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Abstract 

 
Amplified warming in the Arctic has likely increased the rate of landscape change and 

disturbances in northern high latitude regions.  Remote sensing provides a valuable tool 

for assessing the spatial and temporal patterns associated with arctic landscape dynamics 

over annual, decadal, and centennial time scales.  In this dissertation, I focused on remote 

sensing studies associated with four primary components of arctic landscape change and 

disturbance:  (1) permafrost coastline erosion, (2) thermokarst lake dynamics, (3) tundra 

fires, and (4) using repeat airborne LiDAR for the measurement of vertical deformation 

in an arctic coastal lowland landscape.  By combining observations from several high 

resolution satellite images for a 9 km segment of the Beaufort Sea Coast between 2008 

and 2012, I demonstrated that the report of heightened erosion at the beginning of the 

2000s was equaled or exceeded in every year except 2010 and that the mean annual 

erosion rate was tightly coupled to the number of open water days and the number of 

storms.  By combining historical aerial photographs from the 1950s and 1980s with 

recent high-resolution satellite imagery from the mid-2000s, I assessed the expansion and 

drainage of thermokarst lakes on the northern Seward Peninsula.  I found that more than 

half of the lakes in the study area were expanding as a result of permafrost degradation 

along their margins but that the rate of expansion was fairly consistent (0.35 and 0.39 

m/yr) between the 1950s and 1980s and 1980s and mid-2000s, respectively.  However, it 

appeared that in a number of instances that expansion of lakes led to the lateral drainage 

and that over the 55-year study period the total lake area decreased by 24%.  While these 
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studies highlight the utility of quantifying disturbance during the remotely sensed image 

archive period (~1950s to present) they are inherently limited temporally.  Thus, I also 

demonstrated techniques in which field studies and remote sensing data could be 

combined to extend the identification of landscape disturbance events that occurred prior 

to the remote sensing archive.  I identified two large regions indicative of past 

disturbance caused by tundra fires on the North Slope of Alaska, which doubled the 

delineated area of tundra fire disturbance on the North Slope over the last 100 to 130 

years.  I conclude the dissertation by demonstrating the utility of repeat airborne light 

detection and ranging (LiDAR) data for arctic landscape change studies, in particular 

vertical surface deformation, and provide momentum for going forward with this 

emerging technology for remote sensing of arctic landscape dynamics.  The 

quantification of arctic landscape dynamics during and prior to the remote sensing 

archive is important for ongoing monitoring and modeling efforts of the positive and 

negative feedbacks associated with amplified Arctic climate change.     
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Preface 

This dissertation consists of six chapters.  Chapter 1 serves as the introduction and 

provides background information on climatic changes occurring in the Arctic and the 

response of the landscape.  Chapters 2, 3, 4, and 5 detail the studies that I led during my 

dissertation degree and are written and included in manuscript format.  Chapter 2 has 

been formatted for a Cryospheric Remote Sensing special issue in the journal Remote 

Sensing and it is currently in review.  Chapter 3 was published in the Journal of 

Geophysical Research Biogeosciences in 2011 and Chapter 4 was published in Journal of 

Geophysical Research Biogeosciences in 2013.  Chapter 5 is in press in Environmental 

Research Letters.   

I am the primary contributor and senior author for all of the material included in 

the body of this dissertation.  I developed the study design and led the remote sensing 

analysis for all remote sensing components associated with each of the studies.  I took the 

lead role in drafting each of the manuscripts and identifying colleagues with expertise 

and knowledge of a particular field that contributed greatly to the outcome of each study.  

Since my interests and this dissertation are in fulfillment of a degree in Interdisciplinary 

Studies, each chapter benefitted from the contribution of scientists with diverse expertise.  

Chapter 2 benefited from the contributions to data compilation, interpretation, and 

analysis provided by Guido Grosse, Christopher Arp, and Jinlun Zhang.  Chapter 3 was 

strengthened by analysis of climate data by Christopher Arp, interpretation of modern 

thermokarst lake and permafrost dynamics by Guido Grosse and Vladimir Romanovsky, 

and the broader carbon cycle implications associated with the observed patterns of 
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landscape change by Miriam Jones and Katey Walter Anthony.  Chapter 4 represented a 

broad collaborative effort that combined field surveys with remotely sensed image 

analysis.  Amy Breen, Ben Gaglioti, Dan Mann, Guido Grosse, Christopher Arp, and 

Mike Kunz assisted with fieldwork, data analysis, and manuscript writing.  Adrian Rocha 

and Skip Walker assisted with manuscript writing and vegetation and fire history 

discussions.  For Chapter 5, Jason Stoker, Ann Gibbs, Guido Grosse, Nicole Kinsman, 

and Bruce Richmond helped with data acquisition, data processing, and manuscript 

writing.  Vladimir Romanovsky and Tom Douglas helped with interpretation of results 

and manuscript writing. 

 Funding for this research was partially provided by NASA grant NNX08AJ37G, 

NSF IPY grant 0732735, and the U.S. Geological Survey Alaska Science Center and 

Alaska Regional Directors Office.  Additional support for my dissertation studies were 

provided by the Bureau of Land Management Arctic Field Office, the Arctic Landscape 

Conservation Cooperative, and the National Park Service.  Paul Morin and Tom Cecere 

were instrumental in the acquisition of recent high-resolution satellite imagery used in 

Chapter 2.  Chapter 5 benefited from the efforts of the U.S. Geological Survey National 

Shoreline Change Assessment program that was responsible for the acquisition of the 

2010 LiDAR data.   

 I would like to thank my advisor Dr. Guido Grosse for taking me on as a PhD 

student.  I would like to thank my other committee members Drs. Christopher Arp, 

Daniel Mann, Vladimir Romanovsky, and David Verbyla for serving on my committee 

and providing guidance.  I also thank Dr. Katey Walter Anthony for her early 
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Tony Degange, and Mark Shasby of the U.S. Geological Survey for allowing me to 

pursue a PhD while maintaining my primary affiliation and work duties.  I would like to 

thank Wendy Eisner, Kenneth Hinkel, Kim Peterson, Jim Bockheim, and Richard Beck 

for introducing me to the Arctic.  I would like to thank my family for continued support 

throughout my college education experience and my wife and hounds for dealing with 

my overcommitted lifestyle these past five years.  
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Chapter 1:  Introduction 

1.1  Research topic background and dissertation overview 

Surface air temperatures in the Arctic have warmed by ~0.35°C per decade between 1970 

and 2000, which is two times faster than the average global rate of warming [Serreze and 

Francis, 2006].  The reasoning behind the so called Arctic Amplification is still a matter 

of debate, but one of the primary drivers is thought to be the positive feedback associated 

with the sea ice – climate system [Serreze et al., 2009; Screen and Simmonds, 2010].  In 

Alaska, the continual decline in sea ice extent in the Beaufort and Chukchi Seas is 

thought to be driving the continued warming in the Arctic region, while the remainder of 

the state has entered a cooling trend [Wendler et al., 2012].  The ongoing changes 

occurring in the coupled Arctic system appear to be driving a host of responses in 

terrestrial, aquatic, and marine ecosystems and landscapes [Hinzman et al., 2005; 

Richter-Menge et al., 2010; AMAP, 2011].  In particular, changes to the ground thermal 

regime and the rate of disturbance in the Arctic may have powerful impacts on landscape 

dynamics [Rowland et al., 2010] and carbon cycling [Grosse et al., 2011]. 

 Permafrost has warmed throughout much of the Northern Hemisphere since the 

1980s, with colder permafrost sites warming more rapidly than warmer permafrost sites 

[Romanovsky et al., 2010; Smith et al., 2010; Heginbottom et al., 2012].  Warming of the 

near surface permafrost may lead to widespread terrain instability in ice-rich permafrost 

deposits in the Arctic and result in thermokarst development and other thaw-related 

landscape features [Jorgenson et al., 2006; Gooseff et al., 2009].  The term thermokarst 

originated in the Russian literature and its scientific use has varied substantially over time 
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[Shur and Osterkamp, 2007].  The modern definition of thermokarst refers to the process 

by which characteristic landforms result from the thawing of ice-rich permafrost or the 

melting of massive ice [van Everdingen, 1998]; or more specifically, thaw of ice-rich 

permafrost and/or melting of massive ice that result in consolidation and deformation of 

the soil surface and formation of specific forms of relief [Shur, 1988].  Jorgenson [2013] 

identifies 23 distinct thermokarst and other thaw-related features in the Arctic, Sub-

Arctic, and Antarctic based primarily on differences in terrain condition, ground-ice 

volume, and heat and mass transfer processes.  An increase in active layer depth, water 

accumulation on the soil surface, permafrost degradation and retreat of the permafrost 

table, and changes to lake and coastal erosion act and interact to create thermokarst 

features on the landscape [Shur and Osterkamp, 2007].  There is increasing interest in the 

spatial and temporal dynamics of thermokarst and other thaw-related features from a 

wide diversity of disciplines including:  landscape ecology, hydrology, engineering, and 

biogeochemistry.   

 Remote sensing provides an excellent tool for observing, documenting, and better 

understanding landscape change in the Arctic from local, to regional, to Pan-Arctic 

scales.  In particular, it has emerged as one of the primary tools for advancing the field of 

thermokarst research [Kokelj and Jorgenson, 2013] and more than half of the references 

identified in Jones et al. [2013] used remote sensing to some degree in their studies of 

thermokarst and thaw-related landscape features.  Further, Rowland et al. [2010] noted 

that with the scale of questions and facets of landscape change in the Arctic that “a 
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particular focus must be placed on identifying existing and developing new remote 

sensing technologies to detect near-surface and subsurface changes in the Arctic”.   

 My dissertation focuses on the application of various remote sensing image 

sources and techniques for the quantification and detection of Arctic landscape dynamics 

over various time scales.  In particular, I focused on permafrost coastline erosion, 

thermokarst lake dynamics, fire-related arctic landscape change and disturbance, and the 

quantification of surface deformation using repeat airborne LiDAR data.  The dissertation 

is divided into six chapters, with Chapter 1 being this introduction and Chapter 6 

providing a summary of the research results.  Chapter 2 focuses on the use of high-spatial 

resolution satellite imagery acquired at high-temporal resolution coupled with an analysis 

of varying environmental conditions over the study period for the same segment of 

permafrost coastline located on the Alaska Beaufort Sea. Chapter 3 examines the 

dynamics associated with thermokarst lakes on the northern portion of the Seward 

Peninsula using aerial photography and high-resolution satellite imagery acquired in the 

early 1950s, late 1970s, and mid-2000s.  Chapter 4 demonstrates the utility of combining 

field surveys with various remotely sensed image sources in the identification of 

previously unrecognized tundra fire disturbances that occurred on the North Slope of 

Alaska prior to the period of record keeping and highlights the need for combining 

information from various remotely sensed image sources to extend records beyond just 

those events that happened during the remote sensing period.  Chapter 5 assesses the 

ability to detect surface elevation changes in an arctic coastal lowland on the Beaufort 

Sea Coastal Plain using repeat airborne Light Detection and Ranging (LiDAR) data.   
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1.2  Rapid erosion of a permafrost coastline 

Permafrost influences 30 to 34% of the coastlines on Earth and these primarily occur in 

the Arctic [Walker, 2005; Lantuit et al., 2012].  Arctic climate change will likely increase 

the vulnerability of these coasts and cause significant changes in coastal morphologies, 

ecosystems, and subsistence lifestyles.  These changes include reductions in sea ice 

extent [Stroeve et al., 2012], rising air [ACIA, 2005] and sea surface [Steele et al., 2008] 

temperatures, sea-level rise [Richter-Menge et al., 2010], warming permafrost 

[Romanovsky et al., 2010; Smith et al., 2010], and increased storminess [Simmonds and 

Rudeva, 2012] and storm surges [Vermaire et al., 2013].  However, several observation 

sites in the Arctic have yet to link decadal-scale erosion rates with changing 

environmental conditions, which likely results in part from the broad temporal gaps in 

suitable remote sensing data to address the relative role of potential drivers of change.  

 In this chapter, I utilized the ability to task high-spatial resolution satellite 

imagery.  Ten images were acquired for a rapidly eroding segment of the Beaufort Sea 

Coast in Alaska in order to derive bluffline positions on an annual to seasonal basis 

between 2008 and 2013.  This analysis was combined with local meteorological data over 

the period of interest as well as open water duration and sea surface temperature derived 

in part from remotely sensed observations.  This effort more than doubled the number of 

suitable high-spatial resolution satellite images acquired for this study site since the 

1950s and when combined with an analysis of environmental conditions thought to be 

responsible for the rate at which permafrost coasts erode provide some interesting 

insights.  The detailed observations made possible by the availability of high-spatial 
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resolution satellite imagery provide a necessary step forward when attempting to link 

changes occurring in the Arctic and the response of the coastline and will help improve 

monitoring and modeling efforts and assessments of coastal vulnerability. 

1.3  Modern thermokarst lake dynamics in the continuous permafrost zone   

 Thermokarst lakes mainly formed during the Holocene and are a sign of local 

permafrost degradation following post glacial climate warming [Rampton, 1988; 

Romanovskii et al., 2004; Walter et al., 2007].  Thermokarst lakes are abundant surface 

features across many high latitude regions, such as the Seward Peninsula [Hopkins, 1949; 

West and Plug, 2008; Plug and West, 2009], the Arctic Coastal Plain [Sellmann et al., 

1975; Hinkel et al., 2005] as well as several areas in Interior Alaska [Jorgenson and 

Osterkamp, 2005]; in Canada on Banks Island [Harry and French, 1983], Tuktoyaktuk 

Peninsula [Mackay, 1988], the Yukon Coastal Plain [West and Plug, 2008; Plug and 

West, 2009], and Richards Island [Burn, 2002], and in large regions of Siberia 

[Romanovskii et al., 2004, Tomirdiaro and Ryabchun, 1973; Zimov et al., 1997; Smith et 

al., 2005; Grosse et al., 2006; Walter et al., 2007; Grosse et al., 2013].  Their importance 

to global climate change and northern high latitude soil and permafrost-stored carbon 

cycling has been noted [Zimov et al., 1997; Walter et al., 2006; Walter et al., 2007].  

Therefore quantifying changes in thermokarst lakes is important for understanding 

potential positive and negative feedbacks to the atmospheric carbon budget.  A suite of 

recent studies have utilized remotely sensed imagery to document changes in thermokarst 

lake extent in various locations across the Arctic and Subarctic (e.g. Yoshikawa and 

Hinzman, 2003; Smith et al., 2005, Riordan et al., 2006).  In general, thermokarst lakes 
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are thought to be increasing in abundance and surface area in regions of continuous 

permafrost and decreasing in abundance and surface area in transitional permafrost zones 

(discontinuous, isolated, sporadic) [Smith et al., 2005].  

 In this chapter, I conducted a thermokarst lake change detection study using 

historical aerial photography and more recent high-resolution satellite imagery for a 700 

km2 study area on the northern Seward Peninsula of northwestern Alaska.  I was 

interested in testing how this continuous permafrost site compared to observations 

elsewhere in the Arctic and whether thermokarst lake formation and expansion rates 

could account for such dramatic increases in the lake area thus far reported [Smith et al., 

2005].  I assessed the general patterns of change in surface area across the study area as 

well as the expansion rate and drainage rate of thermokarst lakes.  I also summarized the 

available literature on thermokarst lake expansion rates from other studies in the Arctic 

and Subarctic.  A short discussion at the end of the chapter highlights the complexities 

associated with thermokarst lakes on the northern high latitude carbon budget. 

