0.59 0.48 0.55 0.10 0.10 0.21 1.73 
Na 128.07 3432.00 1849.96 11021.49 34000.55 371457.31 165045.07 16333.64 6251.98 25070.45 300238.65 
Mg  30.13 9668.95 11039.93 32697.59 42985.14 45606.85 125417.78 9566.27 11980.12 17697.42 42631.84 
Al  1.22 301.30 122.35 8339.74 2241.44 78.43 286.44 497.94 443.62 1487.04 4938.57 
Si 167.06 2408.00 2949.13 13192.34 13539.65 1859.42 5891.94 1004.79 998.71 2359.12 9523.64 
K 22.59 2126.61 1347.19 1121.65 14882.48 13205.70 125325.92 1583.73 485.28 2443.02 2611.24 
Ca  27.61 20695.69 19392.18 81361.78 128792.58 19216.50 198531.85 10587.83 6909.45 17974.25 126495.76 
V  1.80 <LOD <LOD 20.85 <LOD <LOD <LOD <LOD <LOD 5.07 <LOD 
Cr 0.29 17.79 6.42 5.47 <LOD <LOD <LOD 4.78 1.52 5.70 9.47 
Mn  0.36 16.33 157.66 1456.31 2474.25 8.85 984.21 179.04 212.36 210.60 839.88 
Fe 52.48 305.56 182.90 7321.56 3145.82 875.05 6174.76 34155.28 26650.28 21934.16 21769.74 
Co 0.93 <LOD <LOD <LOD <LOD <LOD <LOD 1.52 1.41 1.94 <LOD 
Ni 2.04 21.81 10.15 24.90 39.16 <LOD 39.98 10.02 7.26 14.44 49.58 
Cu 1.85 6.27 <LOD <LOD <LOD <LOD <LOD 3.70 5.27 4.77 <LOD 
Zn 1.26 48.45 18.21 80.00 92.42 13.71 33.05 149.48 42.68 59.59 107.46 
As 0.37 0.74 0.65 4.10 15.75 <LOD 3.74 0.58 0.37 1.04 5.89 
Se  0.50 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Mo 0.60 1.92 1.12 <LOD 9.02 <LOD 6.78 <LOD <LOD <LOD <LOD 
Ag 0.83 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cd  0.38 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Sb  1.72 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ba 1.05 17.44 9.60 216.39 152.51 <LOD 220.59 53.11 45.14 132.42 119.05 
Ti 1.33 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Pb  0.90 <LOD <LOD 14.49 <LOD <LOD <LOD 1.53 1.95 2.66 16.91 
Th 1.18 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
U  0.23 0.67 0.67 <LOD <LOD <LOD 13.52 1.49 1.20 1.54 25.84 

WMO-Sump - Subsurface Water from Soil Pit D-6 - Surface Water at Decomposed Waste 
F.R. - Fish River 
D.D. - Surface Water at Dump Drainage  
D.1 - Surface Water at Decomposed Waste  

D-2 - Surface Water at Newly Disposed Waste 
D-3 - Surface Water at Mid Dump 
D-4 - Surface Water at Burnbox 
D-5 - Creek Upgradient from Dump 
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Table 3: Spring 2011 Dissolved (D) Metal Analysis (ppb) 

Analyte LOD 
D.4 D.3 D.D. D.1 D.5 D.6 D.2 F.R. WMO-

Sump-02 
WMO-

Sump-02 
Be 0.01 0.06 0.05 0.09 0.39 0.43 0.39 0.05 0.05 0.11 0.07 
Na 128.07 20967.80 9944.03 3026.34 44421.01 3372.69 1892.49 4889.14 1241.20 3248.57 5932.39 
Mg  30.13 24317.34 24103.26 5960.87 33943.25 9604.76 11399.63 22942.16 1777.23 2819.38 8251.71 
Al  1.22 69.60 36.59 188.76 47.50 275.33 18.31 18.69 39.23 691.57 242.31 
Si 167.06 7033.30 3811.00 2792.82 4210.80 2326.49 2878.66 7775.89 1396.49 1854.14 3934.74 
K 22.59 9004.70 1233.90 1462.50 9984.16 2088.82 1242.26 1450.07 750.94 871.66 604.56 
Ca  27.61 74740.17 62162.76 11537.01 92617.20 20411.96 19917.09 51406.12 10924.37 7486.95 24856.96 
V  1.80 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cr 0.29 1.05 0.63 2.08 2.99 12.27 0.96 1.28 1.01 1.78 1.12 
Mn  0.36 1580.58 972.50 8.11 1990.62 11.99 95.83 140.04 8.71 98.96 25.57 
Fe 52.48 354.99 95.25 298.53 224.14 274.21 57.00 162.01 193.86 756.46 317.54 
Co 0.93 3.63 1.19 <LOD 4.46 <LOD <LOD <LOD <LOD <LOD <LOD 
Ni 2.04 23.80 14.05 4.43 24.16 10.01 4.30 11.07 3.35 3.35 5.91 
Cu 1.85 7.58 7.91 7.16 9.93 6.49 <LOD <LOD <LOD <LOD 3.00 
Zn 1.26 11.74 2.68 7.14 40.05 41.50 5.58 7.13 2.78 9.85 10.17 
As 0.37 9.27 1.42 0.44 2.92 0.69 0.58 1.01 0.40 0.56 0.68 
Se  0.50 0.90 0.75 0.53 <LOD <LOD <LOD 0.56 <LOD 0.55 0.54 
Mo 0.60 5.50 2.18 <LOD 6.88 1.53 0.70 1.01 <LOD <LOD 0.91 
Ag 0.83 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cd  0.38 <LOD <LOD <LOD 0.39 <LOD <LOD <LOD <LOD <LOD <LOD 
Sb  1.72 3.88 <LOD <LOD 6.72 <LOD <LOD <LOD <LOD <LOD <LOD 
Ba 1.05 83.18 38.22 8.43 96.54 17.40 7.68 19.35 7.10 16.43 14.39 
Ti 1.33 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Pb  0.90 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Th 1.18 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
U  0.23 1.15 1.24 <LOD 1.47 0.68 0.68 1.00 <LOD <LOD <LOD 

WMO-Sump - Subsurface Water from Soil Pit D-2 - Surface Water at Newly Disposed Waste D-6 - Surface Water at Decomposed Waste 
F.R. - Fish River D-3 - Surface Water at Mid Dump 
D.D. - Surface Water at Dump Drainage  D-4 - Surface Water at Burnbox 
D.1 - Surface Water at Decomposed Waste  D-5 - Creek Upgradient from Dump 
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Table 4: Spring 2010 Anion Metal Analysis (ppm) 
Analyte LOD 

 

D-1 D-4 D.D. D-3 D-2 
 

F- 0.01 0.04 0.06 <LOD 0.04 0.24 
Cl- 0.17 2.14 4.01 920.59 2.05 84.72 

NO2
- 0.06 <LOD <LOD <LOD <LOD <LOD 

SO4
-2 0.14 1.37 6.33 944.58 1.47 11.10 

Br- 0.11 <LOD <LOD 5.36 <LOD 0.20 
NO3

- 0.04 0.43 2.10 <LOD 0.34 4.09 
PO4

-3 0.28 <LOD <LOD <LOD <LOD <LOD 
D.1 - Surface Water at Decomposed Waste  D-3 - Surface at Mid Dump 
D-2 - Surface Water at Newly Disposed Waste  D-4 - Surface Water at Burnbox 
D.D. - Surface Water at Dump Drainage 

Table 5: Spring 2011 Anion Metal Analysis (ppm) 

Analyte LOD 
 

D.D. D-3 D-4 D-1 D-5 
 

D-6 D-2 WMO-
Sump_02 

WMO-
Sump_01 

F.R. 

F- 0.06 <LOD 0.13 0.09 <LOD <LOD 0.06 0.07 <LOD <LOD <LOD 
Cl- 0.10 3.71 14.01 25.94 45.80 3.46 4.79 6.88 4.39 4.08 1.51 

NO2
- 0.04 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

SO4
-2 0.23 1.53 25.08 28.62 128.23 1.87 7.31 5.74 1.91 3.72 3.50 

Br- 0.07 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
NO3

- 0.30 <LOD 0.85 <LOD <LOD <LOD 0.43 0.65 <LOD <LOD <LOD 
PO4

-3 0.31 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
WMO-Sump - Subsurface Water from Soil Pit D-2 - Surface Water at Newly Disposed Waste D-6 - Surface Water at Decomposed Waste 
F.R. - Fish River D-3 - Surface Water at Mid Dump 
D.D. - Surface Water at Dump Drainage  D-4 - Surface Water at Burnbox 
D.1 - Surface Water at Decomposed Waste  D-5 - Creek Upgradient from Dump 
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Appendix C-v.: ICP-MS Inorganic Data Summary 

Metal Constitutes 
 Mean Landfill Surface 
Water  Concentrations 

Mean Landfill 
Subsurface Water 

Concentrations 
Mean Control Water 

Concentrations 
EPA Drinking 

Water Standards 
Solid Waste Leachate 

(USEPA 1998) 
Min Max Min Max Min Max Range Range 

Beryllium (ppb) 0.4 1.6 0.1 3.5 0.1 2.0 4.0 1.0-10.0 
Sodium (ppm) 7.3 153.9  8.7 178.4  3.1 8.4  12.0-2,574 
Magnesium (ppm) 2.9 79.4  1.4 107.6  0.9 20.5  120-780.0 
Aluminum (ppm) 0.2 13.6  2.9 30.9  0.1 0.5  0.05-0.2 74.0-927.0 
Potassium (ppm) 7.6 45.4  1.0  19.1 0.9 3.2  17.8-1,175 
Calcium (ppm) 13.6 165.4  4.6 205.7  3.5 57.1  95.9-2,100 
Vanadium (ppm) 2.5 30.2  5.1 94.5  0.7  3.1 9.0-29.0 
Chromium (ppb) 0.6 59.6  7.6 90.2  0.2 2.9  100.0 0.5-1,900 
Manganese (ppm) 0.2  2.5 0.5 2.7  0.1 0.7  0.1 0.03-79.0 
Iron (ppm) 5.6 196.9  21.9 356.9  0.7 13.4  0.3 0.22-2,280 
Cobalt (ppm) 0.9 20.3  1.9 50.0  0.4 2.1  40.0-130.0 
Nickel (ppb) 3.3 262.8  32.0 484.0  ND 12.4  100.0 20.0-2,227.0 
Copper (ppb) 14.3 70.7  4.8  195.5 1.7  45.4 1000.0 3.0-2,800 
Zinc (ppb) 114.8 386.2  83.5 3,576.5  10.9  50.9 5.0 0.03-350 
Arsenic (ppb) 2.2  6.4 1.0 7.5  0.7  2.3 10.0 0.2-982.0 
Selenium (ppm) ND  14.4 ND 4.12  ND 0.8  5.0 ND-1,850 
Molybdenum (ppm) ND 8.2  ND  6.3 ND  2.2 10.0-1,430 
Silver (ppm) ND 0.4  ND 0.3  ND 0.3  100.0 ND-1,960 
Cadmium (ppb) 0.3 3.1  ND 5.9  0.1 0.3  50.0 0.7-150 
Antimony (ppm) 0.5 33.3  ND 1.9  0.2 1.3  6.0 1.5-47,000 
Barium (ppb) 30.7 3,641.3  125.7 567.5  8.6 107.7  2000.0 80.0-5,000 
Thallium (ppm) ND 0.2  ND  ND ND 0.8  2.0 ND-780.0 
Lead (ppb) 4.9 20.9  9.8 39.4  0.8  2.1 15.0 5.0-1,600 
Thorium (ppm) ND 3.9  ND  13.7 ND  0.5 
Uranium  (ppm) ND 4.5  0.02 13.0  ND  3.2 

