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Abstract 
 

Since the Industrial Revolution of the late 1700’s, atmospheric and marine carbon 

dioxide levels have drastically increased. Ocean acidification is the result of the shift in 

the marine carbon cycle caused by the increase in marine and atmospheric carbon dioxide. 

Changing environmental conditions caused by ocean acidification have been shown to 

have adverse effects on different marine species as well as life history stages. As a result, 

ecologically and economically important teleost fish species such as walleye pollock 

(Theragra chalcogramma) could be adversely affected by ocean acidification conditions. 

This study explores the responses of walleye pollock eggs and larvae incubated under 

different projected levels of ocean acidification, looking at hatch timing and growth 

parameters to examine potential adverse responses to more acidic conditions. Older 

walleye pollock juveniles (age 1+) were used to uncover potential physiological 

responses to ocean acidification pertaining specifically to stress, overall body condition 

indices, and blood chemistry. I found that while the two early life history stages of 

walleye pollock could survive under ambient, high, medium, and low pH conditions (pH 

8.1, 7.9, 7.6, and 7.2, respectively), there were some physiological responses to projected 

levels of ocean acidification. Hatch timing was not delayed in the lowest pH treatment as 

expected. In addition, size at hatch, yolk area, and eye diameter did not differ among pH 

treatments. Walleye pollock juveniles reared under projected levels of ocean acidification 

demonstrated shifts in blood gas levels and blood pH. However, exposure to a lower pH 

environment of pH 7.9, 7.6, or 7.2 did not induce a response for either the stress 

indicators or body condition indices that were measured. To uncover the mechanism for 

their resilience, more testing is needed to gain further insight into underlying 

compensatory mechanisms of various life history stages and populations. 
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Chapter 1. Ocean acidification and walleye pollock of the North Pacific 

 
1.1. Introduction 

 Walleye pollock (Theragra chalcogramma) are an integral component of North 

Pacific and Bering Sea food webs and support major regional fisheries. With an annual 

harvest of about 1 million metric tons, they comprise the largest and one of the nation’s 

most valuable fisheries (Ianelli et al. 2010). Successful recruitment of larval walleye 

pollock to the commercial fishery is highly dependent upon the development, growth, and 

survival of early life stages (i.e., eggs, larvae, and juveniles). Mortality rates of these 

stages are intrinsically high (e.g., through predation) and certain oceanographic 

conditions such as temperature variations, sea ice retreat, and stratification can create 

important bottlenecks in walleye pollock population size (Brodeur and Wilson 1996, 

Bailey et al. 1997, 1999, Hunt et al. 2011). Even slight reductions in growth and 

development from environmental stressors prolong the time fish stay in these vulnerable 

early life stages, thereby increasing mortality rates (Houde 1997). As a result, minor 

changes in larval or juvenile survival rates can result in order of magnitude responses in 

recruitment rates to the commercial fishery. 

Since the Industrial Revolution of the mid-1700’s, carbon dioxide (CO2) levels have 

increased as a result of growing anthropogenic use of fossil fuels and shifts in land-use 

practices (e.g., deforestation) (Sabine et al. 2004). Prior to the Industrial Revolution, 

atmospheric concentrations of CO2 were between 200 and 280 parts per million (ppm) per 

volume. Current concentrations are approaching 395 ppm (Tans and Keeling 2013), and 

it is projected that CO2 concentrations could be over 800 ppm by 2100 (Prentice et al. 

2001, Caldeira and Wickett 2003, Feely et al. 2004, Pelejero 2005, Feely et al. 2008). At 

the surface, the ocean interacts constantly with the atmosphere to absorb and release CO2. 

The partial pressure gradient of CO2 (pCO2) between the ocean and the atmosphere causes 

more CO2 to dissolve into the oceans. This is exacerbated in cold-temperate and polar 

waters, such as the North Pacific, because the cold waters of these regions allow for 

increased dissolution of CO2. Once absorbed, a carbon atom remains in the ocean for 

hundreds of years, circulating from the ocean's surface to its depths and back to the 
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surface again (Sabine et al. 2004). On a global scale, the ocean currently acts as a carbon 

sink, with the amount of carbon stored in the ocean being roughly 50 times greater than 

in the atmosphere (IPCC 2007). With a net intake of approximately two billion metric 

tons of carbon per year, the global ocean absorbs the equivalent of about one-third of 

current annual anthropogenic emissions (Sabine et al. 2004, IPCC 2007). There are 

certain locations and times of the year where the ocean can act as a source of CO2 to the 

atmosphere; however, on average, the global ocean acts as a net sink.  

The CO2 dissolved into the ocean spontaneously combines with water to form 

carbonic acid (H2CO3), which quickly releases two hydrogen ions (H+) as it dissociates to 

bicarbonate (HCO3
-) and ultimately carbonate (CO3

2-) anions. As a result, the ocean 

surface water (depth of the mixed layer) becomes more acidic; however, the ocean has a 

high buffering capacity as a result of the carbonate equilibrium reaction, where HCO3
- 

and CO3
2- have the ability to take up H+ and stabilize the pH. The current rate of pH 

decrease is an estimated 0.015 units per decade, or about 0.1 units per century (Haugan 

and Drange 1996, Brewer 1997, Petit et al. 1999, Feely et al. 2004, Sabine et al. 2004). 

By 2100, there will be a projected overall surface water pH decrease of 0.4 units since 

pre-industrial times (i.e., before 1800) (Orr et al. 2005, IPCC 2007, Feely et al. 2009). 

Forecasts utilizing several different models show that the marine pH could decrease by 

0.3-0.5 pH units every 100 years, with a total decrease of nearly 0.8 pH by 2300 at the 

current rate of CO2 increase in the atmosphere compared to pre-industrial conditions 

(Caldeira and Wickett 2005, Pelejero 2005, McNeil and Matear 2006). The ocean pH 

decrease caused by the increased CO2 concentrations has the potential to affect plankton, 

invertebrates, and teleosts, ultimately with large impacts on marine food webs and higher 

trophic levels (Doney et al. 2009). Ocean acidification could impact the recruitment 

dynamics of early life stages and juvenile fish through several distinct pathways. First, 

there could be direct physiological stress associated with low pH environments, 

manifested as reduced rates of larval and juvenile growth and survival, increased disease 

susceptibility, and decreased fecundity (Pörtner et al. 2004). Second, changes in 

behavioral responses to stimuli (i.e., learning capabilities, predator-prey interactions, 
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responses to sensory cues) caused by ocean acidification can lead to increased mortality 

at early life history stages (Simpson et al. 2011, Dixson et al. 2010, Ferrari et al. 2012). 

Finally, ocean acidification could impact the production of lower trophic levels, hence 

altering the foraging environment of the early life stages as well as adult fish (Pörtner et 

al. 2004, Melzner et al. 2009a).  

 The present study aims to assess the effects of reduced pH conditions on early 

life stages of walleye pollock, specifically eggs (Chapter 2) and juveniles (Chapter 3). 

With the information gained through this study, we will have a better understanding of 

how this species will respond to changing ocean conditions associated with ocean 

acidification at different ontogenetic stages. 

 

1.2. Importance of walleye pollock in the Gulf of Alaska and Bering Sea fisheries 

Walleye pollock are semi-demersal fish that comprise over 40% of the global 

whitefish production (Ianelli et al. 2012). In U. S. waters, walleye pollock is the most 

abundant commercially exploited fish in the North Pacific and Bering Sea (Springer 1992, 

Brodeur and Wilson 1996). Products made from walleye pollock include fillets, whole 

fish, surimi, and roe (Ianelli et al. 2010). This species is widespread, ranging from the 

coast of Oregon and Washington, through the Gulf of Alaska into the Bering Sea, and 

west into Russian and Japanese waters (Figure 1.1, adapted from Bailey et al. 1999). To 

meet the market demand, fishermen target the large spawning aggregations and schools 

of adult walleye pollock during the commercial fishing seasons. Depending on the region 

(i.e., Bering Sea, Gulf of Alaska) and the time of year, there are generally two time 

periods open to commercial fishing: the “A” season from January to March, and the “B” 

season from June through October (Alaska Fisheries Science Center 2013).   

A variety of state and federal fisheries management organizations monitor 

fluctuations in walleye pollock populations and use that information to regulate fishing 

activity in Alaskan waters. Acoustic surveys in 2006 suggest that populations decreased 

by 38%, indicating that some fish stocks were at the lowest levels in 30 years in the 

Bering Sea, Aleutian Islands, and Gulf of Alaska regions (Barbeaux et al. 2010, Dorn et 
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al. 2010, Ianelli et al. 2010). Overall, these three different stocks in Alaskan waters also 

decreased in the total commercial catch. Total allowable catch (TAC) in the Gulf of 

Alaska in 2009 was 44,003 metric tons as compared to the peak total catch of 307,401 

metric tons in 1984 (Dorn et al. 2010). The eastern Bering Sea pollock stock averaged 

1.17 million metric tons between 1977 and 2010; however, the 2009 and 2010 

commercial catch dropped to 0.81 million metric tons as a result of stock declines and 

subsequent reductions in allowable harvest rates (Ianelli et al. 2010). The Aleutian Island 

stock also exhibited a marked decrease from their peak catch in 1991 when 98,604 metric 

tons were harvested, while in 2010, total harvest was recorded as only 1,238 metric tons 

(Barbeaux et al. 2010). Since 2010, surveys indicate that stocks recovered to their 

previous levels, with total harvest in both state and federally managed fisheries reaching 

1.2 million metric tons in the Bering Sea and Aleutian Islands combined, and 813,000 

metric tons in the Gulf of Alaska in 2011 (Fissel et al. 2012). This increase in harvest is 

the result of raising the 2011 TAC by 44.3% (Fissel et al. 2012). 

Walleye pollock are an ecologically important species and function as an 

important food source for several species of marine organisms. Fish such as arrowtooth 

flounder (Atheresthes stomias), Pacific cod (Gadus macrocephalus), Pacific halibut 

(Hippoglossus stenolepis), and even adult walleye pollock rely on the large schools of 

juvenile walleye pollock as the primary component in their diet (Brodeur and Wilson 

1996). Seabirds including puffins (Fraterula spp.) and the common murre (Uria aalge), 

as well as marine mammals, including harbor seals (Phoca vitulina) and Steller sea lions 

(Eumetopias jubatus), also utilize walleye pollock as an important food source (Brodeur 

and Wilson 1996). 

 

Eastern Bering Sea 
(Ianelli et al. 2010) 

Aleutian Islands 
(Barbeaux et al. 2010) 

Gulf of Alaska 
(Dorn et al. 2010) 

Total Catch 
(metric tons) 

1,170,000 1,238 106,848 1,280,000 

Table 1.1. Mean walleye pollock landings in Alaskan waters, 1997-2010. Mean walleye pollock 
landings (in metric tons) in Alaskan waters based on 2010 stock assessments and broken down by 
management stocks from 1997-2010.  
 

 
 



 
 

Figure 1.1. Map of walleye pollock distribution. The global distribution of walleye pollock (gray shaded area). Dark circles indicate known 
walleye pollock spawning grounds (adapted from Bailey et al. 1999). 
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1.3. Life history and diet of walleye pollock  

Upon reaching sexual maturity at age 3+ or 4+ (approximately 40 to 45 cm total 

length), walleye pollock school and spawn annually between February and May, 

depending on the timing of adult migration to the populations’ specific spawning grounds 

(Bailey et al. 1999, Dougherty et al. 2007). Distinct populations spawn at predictable 

times and in the same geographic location every year (Bailey et al. 1999). Individual 

females can produce up to 1.2 million eggs per season and release them during multiple 

spawning events occurring at depths between 100 and 400 m (Kendall et al. 1994). Eggs 

are about 1 mm in diameter and float in the water column at this depth for 7 to 30 days, 

depending on water temperature (Bailey et al. 1997). In the Shumagin Islands and 

Shelikof Strait, Alaska, peak hatch is generally around the last week in April or first week 

in May, with earlier hatch dates associated with warmer sea surface temperatures 

(Dougherty et al. 2007). At hatch, larvae are between 3.5 and 4.5 mm standard length and 

remain at depth until they start to feed, at about 5-7 days post hatch (Olla et al. 1996). 

Feeding larvae then migrate upward to the photic zone, to about 20 to 60 m depth, where 

they remain until metamorphosis (Olla et al. 1996, Bailey et al. 1997). Larvae 

metamorphose to juveniles at about 18 mm total length reaching 120 to 140 mm by the 

end of their first year (Bailey et al. 1997).  

Walleye pollock spawning grounds are associated with oceanographic features 

(Figure 1.1), such as sea valleys, canyons, and indentations in the outer margin of 

continental shelves (Bailey et al. 1997). Some populations also favor deep-water regions 

and fjords as spawning habitats (Bailey et al. 1997). Eddies and island retention features 

associated with the spawning locations allow for the transport and retention of eggs and 

larval aggregations within surface currents (Stabeno et al. 1996). Coastal and shelf 

environments, such as seagrass beds, shelf habitats, and reefs are common, highly 

productive nursery grounds necessary for larval pollock survival (Ishimatsu and 

Dissanayake 2010). For other systems, such as the Bering Sea and Gulf of Alaska, larval 

and juvenile pollock rely on currents, eddies, and other oceanographic features that 

promote food production (Brodeur and Wilson 1996). In addition, vertical distribution 
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patterns of larval and juvenile walleye pollock allow for predator avoidance while 

maintaining foraging ability (Brodeur and Wilson 1996). In general, the timing and 

location of spawning events contribute to year-class variations in walleye pollock 

population structure (Stabeno et al. 1996).  

Larval dispersal and survival are dependent mainly on major ocean currents, food 

availability, and predator protection in certain areas of the Gulf of Alaska and Bering Sea 

(Olla and Davis 1990, Brodeur et al. 1995, Stabeno et al. 1996). It is hypothesized that 

recruitment success in the Bering Sea is determined by a number of regional factors, such 

as timing of the sea ice formation and retreat, cold pool formation, summer stratification, 

localized upwelling, type of zooplankton prey and their energy content, and the presence 

of the “green belt” of primary production (Hartline 1980, Wespestad et al. 2000, 

Ciannelli et al. 2004, Mueter et al. 2006, Stabeno et al. 2008). All these processes are 

interconnected and can vary on annual, decadal and even interdecadal time scales 

(Sugimoto and Tadokoro 1998, Stabeno et al. 2001), thus potentially influencing walleye 

pollock larval recruitment on these similar time scales.  