1.4  Unrecognized tundra fire events on the North Slope of Alaska 

Fire influences vegetation distribution and structure, carbon cycling, land-atmosphere 

energy exchange, and climate, and it represents an important and widespread disturbance 

mechanism in several major biomes [Bowman et al., 2009].  However, the role of fire in 

shaping ecosystem patterns in arctic tundra remains poorly resolved due to the rarity of 

reported fires, the geographic remoteness of the region, and the short observational record 

in the region [Barney and Comiskey, 1973; Wein, 1976; Giglio et al., 2006; Rocha et al., 

2012].  As a result, an accurate representation of the Arctic in models depicting the 
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geographic distribution of wildfires and potential shifts in global wildfire activity and 

pyrogenic gas emissions is lacking [Bond et al., 2005; Krawchuk et al., 2009; van der 

Werf et al., 2010].  Given ongoing climate change in the Arctic [ACIA, 2005; AMAP, 

2011], the frequency, severity, and areal extent of tundra fires is predicted to increase 

[Higuera et al., 2008; Hu et al., 2010].  Thus, a better understanding of the role of fires in 

the tundra biome is needed since tundra vegetation, peat, and frozen soils in the Arctic 

store large, globally significant amounts of labile carbon [McGuire et al., 2009; Tarnocai 

et al., 2009], and pulse disturbances like fire, can play an important role in releasing this 

carbon [Grosse et al., 2011; Mack et al., 2011].   

 In this study, I developed diagnostic landscape characteristics of past known 

tundra fire disturbances on the North Slope of Alaska by combining field surveys with 

remotely sensed imagery.  This information was then used to extend the fire history 

beyond those events that have occurred since the start of the remote sensing period.  

Various remotely sensed image sources were used to scale-up the field observations to 

delineate an estimated perimeter for the tundra fire events.  Identification of these sites 

also provides a centennial-scale chronosequence of post-fire vegetation and geomorphic 

change providing a valuable temporal context for better understanding the impacts of 

tundra fires during a period in which they are expected to increase in their number, size, 

and frequency. 

1.5  Repeat airborne LiDAR for arctic landscape dynamics 

Terrestrial, aquatic, and marine environmental changes occurring in the Arctic 

may be interacting to increase erosion of coastal lowland landscapes [Jorgenson et al., 
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2006; Overeem et al., 2011; Romanovsky et al., 2010; Smith et al., 2010; Stroeve et al., 

2012].  Thus far, most remote sensing studies focused on identifying landscape change of 

near surface permafrost terrain in arctic lowland regions primarily rely on 2-dimensional 

measurements to quantify lateral rates of change for thermokarst lakes [Arp et al., 2011; 

Jones et al., 2011], thermokarst lake drainage [Hinkel et al., 2007; Marsh et al., 2009], 

retrogressive thaw slump headwall retreat [Lantz and Kokelj, 2008], thermo-erosional 

gully formation and expansion [Fortier et al., 2007], erosion of coasts by block collapse 

and mass wasting [Jones et al., 2009], and degradation of ice wedges and thermokarst pit 

formation [Jorgenson et al., 2006].   

In this study, I tested the ability of utilizing repeat airborne Light Detection and 

Ranging (LiDAR) data for quantifying vertical surface deformation in a 100 km2 study 

located on the Arctic Coastal Plain along the Beaufort Sea coast.  Using a conservative 

measure of change between two data collection efforts separated by four years, I was able 

to detect erosional features indicative of ice-rich permafrost degradation were associated 

with ice-bonded coastal, river, and lake bluffs, frost mounds, ice-wedges, and thermo-

erosional gullies as well as erosional and depositional features associated with coastal and 

riverine processes.  The results from this study provide stimulus for going forward with 

repeat airborne LiDAR data acquisitions in other permafrost terrain at sub-decadal time-

scales. 

  

 



 9 

1.6  Summary 

This concluding chapter reviews the four studies that compose my dissertation and how 

this work will feed into ongoing efforts interested in quantifying landscape change in the 

Arctic.   
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Chapter 2:  High spatial and temporal resolution remote sensing of a rapidly 

eroding segment of arctic coastline1 

2.1  Abstract 

Eroding permafrost coasts in the Arctic are increasingly susceptible to the combined 

effects of declining sea ice extent, more frequent and effective storms, sea level rise, and 

warming permafrost.  However, several observation sites in the Arctic have yet to firmly 

link decadal-scale erosion rates with changing environmental conditions.  This partially 

results from the broad temporal gaps in suitable remote sensing observations necessary to 

address the relative role of potential drivers of change.  Here we used high spatial 

resolution optical satellite imagery acquired at high temporal resolution between 2008 

and 2013 to better understand recent patterns of erosion for a 9 km segment of permafrost 

coastline at Drew Point, Beaufort Sea Coast, Alaska.  Mean annual erosion rates for the 

open water periods between 2008 and 2012 were 16.3 m/yr and in line with heightened 

erosion documented here between 2002 and 2007.  Mean annual erosion ranged from 6.7 

m in 2010 to 22.5 m in 2012, with 2008, 2009, and 2011 eroding between 16 and 19 m.  

The strong correlation of annual erosion rate with the modeled number of open water 

days (R2=0.77) and the number of storms (R2=0.84) over this five year period highlight 

the linkage of declining sea ice with accelerating retreat of the coastline at this site.  In 

2008 and 2011, ~70% of the annual erosion occurred in the early portion of the open-

water season.  This study shows how detailed observations of arctic coasts, now possible 

1 Jones.B. M., G. Grosse, C. D. Arp, and J. Zhang (In Review), High spatial and temporal 
resolution remote sensing of a rapidly eroding segment of arctic coastline, Remote 
Sensing. 
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using high-spatial resolution satellite imagery, provide an essential step forward in 

linking changes at the Arctic land-sea interface with those in the broader Arctic system. 

2.2  Introduction 

Permafrost influences 30 to 34 % of the coastlines on Earth, most of which occur in the 

Arctic [1,2].  Arctic climate change will likely increase the vulnerability of these coasts to 

erosion and drive significant changes to coastal morphologies, ecosystems, and human 

subsistence lifestyles.  These changes include reductions in sea ice extent [3], rising air 

[4] and sea surface [5] temperatures, sea-level rise [6], warming permafrost [7,8], and 

increased storminess [9] and storm surges [10].   

Despite the prevalence of permafrost coasts in the northern hemisphere and their 

apparent vulnerability to change, there remains a paucity of information regarding their 

recent dynamics.  Lantuit et al. [11] identified only 15 coastal change detection studies 

conducted between 2008 and 2012 accounting for less than 1% of the Arctic permafrost 

coastline, with only one study reporting a time series of annual retreat rates [12].  The 

State of the Arctic Coast 2010 [13] highlights the primary limiting issue related to a better 

understanding of arctic coastal dynamics is the lack of an Arctic-wide distribution of 

coastal observatories or locations of site-specific studies.  These deficiencies largely 

result from the remoteness associated with permafrost coasts and the lack of archived 

remotely sensed data for such analyses.  The majority of the studies (9 of 15) outlined in 

Lantuit et al. [11] have focused on coastline change in Alaska, while eight of these have 

focused specifically on the Beaufort Sea coast. 
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 The Alaskan Beaufort Sea Coast (ABSC) is composed of a low-lying (maximum 

elevation of ~10 m) tundra plain that extends for ~1,950 km from the Canadian Border to 

Barrow, Alaska, USA.  Unconsolidated permafrost sediments in bluffs along the coast 

tend to be bonded by ground ice and have a very high average total volumetric ice 

content of 77% [14].  Spatial and temporal rates of coastal change along the ABSC are 

known to be highly variable [2,15,16].  This is due to variability in ground-ice content as 

well as variation in erosional processes, geomorphology, lithology, coastal orientation, 

near shore bathymetry, and the presence of barrier islands [15].  Jorgenson and Brown 

[15] and Gibbs et al. [16] report that the long-term average erosion rate along the ABSC 

between the late-1940s and early-2000s was 2 m/yr.  However some individual locations 

eroded as much as 16 m/yr, and homogenous segments as much as 9 m/yr.  Ping et al. 

[17] assessed 48, 1km segments distributed across the ABSC and found that erosion from 

1950 to 1980 was 0.6 m/yr and that it had increased to 1.2 m/yr for the period 1980 to 

2000.  Mars and Houseknecht [18] compared land loss due to erosion by differencing 

Landsat satellite imagery with legacy topographic map sheets and found a doubling in the 

rate of erosion between 1985 and 2005 relative to 1955 and 1985.  Jones et al. [19] used 

more accurate techniques based on aerial photography for the exposed and north-facing, 

60 km segment of the ABSC between Cape Halkett and Drew Point and found that the 

erosion rate increased from 6.7 m/yr (1955 to 1979), to 9.7 m/yr (1979 to 2002), to 13.6 

m/yr (2002 to 2007).  These last two studies encompass the 9 km Drew Point segment of 

coastline reported here in this paper. 
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   Since most coastal change detection studies report rates averaged over years to 

decades, it is difficult to determine the relations between changes in environmental 

forcing and the response of the coast.  Lantuit et al. [20] assessed the change in mean 

annual erosion rates for the Bykovsky Peninsula in Siberia and found no connection with 

the storm climatology for the region over the 55 year study period.  Overeem et al. [21] 

indicated that the duration of open water conditions could be a good first order predictor 

of coastal erosion based on similar increases in open water duration and measured 

erosion rates at Drew Point between 1979-2002 and 2002-2007 as extracted from Jones et 

al. [19].  However, with observations of erosion on the order of 25-40 m during single 

storm events along some arctic coastal segments [2,22] the heightened erosion rates 

reported by Jones et al. [19] could have been a result of one or two large storm events 

averaged over a short time period.  Thus, it is uncertain if the enhanced erosion at Drew 

Point was a result of a few catastrophic events or whether this pattern of erosion was 

linked to the atmospheric, terrestrial, and oceanic conditions persisting in the Arctic 

coastal zone during this period of rapid sea ice retreat [3].  

 In this study, we combined the use of high-spatial resolution (sub-meter) satellite 

imagery derived from optical (Quickbird, IKONOS, GEOEYE, Worldview-1 and -2) 

sensors to document annual as well as seasonal erosion between 2008 and 2012 along a 9 

km segment of ABSC coast located near Drew Point.  By combining multi-source 

imagery we acquired 10 scenes over this five-year period.  This effort more than doubled 

the number of high-spatial resolution remotely sensed observations at this site since the 

1950s.  We compare the erosion measurements to the number of open water days in a 
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given period, the corresponding sea surface temperature, daily air temperature, and the 

number and strength of storms.  We also document and discuss annual and seasonal 

erosion patterns over the last five years in relation to historic patterns of erosion at Drew 

Point as well as several environmental variables thought to play a role in driving erosion 

of permafrost coasts. 

2.3  Study area 

 The 9-km study coast is located in the western region of the ABSC about 100 km 

east of Barrow and 200 km west of Prudhoe Bay (Figure 1).  The Drew Point coastal 

segment has historically eroded at the fastest rate along the ABSC [15,16,23] and 

subsequently has been the focus of several recent investigations [19,22,24-26].  This is in 

part due to the rapid nature of erosion at this site and its likely sensitivity to 

environmental forcing as well as the ability to observe change over relatively short 

durations.  Based on values extracted from Jones et al. [19] for this 9 km segment, 

erosion increased from 7.0 m/yr between 1955 and 1979, to 9.4 m/yr between 1979 and 

2002, to 16.3 m/yr between 2002 and 2007. 

As derived from airborne LiDAR data acquired on 6 August 2011, the bluff height 

ranges from 1.6 m to 7.1 m with a mean of 4.4 m above the mean water level during 

LiDAR data acquisition.  Estimates of total volumetric ice-content for permafrost along 

these bluffs approaches 80-90% [14] with segregated and pore ice volumes accounting 

for 50 to 80% [26], and wedge ice contributing nearly 30% in some locations.  The 

remainder of the bluff composition consists of organic material and clay, silt, and sand, 

with the exception of coarser sandy horizons near the base of the taller bluffs.  Estimates 
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of ice wedge polygon dimensions, range from 6-25 m with a mean size of ~15 m [14,25].  

The near shore water depth is 2 m within a distance of 500 m from the shoreline and 

slowly drops to 3 m at 2000 m from the coast. 

 Rapid shoreline retreat rates in this region may partially be explained by the 

presence of coastal bluffs with ice-rich permafrost [22,27].  Lantuit et al. [28] 

demonstrated a weak but statistically significant relation between ground-ice content and 

mean retreat rate, with higher mean annual retreat rates typically corresponding to areas 

with higher ground-ice content.  Block failure as a result of thermo-abrasion and thaw 

slump activity (thermo-denudation) are common modifiers of Arctic coastal morphology 

and tend to be dominant erosional processes along ice-rich coastal bluffs [22,29].  The 

dominant erosional process at Drew Point consists of thermo-erosional niche formation 

and block collapse (thermo-abrasion) although thermo-denudation does occur here on a 

smaller scale (Figure 2).  Niche development at the base of the frozen bluff leads to the 

collapse of large blocks of frozen sediments, with the size of blocks strongly dependent 

on the ice-wedge polygon diameter [26]. These blocks then buffer the coast from further 

niche development until they are removed through thermal and mechanical erosion.  

However, as observed through time-lapse photography acquired in the field these blocks 

tend to persist for less than one week given the current atmospheric and oceanic 

conditions [26,20].  Observations made along this coast in 1901 [30] indicate that the 

formation of erosional-niches followed by block collapse have been modifying the coast 

since at least this time [31].   
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 The nearshore open water duration at Drew Point more than doubled between 

1979 and 2009, increasing from ~45 days to ~90 days, with a higher proportion of the 

increase in open water duration occurring in the fall (~0.9 days/yr) relative to the early 

summer (~0.7 days/yr) [21].  Between 2007 and 2012, the Beaufort Sea experienced the 

lowest September sea ice extents yet observed since the late 1970s [32].  This increase in 

open water days has been accompanied by a warming trend in sea surface temperature 

(SST) in the Beaufort Sea [5].  Air temperature has continued to increase in this region 

since 2000 as measured at Barrow, AK [33].  Permafrost at a depth of 20 m at coastal 

sites along the ABSC has also warmed by 0.6°C to 2.2°C between 1989 and 2008 [8]. 

There are currently no human inhabitants along this segment of coast but 

historical and cultural sites that date to as recent as the early to mid-1900s are located 

here [34].  In addition, an exploratory oil well was drilled onshore in the late-1970s.  At 

the time it was located approximately 300 m inland [34].  This site was remediated in 

2010 as a result of the increase in erosion along this coastal segment.  This region 

provides important aquatic and terrestrial habitat to a number of migratory and resident 

wildlife that have been affected by erosion and storm surge flooding [24]. 

2.4  Imagery and methodology 

2.4.1  Imagery 

Our primary objective in this study revolved around mapping the changing coastline over 

annual and seasonal time-scales by using high spatial resolution satellite imagery (sub-

meter) acquired at high temporal resolution.  The ability to acquire and task high-

resolution commercial, optical satellite imagery during the past several years has 
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increased the potential of covering a study site with suitable spatial and temporal 

resolution for observing the coastal bluffline in this remote Arctic setting.  Between April 

of 2008 and June of 2013, we acquired 10 high-resolution satellite images (Table 1).  

Within a given year these images ranged from early April to late October and were from 

five different satellites: Quickbird, IKONOS, GEOEYE-1, and Worlview-1 and -2 

(Figure 3).  We only used the high-resolution panchromatic band provided by each of 

these satellites.  Airborne LiDAR data for our study area was acquired on 6 August 2011, 

which provided a common base layer for geocorrecting all of the imagery as well as to 

derive information on bluff heights.     

Initially, optical images were automatically orthorectified using the RPC 

information embedded in the image file and the LiDAR DTM (1 m postings), but the 

results showed variability in the position of ice-wedge intersections on the order of 2 to 5 

m.  So we selected 20 ground control points per image strip with the LiDAR DTM as the 

base and using a second order polynomial transformation the images were georectified to 

UTM NAD83 zone 5N with spatial resolutions ranging from 0.5 m to 1.0 m.  The mean 

RMS associated with the georegistration process ranged from 0.44 m to 0.85 m, with a 

maximum RMS error always less than 1.5 m (Table 1).  Visual comparison of each 

optical image strip for our study area showed excellent spatial agreement and suitability 

for further analysis (e.g. see Figure 3 for comparison).   