 Fluoride (ppm) 0.03 108.8  0.05 4.2  0.05 7.0  2.0 0.11-302 
Chloride (ppm) ND 411.7  ND 253.8  ND  9.3 250.0 31.0-5,475 
Nitrite (ppm) ND  381.6 ND  11.5 ND 12.3  1.0 ND-1,460 
Sulfate (ppm) 2.8 166.5  ND 291.9  ND  124.3 250.0 8.0-1,400 
Bromide (ppm) ND 3.5  ND 4.6  ND 0.4  10.0 

 Nitrate (ppm) ND 4.1  ND 2.8  ND 0.5  10.0 ND-250,000 
Phosphorus (ppm) ND 2.3  ND 0.6  ND 0.4  0.1* 0.29-117.2 
pH (units) 5.8 8.7  6.2 10.3  5.7 8.1  6.5-8.5 5.0-8.9 
Specific Conductance (mmhos/cm) 77 2,232  400 2,300  14 444  480-72,500 
*Total Alkalinity  (CaCO3) (ppm) 20 240  40 240  20 120  
*Total Hardness (CaCO3) (ppm) 50 425  25 425  25  250 

 Total Suspended Solids (ppm) 9.5 4,247  53.3 29,012  2.7 159.5  500.0 23-17,800 
Total Organic Carbon (ppm) 4.4 174.8  0.8 167.4  0.8 13.8  20.0-14,500 

ND = not detected



191 

Appendix D: Microbial Indicator Organism Analysis Data 

Appendix D-i: Microbial Indicator Organism Data for Allakaket 

Table 1: Microbial Indicator Organisms Water Data Summer 2010 
Sample ID.  GPS Location Temperature pH MPN/100mL Log Mean MPN/100mL 

0C EC ENT EC ENT 
D1 N66 031.701' W1520 39.874' 18.2 7.8 125.4 2419.6 2.1 3.4 
D1 N660 31.711' W1520 39.835' 18.2 7.8 110.6 2419.6 2.0 3.4 
D1 N660 31.711' W1520 39.835' 18.2 7.8 108.1 2419.6 2.0 3.4 
D5 N660 31.701' W1520 39.874' 11.3 6.1 14.6 1732.9 1.2 3.2 
D5 N660 31.701' W1520 39.874' 11.3 6.1 14.2 980.4 1.2 3.0 
D5 N660 31.701' W1520 39.874' 11.3 6.1 12.0 2419.6 1.1 3.4 
D4 N660 31.711' W1520 39.835' 14.6 6.2 74.3 1732.9 1.9 3.2 
D4 N660 31.711' W1520 39.835' 14.6 6.2 106.7 2419.6 2.0 3.4 
D4 N660 31.711' W1520 39.835' 14.6 6.2 84.2 2419.6 1.9 3.4 

O.D. N660 32.953' W1520 38.539' 17.6 7.0 290.9 30.7 2.5 1.5 
O.D. N660 32.953' W1520 38.539' 17.6 7.0 86.5 24.8 1.9 1.4 
O.D. N660 32.953' W1520 38.539' 17.6 7.0 77.1 34.6 1.9 1.5 
O.D. N660 32.953' W1520 38.539' 17.6 7.0 112.4 2.1 1.5 

S.T.O. N660 32.760' W1520 38.723' 17.2 7.2 2.0 4.1 0.3 0.6 
S.T.O. N660 32.760' W1520 38.723' 17.2 7.2 3.0 4.1 0.5 0.6 
S.T.O. N660 32.760' W1520 38.723' 17.2 7.2 4.0 8.4 0.6 0.9 
K.R. N660 32.933' W1520 39.772' 16.1 7.8 344.8 178.5 2.5 2.3 
K.R. N660 32.933' W1520 39.772' 16.1 7.8 298.7 218.7 2.5 2.3 
K.R. N660 32.933' W1520 39.772' 16.1 7.8 344.8 114.5 2.5 2.1 
D.W. N660 32.939' W1520 39.711' 14.7 7.5 224.7 137.4 2.4 2.1 
D.W. N660 32.939' W1520 39.711' 14.7 7.5 110.4 113.7 2.0 2.1 

S.K.R. N660 32.876' W1520 38.062' 19.3 7.0 1.0 5.2 0.0 0.7 
S.K.R. N660 32.876' W1520 38.062' 19.3 7.0 2.0 14.9 0.3 1.2 
A.S. N660 33.893' W1520 38.442' 17.6 7.0 135.4 32.5 2.1 1.5 
A.S. N660 33.893' W1520 38.442' 17.6 7.7 142.1 52.9 2.2 1.7 
A.S. N660 33.893' W1520 38.442' 17.6 7.7 128.1  52.9 2.1 1.7 

D.W.S. R.T.  7.3 0.0 0.0 0.0 0.0 
D-1 - Surface Water Dump (Left)  O.D. - Old Dump D-4 - Surface Water Dump Drainage (Right) 
S.T.O. - Slough behind Tribal Office  K.R. - Koyukuk River  D.W. - Surface Water at Drinking Water Well 
S.K.R. - Slough entering Koyukuk River A.S. - Slough at Airport D.W.S. - Drinking Water Source   
D-5 - Surface Water Dump Drainage (Left) 
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Table 2: Microbial Indicator Organisms Water Data Fall 2011 
Sample ID.  GPS Location Temperature pH MPN/100mL Log Mean MPN/100mL 

0C  EC ENT EC ENT 
D3 N660 31.702' W1520 39.329' 18.2 7.8 80.8 2419.6 1.9 3.4 
D3 N660 31.702' W1520 39.329' 18.2 7.8 58.3 2419.6 1.8 3.4 
D3 N660 31.702' W1520 39.329' 18.2 7.8 66.6 2546.9 1.8 3.4 
D5 N660 31.727' W1520 39.892' 16.6 8.4 32.3 24.1 1.5 1.4 
D5 N660 31.727' W1520 39.892' 16.6 8.4 27.5 41.4 1.4 1.6 
D5 N660 31.727' W1520 39.892' 16.6 8.4 51.6 30.2 1.7 1.5 
D4 N660 31.704' W1520 39.866' 15.9 7.4 290.9 2.0 2.5 0.3 
D4 N660 31.704' W1520 39.866' 15.9 7.4 248.1 4.1 2.4 0.6 
D4 N660 31.704' W1520 39.866' 15.9 7.4 275.1 0.0 2.4 0.0 
D2 N660 31.719' W1520 39.868' 15.8 7.9 103.9 3.0 2.0 0.5 
D2 N660 31.719' W1520 39.868' 15.8 7.9 116 6.1 2.1 0.8 
D2 N660 31.719' W1520 39.868' 15.8 7.9 89.4 17.2 2.0 1.2 

K.R. N660 32.933' W1520 39.772' 15.2 7.9 6.3 1.0 0.8 0.0 
K.R. N660 32.933' W1520 39.772' 15.2 7.9 14.6 0.0 1.2 0.0 
D.W. N660 32.939' W1520 39.711' 17.3 7.7 1.0 0.0 0.0 0.0 
D.W. N660 32.939' W1520 39.711 17.3 7.7 0.0 0.0 0.0 0.0 

D.W.S. 7.3 0.0 0.0 0.0 0.0 
D-3 - Surface Water Dump (Mid)     D.W.S. - Drinking Water Source K.R. - Koyukuk River  
D.2 - Surface Water (Open Burning)    D.W. - Surface Water at Drinking Water Well 
D-4 - Surface Water Dump Drainage (Right)        D-5 - Surface Water Dump Drainage (Left) 

Table 3: Microbial Indicator Organisms Soil Data Summer 2010 
Sample ID.  GPS Location Soil Weight MPN/100mL Log Mean MPN/100mL 

(g) EC ENT EC ENT 
S1 N660 31.713' W1520 39.830' 18.2 4.2 57.1 0.6 1.8 
S1 N660 31.713' W1520 39.830' 18.2 0.0 20.8 0.0 1.3 
S1 N660 31.713' W1520 39.830' 18.2 4.2 25.4 0.6 1.4 
S2 N660 31.722' W1520 39.831' 11.3 563.8 3836.7 2.8 3.6 
S2 N660 31.722' W1520 39.831' 11.3 463.3 2861.3 2.7 3.5 
S2 N660 31.722' W1520 39.831' 11.3 920.4 669.6 3.0 2.8 
S3 N660 31.720' W1520 39.843' 14.6 4.2 125.8 0.6 2.1 
S3 N660 31.720' W1520 39.843' 14.6 33.3 123.3 1.5 2.1 
S3 N660 31.720' W1520 39.843' 14.6 46.7 153.3 1.7 2.2 
S4 N660 31.734' W1520 39.885' 17.6 21.3 527.9 1.3 2.7 
S4 N660 31.734' W1520 39.885' 17.6 45.4 467.5 1.7 2.7 
S4 N660 31.734' W1520 39.885' 17.6 17.1 230.0 1.2 2.4 
S5 N660 31.755' W1520 39.887' 17.6 4.2 50.0 0.6 1.7 
S5 N660 31.755' W1520 39.887' 17.2 8.3 45.8 0.9 1.7 
S5 N660 31.755' W1520 39.887' 17.2 29.2 29.2 1.5 1.5 
S6 N660 31.758' W1520 39.850' 17.2 16.7 326.3 1.2 2.5 
S6 N660 31.758' W1520 39.850' 16.1 20.8 137.1 1.3 2.1 
S6 N660 31.758' W1520 39.850' 16.1 47.5 131.7 1.7 2.1 
C N660 31.720' W1520 39.865' 16.1 0.0 73.3 0.0 1.9 
C N660 31.720' W1520 39.865' 14.7 0.0 77.9 0.0 1.9 
C N660 31.720' W1520 39.865' 14.7 29.2 76.3 1.5 1.9 

S1 - Soil Sample at Dump Drainage Upgradient S4 - Soil Sample at Dump Drainage Down-gradient 
S2 - Soil Sample at Decomposed Waste S5 - Soil Sample at Electrical Waste 
S3 - Soil Sample at Construction Waste S6 - Soil Sample at Burnbox 
C - Soil Sample at Control Site 
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Table 4: Microbial Indicator Organisms Soil Data Fall 2011 
Sample ID.  GPS Location Soil Weight MPN/100mL Log Mean MPN/100mL 

(g) EC ENT EC ENT 
S2 N660 31.727' W1520 39.818' 0.20 0.0 173.0 0.0 2.2 
S2 N660 31.727' W1520 39.818' 0.20 0.0 244.5 0.0 2.4 
S3 N660 31.724' W1520 39.812' 0.20 4604.0 12098.0 3.7 4.1 
S3 N660 31.724' W1520 39.812' 0.20 12098.0 12098.0 4.1 4.1 
S6 N660 31.758' W1520 39.850' 0.20 214.0 12098.0 2.3 4.1 
S6 N660 31.758' W1520 39.850' 0.20 91.5 164.5 2.0 2.2 
C N660 31.755' W1520 39.843' 0.20 0.0 31.0 0.0 1.5 
C N660 31.755' W1520 39.843' 0.20 5.0 20.5 0.7 1.3 

S1 - Soil Sample at Dump Drainage Upgradient S5 - Soil Sample at Electrical Waste 
S2 - Soil Sample at Decomposed Waste S4 - Soil Sample at Dump Drainage Down-gradient 
S3 - Soil Sample at Construction Waste S6 - Soil Sample at Burnbox 
C - Soil Sample at Control Site 
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Appendix D-ii: Microbial Indicator Organism Data for Eek 

Table 1: Microbial Indicator Organisms Water Data Fall 2009 
Sample ID.  GPS Location MPN/100mL Log Mean MPN/100mL 

EC ENT EC ENT 
V.P.-3 N600 13.019' W1620 01.717' 0.0 5.1 0.0 0.7 
V.P.-2 N600 13.021' W1620 01.897' 2.0 2419.6 0.3 3.4 
V.P-1 N600 13.082' W1620 01.681' 0.0 0.0 0.0 0.0 

