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Abstract

Wildfire is ubiquitous to interior Alaska and is the primary large-scale disturbance
regime affecting thawing permafrost and ecosystem processes in boreal forests. Since
surface and near surface hydrology is strongly affected by permafrost occurrence, and
wildfire can consume insulating organic layers that partially control the thickness of the
active layer overlying permafrost, changes in the active layer thickness following fire
may mark a distinct change in surface hydrology. In this study, we examined surface
area dynamics of lakes following wildfire in four regions of Interior Alaska during a 25-
year period from 1984 - 2009. We compared the surface water dynamics of lakes in
burned areas relative to lakes in adjacent unburned (control) areas. Lake area changes in
the short-term (0-5 years), mid-term (5-10 years), and long-term (>10 years) were
analyzed. Burn severity, as a function of radiant surface temperature change, was also
explored. Surface water changes were greatest during the short-term (0-5 years) period
following fire, where burn lakes increased 10% and control lakes decreased -8%
(P=0.061). Over the 5-10 year post-fire period, there was no significant difference in lake
dynamics within burned areas relative to control unburned areas. On average, there was
an 18 percent decrease in surface water within burned areas over the >10 year post fire
time period, while unburned control lakes averaged a 1 percent decline in surface water.
The long term declining trend within burned areas may have been due to talik expansion
and/or increased evapotranspiration with revegetation of broadleaf plants. Fire had the
greatest effect on radiant surface temperature within two years of a fire, where radiant

temperatures increased 3-7°C in the most severely impacted areas. Temperature
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differences between burn and control areas remained less than 1°C as vegetation re-
established. There was no correlation between radiant temperature change and
decreasing lake area change. Conversely, there was a trend between lake area differences
increasing in size and increases in temperature. While fire displayed the greatest effect on
lake area in the short-term, a combination of fire, climate, and site-specific conditions

dominate long-term lake area dynamics in Alaska boreal forest.
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Chapter 1 Introduction

Wildfire is the primary disturbance regime affecting thawing permafrost and
ecosystem processes in boreal forests. In recent years, the fire regime in the boreal forest
of interior Alaska has displayed a potential shift as significant increases in burned area
and burn severity have occurred (Kasischke et al., 2010; Chapin et al., 2008; Johnstone et
al., 2010; Balshi et al., 2009). Since the region is widely associated with discontinuous
permafrost, which is often warmer than -1° C and especially prone to thawing after
wildfire disturbance, increases in burn severity may lead to increases in active layer
thickness, which may in turn, affect dynamics in surface and near surface hydrology
(Roach et al., 2012).

One of the most readily observed indicators of hydrologic change are the
numerous lakes covering ~10% of the boreal area (Schindler, 1996). In Alaska, over
400,000 lakes greater than 1Ha account for 3.3 percent of the state’s total surface area
(Arp & Jones, 2008). These surface features provide essential ecosystems for aquatic and
terrestrial biota, and their dependence on local and regional climate make lakes and ponds
increasingly accepted as indicators of climate variability (Hood & Bayley, 2008). In
recent studies, regional drying and shrinking of lakes has been observed throughout the
boreal areas of Alaska (Yoshikawa & Hinzman, 2003; Riordan et al., 2006; Rover et al.,
2012; Corcorran et al., 2009, Chen et al., 2013), Canada (Labrecque et al. 2008; Carroll et
al., 2012) and Siberia (Smith et al., 2005; Karlsson et al., 2012). Mechanisms driving

perceived decreases in lake areas have been primarily attributed to climate warming and



drying and include: (1) expanding floating vegetation coverage misinterpreted as
reduction in lake area (Klein et al., 2005; Roach et al., 2011); (2) surface water
evaporation exceeding water inputs (Anderson et al., 2013; Chen et al., 2013; Smol &
Douglas, 2007); and (3) permafrost thaw increasing subsurface drainage (Yoshikwawa &
Hinzman, 2003; Jepsen et al., 2013; Hinzman, 2006; Jorgenson et al., 2001; Osterkamp et
al., 2000; Karlsson et al. 2012; Roach et al., 2013). Assuming a fixed lake bathymetry,
lake area declines when lake water outputs (evaporation + surface outflow + subsurface
outflow) are greater than lake water inputs (rainfall + snowmelt + surface inflow +
subsurface inflow) over a designated period of time. Of course, if lake bed morphology
changes from erosion or sedimentation, lake surface area might change even without
changes in inputs or outputs of water.

Previous studies on northern lake dynamics have been conducted in three
principle geographic provinces: the mostly permafrost free areas in southern boreal
woodlands (Klein et al., 2005; Schindler et al., 1996); the greater boreal region associated
with discontinuous permafrost (Riordan et al., 2006; Yoshikawa and Hinzman, 2003;
Smith et al., 2005; Roach et al., 2011; Jepsen et al., 2012; Rover et al., 2012); and the
continuous permafrost of the Arctic (Smith et al, 2005; Hinkel et al., 2005; Hinkel et al.,
2010; Jones et al., 2011; Arp et al. 2011; Carroll et al., 2012). In the permafrost-free
areas, increases in temperature and decreases in precipitation over the past 50 years have
led to decreased stream flow (Schindler et al., 1996), vegetation encroachment, and
subsequent terrestrialization (Klein et al., 2005), resulting in a substantial reduction in

lake areas. In areas of discontinuous permafrost, lake dynamics are largely controlled by



the presence of permafrost, active layer depth, and soil moisture. Regional trends have
identified lake area shrinkage (Riordan et al., 2005; Smith et al., 2006), and both lake
area shrinkage and expansion (Rover, et al, 2011; Roach et al., 2011; Chen et al., 2013;
Jepsen et al., 2013), often resulting from development and deepening of the active layer.
Expansion of the active layer results in thermokarst failure around the edges of lakes, and
the loss of soil mass results in lake area expansion as water fills in the voids (Osterkamp
et al., 2000; Jorgenson et al., 2001). In regions of groundwater upwelling, thermokarst
activity is particularly prevalent due to relatively warm (2-4° C) ground water
temperatures that persist year-round (Jorgenson et al., 2001). The lake area decreases and
drainage have been attributed to a deepening of the active layer, leading to breaching of
the permafrost and subsequent drainage to the underlying water table (Smith et al., 2005;
Hinzman, 2006; Karlsson et al., 2012; Jepsen et al., 2013). Expansion of unfrozen
soil/thaw bulb (talik) that persists under deeper lakes that do not completely freeze in
winter may result in lateral and vertical drainage from lakes perched above permafrost
(Yoshikawa & Hinzman, 2003; Jepsen et al., 2012). Lake areas in Arctic continuous
permafrost tend to fluctuate with annual precipitation since shorter growing seasons and
lower temperatures result in less evaporation and active layer deepening (Jones et al.,
2011; Plug et al., 2008). In lakes where vegetation mats are present, evapotranspiraton
from floating sedge fens and sphagnum bogs may exceed evaporation from an open water
surface and significantly contribute to lake area reduction (Roach et al., 2011; Smol &

Douglas, 2007). Conversely, in continuous permafrost regions, floating vegetation mats



may be indicative of lake expansion due to rapid thaw and bank failure along lake
margins (Parsekian et al., 2011).