The bluffline position in our images was manually delineated because of 

differences in tundra and ocean conditions at the time of image acquisition, which made 

automated bluffline mapping challenging (Figure 3).  This difficultly in the use of 
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automated approaches for delineating blufflines in high-spatial resolution optical imagery 

was recently noted by Lantuit et al. [20] and Günther et al. [35,36].  In all images where 

the bluffline was clearly discernible (8 of 10), it was manually digitized in a GIS 

independent of one another at a scale of 1:1,000.   

2.4.2  Erosion rate measurements 

Erosion rate measurements of the bluffline were made at 10 m increments along the study 

coast using the Digital Shoreline Analysis System (DSAS v. 4) [37].  This tool has 

previously been used for coastal change detection studies in the Arctic 

[16,17,19,24,31,34] and measures the change in distance between two line vectors 

relative to an arbitrary baseline.  The baseline in our study was created by taking a buffer 

of the 2008 shoreline and isolating the offshore line vector.  Transects were cast every 10 

m along this baseline using a 200 m smoothing algorithm to account for subtle 

undulations in the coastline and to ensure perpendicular transects.  This resulted in 888 

transects along the ~9 km baseline.  Since two small segments of this coast represent 

small streams flowing into the ocean and not exposed coastal bluffs, these were removed 

from further analysis.  The end result provided a measure of bluffline erosion at 876 

measurement points along the study coast. 

 While it is difficult to assess errors in erosion rate measurements associated with 

this type of analysis [11], we adopted techniques used in previous coastal change 

detection studies [19,38,39,40].  These techniques are based on identification of factors 

that contribute to the error associated with feature delineation in the images under 

comparison (Table 2).  These errors include the resolution of the imagery (0.5 to 1.0 m), 
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the RMS error associated with image registration, and the ability to accurately map the 

bluffline in the same optical image (0.14 m) as averaged from the digitization of the same 

image three times as an indicator of user error. 

2.4.3  Sea surface temperature data 

Daily SST data were derived from a hindcast, coupled sea ice-ocean model (the Bering 

Ecosystem STudy ice--ocean Modeling and Assimilation System or BESTMAS).  The 

BESTMAS model domain covers the northern hemisphere north of 39ºN [41]. The finite-

difference grid configuration of the model is based on a generalized, orthogonal, 

curvilinear coordinate system, which optimizes horizontal resolution along the Alaskan 

coast and in the Bering, Chukchi, and Beaufort Seas, ranging from an average of 4 km in 

Alaskan coastal areas to an average of about 10 km for the whole Chukchi and Beaufort 

seas.  In addition, BESTMAS incorporates satellite-based measures of sea ice 

concentration and sea surface temperature data into the daily output product.  BESTMAS 

is commonly used for retrospective simulations of the Arctic sea ice-ocean system from 

1970 to present [41].  The near-surface water temperature (upper 5 m) of the BESTMAS 

ocean grid cell closest to Drew Point was used to delineate the open-water period (days 

with above freezing SST conditions) for each year between 2008 and 2012 as well as the 

variability in SST within and among years.  Fetch was not included in our analysis as 

erosion at this site is non-fetch limited [21]. 

2.4.4  Meteorological data 

 The U.S. Geological Survey has been operating a meteorological station at Drew 

Point since 1998 (Figure 1).  We compiled hourly air temperature data from June to 
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October and wind speed/direction data for the open water period for each respective year 

between 2008 and 2012.  The hourly air temperature data have been summed to daily 

means and used to calculate the number of thawing degree days (based on 0°C) for each 

period.  The wind data were used to identify wind events or storms capable of eroding the 

base of the bluff toe.  We classified storms likely responsible for niche erosion at Drew 

Point as winds greater than 5 m/s [20] from directions of 0° to 90° and 270° to 360° [24] 

for a period of at least 12 hours with a lull not lasting longer than 6 subsequent hours.  

Each storm event was further summarized according to the storm-power value metric, 

which is described as the square of a storms average wind velocity relative to its duration 

[24,42].   

2.5  Results 

2.5.1  Bluffline delineation from remotely sensed imagery 

Of the ten images acquired during the study period we were able to distinguish the 

bluffline in eight.  The bluffline along the 9 km study coast at Drew Point was readily 

distinguished in each of the examples in Figure 3.  The two images where it was not 

possible to delineate the bluffline were affected by thick cloud cover (21 July 2011) or a 

continuous and thick snow cover with large drifts that obscured the bluffline (02 April 

2009).  Overall, error associated with the comparison of various image pairs used to 

derive an erosion measurement averaged 1.27 m.  Error measurement estimates ranged 

from a low of 1.14 m to a high of 1.48 m (Table 2).  These error estimates are well below 

the mean annual and seasonal erosion rates.   
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2.5.2  Annual and seasonal erosion 

The mean annual bluffline erosion rate at Drew Point was 16.3 m/yr between 2008 and 

2012.  Mean erosion rates exceeded 16 m/yr in each year except for 2010 where the 

average was 6.7 m (Table 3; Figure 4).  The highest mean annual erosion rate of 22.5 m 

occurred in 2012.  Maximum annual erosion rates exceeded 40 m/yr in each year except 

for 2010.  In 2008 the maximum annual retreat was nearly 50 m.  The total volumetric 

loss of land along the 9 km coastal stretch as estimated from the mean bluff height for 

each measurement transect over the five-year study period was 2.9 x 106 m3.  The pattern 

of volume loss on an annual basis was closely related to the mean distance of erosion in a 

given year (Table 3).   

Intermediate images acquired in 2008 and 2011 allowed for the bracketing of 

erosion into an early season and late season interval (Table 4).  Between ice-out and 20 

August 2008 (25 days) mean erosion was 10.9 m and between 20 August 2008 and ice-on 

mean erosion was 5.2 m (58 days).  In 2011, early season and late season erosion were 

bracketed by an image acquired on 11 September 2012 and the mean erosion was 11.3 m 

(49 days) and 5.7 m (36 days), respectively.  Unfortunately, attempts at acquiring 

intermediate images during other years were hampered by the persistent coastal fog and 

cloud cover common in this region.    

2.5.2  Environmental conditions 

 The number of near-shore days with above freezing SST conditions ranged from 

83 in 2010 to 106 in 2012 with an average open water duration of 94 days over the five-

year period (Table 3).  Average open water SST during the study period was 3.7°C with a 
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high of 4.2°C in 2012 and a low of 3.2°C in 2008.  TDDs were highest in 2012 (707) and 

lowest in 2008 (429) and averaged 530 over the five-year period.  There were 46 storms 

identified during the open water periods of 2008 to 2012.  Thirty-three were classified as 

northeasterly (0° to 90°) and 13 were classified as northwesterly (270° to 360°).  

Accumulated storm power (m2/s2 x days) averaged 1,082 over the study period.  The year 

with the highest accumulated storm power value was 2011 and the year with the lowest 

was 2012. 

2.6  Discussion 

2.6.1  Comparison to historical erosion rates at Drew Point 

The Drew Point coastal segment has historically eroded at the fastest rate along the 

ABSC [15, 16, 23].  Jones et al. [19] documented an increase in mean annual erosion 

rates for this 9 km segment of coastline of 7.0 m/yr between 1955 and 1979, 9.4 m/yr 

between 1979 and 2002, and 16.3 m/yr between 2002 and 2007.  However, it was 

uncertain whether the heightened erosion over the more recent five-year period was a 

result of one or two extreme events averaged over a shorter time period relative to the 

~20 years between available images in the latter half of the 20th Century.  Arp et al. [24] 

documented a rate of 17.1 m/yr from 2007 to 2009 for the 60 km segment of coast 

between Cape Halkett and Drew Point, with interannual variability in erosion over two 

successive years on the order of 6 m.  Thus, it appeared that the increase in erosion 

relative to historic rates reported in Jones et al. [19] had continued over the next two 

years in spite of annual variation in total erosion.  Results presented here that are based 

on the high spatial and temporal resolution remote sensing time series of bluffline erosion 
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indicate that the rate of erosion documented in Jones et al. [19] has generally been 

maintained.  The mean annual erosion exceeded 16 m/yr in each of the five years with the 

exception of 2010 (6.7 m/yr) and this corresponds to a mean decadal-scale (2002 to 2012) 

erosion rate of 16.4 m/yr for this 9 km segment of coast near Drew Point (Figure 5). 

2.6.2  Comparison to annual erosion at other study sites 

Some assessments of long-term decadal scale erosion rates at sites in Siberia [20] 

and in Canada [38,43] do not find an increase in erosion relative to historic rates.  

However, increases in erosion over the greater ABSC may have begun in the 1980s 

[17,18].  Since few studies have reported on Arctic coastal erosion rates on an annual 

basis during the period of rapid changes in the Arctic since the early-2000s [11], it may 

be that other sites have responded in a similar way.   

Two such examples where recent annual measurements exist also provide 

evidence for a shift in the pattern of erosion since the early 2000s.  Tweedie et al. [12] 

documented recent annual erosion trends of 1 to 4 m /yr from 2003 to 2011 which is 2 to 

4 times higher than historic rates reported for their ~11 km study coast located in a 

lagoon setting on the western ABSC [44].  The increase in erosion at this site appears to 

be linearly consistent (R2 = 0.96) among years from 2003 to 2011 demonstrating that the 

conditions likely responsible for the increase in erosion have been sustained since 2003.  

Observations from Ice Complex deposits throughout the Laptev Sea region in Siberia also 

indicate a rate that is 1.5 to 3 times higher today than historic patterns [35,36].       
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2.6.3  Seasonal erosion patterns at Drew Point and other sites 

We were able to assess seasonal variability in erosion in two of the five years analyzed.  

Both years (2008 and 2011) indicated that mean erosion was greatest earlier in the season 

relative to later in the season.  Erosion was 2.1 and 2.0 times faster between break-up and 

late-August/early-September, relative to the intermediate image acquisitions and freeze-

up.  One other study has documented the seasonality associated with erosion on the 

ABSC.  At Elson Lagoon, Tweedie et al. [12] documented patterns of seasonal erosion 

(ice-out to late August vs late August to ice-on) from 2007 to 2010 and reported that 

erosion was typically higher during the fall relative to the summer but when normalized 

to the number of ice-free days that erosion rates were faster in the summer period.  

Overeem et al. [21] hypothesized that in general the number of open water days was a 

good predictor of annual erosion and that the increase in the open water period in the 

summer would have a larger impact on erosion when compared to an increase in open 

water period during the fall.   

2.6.4  Annual and seasonal erosion relative to environmental conditions 

We compared the annual erosion patterns at Drew Point from 2008 to 2012 to a number 

of environmental variables that are thought to impact the rate at which permafrost coasts 

erode (Figure 6).  The years 2009 and 2012 had the longest duration of open water and 

also the highest mean rates of erosion, whereas 2010 had the shortest open water duration 

period and the lowest mean rate.  Directly comparing the number of modeled open water 

days to annual erosion shows good agreement (Figure 6a).  Thus, as hypothesized by 

Overeem et al., [21] based on averages over one long-term (20 yr) and one short-term (5 

 



 30 

yr) period, the number of open water days likely provides a good first order predictor of 

total annual erosion at Drew Point.  Standardizing the average annual distance of erosion 

to the duration of the open water season shows a range of 0.18 to 0.21 m/day, with the 

exception of 2010 where the rate was 0.08 m/day and more similar to historic annual 

retreat rates (Table 3).  Seasonally, the relation between open water days became less 

apparent.  During 2008, the change rate (m/open water days) was 0.35 m/day greater 

during the summer relative to the fall whereas in 2011, the change rate was fairly 

consistent in both the summer and fall when normalized to the number of open water 

days in each period (Table 4).  Thus, other factors were likely at play here.   

The number of storms impacting the coast are somewhat related to the open water 

duration in each year as a longer period of open water results in a greater number of 

storms impacting the coast.  Mean annual erosion patterns at Drew Point also show good 

agreement with the number of storms (Figure 6b) but seasonally this relation breaks 

down. The link between annual erosion and particularly seasonal erosion with storm 

power values calculated based on easterly and westerly storm events did not reveal a 

relation (Figure 6c).  This could be due to the fact that the onshore wind measurements 

used to derive the metric may not be representative of the winds responsible for ocean 

wave generation and erosion of the coast.  Alternatively, it could also indicate that wind 

events of even lesser velocities may impact this coast that we simply did not capture in 

our analysis.  Interestingly, two large westerly storm events occurred in the early erosion 

season 2008, whereas no westerly storm events occurred during the entirety of the 2011 

erosion season.  Also, the maximum measured erosion occurred in the early season in 
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2008 and in the late season in 2011.  This likely reflects differences in part in the 

direction and magnitude of storms in these two different years. 

Mean annual erosion was not well correlated with sea surface and air 

temperatures (Figure 6d and 6e).  In fact, there was essentially no correlation between 

erosion and SST even though this is thought to play an important role in driving erosion 

of permafrost coasts [26].  Thus, our representation of SST could underestimate the 

actual conditions prevailing along the very near-shore ocean water.  The accumulated 

TDD sums were consistently highest during these early season periods where erosion was 

highest (Table 4).  Furthermore, if 2010 is removed from Figure 6e the connection 

between TDD and annual erosion becomes much stronger (R2 = 0.91).  Thus, while open 

water duration and the number of storms appear to control the overall mean erosion at 

Drew Point, TDD variability among years with similar open water duration and storm 

conditions could help explain more subtle variations in erosion. 

Recent analysis (2010 to 2012) of high-resolution satellite imagery and ground 

surveys from Muostakh Island in the Laptev Sea, Siberia where erosion is currently 

progressing at a rate ~2 times more rapid than historic measurements, found the two most 

important controls on annual erosion to be open water duration and summer air 

temperatures, with variation in TDD sums explaining the most variation (R2=0.95) [36].  

The high correlation between TDD and bluff top erosion at this study site result from the 

relative role of thermo-denudation versus thermo-abrasion operating over short time 

periods.  However, the coupled erosion over a period of 3 years or more highlights the 

importance of thermo-abrasion and thermo-denudation operating together in maintaining 
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year-to-year trends in erosion [36].  At the Drew Point study coast, thermo-denudation is 

also an active process, but the dominant driver of erosion is thermo-abrasion and the 

collapse of large blocks of permafrost and is thus more sensitive to the number of open 

water days.  Wobus et al. [26] reported that maximum thermo-denudation rates of the 

bluff top at Drew Point are 1 to 6 cm/day during the period of maximum summer 

insolation.  These values pale in comparison to the measureable change in linear distance 

associated with the collapse of 9 to 12 m wide blocks of permafrost that result from 

development of an erosional niche due to thermo-abrasion.   

One aspect not addressed in these comparisons is the inter-relation between 

erosion of the bluff toe in the previous year and the apparent measurement of erosion in 

the following year.  In previous studies of bluff erosion at Drew Point some potentially 

important factors were not considered.  Frost cracking in the winter along the ice wedges 

nearest the bluff edge could potentially contribute to destabilization of coastal edge 

polygonal blocks.  Well-developed niches formed during the previous erosion season and 

a freezing front penetrating from two sides into the ground could contribute to more 

intense crack formation and block destabilization that may aid early season block failure.  

Following snow melt in the early summer we have observed small overflow channels 

disappearing in sinkholes along ice wedge troughs, suggesting that ice wedge frost cracks 

along the coast could be rapidly widened by spring meltwater.  Thus, the winter processes 

associated with ice wedge cracking could play a role in early summer block collapse 

events and measurable erosion of the bluff edge.  In addition, the erosion measured early 

in one year could also be a result of well-developed niches from the prior year.  However, 
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it appears that averaging observations of erosion over a five-year period at Drew Point 

does an adequate job of capturing the annual variability inherent in decadal-scale 

observations of coastal change at this site.  Modeling of the prior increase in erosion at 

Drew Point highlighted the important role of warmer ocean water in driving the loss of 

land here [25,26].  While this likely factors into the erosion equation here, the duration of 

the open water period in a given year coupled with the number of storms impacting the 

coastline currently are of more importance. Thus, our observational results are consistent 

with the hypothesis posed by Overeem et al. [21], indicating that open water duration and 

the number of storms provide a good first order predictor of erosion at this site.  