Vertical distribution of the various life history stages of walleye pollock depends 

on their body size and life history stage, tolerance for turbulence, temperature, light, 

predator avoidance strategies, and presence of desirable prey (Olla et al. 1996). 

Turbulence is necessary to induce mixing and bring nutrients to the surface to facilitate 

phytoplankton blooms as food for zooplankton. However, walleye pollock larvae also are 

known to sink if turbulence is too strong (Olla and Davis 1990, Olla et al. 1997). The 

movement of walleye pollock through the water column changes with ontogenetic stage. 

Juveniles <60 mm total length also tend to move offshore and into deeper water just 

above the thermocline to avoid predation by visual predators and to follow their preferred 

prey (Brodeur and Wilson, 1996). Feeding larval walleye pollock are found in surface 

waters above the thermocline and in the photic zone to efficiently make contact with their 

desired prey species (Olla et al. 1996). Age 0+ and 1+ fish are found in deeper waters 

(~20-50 m), and during the day migrate to even greater depths; however, the presence of 

a thermocline during the spring and summer will cause smaller juveniles to remain in the 
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upper portion of the water column to access desirable prey while avoiding cannibalistic 

adult walleye pollock found below the thermocline (Bailey 1989, Olla et al. 1996). As a 

result, vertical distribution of juvenile walleye pollock is driven by predator avoidance, 

food availability, and water temperature (Brodeur et al. 1995, Olla et al. 1996). Adults are 

considered semi-demersal, residing from 100 to 300 m depth. 

Walleye pollock diet changes seasonally, spatially, and with developmental stage. 

This is related to prey abundance at different points during the year as well as walleye 

pollock size (Cooney 1981, Dwyer et al. 1987). Early juveniles in the Gulf of Alaska 

primarily consume copepodite and adult copepods (Grover 1991, Brodeur and Wilson 

1996). As young of the year (YOY), their diet consists mostly of copepods (Dwyer et al. 

1987, Brodeur and Wilson 1996). As fish get larger, euphausiids become an increasingly 

more important food source for juveniles to prepare for overwintering (Dwyer et al. 1987, 

Brodeur and Wilson 1996). The diet of YOY walleye pollock shifts to more epibenthic 

prey, such as mysids, shrimps, and cumaceans, due to scarcity of pelagic prey at the onset 

of winter (Brodeur and Wilson 1996). Both age 1+ and adult walleye pollock diets are 

dominated by euphausiids in the Gulf of Alaska (Brodeur and Wilson 1996, Adams et al. 

2007), although cannibalism on younger age classes of pollock is also common (Dwyer et 

al. 1987, Brodeur and Wilson 1996). Similarly, in the Bering Sea, adult walleye pollock 

feed on euphausiids in the spring and summer, but primarily cannibalize younger age 

classes in the fall and winter months (Dwyer et al. 1987, Adams et al. 2007). Cannibalism 

is thought to be the main control of year-class strength rather than food availability for 

larvae and juvenile age classes in the Bering Sea (Walline 1985, Dwyer et al. 1987). Sea 

ice retreat and sea ice conditions are the primary drivers of cannibalism on younger age 

classes of walleye pollock (Hunt et al. 2011). Bottom-up controls in the Bering Sea 

caused by sea ice conditions result in shifts of phytoplankton blooms that will influence 

food availability for younger age classes (Mueter et al. 2006). With fewer food sources 

available when sea ice conditions are consistent with those of the beginning of a cold 

regime (e.g., La Niña conditions, cold phase of Pacific Decadal Oscillation), the need for 
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adult pollock to cannibalize on younger age classes increases, ultimately affecting year 

class strength (Hunt et al. 2011). 

 

1.4. Ocean acidification and the marine carbon cycle 

  The marine carbon cycle is driven by both abiotic (i.e., CO2 dissolution, acid/base 

chemistry) and biotic (i.e., photosynthesis, respiration, CaCO3 formations) components. 

Two major parts of the carbon cycle and carbonate system are pH and the saturation state 

of carbonate minerals. Highest concentrations of CO2 from the atmosphere are found in 

surface water (equal to the depth of the mixed layer) as a result of CO2 diffusion across 

the sea surface interface (Sabine et al. 2004). Equilibrium of the surface water is achieved 

in a relatively short time frame. The marine carbon cycle begins with the dissolution of 

CO2 in seawater and its subsequent hydration, which results in the formation of carbonic 

acid (Equation 1.1). Carbonic acid (H2CO3), a weak acid, instantly dissociates to the 

bicarbonate (HCO3
-) and carbonate ions (CO3

2-), releasing two protons. The increase in 

hydrogen ion concentration in seawater from this equilibrium reaction is what lowers the 

pH of a solution and causes what is referred to as ocean acidification (Doney 2006).  

 

CO2 + H2O ↔ H2CO3 ↔ HCO3
-+ H+ ↔ CO3

2- +H+     (Equation 1.1) 

 

This equilibrium reaction is responsible for regulating the pH of the world’s oceans. The 

introduction of anthropogenic CO2 not only increases acidity, but also results in shifts in 

the concentrations of carbonate species within the seawater buffering system.  

 With the addition of CO2, concentrations of HCO3
-, H2CO3, and protons increase, 

while CO3
2- ions decrease within seawater when their concentrations are considered as a 

function of pH (Sarmiento and Gruber 2006, Fabry et al. 2009). This pattern is caused by 

the nonlinearity of CO2 solubility curves and the multiple products produced during 

dissolution (i.e., H2CO3, HCO3
-, and CO3

2-) (Sarmiento and Gruber 2006). Within the 

equilibrium equation (Equation 1.1), there are equilibrium rate constants (k) between 

each step in dissolution, with each k having its own unique value dependent on 
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temperature, salinity, and pressure (Sarmiento and Gruber 2006). Because of these 

different rates at each point in the equilibrium equation, the different dissolved inorganic 

carbon (DIC) species that exist in the equilibrium reaction (Equation 1.1) in seawater are 

90% HCO3
-, 9% CO3

2-, and 1% CO2 and H2CO3 (Feely et al. 2004, Sarmiento and Gruber 

2006). As [CO3
2-] decreases, the concentrations of other solid carbonate-based 

compounds in seawater (i.e., CaCO3) will also decrease (Fabry et al. 2009, Equation 1.2). 

 

Ca2+ + CO3
2- ↔ CaCO3 (Equation 1.2) 

 

 The other component of the marine carbon cycle is the saturation state (Ω) of 

carbonate-based compounds, specifically calcite and aragonite. A saturation state of these 

minerals is calculated as the product of the ion component concentrations (generally in 

µmol/L) divided by the specific mineral’s solubility constant (λ) (Equation 1.3). 

 

λ
]][[ 2

3
2 −+

=Ω
COCa  (Equation 1.3) 

 

 The [Ca2+] is measured from salinity, and the [CO3
2-] is calculated from DIC and 

total alkalinity (TA) measurements, where TA is the measure of excess cations that are 

balanced by anions from weak acids. For CaCO3 precipitation, the saturation states have 

to be Ω >1. If Ω <1, dissolution will occur.  

 Where Ω = 1, the rate of dissolution equals the rate of precipitation and occurs at 

the saturation horizon. A saturation horizon, or lysocline, is unique to every mineral and 

mineral structure, and is defined as the temperature and pressure conditions of the ocean 

where the rate of dissolution of a mineral (e.g., aragonite or calcite) is equal to the rate of 

precipitation. With the increased input of CO2, saturation horizons are becoming 

shallower at all latitudes as a result of decreasing pH; however, there are regional 

differences that contribute to the overall depth of the saturation horizons of these 

compounds.  
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 Aragonite and calcite saturation horizons are much shallower in the Indian Ocean 

and North Pacific compared to the North Atlantic because of upwelling caused by global 

thermohaline circulation, where the upwelling of old, cold water has high concentrations 

of DIC from accumulation through remineralization processes (Doney et al. 2009). 

Aragonite is more soluble than calcite at a given [CO2]aq, so its saturation horizon will be 

shallower. Oceans at higher latitudes, such as the Arctic and sub-Arctic seas, are more 

susceptible to increased acidification for a combination of several factors (Fabry et al. 

2009). First, upwelling-favorable conditions from both wind-driven circulation and 

thermohaline circulation bring DIC-rich water from between 100-300 m depth or deeper 

in regions like the North Pacific Ocean or Bering Sea onto the continental shelf (Feely et 

al. 2008, Mathis et al. 2010). DIC created from decomposition and remineralization in 

midwater and benthic systems causes the pH of the deep water to decrease, in turn 

lowering the surface pH as this acidic deep water is pushed to the surface. These water 

masses are also extremely cold, causing the solubility of both aragonite and calcite to 

increase (Feely et al. 2004, Fabry et al. 2009). Second, upwelling (both wind-driven and 

from thermohaline circulation) carries biologically important nutrients to the surface, 

causing high primary productivity in these regions. Though the high primary production 

drives down pCO2 at the surface, the subsequent remineralization processes increases 

[DIC] and causes pH to decrease in and below the photic zone (Feely et al. 2008, 2009). 

The water mass with higher [DIC] is then upwelled through wind-driven processes or 

mixing, resulting in a further pH decrease at the surface. Third, Arctic and sub-Arctic 

seas also are susceptible to ocean acidification because more gas dissolves at low water 

temperatures, allowing the water to reach supersaturation (where pCO2 atm < pCO2 ocean) 

with respect to CO2 (Doney et al. 2009, Fabry et al. 2009).  

On average, the North Pacific and the Bering Sea are both undersaturated (where 

Ω <1) with respect to calcite and aragonite as a result of low water temperatures and 

increased dissolution of CO2 (Bates and Mathis 2009). However, there are regional and 

seasonal factors that affect the overall depth of CaCO3 saturation horizons. The Bering 

Sea exhibits seasonal undersaturation of aragonite in deep water, because of the increased 
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uptake of CO2 and subsurface remineralization of inorganic carbon (Fabry et al. 2009, 

Mathis et al. 2010). However, the surface waters are saturated in spring and summer as a 

result of high primary production depleting the CO2. In the Gulf of Alaska, the saturation 

horizon is at ~150 m, and increases in depth toward the equator (Fabry et al. 2009). With 

the growing input of anthropogenic CO2, the shoaling of undersaturated water and the 

saturation horizon are expected to continue to increase by 1-2 m per year until the entire 

water column becomes undersaturated (Feely et al. 2009). This happens at a faster rate at 

higher latitudes compared to waters near the equator, as the solubility of CO2, calcite, and 

aragonite increases with decreasing temperature (Fabry et al. 2009). As the marine carbon 

system has a buffering system, aragonite, calcite, and other carbonate-based compounds 

are used to counteract the increased amounts of dissolved CO2. This leads to an 

undersaturation of these minerals within the system, potentially causing problems for 

calcifying organisms in these regions (Fabry et al. 2008, 2009, Doney et al. 2009, Mathis 

et al. 2010). 

 Calcifying plankton and benthic organisms that comprise the diet of many 

commercially and ecologically important species secrete CaCO3 to build shells and are 

thus integral to carbon cycling in the world’s oceans (Fabry et al. 2008). Marine calcifiers 

can live below the saturation horizon of calcite or aragonite, provided that they have 

physiological mechanisms to build and maintain their CaCO3-based structures. These 

mechanisms can include organic coatings or shifts in their energy budget (Fabry et al. 

2009). Ultimately, changing the position of the saturation horizon will result in the 

reorganization of important species within marine food webs (Feely et al. 2004). Because 

teleosts are more difficult to study relative to plankton and other calcifiers, there is a lack 

of studies regarding the effects of ocean acidification on fishes.   

 

1.5. Biological consequences of ocean acidification for teleosts 

The chemistry of ocean acidification is well understood and not much debated, 

but the consequences of ocean acidification for marine organisms and ecosystems are 

only starting to be revealed. Most attention has been given to the effects of ocean 
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acidification on calcifying organisms (Kleypas et al. 2006, Fabry et al. 2008, Ishimatsu et 

al. 2008).  

Of particular interest are acidification effects at the base of the food web that can 

indirectly affect productivity of higher trophic levels. The primary plankton species that 

most influence walleye pollock trophic interactions and production have chitin-based 

shells, containing calcium carbonate for added strength; however, there also are non-

calcifying plankton that comprise a portion of their diet. These non-calcifying 

zooplankton and phytoplankton have the potential to experience adverse effects as a 

result of decreased pH, primarily affecting physiological processes (Hare et al. 2007, 

Kurihara and Ishimatsu 2008, Hopkinson et al. 2010, Dajuan et al. 2011). Phytoplankton 

in the Gulf of Alaska demonstrated increased primary production in response to elevated 

CO2 conditions (Hopkinson et al. 2010). Similar results were found in the Bering Sea, 

where there was an increase in primary production (Hare et al. 2007). Under high 

temperature and high-CO2 conditions, there was also a shift in the dominant 

phytoplankton species from large diatoms to nanophytoplankton species (Hare et al. 

2007). The change in phytoplankton assemblages could have cascading effects on the 

zooplankton nutritional quality and survival of zooplankton species feeding on 

phytoplankton. Changes in environmental conditions can also directly affect zooplankton, 

as seen in subtropical copepods, where survival and egg production rates were adversely 

affected by high CO2 conditions (Kurihara et al. 2004, Kurihara and Ishimatsu 2008, 

Dajuan et al. 2011). If such responses occur in sub-arctic zooplankton, they could create 

bottom-up effects for higher trophic levels, including walleye pollock. 

Ocean acidification, especially when combined with other environmental 

conditions (i.e., rising ocean temperatures, changing weather and oceanographic patterns) 

also affect many non-calcifying marine invertebrates, elasmobranchs, and teleosts 

through effects on physiological homeostasis (Melzner et al. 2009a, Chin et al. 2010). 