D. N600 12.751' W1620 01.641' 25.9 6.0 0.9 0.8 
S.L. N600 12.784' W1620 01.819' 275.5 2419.6 2.4 3.4 
D.D. N600 12.745' W1620 01.635' 0.0 0.0 0.0 0.0 
D.D. N600 12.731' W1620 01.554' 6.3 461.1 1.4 2.7 
A.L. N600 12.680' W1620 01.886' 7.5 2419.6 1.4 3.4 
B.L. N600 12.734' W1620 01.548' 0.0 2.0 0.0 0.3 

S.L.D-1 N600 12.826' W1620 01.865' 0.0 2.0 0.0 0.3 
S.L.D-2 N600 12.707' W1620 01.904' 31.5 2419.6 1.5 3.4 
D.W.S. N600 12.734' W1620 01.548' 0.0 2.0 0.0 0.3 
D. - Dump       A.L. - Airport Lake O.A.P. - Old Airport Pond 
D.D. - Dump Drainage    V.P. - Village Pond D.W.S. - Drinking Water Source 
B.L. - Big Lake      S.L.D - Sewage Lagoon Drainage S.L. - Sewage Lagoon  

Table 2: Microbial Indicator Organisms Soil Data Fall 2009 
Sample ID.  GPS Location Soil Weight MPN/100mL Log Mean MPN/100mL 

(g) EC ENT EC ENT 
S1 N600 12.762' W1620 01.748' 0.5 6.0 402.8 0.8 2.6 
S2 N600 12.784' W1620 01.819' 0.5 0.0 374.4 0.0 2.6 
S3 N600 12.764' W1620 01.721' 0.5 4.0 47.0 0.6 1.7 
S4 N600 12.772' W1620 01.724' 0.5 4.0 14.0 0.6 1.1 
C N600 12.789' W1640 01.724' 0.5 0.0 57.0 0.0 1.8 
C N600 12.789' W1640 01.724' 0.5 0.0 16.0 0.0 1.2 

S1 - Soil Sample at Burnbox S3 - Soil Sample at Dump Pond 
S2 - Soil Sample at Sewage Lagoon Unloading Area S4 - Soil Sample between Dump and Sewage Lagoon 
C - Soil Sample at Control Sites 
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Table 3: Microbial Indicator Organisms Water Data Spring 2010 
Sample ID.  GPS Location Temperature pH MPN/100mL Log Mean MPN/100mL 

0C  EC ENT EC ENT 
D. N600 12.751' W1620 01.641' 0.4 7.6 686.7 2419.6 2.8 3.4 
D. N600 12.751' W1620 01.641' 0.4 7.6 727 2419.6 2.9 3.4 
D. N600 12.751' W1620 01.641' 0.4 7.6 686.7 2419.6 2.8 3.4 
D. N600 12.751' W1620 01.641' 0.4 7.6 686.7 2419.6 2.8 3.4 

D.D N600 12.736' W1620 01.563' 0.2 7.3 727 2419.6 2.9 3.4 
D.D. N600 12.736' W1620 01.563' 0.2 7.3 1119.9 2419.6 3.0 3.4 
D.D. N600 12.736' W1620 01.563' 0.2 7.3 980.4 2419.6 3.0 3.4 
D.D. N600 12.736' W1620 01.563' 0.2 7.3 727 2419.6 2.9 3.4 
B.L. N600 12.753' W1620 01.568' 0.2 6.8 0.0 2.0 0.0 0.3 
B.L. N600 12.753' W1620 01.568' 0.2 6.8 0.0 1.0 0.0 0.0 
B.L. N600 12.753' W1620 01.568' 0.2 6.8 1.0 0.0 0.0 0.0 
B.L. N600 12.753' W1620 01.568' 0.2 6.8 0.0 0.0 0.0 0.0 
A.L. N600 12.832' W1620 01.892' 0.4 5.7 51.2 35 1.7 1.5 
A.L. N600 12.832' W1620 01.892' 0.4 5.7 45.4 42 1.7 1.6 
A.L. N600 12.832' W1620 01.892' 0.4 5.7 49.7 76.3 1.7 1.9 
V.P. N600 13.015' W1620 01.700' 0.6 6.7 4.1 29.3 0.6 1.5 
V.P. N600 13.015' W1620 01.700' 0.6 6.7 2.0 32.7 0.3 1.5 
V.P N600 13.015' W1620 01.700' 0.6 6.7 2.0 33.5 0.3 1.5 
E.R. N600 13.197' W1620 02.086' 0.7 6.3 3.1 13.3 0.5 1.1 
E.R. N600 13.197' W1620 02.086' 0.7 6.3 8.5 0.0 0.9 0.0 
E.R. N600 13.197' W1620 02.086' 0.7 6.3 2.0 2.0 0.3 0.3 

O.A.P. N600 12.704' W1620 00.773' 0.4 5.9 0.0 0.0 0.0 0.0 
O.A.P. N600 12.704' W1620 00.773' 0.4 5.9 0.0 0.0 0.0 0.0 
O.A.L. N600 12.704' W1620 00.773' 0.4 5.9 0.0 0.0 0.0 0.0 
D.W.S.  R.T. 7.3 0.0 0.0 0.0 0.0 

S.L. N600 12.784' W1620 01.819' 0.4 6.5 95.8 2419.6 2.0 3.4 
S.L. N600 12.784' W1620 01.819' 0.4 6.5 44.1 2419.6 1.6 3.4 

D. - Dump  A.L. - Airport Lake  E.R. - Eek River 
D.D. - Dump Drainage V.P. - Village Pond  D.W.S. - Drinking Water Source 
B.L. - Big Lake O.A.P. - Old Airport Pond S.L. - Sewage Lagoon 

Table 4: Microbial Indicator Organisms Soil Data Spring 2010 
Sample ID.  GPS Location Soil Weight MPN/100mL Log Mean MPN/100mL 

(g) EC ENT EC ENT 
S1 N600 12.762' W1620 01.748' 0.20 77.5 12098.0 1.9 4.1 
S1 N600 12.762' W1620 01.748' 0.20 42.5 12098.0 1.6 4.1 
S2 N600 12.784' W1620 01.819' 0.20 60.5 6498.5 1.8 3.8 
S2 N600 12.784' W1620 01.819' 0.20 0.0 6498.5 0.0 3.8 
S2 N600 12.784' W1620 01.819' 0.20 0.0 53.0 0.0 1.7 
S2 N600 12.784' W1620 01.819' 0.20 0.0 36.0 0.0 1.6 
C N600 12.704' W1620 00.773' 0.20 0.0 10.0 0.0 1.0 

S1 - Soil Sample at Burnbox S2 - Soil Sample at Sewage Lagoon Unloading Area 
` C - Soil Sample at Control Site 
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Table 5: Microbial Indicator Organisms Water Data Fall 2010 
Sample ID.  GPS Location Temperature pH MPN/100mL Log Mean MPN/100mL 

0C  EC ENT EC ENT 
D. N600 12.751' W1620 01.641' 1.8 7.4 6.3 12.1 0.8 1.1 
D. N600 12.751' W1620 01.641' 1.8 7.4 5.2 23.8 0.7 1.4 
D. N600 12.751' W1620 01.641' 1.8 7.4 10.4 15.0 1.0 1.2 

D.D N600 12.736' W1620 01.563' 1.1 7.0 81.3 16.1 1.9 1.2 
D.D. N600 12.736' W1620 01.563' 1.1 7.0 82 21.8 1.9 1.3 
D.D. N600 12.736' W1620 01.563' 1.1 7.0 72.8 26.8 1.9 1.4 
B.L. N600 12.753' W1620 01.568' 2.1 7.3 4.1 4.1 0.6 0.6 
B.L. N600 12.753' W1620 01.568' 2.1 7.3 8.6 3.0 0.9 0.5 
B.L. N600 12.753' W1620 01.568' 2.1 7.3 7.5 7.2 0.9 0.9 
A.L. N600 12.832' W1620 01.892' 2.7 7.4 1.0 64.0 0.0 1.8 
A.L. N600 12.832' W1620 01.892' 2.7 7.4 7.4 28.1 0.9 1.4 
A.L. N600 12.832' W1620 01.892' 2.7 7.4 0.0 76.3 0.0 1.9 
V.P. N600 13.015' W1620 01.700' 1.6 7.5 90.9 2419.6 2.0 3.4 
V.P. N600 13.015' W1620 01.700' 1.6 7.5 74.8 2419.6 1.9 3.4 
V.P N600 13.015' W1620 01.700' 1.6 7.5 133.7 2419.6 2.1 3.4 
E.R. N600 10.140' W1620 01.515' 4.7 7.5 3.0 1.0 0.5 0.0 
E.R. N600 10.140' W1620 01.515' 4.7 7.5 0.0 0.0 0.0 0.0 
E.R. N600 10.140' W1620 01.515' 4.7 7.5 0.0 0.0 0.0 0.0 
S.L. N600 12.784' W1620 01.819' 2.8 8.2 533.5 920.8 2.7 3.0 
S.L. N600 12.784' W1620 01.819' 2.8 8.2 3226.1 426.5 3.5 2.6 
S.L. N600 12.784' W1620 01.819' 2.8 8.2 1921.2 149.6 3.3 2.2 
S.L. N600 12.784' W1620 01.819' 2.8 8.2 1067 66.6 3.0 1.8 

D.W.S.  R.T. 7.4 0.0 0.0 0.0 0.0 
D. - Dump  B.L. - Big Lake O.A.P. - Old Airport Pond 
D.D. - Dump Drainage A.L. - Airport Lake D.W.S. - Drinking Water Source 
V.P. - Village Pond  E.R. - Eek River S.L. - Sewage Lagoon 

Table 6: Microbial Indicator Organisms Soil Data Fall 2010 
Sample ID.  GPS Location Soil Weight MPN/100mL Log Mean MPN/100mL 

(g) EC ENT EC ENT 
C N600 12.762' W1620 01.748' 0.20 0.0 20.5 0.0 1.3 
C N600 12.762' W1620 01.748' 0.20 0.0 20.5 0.0 1.3 
C N600 12.762' W1620 01.748' 0.20 0.0 25.0 0.0 1.4 
S1 N600 12.758' W1620 01.684' 0.20 364.0 12098.0 2.6 4.1 
S1 N600 12.758' W1620 01.684' 0.20 1240.5 12098.0 3.1 4.1 
S1 N600 12.758' W1620 01.684' 0.20 892.5 12098.0 3.0 4.1 
S2 N600 12.764' W1620 01.721' 0.20 10.0 4902.0 1.0 3.7 
S2 N600 12.764' W1620 01.721' 0.20 168.5 4902.0 2.2 3.7 
S2 N600 12.764' W1620 01.721' 0.20 37.0 1522.0 1.6 3.2 
S3 N600 12.784' W1620 01.819' 0.20 1301.5 1490.5 3.1 3.2 
S3 N600 12.784' W1620 01.819' 0.20 5599.5 9931.5 3.7 4.0 
S3 N600 12.784' W1620 01.819' 0.20 4332.0 9931.5 3.6 4.0 

C - Soil Sample at Control Site S2 - Soil Sample between Dump and Sewage Lagoon 
S1 - Soil Sample at Dump S3 - Soil Sample at Sewage Lagoon Unloading Area 
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Table 7: Microbial Indicator Organisms Water Data Spring 2011 
Sample ID.  GPS Location Temperature pH MPN/100mL Log Mean MPN/100mL 

0C  EC ENT EC ENT 
D. N600 12.751' W1620 01.641' 4.5 7.1 325.5 169.1 2.5 2.2 
D. N600 12.751' W1620 01.641' 4.5 7.1 206.4 169.4 2.3 2.2 
D. N600 12.751' W1620 01.641' 4.5 7.1 365.4 161.5 2.6 2.2 