2.7  Conclusion 

 We demonstrate the utility of high spatial resolution optical remotely sensed 

imagery acquired at high temporal resolution for the quantification of erosion along a 

rapidly eroding segment of permafrost coast in the Arctic.  Mean annual erosion at Drew 

Point, Beaufort Sea Coast, Alaska for the open water period between 2008 and 2012 was 

16.3 m/yr.  Mean annual erosion varied from 6.7 m in 2010 to 22.5 m in 2012, with 2008, 

2009, and 2011 eroding on average between 16 and 19 m.  Updating patterns of erosion 

at this site over the first decade of the 21st Century indicate a mean erosion rate of 16.4 

m/yr, which is 2.3 times higher than mean annual erosion rates at this site from 1955 to 

1979.  However, year-to-year variation in erosion between 2008 and 2012 was as high as 

15.8 m indicating the importance of annual observations.  Comparing the patterns in 

annual erosion over the recent five year period with a number of environmental variables 

thought to be responsible for the erosion of permafrost coasts in the Arctic shows that 
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open water duration and the number of storms during a given year provide good first 

order predictors of erosion at this site.  The availability of high-spatial resolution optical 

satellite imagery will prove to be a valuable monitoring tool for ongoing Arctic coastal 

dynamics studies along permafrost influenced coastlines. 
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2.10  Figures 

 
 
Figure 1.  Drew Point study coast along Beaufort Sea.  Rapidly eroding segment of 
Alaskan Beaufort Sea Coast (ABSC) near Drew Point.  The overlapping footprint of 
remotely sensed imagery used in this study outlined with the red rectangle.  The location 
of the meteorological station is shown with the yellow dot.  Examples of ice-wedge 
polygonal networks along the coastal bluffs are shown in LiDAR image subsets.  (1) 
Low-centered ice wedge polygons typical of the study area, (2) poorly developed ice 
wedge polygon network in a “young” drained lake basin, and (3) high-centered ice wedge 
polygons typical of upland sites.  The location of Drew Point along the ABSC is shown 
with the red rectangle in the inset in the upper right. 
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Figure 2.  Field photographs showing erosional processes.  Field photographs 
demonstrating the dominant erosional process of niche erosion and block collapse at 
Drew Point.  (a) The exposed ice-rich bluff face showing development of a niche prior to 
a block collapse episode.  (b) A photo of the study coast showing a well-developed niche 
and collapsed blocks of permafrost.  (c) A photo looking back towards a 5 m high bluff 
from a small boat showing large collapsed blocks of permafrost as well as smaller-scale 
thermo-denudation to the right of the 1.9 m tall person.  (d) A photo from the base of the 
bluff looking along a series of connected ice wedges showing the collapse of a block of 
permafrost along a 7 m high bluff.  Note 1.9 m tall person for scale.   
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Figure 3.  High-resolution satellite imagery.  Example of a subset of the high resolution 
imagery sources for the same segment of coast between 2008 and 2013.  The grid in each 
frame represents 50 m x 50 m.  (a) Quickbird image from 06 April 2008 and the ability to 
distinguish the bluffline despite a continuous snow cover. (b) IKONOS image, the lowest 
resolution image in our study, from 20 August 2008.  (c) Geoeye-1 image from 20 July 
2009 during a period of relative strong northeasterly winds.  (d) Worldview-1 image from 
09 July 2010 and the ability to distinguish the bluffline despite remnant snow drifts 
persisting along the coast.  (e) Worldview-2 image from 21 May 2011 during the initial 
phase of snow melt on the tundra and the ability to distinguish the bluffline in spite of 
large drifts along the bluff face.  (f) LiDAR image from 06 August 2011 used in the 
geocoding of all optical images.  (g) Worldview-1 image from 12 September 2011 and 
the ability to delineate the bluffline during the presence of patchy, broken coastal fog.  (h) 
Worldview-1 image from 09 October 2011 and the nice contrast between fresh snowfall 
on the tundra and the unfrozen ocean.  (i) Worlview-2 image from 22 June 2013, the final 
image in the time series, and similar conditions as observed in Figure 3d.  This image was 
used to bracket the end of the 2012 erosion season since no erosion should have occurred 
during the winter.      
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Figure 4.  Decadal and annual erosion rates.  Erosion rates measured for the Drew Point 
study coast for the periods 1955 to 1979 [18], 1979 to 2002 [18], 2002 to 2007 [18], and 
annually since 2008.  Annual erosion exceeded 16 m/yr in every year except 2010 (6.7 
m/yr).  The mean decadal erosion rate from 2002 to 2012 is 16.4 m/yr indicating that the 
heightened erosion documented in Jones et al. 2009a has been maintained at this site, 
with the exception of 2010. 
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Figure 5. Mean annual erosion rate from 2002 to 2012.  The erosion rate for the decade 
spanning from 2002 to 2012 along the Drew Point study coast.  The generalized baseline 
(white line) used as a reference for the orthogonal transects (colored coded to erosion 
rate) are shown along with the 2002 and 2012 bluff top edge lines (black). 
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Figure 6.  Scatterplots of erosion vs. environmental conditions.  Scatterplots comparing 
mean annual erosion from 2008 to 2012 to (a) open water duration, (b) number of storms 
from the east and the west, (c) total accumulated storm power, (d) sea surface 
temperature during the open water period, and (e) summertime (June to September) 
thawing degree day sums. 
 

 



 

2.11  Tables 

Table 1.  Satellite imagery information.  Overview table describing image date, image source, observation geometry, 
georectification results, whether the image was incorporated into the coastal change analysis, and comments associated with a 
particular image. 
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Table 2.  Erosion rate error estimates and mean erosion.  Quantitative estimate of error associated with erosion measurements 
from the satellite imagery.  The estimate is based on the spatial resolution of the sensor, the mean RMS error of the 
georegistration process, and a digitization or user error.  The measurement error between an image pair is provided as the 
dilution of accuracy as coined by Lantuit et al. [20].  The mean erosion between each image comparison is also provided. 

 

  

 



 

Table 3.  Mean annual erosion and environmental conditions.  Mean annual erosion along the Drew Point study coast from 
2008 to 2012 relative to hypothesized environmental variables potentially responsible for the pattern of land loss.  The mean 
erosion, total volume loss, number of open water days, open water mean sea surface temperature, summertime (June to 
September) thawing degree days, the number of storms, and corresponding storm power value are provided for context.    
 

 
 
 
 
  

Year Mean Annual 
Erosion (m)

Volume Loss 
(x 106 m3)

Open Water 
Period (Days)

Open Water 
SST (⁰C)

Thawing Degree Days 
(Based on 0⁰C)

Number of Storms 
(West/East)

Accumulated 
Storm Power 
(m2/s2 x days)

2008 16.1 0.55 86 3.21 429 10 (5/5) 788
2009 19.4 0.72 102 3.26 507 10 (2/8) 1269
2010 6.7 0.24 83 3.94 515 6 (1/5) 1287
2011 17.0 0.60 94 3.62 490 8 (0/8) 1343
2012 22.5 0.81 106 4.25 707 12 (5/7) 726
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Table 4.  Mean seasonal erosion and environmental conditions.  Seasonal erosion measurements at Drew Point in 2008 and 
2011.  The mean erosion, maximum erosion, number of open water days, erosion per open water days, thawing degree days, 
mean sea surface temperature, the number of storms, and corresponding storm power value are provided for context.   
 

 
 

Erosion Year Erosion 
Season

Mean Erosion 
(m)

Maximum 
Erosion (m)

Number of Open 
Water Days

Change Rate 
(m/open water 

days)

Mean Sea 
Surface T (⁰C)

Number of 
Storms 

(West/East)

Storm Power Value 
(m2/s2 x days)

Late 5.7 34.2 36 0.16

3 (0/3) 125

5 (0/5) 12184.2
2011

Early 11.3 17.8 49 0.23 3.0

2008
1.3 3 (2/1) 347

Late 5.2 18.4

Early 10.9 45.3 25 0.44

44158 0.09 4.1 7 (3/4)
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Chapter 3:  Modern thermokarst lake dynamics in the continuous permafrost zone, 

northern Seward Peninsula, Alaska2 

3.1  Abstract 

Quantifying changes in thermokarst lake extent is of importance for understanding the 

permafrost-related carbon budget, including the potential release of carbon via lake 

expansion or sequestration as peat in drained lake basins.  We used high-spatial 

resolution remotely sensed imagery from 1950/51, 1978, and 2006/07 to quantify 

changes in thermokarst lakes for a 700 km2 area on the northern Seward Peninsula, 

Alaska.  The number of water bodies larger than 0.1 ha increased over the entire 

observation period (666 to 737 or +10.7%), however, total surface area decreased (5,066 

ha to 4,312 ha or -14.9%).  This pattern can largely be explained by the formation of 

remnant ponds following partial drainage of larger water bodies.  Thus, analysis of large 

lakes (>40 ha) shows a decrease of 24% and 26% in number and area, respectively, 

differing from lake changes reported from other continuous permafrost regions.  

Thermokarst lake expansion rates did not change substantially between 1950/51 and 1978 

(0.35 m/yr) and 1978 and 2006/07 (0.39 m/yr).  However, most lakes that drained did 

expand as a result of surface permafrost degradation before lateral drainage.  Drainage 

rates over the observation period were stable (2.2 to 2.3 lakes/year).  Thus, analysis of 

decadal-scale, high spatial resolution imagery has shown that lake drainage in this region 

2 Jones, B. M., G. Grosse, C. D. Arp, M. C. Jones, K. M. W. Anthony, and V. E. 
Romanovsky (2011), Modern thermokarst lake dynamics in the continuous permafrost 
zone, northern Seward Peninsula, Alaska, Journal of Geophysical Research 
Biogeosciences 116, G00M03, doi:10.1029/2011JG001666. 
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is triggered by lateral breaching and not subterranean infiltration.  Future research should 

be directed towards better understanding thermokarst lake dynamics at high spatial and 

temporal resolution as these systems have implications for landscape-scale hydrology and 

carbon budgets in thermokarst lake-rich regions in the circum-Arctic. 

3.2  Introduction 

 Thermokarst refers to the process by which characteristic landforms form 

following disturbance of the thermal equilibrium of the ground resulting in thaw of ice-

rich permafrost or melting of massive ice [van Everdingen, 1998].  In areas with 

relatively low relief, a thick overburden of unconsolidated sediments, and high ground-

ice content, this often results in the formation of thermokarst lakes.  Thermokarst lakes 

are one of the most dynamic features in Arctic and sub-Arctic lowland landscapes as the 

lakes, besides facilitating further thaw settlement, often expand laterally through thermal 

and mechanical erosional processes.  Thus, the lateral and vertical dynamics of 

thermokarst lake change results in complex interactions with topography, streams, 

neighboring thermokarst lakes, and permafrost.  Given current and projected Arctic 

climate change it is important to conduct studies on thermokarst lake dynamics as they 

are thought to be an indicator of the effects of climate change on the landscape at least 

over broad geographic scales [Smith et al., 2005].    

 Thermokarst lakes have mainly formed during the course of the Holocene and are 

a sign of local permafrost degradation following post glacial climate warming [Rampton, 

1988; Romanovskii et al., 2004; Walter et al., 2007].  Thermokarst lakes are abundant 

surface features across many high latitude regions, such as the Seward Peninsula 

 



 51 

[Hopkins, 1949; West and Plug, 2008; Plug and West, 2009], the Arctic Coastal Plain 

[Sellmann et al., 1975; Hinkel et al., 2005] as well as several areas in Interior Alaska 

[Jorgenson and Osterkamp, 2005]; in Canada on Banks Island [Harry and French, 1983], 

Tuktoyaktuk Peninsula [Mackay, 1988], the Yukon Coastal Plain [West and Plug, 2008; 

Plug and West, 2009], and Richards Island [Burn, 2002], and in large regions of Siberia 

[Romanovskii et al., 2004, Tomirdiaro and Ryabchun, 1973; Zimov et al., 1997; Smith et 

al., 2005; Grosse et al., 2006; Walter et al., 2007; Grosse et al., 2013].  While not all 

northern, high-latitude lakes are of thermokarst origin [Jorgenson and Shur, 2007; Smith 

et al., 2007], their importance to global climate change and northern high latitude soil and 

permafrost-stored carbon cycling has been noted [Zimov et al., 1997; Walter et al., 2006; 

Walter et al., 2007].  Therefore quantifying changes in thermokarst lakes is of importance 

for understanding potential positive and negative feedbacks to the atmospheric carbon 

budget.   

A suite of recent studies have utilized remotely sensed imagery to document 

changes in thermokarst lake extent in various locations across the Arctic and sub-Arctic 

(Figure 1).  In general, thermokarst lakes are thought to be increasing in abundance and 

surface area in regions of continuous permafrost and decreasing in abundance and surface 

area in transitional permafrost zones (discontinuous, isolated, sporadic) [Smith et al., 

2005].  For example, Smith et al. [2005] examined coarse resolution satellite imagery 

(150 m) to detect surface-area changes in lakes (≥ 40 ha) from 1973 to 1997/98 over a 

broad expanse of West Siberia (~515,000 km2).  They found that lakes had decreased by 

11% during this time period, though the changes were not uniform across the study area.  
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Lake abundance and surface area decreased in the zones of discontinuous, sporadic, and 

isolated permafrost, while both increased in the zone of continuous permafrost.  Lake 

change in Alaska also appears to follow this general pattern, though interpretation differs 

as to the relative roles of increasing aridity and permafrost dynamics [Riordan et al., 

2006; Yoshikawa and Hinzman, 2003].  Recent studies have also shown the importance 

of precipitation on thermokarst lake surface area extent and its detection in moderate 

resolution (30 m) remotely sensed imagery [Plug et al., 2008; Jones et al., 2009a; 

Labrecque et al., 2009].   

It has long been shown that thermokarst lakes have a tendency to drain laterally 

[Hopkins, 1949; Mackay, 1988; Brewer et al., 1993; Hinkel et al., 2007; Marsh et al., 

2009].  Typical thermokarst lake drainage mechanisms in the continuous permafrost zone 

consist of bank overflow, ice-wedge degradation and development of a drainage network, 

headward stream erosion, lake tapping, coastal erosion, as well as expansion of a lake 

towards a drainage gradient.  A few recent studies that have focused on drainage of 

thermokarst lakes in continuous permafrost environments found that rates of drainage 

have been fairly low [Hinkel et al., 2007] or even decreasing during the last ca. 50 years 

[Marsh et al., 2009].  However, the specific external or internal forcing mechanism 

remains poorly understood.     

In order to more fully understand landscape dynamics in a thermokarst lake-rich 

landscape and their potential role in the northern high-latitude carbon cycle it is 

imperative to assess the balance between lake expansion and lake drainage.  Since 

thermokarst lakes have been shown to act as an effective mechanism for the release of 
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organic carbon previously frozen in permafrost and since drainage of thermokarst lakes 

allows for organic carbon sequestration through the accumulation of peat in drained 

basins, landscape-scale analyses of carbon cycling should account for thermokarst lake 

dynamics.  The objectives of our study were (1) to employ high spatial resolution 

remotely sensed imagery (1 m) acquired between 1950 and 2007 to detect changes in 

thermokarst lake extent in continuous permafrost on the northern Seward Peninsula, 

Alaska; (2) to quantify rates of change and analyze whether these rates changed over 

time; (3) to identify potential mechanisms of lake expansion and lake area loss; and (4) 

discuss implications of thermokarst lake change for the carbon cycling in these 

landscapes. 

3.3  Study area 

 Our study area is located on the northern Seward Peninsula in northwestern 

Alaska, USA (Figure 1, site 12) and bounded by the Chukchi Sea to the north, Kotzebue 

Sound to the east, and Devil Mountain volcano and a chain of large maar lakes to the 

south (Figure 2). The northern Seward Peninsula represents one of the major lake districts 

in Alaska, where 7% of the 6,418 km2 land area is covered in extant lakes larger than 1 ha 

[Arp and Jones, 2009].  This region is located in the central portion of Beringia, which 

during the Last Glacial Maximum (19-26.5 kyr ago) formed a largely non-glaciated land 

mass with exposed shelves between Siberia and Alaska (Figure 1) [Hopkins, 1967].  