Chronic exposure to low pH can cause shifts in an organism’s energy budget, forcing it to 

allocate more energy to maintaining homeostasis and less toward reproduction and 

growth (Pörtner 2008). Physiological functions, such as respiration rates, metabolism, 

 
 



14 
 

respiratory pigment O2 saturation, and buffering capacity can also be impaired. As pH 

decreases, it becomes more difficult for marine organisms to maintain internal acid-base 

balance (Pane and Barry 2007, Pörtner 2008). To preserve homeostasis, organisms can 

actively buffer by either increasing bicarbonate concentrations through certain pathways 

(e.g., increased renal production of bicarbonate) or increase activity or presence of 

chloride cells, proton exchangers, and other similar transmembrane proteins to maintain 

physiological intracellular and extracellular pH (Robinson and Huxtable 1988, Pörtner 

2008). 

 Because some species tolerate a broader range of environmental conditions than 

others, it is important to study their compensatory mechanisms to understand the 

organism’s full capabilities to withstand environmental change. In particular, 

extracellular pH stabilization mechanisms are of importance in the context of low pH 

tolerance in fishes (Hayashi et al. 2004a, 2004b, Melzner et al. 2009a). The increase in 

environmental CO2 induces a rise in ventilation rate to preserve internal homeostasis as a 

result of the Bohr and Root effects, describing the shifts in oxygen binding affinity and 

oxygen saturation maxima as a result of changes in blood pH, respectively (Perry and 

Gilmour 2002, Ishimatsu et al. 2004). The ability of fish to compensate and maintain 

extracellular homeostasis relies mainly on the efficacy, efficiency, and concentration of 

ion exchange proteins in the gill, and whether or not their concentration can be increased 

to promote osmoregulatory balance (Perry and Gilmour 2002). The tolerance mechanism 

requires that fish be able to accumulate and maintain high levels of bicarbonate in the 

blood to maintain a constant blood pH based on high buffering capacity (Hayashi et al. 

2004a, 2004b, Melzner et al. 2009a). Marine teleosts exhibit decreased blood pH along 

with increased bicarbonate and blood pCO2 upon exposure to low pH conditions (pH 6-7), 

as seen in the Japanese flounder (Paralichthys olivaceus), the yellowtail (Seriola 

quinqueradiata), and the starspotted dogfish (Mustelus manazo) (Hayashi et al. 2004a, 

2004b). If animals cannot maintain cellular homeostasis, the resulting cascading effects 

may cause entire body systems to fail. Therefore, these blood gas parameters may be 
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useful indicators of the susceptibility of an organism to ocean acidification if they are 

variable under different environmental conditions. 

Organisms with high metabolic rates and mechanisms to effectively expel CO2 

are likely best able to acclimate to high CO2 environmental conditions (Hayashi et al. 

2004a, 2004b). Presence of certain enzymes (e.g., carbonic anhydrase and lactate 

dehydrogenase) facilitates the removal of CO2 and acid from blood and tissues, thus 

allowing the system to remain in homeostasis with respect to pH (Randall and Brauner 

1998, Hayashi et al. 2004a, 2004b). Active swimmers like the yellowfin tuna (Seriola 

quinqueradiata) are very effective in reestablishing extracellular homeostatic conditions 

after exposure to high CO2 conditions with the help of the above-mentioned enzyme 

systems (Hayashi et al. 2004a). In contrast, the more sedentary Japanese flounder 

experienced increased mortality after exposure to elevated levels of CO2, indicating that 

its tolerance level was surpassed (Hayashi et al. 2004a).  

Little is known about the different levels of sensitivity and which specific 

physiological traits are responsible for their sensitivity to ocean acidification among fish 

species or developmental stages over multiple generations (Pörtner et al. 2004, Fabry et 

al. 2008, Pörtner 2008). On this longer time scale, it is expected that short-lived species 

potentially have a better ability to adapt to ocean acidification than long-lived species, as 

they have faster generation times supporting higher levels of genetic modification and 

evolution (Melzner et al. 2009a). Offspring of adult fish that experienced large changes in 

water quality parameters (e.g., temperature, pH, salinity) during their early life history 

stages may have a greater overall tolerance than the offspring of adults reared under more 

stable conditions because genes of more tolerant adults are passed on to offspring, 

creating heritable adaptation to environmental stressors or pollutants (Nacci et al. 2010, 

Whitehead 2012). This can only occur if the rearing conditions are within the tolerance 

window of the species (Melzner et al. 2009a).  

It also is often assumed that early life history stages are more sensitive to 

environmental stressors than older juvenile or adult stages, for example to ocean 

acidification, which may create population-level bottlenecks (Melzner et al. 2009a, Tseng 
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et al. 2013). As a result, there can be substantial population declines if mortality increases 

at any of these population bottlenecks. For example, eggs and larvae of the red sea bream 

(Pagrus major) experienced high mortality under low experimental pH conditions (pH 

6.2; Kikkawa et al. 2004). However, mortality and development issues in the red sea 

bream and the Japanese sillago (Sillago japonica) were not affected by the increased 

acidity of the water caused by the addition of HCl. Rather, the increased amount of CO2 

caused changes in the chemistry of the perivitteline fluid (fluid within the egg 

surrounding the yolk and embryo) leading to either mortality or hindered cleavage and 

resulting in abnormal embryonic development (Kikkawa et al. 2003, 2004, Ishimatsu et al. 

2004). In contrast, eggs and larvae of some fish species and populations can be naturally 

exposed to pH changes greater than those seen under projected ocean acidification levels, 

especially in urbanized areas, upwelling zones, and coastal areas (Melzner et al. 2009a, 

Ishimatsu and Dissanayake 2010). In some cases, CO2 concentrations up to ~5800 ppm 

are encountered by some fish species (e.g., Atlantic cod, Gadus morhua) throughout 

development because of the local pCO2 levels that occur seasonally at spawning or 

nursery grounds (Melzner et al. 2009a, 2009b). For this reason, the eggs of some 

broadcast spawners have mechanisms to compensate for large environmental pH changes 

(Melzner et al. 2009a), although these mechanisms may not completely prevent adverse 

effects of pH on their development.  

 

1.6. Study objectives 

The objectives of this study were to experimentally assess the response of walleye 

pollock eggs and juveniles to ocean acidification conditions projected for the next 300 

years. Walleye pollock eggs were incubated under these pH levels to determine potential 

shifts in hatch timing and success that are a possible consequence of decreased 

environmental pH (Chapter 2). Morphometric parameters of larvae hatched from eggs 

incubated under these conditions were also assessed to determine if exposure to these 

conditions altered larval development (Chapter 2). In another experiment, an integrated 

bioassessment of several different physiological parameters was used to measure the 
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responses of age 1+ juvenile pollock to projected ocean acidification levels (Chapter 3). 

The results from these experiments contribute to the growing body of knowledge 

concerning marine teleost responses to ocean acidification.  
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Chapter 2. The response of eggs and first hatch walleye pollock (Theragra 

chalcogramma) to increased levels of ocean acidification 
 

2.1. Abstract 

 With rising atmospheric CO2, ocean pH is expected to decrease by 0.3-0.5 units by 

the year 2100. This study investigated the effects of low pH on the hatch and early larval 

development of the commercially important, subpolar walleye pollock (Theragra 

chalcogramma). Fertilized eggs from captive walleye pollock were incubated under 

current ocean pH conditions (pH 8.1) and at high, medium, and low pH treatment levels 

(pH 7.9, 7.6, and 7.2, respectively) reflecting projected levels of future ocean 

acidification. Upon hatch, several larval morphometric parameters were measured (i.e, 

standard length, myotome height, eye diameter, and yolk area) to assess overall condition 

and size of larvae. Overall, the eggs hatched between eight and ten days post-collection at 

7.8ºC ± 0.5ºC, and this incubation time did not vary significantly among pH treatments. 

Morphometric parameters also did not vary significantly among pH treatments. These 

results indicate that walleye pollock eggs and post hatch larvae are resilient to the pH 

conditions tested in this experiment. However, the compensatory mechanisms and any 

physiological and energetic costs associated with reduced pH conditions are currently 

unknown. 
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2.2. Introduction 

 Sensitivity of teleost fish species to environmental stressors is dependent on life 

history stage (Kikkawa et al. 2003). Overall, the resilience of the early life history stages 

is vital for overall recruitment success. Early life stages represent population bottlenecks, 

where fluctuations in larval recruits, due to high mortality, can result in population 

regulation of older age classes (Houde 1997). The timing of hatch and proper larval 

development of marine teleosts is dependent on several abiotic (e.g., water temperature) 

and biotic (e.g., food availability, maternal investment) variables (Hjort 1914, Cushing 

1990, Laurel and Blood 2011). The importance of these variables is species-specific, and 

may vary among populations (Melzner et al. 2009a). Therefore, it is essential to 

determine how changing environmental conditions will affect development and mortality 

of the early life history stages of marine teleosts. One such stressor of increasing 

importance in the marine system is ocean acidification.  

 Atmospheric CO2 levels have increased from 281±2 ppm in 1800 (Sabine et al. 

2004) to current atmospheric CO2 levels of 395 ppm (Tans and Keeling 2013). Based on 

current projections, atmospheric CO2 levels are expected to reach 880 ppm by 2100 

(Caldeira and Wickett 2003, Pelejero 2005, IPCC 2007, Feely et al. 2008). The ocean 

acts as a carbon sink, with net intake of carbon equal to about 2 billion metric tons per 

year, or one third of the current anthropogenic emissions (Sabine et al. 2004, IPCC 2007, 

Ballantyne et al. 2012). Because of the great absorptive capacity of the oceans for CO2, 

the balance of the marine carbonate system equilibrium shifted, where the increased CO2 

dissolving into water as a result of the increased pCO2(atm) causes more H2CO3 to form 

and thus the pH to decrease. Under current CO2 emission conditions, the marine pH is 

predicted to decrease globally by 0.3-0.5 units every 100 years, with a 0.8 pH unit 

decrease projected by 2300 (Caldiera and Wickett 2003). In high latitude oceans, it is 

expected that the pH will decline by about 0.45 pH units by 2100 (Steinacher et al. 2009). 

With the increased acidity from increased H2CO3, less CO3
2- is available to precipitate as 

CaCO3. Ultimately, this causes an undersaturation of aragonite and shallowing of the 

calcite saturation horizon, especially in high latitudes (Yamamoto-Kawai et al. 2009). 
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 High latitude oceans, such as the Bering Sea and Gulf of Alaska, are especially at 

risk of decreasing pH, because the cold water temperature in these regions allows for 

more CO2 gas to be dissolved (Doney et al. 2009, Fabry et al. 2009). These regions are 

extremely productive, because turbulent mixing provides nutrient- and dissolved 

inorganic carbon (DIC)-rich water, with high phytoplankton blooms developing in the 

seasonally stratified surface waters (Hunt et al. 2002, Bates and Mathis 2009, Fabry et al. 

2009, Mathis et al. 2010). This high primary production supports prolific benthic and 

pelagic fisheries. However, with increasing ocean acidification, it remains largely 

unknown as to how the early life history stages of marine teleosts will respond to 

changing marine pH. 

 Research on the effects of ocean acidification on the early life history stages of 

marine organisms has so far focused mainly on calcifying organisms (e.g., Dupont et al. 

2008, Foo et al. 2012, Landes and Zimmer 2012). The increase in marine pCO2 results in 

the decreased availability of the carbonate ion, which is an integral component of the 

calcite and aragonite used in shell and skeletal formation of marine calcifiers (Fabry et al. 

2008). Both calcite and aragonite saturation states (the thermodynamic potential for these 

minerals to precipitate) are declining in high latitude waters, partially due to the effects of 

ocean acidification (Yamamoto-Kawai et al. 2009, Mathis et al. 2010, Yamamoto et al. 

2012). Less is known about the effects ocean acidification has on non-calcifying 

organisms such as marine teleosts, both on species-specific and population-specific levels. 

Changes in environmental pH result in shifts in acid-base metabolism in non-calcifiers, 

potentially leading to physiological consequences if the organisms are unable to 

compensate in some way (Pörtner 2008). There is a species-specific, life history 

dependence associated with effects of ocean acidification on fishes, where embryos and 

larvae of some species were observed to be more physiologically sensitive to changes in 

pH relative to adults (Brown and Sadler 1989, Pankhurst and Munday 2011). In addition, 

it has been observed that some early life stages of marine teleosts may also exhibit a 

variety of responses to low pH conditions (Melzner et al. 2009a). Among the few studies 

concerning the response of teleost eggs and larvae to ocean acidification (e.g., Kikkawa 
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et al. 2004, Munday et al. 2009a, 2011), minimal attention has been given to temperate, 

subpolar, and/or commercially important species. 

 Walleye pollock (Theragra chalcogramma) is a commercially important, semi-

demersal fish species found throughout the Gulf of Alaska and Bering Sea, ranging into 

Russian and Japanese waters (Bailey et al. 1999). Worth about $1 billion annually, the 

walleye pollock fisheries in the Gulf of Alaska and Bering Sea are the largest single-

species fishery by weight in the world, with about 1 million tons harvested per year 

(Barbeaux et al. 2010, Dorn et al. 2010, Ianelli et al. 2010). Walleye pollock reach sexual 

maturity and recruit to the commercial fishery at age 3+ or 4+ (Bailey et al. 1999, 

Dougherty et al. 2007). Females are oviparous and repeatedly spawn between the months 

of February and May (Bailey et al. 1999, Dougherty et al. 2007). Each female is capable 

of producing around 2.6 million eggs per year, which are released into the water column 

and externally fertilized (Kendall et al. 1994). Fertilized eggs are delivered from 

spawning grounds to the nursery grounds by ocean currents (Stabeno et al. 1996, Bailey 

et al. 1997). Eggs hatch after about 80 degree-days, with newly-hatched larvae being 

about 3.5-4.5 mm in total length (Bailey and Stehr 1986). Size-specific mortality is 

important in regulating overall populations of walleye pollock, with an estimated 87-90% 

mortality occurring in the yolk to first feeding stage, and up to 99% mortality in the late 

larval stages in northeast Pacific stocks (Houde 1997).  