D.D N600 12.736' W1620 01.563' 2.2 6.4 1119.9 135.4 3.0 2.1 
D.D. N600 12.736' W1620 01.563' 2.2 6.4 1299.7 113.7 3.1 2.1 
D.D. N600 12.736' W1620 01.563' 2.2 6.4 816.4 131.4 2.9 2.1 
B.L. N600 12.753' W1620 01.568' 2.3 6.4 16.1 2.0 1.2 0.3 
B.L. N600 12.753' W1620 01.568' 2.3 6.4 10.9 4.1 1.0 0.6 
B.L. N600 12.753' W1620 01.568' 2.3 6.4 13.2 4.1 1.1 0.6 
A.L. N600 12.832' W1620 01.892' 1.6 7.4 0.0 2.0 0.0 0.3 
A.L. N600 12.832' W1620 01.892' 1.6 7.4 0.0 4.1 0.0 0.6 
A.L. N600 12.832' W1620 01.892' 1.6 7.4 0.0 1.0 0.0 0.0 
V.P. N600 13.015' W1620 01.700' 1.8 6.7 31.3 39.7 1.5 1.6 
V.P. N600 13.015' W1620 01.700' 1.8 6.7 14.2 48.1 1.2 1.7 
V.P N600 13.015' W1620 01.700' 1.8 6.7 21.6 48.8 1.3 1.7 
V.C. N600 13.197' W1620 02.086' 1.2 6.2 2.0 11.4 0.3 1.1 
V.C. N600 13.197' W1620 02.086' 1.2 6.2 0.0 0.0 0.0 0.0 
V.C. N600 13.197' W1620 02.086' 1.2 6.2 2.0 1.0 0.3 0.0 

O.A.P. N600 12.730' W1620 00.780' 1.6 6.8 0.0 0.0 0.0 0.0 
O.A.P N600 12.730' W1620 00.780' 1.6 6.8 0.0 0.0 0.0 0.0 
O.A.P N600 12.730' W1620 00.780' 1.6 6.8 0.0 0.0 0.0 0.0 
E.R. N600 13.704' W1620 01.479' 2.9 7.4 0.0 0.0 0.0 0.0 
E.R. N600 13.704' W1620 01.479' 2.9 7.4 1.0 0.0 0.0 0.0 
E.R. N600 13.704' W1620 01.479' 2.9 7.4 0.0 0.0 0.0 0.0 
S.L. N600 12.784' W1620 01.819' 4.6 8.2 33.1 2419.6 1.5 3.4 
S.L. N600 12.784' W1620 01.819' 4.6 8.2 30.3 2419.6 1.5 3.4 
S.L. N600 12.784' W1620 01.819' 4.6 8.2 34.1 2419.6 1.5 3.4 
S.L. N600 12.784' W1620 01.819' 2.8 8.2 1067 66.6 3.0 1.8 

D. - Dump  A.L. - Airport Lake O.A.P. - Old Airport Pond 
D.D. - Dump Drainage V.P. - Village Pond S.L. - Sewage Lagoon
B.L. - Big Lake E.R. - Eek River 
V.C. - Village Creek 

Table 8: Microbial Indicator Organisms Soil Data Spring 2011 
Sample ID.  GPS Location Soil Weight MPN/100mL Log Mean MPN/100mL 

(g) EC ENT EC ENT 
S1 N600 12.762' W1620 01.748' 0.20 37.5 12098.0 1.6 4.1 
S1 N600 12.762' W1620 01.748' 0.20 431.0 12098.0 2.6 4.1 
S1 N600 12.762' W1620 01.748' 0.20 341.0 3446.5 2.5 3.5 
S2 N590 21.829' W157028.797' 0.20 286.5 4569.5 2.5 3.7 
S2 N590 21.829' W157028.797' 0.20 5.0 12098.0 0.7 4.1 
S2 N590 21.829' W157028.797' 0.20 25.5 8664.5 1.4 3.9 
S3 N600 12.784' W1620 01.819' 0.20 15.5 2737.5 1.2 3.4 
S3 N600 12.784' W1620 01.819' 0.20 15.5 1627.5 1.2 3.2 
S3 N600 12.784' W1620 01.819' 0.20 5.0 863.0 0.7 2.9 
C N600 12.704' W1620 00.773' 0.20 0.0 10.0 0.0 1.0 
C N600 12.789' W1640 01.724' 0.50 0.0 16.0 0.0 1.2 

C - Soil Sample at Control Site S2 - Soil Sample between Dump and Sewage Lagoon 
S1 - Soil Sample at Burnbox S3 - Soil Sample at Sewage Lagoon Unloading Area 
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Table 9: Microbial Indicator Organisms Water Data Fall 2011 
Sample ID.  GPS Location Temperature pH MPN/100mL Log Mean MPN/100mL 

0C  EC ENT EC ENT 
D. N600 12.751' W1620 01.641' 12 7.3 209.8 64.4 2.3 1.8 
D. N600 12.751' W1620 01.641' 12 7.3 214.2 86 2.3 1.9 
D. N600 12.751' W1620 01.641' 12 7.3 224.7 73.3 2.4 1.9 

D.D N600 12.736' W1620 01.563' 10.1 6.8 21.6 2.0 1.3 0.3 
D.D. N600 12.736' W1620 01.563' 10.1 6.8 23.1 1.0 1.4 0.0 
D.D. N600 12.736' W1620 01.563' 10.1 6.8 18.7 3.0 1.3 0.5 
B.L. N600 12.753' W1620 01.568' 12.9 6.9 3.1 0.0 0.5 0.0 
B.L. N600 12.753' W1620 01.568' 12.9 6.9 1.0 0.0 0.0 0.0 
B.L. N600 12.753' W1620 01.568' 12.9 6.9 1.0 0.0 0.0 0.0 
A.L. N600 12.832' W1620 01.892' 13.9 7.7 0.0 3.1 0.0 0.5 
A.L. N600 12.832' W1620 01.892' 13.9 7.7 0.0 2.0 0.0 0.3 
A.L. N600 12.832' W1620 01.892' 13.9 7.7 0.0 3.0 0.0 0.5 
V.P. N600 13.015' W1620 01.700' 11.3 6.6 1119.9 39.7 3.0 1.6 
V.P. N600 13.015' W1620 01.700' 11.3 6.6 980.4 48.1 3.0 1.7 
V.P N600 13.015' W1620 01.700' 11.3 6.6 686.7 48.8 2.8 1.7 
V.C. N600 13.197' W1620 02.086' 1.2 6.2 2.0 11.4 0.3 1.1 
V.C. N600 13.197' W1620 02.086' 1.2 6.2 0.0 0.0 0.0 0.0 
V.C. N600 13.197' W1620 02.086' 1.2 6.2 0.0 1.0 0.0 0.0 
E.R. N600 13.704' W1620 01.479' 13 7.0 23.1 2.0 1.4 0.3 
E.R. N600 13.704' W1620 01.479' 13 7.0 18.7 0.0 1.3 0.0 
E.R. N600 13.704' W1620 01.479' 13 7.0 13.2 3.0 1.1 0.5 
S.L. N600 12.784' W1620 01.819' 12.8 6.5 33.1 2419.6 1.5 3.4 
S.L. N600 12.784' W1620 01.819' 12.8 6.5 30.3 2419.6 1.5 3.4 
S.L. N600 12.784' W1620 01.819' 12.8 6.5 34.1 2419.6 1.5 3.4 

D. - Dump  V.C. - Village Creek  E.R. - Eek River 
A.L. - Airport Lake D.D. - Dump Drainage S.L. - Sewage Lagoon 
V.P. - Village Pond B.L. - Big Lake 

Table 10: Microbial Indicator Organisms Soil Data Fall 2011 
Sample ID.  GPS Location Soil Weight MPN/100mL Log Mean MPN/100mL 

(g) EC ENT EC ENT 
S1 N600 12.762' W1620 01.748' 0.20 42.5 518.0 1.6 2.7 
S1 N600 12.762' W1620 01.748' 0.20 49.0 238.0 1.7 2.4 
S1 N600 12.762' W1620 01.748' 0.20 182.0 138.5 2.3 2.1 
S2 N590 21.829' W157028.797' 0.20 0.0 55.5 0.0 1.7 
S2 N590 21.829' W157028.797' 0.20 0.0 88.0 0.0 1.9 
S2 N590 21.829' W157028.797' 0.20 15.0 97.5 1.2 2.0 
S3 N600 12.784' W1620 01.819' 0.20 0.0 46.0 0.0 1.7 
S3 N600 12.784' W1620 01.819' 0.20 0.0 25.0 0.0 1.4 
S3 N600 12.784' W1620 01.819' 0.20 5.0 50.5 0.7 1.7 
C N600 12.704' W1620 00.773' 0.20 0.0 5.0 0.0 0.7 
C N600 12.789' W1640 01.724' 0.50 0.0 16.0 0.0 1.2 

C - Soil Sample at Control Site S2 - Soil Sample between Dump and Sewage Lagoon 
S1 - Soil Sample at Burnbox S3 - Soil Sample at Sewage Lagoon Unloading Area 
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Appendix D-iii: Microbial Indicator Organism Data for Ekwok 

Table 1: Microbial Indicator Organisms Water Data Spring 2010 
Sample ID.  GPS Location Temperature pH MPN/100mL Log Mean MPN/100mL 

0C  EC ENT EC ENT 
D.1 N590 21.741' W1570 28.423' 1.2 6.6 2419.6 2419.6 3.4 3.4 
D.1 N590 21.741' W1570 28.423' 1.2 6.6 2419.6 2419.6 3.4 3.4 
D.1 N590 21.741' W1570 28.423' 1.2 6.6 2419.6 2419.6 3.4 3.4 
D.1 N590 21.741' W1570 28.423' 1.2 6.6 2419.6 2419.6 3.4 3.4 

D.#3 N590 21.738' W1570 28.423' 1.9 6.8 2419.6 183.3 3.4 2.3 
D.#3 N590 21.738' W1570 28.423' 1.9 6.8 1119.9 107.9 3.0 2.0 
D.#3 N590 21.738' W1570 28.423' 1.9 6.8 1986.3 84.9 3.3 1.9 
D.#3 N590 21.738' W1570 28.423' 1.9 6.8 2419.6 60.9 3.4 1.8 
D.2 N590 21.714' W1570 28.416' 9.3 6.4 2419.6 2419.6 3.4 3.4 
D.2 N590 21.714' W1570 28.416' 9.3 6.4 2419.6 2419.6 3.4 3.4 
D.2 N590 21.714' W1570 28.416' 9.3 6.4 2419.6 2419.6 3.4 3.4 
D.2 N590 21.714' W1570 28.416' 9.3 6.4 1986.3 2419.6 3.3 3.4 
K.C. N590 21.792' W1570 28.859' 2.9 6.2 3.1 2.0 0.5 0.3 
K.C. N590 21.792' W1570 28.859' 2.9 6.2 5.2 0.0 0.7 0.0 
K.C. N590 21.792' W1570 28.859' 2.9 6.2 3.1 2.0 0.5 0.3 
D.3 N590 21.711' W1570 28.440' 9.3 6.9 12.1 51.2 1.1 1.7 
D.3 N590 21.711' W1570 28.440' 9.3 6.9 14.5 29.5 1.2 1.5 
D.3 N590 21.711' W1570 28.440' 9.3 6.9 21.3 34.1 1.3 1.5 
D.4 N590 21.325' W1570 28.792' 9.2 6.1 7.4 93.4 0.9 2.0 
D.4 N590 21.325' W1570 28.792' 9.2 6.1 7.5 98.5 0.9 2.0 
D.4 N590 21.325' W1570 28.792' 9.2 6.1 7.5 69.5 0.9 1.8 
G.P. N590 21.325' W1570 28.792' 6.9 7.1 9.7 178.5 1.0 2.3 
G.P. N590 21.325' W1570 28.792' 6.9 7.1 9.6 260.3 1.0 2.4 