 Throughout the Wisconsinan, much of the lowlands in the Bering Land Bridge 

were characterized by the accumulation of eolian and alluvial silt originating from 

braided floodplains crossing the exposed shelves and the formation of syngenetic 
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permafrost and ice-wedges [Hopkins et al., 1955].  For the northern Seward Peninsula 

region, wind-deposition is the favorable hypothesis for the aggradation of this land 

surface as silt/loam textures and grain-size analyses are typical of loess, and also due to 

the fact that the silt drapes the paleolandscape [Höfle et al., 2000].  Roughly 21.5 kyr ago, 

a hydromagmatic eruption created the Devil Mountain Maar Lake, the largest known 

maar on Earth, and deposited tephra over a 2,500 km2 area in the Cape Espenberg 

lowlands of the northern Seward Peninsula [Beget et al., 1996].  Close to the maar lake 

the tephra thickness exceeds tens of meters, whereas in distal places thicknesses may still 

reach 1 m. The primary direction of the tephra outfall was to the north and west of the 

eruption [Beget et al., 1996], creating a matrix of ice-rich silt blanketed by volcanic 

tephra, which has subsequently been capped further by Late Pleistocene silt and a cover 

layer of  Holocene soils and peat [Höfle et al., 2000]. 

 Throughout the Holocene, much of the land surface in this region has been subject 

to permafrost degradation and thermokarst processes [Hopkins, 1949; Charron, 1995]. 

With a mean annual ground temperature of ~ -3°C, the continuous permafrost in the 

study area is relatively warm today [Smith et al., 2010], but conditions remain favorable 

for the formation of permafrost and epigenetic ice wedges following drainage of 

thermokarst lakes [Hopkins et al., 1955].  The reworking of the landscape by thermokarst 

processes is clearly evident in the topography and landscape terrain.  Within our 700 km2 

study area, a subset of the Cape Espenberg Lowland-Devil Mountain region (Figure 2), 

73% of the landscape has been influenced by the formation and/or drainage of 

thermokarst lakes [Charron, 1995].  The ratio of thermokarst lake-affected vs. non lake-
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affected landscape units in the study region is very similar to other ice-rich permafrost 

regions in northern Alaska [Hinkel et al., 2005] and Siberia [Grosse et al., 2006]. 

 The vegetation of the northern Seward Peninsula is characterized as Bering 

Tundra.  Ericaceous shrubs, including Empetrum nigrum, Vaccinium uliginosum, and V. 

oxycoccus, are common on the uplands, along with Betula nana, Salix spp., Eriophorum 

vaginatum, Sphagnum fuscum, Rubus chamaemorus, and Polytrichum strictum.  Water-

logged lowlands, including low-centered ice-wedge polygons and drained lake basins, are 

dominated by Carex aquatilis, Eriophorum angustifolium, Eriophorum scheuchzeri, and 

Sphagnum riparium.  Mean annual temperature of the region is -6.1°C based on the 1971 

to 2000 climate normal period, recorded at Kotzebue, Alaska, which is located on the 

Baldwin Peninsula roughly 80 km to the northwest (Figure 2).  Mean July temperature is 

12.6°C (warmest month) while mean February temperature is -19.7°C (coldest month).  

Mean annual precipitation is 255 mm with slightly more than half (130 mm) falling 

between July and September, presumably in the form of rainfall.      

3.4  Methods 

3.4.1  Imagery and classification 

 We used high-spatial resolution, contemporary satellite imagery and historical 

aerial photography, to quantify changes in thermokarst lakes and ponds larger than 0.1 ha 

from 1950 to 2007 (Table 1).  Pan-sharpened, multi-spectral IKONOS© satellite imagery 

from 2006 and 2007 with a resolution of 1 m was available for a large portion of the Cape 

Espenberg Lowland-Devil Mountain region and its cloud-free extent defines our 700 km2 

study area (Figure 2).  The imagery was georegistered to 1 m resolution, orthorectified, 

 



56 

 

aerial photography available for a portion of the region [Manley et al., 2007a-c].  In areas 

without recent orthorectified aerial imagery, terrain-corrected Landsat ETM+ imagery 

(processing level L1T) was used with stable lake centroids as additional control points 

[Sheng et al., 2008]. 

 We compared lake and pond surface area from the registered IKONOS© imagery 

to orthorectified black and white photography from 1950/51 [Manley et al., 2007a] and 

orthorectified color infrared (CIR) photography from 1978 [Manley et al., 2007b].  For 

areas outside of the coverage provided by the Manley et al. [2007a-c] datasets, we 

acquired the appropriate aerial image frames from the U.S. Geological Survey, EROS 

Data Center in Sioux Falls, SD, USA and registered the frames to the IKONOS© 

imagery.  In total, this required nine additional frames from ca. 1950 and three additional 

frames from 1978.  Overall, mean RMS values associated with the Manley et al. [2007a, 

b] orthodatasets were 1.7 m for the 1950/51 imagery and 1.1 m for the 1978 imagery.  

Mean RMS values for the additional frames required to cover the study area were 1.5 m 

and 1.6 m, respectively.   

 We classified the imagery into water and non-water binary raster files using 

object-oriented classification algorithms available in the image processing software 

eCognition® [Frohn et al., 2005].  Each frame was processed with the multi-resolution 

segmentation parameter within eCognition® at a scale parameter of 10, shape factor of 

0.1, and compactness and smoothness factor of 0.5 in the normal mode.  This essentially 

converted the image from individual pixels, into pixels grouped as like objects, which 

nearly perfectly delineates lake and pond perimeters.  The image was subjected to an 
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additional segmentation in spectral differencing mode that grouped like objects further.  

Following the second segmentation, the objects were classified as water or non-water 

based upon threshold values of the image objects.  We employed this automated 

classification approach that provided initial perimeters of lakes and ponds, which was 

then supplemented with a semi-automated classification approach where we visually 

checked the accuracy of the water body perimeter and manually adjusted when needed, 

e.g. for shadows cast by steep lake banks and potentially flooded lake margins.  This 

allowed for more rapid delineation of lakes and ponds over strict manual interpretation 

and allowed us to refine the classification and potentially account for differences in 

timing of imagery acquisition.  The classified images were then converted from raster 

image files to vector files in order to assess changes in lake area and lake abundance for 

each of the three time slices.  Owing to the high spatial resolution of the imagery (1 m) 

we were able to confidently assess area changes to lakes and ponds with a minimum 

mapping unit of 0.1 ha for each time slice.  The 0.1 ha size was chosen for the cut off as it 

represented approximately three to five times the size of a typical low-centered ice wedge 

polygon pond.  

Recent remote sensing studies have shown that total precipitation during the year 

prior to image acquisition may impact measured surface water area of thermokarst lakes 

[Plug et al., 2008; Jones et al., 2009a].  For our study area and image set, precipitation 

during the year preceding imagery acquisition for each time slice was fairly similar with 

211 mm (1950/51), 227 mm (1978), and 241 mm (2006/07).  However, more 

precipitation in the most recent time slice may be reflected as a net increase in surface 
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water area.  Further, variations in the timing of imagery acquisition relative to break-up 

and freeze-up within a particular year may impact lake surface area measurements.  

While all of the imagery was acquired during the summer (SOM Table 1), such seasonal 

differences may also impact measurements of lake surface area.  However, we felt that 

the comparisons between the three time slices to be relevant due to the steep profile of 

lake banks along both lowland and upland lake bluffs [West and Plug, 2008; Plug and 

West, 2009] which would limit the impact of water level fluctuations on the surface area 

measurements, the imagery resolution and methodology used to delineate water bodies, 

and the removal of floodplain lakes from the analysis [Smith et al., 2005].  In addition, 

vegetation growing along lake margins and disproportionate growth rates over time may 

also impact the ability to delineate shorelines effectively.  However, this potential source 

of error is likely negligible due to the 1 m resolution imagery used in this study and the 

overall low canopy height in the tundra-dominated study area.      

3.4.2  Lake shoreline change  

 Detailed lake expansion rates were determined with the Digital Shoreline 

Analysis System (DSAS) extension for ArcGIS© [Thieler et al., 2009].  DSAS generates 

orthogonal transects at user-defined intervals along a baseline, and calculates the rate of 

change between two vector files (lake perimeter from time 1 and time 2) based on the 

elapsed time and the linear distance.  DSAS is generally used for coastal change studies; 

however, it is an appropriate tool for determining change rates with any time series vector 

file.  We used a 5 m buffer of the most recent lake perimeter as the baseline and 
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orthogonal transects were cast at 50 m intervals around each lake perimeter and change 

rates were determined from 1950/51 to 1978 and from 1978 to 2006/07.   

 Error estimates of the linear expansion rate measurements were determined using 

a modified version of the equation used in determining errors associated with 

measurement of Arctic coastal erosion rates [Jones et al., 2009b] (1): 

 

where Ep1 and Ep2 represent the pixel resolution of the imagery (all 1 m) from a 

particular year, RMS1 and RMS2 are the root mean square errors associated with 

georegistration of an image mosaic from a particular year, and Δt is the time interval 

associated with a given time period.  Thus, error associated with the expansion rate 

measurements were 0.09 m/yr and 0.09 m/yr, during the first (1950/51 to 1978) and 

second (1978 to 2006/07) time period, respectively. 

3.4.3  Climate data analysis 

 Long-term (1950 to 2007) temperature and precipitation data were available from 

the climate station located in Kotzebue, Alaska (66.898°, -162.596°).  Mean monthly air 

temperature (Ta) and precipitation (P) data were retrieved from the Alaska Climate 

Research Center (http://climate.gi.alaska.edu/) to assess any variations in climate between 

the time periods (1950/51 to 1978 and 1978 to 2006/07) used to monitor lake change.  

These time periods also roughly coincide with a shift in the Pacific Decadal Oscillation 

from a negative phase to a positive phase in 1976 [Hartmann and Wendler, 2005].  
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 In order to estimate lake water balance, we calculated monthly evaporation (E) 

using the Blaney-Criddle method [McGuiness and Bordne, 1972] (2): 

 

during the period of open-water duration (June to September), where E is in cm and p is 

the monthly mean daily percentage of annual daylight hours for 67°N latitude.  This 

empirical method has been compared to the Bowen ratio, energy-budget method for a 

lake in temperate latitudes and performed reasonably for a model based on Ta and day 

length [Rosenberry et al., 2007].  Subtracting E from P was used to indicate lake water 

balance (P-E) from the month of snow accumulation (October) through the summer to 

September.  

Climate data were summarized according to hydro-climatic elements and periods 

hypothesized to influence inter-annual as well as long-term lake water balance and 

thermokarst processes.  Winter precipitation (October – April) was analyzed as it 

determines snowmelt runoff, lake recharge, and the potential for overtopping of lake 

outlets, one aspect of catastrophic lake drainage.  Annual water balance (October – 

September) summed to the late summer period of surface-area observation was analyzed 

to assess inter-annual variability in water levels and cumulative moisture conditions for 

both time periods.  Finally, mean annual air temperature (MAAT) was analyzed as it 

relates to both lake and ground temperatures, which play a role in driving and resisting 

thermal erosion [Burn, 2002].  For each set of hydro-climatic data, we compared linear 
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regression models for the time periods 1950-1978 and 1978-2007 to evaluate trends and 

mean conditions that could explain observed lake change patterns. 

3.5  Results and discussion 

3.5.1  Lake and pond abundance and surface area 

 The number of thermokarst lakes and ponds larger than 0.1 ha in the 700 km2 

Cape Espenberg Lowland study area has increased from 666 in 1950/51, to 680 in 1978, 

to 737 in 2006/07, or a 10.7% increase during the last 57 years.  Analysis of the 

frequency of lakes and ponds based on four size classes (Table 1) shows an increase of 

3.4% in the smallest size class (0.1 to 1 ha) between the 1950s and 1978, while an 

additional increase of 11.9% occurred in this size class between 1978 and 2006/7 (Figure 

3).  The next smallest size class (1 to 10 ha) also experienced its largest change in the 

second time period.  The 1 to 10 ha size class actually decreased slightly between the first 

two time slices (-0.9%), however increased 6.8% during the latter time period.  The size 

class ranging from 10 to 40 ha showed an increase of 13.0% between 1950/51 and 1978 

and remained stable between 1978 and 2006/07.  The largest size class was the only class 

to consistently show a decreasing trend of 10.0% and 15.3% in the first and second time 

period, respectively.  Thus, it is apparent that there has been a loss of large lakes in the 

study area and an increase in the number of small lakes and ponds.  This increase in the 

number of small water bodies may be a result of partial drainage of these larger lakes, 

leaving multiple remnant lakes and ponds, or may result from the formation of new lakes 

as a result of permafrost degradation. 
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 Of the 14 additional lakes mapped in 1978 relative to the 1950s, six resulted from 

the formation of new lakes (mean size of 0.12 ha), while the majority resulted from the 

partial drainage of larger thermokarst lakes and division into remnant water bodies.  

Similarly, the majority of the 57 additional lakes mapped in the 2006/07 imagery 

compared to the 1978 imagery were a result of the drainage of larger thermokarst lakes, 

with 96% representing lakes that resulted from drainage and division of a larger water 

body.  During the latter time period, new thermokarst lake formation accounted for five 

lakes with a mean size of 0.27 ha.  Further, all of these new lakes have formed in drained 

lake basins.  There were a few instances (six) of new water bodies forming in remnant 

upland topography, however their size was below our minimum mapping unit of 0.1 ha.   

Thus, between 1950/51 and 2006/07, 85% of the increase in the number of lakes is 

actually a result of the partial drainage of larger thermokarst lakes.   

 As shown above, sole analysis of lake abundance without addressing lake area 

changes over time may be misleading, since lake number may increase as a result of 

partial lake drainage.  Only the combination of analysis of lake surface area changes and 

lake abundance provides meaningful information for understanding thermokarst lake 

dynamics.  Total lake surface area during 1950/51 was 5,066 ha, during 1978 it was 

5,115 ha, and during 2006/07 it was 4,312 ha.  Therefore, a total surface area increase of 

1.0% occurred between 1950/51 and 1978, which was followed by a decrease of 15.7% 

between 1978 and 2006/07, resulting in an overall lake surface area reduction of 14.9% 

between 1950 and 2007.  Further, mean lake size for the study area over the period of 

record has decreased as a result of the increase in small water bodies as well as the loss of 
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a number of larger lakes, declining from 7.6 ha (1950/51), to 7.5 ha (1978), to 5.9 ha 

(2006/07).   

 A number of recent studies have focused on the pattern and rate of change in 

lakes located in the Arctic and sub-Arctic (Figure 1).  Two broad-scale geographic 

studies indicate that thermokarst lakes in the zone of continuous permafrost are 

increasing in both number and area, while in the zone of discontinuous permafrost they 

are decreasing in both number and area [Smith et al., 2005; Riordan et al., 2006].  Other 

studies have shown that thermokarst lake surface area is tightly coupled with 

precipitation patterns [Plug et al., 2008; Jones et al., 2009a; Labrecque et al., 2009].  The 

results from our study area in a relatively warm region of the continuous permafrost zone 

document a different pattern for thermokarst lake change.  We show an increase in the 

total number of water bodies, yet a decrease in the total area of thermokarst lakes.  This 

pattern can be explained by the formation of several small lakes and ponds following 

partial drainage.  Including water bodies as small as 0.1 ha, we found that total lake 

number in this study area has increased by 10.7% since the 1950s, yet total lake surface 

area has decreased by 14.9%.  However, if we increase the minimum lake size to 40 ha in 

order to draw comparisons with changes documented for large lakes in Siberia [Smith et 

al., 2005], we find that between 1950 and 2007 there has been a reduction in lake number 

by 24.1% and a reduction in lake area of 26.5%.  Therefore, large lakes on the northern 

Seward Peninsula are draining and are not being replenished by the growth and 

coalescence of smaller lakes at the same rate.  In order to more fully understand these 
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processes it is important to look further at the high resolution imagery to measure in 

detail thermokarst lake expansion rates and possible drainage mechanisms.   