Comparisons of lakes in continuous and discontinuous permafrost display a
continuum of effects. Lake areas in continuous permafrost tend to be stable, or when
subjected to warming, increase from thermokarst activity and thermal erosion along lake
edges (Arp et al., 2011). Conversely, there is widespread evidence of lakes in continuous
permafrost regions that experience catastrophic drainage due to lateral discharge from
thermokarst activity resulting in bank failure along a lake basin boundary (Mackay, 1988;
Labrecque et al., 2009; Marsh et al., 2009; MacDonald et al., 2012). In discontinuous
permafrost, decreases in lake area may result as drainage via talik is promoted by further
warming (Yoshikawa & Hinzman, 2003; Smith et al., 2005; Jepsen et al., 2013). In
addition to increased drainage, warmer temperatures and a longer growing season may
result in ET increases and lower soil moisture (Wendler & Shulski, 2009; Riordan et al.,
2006). Furthermore, explorations of the interactions between wildfire and permafrost
may indicate changes in surface hydrology by removal of insulating vegetation,
decreasing surface albedo, increasing thermal conductivity, and dramatically changing
soil moisture profiles. For instance, Yoshikawa et al. (2003) observed decreased
transpiration led to increases in soil moisture following fire. Since active layer depths are
significantly deeper when insulating vegetation is completely consumed by fire, these
changes are likely to be more pronounced in more severely burned areas (Yoshikawa et

al. 2003; Viereck, 1982; Brown, 1983).



Fire has a profound influence on permafrost degradation. Since lakes have been
shown to respond to permafrost degradation (Smith et al., 2005; Riordan et al., 2006),
and permafrost degradation is expected to continue in marginal areas of discontinuous
permafrost (Osterkamp & Romanovsky, 1999), we anticipate that fire will enhance this
response of lakes in discontinuous permafrost where permafrost temperatures are warmer
and more prone to thawing. In this study, the effect of wildfire on lake and pond surface

area was examined in four sub-arctic boreal forest regions in interior Alaska (Fig. 2.1).

1.1 Objectives

We hypothesize that 1) ponds and lakes affected by fire will display greater
surface area variability in the short term (0-5 years) period after a burn due to decreased
transpiration and thus an increase in soil moisture compared to ponds located in the
adjacent unburned control area. 2) In a longer period of > 10 years following fire, we
expected a decrease in surface water due to establishment of early succession broadleaf
vegetation and increased transpiration. Finally, 3) lakes displaying the greatest losses in
surface area would occur in the most severely impacted thermal regimes due to
permafrost degradation and drainage via taliks. To test these hypotheses, we use remote
sensing and provide a multi-temporal examination of lake dynamics in disturbance areas

(burned) and control areas (unburned).

1.2 Physiography and Climate

Interior Alaska is part of the larger circumpolar boreal forest, or Taiga, which
covers 17 million km? of the Northern Hemisphere and accounts for approximately one

third of Earth’s total forest area (http://www.lter.uaf.edu/about). Extensive vegetated




landscapes, long cold winters, and low decomposition rates combine to cause the boreal
biome to be the world’s larges terrestrial carbon sink. The boreal forest occupies 60-70%
of the land area in Alaska (Nowacki et al., 2001) and is predominately associated with
Alaska’s interior, which includes a total area of approximately 1,367,996km? (Van Cleve
et al. 1983). This area is contained within the Northern Plateau’s Physiographic Province
and consists of several broad, nearly level lowlands with elevations mostly below 500m,
as well as rounded mountains with elevations up to ~2000m (Ping et al., 2006;
Wahrhaftig, 1965).

The continental climate of interior Alaska is strongly influenced by the orographic
effects of the bounding Brooks Range to the north and Alaska Range to the south, which
result in semi-arid conditions with annual precipitation rates ranging from <200 mm to >
500 mm (Fleming et al., 2000; Hammond and Yarie, 1996). The two-year, 30-minute
maximum precipitation intensity for Fairbanks, a site representative of boreal Alaska, is
1.306 cm/hr (NOAA Atlas 14 PFDS, 2012). Widely varying amounts of solar radiation
throughout the year create large seasonal fluctuations in temperature, with absolute
extremes ranging from -51 to 38 °C (Alaska Climate Center, 2005). Interior Alaska
experiences 18 to 21 hours of sunlight per day during the summer months of June, July,
and August with daily temperature highs reaching the mid 20s °C. In contrast, winter
months have only 4-10 hours of sunlight per day and low temperatures below -40 °C. A
mean annual temperature that is near freezing results in the formation of discontinuous

permafrost throughout this region (Flemming et al., 2000) (Fig. 1.3).



Surface hydrology in Interior Alaska is characterized by several large, braided
rivers, streams, lakes, ponds, fens, and bogs occurring throughout the region. Large
meandering rivers draining the Yukon River basin flow along a low, east-to-west gradient
from Canada to the Bering Sea (Fig. 1.1). The numerous lakes found across the
landscape are largely due to the presence of permafrost, which acts as an aquiclude,
limiting subsurface and surface water exchanges. Principal lake types in Alaska include

thermokarst lakes, fluvial lakes, glacial lakes, and moraine lakes (Arp & Jones, 2009).

f €~

[ ]Hydrography

500 Kibm eters

Figure 1.1 Alaska surface hydrology. Derived from the USGS 1:1,000,000 scale hydro data set.
Shaded relief base map is based on a 300-meter digital elevation model (DEM).



Surface geology throughout our four lowland study areas consists of alluvial or
lacustrine plains mostly derived from glacial sediment (Pewe, 1975). Vegetation
community in this region is controlled by aspect, elevation, soil type, soil moisture,
permafrost, and succession stage following disturbance (Chapin et al., 2004). These
factors result in a complex mosaic of black and white spruce forests, birch and aspen
woodlands, sedge meadows, and grasslands persisting throughout the study area.
Wildfire, floods, and highly diverse and variable insect outbreaks are the major
disturbance mechanisms affecting successional processes in Alaska boreal forest (Chapin

et al., 2004). This paper will focus on disturbance by fire.

1.3 Fire History

Wildfire is ubiquitous to boreal Alaska and is the primary large-scale disturbance
regime affecting upland successional trajectories in boreal forests (Johnstone, 2003). The
combination of semi-arid climate conditions and flammable vegetation throughout
Interior Alaska lend itself as the region in Alaska where the majority (96%) of wildfires
occur (Fig. 1.2). The fire season lasts from April to September with the greatest activity
from May to July, as high-pressure systems over the interior bring warm temperatures
and low humidity (Viereck, 1973). From 1950-2009, 14 large fire years (>470,000ha
burned) account for the majority of total burned area when examining decadal averages
(Kasischke et al., 2010), and an average area of 400,000 ha burned annually. The highest

average annual burned area was 767,000 ha in 2004.



I Fire History (1950-2010)

Ll _n"’**"& 0 500 Kilometers

Figure 1.2 Alaska Fire History from 1950 — 2009. The majority fires (~96%) occur in the
interior portion of the state.