D.W.S.  R.T. 7.2 0.0 0.0 0.0 0.0 
D.W.S.  R.T. 7.2 0.0 0.0 0.0 0.0 
D.W.S.  R.T. 7.2 0.0 0.0 0.0 0.0 

D.1 - Runoff Water at Dump K.C. - Klutuk Creek  
D.#3 -Surface Water at EKPZ-03 G.P. - Gravel Pit 
D.2. - Surface Water at New Dump Trench D.3 - Surface Water at newly decomposed Waste 
D.4 - Surface Water at decomposed Waste D.W.S. - Drinking Water Source 

Table 2: Microbial Indicator Organisms Soil Data Spring 2010 
Sample ID.  GPS Location Soil Weight MPN/100mL Log Mean MPN/100mL 

(g) EC ENT EC ENT 
S1 N590 21.325' W1570 28.792' 0.20 5.0 310.0 0.7 2.5 
S2 N590 21.704' W1570 28.433' 0.20 278.5 929.0 2.4 3.0 
S3 N590 21.714' W1570 28.416' 0.20 182.0 611.0 2.3 2.8 
C N590 21.782' W1570 28.708' 0.20 0.0 10.0 0.0 1.0 

C - Soil Sample at Control Site  S2 - Soil Sample at Newly Decomposed Waste 
S1 - Soil Sample at Decomposed Waste S3 - Soil Sample at Dump Trench 
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Table 3: Microbial Indicator Organisms Water Data Fall 2010 
Sample ID.  GPS Location Temperature pH MPN/100mL Log Mean MPN/100mL 

0C  EC ENT EC ENT 
K.C. N590 21.798' W1570 28.832' 4.7 6.2 0.0 1.0 0.0 0.0 
K.C. N590 21.798' W1570 28.832' 4.7 6.2 0.0 2.0 0.0 0.3 
K.C. N590 21.798' W1570 28.832' 4.7 6.2 0.0 5.2 0.0 0.7 
N.R. N590 16.102' W1620 51.082' 5.3 7.3 49.0 2419.6 1.7 3.4 
N.R. N590 16.102' W1620 51.082' 5.3 7.3 26.9 183.3 1.4 2.3 
N.R. N590 16.102' W1620 51.082' 5.3 7.3 28.7 2419.6 1.5 3.4 
D.1 N590 21.716' W1570 28.832' 6.8 7.0 2419.6 2419.6 3.4 3.4 
D.1 N590 21.716' W1570 28.832' 6.8 7.0 2419.6 2419.6 3.4 3.4 
D.1 N590 21.716' W1570 28.832' 6.8 7.0 2419.6 2419.6 3.4 3.4 
S.L. N590 20.838' W1570 29.034' 8.4 8.4 2419.6 2419.6 3.4 3.4 
S.L. N590 20.838' W1570 29.034' 8.4 8.4 2419.6 2419.6 3.4 3.4 
S.L. N590 20.838' W1570 29.034' 8.4 8.4 4839.36 4839.2 3.7 3.7 
S.L. N590 20.838' W1570 29.034' 8.4 8.4 4839.36 4839.2 3.7 3.7 
S.L. N590 20.838' W1570 29.034' 8.4 8.4 4839.36 4839.2 3.7 3.7 
O.D. N590 21.396' W1570 28.621' 8.7 6.3 33.3 206.2 1.5 2.3 
O.D. N590 21.396' W1570 28.621' 8.7 6.3 37.2 2419.6 1.6 3.4 
O.D. N590 21.396' W1570 28.621' 8.7 6.3 70.3 196.8 1.8 2.3 
G.P. N590 21.277' W1570 29.031' 5.8 7.2 87.5 211 1.9 2.3 
G.P. N590 21.277' W1570 29.031' 5.8 7.2 12.1 51.2 1.1 1.7 
G.P. N590 21.277' W1570 29.031' 5.8 7.2 14.5 29.5 1.2 1.5 

D.W.S. R.T. 7.6 0.0 0.0 0.0 0.0 
D.1 - Surface Water at Dump S.L. Sewage Lagoon 
K.C. - Klutuk Creek  O.D. - Surface Water at Old Dump  
N.R. - Nushagak River G.P. - Gravel Pit 
D.W.S. - Drinking Water Source 

Table 4: Microbial Indicator Organisms Soil Data Fall 2010 
Sample ID.  GPS Location Soil Weight MPN/100mL Log Mean MPN/100mL 

(g) EC ENT EC ENT 
S1 N590 21.699' W1570 28.403' 0.20 212.5 214.0 2.3 2.3 
S1 N590 21.699' W1570 28.403' 0.20 0.0 69.0 0.0 1.8 
S1 N590 21.699' W1570 28.403' 0.20 15.5 343.0 1.2 2.5 
S2 N590 21.699' W1570 28.409' 0.20 0.0 5.0 0.0 0.7 
S2 N590 21.699' W1570 28.409' 0.20 0.0 5.0 0.0 0.7 
S2 N590 21.699' W1570 28.409' 0.20 0.0 10.0 0.0 1.0 
S3 N590 21.699' W1570 28.416' 0.20 0.0 10.0 0.0 1.0 
S3 N590 21.699' W1570 28.416' 0.20 0.0 20.0 0.0 1.3 
S3 N590 21.699' W1570 28.416' 0.20 0.0 10.0 0.0 1.0 
S4 N590 21.703' W1570 28.442' 0.20 0.0 51.0 0.0 1.7 
S4 N590 21.703' W1570 28.442' 0.20 0.0 57.5 0.0 1.8 
S4 N590 21.703' W1570 28.442' 0.20 5.0 40.5 0.7 1.6 
S5 N590 21.718' W1570 28.434' 0.20 0.0 77.0 0.0 1.9 
S5 N590 21.718' W1570 28.434' 0.20 0.0 53.5 0.0 1.7 
S5 N590 21.718' W1570 28.434' 0.20 0.0 40.5 0.0 1.6 
C N590 21.717' W1570 28.422' 0.20 0.0 20.0 0.0 1.3 
C N590 21.717' W1570 28.422' 0.20 0.0 10.0 0.0 1.0 
C N590 21.717' W1570 28.422' 0.20 0.0 25.0 0.0 1.4 

C - Soil Sample at Control Site  S3 - Soil Sample at Decomposed and Covered Waste 
S1 - Soil Sample at Burnbox S4 - Soil Sample at Dump Trench 
S2 - Soil Sample at Newly Decomposed Waste  S5 - Soil Sample at Decomposed Waste 
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Table 5: Microbial Indicator Organisms Soil Data Spring 2011 
Sample ID.  GPS Location Soil Weight MPN/100mL Log Mean MPN/100mL 

(g) EC ENT EC ENT 
S1 N590 21.719' W1570 28.423' 0.20 275.0 12098.0 2.4 4.1 
S1 N590 21.719' W1570 28.423' 0.20 175.0 156.5 2.2 2.2 
S1 N590 21.719' W1570 28.423' 0.20 202.5 4902.0 2.3 3.7 
S2 N590 21.714' W1570 28.392' 0.20 31.5 12098.0 1.5 4.1 
S2 N590 21.714' W1570 28.392' 0.20 31.5 12098.0 1.5 4.1 
S2 N590 21.714' W1570 28.392' 0.20 26.0 2858.5 1.4 3.5 
S3 N590 21.708' W1570 28.428' 0.20 12098.0 62.0 4.1 1.8 
S3 N590 21.708' W1570 28.428' 0.20 12098.0 167.0 4.1 2.2 
S3 N590 21.708' W1570 28.428' 0.20 12098.0 74.5 4.1 1.9 
C N590 21.782' W1570 28.708' 0.20 0.0 40.5 0.0 1.6 
C N590 21.782' W1570 28.708' 0.20 0.0 60.0 0.0 1.8 

C - Soil Sample at Control Site S1 - Soil Sample at Decomposed Waste 
S3 - Soil Sample at Burnbox S2 - Soil Sample at Dump Trench 

Table 6: Microbial Indicator Organisms Water Data Spring 2011 
Sample ID. GPS Location Temperature pH MPN/100mL Log Mean MPN/100mL 

0C EC ENT EC ENT 
D.#3 N590 21.739' W1570 28.431' 6.8 7.4 2419.6 2419.6 3.4 3.4 
D.#3 N590 21.739' W1570 28.431' 6.8 7.4 1119.9 2419.6 3.0 3.4 
D.#3 N590 21.739' W1570 28.431' 6.8 7.4 1986.3 2419.6 3.3 3.4 
D.1 N590 21.702' W1570 28.429' 11.0 6.7 0.0 1.0 0.0 0.0 
D.1 N590 21.702' W1570 28.429' 11.0 6.7 0.0 0.0 0.0 0.0 
D.1 N590 21.702' W1570 28.429' 11.0 6.7 0.0 0.0 0.0 0.0 
K.C. N590 21.800' W1570 28.827' 3.4 7.6 18.9 0.0 1.3 0.0 
K.C. N590 21.800' W1570 28.827' 3.4 7.6 13.4 0.0 1.1 0.0 
K.C. N590 21.800' W1570 28.827' 3.4 7.6 13.2 0.0 1.1 0.0 
N.R. N590 20.785' W1570 28.729' 1.1 7.8 78.5 2.0 1.9 0.3 
N.R. N590 20.785' W1570 28.729' 1.1 7.8 107.6 2.0 2.0 0.3 
N.R. N590 20.785' W1570 28.729' 1.1 7.8 71.7 0.0 1.9 0.0 
S.L. N590 20.845' W1570 29.024' 0.6 7.4 2419.6 2419.6 3.4 3.4 
S.L. N590 20.845' W1570 29.024' 0.6 7.4 2419.6 2419.6 3.4 3.4 
S.L. N590 20.845' W1570 29.024' 0.6 7.4 2419.6 2419.6 3.4 3.4 
D.2 N590 21.708' W1570 28.433' 12.9 7.2 488.4 2419.6 2.7 3.4 
D.2 N590 21.708' W1570 28.433' 12.9 7.2 410.6 2419.6 2.6 3.4 
D.2 N590 21.708' W1570 28.433' 12.9 7.2 307.6 2419.6 2.5 3.4 
D.3 N590 21.711' W1570 28.453' 3.5 6.3 0.0 3.1 0.0 0.5 
D.3 N590 21.711' W1570 28.453' 3.5 6.3 0.0 8.6 0.0 0.9 
D.3 N590 21.711' W1570 28.453' 3.5 6.3 0.0 2.0 0.0 0.3 
O.D. N590 21.800' W1570 28.827' 9.2 7.5 0.0 0.0 0.0 0.0 
O.D. N590 21.800' W1570 28.827' 9.2 7.5 0.0 2.0 0.0 0.3 
O.D. N590 21.800' W1570 28.827' 9.2 7.5 0.0 20.2 0.0 1.3 

D.W.S.  R.T. 0.0 0.0 0.0 0.0 
D.W.S.  R.T. 0.0 0.0 0.0 0.0 
D.W.S.  R.T.  0.0 0.0 0.0 0.0 

S.L. Sewage Lagoon  D.#3 -Surface Water at EKPZ-03 D.1. - Surface Water at New 
Dump Trench K.C. - Klutuk Creek N.R. - Nushagak River 
D.W.S. - Drinking Water Source D.2 - Surface Water at newly decomposed Waste 
D.3 - Surface Water at decomposed Waste O.D. - Surface Water at Old Dump 
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Table 7: Microbial Indicator Organisms Water Data Fall 2011 
Sample ID. GPS Location Temperature pH MPN/100mL Log Mean MPN/100mL 