 Based on the importance of walleye pollock in the Gulf of Alaska and the Bering 

Sea, and the fact that these regions could be strongly impacted by ocean acidification 

(Bates and Mathis 2009), this study focuses on the response of walleye pollock early life 

history stages to increased levels of ocean acidification. Eggs from wild-caught walleye 

pollock were used to determine potential shifts in both hatch timing and success in 

response to reduced pH conditions. Larvae were hatched under pH levels projected for 

the next 300 years to assess potential developmental consequences. Specifically, I 

hypothesize that there will be a delay in hatch timing associated with decreased marine 

pH because of the increased need to maintain osmoregulatory balance within the egg 

during development. I further hypothesize that there will be reductions in various 
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developmental parameters (i.e., standard length, eye diameter, myotome height, and yolk 

area) associated with exposure to lower pH levels. This is because the lower pH and 

higher CO2 levels are potential stress sources for developing embryos and newly hatched 

larvae that could adversely affect developmental parameters.  

 

2.3. Methods 

2.3.1. Broodstock collection and maintenance 

 This study used an existing walleye pollock broodstock maintained at the Hatfield 

Marine Science Center (HMSC; Newport, OR). Briefly, juvenile (age 0) walleye pollock 

that served as the parent population for this experiment were collected in May 2006 from 

Port Townsend, WA in the nearshore waters of Puget Sound (48º 6’ 59” N, 122º 46’ 31” 

W) using a lighted lift net. Animals were held in ambient temperature and pH seawater 

for 24 h before transport to the Alaska Fisheries Science Center Laboratory at the HMSC. 

Animals were reared in 5,678 L round tanks with a 12 h light: 12 h dark photoperiod and 

temperature was maintained between 9-10 ºC. Throughout their holding period, fish were 

fed daily with live brine shrimp (Artemia spp.). Once fish reached age 1+, they were 

transferred to 15,142 L tanks maintained at 9-10 ºC and exposed to a 12 h light: 12 h dark 

photoperiod. Feeding was reduced to twice per week, and fish were fed a gelatinized 

combination of herring, amino acid supplements, commercial food, squid, krill, and 

vitamins (Appendix A). This routine was maintained until individuals reached sexual 

maturity, at 3+ or 4+ years of age.  

Changes in photoperiod and water temperature mimicking natural conditions over 

the course of year were used to prepare the broodstock to spawn. For spawning, about 20 

animals (an estimated 10 females and 10 males) were collected from the rearing group 

and placed in a separate 15,142 L tank at 12 h light:12 h dark photoperiod and 9-10ºC for 

three weeks. Sex of individuals was determined based on milt production. If milt was not 

produced, then individuals were assumed to be female and were given an intramuscular 

injection of 3.0 cc synthetic gonadotropin (luteinizing hormone releasing hormone 

(Salmon), Sigma-Aldrich, Inc.) to stimulate egg production.  
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2.3.2. Egg collection and setup 

 On two collection days (21 and 23 March 2010), fertilized walleye pollock eggs 

were collected using a 350 μm mesh basket hanging in the outflow of the broodstock 

rearing tanks for use in a series of hatch experiments under different pH treatments. Eggs 

were gently rinsed with ambient temperature and pH seawater and placed in 1 L seawater 

in a constant temperature room at 9ºC for 15-30 minutes, or until eggs stratified in the 

container. Walleye pollock have pelagic eggs (Bailey et al. 1997); therefore, only floating 

eggs were deemed viable and kept for experiments. Because eggs were of unknown 

individual parentage and all females were injected with synthetic gonadotropin, any 

possible effects of the hormone were equally distributed across all treatments. 

 Based on egg availability in the collection basket, the collected eggs were randomly 

divided up into groups of 130 to 730 eggs by volume. These eggs were subsequently 

transferred to eight 1000 mL plastic beakers with 220 μm mesh bottoms on each of the 

collection days. Beakers were distributed randomly into 12 tanks, with three tanks set to 

either low, medium, or high pH treatments (pH 7.2, 7.6, or 7.9) and three control tanks 

remained at ambient conditions for the Oregon coast (pH 8.1 ± 0.1). Treatment pH 

conditions were created using a gravity feed system with a conditioning tank set at the 

lowest pH treatment, several header tanks to achieve experimental pH conditions, and the 

treatment tanks. In the conditioning tank, a pH computer (Aquamedic) and pH probe 

(Aquamedic) controlled a solenoid valve to inject CO2 gas through a gas membrane 

exchanger so that a pH 7.2 was achieved (detailed description in Chapter 3). Water from 

the conditioning tank was pumped to a series of header tanks (n=3, 100 L each), where it 

was mixed with ambient pH water (pH 8.1) to obtain the desired experimental pH levels: 

low (pH 7.2), medium (pH 7.6), and high (pH 7.9). The header tanks gravity-fed water to 

the treatment tanks (3 per treatment, 144 L each). Ambient pH water (pH 8.1) was also 

pumped to a 100 L header tank, where it was gravity fed to control treatment tanks (n=3, 

144 L each). Each set of treatment tanks was monitored using a pH data logger 

(SympHony, VWR) equipped with a pH probe (glass combination pH probe, VWR) and 

a combination temperature/dissolved oxygen (DO) probe (VWR) to monitor pH, DO, and 
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temperature throughout the experimental period. All tanks were set to a flow rate of 0.5 ± 

0.1 L/min and temperatures were maintained at 7.8 ± 0.5ºC, and all pH probes were 

calibrated with three pH standards (pH 4.0, 7.0, and 10.0) three days per week. The pH 

probes collected pH data every 15 min for the duration of the experiment. 

 

2.3.3. Larval collection 

 Each beaker containing fertilized eggs was checked for hatching once per day and 

all hatched larvae were counted and removed from the beakers for morphometric 

measurements. If there was a large hatch event of more than 15 individuals, 15 of those 

larvae were randomly used as a subsample for measurements and the remainder was 

discarded. If less than 15 individuals hatched, then all hatched larvae were collected for 

measurements. Larvae were stored in chilled seawater of the treatment pH until 

measurements of developmental parameters were completed. The experimental trials 

were terminated when eggs were no longer hatching. 

 Larvae were individually photographed in a small dish of seawater of the same pH 

as their rearing tanks under 20x magnification using a dissecting microscope (Zeiss Stemi 

Figure 2.1. Larval walleye pollock developmental parameters. Developmental parameters used in 
determining size at hatch of walleye pollock larvae. Parameters of interest include (A) standard length, 
(B) eye diameter, (C) myotome height, and (D) yolk area. Magnification: 20x. 
 

1 mm 
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SR, Bartels and Stout, Inc.) with digital camera (Go-3, Q-Imaging, Inc.). After 

photographing, all larvae were euthanized using a lethal dose of MS-222 (tricane 

methanesulfonate, ~250 mg/L) until the larvae stop moving for several minutes. Larval 

photographs were measured using the ImagePro Plus Express 6.0 software package 

(Media Cybernetics) for standard length, eye diameter, yolk area, and myotome height 

(Figure 2.1). Myotome height is defined as the widest part of the muscle behind the anus. 

Standard length, yolk area, and myotome height are development parameters were used 

to determine size, condition, and overall variation of the hatching larvae. Rearing 

conditions, sampling protocols, and euthanasia were conducted in accordance with 

University of Alaska Fairbanks Institute of Animal Care and Use Committee assurance 

#09-25 (Appendices B and C). 

 

2.3.4. Data analysis  

 A repeated measures ANOVA was conducted for each treatment (pH) to determine 

whether or not the incubation conditions were consistent over time and close to their 

target pH levels throughout the course of the experiment. Significance was set to α= 0.05 

for all analyses.  

 Because the egg collection dates were close together (2 days apart) and eggs were 

from the same group of spawning adults for both release dates, data from the two 

collection dates were combined for analysis. However, it is unknown which individual 

fish within the spawning tanks contributed to the fertilization of the eggs used in this 

experiment. A hierarchical linear model (HLM) was used for subsequent data analyses, 

with the beaker and tank numbers included in the model as random effects, which were 

analyzed using a reduced maximum likelihood test (REML). Pooling all individuals from 

all three tanks within a treatment, the HLM measured treatment effects on the hatched 

date. To assess developmental parameters, specifically total length, myotome height, eye 

diameter, and yolk area, data for all individuals from each of the three tanks per treatment 

were pooled. An HLM was conducted for each parameter to measure the effect of the pH 

conditions. All data were analyzed using JMP® 9 statistical software (SAS, Inc.). 
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2.4. Results 

2.4.1. pH treatment condition 

Throughout the course of the incubation experiments, there were fluctuations in the 

treatment pH, possibly as a result 

of natural pH variations in the 

ambient seawater or some change 

in the CO2 injection system. Even 

though there was significant 

variation of the treatment pH 

conditions from the target pH 

(repeated measures ANOVA, 

p<0.0001 for each treatment, 

Table 2.1), this variation was no 

greater than the variation deemed 

acceptable (±0.05 units) for each treatment to account for any natural variation in pH that 

the ambient seawater exhibits during the course of the experiment. For the duration of 

incubation and hatch, the pH readings in the four treatments were significantly different 

from each other (p≤ 0.0001).  

 

2.4.2. Hatch timing and larval 

developmental parameters 

 Walleye pollock eggs 

started to hatch 7 days post 

fertilization (55 degree-days), 

with peak hatching occurring 8-

10 days post fertilization (63-78 

degree-days) in all experimental 

treatments. There was no effect 

of pH treatments on the hatch timing of the larvae (p=0.99) (Table 2.2). None of the 

Target Treatment Mean pH (±SD) 

Ambient control (8.1) 8.143 (±0.017) a 

High (7.9) 7.905 (±0.028) b 

Medium (7.6) 7.627 (±0.029) c 

Low (7.2) 7.185 (±0.053) d 

Target Treatment n Days to Peak Hatch 
(±SE) 

Ambient control (8.1) 464 9.628 (±0.066) 

High (7.9) 408 9.542 (±0.069) 

Medium (7.6) 406 9.677 (±0.069) 

Low (7.2) 445 9.894 (±0.066) 

Table 2.2. Walleye pollock hatch timing. The effects of pH 
treatments on the hatch timing of walleye pollock eggs incubated 
under projected levels of ocean acidification (no significant 
differences with hierarchical linear model with reduced 
maximum likelihood (REML) test, p=0.99). 

Table 2.1. Water conditions for larval walleye pollock 
experiments. Mean values for each of the treatments for the 
duration of the incubation experiments as determined by the 
VWR SympHony loggers (one-way ANOVA, p<0.0001). 
Different letters indicate significant differences among 
treatment groups. Experimental duration was ~12 days. 
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developmental parameters were affected by the pH treatment: standard length (p=0.86), 

eye diameter (p=0.42), yolk area (p=0.79), and myotome height (p=0.70) were all not 

significantly different among pH treatments (Table 2.3). Beaker or tank effects were 

random effects and were not a significant source of error within the experimental 

treatments. 

 

2.5. Discussion 

 Hatch timing of walleye pollock was not affected by changes in environmental pH. 

The hatch timing of walleye pollock in this study was consistent with the findings of 

Bailey and Stehr (1986), where they determined that walleye pollock hatch in 9-10 days 

at 8.4°C (or 75-84 degree-days). Similarly, developmental parameters of standard length, 

eye diameter, yolk area, and myotome height were also not affected by the decreased 

environmental pH. These developmental parameter measurements in all treatments were 

also consistent relative to those of other walleye pollock populations (Bailey and Stehr 

1986) and other related species reared under ambient conditions or found in the wild (i.e., 

Pacific cod Gadus macrocephalus, Laurel et al. 2010). These results indicate some 

resiliency of early life stages of this particular broodstock of walleye pollock to ocean 

acidification. 

 The results of this study agree with some previously published data indicating that 

early life stages of most marine teleost species may be more resilient to low pH 

Target 
Treatment n 

Standard 
Length  

(mm) (±SE) 

Eye Diameter 
(mm) (±SE) 

Yolk Area 
(mm2) (±SE) 

Myotome 
Height  

(mm) (±SE) 
Ambient 

control (8.1) 
464 4.158 (±0.067) 0.2679 (±0.0026) 0.7635 (±0.0905) 0.2458 (±0.0046) 

High (7.9) 408 4.231 (±0.068) 0.2755 (±0.0027) 0.8004 (±0.0904) 0.2495 (±0.0046) 

Medium (7.6) 406 4.194 (±0.067) 0.2734 (±0.0026) 0.8358 (±0.0907) 0.2459 (±0.0046) 

Low (7.2) 445 4.199 (±0.067) 0.2747 (±0.0027) 0.8609 (±0.0903) 0.2427 (±0.0046) 

Table 2.3. Larval walleye pollock developmental parameters. Developmental parameters of walleye 
pollock eggs incubated under different pH treatments. None of the parameters were significantly 
different among treatments (p>0.05, hierarchical linear model (HLM) with the reduced maximum 
likelihood (REML), with both beaker and tank listed as random effects).  
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conditions than initially thought (Melzner et al. 2009a). Similar to walleye pollock in this 

study, spiny damselfish (Acanthochromis polyacanthus) did not show consistent response 

in size at hatch to pH levels that could be reached within the next 100 years (Munday et 

al. 2011). Atlantic herring (Clupea harengus) post hatch larvae did not exhibit differences 

among treatments with regards to total length, yolk area, dry weight, and otolith area at 

hatch when incubated under different pH levels (Franke and Clemmesen 2011). 

Clownfish (Amphiprion pericula) egg survivorship and size at hatch did not change under 

ocean acidification levels projected for the next 100 years (Munday et al. 2009a). Instead, 

decreased environmental pH resulted in greater weight and length gain in clownfish 

larvae in the same set of experiments, showing that some species can exhibit positive 

reactions to changing environmental conditions as a result of ocean acidification 

(Munday et al. 2009a). Conversely, some studies suggest the early life history stages are 

more sensitive to changes in environmental factors than adults, if the environmental 

conditions are outside the adult’s physiological window of tolerance. Some fish species 

exhibit a delay in hatch with decreasing pH, such as Atlantic salmon (Salmo salar) and 

European perch (Perca fluviatilis) (Peterson et al. 1980, Rask 1983). However, the 

majority of these studies indicating delayed hatch focus on the effects of acid rain in 

freshwater ecosystems (Kamler 2002) and not CO2-based acidification of the marine 

system. The medaka (Oryzias latipes) was also found to have a developmental delay of 

1.7 days under elevated CO2 conditions and upregualtion of important genes responsible 

for acid-base regulation and metabolism (Tseng et al. 2013).   