3.5.2  Thermokarst lake expansion rates 

 While expansion of thermokarst lakes in the continuous permafrost zone is a 

known phenomenon, there are very few data on linear expansion rates.  Thermokarst 

lakes are thought to expand due to a number of different shoreline erosional processes, 

which include: (1) development of thermo-mechanic erosional niches [Tedrow, 1969]; 

(2) mass wasting through thaw slumps and block failures [Tomirdiaro and Ryabchun, 

1973; Kokelj et al., 2009; Plug and West, 2009]; (3) mechanical erosion caused by ice-

shove during break-up; and (4) by incorporation of polygonal ponds into the lake 

[Billings and Peterson, 1980].  In order to determine linear expansion rates and whether 

they may have changed over time, we analyzed lakes and ponds that continually 

expanded over our three image time slices within our 700 km2 study region using the 

DSAS tool for two time periods, 1950/51 to 1978 and 1978 to 2006/07 (Figure 4).  The 

number of lakes analyzed by this method was 370 and the water body size ranged from 

0.1 ha to 378 ha.   

 Mean expansion rates for all lakes in the 1950/51 to 1978 time period was 0.34 

m/yr, while in the 1978 to 2006/07 time period it was 0.39 m/yr.  Owing to errors 

associated with image coregistration, lake perimeter delineation, and image pixel size (+/- 

0.09 m/yr) the small difference in expansion rate between the two time periods is within 

our measurement uncertainty.  Mean expansion rate for an individual lake ranged from a 

low of 0.02 m/yr to a high of 1.81 m/yr in the 1950/51 to 1978 time period and from a 
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low of 0.04 m/yr to a high of 1.55 m/yr in the 1978 to 2006/07 time period.  Maximum 

expansion rate for an individual location was 4.25 m/yr and 6.01 m/yr in the first and 

second time period, respectively.   

 Analysis of individual lake expansion rates by lake surface area shows a weak, 

but positive correlation for the early (r2= 0.30) and late (r2=0.14) periods and only slight 

coherence in rates between periods (r2=0.17), suggesting somewhat variable expansion 

rates over time.  However, categorizing expansion rates for lakes based on four distinct 

size classes (0.1 to 1 ha, 1 to 10 ha, 10 to 40 ha, and 40 to 400 ha) shows interesting 

results over time and between size classes (Table 1).  Lakes in the smaller size class 

showed the largest discrepancy between the two time periods, with expansion rates 

increasing from 0.10 m/yr to 0.22 m/yr.  Lakes in the middle size class expanded at 

slightly higher rates than the smallest size class, however the difference between the 

1950/51 to 1978 and 1978 to 2006/07 was much smaller, increasing from 0.22 m/yr to 

0.28 m/yr.  For the two larger size classes, expansion rates were by far the highest.  Both 

size classes showed fairly stable expansion rates (+/- 0.03 m/yr) however, the largest size 

class was the only class to show a slight decrease, from 0.62 to 0.59 m/yr.  Although 

smaller lakes have not expanded at the same rate as larger lakes it is interesting that the 

smaller water bodies exhibited an increase in rates between the time periods, whereas the 

larger lakes did not.  Presumably, these smaller water bodies expand more as a result of 

thermal erosion since their small surface area and open water extent does not provide 

adequate fetch for effective wave action and mechanical erosion.  Thus, the increased rate 
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in smaller water bodies in the second time period may be a result of warmer water 

temperatures relative to the first time period.    

 In addition to water body size, another potential source of variation in expansion 

rates relates to the height of a lake margin bluff.  Lake margins in the study area can be 

divided into two distinct categories: lowland and upland bluff types (Figure 5).  Of our 

7,423 point measurements of thermokarst lake expansion, lowland bluffs accounted for 

88% and upland bluffs accounted for 12%.  Lowland margins are indicative of expansion 

into drained thermokarst lake basins and typically have bank heights from 0.5 m to 3.0 m. 

Upland margins refer to erosional remnants or yedoma-like terrain that have not been 

modified previously by thermokarst lake processes.  Lake bluff heights along such upland 

margins typically range from 6 m to 17 m.  The lowland margin types exhibited fairly 

consistent expansion rates between the two time periods, 0.37 m/yr and 0.42 m/yr, 

respectively, while erosion of the upland margin types also showed a similar pattern, 

increasing slightly from 0.15 m/yr to 0.18 m/yr, respectively, again the slight increase is 

within our measurement uncertainty.  Thus, not surprisingly, it appears that expansion 

rate is largely driven by the height of the bluff and the composition and state of the 

material that the thermokarst lake is expanding into, with higher expansion rates along 

margins at which less sediment material has to be removed.  Thus, total variation in the 

expansion rate of individual lakes may largely be explained by a combination of lake size 

and bluff height of surrounding lake margin.  In addition, bathymetry likely also plays a 

role in the expansion rate of a bluff section due to warmer water temperatures associated 
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with deeper lakes and greater disturbance to the ground thermal regime [Arp et al., 2011]; 

however, we lacked lake depth information to assess this for our dataset.    

 There is general agreement between thermokarst lake expansion rates from our 

study area and the limited data available from other thermokarst lake regions (Table 2).  

In various regions in Alaska, Canada, and Siberia, the long-term, mean expansion rate for 

thermokarst has been shown to vary between 0.10 and 0.70 m/yr for entire lake margins 

and upwards of 2.0 to 5.0 m/yr for individual locations along the lake perimeter.  Thus, 

the mean thermokarst lake expansion rate of 0.35 to 0.39 m/yr that we have measured 

from two different time periods for the northern Seward Peninsula in Alaska falls within 

the range of expansion rates measured in other Arctic regions.  However, all of the 

previous studies have included only a small number of lakes or provided hypothetical 

values based on limited data.  Thus, our measurement of expansion rates at 7,423 points 

distributed across 370 lakes in our study region provides the first landscape-scale 

assessment of this typical process for thermokarst lakes located in the northern, high-

latitude continuous permafrost zone.   

Further research should be directed towards conducting similar types of landscape 

analyses in other thermokarst lake-rich regions.  The determination of expansion rates is 

important for developing long-term monitoring programs focused on the use of repeat 

remote sensing imagery to assess thermokarst lake expansion over time.  Thus, for our 

study area, given a rate between 0.30 and 0.40 m/yr, it would be feasible to acquire high-

resolution imagery (1 m) at three to five year increments to document change in rates 

overtime.  Reporting detailed expansion rate estimates is also important for interpreting 
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and understanding other lake change studies conducted with coarser resolution imagery.  

For example, widespread thermokarst lake expansion reported over a ~25 year period for 

Siberia using imagery with a spatial resolution of 150 m [Smith et al., 2005], indicates 

that expansion rates in their study area would have to have averaged at least 6 m/yr for 

many lakes over a large area, in order for an increase due to shoreline erosion and 

permafrost degradation to be detected.  Given the results from our analysis and expansion 

rates reported from other thermokarst lake-rich regions this seems unlikely and other 

factors controlling lake surface area fluctuation may have also been detected [Plug et al., 

2008].  

3.5.3  Thermokarst lake drainage 

 As lakes expand, the chances for drainage increase due to the possibility of 

encountering a drainage gradient.  As pointed out above, the majority of lakes in the 

study region are expanding, yet the increase in lake abundance can be explained by lake 

drainage and the division of a larger water body into several smaller water bodies.  An 

analysis of the number of drainage events, defined as a >25% reduction in surface area 

[Hinkel et al., 2007], reveals that 130 lakes drained between 1950/51 and 2006/07, which 

has resulted in an average drainage rate of 2.3 lakes/yr.  Analyzing the lake drainage 

events further, reveals that the thermokarst lake drainage rate has remained fairly stable 

over the last half-century, with a drainage rate of 2.2 lakes/yr between 1950/51 and 1978, 

and 2.3 lakes/yr between 1978 to 2006/07.  However, in the second period there was an 

increase in the drainage rate of larger lakes, accounting for the drastic reduction in 

thermokarst lake surface area on the landscape (Table 1). 
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 Hinkel et al., [2007] analyzed lakes larger than 10 ha for a portion of northern 

Alaska (34,000 km2) and found that 50 lakes drained (> 25% reduction in surface area) 

between ca. 1975 and ca. 2000, for a drainage rate of ~2 lakes/yr.  Catastrophic lake 

drainage events have also been reported for a 5,000 km2 area on the Tuktoyaktuk 

Peninsula, Canada.  Mackay [1988] found that between 1950 and 1986 roughly 65 lakes 

had drained completely or partially, yielding a drainage rate of ~1.8 lakes/yr.  More 

recently, Marsh et al. [2009] provide estimates of lake drainage events from the same 

region by looking at three time periods, 1950 to 1973, 1973 to 1985, and 1985 to 2000.  

Their results indicate a reduction in the drainage rate of thermokarst lakes in the region, 

from 1.13 to 0.93 to 0.33 lakes/yr in each time period, respectively.  Thus, drainage rates 

for thermokarst lakes for our 700 km2 study area on the northern Seward Peninsula are 

slightly higher, yet fairly similar to those documented for other regions in northern 

Alaska and NW Canada.  However, if these drainage rates held up across the entirety of 

the northern Seward Peninsula it is likely that this region would exhibit the highest 

thermokarst lake drainage rates thus far found in the Arctic.        

 Drainage of thermokarst lakes can be divided into two distinct categories, lateral 

and internal, both of which relate to degradation of confining permafrost.  Lateral 

thermokarst lake drainage has been reported from a number of regions in the circum-

Arctic.  Typical mechanisms thought to lead to the lateral drainage of thermokarst lakes 

in the zone of continuous permafrost are bank overflow, ice-wedge degradation and 

development of a drainage network, headward stream erosion, lake tapping, coastal 

erosion, as well as expansion of a lake towards a drainage gradient [Hopkins, 1949; 
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Mackay, 1988; Brewer et al., 1993; Hinkel et al., 2007; Marsh et al., 2009; Grosse et al., 

2013].  In contrast, internal drainage of thermokarst lakes has been documented in 

discontinuous permafrost regions in instances where the talik or thawed zone beneath a 

lake penetrates the permafrost, allowing for drainage subterraneously [Hopkins, 1949; 

Yoshikawa and Hinzman, 2003].  Thus, it is important to try to determine the causal 

mechanism for lake drainage in a particular region to better understand the processes 

driving observed lake change.  In the case of lateral lake drainage events, this can be 

accomplished with the use of high-resolution remotely sensed imagery because drainage 

channels can be visualized whereby in coarser resolution imagery they largely are not 

detectable because of their often small width.   

 Through analysis of the high spatial resolution imagery we classified the causal 

mechanism of a particular lake drainage event.  Based on the total number of drainage 

events between 1950/51 and 2006/07, the majority of lake drainage events (71%) appear 

to be a result of lake expansion into a low lying area, such as an adjacent lake, a stream 

corridor, the coast, or topographic gradient (Figure 6).  This class was determined 

through visible evidence of lake expansion and development of a drainage channel 

(Figure 7).  Analysis of those lakes draining during the 1978 to 2006/07 time period 

showed that nearly all lakes expanded at a rate (0.42 m/yr), from 1950/51 to 1978, 

roughly equal to that of the mean for the entire study area (0.35 m/yr).  However, without 

elevation data over the entirety of our study region other mechanisms cannot definitively 

be ruled out.  The second most important mechanism appeared to be related to bank 

overtopping or possibly ice-wedge degradation (17%). This inference was based upon no 
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noticeable bluff erosion and lake expansion, however development of a distinct drainage 

channel.  Further, it is likely that lake expansion and bank overtopping or ice-wedge 

degradation can occur in concert with one another at a given lake and also in areas where 

lake drainage clustering may have occurred due to expansion of one lake and subsequent 

drainage and flooding of a nearby lake, ultimately forcing it to overtop its bank.  

Thermokarst lake expansion into adjacent ice-rich permafrost also leads to incorporation 

of ground-ice melt water into the lake, which may also factor into bank overtopping.  

However, only excess ice that is situated above the lake water level can be counted for 

this additional water into the lake since melting excess ice below the lake water level may 

have an opposite effect due to the fact that produced water volume is smaller than 

original ice volume.  Migration of river channels and subsequent lake tapping was likely 

responsible for the drainage of two lakes. For thirteen of the lakes that decreased in area 

over the study period no drainage outlet was visible in the high-resolution imagery, 

possibly indicating that these lakes shrunk as a result of drying rather than drainage.  It is 

possible that these drained internally, however, they were all very small (mean area of 

0.20 ha) and permafrost in this region may be up to 100 m thick.  Thus, through the 

analysis of high-resolution imagery we have determined that the vast majority of lake 

drainage events in our study area result from lateral drainage and surface permafrost 

degradation.    

 Hinkel et al. [2007] also tried to infer the causal mechanism for lake drainage 

events in northern Alaska and found that 38% resulted from lake expansion, 16% from 

stream meandering, 26% by headward erosion of a stream, and 2% through coastal 
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erosion.  For 18% it remained unclear as to how the lakes drained.  Thus, with the 

exception of lakes draining via coastal erosion and positively identifying headward 

erosion (instead we consider bank overtopping or ice-wedge degradation and 

development of a drainage channel), the relative pattern is similar.  Further, the authors 

also reported a number of cases where human disturbance caused the drainage of lakes 

near Barrow, Alaska [Hinkel et al., 2007].  For our study, we are unaware of the impact 

of humans on the drainage of lakes in this region.   

3.5.4  Climate data observations from 1950 to 2007  

 Analysis of climate data from Kotzebue, Alaska, located 60 miles to the northwest 

of the study region, showed distinct differences in climatology between lake change 

observation periods.  The earlier period (1950-1978) was characterized by low and stable 

winter precipitation of 6.8 cm (Figure 8a), decreasing P-E of 0.4 cm/yr (r2=0.18) (Figure 

8b), and a MAAT of -6.3°C (Figure 8c).  The latter period (1978-2007) was characterized 

by increasing winter precipitation 0.1 cm/yr (r2=0.10) (Figure 8a), a fairly stable yet 

slightly wetter annual water balance (Figure 8b), and a slightly warmer MAAT of -5.0°C 

(Figure 8c). The step-change observed between these periods is consistent with a shift in 

the Pacific Decadal Oscillation from a negative to positive phase in 1976 [Hartman and 

Wendler, 2005].   

Thus, it is somewhat surprising that the expansion rate and drainage rate of 

thermokarst lakes in the study area has remained fairly constant over the last ~60 years.  

However, the slight increase in expansion rate as well as drainage rate, although within 

measurement uncertainty, may reflect these shifts in climate.  The possibility also exists, 
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that the Kotzebue climate station data does not directly represent climatic conditions in 

our study region.  Despite the close proximity, Kotzebue is located on a narrow isthmus 

of land that juts into the ocean.  Future research and field studies should be directed 

towards gaining a better understanding of the factors controlling lake expansion and lake 

drainage as an accurate assessment of the causal mechanisms are critical for 

understanding how thermokarst lakes may respond to climate change.   

3.5.5  Thermokarst lake and carbon cycle dynamics 

 As demonstrated above, thermokarst lake expansion and drainage is an active 

landscape change mechanism operating on the northern Seward Peninsula.  Thermokarst 

lakes have expanded at a mean rate of 0.35 to 0.39 m/yr since the 1950s.  However, as 

lakes expand the possibility of drainage increases due to the encroachment towards a 

topographic gradient.  For our study area, the lateral expansion of lakes has resulted in 

their lateral drainage through surface permafrost degradation at a rate of roughly 2.3 

lakes/yr.  In a simple analysis of the landscape that has been impacted by these two 

mechanisms we determined land lost through time as a result of thermokarst lake 

expansion and land gained through time as a result of thermokarst lake drainage (Figure 

9).  This indicates that during the first time period (1950/51 to 1978) the landscape was in 

near equilibrium, losing approximately 390 ha and gaining 340 ha of land area.  

However, due to the drainage of several large lakes in the second time period (1978 to 

2006/07), land area gained (1200 ha) was nearly four times the area lost (410 ha) due to 

thermokarst lake expansion. 
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 Several studies have documented landscape scale controls on the emission of 

greenhouse gases from northern high-latitude regions [Bartlett et al., 1992; Christensen et 

al., 2007; Flessa et al., 2008; Schneider et al., 2009].  In general, the importance of Arctic 

and sub-Arctic freshwater systems as a net emitter has been noted for some time [Coyne 

and Kelley, 1974; Kling et al., 1991; Cole et al., 1994; Phelps et al., 1998].  More 

recently, Walter et al. [2006] highlighted the potential importance of northern high-

latitude thermokarst lake methane fluxes on the global atmospheric carbon budget.  