1.4 Permafrost

Permafrost is defined as material confined below the Earth’s surface in which
temperatures have remained at or below 0 °C for two or more years. Approximately 24%
of the World’s non-glacierized land area (25.5 million ha) and an estimated 18-24% of
the Northern Hemisphere is underlain with permafrost (Brown, et al., 1998; Zhang et al.,
2008). Permafrost extent is divided into four classes, based upon the estimated
percentage of the ground that is underlain by permafrost: continuous (90 to 100%);
discontinuous (50 to 90%); sporadic (10 to 50%); isolated patches (0 to 10 %); and no

permafrost (Brown et al., 1998). Alaska’s Interior is widely associated with
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discontinuous permafrost, which encompasses 17% of global permafrost areas (Fig. 1.3).
At least half of all permafrost areas are covered with boreal forest (Osterkamp et al.,

2000).

A

Alaska Permafrost Distribution
I Continous-mountainous

I Continous-lowland

[ Discontinous-mountainous
Discontinous-moderately thick to thin
Discontinous-lowland/upland
Isolated-numerous

Isolated

Isolated-mountainous

Mostly absent

Absent

o~

0 500 Kilometers

Ferrians, O., 1998: Permafrost Map of Alaska, USA. NSIDC, Boulder, CO, USA.

Figure 1.3 Permafrost map of Alaska (Ferrians, 1998). The region of discontinuous
permafrost is predominantly associated with interior Alaska.

1.5 Active Layer

Overlying permafrost is the active layer that seasonally thaws during the summer
months and refreezes during the winter. The active layer thickness varies annually in
response to air and surface temperature and is strongly influenced by the thickness of the

organic layer. Usually only 1 or 2 m at the surface is subject to thaw (Osterkamp, et al.,
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2000). When fire reduces or completely consumes the organic layer, active layer depths
may increase significantly due to a reduction of the insulating affect of the organic
material; an increase in solar radiation incident on the newly exposed mineral soil; the
increased absorption of that solar radiation due to the decreased albedo, i.e., a blackening
of the surface after fire; and a possible increase in heat flux into the ground due to
increased soil thermal conductivity as soil moisture content increases in response to

reduced transpiration from killed vascular plant cover (Yoshikawa et al., 2003).

Soil moisture in the active layer may be moist to saturated as the permafrost table
acts as an impermeable layer, or aquiclude, reducing infiltration and percolation from
precipitation and snowmelt water (Riordan et al., 2006; Hinzman et al., 2006). When
permafrost thaws substantially, or becomes discontinuous, downward percolation of near
surface water and soil water can occur. This may result in drier surface conditions and
lake shrinking as water is able to drain laterally and vertically through the active layer or
connections with unfrozen patches of ground known as ‘talik’ formations (Yoshikawa &
Hinzman, 2003). In areas of groundwater upwelling, lake area expansion may occur as
thermokarst features develop around lake edges from the warmer groundwater thawing

ice rich permafrost and subsequently filling in the voids (Jorgenson, 2001).
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Chapter 2 Methods

A multi-temporal analysis using remote sensing and Geographic Information
Systems (GIS) was performed to examine the effects of wildfire on pond dynamics. An
observation period of 25 years (1984-2009) was selected based upon temporal overlap of

historical fire data (http://fire.ak.blm.gov/) and acquisition of Landsat imagery (Appendix

A).

2.1 Study Areas

Four lowland regions in the interior of Alaska were selected for this study: The Yukon

Flats; Tanana Valley; Minchumina Basin; and Innoko Flats (Fig. 2.1).

Yukon Flats

Innoko Flats

Tanana Valley

Figure 2.1 Study area. Four areas were selected in for this study: Yukon Flats, Tanana Valley,
Minchumina Basin, and Innoko Flats. The study areas are contained in the boreal region of
interior Alaska.
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Study area selection was based on site association with discontinuous permafrost
according to map by Brown et al., 1998 (Fig. 1.3), lake and pond abundance, previous
lake studies, and historical fire incidence between 1950 and 2009. Surface geology in our
four study regions consists of alluvial or lacustrine plains mostly derived from glacial
sediment. Our analysis was constrained to nearly level areas with slope gradients of less
than 5 percent. Site comparability to similar regions based on this criterion was also
considered to allow a landscape-scale analysis. Agencies responsible for managing the
lands associated with these study regions include the U.S. Fish & Wildlife Service, U.S.
National Park Service, U.S. Bureau of Land Management, U.S. Army Lands, Alaska

State Forestry, and multiple Native Corporations.

2.2 Lake area selection

Within each study area, a random sample of lakes in each burn area (burn lakes)
since 1981 was extracted with a manually selected sample of control lakes and ponds in
adjacent non-burned areas (Fig. 2.2). Criteria for selecting control lakes were based on
proximity to burn area (< 5 km), lake size (< = 25% change in relation to the mean lake
area for all observations), hydrologic similarity (proximity and connectivity with other
features), vegetation, and topography. Pond variability in control areas was expected to
reflect local climate and site characteristics, independent of disturbance regime, therefore
lakes that became inundated by alluvial flooding within any image were rejected. By
comparing lakes in burn areas to lakes in unburned control areas, we sought to capture

the effects of fire on lake dynamics. Because deeper lakes are likely to be more stable
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and mask the effects caused by a disturbance, our analysis focused on using shallow lakes
(lakes displaying >10% surface area variability in the time series) in both burn areas and

control areas in order to maximize any effect from fire or natural variability.

@ Pre-fire
Burn Lakes

-/ / .]

Control Lakes

Post-fire

& D

Control Lakes

Figure 2.2 Burn lakes and control lakes selection. By selecting burn lakes (lakes contained
within burn scars) to control lakes (lakes outside burn scars, the effect of fire on individual lakes
could be assessed.

An initial review of lakes in 86 burn areas was performed to visually identify
individual lakes in burned areas displaying non-synchronous changes in lake area (i.e.
shrinking, growing, or completely drained) in comparison to control lakes and other
burned lakes associated with the same site. The water bodies displaying such change
were initially tagged to provide a visual estimate of how many fires may be dramatically
influencing lake areas. Available satellite imagery was reviewed for each fire site (see
Appendix A), and a total of 20 fire sites were selected for lake area extraction. A total of
249 individual lakes were extracted from these fire sites, with 147 lakes in burned areas

and 102 lakes in adjacent unburned control areas.
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Table 2.1 Summary of selected fire sites and total observed lakes (2 + 25%) within each study
area. A total of 249 lakes were examined, with 147 occurring in burn areas and 102 in control
areas.