 Early life stages of fishes are often considered highly vulnerable to changing or 

extreme environmental conditions or pollutants (Brooks et al. 1997). However, it is 

possible for some species to naturally experience high-CO2 conditions during their early 

development, depending on their habitat (Melzner et al. 2009a). For example, species 

with pelagic eggs may be more sensitive than those with demersal eggs, because the pH 

levels in the pelagic realm do not fluctuate as dramatically as in nearshore benthic areas. 

However, adequate tests have not been conducted to compare the different sensitivity 

levels of demersal and pelagic eggs (Pankhurst and Munday 2011). The sensitivity of 
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both demersal and pelagic eggs may also depend on other aspects of spawning habitat, as 

some species spawn in relatively shallow areas. For example, Pacific herring (Clupea 

pallasii) spawn less than 10 m below low water (Rooper et al. 1999). Thus, species with 

demersal eggs that spawn nearshore may have developed ways to combat some lower pH 

conditions to facilitate normal development of the early life history stages.  

Adaptations to low or variable pH in marine teleosts could include an increased 

number of chloride cells, which are present on the yolk membrane and the integument of 

larval fishes and the gills of adult fishes (Shirashi et al. 1997, Katoh et al. 2000). Chloride 

cells are integral for osmoregulatory balance as well as acid-base regulation in fresh and 

marine fish species (Perry 1997). The increased number of chloride cells or their 

increased activity results in lower blood chloride (Cl-) concentrations by exchanging 

internal Cl- for bicarbonate ions (HCO3
-) from the environment, thus moderating internal 

pH for the fish (Shirashi et al. 1997, Katoh et al. 2000). Though Cl- is not directly 

responsible for the increase and decrease of pH, the exchange of Cl- and HCO3
- across the 

lamellar membrane via chloride cells allows for pH to increase. However, this is an active 

transport mechanism requiring the use of adenosine tripohosphate (ATP), making this an 

energy demanding mechanism. Chloride cells increase in number between the cleavage 

and embryo stages, and species with greater numbers of these cells are more likely to 

adapt to more acidic conditions (Ishimatsu et al. 2004). However, there is high energy 

expenditure as yolk sac larvae shift from having their main osmoregulatory mechanism 

associated with the yolk membrane to osmoregulation occurring at the gills (Melzner et al. 

2009a), as seen in Atlantic cod (Frommel et al. 2011) and in the four teleost species 

studied by Kikkawa et al. (2003). This shift occurs as larvae become more dependent on 

external food sources rather than relying on their yolk stores for energy (Melzner et al. 

2009a, Franke and Clemmesen 2011). Maintaining osmoregulatory balance throughout 

metamorphosis is integral for larvae in this transition state (Pankhurst and Munday 2011). 

Ultimately, the formation and transition of chloride cells from the body and yolk 

membrane to gills occurs throughout larval development (Varsamos et al. 2002). 

Insufficient yolk size and poor yolk quality can cause increased mortality, decreased size, 
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and smaller energy stores for other physiological functions in teleost larvae. In several 

marine species, such as Atlantic cod (Gadus morhua), red sea bream (Pagrus major), and 

Japanese sillago (Sillago japonica), there was an observable drop in CO2 tolerance as 

larvae aged, likely due to the reduced energy availability in the yolk (Kikkawa et al. 

2003) or due to energy allocation to growth over organ development causing 

osmoregulatory and metabolic imbalances (Frommel et al. 2011). It is possible that the 

pH resiliency of the walleye pollock eggs and larvae observed in the present study was 

due to high chloride cell numbers and activity as a result of being incubated under high-

CO2 conditions. Chloride cell density or activity was not measured in this experiment, but 

could be included in future studies through histology or measurement of cell activity to 

assess the degree of response to increased CO2 concentrations and lower pH due to ocean 

acidification. Future studies should assess overall energetics and metabolic rates of newly 

hatched larvae during development and metamorphosis to assess yolk and food 

consumption due to this compensation, especially since I did not observe effects on yolk 

sac size. 

  The results of this study suggest that the pH levels within the walleye pollock 

experiments were not outside their physiological tolerance window, either because of the 

potential for increased activity of chloride cells or other compensatory mechanisms. The 

amount of yolk and type of yolk fatty acids are important for larval fish, as they provide 

nutrients to the developing embryo and while the larva is transitioning to exogenous 

feeding (Rønnestad et al. 1998, Laurel et al. 2010). Although there was no difference 

among treatments in the yolk area in walleye pollock in this study, it remains unknown 

whether or not environmental pH as a result of ocean acidification could adversely affect 

the yolk quality after hatch as a result of increased stress response and potential increased 

energy uptake during development, which could be a direction of future studies. Most 

studies related to the negative effects of pH on yolk quality are within the context of 

freshwater systems and acid rain (e.g., northern pike Esox lucius; Johansson and 

Kihlström 1975), providing context for comparative marine studies. It would be valuable 

to explore how quickly yolk stores are used up during development and how yolk 
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composition changes over time in response to ocean acidification, e.g., using analytical 

methods such as fatty acid analysis.  

 Reduced pH had little effect on developing walleye pollock eggs and hatching 

larvae in this study, but physiological tolerance of the species could be exceeded if more 

than one stressor were at work synergistically. Food limitation, disease, and increasing 

ocean temperatures are several potential stressors that eggs and/or larvae could encounter 

during development that may interact with the currently non-detectable effects of reduced 

pH. For example, as water temperature influences the incubation time, growth rates, and 

metabolic rate of larval fish, understanding how both increased temperature and 

decreased pH will influence larval growth rates and energy demands will yield valuable 

information regarding the resilience of fish species to several stressors. Synergistic 

effects of pH and increased temperature have been studied in an adult clownfish (Munday 

et al. 2009b), showing an overall decrease in aerobic capacity as a result of decreased pH 

as well as the combined effect of increased temperature and decreased pH. However, 

little is known about the combined effects of ocean acidification and other stressors that 

both fish eggs and larvae could encounter during growth and development. Hence, 

despite the apparent resilience of developing walleye pollock eggs to ocean acidification 

effects, there is a need for further studies to assess how this valuable fisheries species 

might be affected by changing environmental conditions.  
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Chapter 3. Responses of juvenile walleye pollock (Theragra chalcogramma) to 

projected increases in ocean acidification 

3.1. Abstract 

 With rising atmospheric CO2, ocean pH is predicted to decrease 0.3 to 0.5 units by 

2100. Biological consequences of ocean acidification have been studied in marine 

organisms; however, comparatively few studies focused on the response of marine 

teleosts to decreasing environmental pH. Walleye pollock (Theragra chalcogramma) are 

an important marine resource to commercial fisheries and ecosystem dynamics in the 

North Pacific, and it is crucial to understand how this species will respond to changing 

ocean conditions. Age-1 juvenile walleye pollock were reared at current ocean pH for the 

North Pacific (8.1) and at high, medium, and low pH treatment levels (pH 7.9, 7.6, and 

7.2) to simulate projected levels of acidification. After a six-week exposure period, their 

physiological response was assessed using a suite of bioindicators: blood gas, plasma 

cortisol, cortisol secretion, body condition, hepatosomatic index, and growth rate. 

Marked differences were observed in several blood parameters in response to decreasing 

pH. Mean bicarbonate concentrations significantly increased from 9.72 mmol/L at 

ambient pH treatment to 15.07 mmol/L at the low pH level (p< 0.0001), and mean blood 

pCO2 also significantly increased from 5.12 kPa at ambient pH level to 6.18 kPa in the 

low pH (7.2) treatment (p< 0.0001). Blood pH significantly increased as treatment pH 

decreased, from 7.02 at ambient pH treatment to 7.13 at the low pH level (p< 0.0001). 

However, these blood gas results were likely affected by the anesthesia solution that was 

not adjusted for treatment pH. Cortisol parameters showed that juvenile walleye pollock 

did not exhibit a stress response under lowered pH treatments. There was a trend toward 

elevated plasma cortisol levels at lower pH, although this trend was not statistically 

significant (p=0.87). In addition, there was a significant effect of sampling order on blood 

cortisol levels, suggesting a possible source of stress at the termination of the experiment 

(p< 0.0001). Basal and maximum interrenal secretion rates were not affected by 

decreased environmental pH (p= 0.26 and p=0.51, respectively), pointing to the resiliency 

of walleye pollock to the experimental conditions. Total length and weight changes did 

 
 



34 
 

not differ among pH treatments (p=0.88 and p=0.34, respectively). Both the body 

condition index and hepatosomatic index of juvenile walleye pollock did not vary 

significantly among treatments (p=0.66 and p=0.21, respectively). Overall, these results 

indicate that walleye pollock are largely able to withstand the pH conditions tested over 

the time frame of this experiment. However, it remains unknown whether chronic 

exposure to these conditions may have long-term effects on walleye pollock in the wild. 

 

3.2. Introduction 

 Anthropogenic CO2 levels have been rising in the atmosphere since the Industrial 

Revolution due to the increased use of fossil fuels and changes in land use practices. 

Since the late 18th century, atmospheric CO2 concentrations have increased from ~280 

parts per million (ppm) to more than 392 ppm, and CO2 levels could reach 880 ppm by 

2100 (Caldeira and Wickett 2003, Pelejero 2005, IPCC 2007, Feely et al. 2008, Tans and 

Keeling 2013). Model results show that the average ocean pH could decrease by another 

0.3-0.5 pH units every 100 years if CO2 emissions continue unchecked, with a decrease of 

nearly 0.8 pH units by 2300 (Pelejero 2005, McNeil and Matear 2006). Even though 

ocean acidification affects all marine biomes, oceans at higher latitudes are more 

susceptible to increased acidification (e.g., Fabry et al. 2009). This is especially true for 

cold water masses found in areas such as the North Pacific and the Bering Sea, where the 

combination of upwelling from global thermohaline circulation and cold water 

temperatures allow for more CO2 gas to remain dissolved in solution. These high latitude 

regions are also extremely productive, resulting in seasonal shifts in pH and carbonate 

parameters (Bates et al. 2009, Fabry et al. 2009, Mathis et al. 2010). Large commercially 

important benthic and pelagic fisheries are supported by this high primary production. 

Changing ocean conditions can have implications for species playing key roles in these 

fisheries and their supporting food web. It is also possible that pH influences could affect 

the distribution and survival of important commercially harvested species such as walleye 

pollock (Theragra chalcogramma) through either direct or indirect bottom-up control 

effects (Fabry et al. 2009). 
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 The physiological tolerance window for pH is likely species-specific and can be 

dependent on the overall life history and life stage of an organism (Hayashi et al. 2004a, 

Pörtner and Farrell 2008, Munday et al. 2009a, 2009b). Under reduced pH conditions 

associated with ocean acidification, organisms could exhibit compromised extracellular 

acid-base regulation (Hayashi et al. 2004a, Hayashi et al. 2004b) and osmoregulation 

(Miles et al. 2007, Pane and Barry 2007, Pörtner 2008); lower growth rates or smaller 

overall size (Kurihara 2008, Melzner et al. 2009a); reduced metabolic scope (Seibel and 

Walsh 2003, Munday et al. 2009b); and increased mortality rates associated with early 

life stages (Ishimatsu et al. 2008). Currently, there is a paucity of data on the specific 

effects of ocean acidification on fish species (Ishimatsu et al. 2008). The few studies 

available indicate that any effects resulting from ocean acidification are species-specific; 

one species could be extremely sensitive, whereas the same environmental conditions 

may not elicit a response in another species. Some adult marine fishes (i.e., Japanese 

flounder Paralichthys olivaceus, yellowtail Seriola quinqueradiata, starspotted dogfish 

Mustelus manazo, and the gulf toadfish Opsanus beta) exhibit changes in blood 

chemistry during laboratory ocean acidification studies (Hayashi et al. 2004a, Hayashi et 

al. 2004b, Kikkawa et al. 2004, Esbaugh et al. 2012). Such physiological responses could 

potentially result in whole body effects, such as decreased survival or body condition, but 

these responses are species dependent. Environmental stressors may shift an organism’s 

energy budget, requiring greater allocation of energy to maintaining homeostasis. This 

allows for less investment in reproduction and growth (Ishimatsu et al. 2004, Pörtner 

2008, Melzner et al. 2009a) if organisms cannot employ other compensatory mechanisms 

(e.g., increase food intake). Understanding potential effects on physiological indicators of 

stress, body condition, and acid-base balance can lead to a greater understanding of how 

an organism like walleye pollock can respond to changing environmental pH. Overall, the 

responses to changing ocean conditions could impact not only the individual, but also 

have population and ecosystem-wide implications with potential community shifts 

(Doney et al. 2009). 
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 The purpose of this study was to evaluate how juvenile walleye pollock respond to 

ocean acidification, employing several physiological mechanisms as bioindicators. To 

assess potential responses to altered environmental pH as a result of ocean acidification, I 

measured whole body indices (i.e., hepatosomatic index, body condition index, and 

growth rates), blood gas parameters (i.e., blood pH, bicarbonate, and pCO2), and stress 

parameters (i.e., plasma cortisol levels and cortisol secretion) in juvenile walleye pollock. 

With decreasing pH, I expected that juvenile walleye pollock would exhibit decreased 

growth rate and lower condition indices because more energy could be allocated to the 

increased activity of compensatory mechanisms than somatic growth. Blood pCO2 and 

blood bicarbonate were expected to increase, and blood pH to decrease, with lower pH 

exposure. Increased blood cortisol and cortisol secretion were expected as a stress 

response to lowered pH.   