However, high lake methane fluxes are linked to a specific type of thermokarst lake that 

has formed in thick ice-rich and organic-rich sediments (yedoma or yedoma-like 

permafrost), whereas thermokarst lakes in basin-rich lowlands largely occupy fully or 

partially the basins of previous lake generations filled with lacustrine sediments already 

depleted in labile carbon, resulting in lower CH4 emissions during subsequent lake 

generations [Walter Anthony et al., this volume].  Drainage of such low-emitting later 

generation thermokarst lakes and the formation of wetlands in the basin could, despite 

carbon accumulation in peat, result in a short-term increase in CH4 emissions.  

 In the case of carbon dioxide fluxes from thermokarst lake and basin-rich lowland 

Arctic landscapes, Zona et al. [2010] noted that the formation and drainage of 

thermokarst lakes factor in prominently to net CO2 emissions at the landscape scale, with 

increased emissions in recently drained basins and progressively decreasing emissions as 

a drained basin ages and less productive plant species colonize.  However, once 

vegetated, all basins served as a CO2 sink.  Similarly, for a shrinking thermokarst lake in 

central Alaska, Wickland et al. [2009] found that within the first 15 years of drainage the 
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freshly exposed lake sediments acted as a CO2 source.  However, 30 years post-drainage, 

as a result of a decrease in labile compounds and establishment of terrestrial vegetation in 

the basin, CO2 emissions were reduced to the point where the basin acted as a net C sink 

[Wickland et al., 2009]. 

Bastviken et al. [2011] recently found that globally, freshwater methane emissions 

act to offset the net continental or terrestrial carbon sink.  Thus, if lakes on the landscape 

are draining as a result of surface permafrost degradation and the basins left behind begin 

to sequester carbon in the form of peat, lake drainage may serve as a negative feedback to 

global warming.  However, in our study area, the net C budget for each lake/basin system 

is dependent on a complex set of thermokarst lake characteristics, lake history, substrate 

and organic carbon quality, environmental and climate conditions, and subsequent 

drainage and wetland characteristics complicating extrapolation of the role of expanding 

and draining lakes on the landscape.   

Since thermokarst lake dynamics likely factor into landscape-scale carbon fluxes, 

we must gain a better understanding of the short-term and long-term C dynamics of these 

systems and regions [Frolking and Roulet, 2007] and incorporate these fluxes into 

terrestrial greenhouse gas emission scenarios.  The balance between expanding lakes and 

draining lakes on the landscape is important for up-scaling carbon emission and 

sequestration estimates over short- as well as long-time scales [Hinkel et al., 2003; Zona 

et al., 2010; Jones et al., 2012].  Thus, further research is needed to more fully understand 

the role of thermokarst lake dynamics at the landscape-scale and how these prominent 

lowland Arctic landscapes factor in the northern, high-latitude carbon cycle. 
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3.6  Conclusion 

 Thermokarst lakes are a dynamic component of lowland Arctic landscapes with 

ice-rich permafrost.  Our assessment of lakes and ponds >0.1 ha in a 700 km2 area using 

high resolution remotely sensed imagery from 1950/51, 1978, and 2006/07 revealed that 

the majority of thermokarst lakes are actively expanding as a result of surface permafrost 

degradation.  However, as lakes expand the opportunity for drainage increases due to the 

encroachment towards a drainage gradient.  Thus, total surface area of lakes in the study 

region declined by 15% due to the lateral drainage of several large lakes.  Long-term 

mean expansion rates of thermokarst lakes in the region ranged from 0.35 m/yr and 0.39 

m/yr and long-term lake drainage rates from 2.2 lakes/yr to 2.3 lakes/yr in the first 

(1950/51 to 1978) and second (1978 to 2006/07) observation periods, respectively.  

Analysis of climate data over the 57 year study period did not reveal any definitive link in 

regards to the response of thermokarst lakes to climatic forcing.  However, given future 

climate projections, it is likely that thermokarst lake-rich Arctic lowlands will change 

dynamically as a result of surface permafrost degradation.  In turn, this will likely impact 

the northern high-latitude carbon budget. 
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3.9  Figures 

 

Figure 1: Arctic and Sub-Arctic lake change detection studies.  Digital elevation model 
base map showing the location of Arctic and sub-Arctic lake change detection studies: (1) 
Yoshikawa and Hinzman, 2003, (2) Smith et al., 2005, (3) Klein et al., 2005, (4) Walter 
et al., 2006, (5) Riordan et al., 2006, (6) Hinkel et al., 2007, (7) Plug et al., 2008, (8) 
Jones et al., 2009a, (9) Marsh et al., 2009, (10) Labrecque et al., 2009, (11) Arp et al., 
2011 (12) Jones et al., this study.  Exposed portions of the continental shelf during the 
last glacial maximum are shown in gray.   
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Figure 2: Cape Espenberg Lowlands study area.  Terrain unit map of the Cape Espenberg 
Lowland - Devil Mountain region (digitized from Charron, [1995]).  The 700 km2 study 
area is outlined in red and the location of Kotzebue relative to our study area is shown in 
the inset. 
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Figure 3: Number of water bodies in various size classes.  Comparison of the number of 
water bodies in four size classes in 1950/51, 1978, and 2006/07.  The increase in smaller 
water bodies can largely be attributed to the partial drainage of larger water bodies.   
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Figure 4:  Thermokarst lake expansion rate measurements.  Example of expansion rate 
measurements at two lakes in the study area.  Rates determined with the DSAS tool 
[Thieler et al., 2009] at 50 m increments around the perimeter of the lake.  (A) Lake 
Rhonda expanded at a mean rate of 0.53 m/yr and (B) Lake Luna expanded at a mean rate 
of 0.44 m/yr over the observation period.  The 1951 lake shoreline is shown as a yellow 
polygon, the 1978 lake shoreline as a green polygon, and the background image is from 
2006.  The 100 m grid in each frame shows the scale. 
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Figure 5:  Field photographs showing differences in bluff types. (A) Photo showing a 
typical lowland bluff and (B) and a typical upland bluff.  A Cessna 185 floatplane in each 
photo provides a scale.    
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Figure 6:  Topographic profile adjacent to a recently drained lake.  Graph showing a 
topographic profile adjacent to a lake that drained during our observation period.  The 
topographic profile is from a LIDAR dataset available for a small portion of the study 
region.  The bluffline positions from 1950 and 1978 are marked with a vertical black line.  
Note expansion of the lake towards a drainage gradient.  The drained of the lake created 
an incised channel ranging in depth from 0.7 to 1 m. 
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Figure 7:  Image time series showing lake dynamics.  Image time series showing 
expansion of a lake between (A) 1950 and (B) 1978 followed by its drainage between (B) 
1978 and (C) 2006.  The white polygon in the image from (B) 1978 shows the lake 
perimeter from 1950.  The white polygon in the (C) 2006 image shows the lake perimeter 
from 1978.  The lake likely drained soon after 1978 as little additional expansion 
occurred prior to drainage. 
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Figure 8:  Climate data parameters during the study period.  Climate data showing (A) 
winter precipitation, (B) P-E index, and (C) MAAT variation from 1950 to 2007.  The 
first (1950 to 1978) and second (1978 to 2007) time periods are separated by different 
regression lines. 
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Figure 9:  Landscape-scale observations of lake dynamics.  Comparison of land lost 
(blue) through thermokarst expansion and land gained (green) as a result of thermokarst 
lake drainage between 1950 and 2007. 
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3.10  Tables 

Table 1:  Thermokarst lake change numbers.  Change in lake number, lake area, 
expansion rate, and drainage events from 1950/51 to 1978 and 1978 to 2006/07 for four 
lake size classes. 

 

 

Table 2: A synthesis of thermokarst lake expansion rates.  A synthesis of previously 
published measurements on thermokarst lake expansion rates in the Circum-Artic. 
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3.11  Supporting online material 

SOM Table 1:  Imagery information. 
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Chapter 4:  Identification of unrecognized tundra fire events on the North Slope of 

Alaska3 

4.1  Abstract  

Characteristics of the natural fire regime are poorly resolved in the Arctic, even 

though fire may play an important role cycling carbon stored in tundra vegetation and 

soils to the atmosphere.  In the course of studying vegetation and permafrost-terrain 

characteristics along a chronosequence of tundra burn sites from AD 1977, 1993, and 

2007 on the North Slope of Alaska, we discovered two large, previously unrecognized 

tundra fires.  The Meade River fire burned an estimated 500 km2 and the Ketik River fire 

burned an estimated 1,200 km2.  Based on radiocarbon dating of charred twigs, analysis 

of historic aerial photography, and regional climate proxy data, these fires likely occurred 

between AD 1880 and 1920.  Together, these events double the estimated burn area on 

the North Slope of Alaska over the last ~100 to 130 years.  Assessment of vegetation 

succession along the century-scale chronosequence of tundra fire disturbances 

demonstrates for the first time on the North Slope of Alaska that tundra fires can facilitate 

the invasion of tundra by shrubs.  Degradation of ice-rich permafrost was also evident at 

the fire sites and likely aided in the presumed changes of the tundra vegetation post-fire.  

Other previously unrecognized tundra fire events likely exist in Alaska and other Arctic 

regions and identification of these sites is important for better understanding disturbance 

regimes and carbon cycling in Arctic tundra.            

3Jones, B. M., A. L. Breen, B. V. Gaglioti, D. H. Mann, A. V. Rocha, G. Grosse, C. D. 
Arp, M. L. Kunz, and D. A. Walker (2013), Identification of unrecognized tundra fire 
events on the north slope of Alaska, Journal of Geophysical Research 118, 
doi:10.1002/jgrg.20113.   
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4.2  Introduction  

 Fire influences vegetation distribution and structure, carbon cycling, land-

atmosphere energy exchange, and climate, and it represents an important and widespread 

disturbance mechanism in several major biomes [Bowman et al., 2009].  However, the 

role of fire in shaping ecosystem patterns in Arctic tundra remains poorly resolved due to 

the rarity of reported fires, the geographic remoteness of the region, and the short 

observational record in the region [Barney and Comiskey, 1973; Wein, 1976; Giglio et 

al., 2006; Rocha et al., 2012].  As a result, an accurate representation of the Arctic in 

models depicting the geographic distribution of wildfires and potential shifts in global 

wildfire activity and pyrogenic gas emissions is lacking [Bond et al., 2005; Krawchuk et 

al., 2009; van der Werf et al., 2010].  Given ongoing climate change in the Arctic [ACIA, 

2005; AMAP, 2011], the frequency, severity, and areal extent of tundra fires is predicted 

to increase [Higuera et al., 2008; Hu et al., 2010].  Thus, a better understanding of the 

role of fires in the tundra biome is needed since tundra vegetation, peat, and frozen soils 

in the Arctic store large, globally significant amounts of labile carbon [McGuire et al., 

2009; Tarnocai et al., 2009], and pulse disturbances, such as fire, can play an important 

role in releasing this carbon [Grosse et al., 2011; Mack et al., 2011].   

Since the middle of the 20th Century, Arctic tundra fires have been primarily 

documented in Alaska [Wein, 1976; Barney and Comiskey, 1973; Racine et al., 1985; 

AICC, 2012].  Historically, a spatial gradient in annual area burned in tundra vegetation 

extended from the Seward Peninsula (frequent and extensive fires) towards the northeast 

(fewer and smaller fires) [Racine et al., 1985].  A more contemporary analysis of the fire 
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history database [AICC, 2012] reveals a northward shift in annual area burned in the 

Alaskan tundra regions from 1950-2012, with an increase in the size of fires north of the 

Arctic Circle over the past two decades [Rocha et al. 2012].  Interestingly, analysis of a 

portion of the fire history database indicates a weak but positive correlation between 

declining summer sea ice extent in the Arctic Ocean and an increasing trend in the area of 

tundra burned since 1979 [Hu et al., 2010].   

The 2007 Anaktuvuk River fire burned more than 1,000 km2 on the North Slope 

of Alaska [Jones et al., 2009] and factors prominently in these emerging trends.  This 

large event has prompted the notion that the northern Alaska tundra fire regime may be 

shifting [Jones et al., 2009; Hu et al., 2010; Mack et al., 2011; Rocha et al. 2012].  While 

the Anaktuvuk River tundra fire has created a natural laboratory to study the impact of 

fire on Arctic ecosystems it has also raised several questions, including (1) is it possible 

that other large tundra fires occurred prior to the period of record keeping, (2) how 

complete is the record of tundra fires in northern Alaska, and (3) what is the long-term 

impact of tundra fires on vegetation and permafrost-terrain characteristics?  Here we 

report results from ground-based observations and measurements of vegetation and 

surface permafrost terrain characteristics in the aftermath of tundra fires that occurred in 

1977, 1993, and 2007.  Through these efforts we were able to gain a better understanding 

of the role of tundra fire on landscape change on the North Slope of Alaska over decadal 

time-scales.  Analysis of post-fire vegetation and landscape succession in concert with 

remotely sensed imagery led to the discovery of two large and eight small unrecognized 

tundra fire events in the region.  Here we primarily describe and characterize previously 
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unrecognized tundra fires in the Meade and Ketik River watersheds and discuss their 

potential significance in ecological and climate change contexts. 

4.3  Study area and methods 

 The study area consists of the northern portion of the Arctic Foothills on the 

North Slope of Alaska (Figure 1).  Aerial observations and ground surveys were 

conducted between 69° to 70° N latitude and 150° to 163° W longitude, covering much 

of the loess belt, or a region which typically contains Pleistocene-aged, ice-rich 

permafrost deposits (Yedoma) [Kanevskiy et al., 2011].  Combined, these efforts led to 

the development of criteria for identifying old tundra fires based on post-fire 

characteristics of geomorphology and vegetation.  This information was then combined 

with remotely sensed imagery to map the previously unrecognized tundra fires.  

Additional field surveys were then conducted to validate the interpretation of the 

remotely sensed imagery.   

4.3.1 Landscape-scale aerial observations 

 In order to develop landscape-scale criteria for the impact of tundra fires on the 

North Slope, we conducted aerial observations of active fires as well as known, past burn 

sites.  We did this to describe the basic patterns and processes of wildfires in tundra and 

to identify key characteristics that would aid in the recognition of prehistoric fires.  Aerial 

observations of the tundra burn sites on the North Slope of Alaska began in September 

2007 during the period of rapid expansion of the Anaktuvuk River Fire.  Aerial 

reconnaissance conducted during this period allowed for the observation of fire behavior 

as it migrated across the landscape (Figures 2a and 2b).  Aerial reconnaissance was also 
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conducted at the 1993 and 1977 burns in July 2011 and June 2012 to assess post-fire 

patterns of landscape change (Figures 2c and 2d).  While flying over the region, we 

observed other areas that resembled the landscape characteristics of these previously 

burned sites but were not identified as having burned during the historic period (Figures 

2e and 2f). 

4.3.2 Ground observations and surveys 

Ground-based surveys at the 2007 Anaktuvuk River Fire [Jones et al., 2009], the 

1993 DCKN190 Fire [Barrett et al., 2012], the 1977 Kokolik River Fire [Hall et al., 

1978], two unburned control sites, and two putative fire sites were conducted in July 

2011 and late-June 2012 (Figure 1).  The surveys focused on upland tundra settings and 

provided information on vegetative and geomorphological differences between burned 

and unburned sites.  We selected unburned sites that were moist tussock tundra 

dominated by tussock cottongrass (Eriophorum vaginatum), which is the most commonly 

burned vegetation community in Arctic Alaska [Rocha et al., 2012].  The burned sites 

were then selected in areas of similar elevation and topography that were inferred to be 

moist tussock tundra pre-fire based on the presence and abundance of live or dead E. 

vaginatum tussocks.  The tussocks, especially in the younger fire scars, often showed 

evidence of charring at their base.  Our aim in this sampling design was to establish a 

chronosequence of sites that vary in time since last fire to better understand post-fire 

vegetation successional trajectories.  While we cannot be certain plant communities 

followed the same post-fire successional pathway in this space-for-time substitution, we 

use the chronosequence approach as an exploratory method given the absence of direct 
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repeat post-fire observations on the North Slope.  A recent analysis found 

chronosequences are most appropriate for studying plant communities that are following 

convergent successional trajectories and have low biodiversity, and low frequency and 

severity of disturbance [Walker et al., 2010] suggesting this approach has high potential 

to be applicable in the Arctic.    