0C EC ENT EC ENT 
D.1 N590 21.717' W1570 28.396' 18.8 6.8 2419.6 2419.6 3.4 3.4 
D.1 N590 21.717' W1570 28.396' 18.8 6.8 2419.6 2419.6 3.4 3.4 
D.1 N590 21.717' W1570 28.396' 18.8 6.8 2419.6 2419.6 3.4 3.4 
N.R. N590 20.785' W1570 28.729' 11.1 7.4 28.5 5.0 1.5 0.7 
N.R. N590 20.785' W1570 28.729' 11.1 7.4 14.2 3.0 1.2 0.5 
N.R. N590 20.785' W1570 28.729' 11.1 7.4 24.6 2.0 1.4 0.3 
S.L. N590 20.845' W1570 29.024' 11.4 7.8 2419.6 2419.6 3.4 3.4 
S.L. N590 20.845' W1570 29.024' 11.4 7.8 2419.6 2419.6 3.4 3.4 
S.L. N590 20.845' W1570 29.024' 11.4 7.8 2419.6 2419.6 3.4 3.4 
D.3 N590 21.689' W1570 28.366' 19.5 7.7 2419.6 2419.6 3.4 3.4 
D.3 N590 21.689' W1570 28.366' 19.5 7.7 2419.6 2419.6 3.4 3.4 
D.3 N590 21.689' W1570 28.366' 19.5 7.7 2419.6 2419.6 3.4 3.4 
O.D. N590 21.800' W1570 28.827' 11.3 7.0 1.0 11.2 0.0 1.0 
O.D. N590 21.800' W1570 28.827' 11.3 7.0 1.0 10.2 0.0 1.0 
O.D. N590 21.800' W1570 28.827' 11.3 7.0 1.0 9.5 0.0 1.0 

S.L. -  Sewage Lagoon    D.3 - Surface Water at decomposed Waste        N.R. - Nushagak River 
D.1. - Surface Water at New Dump Trench    O.D. - Surface Water at Old Dump  

Table 8: Microbial Indicator Organisms Soil Data Fall 2011 
Sample ID. GPS Location Soil Weight MPN/100mL Log Mean MPN/100mL 

(g) EC ENT EC ENT 
S1 N590 21.719' W1570 28.423' 0.20 0.0 71.0 0.0 1.9 
S1 N590 21.719' W1570 28.423' 0.20 0.0 15.0 0.0 1.2 
S1 N590 21.719' W1570 28.423' 0.20 0.0 70.5 0.0 1.8 
S2 N590 21.714' W1570 28.392' 0.20 67.0 579.5 1.8 2.8 
S2 N590 21.714' W1570 28.392' 0.20 677.0 1584.5 2.8 3.2 
S2 N590 21.714' W1570 28.392' 0.20 25.5 1892.0 1.4 3.3 
S3 N590 21.708' W1570 28.428' 0.20 48.0 553.5 1.7 2.7 
S3 N590 21.708' W1570 28.428' 0.20 587.0 187.5 2.8 2.3 
S3 N590 21.708' W1570 28.428' 0.20 369.0 235.5 2.6 2.4 
C N590 21.782' W1570 28.708' 0.20 0.0 10.0 0.0 1.0 
C N590 21.782' W1570 28.708' 0.20 0.0 15.0 0.0 1.2 

C - Soil Sample at Control Site  S3 - Soil Sample at Burnbox 
S1 - Soil Sample at Decomposed Waste  S2 - Soil Sample at Dump Trench 
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Appendix D-iv: Microbial Indicator Organism Data for Fort Yukon 

Table 1: Microbial Indicator Organisms Water Data Summer 2010 
Sample ID. GPS Location Temperature pH MPN/100mL Log Mean MPN/100mL 

0C EC ENT EC ENT 
D.1 N660 34.929' W1450 13.125' 12.9 7.2 0.0 5.1 0.0 0.7 
D.1 N660 34.929' W1450 13.125' 12.9 7.2 0.0 2.0 0.0 0.3 
D.1 N660 34.929' W1450 13.125' 12.9 7.2 2.0 3.0 0.3 0.5 
D.1 N660 34.929' W1450 13.125' 12.9 7.27 2.0 4.0 0.3 0.6 
D.1 N660 34.929' W1450 13.125' 12.9 7.27 4.0 6.0 0.6 0.8 

D.#1 N660 34.934' W1450 13.094' 9.8 7.27 54.5 16.0 1.7 1.2 
D.#1 N660 34.934' W1450 13.094' 9.8 7.27 9.4 11.3 1.0 1.1 
D.#1 N660 34.934' W1450 13.094' 9.8 7.26 21.8 42.8 1.3 1.6 
D.#1 N660 34.934' W1450 13.094' 9.8 7.26 16.6 18.2 1.2 1.3 
D.#1 N660 34.934' W1450 13.094' 9.8 7.26 12.6 4.0 1.1 0.6 
Y.R. N660 34.105' W1450 17.062' 17.7 7.85 3.1 1.0 0.5 0.0 
Y.R. N660 34.105' W1450 17.062' 17.7 7.85 1.0 0.0 0.0 0.0 
Y.R. N660 34.105' W1450 17.062' 17.7 7.85 0.0 0.0 0.0 0.0 
P.R. N660 35.595' W1450 13.368' 18.9 7.85 33.1 10.9 1.5 1.0 
P.R. N660 35.595' W1450 13.368' 18.9 7.85 19.9 8.6 1.3 0.9 
P.R. N660 35.595' W1450 13.368' 18.9 7.85 21.8 5.2 1.3 0.7 
H.L. N660 34.300' W1450 15.165' 21.3 8.55 4.1 4.1 0.6 0.6 
H.L. N660 34.300' W1450 15.165' 21.3 8.55 0.0 4.1 0.0 0.6 
H.L. N660 34.300' W1450 15.165' 21.3 8.55 0.0 6.2 0.0 0.8 

Y.R.S. N660 34.331' W1450 17.112' 16.8 6.79 4.1 79.8 0.6 1.9 
Y.R.S. N660 34.331' W1450 17.112' 16.8 6.79 4.1 62.7 0.6 1.8 
Y.R.S. N660 34.331' W1450 17.112' 16.8 6.79 4.1 64.5 0.6 1.8 
Y.R.S. N660 34.331' W1450 17.112' 16.8 6.79 4.0 48.2 0.6 1.7 
Y.R.S. N660 34.331' W1450 17.112' 16.8 6.79 6.2 159.6 0.8 2.2 
Y.R.S. N660 34.331' W1450 17.112' 16.8 6.79 2.0 129 0.3 2.1 

S.L. N660 34.113' W1450 10.843' 23.3 8.4 11.2 1.0 1.0 0.0 
S.L. N660 34.113' W1450 10.843' 23.3 8.4 4.1 1.0 0.6 0.0 
S.L. N660 34.113' W1450 10.843' 23.3 8.4 2.0 0.0 0.3 0.0 

D.W.S. R.T. 7.4 0.0 0.0 0.0 0.0 
D.1 - Standing Water at Dump Drainage P.R. - Porcupine River S.L. - Sewage Lagoon  
D.#1 -Surface Water at FYPZ-01  H.L. - Hospital Lake  D.W.S. - Drinking Water Source 
Y.R. - Yukon River  Y.R.S. - Slough access Yukon River 
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Table 2: Microbial Indicator Organisms Soil Data Summer 2010 
Sample ID. GPS Location Soil Weight MPN/100mL Log Mean MPN/100mL 

(g) EC ENT EC ENT 
S1 N660 34.935' W1450 18.117' 0.22 139.5 5469.5 2.1 3.7 
S1 N660 34.935' W1450 18.117' 0.22 139.5 10998.2 2.1 4.0 
S1 N660 34.935' W1450 18.117' 0.24 139.5 9030.0 2.1 4.0 
S2 N660 34.936' W1450 13.094' 0.22 9.1 1986.8 1.0 3.3 
S2 N660 34.936' W1450 13.094' 0.24 0.0 393.6 0.0 2.6 
S2 N660 34.936' W1450 13.094' 0.22 0.0 1170.5 0.0 3.1 
S2 N660 34.936' W1450 13.094' 0.22 1315.5 584.5 3.1 2.8 
S2 N660 34.936' W1450 13.094' 0.20 537.3 263.2 2.7 2.4 
S2 N660 34.936' W1450 13.094' 0.23 7059.5 10998.2 3.8 4.0 
S3 N660 34.914' W1450 12.995' 0.27 9.1 73.6 0.0 0.0 
S3 N660 34.914' W1450 12.995' 0.24 9.1 79.1 0.0 0.0 
S3 N660 34.914' W1450 12.995' 0.27 9.1 89.5 0.0 0.0 
S4 N660 34.936' W1450 12.996' 0.25 9.1 50.0 1.0 1.9 
S4 N660 34.936' W1450 12.996' 0.25 9.1 68.6 1.0 1.9 
S4 N660 34.936' W1450 12.996' 0.21 0.0 40.9 1.0 2.0 
C N660 34.900' W1450 13.025' 0.23 0.0 60.5 1.0 1.7 
C N660 34.900' W1450 13.025' 0.22 0.0 89.5 1.0 1.8 
C N660 34.900' W1450 13.025' 0.22 0.0 128.6 0.0 2.1 
C N660 34.869' W1450 12.926' 0.25 0.0 151.4 0.0 2.2 
C N660 34.869' W1450 12.926' 0.22 0.0 216.8 0.0 2.3 
C N660 34.869' W1450 12.926' 0.23 0.0 177.7 0.0 2.2 

C - Soil Sample at Control Site  S3 - Soil Sample at Newly Disposed Waste 
S1 - Soil Sample at FY-PZ-01  S4 - Soil Sample at Burned Waste 
S2 - Soil Sample at Dump Drainage 

Table 3: Microbial Indicator Organisms Soil Data Spring 2011 
Sample ID. GPS Location Soil Weight MPN/100mL Log Mean MPN/100mL 

(g) EC ENT EC ENT 
S1 N660 34.871' W1450 12.962' 0.20 1190.5 12098.0 3.1 4.1 
S1 N660 34.871' W1450 12.962' 0.20 533.0 12098.0 2.7 4.1 
S1 N660 34.871' W1450 12.962' 0.20 694.0 98.5 2.8 2.0 
S2 N660 34.892' W1450 13.117' 0.60 3.3 46.2 0.5 1.7 
S2 N660 34.892' W1450 13.117' 0.60 5.0 30.8 0.7 1.5 
S2 N660 34.892' W1450 13.117' 0.60 0.0 34.2 0.0 1.5 
S3 N660 34.880' W1450 13.016' 0.20 2752.0 12098.0 3.4 4.1 
S3 N660 34.880' W1450 13.016' 0.20 1939.5 12098.0 3.3 4.1 
S3 N660 34.880' W1450 13.016' 0.20 3202.5 12098.0 3.5 4.1 
C N660 34.887' W1450 12.959' 0.20 35.0 284.0 1.5 2.5 
C N660 34.887' W1450 12.959' 0.20 40.0 222.5 1.6 2.3 
C N660 34.887' W1450 12.959' 0.20 10.0 175.0 1.0 2.2 

C - Soil Sample at Control Site  S2 - Soil Sample at FYPZ-04  
S1 - Soil Sample at Newly Disposed Waste S3 - Soil Sample at Burned Waste 
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Table 4: Microbial Indicator Organisms Water Data Spring 2011 
Sample ID. GPS Location Temperature pH MPN/100mL Log Mean MPN/100mL 

0C EC ENT EC ENT 
D.1 N660 34.929' W1450 13.125' 4.7 7.7 43.1 2419.6 1.6 3.4 
D.1 N660 34.929' W1450 13.125' 4.7 7.7 51.2 2419.6 1.7 3.4 
D.1 N660 34.929' W1450 13.125' 4.7 7.7 25.9 2419.6 1.4 3.4 