  

3.3. Methods  

3.3.1. The pH dosing system 

 Experiments were conducted at the Hatfield Marine Science Center (HMSC) in 

Newport, OR, in 2009. To simulate the potential pH conditions that walleye pollock 

could be exposed to in the next several decades, an injection system was developed 

(Figure 3.1) allowing for the controlled addition of carbon dioxide (CO2) into the 

laboratory’s flowing seawater. Flowing seawater was conditioned to the lowest set point 

(pH = 7.2) at 9°C using an automated CO2 injection system, which was monitored using a 

pH probe attached to a computer-controlled solenoid valve to regulate the CO2 gas flow 

into a membrane contactor. A small pump provided circulation to prevent stratification in 

the conditioning tank and ensure uniform pH. Conditioned water (pH 7.2) flowed into 

three elevated header tanks, where it was mixed with untreated flowing seawater (pH = 

8.1±0.07) in fixed volume ratios to create the high, medium, and low treatment pH levels 

(pH 7.9, 7.6, and 7.2, where the latter received no addition of natural seawater). One 

header tank received only untreated seawater to represent the ambient environmental pH 

treatment. Water from the elevated header tanks was then gravity fed to 16 144 L 
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experimental tanks (four treatment tanks for each pH level) where the fish were held 

during the experiment. To continually monitor pH in the experimental tanks, each tank 

group was outfitted with a pH meter (SympHony, VWR, ±0.001 pH units) equipped with 

both a glass combination pH probe and a dissolved oxygen/temperature probe. pH, 

dissolved oxygen (DO, ±0.01 mg/L), and temperature (±0.1 ºC) were monitored every 15 

minutes throughout the experiment. Flow rates were set at 1 L/min, tank temperatures 

were maintained at 9.0ºC ± 0.6ºC (Table 3.1) based on the probe measurements, and DO 

was ensured to remain above 70 mg/L by adding an air stone bubbler to each tank. pH 

meters were calibrated once per week with three standards (pH= 4.0, 7.0, and 10.0).  

 Carbonate parameters of treatment water were determined from samples collected 

twice per week from each set of treatment tanks and 200 μL saturated mercuric chloride 

solution was added to halt any biological activity. These water samples were analyzed for 

dissolved inorganic carbon (DIC) and total alkalinity (TA) using a VINDTA 3C 

(Versatile INstrument for the Determination of dissolved inorganic carbon and Total 

Alkalinity) coupled to a UIC 5014 coulometer (±1μmol/kg). These data were used to 

calculate actual pH, pCO2, and carbonate mineral saturation states (Ω) of the experimental 

waters using the program developed by Lewis and Wallace (1995) (Table 3.1). 

 
Table 3.1. Water conditions for juvenile walleye pollock experiments. Tank carbonate conditions for 
the different pH treatment groups during the 6-week experiment. pH was calculated from carbonate 
parameters gathered by the VINDTA. Data are presented as mean ± standard deviation. 
 

Target Treatment Temperature 
(°C) pH pCO2 

(µatm) 

Calcite 
Saturation 
State (Ωcalc) 

Aragonite 
Saturation 

State 
(Ωarag) 

Ambient Control 
(8.1) 9.33 ± 1.83 8.02 ± 0.05 377 ± 6 4.41 ± 0.13 2.85 ± 0.13 

High (7.9) 8.48 ± 0.36 7.91 ± 0.04 526 ± 5 3.49 ± 0.12 2.25 ± 0.12 

Medium (7.6) 8.82 ± 0.27 7.64 ± 0.08 772 ± 6 2.61 ± 0.13 1.68 ± 0.13 

Low (7.2) 8.57 ± 0.24 7.28 ± 0.16 1069  ± 6 2.00 ± 0.13 1.29 ± 0.13 
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Figure 3.1. CO2 injection system schematic. Schematic overview of CO2 system used to simulate ocean acidification conditions for juvenile walleye 
pollock experiments. 
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3.3.2. Fish Capture and Husbandry 

 Juvenile walleye pollock (age 0+) were captured in May 2008 in nearshore waters 

of Puget Sound off of Port Townsend, WA (48° 6′ 59″ N, 122° 46′ 31″ W) and 

maintained in ambient seawater at the HMSC. Prior to use in the experiments, fish were 

reared in 144 L round tanks in ambient pH treatments with a 12 h light: 12 h dark 

photoperiod and temperatures maintained at 9-10ºC. Once the fish reached the age 1+ age 

class, they were transferred and reared in 5,678 L tanks with a density of 70 individuals 

per tank at 9ºC with a 12 h light: 12 h dark photoperiod. Throughout their holding period 

and before use in the experiments, fish were fed a mixture of commercially available 

food (Otohime EP) and thawed krill (Euphausia pacifica) daily until apparent satiation 

(i.e., when fish stopped eating). As fish grew, feeding to apparent satiation was 

eventually reduced to two days per week using a blended and gelatinized combination of 

herring, amino acid supplements, commercial food, squid, krill, and vitamins (Appendix 

A). All age 1+ walleye pollock were reared and handled under the University of Alaska 

Fairbanks Institutional Animal Care and Use Committee assurance #09-25 (Appendices 

B and C). 

 

3.3.3. Experimental Setup 

 In late October 2009, 48 age 1+ fish were transferred to the experimental tanks and 

randomly distributed between treatment tanks at a density of three fish per tank (12 fish 

total for each pH treatment). Experimental fish averaged 21.0 ± 1.1 cm (mean ± SE) total 

length (LT) and 72.0 ± 12.2 g wet mass (MW), and there were no significant differences in 

either size measurement among the treatment groups (one-way ANOVA, MW p= 0.39; LT 

p= 0.13). The fish were kept at a 12 h light: 12 h dark photoperiod and were allowed to 

acclimate to these experimental conditions for one week at ambient pH conditions prior 

to initiating the pH treatments. pH was adjusted in treatment tanks over a 24 h period for 

the 7.9 treatment, and over a 48 h period for the 7.6 and 7.2 treatment tanks to not 

introduce sudden stress on the fish. Fish were reared for six weeks under these 
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experimental conditions. During the experimental period, fish were fed the gelatinized 

food (Appendix A) to apparent satiation once per day to maximize growth potential. 

 Following the six week experimental exposure period, fish were anesthetized in 

ambient pCO2 seawater using 100 mg/L buffered tricane methanosulfonate (MS-222) and 

morphometric parameters and blood samples were collected. After whole body 

parameters were collected, fish were euthanized using a lethal dose of MS-222 (~250 

mg/L), and a complete necropsy was conducted to isolate tissues of interest and 

determine the presence of ovaries.  

 

3.3.4. Whole Body Parameters 

 Growth was calculated as the difference between final and initial total length (LT) 

and wet mass (MW), averaged within a treatment group, and are presented as mean ± SE. 

The body condition (IC) was calculated using the residual weight method, where the 

individual variation from the relationship between log10 MW and log10 LT is used 

(Blackwell et al. 2000, Hurst 2004). The liver is a primary organ for energy storage in 

many fishes, including gadids (Jobling 1988, Grant et al. 1998, Gildberg 2004, Lekva et 

al. 2010). Therefore, the hepatosomatic index (IH) was used to assess the variation in 

energetic status of walleye pollock under experimental conditions. IH was calculated as 

the individual deviation from the relationship between log10 liver wet mass (weighed to 

the nearest 0.01 g) and log10 LT x 100 as described in Hurst (2004).  

  

3.3.5. Blood Gas Parameters 

  Whole blood was drawn from anesthetized fish from the caudal vein using a 3cc 

heparinized syringe and a 25 gauge needle. Syringes were capped using syringe plugs 

designed for blood chemistry analysis, and samples were transported on wet ice to the 

Samaritan Pacific Community Hospital’s analytical laboratory in Newport, OR within 3h 

after collection. The samples were analyzed at room temperature on an Omni-6 Blood 
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Gas Analyzer (#GD0485, Roche Diagnostics) within 3 h of collection for pH (calculated), 

total bicarbonate, and pCO2 (measured).  

 

3.3.6. Cortisol Measurements 

 As much whole blood as possible was collected from each fish using a sodium 

heparin VacutainerTM. Vacutainers were spun in a centrifuge for three min at 3000 x 

gravity (g) to separate blood components. Plasma was isolated and stored in 

microcentrifuge tubes at -80ºC until analysis (see below). 

 In addition to whole blood, interrenal tissues were cultured to measure basal and 

maximum interrenal cortisol secretion after six weeks of exposure to pH conditions, 

following protocols outlined in Patiño et al. (1986) and Patiño and Schreck (1988). 

Following fish sacrifice (within five min), interrenal tissue was isolated, weighed, 

masticated, and placed in a static system consisting of a 24 well plate with 2 mL cell 

culture made of 5 M NaCl, 0.5 M KCl, 0.3 M CaCl2, 0.5 M MgSO4, 0.5 M, KH2PO4, 0.5 

M NaHCO3, 0.28 M glucose, 0.20 M glutamine, and Eagles-MEM (Minimum Essential 

Medium) solution for two, two h washes. Tissues were incubated in the cell culture 

medium for 3 h with either 25 mU/L adrenocorticotropic hormone (ACTH) or untreated 

to obtain maximum and basal secretion rates, respectively (25 mU ACTH= 133.3 µg 

ACTH in 400 mL MEM/Ringers Solution). ACTH is a hormone that is integral to the 

hypothalamus-pituitary-interrenal (HPI) axis. ACTH is produced by the pituitary gland 

and stimulates the secretion of cortisol by the interrenal tissue upon detection of a stressor 

(Schreck et al. 1989). Cultures were incubated in a 9ºC cold room on a slow plate shaker. 

After three h, the tissue incubation solution was placed in microcentrifuge tubes and 

stored at -80ºC. 

 Both plasma and interrenal cell culture media were assayed in duplicate using the 

protocol outlined in the Cortisol EIA (Enzyme Immunoassay) kit (Assay Designs, Inc.). 

Cortisol EIA plates were read using a SpectraMax microplate spectrophotometer with the 

wavelength set at 340 nm. According to the kit protocol, the following hormones could 

potentially cross-react with this particular EIA and their percent reactivity if they come 
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into contact with the assay components: prednisolone (122%), corticosterone (27.7%), 

11-deoxycortisol (4%), progesterone (3.64%), prednisone (0.85%), testosterone (0.12%), 

androstenedione (<0.1%), cortisone (<0.1%), and estradiol (<0.1%). Cortisol 

concentrations were calculated using a standard curve, with an acceptable deviation of 

5% between duplicates. Because all duplicate samples were within the acceptable 

deviation, no samples were re-run. This particular kit and protocol has previously been 

validated for four different fish species (channel catfish Ictalurus punctatus, largemouth 

bass Micropterus salmoides, red pacu Piaractus prachypomus, and golden shiner 

Notemigonous crusoleucas; Sink et al. 2008). 

 

3.3.7. Data Analysis 

 Because of the natural fluctuation in pH of the ambient seawater source, a repeated 

measures ANOVA tested if treatment conditions were constant throughout the duration 

of the experiment for data collected from both the VINDTA and pH meters. The accuracy 

of the data collected from the pH meter was compared with the calculated values from 

the VINDTA using a two-way ANOVA with repeated measures. 

 A nested ANOVA was conducted for all measured biological parameters to 

consider tank effects, sampling order effects, and effects of the individual’s sex for the 

various physiological biomarkers. If a component of the nested ANOVA (e.g., tank 

within a treatment) was not statistically significant, a one-way ANOVA with subsequent 

Tukey’s post-hoc test was conducted. All statistical analyses and graphics were done 

using the statistical program JMP 8 (SAS Institute), with a significance level set at α= 

0.05.  

 

3.4. Results 

3.4.1. Tank pH Conditions 

  There was significant variation in all treatment pH levels as measured by the pH 

meters (repeated measures ANOVA, p> 0.0001; Figure 3.2). All four pH conditions also 

remained significantly different from each other throughout the six week experimental 
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period (repeated measures ANOVA, p< 0.0001). The cause of this variation is likely the 

changes in the injection system because of the gas injection setpoint on the pH computer 

and gas dissolution 

process rather than 

natural variation; the 

ambient control did 

not exhibit a high 

degree of pH 

variability. 

Deviations between 

the pH meter 

readings taken at the 

time of water sample 

collection and 

VINDTA measurements were statistically different (two-way repeated measures 

ANOVA, p= 0.02). However, deviations from the mean of each treatment condition were 

overall small, with a maximum of 0.009 pH units. Despite the statistically significant 

variation in pH within the experimental tanks, the treatments themselves remained 

different through the duration of the experiment. The variation within a treatment was 

within the acceptable limit of ±0.05 units for the 6-week experimental period. As a result, 

I determined that the experimental pH conditions were stable enough within each of the 

four treatments to effectively conduct the experiments.  
 

3.4.2. Whole Body Parameters 

 There were no mortalities associated with the experimental pH conditions. 

However, one fish jumped out of the high pH treatment tank and died (n= 11 fish for this 

treatment). All fish used in the experiment had an average LT increase of 30.11 ± 9.95 

mm (mean ± SE), and MW gain of 24.83 ± 10.47 g over the course of the experiment. 

Figure 3.2. Daily mean pH for juvenile walleye pollock experiments. 
Daily mean pH for juvenile walleye pollock ocean acidification experiments 
from 30 October 2009 to 17 December 2009 for four experimental pH levels. 
Error= ±SD small and not visible in figure. 
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Changes in LT (p= 0.43) and MW (p= 0.58) were not statistically significant among pH 

treatment groups (Table 3.2).  

 

 

 The IC was not significantly different among treatment groups (Table 3.2, p= 0.66). 

Overall, IH also was not significantly different among experimental pH treatments (Table 

3.2, p= 0.84). Gender was not a contributing factor for any differences among treatments 

with regards to LT (p= 0.88), MW (p= 0.82), IC (p= 0.34), or IH (p= 0.83). The combined 

factors of the individual rearing tank within a treatment and sampling order did not 

significantly affect mean LT (p= 0.19), MW (p= 0.64), IC (p= 0.62), or IH (p= 0.21) in any 

of the four pH treatment groups.  