Total lake observations

) ) ) Lakes Imagery
Region | Fire Year Fire Name
burn cntrl pre-fire | post-fire

YF 2004 Lower Mouth 6 5 7 6
YF 2005 John Herberts Village 3 2 4 5
YF 1988 832015 6 6 1 6
YF 2005 Squirrel Creek 3 3 2 2
YF 2004 Dall River 10 8 2 4
TAN 2001 Teklanika 9 6 2 7
TAN 2001 Survey Line 4 4 3 6
TAN 2005 Parks Highway 11 4 4 3
TAN 1998 Carla Lake 15 10 4 4
TAN 1995 Minto Flats 7 5 2 4
TAN 1983 BIG W 17 7 3 0 10
MIN 1986 631010 11 6 2 5
MIN 1990 TAL S76 4 4 2 4
MIN 1990 TAL SE 87 6 2 4
MIN 2000 Foraker 5 7 2 4
INN 2000 Yukon Creek 9 6 3 3
INN 2004 Big Yetna 6 4 3 3
INN 2002 Yetna River 7 3 3 3
INN 2004 Bonanza Creek 10 7 3 2
INN 1997 Magitchlie Creek 5 3 2 3

sum 147 102 53 88

total 249 141

2.3 Remote Sensing Techniques

Images from the Landsat Thematic Mapper (TM) and the Enhanced Thematic
Mapper Plus (ETM+) sensors were used to examine changes during the 25-year
observation period. Landsat-4 (L4) was launched on 16 July 1982 and Landsat-5 (L5)

entered orbit on 01 March 1984. Both satellites operated with the TM Earth-imaging
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sensor on board. L4 operations ended on 14 December 1993 when the sensor lost its
ability to transmit data, while the L5 satellite and TM sensor continued to be operational
until November, 2011. The Landsat-7 (L7) satellite with the ETM+ sensor was launched
in 1999 and recorded reliable imagery prior to scan-line correction failure in May 2003.

With repeat coverage since 1984 and a nominal resolution of 30m, Landsat
provides an effective platform for investigating long and short-term trends throughout the
remote regions of Alaska. Appendix A lists each sensor, scene, date, and region covered.
We began by georeferencing each satellite image to the UTM coordinate system, with a
minimum of 28 control points and a root-mean square (RMS) error of < 30. Despite
resolution limits for detecting subtle (<30m) changes at the site level, Landsat TM/ETM+
imagery has been > 96% effective in detecting trends in small (> 0.4 ha) lakes and ponds
at both site specific and regional scales (Frazier and Page, 2000; Gilmer and Work,
1977). To examine open water changes, imagery was obtained from the summer months
of May to September and included over 700 individual clipped scenes for this study
(Appendix A). Applicable scenes were constrained temporally by limited scene
availability during the privatization periods of Landsat from 1992 to mid-2001, and
spatially from the presence of clouds, or smoke from wildfires. Due to high latitude solar
elevation angles, shadows produced by clouds are usually larger than the cloud

themselves, resulting in extensive shadowing on the land surface (Riordan et al., 2006).
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2.4 Radiant Temperature Analysis

Surface temperatures from burn and control areas were attained from pre- and
post-fire observations. Thermal observation dates coincide with lake area observation
dates. Pre-fire observations are from an acquisition date most proximal to burn date and
post-fire imagery is selected from observations 1-8 years following a burn. Temperature
differences between images are determined by comparing control areas outside the burn
between the two periods. The imagery temperature difference between control areas is
subtracted from the burn area temperature difference to calculate the thermal impact of
fire within the burn area.

To calculate the radiant surface temperature change associated with each fire, we
applied Landsat TM/ETM+ thermal infrared (band 6) as an estimate for burn severity.
Level 1 (L1) reflectivity from band 6 was radiometrically calibrated using the updated
tables in Chander et al. (2009) and converted to radiance at the sensor using the following
(eq. 1):

L= GXQcau+B (1)
Where G is the band specific gain factor (W/(m2 sr um)/DN), and B is the band specific
bias factor, and Q. is the calibrated Digital Number (DN) (note that the pixel values of
Landsat level-1 product is given in Q, values). The band specific gain G is defined as

follows (eq. 2):

Lmaxl _Lmax)l

G = Q)

Qcalmax_Qcalmin

Where Ly, and Ly, (W/(m2 st pm)), are the minimum and maximum spectral

radiances at the sensor respectively, and Q.41 ., a1d Qcar i Qcat iy (W/(M2 st um))
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are the maximum and minimum calibrated pixels values corresponding to L,,,,, and

Lynin; > respectively. The band specific bias is defined as follows (eq. 3):

Lmax)l _Lmaxl

B = Lnin, — ) X Qeatyy )

Qcalmax_Qcalmin
The computed radiance values ( L; ) were then converted to radiant temperature (Kelvin)

using (eq. 4):

K2
ey @
Where T is the effective at-satellite temperature in Kelvin, K2 is the calibration constant-
2 obtained from Table 7 (Chander, 2009), K1 is the calibration constant-1 obtained from
Table 7, and L, is the spectral radiance at the sensor (W/(m2 -sr - um)).

For the surface temperature analysis, radiant temperature (Kelvin) values were

converted to degrees C as (eq. 5):

C=K-273 Q)

To assess the thermal impact on individual lake surroundings, radiant surface
temperatures were assessed at 100-meter distance intervals from the lake shoreline to
determine the buffer distance that maximized the thermal impact from fire in comparison
to an unburned lake (Fig. 2.3). A buffer distance of 400 meters was used because
maximum temperature change was relatively constant at distances > 400m. In the event
an adjacent lake or wetland was present, the buffer distance was lowered to a distance >
100m to minimize the effect of low temperature values associated with an adjacent

riparian area.
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Figure 2.3 Relative surface temperature change observed one year after a fire. Radiant
surface temperature values at 100-meter distance intervals from the shoreline of a burned lake and
unburned lake Imagery acquisition: 19 June 1999 and 17 August 2001. Fire occurred in 2000.

2.5 Water body extraction

Water absorbs solar radiation in the near-infrared and mid-infrared spectral
regions (Jenson, 1996). With a spectral range of 1.55-1.75 um, Landsat band 5 has been
widely used for successful detection of surface water features (Sethre et al., 2005;
Lichvar et al., 2004; Frazier & Page, 2000; Smith et al., 2005). Each scene in our data
had a unique range of band 5 DN values and no consistent threshold value could be
applied for water body detection across all scenes. Therefore, we applied a density slicing

method based upon histogram analysis for each band 5 image (Fig. 2.4).
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Figure 2.4 Landsat TM Bands 5, 4, 3 (near-IR, G, B) composite (A), Band 5 grey scale (B),
Band S density slice (C).

Spectral overlapping between water, and dark pixels induced by hills, clouds, and
black spruce forests, required further visual refinement. To visually verify the threshold
at which overlapping between water and dark pixels (primarily dark shadows and/or
black spruce forest) occurs, false color composites using bands 5 (Mid-IR), 4 (NIR), 3
(Red) were created. Composite images were visually compared with density slice results
until suitable hydrologic feature extraction was attained. The delineated raster was
converted into a polygon shapefile format and polygon lake areas were calculated in
hectare units (ha). The shapefiles from burned and control areas were then compiled for

multi-temporal analysis.

2.6 GIS Analysis

GIS analysis consisted of compiling fire history data, processing available

imagery, water body extraction, and calculating area of open water.
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The Alaska Fire Service maintains a large data set of all Alaska wildfires

occurring from 1950 to the present (http://fire.ak.blm.gov/). Fire parameters from

individual fires have been digitized both manually and more recently with the aid of
satellite imagery, providing a comprehensive Alaska fire history data set (Fig. 1.2). A
total of 86 individual fires occurring in our study areas during a 25-year period from
1981-2006 were identified. Individual fire sites were then selected based on the
availability of lakes satisfying our criteria for lake area, and the availability of at least
four reliable satellite images from different time periods. This resulted in a total of 20
individual fire sites where lake area dynamics in relation to fire were examined.