D.#2 N660 34.890' W1450 12.991' 5.6 8.4 343.3 2419.6 2.5 3.4 
D.#2 N660 34.890' W1450 12.991' 5.6 8.4 68.3 2419.6 1.8 3.4 
D.#2 N660 34.890' W1450 12.991' 5.6 8.4 80.1 2419.6 1.9 3.4 
D.#1 N660 34.934' W1450 13.094' 14 7.9 7.4 9.5 0.9 1.0 
D.#1 N660 34.934' W1450 13.094' 14 7.9 12.1 4.1 1.1 0.6 
D.#1 N660 34.934' W1450 13.094' 14 7.9 12 2.0 1.1 0.3 
D.#3 N660 34.934' W1450 13.094' 15.5 7.2 7.4 36.4 0.9 1.6 
D.#3 N660 34.892' W1450 13.117' 15.5 7.2 12.1 123.4 1.1 2.1 
D.#3 N660 34.892' W1450 13.117' 15.5 7.2 12.0 176 1.1 2.2 
D.#4 N660 34.892' W1450 13.117' 21.5 8.6 2.0 4.1 0.3 0.6 
D.#4 N660 34.892' W1450 13.117' 21.5 8.6 1.3 10.8 0.1 1.0 
D.#4 N660 34.742' W1450 14.784' 21.5 8.6 1.3 9.4 0.1 1.0 
Y.R. N660 34.742' W1450 14.784' 13 8.4 8.5 0.0 0.9 0.0 
Y.R. N660 34.742' W1450 14.784' 13 8.4 8.4 3.0 0.9 0.5 
Y.R. N660 34.882' W1450 13.008' 13 8.4 10.9 4.1 1.0 0.6 
H.L. N660 34.882' W1450 13.008' 12.8 8.3 4.0 12.8 0.6 1.1 
H.L. N660 34.882' W1450 13.008' 12.8 8.3 5.2 20.0 0.7 1.3 
H.L. N660 34.322' W1450 17.260' 12.8 8.3 4.1 27.2 0.6 1.4 

Y.R.S. N660 34.322' W1450 17.260' 14.2 8.4 3.1 7.2 0.5 0.9 
Y.R.S. N660 34.322' W1450 17.260' 14.2 8.4 2.0 4.1 0.3 0.6 
Y.R.S. N660 34.900' W1450 13.025' 14.2 8.4 5.2 13.4 0.7 1.1 

S.L. N660 34.900' W1450 13.025' 16.9 8.1 3.1 3.0 0.5 0.5 
S.L. N660 34.900' W1450 13.025' 16.9 8.1 2.0 3.1 0.3 0.5 
S.L. N660 34.900' W1450 13.025' 16.9 8.1 1.0 5.2 0.0 0.7 

D.1 - Standing Water at Dump Drainage D.#3 -Surface Water at FYPZ-03       Y.R.S. - Slough access Yukon River 
D.#1 -Surface Water at FYPZ-01  D.#4 -Surface Water at FYPZ-04       S.L. - Sewage Lagoon  
D.#2 -Surface Water at FYPZ-02  H.L. - Hospital Lake       Y.R. - Yukon River 

Table 5: Microbial Indicator Organisms Water Data Fall 2011 
Sample ID. GPS Location Temperature pH MPN/100mL Log Mean MPN/100mL 

0C EC ENT EC ENT 
D.1 N660 34.929' W1450 13.125' 7.5 7.9 2688.4 2688.4 3.4 3.4 
D.1 N660 34.929' W1450 13.125' 7.5 7.9 2688.4 2688.4 3.4 3.4 
D.1 N660 34.929' W1450 13.125' 7.5 7.9 2688.4 2688.4 3.4 3.4 

D.#2 N660 34.890' W1450 12.991' 9.5 6.7 0.0 10.0 0.0 1.0 
D.#2 N660 34.890' W1450 12.991' 9.5 6.7 0.0 0.0 0.0 0.0 
D.#2 N660 34.890' W1450 12.991' 9.5 6.7 0.0 0.0 0.0 0.0 
D.#1 N660 34.934' W1450 13.094' 10.2 7.2 0.0 10.0 0.0 1.0 
D.#1 N660 34.934' W1450 13.094' 10.2 7.2 0.0 0.0 0.0 0.0 
D.#1 N660 34.934' W1450 13.094' 10.2 7.2 0.0 0.0 0.0 0.0 
D.#3 N660 34.934' W1450 13.094' 9.8 7.5 0.0 5.0 0.0 0.7 
D.#3 N660 34.892' W1450 13.117' 9.8 7.5 0.0 0.0 0.0 0.0 
D.#3 N660 34.892' W1450 13.117' 9.8 7.5 0.0 3.0 0.0 0.5 
D.#4 N660 34.892' W1450 13.117' 11.4 7.8 0.0 0.0 0.0 0.0 
D.#4 N660 34.892' W1450 13.117' 11.4 7.8 0.0 0.0 0.0 0.0 
D.#4 N660 34.742' W1450 14.784' 11.4 7.8 0.0 2.0 0.0 0.3 
Y.R. N660 34.742' W1450 14.784' 15.3 8.6 21.6 6.1 1.3 0.8 
Y.R. N660 34.742' W1450 14.784' 15.3 8.6 23.8 2.0 1.4 0.3 
Y.R. N660 34.882' W1450 13.008' 15.3 8.6 13.5 2.5 1.1 0.4 
H.L. N660 34.882' W1450 13.008' 16 8.5 6.3 13.1 0.8 1.1 
H.L. N660 34.882' W1450 13.008' 16 8.5 5.2 8.3 0.7 0.9 
H.L. N660 34.322' W1450 17.260' 16 8.5 2.2 15.9 0.3 1.2 

D.1 - Standing Water at Dump Drainage D.#3 -Surface Water at FYPZ-03  Y.R. - Yukon River 
D.#1 -Surface Water at FYPZ-01  D.#4 -Surface Water at FYPZ-04 
D.#2 -Surface Water at FYPZ-02  H.L. - Hospital Lake  
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Table 6: Microbial Indicator Organisms Soil Data Fall 2011 
Sample ID. GPS Location Soil Weight MPN/100mL Log Mean MPN/100mL 

(g) EC ENT EC ENT 
S1 N660 34.914' W1450 12.995' 0.20 30.5 12098.0 1.5 4.1 
S1 N660 34.914' W1450 12.995' 0.20 205.5 12098.0 2.3 4.1 
S1 N660 34.914' W1450 12.995' 0.20 104.5 98.5 2.0 2.0 
S2 N660 34.916' W1450 13.045' 0.60 0.0 218.0 0.0 2.3 
S2 N660 34.916' W1450 13.045' 0.60 0.0 119.5 0.0 2.1 
S3 N660 34.900' W1450 13.025' 0.20 20.0 12098.5 1.3 4.1 
S3 N660 34.900' W1450 13.025' 0.20 5.0 12098.0 0.7 4.1 
S3 N660 34.900' W1450 13.025' 0.20 5.0 12098.0 0.7 4.1 
C N660 34.887' W1450 12.959' 0.20 1 11.2 0.0 1.0 
C N660 34.887' W1450 12.959' 0.20 1 10.2 0.0 1.0 
C N660 34.887' W1450 12.959' 0.20 1 9.5 0.0 1.0 

C - Soil Sample at Control Site  S3 - Soil Sample at Burned Waste 
S1 - Soil Sample at Newly Disposed Waste S2 - Soil Sample at FYPZ-04 
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Appendix D-v: Microbial Indicator Organism Data for White Mountain 

Table 1: Microbial Indicator Organisms Water Data Spring 2010 
Sample ID. GPS Location Temperature pH MPN/100mL Log Mean MPN/100mL 

0C EC ENT EC ENT 
D.1 N 640 40.600' W163023.326' 3.2 7.4 2419.6 2419.6 3.4 3.4 
D.1 N 640 40.600' W163023.326' 3.2 7.4 2419.6 2419.6 3.4 3.4 
D.1 N 640 40.600' W163023.326' 3.2 7.4 2419.6 2419.6 3.4 3.4 
D.1 N 640 40.600' W163023.326' 3.2 7.4 2419.6 2419.6 3.4 3.4 
D.2 N 640 40.629' W1630 23.352' 9.5 7.5 2419.6 183.3 3.4 2.3 
D.2 N 640 40.629' W1630 23.352' 9.5 7.5 1119.9 107.9 3.0 2.0 
D.2 N 640 40.629' W1630 23.352' 9.5 7.5 1986.3 84.9 3.3 1.9 
D.2 N 640 40.629' W1630 23.352' 9.5 7.5 2419.6 60.9 3.4 1.8 
D.3 N 640 40.600' W1630 23.329' 9.3 7.5 2419.6 2419.6 3.4 3.4 
D.3 N 640 40.600' W1630 23.329' 9.3 7.5 2419.6 2419.6 3.4 3.4 
D.3 N 640 40.600' W1630 23.329' 9.3 7.5 2419.6 2419.6 3.4 3.4 
D.3 N 640 40.600' W1630 23.329' 9.3 7.5 1986.3 2419.6 3.3 3.4 
D.4 N 640 40.653' W1630 23.358' 10.1 6.5 3.1 2.0 0.5 0.3 
D.4 N 640 40.653' W163o 23.358' 10.1 6.5 5.2 0.0 0.7 0.0 
D.4 N 640 40.653' W1630 23.358' 10.1 6.5 3.1 2.0 0.5 0.3 
D.5 N 640 40.588' W1630 23.289' 3.5 8.6 2419.6 2419.6 3.4 3.4 
D.5 N 640 40.588' W1630 23.289' 3.5 8.6 2419.6 2419.6 3.4 3.4 
D.5 N 640 40.588' W1630 23.289' 3.5 8.6 2419.6 2419.6 3.4 3.4 
D.6 N 640 40.625' W1630 23.350' 3.2 6.7 12.1 51.2 1.1 1.7 
D.6 N 640 40.625' W1630 23.350' 3.2 6.7 14.5 29.5 1.2 1.5 
D.6 N 640 40.625' W1630 23.350' 3.2 6.7 21.3 34.1 1.3 1.5 
V.C. N 640 40.588' W163023.289'  5.6 8.1 7.4 93.4 0.9 2.0 
V.C. N 640 40.588' W163023.289'  5.6 8.1 7.5 98.5 0.9 2.0 
V.C. N 640 40.588' W1630 23.289' 5.6 8.1 7.5 69.5 0.9 1.8 
F.R. N 640 40.588' W163023.289' 2.3 7.9 9.7 178.5 1.0 2.3 
F.R. N 640 40.588' W1630 23.289' 2.3 7.9 9.6 231 1.0 2.4 

D.W.S. R.T. 7.2 0.0 0.0 0.0 0.0 
D.W.S. R.T. 7.2 0.0 0.0 0.0 0.0 

D.1 - Standing Water at Burnbox     D.2 - Standing Water at Mid Dump -Mixed Waste 
D.3. - Standing Water at Dump Drainage    D.4. - Standing water at Metal Drums  D.W.S. - Drinking Water Source  
 V.C. - Village Creek    D.5 - Standing Water at Decomposed Waste 
F.R. - Fish River    D.6 - Meltwater at Dump Drainage 2

Table 2: Microbial Indicator Organisms Soil Data Spring 2010 
Sample ID. GPS Location Soil Weight MPN/100mL Log Mean MPN/100mL 