 

3.4.3. Blood Gas Parameters 

 Blood gas parameters exhibited marked differences among pH treatment groups 

after the 6-week incubation period. Blood pCO2 increased significantly as treatment pH 

decreased (Figure 3.3a, p< 0.0001). There also was a significant increase in blood 

bicarbonate concentrations associated with the exposure to reduced treatment pH 

(Figure 3.3b, p< 0.0001). Lastly, an increase in blood pH was observed in the lower pH 

treatments (Figure 3.3c, p< 0.0001). However, this increase in blood pH is believed to 

be an artifact caused by CO2 off-gassing in the ambient pH water used in the anesthesia 

Treatment n MW (g) LT (cm) IC IH 

Ambient Control (8.0) 12 25.28  ± 3.06 2.96  ± 0.29 -0.0041  ± 0.1188 1.302  ± 3.62 

High (7.9) 11 26.27  ±3.06 2.79  ± 0.29 0.0121  ± 0.1188 -0.086  ± 3.78 

Medium (7.6) 12 20.98  ± 3.19 2.86  ± 0.30 -0.0003  ± 0.1241 1.499  ± 3.62 

Low (7.2) 12 26.47  ± 3.06 3.42  ± 0.29 -0.0084  ± 0.1241 -1.543  ± 3.62 

Table 3.2. Juvenile walleye pollock somatic indices. Somatic parameters of juvenile walleye pollock 
exposed to different pH conditions for a 6-week period. The somatic parameters of interest were changes in 
wet weight (Mw), changes in total length (Lt), condition factor (Ic), and hepatosomatic index (IH). Data are 
presented as mean ± standard error. 
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process. As a result, the blood pH findings are likely not reflective of how the fish are 

physiologically responding to decreased environmental pH.  

3.4.4. Cortisol Parameters 

 There was no overall difference in the plasma cortisol levels among experimental 

treatments (Table 3.3, p= 0.87). However, sampling order of individuals proved to be a 

significant source of variation, with the last fish sampled from a given tank regardless of 

pH treatment having the highest plasma cortisol levels (p< 0.0001, Table 3.4). The 

plasma cortisol levels of fish sampled first (one-way ANOVA, p= 0.33), second (one-

way ANOVA, p= 0.68), or third (one-way ANOVA, p= 0.75) showed no difference 

among treatment groups. Plasma cortisol levels ranged from 0.68 to 20.59 ng/mL in all 

fish sampled first in this experiment, showing the high variability of this parameter 

among individuals.  

Treatment n Plasma cortisol 
[ng/mL] 

Basal Interrenal 
Secretion [ng/mL] 

Maximum Interrenal 
Secretion [ng/mL] 

Ambient Control 
(8.0) 12 22.12  ± 6.40 15.78  ± 3.41 28.42  ± 4.75 ab 

High (7.9) 11 23.02  ± 6.69 13.56  ± 3.56 19.69  ± 4.96  b 

Medium (7.6) 12 26.57  ± 6.40 15.77  ± 3.41 24.97  ± 4.75  ab 

Low (7.2) 12 28.78  ± 6.40 9.62  ± 3.41 33.45  ± 4.75  a 

 

 Basal cortisol secretion from the interrenal tissue exhibited no differences as a 

result of pH treatments (Table 3.3, nested ANOVA p= 0.26), and were comparable to 

cortisol levels in blood plasma (two-way ANOVA, p= 0.51). Maximum secretion was 

significantly affected by treatment conditions (p= 0.046) in the nested model, with 

significantly higher maximum cortisol secretion rates observed in low pH (7.2) treatment. 

Sampling order was not a significant contributor to the variation in either basal (p= 0.54) 

or maximum cortisol interrenal secretion (p= 0.31) within these individuals. However,  

Table 3.3. Juvenile walleye pollock cortisol parameters. Cortisol parameters measured in walleye 
pollock exposed to different pH levels for a 6 week time period. Statistical differences as a result of only 
pH treatment conditions were determined using a Tukey’s HSD and are denoted by different letters 
(p≤0.05). Data are presented as mean ± standard error. 

 
 



 
 
 
46 
 

Figure 3.3. Juvenile walleye pollock 
blood gas levels. Blood gas parameters for 
walleye pollock exposed to different pH 
conditions for 6 weeks for blood pCO2 (A), 
blood bicarbonate (B), and blood pH (C). 
Different letters above bars within each 
panel indicate significant differences 
between groups based on Tukey’s post-hoc 
tests (p ≤0.05). Error bars are ± standard 
error. For each treatment group, n=12. The 
high treatment group had n=11. 
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there were significant differences among replicate tanks within pH treatment in both 

basal (p= 0.001) and maximum cortisol secretion (p= 0.02). 

 

3.5. Discussion 

 Despite the potential implications that ocean acidification may have on 

commercially important fish species, this is the first study where a multifactorial 

evaluation was utilized to measure the response of juvenile walleye pollock to lowered 

pH conditions. With a longer exposure period to decreased environmental pH levels 

relative to previous studies, it was anticipated that there would be detectable differences 

between treatments with regards to the tested parameters. There was no significant 

response detected with regards to whole body indices, suggesting that either fish were 

able to compensate for any additional energetic costs through increased food intake or 

that conditions were within the levels of tolerance for this population. The same patterns 

for whole body indices were observed in subsequent experiments with larval walleye 

pollock, where environmental CO2 levels had a minor effect on overall body sizes (Hurst 

et al. 2013). Stress parameters were also not affected by the decrease in environmental 

pH. Conversely, there was a physiological compensation with regards to blood gas levels 

in response to hypercapnia from reduced environmental pH: elevated bicarbonate, blood 

pCO2 levels, and blood pH correlated with decreasing environmental pH. Overall, these 

results indicate that either, (a) the treatment conditions did not affect or were not severe 

Treatment n First sampled blood 
cortisol [ng/mL] 

Second sampled blood 
cortisol [ng/mL] 

Third sampled blood 
cortisol [ng/mL] 

Ambient Control 
(8.0) 

12 2.09 ± 5.70 a 18.77 ± 5.70 b 45.51 ± 5.70 c 

High (7.9) 11 2.96 ± 8.06 a 21.28 ± 8.06 b 44.83 ± 8.06 c 

Medium (7.6) 12 4.06 ± 6.62 a 26.08 ± 6.62 b 57.23 ± 7.65 c 

Low (7.2) 12 7.98 ± 4.86 a 30.59 ± 4.86 b 47.78 ± 4.86 c 

Table 3.4. Walleye pollock sampling order plasma cortisol concentrations. Plasma cortisol as a result 
of sampling order (capture stress) after individuals were reared under different pH levels for 6 weeks. Data 
are presented as mean ± standard error. Different letters indicate significant differences among sampling 
order and among treatments (p≤ 0.05). 
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enough to illicit a response of these particular physiological mechanisms in walleye 

pollock; or (b) the walleye pollock compensated for the energetic cost of acclimating to 

these circumstances during satiation feeding conditions. However, these experiments 

with juveniles and others with larvae (Hurst et al. 2013) indicate that the early life history 

stages exhibit a high degree of resiliency to ocean acidification conditions. Interestingly, 

slightly different results were found in subsequent experiments, likely caused by a suite 

of other, unknown factors that influenced growth rates and body size (Chapter 2, Hurst et 

al. 2012, 2013).  

 

3.5.1. Whole Body Parameters 

 Whole body parameters in juvenile walleye pollock in this study were little 

affected by lowered experimental pH treatments, indicating that experimental conditions 

did not exceed their physiological window. This could be a species-specific trait, or it 

could be particular to the tested population. The walleye pollock used in these 

experiments were from a population at the southern edge of the species’ range in Puget 

Sound, near the Strait of Juan de Fuca. This region has a high degree of eutrophication 

caused by high freshwater runoff from both urbanized locales and areas rich in organic 

material (Feely et al. 2010). The resulting dissolved inorganic carbon (DIC)-rich water is 

mixed in the water column by both wind and tidal forcing. There also is influence of 

seasonal upwelling that draws DIC-rich water from deeper regions (Feely et al. 2010). 

Annually, pH in Puget Sound ranges between 7.6-7.8 (Feely et al. 2010), covering much 

of the pH exposure range applied in the experiment. However, conditions found in Puget 

Sound are much lower in pH than those found in at the Hatfield Marine Science Center 

located on Yaquina Bay, OR, where the ambient conditions were 8.1 during the course of 

the experiment. Organisms found in habitats with a naturally variable pH are thought to 

have wider physiological tolerance windows than those living in more stable 

environments (Ishimatsu et al. 2004; Ishimatsu and Dissanayake 2010). It is therefore 

possible that the walleye pollock broodstock in this study had, a) previous exposure to 

variable pH conditions as juveniles before their capture; and/or, b) the tolerance levels of 
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the parents was passed on to the juveniles. It is currently unknown how other walleye 

pollock populations would respond to the pH levels as applied in this study. Conducting a 

similar set of experiments on individuals from different populations could offer some 

insight into the natural physiological variability occurring within this species, and to how 

the species as a whole may respond to ocean acidification. 

 Alternatively or in addition to high tolerance windows, maintenance of whole 

body parameters could also be related to high-energy (food) supply during the 

experiments. All animals in this study were fed daily to apparent satiation, so they were 

potentially able to sufficiently utilize food energy to compensate for any energy diverted 

to maintain homeostasis under decreased pH conditions. For example, some invertebrates 

were able to re-allocate metabolic costs under lowered pH conditions, especially if 

energy supply was maintained (Melzner et al. 2009a). A similar process may have 

allowed the walleye pollock in this study to maintain similar growth (both length and 

mass) under all experimental pH conditions for the duration of this experiment, and IC 

and IH also did not differ with pH treatment. In general, IC values indicate the resiliency 

of the species to a broad range of pH. IH exhibited no trend in relation to exposure to 

different pH levels, again pointing to the resiliency of the species to these conditions. 

Both IC and IH are commonly used by fisheries biologists as indices of health and 

condition of many teleost species as they are easy to measure. According to Lambert and 

Dutil (1997), different forms of both IC and IH have been used as indicators of the general 

nutritional status of gadids, specifically Atlantic cod. However, there are species, such as 

the three-spined stickleback (Gasterosteus aculeatus), that demonstrate the inaccuracy 

and unreliability of these and other (e.g., Fulton’s condition index) indices (Chellappa et 

al. 1995). The amount of fat, protein, and water in the liver can affect these indices, as 

well as the overall energy available to the individual. Coupling these condition indices 

with biochemical analysis of tissue would allow for a more precise evaluation of the 

overall energetic status of individuals. Future experiments with limited food access could 

test the hypothesis that food energy can deflect adverse low pH effects on whole body 

parameters in walleye pollock. 
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The duration of the experiment could have implications for the observed results. 

Long-term responses, such as whole body parameters, may only be measurably affected 

over time periods longer than the 6-week period applied here. This may be especially true 

if experimental time were prolonged until walleye pollock sexually matured to assess if 

there are potential effects on fecundity and egg quality, similar to a previous study with 

salmonids and exposure to chronic stress (Schreck 2000).  

 

3.5.2. Response in Blood Gas Parameters 

Though it was possible to detect a physiological response to the different 

treatment conditions by using blood gas measurements, it is probable that the specific 

results were affected by aspects of the sampling procedures. The anesthesia protocol, 

which utilized ambient pH water, likely caused significant offgassing of CO2 by the fish, 

altering the internal blood gas composition. This CO2 offgassing happens almost instantly. 

As a result, the offgassing should not impact the stress parameters and whole body 

indices that were measured because of their longer response time to change. In the 

experiments with juvenile walleye pollock, blood pCO2 significantly increased at the 

lowest two pH treatments. Generally, blood pCO2 levels exceeding 4.6-5.2 kPa indicate 

hypercapnia within an organism (Robinson and Huxtable 1988). Based on this criterion, 

walleye pollock in the two lowest pH treatment groups were experiencing hypercapnia. 

Fishes can adjust to this with physiological shifts in the acid-base balance (Larsen and 

Pörtner 1997). To maintain a concentration gradient favorable for the expulsion of CO2 

from the body, some teleost fish have slightly higher (0.3-0.5 kPa) blood pCO2 

concentrations compared to their environment (Melzner et al. 2009a). This allows for 

more efficient diffusion of CO2 at the gills from the fish into the environment, but plays 

an overall small part in maintaining internal pH (Melzner et al. 2009a). The difference in 

blood pCO2 between the ambient and the medium pH (7.6) treatment in the present 

walleye pollock experiments was about 0.3 kPa, well in accordance with the adjustment 

levels previously reported (Melzner et al. 2009a). However, the 1.1 kPa difference in 
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blood pCO2 between the ambient and the lowest pH (7.2) treatment is nearly double the 

maximum compensation levels previously reported (Melzner et al. 2009a).  

The blood stores of CO2 within teleosts are large relative to its production, and 

even minor changes to the CO2 stores can have profound effects on overall acidosis or 

alkalosis of the blood (Randall and Daxboeck 1984). Ultimately, the degree of CO2 

tolerance in marine teleosts is directly dependent on both the ability of the organism to 

accumulate bicarbonate from seawater and the non-bicarbonate buffering mechanisms 

within the individual (Melzner et al. 2009a, Esbaugh et al. 2012). In this experiment, the 

increase in blood pCO2 caused increased blood bicarbonate concentrations with 

decreasing treatment pH, indicating the buffering response by walleye pollock. The 

trends observed in the bicarbonate levels in this study match those found in several 

published accounts observing the response of fish to elevated CO2 conditions (Hayashi et 

al. 2004a, 2004b), where the trends of high blood CO2 and high blood bicarbonate 

concentrations also coincided in several marine fishes exposed to low environmental pH 

(Esbaugh et al. 2012). The elevated bicarbonate levels should subsequently induce a 

decrease in blood pH according to the carbonate equilibrium reaction (Equation 1.1). As 

a result, fish undergo a metabolic compensation by changing ventilation rates to excrete 

more CO2 in response to raised plasma bicarbonate levels to reestablish homeostasis 

(Lloyd and White 1967). However, the expected inverse correlation of blood pH and 

bicarbonate levels was not observed in this study.  