For each fire area, a 2” NED (National Elevation Data Set) digital elevation
model was obtained from the USGS Seamless web server (http://seamless.usgs.gov/) to
identify lowlands with minimal relief both inside (burn) and outside (control) the fire
parameter. Since many sites were adjacent to hills or rivers, we chose to manually select,
rather than buffer, the extent of analysis for each site. This method also facilitated a
greater attainment of representative lakes in control areas, rather than applying an

arbitrary distance that would have excluded lakes with similar spatial characteristics.

2.7 Lake Area Analyses

We quantified lake area change for individual lakes as the percent area change
relative to the pre-fire lake area mean. The percent area change was then averaged over
all lakes in burn or control groups to indicate the mean percent change for each group.
We then calculated the difference in mean percent change between burn and control

groups by subtracting the mean percent change of control lakes from the mean percent
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change of burn lakes (Fig. 2.5). A single paired t-test with an o level of 0.1 was used to

compare lake area changes during the pre-fire period, and post-fire periods divided into

short-term (0-5 years), mid-term (5-10 years), and long-term (10+ years) intervals.

Burn Lakes

- 95%

+ 10%

Control Lakes

“ %
. 8"

- 45%

Ul |
. 8"

-10%

Net change =
(burn) - (control)

Net Decrease

-50%
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+ 20%

Figure 2.5 Calculating the difference in percent area change. The percent area change
relative to the pre-fire lake area mean was calculated for individual lakes. The percent area
change was then averaged over all lakes in burn or control groups to indicate the mean percent
change for each group. The difference in mean percent change between each burn and control
group was derived by subtracting the mean percent change of control lakes from the mean percent

change of burn lakes.
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2.8 Statistical Analyses

The effect of fire on lake areas was statistically tested using a linear regression
model (Eq. 6). Since lake areas can be effected by various factors even in the absence of
fire occurrence, lake areas will naturally fluctuate in response to precipitation, surface
runoff, evaporation, groundwater flux, and river stage level (for lakes with channel
connections to rivers). In order to detect the effect of fire on lake areas, it is imperative to
know the natural variability of lakes without fire occurrence. Since the control lakes
selected were adjacent to the burned region for each study site, they can be used to
represent the natural variability of lake areas without the impact of fire. Our assumption
is that lakes in both burned areas and control areas were adjacent or very close (<5km) so
their natural variability (without fire) may be influenced or controlled by similar factors
such as local water balance, topography, and permafrost distribution. Therefore, lake
fluctuations in both burned and control areas should behave similarly, so that we can
predict how lakes in burned area will change when we observe the change in control
lakes (Fig. 2.6). Under this assumption, we account for the impacts of other factors on
lake areas by including control lakes in the model, which makes it possible to more

confidently detect the effect of fire.
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Figure 2.6 Sampled lakes used for regression analysis. Landsat Bands 5,4,3 composite images
displaying pre-fire (A), and post-fire (B) burn and control areas. The total area of sampled lakes
from each burn area was compared with the total area of sampled lakes in the corresponding
control area.

Our linear regression model is as follows (eq. 6):
lake.b =a+ b <lake.c + c;fi+ c2f>+c3fs+ e

Where lake.b is the total area of sampled lakes in a particular burn area, lake.c is the total
area of sampled lakes in the corresponding control area, f; » 3 are the dummy variables
representing the different temporal ranges following wildfire, f; is the short term period
(0-5 years), f>1s the mid term period (6-10 years), and f; is the long term period (>
10years) following wildfire. a is the intercept, b,c;,c, c; are the coefficients of lake.c,
f1.23 respectively, and e is the error term. The threshold for significance is 0.1. The
criterion for this threshold is based on the relatively small sample size.

In some cases, there was no significant correlation between burned lakes and
control lakes across all time periods, pre- and post-fire, which indicated that factors

controlling the lake area might be different between burned sites and control sites, such
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as distribution of permafrost or connection to rivers. In those cases, control lakes could
not reflect the natural variability of lakes in burned areas and were not useful to include
them in the model. Instead, we performed a separate regression analysis of the burn lakes
with the time of observation based on the Julian day of that year to provide a control for
the natural water balance. The premise for this analysis is that lake levels will behave
similarly throughout the season, with early season (May — June) lakes displaying the
greatest surface area due to lake level recharge from spring runoff, and late-season
(August - September) lakes exhibiting lower surface areas due to water deficits resulting
from increased evaporation and less precipitation (Bowling et al., 2003). Using the Julian
date, we postulate the coefficient estimate will be negative due to lake areas decreasing

throughout the season.
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Chapter 3 Results
3.1 Differences in mean lake areas between burn and control groups
The variability of the lake area mean differences obtained from all four study
areas are plotted in figure 3.1. Each point represents the difference in mean percent
change for each fire area relative to the unburned control area during the observation
period. Observations throughout all time periods have both negative and positive
differences, indicating the variability of lake areas was heterogeneous with no consistent

trajectory in lake area change.
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Figure 3.1 Difference in mean percent change of lake areas in burn and control groups. The
x-axis represents the time of all observations in relation to fire occurrence, with the short-term (0-
5 years), mid-term (5-10 years), and long term (> 10 years) periods colored as blue, green, and
yellow, respectively. The Y-axis represents the difference in mean percent lake area change
between burn and control groups. Natural variation before fire is = 100%. Only in the period
after fire (< 10 years) is this threshold exceeded, and consistently as the mean percent change of
lakes in burn areas expanded positively as these lake areas increased in comparison to lakes in
control areas.



28

No significant trend in time was observed (p > 0.1) when comparing total
observations (n=152) across all pre-fire and post fire time periods (Fig. 3.1). When we
divide the post-fire period into three parts, more statistically significant patterns in time
emerge. In the short-term (0-5 years) period following fire, the expansion of lakes in
burn areas compared to lakes in control areas is evident as the range of net percent
change between burn and control lake areas is notably greater than any other period
before or after fire (see fig. 3.1). A single paired t-test from this period indicates that
burn lakes increased 10% and control lakes decreased -8% (p = 0.061). During the mid-
term (5-10 year) period, there was no significant effect (p > 0.1) from fire. However,
during the long-term (> 10 years) period, observations showed an -18% decrease in burn

lakes, compared to control lakes that remained relatively stable with only a 1% increase.

3.2 Regional observations related to lake area differences between burn and control

groups

Since variability and the number of observations were greatest in the short-term
period following fire, we compared the short-term variability in mean percent lake area
differences during in each study region (Fig. 3.2). The greatest differences in lake areas
between burn and control areas occurred in the Yukon Flats and Tanana Flats region.
The Innoko flats displayed mostly positive increases in lake area between burn lakes and
control lakes (u = 38%), while the Minchumina Basin showed the least variability

between burn and control lakes.
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Figure 3.2 Regional variability observed during the short-term (0-5 years) period following
fire. The Yukon Flats and Tanana flats displayed the largest range of lake area differences
between burn and control groups. Minchumina Basin net average lake area differences displayed
mostly negative values, while values in the Innoko Flats were mostly positive.