(g) EC ENT EC ENT 
S1 N 640 40.607' W1630 23.353' 0.20 66.0 3202.5 1.8 3.5 
S1 N 640 40.607' W1630 23.353' 0.20 20.0 9931.5 1.3 4.0 
S1 N 640 40.607' W1630 23.353' 0.20 423.5 287.0 2.6 2.5 
S2 N 640 40.628' W1630 23.357' 0.20 423.5 745.5 2.6 2.9 
S2 N 640 40.628' W1630 23.357' 0.20 55995.0 431.5 4.7 2.6 
S2 N 640 40.628' W1630 23.357' 0.20 617.0 12098.0 2.8 4.1 
S3 N 640 40.628' W1630 23.305' 0.20 12098.0 12098.0 4.1 4.1 
S3 N 640 40.628' W1630 23.305' 0.20 12098.0 12098.0 4.1 4.1 
S3 N 640 40.628' W1630 23.305' 0.20 12098.0 12098.0 4.1 4.1 
S4 N 640 40.641' W1630 23.352' 0.20 20.5 173.0 1.3 2.2 
S4 N 640 40.641' W1630 23.352' 0.20 91.5 15.0 2.0 1.2 
S4 N 640 40.641' W1630 23.352' 0.20 26.0 57.5 1.4 1.8 
S5 N 640 40.778' W1630 23.338' 0.20 10.0 80.5 1.0 1.9 
S5 N 640 40.778' W1630 23.338' 0.20 15.5 133.0 1.2 2.1 
S5 N 640 40.778' W1630 23.338' 0.20 26.0 108.0 1.4 2.0 
C N 640 40.728' W1630 24.147' 0.20 0.0 81.5 0.0 1.9 
C N 640 40.728' W1630 24.147' 0.20 0.0 53.0 0.0 1.7 
C N 640 40.728' W1630 24.147' 0.20 0.0 42.0 0.0 1.6 

C - Soil Sample at Control Site S3 - Soil Sample at Mid Dump -Mixed Waste  
S1 - Soil Sample at Newly Disposed Waste   S4 - Soil Sample at Dump Drainage 
S2 - Soil Sample at Burnbox   S5 - Soil Sample at Metal Drums 
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Table 3: Microbial Indicator Organisms Water Data Spring 2011 
Sample ID. GPS Location Temperature pH MPN/100mL Log Mean MPN/100mL 

0C EC ENT EC ENT 
D.6 N 640 40.625' W1630 23.350' 11.5 8.7 2419.6 2419.6 3.4 3.4 
D.6 N 640 40.625' W1630 23.350' 11.5 8.7 2419.6 2419.6 3.4 3.4 
D.6 N 640 40.625' W1630 23.350' 11.5 8.7 2688.4 2419.6 3.4 3.4 
D.2 N 640 40.629' W1630 23.352' 20.7 7.9 816.4 2419.6 2.9 3.4 
D.2 N 640 40.629' W1630 23.352' 20.7 7.9 1413.6 1986.3 3.2 3.3 
D.2 N 640 40.629' W1630 23.352' 20.7 7.9 1244.3 1925.4 3.1 3.3 
D.1 N 640 40.600' W163023.326' 21.6 7.8 1553.1 2419.6 3.2 3.4 
D.1 N 640 40.600' W163023.326' 21.6 7.8 1413.6 2419.6 3.2 3.4 
D.1 N 640 40.600' W163023.326' 21.6 7.8 1337.0 2688.4 3.1 3.4 
D.3 N 640 40.600' W1630 23.329' 14.1 7.7 629.4 2419.6 2.8 3.4 
D.3 N 640 40.600' W1630 23.329' 14.1 7.7 234.8 2419.6 2.4 3.4 
D.3 N 640 40.600' W1630 23.329' 14.1 7.7 571.7 2688.4 2.8 3.4 
D.7 N 640 40.632' W163o 23.454' 12.4 8.2 2.0 5.1 0.3 0.7 
D.7 N 640 40.632' W163o 23.454' 12.4 8.2 2.0 7.5 0.3 0.9 
D.7 N 640 40.632' W163o 23.454' 12.4 8.2 0.0 3.3 0.0 0.5 
D.5 N 640 40.588' W1630 23.289' 6.2 8.1 424.5 2419.6 2.6 3.4 
D.5 N 640 40.588' W1630 23.289' 6.2 8.1 533.5 2419.6 2.7 3.4 
D.5 N 640 40.588' W1630 23.289' 6.2 8.1 424.5 2688.4 2.6 3.4 
D.4 N 640 40.653' W1630 23.358' 19.6 8.2 5.2 35.0 0.7 1.5 
D.4 N 640 40.653' W163o 23.358' 19.6 8.2 3.4 21.8 0.5 1.3 
D.4 N 640 40.653' W1630 23.358' 19.6 8.2 5.2 29.8 0.7 1.5 
F.R. N 640 40.588' W163023.289' 7.8 7.8 79.1 9.4 1.9 1.0 
F.R. N 640 40.588' W1630 23.289' 7.8 7.8 29.5 21.6 1.5 1.3 
F.R. N 640 40.588' W1630 23.289' 7.8 7.8 26.5 7.3 1.4 0.9 

D.1 - Standing Water at Burnbox  D.2 - Standing Water at Mid Dump -Mixed Waste 
D.3. - Standing Water at Dump Drainage  D.4. - Standing water at Metal Drums 
D.5 - Standing Water at Decomposed Waste  D.6 - Meltwater at Dump Drainage 2
D.7. - Standing water Upgradient from Dump D.W.S. - Drinking Water Source
F.R. - Fish River

Table 4: Microbial Indicator Organisms Soil Data Spring 2011 
Sample ID. GPS Location Soil Weight MPN/100mL Log Mean MPN/100mL 

(g) EC ENT EC ENT 
S1 N 640 40.626' W1630 23.328'  0.20 0.0 75.5 0.0 1.9 
S1 N 640 40.626' W1630 23.328' 0.20 0.0 66.0 0.0 1.8 
S1 N 640 40.626' W1630 23.328' 0.20 0.0 76.0 0.0 1.9 
S2 N 640 40.625' W1630 23.366' 0.20 125.0 12098.0 2.1 4.1 
S2 N 640 40.625' W1630 23.366' 0.20 207.0 12098.0 2.3 4.1 
S2 N 640 40.625' W1630 23.366' 0.20 116.5 2442.0 2.1 3.4 
S3 N 640 40.618' W1630 23.381' 0.20 1627.5 3850.5 3.2 3.6 
S3 N 640 40.618' W1630 23.381' 0.20 430.0 4604.0 2.6 3.7 
S3 N 640 40.618' W1630 23.381' 0.20 0.0 42.0 0.0 1.6 
S3 N 640 40.618' W1630 23.381' 0.20 80.5 12098.0 1.9 4.1 
C N 640 40.632' W1630 23.454' 0.20 0.0 54.0 0.0 1.7 
C N 640 40.632' W1630 23.454' 0.20 0.0 25.0 0.0 1.4 
C N 640 40.632' W1630 23.454' 0.20 0.0 41.0 0.0 1.6 

C - Soil Sample at Control Site  S2 - Soil Sample at Burnbox 
S1 - Soil Sample at Decomposed Waste S3 - Soil Sample at Dump Drainage 
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Appendix E: Organic Compounds Analysis Data 

Appendix E-i: Organic Compounds HPLC-MSMS Instrumentation and Extraction Method Data 

Table 1: HPLC-MSMS Instrumentation and Solid Phase Extraction Method Development for Organic Compounds 
Concentration Levels 

No. Compound LOD (ppb) LOQ (ppb) Recovery % Minimum Maximum 
1 Sulfamethoxazole 0.04 0.13 69.1 0.22 4.95 
2 Trimethoprim 0.05 0.14 75.4 0.52 1.08 
3 Carbamazepine 0.05 0.13 89.4 N.D <LOD 
4 Venlafaxine 0.04 0.12 98.3 N.D N/D 
5 Sertraline 0.03 0.09 88.4 N.D N/D 
6 Bupropion 0.03 0.10 90.8 0.23 0.84 
7 Ibuprophen 0.04 0.11 84.1 0.33 16.96 
8 Acetaminophen 0.03 0.09 87.2 1.21 26.87 
9 1,7Dimethylxanthine 0.04 0.12 91.6 2.34 53.71 

10 Caffeine 0.04 0.12 97.7 0.24 112.40 
11 4&5 Methylbenzotriazole 0.04 0.06 N.D 0.88 
12 Benzotriazole 0.04 0.07 N.D 4.08 
13 DEP 0.01 0.03 N.D 4.05 
14 DEHP 0.01 0.04 N.D 5.51 
15 DNOP 0.01 0.04 N.D 2.24 
16 DBP 0.01 0.03 N.D 8.04 
17 DMP 0.004 0.01 N.D 0.04 
18 BBP 0.01 0.03 N.D 1.45 

*LC MS/MS methods were developed: for benzotriazole constitutes by Hagedorn et al., 2013, pharmaceutical constitutes Ede 2012 and phthalates constitutes
by Ali et al., (in review). 
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Appendix E-ii: Organic Compounds HPLC-MSMS Analysis Data 

Table 2: HPLC-MSMS Average Concentration (ppb) for Pharmaceuticals 
Pharmaceutical Compounds 

Location 
Acetam- 
inophen  

Dimethyl- 
xanthine 

Trimetho- 
prim Caffeine  Sulfamethox-

azole Bupropion  Venlafaxine  Carbamaze- 
pine Sertraline  Ibuprofen 

Eek 
Control ND <LOD ND <LOD ND ND ND ND ND ND 
Landfill 21.13 26.67 0.54 11.94 3.14 <LOD ND ND ND 7.16 
Sewage 23.07 41.73 1.08 9.18 0.67 <LOD ND <LOD ND 5.80 
 Ekwok  

          Control ND ND ND <LOD ND ND ND ND ND ND 
Landfill <LOD ND ND <LOD 0.53 <LOD ND ND ND ND 
Sewage 11.43 28.93 <LOD 23.47 0.22 <LOD ND <LOD ND 6.13 
 White 
Mountain 

          Control ND ND ND <LOD ND ND ND ND ND ND 
Dump ND 26.19 ND 109.59 0.46 <LOD ND ND ND 16.96 
>50m Landfill <LOD 25.69 ND 112.40 0.51 <LOD ND ND ND 10.31 
 Fort Yukon 

          Control ND ND ND ND ND ND ND ND ND ND 
>50m Landfill 13.41 ND ND <LOD ND 0.84 ND ND ND 4.10 
 Allakaket 

          Control ND 0.56 ND <LOD ND ND ND ND ND ND 
Landfill 5.20 1.62 ND 4.80 <LOD 0.23 ND ND ND 0.75 
>50m Landfill 0.25 0.65 ND 0.93 <LOD 0.51 ND ND ND ND 
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Table 3: HPLC-MSMS Average Concentration (ppb) for Benzotrialzoles & Phthalates 

Location 

4&5 MBT 
 (ppb) 

BT 
(ppb)

DEP 
(ppb)

DEHP 
(ppb)

DNOP 
(ppb)

DBP 
(ppb)

DMP 
(ppb)

BBP 
(ppb)

Eek 
  Control <LOD 0.11 N.D 0.52 0.33 0.33 N.D 0.24 

Sewage 0.06 2.03 0.46 0.61 0.29 0.67 N.D 0.11 
>50 m Landfill <LOD 2.92 N.D 0.68 0.44 1.16 N.D 0.20 
Landfill 0.07 4.08 N.D 0.69 0.26 1.26 N.D 0.09 
Ekwok 

  Control N.D N.D 0.30 0.62 N.D 0.63 N.D 0.81 
Old Landfill <LOD 0.15 N.D N.D N.D N.D N.D N.D 
Sewage 0.06 0.78 0.46 0.08 2.24 7.86 0.03 1.11 
Landfill <LOD 0.21 4.81 5.40 N.D 0.68 N.D 0.34 
>50 m Landfill <LOD 0.25 N.D 0.76 <LOD 0.67 N.D 0.20 
White Mountain 
>50 m Landfill <LOD 0.32 N.D N.D N.D N.D N.D N.D 
Dump 0.17 0.19 0.28 5.38 N.D 2.49 0.03 0.63 
Fort Yukon 

  >50 m Landfill <LOD 0.15 N.D 1.60 0.28 1.38 N.D 0.14 
Landfill <LOD 0.48 N.D 2.36 0.27 0.26 N.D 0.14 
Control 0.14 0.85 0.28 0.28 <LOD 0.13 
Allakaket 

  Landfill 0.88 0.29 N.D 1.05 0.59 1.02 0.04 0.53 
Control <LOD 0.11 N.D N.D N.D N.D N.D N.D 
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