The water used to anesthetize the fish was at ambient pH (8.1) and not at the pH 

of the treatment water used in the experimental tanks. As a result, the anesthesia water 

contained a lower pCO2 than the water in which fish were reared, causing the fish to 

offgas CO2 during handling. As a result of this offgassing, there probably was an over-

buffering response in the bloodstream, causing the highest blood pH levels to be observed 

in the lowest pH treatment. For complete compensation after exposure to the treatment 

conditions, it could take about 2-4 h for the blood pH, bicarbonate, and blood pCO2 at 

exposure levels of pCO2= 1900 µatm (192.5 kPa), as seen in the gulf toadfish (Esbaugh et 

al. 2012).  
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3.5.3. Stress Hormone (Cortisol) Responses 

 Exposure to a stressor causes the secretion of cortisol from interrenal tissue as a 

result of stimulation by ACTH (Mazeaud et al. 1977). The amount of cortisol found in 

the blood stream post stress is dependent on the intensity and duration of the stressor as 

well as the cortisol clearance rate from the bloodstream (Mazeaud et al. 1977, Barton et 

al. 1987, Barton 2000). Cortisol secretion by the interrenal kidney is almost immediate 

once a stressor is perceived (Mazeaud et al. 1977). No plasma cortisol response to the 

experimentally reduced pH conditions was observed in the walleye pollock, with plasma 

levels being between 20-30 ng/mL and no distinctive trend observed across all treatments. 

Previously published cortisol data on walleye pollock under ambient pH conditions had 

basal blood cortisol levels of about 7 ng/mL when subjected to a stress associated with 

capture in a trawl (Olla et al. 1997). Increasing the towing duration at high speeds 

resulted in acute stress plasma cortisol levels as high as 860 ng/mL (Olla et al. 1997). 

According to Pickering et al. (1991), plasma cortisol levels in rainbow trout 

(Oncorhynchus mykiss) of 10 ng/mL are considered chronic stress. However, such stress 

could be caused by confinement or overcrowding within the treatment tanks during the 

course of the experiment, and not from the pH treatment conditions themselves. It is 

possible that the consistently lower blood cortisol levels across all treatments relative to 

those found in Pickering et al. (1991) are an indicator of hardening or acclimation to the 

stressor. It has been previously shown that some fish, like rainbow trout Onchorhynchus 

mykiss, become desensitized to prolonged stressors (e.g., daily handling) over a long 

period of time (Barton et al. 1987). Either through pre-adaptation of the population with 

wide physiological tolerance windows from which experimental fish were obtained (see 

above), or through acclimation to chronic (6-week experimental period) exposure, the 

walleye pollock in this experiment seemed resilient to the stress of decreased pH 

conditions.  

  Plasma cortisol level is an effective bioindicator of acute stress (Barton 2000), 

which was likely seen in the influence of sampling order on cortisol levels in 

experimental walleye pollock in this study. Plasma cortisol levels increased significantly 
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with sampling order within each treatment (Table 3.4), indicating that the stress of the 

tank disturbance induced an acute stress response in the individuals independent of pH 

treatment. Future experiments should take this into account, and rapidly sample all 

individuals within a tank to reduce this sampling artifact as much as possible. 

Alternatively, cortisol could be extracted from biological materials (e.g., feces, tissue) 

that are indicative of long-term cortisol storage and relatively unaffected by acute stress 

(Lupica and Turner 2009, Peterson and Booth 2010).  

 Cortisol secretion from interrenal tissue is increased by exposure to ACTH, which 

is secreted by the pituitary gland when the organism comes into contact with a stressor 

(Schreck et al. 1989). Exposure to an acute stressor would cause a spike in cortisol 

secretion because of activation of the hypothalamus-pituitary-interrenal (HPI) axis and 

ACTH secretion (Pickering et al. 1991). In this experiment, the basal secretion from 

interrenal tissue from the lowest pH treatment did not differ from the ambient control. It 

was expected that the addition of ACTH did not change the possible stress response when 

chronically exposed to a stressor.  

 Prior exposure to ACTH can also enhance interrenal tissue sensitivity to increased 

ACTH levels, as is the case of repeated stressors or concurrent stressors (Schreck 1981). 

This can lead to a hyper-response (increased secretion rate) by the tissue when high 

ACTH levels are delivered to the tissue under stressful conditions (Schreck et al. 1989). 

However, consistent exposure to one particular level of stress (i.e., chronic stress), like 

the extended exposure to decreased environmental pH, can inhibit the responsiveness of 

interrenal tissue to ACTH (Patiño and Schreck 1988). Ultimately, this results in 

hardening or desensitization of the tissue to that level of ACTH exposure (Patiño and 

Schreck 1988), resulting in lower stress response because of decreased sensitivity or 

dulling seen in previous studies (Schreck 1981, Schreck et al. 1989). Because a decreased 

secretion rate was not found, the walleye pollock in this set of experiments were not 

stressed by the projected levels of ocean acidification. The results found in this 

experiment also indicate that chronic stress or desensitizing of interrenal tissue to cortisol 

did not occur, nor was a hyper-response of interrenal tissue to cortisol detected.  
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 Even though basal and maximum secretion rates are species-specific, the values 

seen in this experiment are similar to a study that also measured basal and maximum 

cortisol secretion rates in coho salmon, Oncorhynchus kisutch (Schreck et al. 1989). 

Changes in plasma cortisol levels and cortisol secretion rates can affect a number of 

different physiological mechanisms, such as whole body indices measured in this 

experiment (Schreck 1981, Barton 2000). However, such deleterious effects were not 

observed in this experiment, indicating that the conditions were within the tolerance 

window of walleye pollock.  

  

3.6. Conclusions 

 Ocean acidification is a stressor that has the potential to elicit a wide array of 

responses from many different species and life history stages. For walleye pollock, the 

rearing conditions presented in this experiment did not cause overall deleterious effects 

based on the parameters observed in this set of experiments. However, it remains to be 

seen as to how other ecosystem-wide effects as a result of ocean acidification (e.g., 

change or loss of a food source) could potentially alter the overall condition, abundance, 

and distribution of this commercially important species.
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Chapter 4. General Conclusions 

Since the Industrial Revolution in the late 1700’s, there has been a substantial 

increase in atmospheric CO2 levels as a result of increasing fossil fuel use and changes in 

land use practices (Sabine et al. 2004). As a result, it is expected that the pH of high-

latitude oceans will decrease by 0.45 units within the next century (Steinacher et al. 2009; 

Yamamoto-Kawai et al. 2009). Ultimately, ocean acidification could cause detrimental 

effects on important marine species, such as the dissolution of carbonate skeletons in 

calcifiers and physiological effects in teleosts. Despite the increasing awareness and 

urgency, ocean acidification and its effects on marine life remains poorly understood.  

This project used experimental manipulation of two life history stages, egg and 

age 1+ juveniles, of walleye pollock (Theragra chalcogramma) to evaluate the responses 

of these stages under levels of ocean acidification predicted over the next 300 years. Eggs 

and post-hatch larvae were used to assess possible adverse effects of ocean acidification 

on early development and growth (Chapter 2). Age 1+ walleye pollock were studied 

using a multifaceted assessment of responses including blood gas levels, stress response, 

and whole body condition indices to ocean acidification (Chapter 3). Combining the 

results of the two experiments, I found that early life history stages of walleye pollock 

demonstrated resiliency to projected levels of ocean acidification; however, I was able to 

detect a physiological response to these ocean pH levels. Therefore, the experiments 

outlined in this thesis contribute to the limited knowledge of responses and adaptive 

potential to projected levels of ocean acidification in subpolar fishes, specifically gadids.  

 There are several developmental bottlenecks present at distinct points in the life 

history of walleye pollock with large mortality events occurring between the post-hatch 

larvae and age-0+ stages (Houde 1997). As a result, it is necessary to study the 

physiological response to ocean acidification during several critical developmental stages 

of walleye pollock to gain a comprehensive view of potential impacts on this species 

under changing ocean pH conditions. Different life history stages may have varying 

levels of sensitivity to ocean acidification and may face several other challenges (e.g., 

predator avoidance behavior, ion regulation) caused by lower environmental pH during 
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development into reproductive adults (Hayashi et al. 2004, Dixson et al. 2010). The 

effects that changing pH conditions may have, especially on these early life stages, will 

have implications for the overall population structure of the species. Understanding and 

predicting changes in survival of certain age classes is critical to management of 

important commercial fishes (Melzner et al. 2009a). 

Marine teleost fishes, such as walleye pollock, inhabit dynamic environments, 

causing these fish to have compensatory mechanisms to acclimatize to changing 

environmental conditions if needed. Throughout their life history, the walleye pollock’s 

environment changes as a function of upwelling, storm mixing, and seasonal variability 

of terrestrial nutrient input (Bailey et al. 1997, 1999). This natural variability is likely to 

also include fluctuations in ocean pH. However, under the projected conditions of ocean 

acidification, the reaction and tolerance levels of a commercially important species, like 

walleye pollock, to decreasing environmental pH is important to explore. To investigate 

this question, adult and juvenile walleye pollock were collected from Port Townsend, 

WA for use in a series of experiments to assess the developmental and physiological 

responses to projected ocean conditions in early life stages. The lack of developmental 

and most physiological responses suggests that the conditions experienced by juvenile or 

larval walleye pollock in this study were probably within the range of pH levels of 

tolerance for this population, as pH levels as low as 7.4 occur seasonally in regions of the 

highly dynamic Puget Sound area (Feely et al. 2010).  

 Investigations on egg and larval stages provide necessary details on how the earliest 

and least developed, rapidly growing life stages will respond to an environmental stressor, 

such as ocean acidification. In the experiments presented in this thesis, walleye pollock 

eggs were exposed to three pH levels, from 7.2 (predicted in ~300 years) to 8.0 (currently 

ambient). Eggs hatched in all pH treatments (at 8°C) 8-10 days after fertilization, and 

none of the measured developmental and growth parameters were affected by low pH 

conditions (Chapter 2). Hatch timing of experimental fish was similar to that of walleye 

pollock in the wild, where hatch timing can vary from 7 to 30 days depending on water 

temperature (Bailey et al. 1997). The tolerance to low pH of this life stage is possibly the 
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result of several compensatory mechanisms (e.g., chloride cells) within the egg, allowing 

them to develop in areas with large daily and seasonal pH shifts (Melzner et al. 2009a). 

Larval walleye pollock also likely have several compensatory mechanisms (e.g., chloride 

cells on yolk membrane and gills) to tolerate low pH mechanisms similar to the egg stage. 

The location of these mechanisms shifts as larvae grow and become juveniles (Melzner et 

al. 2009a). It is also possible that juvenile walleye pollock exposed to low pH levels in 

the experiments were able to increase their food intake as a compensatory mechanism to 

offset energetic deficits encountered during ATP-dependent regulation of homeostasis. 

However, energy intake was not quantified in this study, as fish were fed to satiation, and 

future research should include this important parameter to assess overall energetic cost of 

adaptive responses. Another consideration is how larval energetics change once the yolk 

is completely used up, and if lower pH levels cause either slower growth or smaller 

overall size in exogenously feeding walleye pollock larvae. If the yolk is utilized faster at 

lower pH levels to facilitate compensation to different environmental conditions, there 

could be an overall disadvantage for larvae because of potentially smaller body size 

relative to those reared under ambient conditions. To assess yolk utilization and larval 

growth rates, future studies need to rear walleye pollock larvae through the exogenous 

feeding stage. Though the exact mechanism for compensatory responses was not part of 

this set of experiments, the results suggest that the overall physiological window of the 

egg and larval life stage of walleye pollock includes pH ranges projected in climate 

change scenarios over the next 100 years. 

  Juvenile (age 1+) walleye pollock had a physiological response to changing pH 

conditions between pH 7.2 to 8.0 as demonstrated by changing blood gas levels (Chapter 

3). However, these results have to be interpreted with caution and future studies should 

carefully monitor pH conditions of the anesthesia solution to avoid confounding any 

physiological responses due to offgassing in rapidly changing pH conditions. Despite the 

possible physiological response in observed blood gas concentrations, indicators of stress 

(i.e., plasma cortisol and interrenal secretion) and whole body condition (as determined 

by several morphometric parameters) did not vary with treatment pH conditions. 
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Consequently, juvenile walleye pollock appear to be resilient to the pH ranges they were 

exposed to in this study and thus, the experimental pH conditions were probably not 

outside their physiological window of tolerance. However, future studies should include 

proximate composition parameters as an additional indicator of fish body condition as 

well as monitor parameters such as bone density and food intake (in particular intake of 

calcium from prey) of fishes. Nevertheless, the approach outlined in Chapter 3 of this 

thesis yields not only baselines for select physiological parameters for juvenile walleye 

pollock, but also provides a starting point for future work with other marine species and 

populations.  

  In future studies, it will be important to assess other populations of walleye pollock, 

e.g., the Bering Sea population, to ensure that the patterns and resilience observed in 

walleye pollock from Puget Sound analyzed in this study apply to the species as a whole. 

Several studies have now measured various physiological and behavioral responses of 

marine teleosts to ocean acidification (e.g., Hayashi et al. 2004, Dixson et al. 2010, 

Munday et al. 2009b), but few researchers have assessed similar parameters of condition 

and blood gas indices in addition to the response of temperate or subpolar species to 

ocean acidification during different developmental stages. Using an experimental CO2 

injection and rearing system, like the one outlined in this thesis to simulate projected pH 

changes as a result of ocean acidification, provides the means to measure the response of 

commercially important fish species, such as walleye pollock, to this particular 

ecosystem change. The long-term effects of ocean acidification on adult walleye pollock 

were beyond the scope of this study and it remains unknown if they will be able to spawn 

successfully or if effects from this pH stressor will carry over to the next generation. 

Future studies should address these important questions to fully understand population-

level effects of ocean acidification on ecologically and commercially important species. 
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Appendix A. Components of walleye pollock gel food 

Components of “gel food” fed to juvenile and broodstock walleye pollock (Theragra 

chalcogramma) held at the National Marine Fisheries Service laboratory in the Hatfield 

Marine Science Center in Newport, OR. All components were combined and blended 

until smooth. This “gel food” mixture was then frozen in TupperwareTM containers until 

needed. Before distributing as food, the frozen blocks were thawed slightly, then cut to a 

size that was appropriate for the size of fish to which it was being fed. 
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