3.3 Linear regression results

Regression analysis indicates that half (50%) of the 20 fires sites displayed a
significant correlation (p > 0.1) in the lake areas between the control and burn groups
(Table 3.1). This positive correlation indicates that lakes in both control areas and burned
areas behaved similarly across all time periods, indicating that control lakes may account
for the natural variability resulting from all other factors beyond fire for lakes in burn
areas. We therefore use these 10 reliable data sets to further examine the effect of fire on

lake area using linear regression analysis.
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Examinations of the ten data sets with p < 0.1 reveal varying effects of fire on lake area

lake area throughout the three temporal periods following fire.

3.4 Short-term regression results

In the short-term period, four of these fires displayed p-values < 0.1, indicating a
strong effect on lake area from fire (Table 3.2). Two of these fires occurred in the
Tanana Valley (Parks Highway, Carla Lake), one in the Minchumina Basin (TAL S76),

and one in the Innoko Flats (Yukon Creek).

Table 3.1 Short-term (0-5 years) regression analyses. Lake areas expanded in the
Parks Highway, Carla Lake, and Yukon Creek fires sites, while a decrease was observed
in the TAL S76 fire site during the short-term period.

region e N lake.c short-term (0-5 yrs) R? Total nge area
Year coef. (b) | P-value |coef. (c;) | P-value |multiple |adjusted | (Ha) in burn*
TAN 2005 |Parks Highway| 11.23 0.02 13.02 0.12 0.82 0.73 26.32
TAN 1998 Carla Lake 1.19 0.01 7.90 0.04 0.95 0.89 58.15
MIN 1990 TAL S76 -0.31 0.10 -4.11 0.04 0.98 0.90 14.97
INN 2000 | Yukon Creek 4.55 0.02 16.24 0.06 0.98 0.95 33.75

(lake.c =variable indicating local water balance)
* = total lake area averaged over all time periods for observed shallow lakes in burn areas
Based on the short-term period coefficient estimates, the TAL S76 fire displayed
a negative effect (decrease) in lake surface area, while the Parks Highway, Carla Lake,
and Yukon Creek fires displayed a positive effect (increase) in lake surface area. Four
fires showed no significant impact in the short term and two additional fires displaying

strong correlation with control lakes had no data (due to lack of available images) for this

short-term period.
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3.5 Mid-term regression results

Three study areas had lake areas differences significantly influenced by fire

during the mid-term period (6-10 years) following fire, including the BIG W 17 fires in

the Tanana Valley, the Tal S76 fire in Minchumina Basin, and the Yukon Creek fire in

Innoko Flats (Table 3.3). These sites consistently had cumulative lake areas decreases

during this time period.

Table 3.2 Mid-term (6-10 years) regression analyses. Lakes in the mid-term period
consistently had cumulative lake area decreases as evidenced by the corresponding
negative coefficient estimates.

A 2
. Fire ) lake.c mid-term (6-10 yrs) R Total lake area
Region Fire Name .
Year coef. (b) | P-value |coef. (c,) | P-value |multiple |adjusted| (Ha) in burn*
TAN | 1983 | BIGw17 | 235 0.05 | -3.03  0.07 0.50  0.33 6.59
MIN 1990 TAL S76 -0.31 0.10 -3.24 0.03 0.53 0.37 14.97
INN 2000 |Yukon Creek 4.55 0.02 -7.96 0.03 0.91 0.82 33.75

(lake.c =variable indicating local water balance)
* = total lake area averaged over all time periods for observed shallow lakes in burn areas

3.6 Long-term regression results

Long-term effects of fire on lake area were significant in two of the seven fires

with data during this temporal period (Table 3.4). The corresponding low p-values and

negative coefficient estimates indicate long-term decreases in lake areas following fires

that occurred in the Tanana Valley and Minchumina Basin. No long-term observations

were acquired for the Innoko Flats study region.
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Table 3.3 Long-term (> 10 years) regression analyses. Lakes displayed long-term shrinking
during this period, evidenced by negative coefficient values.

2
redion Fire e Name lake.c long-term (>10 yrs) R Total lake area
g Year coef. (b) | P-value |coef. (c;) | P-value |multiple |adjusted| (Ha) in burn*
TAN | 1983 | BIGw17 | 235 o0.05 | -3.53  o0.01 0.77  0.66 6.59
MIN 1990 TAL S76 -0.31 0.10 -1.86 0.06 0.98 0.90 14.97

(lake.c =variable indicating local water balance)
* = total lake area averaged over all time periods for observed shallow lakes in burn areas

In the remaining 10 fire sites, control lake areas did not show significant
correlations with burn area lakes across all time periods. This indicates that other factors
such as hydrologic connectivity, topography, vegetation, or permafrost distribution may
differ between the control lakes and burn lakes, thus reducing their validity as a reliable
data set.

In an attempt to examine whether control lakes and burn lakes were controlled by
similar factors and changed similarly without fire occurrence, we examined the
correlation between burn lakes and control lakes for the pre-fire period only. These
analyses yielded poor correlations (p >0.1), indicating that factors controlling the area
change of burn lakes were different from those for control lakes even without fire
occurrence in these sites.

Fire sites 832015 and Survey Line are two aforementioned fire sites displaying a
poor correlation between control and burn lakes, and also insignificant correlation
between burned lake areas and Julian date. However, data shows that burned lakes in
these sites did have significant effects from fire. Fire 832015 displayed a p-value of 0.03

and a negative coefficient estimate of -115.03 in the long-term (>10 years), indicating a
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long-term decrease in surface area can result from fire. Survey Line also displayed
decreases in area through negative coefficients and respectable p-values in the mid-term

and long-term periods following fire.

3.7 Post fire radiant temperature changes in burn areas

There was a consistent increase in radiant surface temperature in burn areas
following fire, likely due to decreased transpiration and increased surface moisture (Fig.
3.3). The greatest radiant temperature increases occur within the first year following a
burn, and subsequently decrease over time. Radiant temperature increases of 3°-7° C
were observed in burn sites during first snow-free season following fire, ~2°-5° C in the
second season, and 0.5°-3.5° C three years after fire. Radiant surface temperatures

increased < 1° C after 4 years.

Post fire radiant temperature change
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Figure 3.3 Post fire radiant temperature change after burn. Each point represents the radiant
temperature change observed at different burn sites throughout Interior Alaska. The x-axis
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corresponds with the image acquisition time in relation to the fire occurrence. The y-axis
indicates the temperature change ("C) observed between pre-fire and post fire imagery.

3.8 Post fire radiant temperature change and individual lake area change

Lake areas that decreased in size displayed no relationship with surrounding areas
that were more severely impacted by fire. There was a significant relationship (p = 0.03)
between increases in temperature and increases in lake area for individual lakes showing

surface area changes > + 20%.

Temperature change and lake area change
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Figure 3.4 Temperature change as a function of lake area. Temperature change as a function
of lake area change was evident in lakes that increased in size. Lake areas that decreased
displayed no relationship with temperature change.
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Chapter 4 Discussion

The surface area response to fire by individual lakes and ponds showed temporal
variability. Trends in pond dynamics were most profound during the short-term (1-3
years) period. Observed short-term changes are increases in pond surface area, which
may be due to decreased evapotranspiration (ET) or a decrease in the infiltration rates and
water holding capacity of the peat layer following wildfire. Typical ET rates of boreal
vegetation vary with respect to vegetation community. In black spruce forests, where fire
occurs most frequently, ET rates are typically low (~ 1.1 — 2.4 mm/day) due to the
shallow rooting and low productivity of coniferous vegetation and feather mosses
(Kimball et al., 1997; Van Cleve 1993). Deciduous forests, however, have typically 50-
80% higher ET rates from increased productivity (Chapin et al., 2000). As transpiration
decreases or ceases, soil moisture increases and remains high throughout the year
(Hinzman et al., 2003). Boreal peatlands are often characterized by sphagnum mosses,
which have water-holding capacities of 30-80% by volume (15 to 23 times their dry
weight (Whalen and Reeburgh, 1996; Richardson, 2000). The absence or reduction of
this vegetation by fire, combined with increased soil moisture, decreased infiltration
rates, and the potential increases in overland flow, are likely to facilitate the short-term
increases we observed (Fig. 3.1).

Similar trends in more temperate North American ecosystems indicate that an
increase in overland flow from reduced infiltration often occurs after fire. This process
may help explain the short-term trend observed in our study (Neary, et al., 2005). De

Bano et al. (1998) further explains:
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Watershed management studies throughout the world have demonstrated
that the runoff component of the hydrologic cycle can increase following
a vegetative change that reduces ET losses. ...When burning exposes
bare soil, infiltration can be reduced due to:
* A collapse of the soil structure and a subsequent increase in
bulk density of the soil because of the removal of the

organic matter that serves as binding material

* A consequent reduction in soil porosity

* The impact of raindrops on the soil surface causing

compaction and a further loss of soil porosity

* The kinetic forces of raindrop impact displacing surface

soil particles and causing a sealing of surface pores

* Ash and charcoal residues clogging soil pores

Soils in boreal Alaska can develop a characteristic of water repellency following
fire, which can reduce infiltration capacities by increasing the hydrophobicity of feather-
moss derived organic matter (O’Donnell et al., 2009). As a consequence, water may not
penetrate readily, and accelerated overland flow will result in increased stream flow and
ponding. In anomalous years where we observed short-term surface area decreases in
pond sizes across the landscape, we attribute inter-annual climate variability to these

trends. Figure 4.1 shows mean monthly precipitation averages during the snow free
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period from 2000 through 2008 at Fairbanks International Airport, a representative site of
Interior Alaska. While July tends to receive higher amounts of precipitation, inter-annual
variability is constant. We attribute the inconsistent surface water trends observed in this
study to the variability of inter-annual precipitation rates and volumes. Rainfall and
snowmelt rates (mm/hr) relative to the surface infiltration capacity (mm/hr) are the keys
to generating overland flow and surface ponding. In addition to changes brought about by
fires, natural variability in the rates of rainfall and snowmelt can be significant from year
to year, month to month, and storm to storm. However, data with this level of detail were

unavailable for our study areas.
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Figure 4.1 Mean Monthly precipitation variability from May through September in
Fairbanks, Alaska 1998-2008. While July tends to experience the highest monthly average
precipitation, intra- and inter-annual variability suggests other summer months may experience
the highest experience the highest rates.
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Other variables not relating to precipitation could also account for short-term lake
area losses. Particularly, active layer deepening and/or thaw bulb expansion near lakes
can breach permafrost, creating vertical and lateral drainage pathways through unfrozen
patches of ground called taliks (Yoshikawa & Hinzman, 2003; Rowland et al., 2011).

In most cases, ponds inside and outside of wildfire perimeters had similar surface
hydrology temporal patterns. This is not surprising, given the intrinsically dynamic nature
of shallow lakes and ponds that tend to respond uniformly to precipitation or groundwater
flux. However, there were occurrences of ponds that dried out completely and did not
respond as expected to regional episodes of hydrologic recharge. We presume that talik
drainage may have occurred, accelerated by warming of the dry lakebed and thus
preventing permafrost from sufficiently recovering. Ponds were the most stable within
active floodplain wildfires where surface water dynamics was more likely controlled by
local water table variability.

Remote sensing analysis using the thermal band (B6) revealed surface
temperatures in fire scars may be upwards of 7°C warmer than surrounding unburned
areas (Fig. 3.3). We presume that these changes result from the effects associated with
the reduction of plant matter and peat in severely burned areas. However, a wide range
of temperature differences (0° to 7° C) within the fire scars was also evident, suggesting
that fire severity varies according to site-specific conditions during a fire. This may also
explain why changing ponds did not occur more frequently in areas where warmer

temperatures were estimated with satellite data.
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Severe wildfire may also affect the insulating quality of the organic layer.
Previous studies have examined the dependence of post fire thermal regime on the depth
of duff consumption (Viereck, 1973; Viereck & Dryness, 1979; Yoshikawa et al., 2003).
When the duff layer is reduced or removed by fire, and depending on site conditions,
permafrost begins to thaw nears the surface and warm to greater depths for periods 3-5

years after fire (Fig. 4.2).

Pre-burn Post-burn

_4— Organic layer reduced or removed ~—
Thin Active Layer

Active Layer warms and thickens I

Figure 4.2 Effect of fire on insulating organic layer and active layer thickness. Short-term
effects (1-2 years) include a removal of surficial vegetation and reduction or complete removal of
the organic layer, lower surface albedo, reduced precipitation interception by vegetation, and an
increase water repellency (hydrophobicity) of the soil surface. Long-term (3-5 years) effects will
translate to an increase in thermal conductivity, and thickening of the active layer.

Yoshikawa et al, 2003 explains, “While heat conduction by fire to the permafrost
is not significant, ground thermal conductivity may increase 10-fold and the surface
albedo can decrease by 50% depending on the extent of burning of the surficial organic
soil.” Approximately 3-5 years following severe disturbance, the active layer may
increase to a thickness that does not completely refreeze the following winter (Yoshikawa

et al., 2003). During longer periods (3-15 years) following severe fire, this increase in
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ground heat flux can deepen the seasonally thawed active layer, decrease soil moisture in
near surface zones (Swanson, 1996; O’Donnell et al., 2009), breach permafrost, and
promote lateral and vertical drainage via taliks (Hinzman, et al., 2003; Yoshikawa &
Hinzman, 2003). Figure 4.3 illustrates the comparative effects between moderate and

severe burns.
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Figure 4.3 Burn severity effect on talik formation (Updated from Yoshikawa et al.
Frostfire, 2003).

Any significant disturbance to the surface organic layer (fire, thermokarst, fluvial

erosion) will increase heat flux into and heat flow through the active layer and into the
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permafrost. In less severe fires, the thickness of the remaining organic layer is less likely
to be reduced. While a decrease in surface albedo will occur, Yoshikawa et al (2003)
observed that the active layer depth does not change when the organic layer is not
significantly reduced. Field measurements by O’Donnell et al. (2009) also documented
negligible difference in soil temperature at five centimeters beneath the moss surface
between the burned versus unburned sites two-years after fire, whereas generally wetter
surface organic soil was observed in burned areas. Since wetter soil insulates less than
dry soil (Yi et al., 2009), the active layer may become prone to deepening over a period >
2 years as subsurface heat conduction escalates from an increase in soil moisture. These
observations coincide with the expansion of lake areas observed in our short-term
observations while coinciding with our longer-term (3-15 years) findings that typically
display a decrease in pond surface area, possibly due to talik drainage and an increase in
ET.

Our long-term observations showing landscape-level lake drying and shrinking
are consistent with other boreal Alaska lake studies that attribute these changes to a
warming and drying climate (Lebrecque et al, 2009; Heglund, et al., 2009, Riordan et al.,
2006; Smith et al., 2005; Klein et al., 2005). When examining this effect in burn areas,
Klein et al. (2005) observed that landscape change (i.e. drying) did not depend
substantially on burn history, observing that from 1950 to 1996 water areas decreased
22% in unburned areas and decreased 7% in unburned areas. While seasonal recharge
events occur (Chen et al., 2013; Chen et al., 2012; Frohn et al., 2005), the variability of

lake size due to seasonal recharge does not completely mask the longer term trend of less
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surface water due to a warming climate. These findings suggest that processes other than
disturbance dominate long-term lake dynamics, and the observed trends towards a
reduction in the distribution and surface area of ponds are consistent with studies
attributing these changes to a warming and drying climate (Labrecque et al, 2009;

Heglund, et al., 2009, Riordan et al., 2006; Smith et al., 2005; Klein et al., 2005).
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Chapter 5 Conclusion

Wildfire is the primary large-scale disturbance affecting ecosystem succession in
boreal forest. While several studies have examined the effect of fire on vegetation
composition, soil properties, and permafrost integrity, fire also has been identified as a
potential mechanism influencing lake area change (Roach et al., 2013). This study is the
first to examine the role of this disturbance on boreal lake surface area dynamics on a
landscape scale.

An initial review of 75 fires occurring throughout our four study regions indicated
that lake areas between burn lakes and control lakes did not change significantly (> +
25% area change) in 48 fire sites. This can be explained by either the fire intensity not
burning severely enough to affect the thermal properties regulating heat flux, or because
the effect of fire was not significant enough to alter hydrologic pathways influencing lake
areas in these regions. Furthermore, observation time in relation to precipitation events,
lake morphometry, as well as limitations in temporal coverage may also have masked the
effect of fire for these lakes not displaying significant change. Of the remaining 27 fire
sites, seven were excluded from analysis due to a lake size limitations and control lake
availability, providing us with a data set of 20 fires for analysis.

We observed that fire had an effect on lake area changes in all four of our study
regions in interior Alaska. In sites that displayed change between burn lakes and control
lakes following fire, we observed more frequent rates of lake area expansion than

shrinkage during the short-term (0 to 5 years) period. During this period, burn lakes
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displayed a net increase of 10% (range: — 61% to 33%) and control lakes decreased -8%
(range: -46% to 11%). We attribute these changes to increased overland flow resulting
from the removal of transpiring vegetation, hydrophobic soil properties formed during
combustion processes (O’Donnell et al., 2009), and lower transpiration rates. These
factors result in catchment basin infilling and overall increases in lake area.

In the midterm period (6 to 10 years), lower rates of lake area expansion and more
frequent occurrences of lake stabilization were observed. Lake area stabilization is
explained by the reestablishment of broad leaf vegetation, which results in higher ET
rates and less deep percolation of water through the root zone. Reestablishment of
broadleaf vegetation would likely increase evapotranspiration rates which might lead to
an eventual decline in lakes surface water area (Jorgenson, et al., 2010). Lake area
declines may have initiated in the earlier post-fire period from active layer deepening and
formation of lateral and vertical drainage pathways that persisted.

Either stabilization or a decline in lake area occurred over the >10 year post fire
period. Our study found, on average, a decrease in lake area of 17% (range: -42% to
78%) in burn areas over the long term, which is consistent with other lake area studies in
the boreal region (Riordan et al., 2006; Roach et al., 2013; Smith et al., 2006; Rover et
al., 2012; Chen et al., 2012). Long-term lake area stabilization can be attributed to
vegetation reestablishment and subsequent increases in ET. Reduced lake areas may
result from precipitation deficits, misinterpretation of floating vegetation encroachment,

or increased drainage via taliks.
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Across all time periods, both shrinking and expanding lakes were common in
burned areas and their surrounding control areas. Intra- and inter-seasonal precipitation,
connectivity to other hydrologic features, or site-specific conditions may be attributed to
these heterogeneous changes (Chen et al., 2012; Roach et al, 2011).

Burn severity analysis displayed radiant surface temperatures increased 3-7°C in
burn areas, with the highest temperatures recorded within two years after fire. Lakes in
the most severely impacted areas from fire displayed heterogeneous changes in lake area.
Cases of lake shrinkage support our hypothesis that lake areas my drain due to a
deepening of the active layer, resulting in both lateral and horizontal subsurface flow.
Lake area increases in these areas may be attributed to limitations of our burn severity
analysis, including: daily and seasonal variability due to image acquisition time. Early
season (May-June) temperatures were typically lower than temperatures attained in July-
August. Time of day displayed a stronger effect in early and late season images as
shadowing and diurnal variability increased with lower azimuth angles.

Since increases in fire frequency and severity are becoming widely observed
throughout the boreal region (Kelly et al., 2013; Kasischke, et al. 2010), it is essential to
understand the effect of fire on the surface area of the numerous lakes in boreal areas.
With the aid of remote sensing, this understanding will allow land management agencies
to better and more efficiently predict the role of fire in riparian areas (Barrett, et al.,
2013), thus facilitating more effective management of fire as both a disturbance and tool
for maintaining ecosystems. Future lake area studies may be improved with more

frequent and consistent observations, and further complemented with in-situ
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measurements of variables such as vegetation composition, organic and active layer
thickness, subsurface flow, and lake basin morphology. While in-situ measurements may
provide the highest accuracy, improved remote sensing detection of subsurface processes,
such as those by Dafflon et al. (2013), could be applied to more efficiently assess

underlying mechanisms affecting regional-scale lake area dynamics.
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Appendix A

Appendix A lists all Landsat satellite imagery used in this study. Imagery was
obtained from the USGS Earth Resources Observation and Science Center (EROS), via
the Gobal Visualization Viewer (http://glovis.usgs.gov/). Individual scene clips are listed
by study region, fire name, satellite platform, sensor, path/row configuration, and acquisi-
tion date. Extracted and vectorized lakes are listed with their corresponding GIS shape-
file, which includes the associated threshold value from density slicing listed as a *_th##’
value extension to each shapefile name. Notable observations associated with each scene
clippping are listed in the ‘Notes’ column.

For further data set inquiries, please consult the LTER data portal (https://metacat.

Iternet.edu/das/lIter/index.jsp), or conact the author directly ( <glaltmann@alaska.edu>).


http://glovis.usgs.gov/%20
https://metacat.lternet.edu/das/lter/index.jsp
https://metacat.lternet.edu/das/lter/index.jsp
mailto:garrett.altmann%40gmail.com?subject=Thesis%20data%20inquiry
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