Full floristic surveys were conducted using the point intercept sampling method 

recommended by the Alaska Interagency Fire Effects Task Group [2007].  Plant species 

and height were recorded every 1-m along three (burned sites) and two (unburned sites) 

30-m transects.  All taxa that touched the sampling pin were recorded as ‘hits’.  Percent 

cover was calculated by dividing the number of hits for each taxa by the total number of 

points along each transect.  The transects from the two unburned sites were pooled for a 

total of four transects in undisturbed moist tussock tundra.  Nomenclature follows the 

Panarctic Species List (v. 1.0) developed for the Arctic Vegetation Archive [Walker & 

Raynolds 2011; Walker et al., 2013].  Plant species were grouped into broad functional 

types (SOM Table 1; shrub, forb, grass, sedge, rush, bryophyte, lichen or other), averaged 

across transects within a site, and a chi-square contingency analysis was used to 

determine if functional types were randomly distributed across sites or more predominant 

at some sites compared to others.  To test if canopy height differed among sites, we used 

an analysis of variance (ANOVA) followed by a posteriori (Student’s T) contrasts to 

compare mean canopy height across sites.  The putative fire sites were not included in 

this analysis since we could not perform an ANOVA with 6 sites and a sample size of 

only 3-4 transects per site. 
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Micro-topographic surveys along linear transects across a series of ice-wedge 

polygons and troughs were conducted at each site using a survey-grade Leica Viva® 

differential global positioning system (DGPS).  A base station was established at each 

site that recorded fixed positions, and DGPS data collection was acquired with a rover 

antenna using real time kinematic corrections.  This resulted in high resolution, horizontal 

(<1 cm) and vertical (2-4 cm), topographic data.  These surveys allowed us to identify 

variation in relief due to degradation of ice wedges (thermokarst) in burned and unburned 

upland terrain settings.  Given the time of the year associated with site visits we were not 

able to conduct robust measures of variability in active layer thickness.     

4.3.3  Analysis of remotely sensed imagery 

Delineation of the putative fire sites relied primarily on the surface expression or 

apparent increase in texture in high resolution (<2 m) remotely sensed imagery (Figure 

3), aerial and ground-based surveys, and natural barriers such as river corridors that 

showed sharp contrasts between what was interpreted as burned and unburned tundra.  

The entire perimeter of the Meade River site was covered by high resolution satellite 

imagery acquired between 2002 and 2012; whereas, the Ketik River site had 

approximately 50% coverage by high resolution satellite imagery from 2002 to 2012.  

Where high resolution imagery was lacking, we assessed spectral bands 4, 2, and 1 from 

a Landsat TM image (30 m) acquired on 09 July 2010 by applying a 2% linear histogram 

stretch within an upland tundra setting that exhibited the characteristic increase in image 

texture visible in the high resolution imagery.  This technique emphasized the vegetative 

characteristics associated with the putative fire sites and was used to further delineate the 
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perimeters.  By combining terrain surface roughness characteristics with remotely sensed 

vegetative characteristics, we manually delineated the estimated burn perimeters at a 

scale of 1:40,000.  Vegetation metrics such as NDVI and EVI were determined for the 

Landsat scene; however, the utility in accurately delineating these features using these 

indices proved unfruitful.   

4.3.4  Field verification of unrecognized fire events   

 The two putative tundra fire sites were visited in June 2012 to validate our remote 

sensing analysis.  We did this by conducting aerial surveys across the mapped area as 

well as complementary vegetative and micro-topographic surveys to determine whether 

the upland tundra settings in these sites were more similar to known burn sites or to the 

unburned sites.  We also dug several soil pits at randomly selected locations to look for 

charcoal.  In the field, we tested for the presence of charcoal by smearing samples on 

white paper.  In the laboratory we examined these samples under 10-50x magnification.  

Approximately 5 mg of charred woody material was extracted from each site and sent to 

Beta Analytic Inc. for radiocarbon dating using accelerator mass spectrometry.  

Calibration of the dated material was conducted using the δ13C-adjusted age and CALIB 

6.1 [Reimer et al., 2009].   

4.4  Results  

4.4.1  Delineation of unrecognized tundra fires 

 We delineated the perimeters of two large and previously unrecognized tundra 

fires by combining field observations with remotely sensed imagery (Figure 4).  The 

Meade River fire burned an estimated area of 500 km2.  The centroid of the burn 
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perimeter lies at 69° 56.4’ N, 157° 24.6’ W.  The fire was bounded by the Meade River 

on its eastern margin and burned a north to south distance of 40 km.  The Ketik River fire 

burned an estimated area of 1,200 km2; however, the delineation of the perimeter at this 

site was hampered by the lack of contemporary high resolution satellite imagery.  Thus, 

portions of this fire extent were based on the histogram-stretched Landsat image and 

natural landscape barriers.  The centroid of the burn perimeter lies at 69° 45.3’ N, 159° 

36.0’ W.  Based on this delineation, the Ketik River fire burned a distance of 60 km north 

and south and was largely confined between the Ketik River on the east and the Koalak 

River on the west.    

4.4.2  Charred material and age control 

 In order to find indisputable evidence that these sites had burned, we extracted 

soil plugs to look for charcoal layers.  We visited three sites within the Meade River fire 

and found charcoal preserved at all three sites.  The charred layer was approximately 1 

cm thick and was buried beneath 7-9 cm of organic matter that had accumulated post-fire 

(Figure 5a).  A total of eight sites were visited in the Ketik River fire and charred material 

was encountered at two.  The best preserved site contained a 0.5 cm thick charred layer 

that was overlain by 12 cm of peat and vegetation (Figure 5b).  At the sites where we did 

not find charcoal, there was approximately 10 to 12 cm of organic material accumulation 

directly atop mineral soil.  

 Several pieces of charred woody material from one location at each site were used 

to determine the approximate, maximum time since fire.  The measured radiocarbon age 

of the charred material from the Meade River fire was 70±30 14C yrs BP and the 
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measured radiocarbon age of the Ketik River fire was 100±30 14C yrs BP, where "BP" 

indicates radiocarbon years before AD 1950 (Table 1).  Calibration of these sample ages 

to calendar years using the δ13C- adjusted ages resulted in six possible age ranges for the 

Meade River site that span from AD 1695 to 1954 and three possible age ranges for the 

Ketik River site that span approximately the same time interval.  Of the six possible 

calibrated age ranges for the Meade River sample, the periods AD 1695-1726 and AD 

1876-1918 account for 20% and 60% of the total probability under the calibrated age 

distribution, respectively (Table 1).  Of the three possible age ranges for the Ketik River 

sample, the highest probability under the calibrated age distribution (74%) is the period 

AD 1812-1919 (Table 1).  

4.4.3  Vegetative and geomorphic characteristics 

The distribution of plant functional types differs markedly among sample sites 

(Figure 6 and Figure 7; SOM Table 1; χ2=236.728, d.f.=35, P<0.0001).  At the three sites 

that burned since the mid-1970s, grass cover (primarily Arctagrostis latifolia and 

Calamagrostis lapponica) was higher relative to the unburned moist tussock tundra sites, 

which were dominated by sedge species (primarily Eriophorum vaginatum and Carex 

bigelowii).  At the two newly identified fires, the greatest deciduous shrub cover was 

observed (primarily Salix pulchra, Betula nana and Rhododendron tomentosum ssp. 

decumbens), while grass cover was lower than that observed for the sites that burned 

more recently (Figure 6b).  Bryophyte and lichen cover was greatest in the unburned site 

and oldest fire sites, while lichens were absent from the two more recent Anaktuvuk 
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River and DCKN fires.  The bryophytes at these two more recent fires were primarily the 

early colonizing pyrophytes including Marchantia polymorpha ssp. ruderalis, Ceratodon 

purpureus, Leptobryum pyriforme and Pohlia nutans.  In contrast, bryophyte taxa such as 

Sphagnum were only observed at the unburned sites.  We also observed a significant 

difference among sites in the height of the vegetation, with canopy heights from 1/2 to 

six-times greater in burned versus unburned areas (Figure 6a; ANOVA, F3,9 =386.56, P < 

0.0001).  In particular, taller shrubs tended to be found in the burned upland tundra sites 

relative to the unburned upland tundra sites.    

There were also differences in micro topography among sites with varying time 

since fire (Figure 7).  The typical micro-relief associated with ice wedge troughs in the 

unburned, upland control sites was 0.2 to 0.5 m.  In contrast, micro-relief associated with 

ice wedge troughs in the DCKN190 fire site ranged from 0.7 to 1.3 m, while at the 

Kokolik River site it ranged from 0.5 to 1.0 m.  Micro-relief across ice-wedge troughs at 

the Meade River fire survey site ranged from 0.7 to 1.1 m and from 0.5 to 1.0 m at the 

Ketik River fire survey site.     

4.5  Discussion  

4.5.1 Spatial and temporal context of fire on the North Slope of Alaska 

 Between 1950 and 2012, forty-two tundra fires are known to have occurred on the 

North Slope of Alaska, with the earliest reported burn in 1959 [AICC, 2012].  These 

forty-two fires burned a combined area of 1,635 km2.  The majority (~83%) of these fires 

have been small, burning areas <10 km2.  Four of the five largest fires observed on the 

North Slope over this period occurred in the past two decades, which define the pattern 
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described by Rocha et al. [2012].  There has also been an increase in the total number of 

fires detected on the North Slope, particularly in the last decade, but many of these are 

very small (< 0.5 km2), and their detection likely a result of better observational coverage 

[Miller, 2010].  Spatially, tundra fires have primarily occurred in the Arctic Foothills 

between the Brooks Range and the Arctic Coastal Plain (Figure 1).  Only three fires have 

been documented on the Arctic Coastal Plain and all three of these occurred between 

2011 and 2012.   

 Together the Meade River (500 km2) and Ketik River (1,200 km2) fires roughly 

equal the area burned on the North Slope of Alaska over the period of record keeping 

[AICC, 2012].  Addition of these sites to the fire history database would make the Ketik 

River fire potentially the largest documented event and the Meade River fire the third 

largest documented event in the region.  However, these delineated areas should be 

viewed as approximations as it is even difficult to accurately delineate fire perimeters that 

occur during the remote sensing period, which began around the 1950s [Kasischke and 

Turetsky, 2006; Barrett et al., 2012].  These delineated areas should also be viewed as 

maximum burn extents since tundra fires exhibit a heterogeneous burn pattern with 

numerous unburned inclusions.  A patchy burn pattern at the Ketik River site could 

explain the lack of charcoal encountered within the estimated burn perimeter.  This could 

also result from the presence of a more uniformly graminoid-rich tundra at the time of the 

burn because this vegetation type often leaves no partially burned charred material [Cofer 

et al., 1990].  Alternatively, it could indicate that the fire severity varied across the burn 

extent or that we have over-estimated the size of this fire.   
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Both the Meade River and Ketik River fires likely occurred as single events 

sometime during the last 300 years (Table 1).  Due to limitations associated with 

radiocarbon dating during this period we can only provide the possibility of the fires in 

several different age ranges.  In addition, the charcoal material we dated was fixing 

atmospheric carbon before these fires occurred.  We consider the period between C 

fixation and fire (in-built age) for the material we dated (burned twigs) to be a few years 

and at most a few decades [Gavin, 2006].  Nevertheless, we can further constrain the 

timing of the two fires by assessing the probability distribution of calendar year 

calibration ages, historic aerial photographs, and regional climate proxy records.   

For both the Meade and Ketik sites the most recent calibrated age range occurred 

between AD 1952 and 1954.  However, this age window accounts for a low probability 

of the sample (2-3%) making it very unlikely to be the calendar age of the charcoal.  

Furthermore, analysis of aerial photography acquired in the late-1940s revealed that the 

increased landscape texture and inferred fire perimeters at the Meade and Ketik sites 

were already present at this time (SOM Figure 1).  The oldest possible age range for both 

fires occurred between AD 1695 and 1725.  The probability that the Meade and Ketik 

fires occurred during this time period are 20% and 24%, respectively.  This period is 

coincident with the Little Ice Age (LIA), and in particular the coldest and driest phase of 

the LIA on the North Slope [Bird et al., 2009].  While, presumably this was a period with 

little thunderstorm activity, large tundra fires could have occurred owing to the dry 

conditions.  The final possible calibrated calendar year age ranges for these events occur 

between AD 1810 and 1920.  The probability distribution for both the Meade and Ketik 
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sites is highest during this time, 77% and 74%, respectively.  Within this time period, 

results from the Meade River sample indicate four possible age ranges, with AD 1876 to 

1918 yielding a 60% probability.  Results from the Ketik sample only indicate the one 

age range (AD 1812 to 1919) during this period.  Jorgenson et al. [2006] noted the 

possibility of widespread thermokarst pit formation between AD 1850 and 1940 for a 

study site approximately 200-300 km to the northeast of these fires sites.  Furthermore, 

Bird et al. [2009] suggest that the period after AD 1880 marked a transition to regionally 

warm and dry conditions.  Thus, given the probability distribution of ages from 

radiocarbon dating, the presence of fire altered tundra in the 1940s photography, and 

regional climate proxy data both fires likely occurred between AD 1880 and 1920 or 

shortly thereafter when considering the in-built age factor [Gavin, 2006].       

The discovery of the Meade and Ketik Fires indicate large tundra fires on the 

North Slope of Alaska have likely occurred as recently as the last ~100 to 130 years.  It is 

likely that other fire events of variable size have also occurred in the region that remain to 

be discovered (SOM Figure 2) and that the role of fire as a disturbance agent in Arctic 

tundra in general has likely been underestimated.  Efforts that seek to determine the 

historical context of large fires on the North Slope are still in their nascent stage.  In 

addition, our cursory analysis of a subset of the remote sensing archive for the region 

identified eight small tundra fires not documented in the fire history database (Figure 1).  

While the focus of this paper is on the detection of the large pre-historic events, a recent 

study highlighted the important role of small fire events on fire regimes and that globally 
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there was a 35% underestimate in the area burned as a result of omission of small fires 

[Randerson et al., 2012].              

These data also add to the growing observations concerning the fire regime of the 

North Slope region. Based on recent (AD 1950 to present) [Rocha, et al., 2012] and paleo 

(last ~5000 years) [Hu et al., 2010; Higuera et al., 2011] estimates of fire rotation periods 

(the amount of time it would take for a specified region to burn) and fire return intervals 

(the number of years between successive fires at a given location) for the North Slope of 

Alaska converge on a time frame of 4000–5000 years, respectively. Addition of our sites 

to this estimate for the region using the highest probability calibrated age ranges (AD 

1810 to 1920) and the definition of the North Slope as provided in Rocha et al. [2012] 

indicate a fire rotation period that ranges from approximately 3000 to 7000 years. Up to 

this point, the North Slope has a scant and evolving data set of past fire frequency 

compared to other systems where fire rotation periods have been estimated based on  

decades of research [e.g., Sousa, 1984].  Estimates of a fire rotation period for the study 

area have proven to be highly variable when using different calibrated age ranges of the 

fires discovered here. For example, using the period AD 1810–2012 results in a fire 

rotation period of ~7000 years and using the period AD 1920–2012 results in a fire 

rotation period of ~3000 years. Given the uncertainties in a minimal number of 

radiocarbon samples, the in-built age factor, and the fact that future work is needed to 

better reconstruct the fire history in the region, we have included these calculations in this 

paper a bit reluctantly.  In addition, a recent modeling effort focused on fire return 
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intervals in Alaska found values that ranged from 100 to 200 years, 500 to 700 years, and 

greater than 2000 years for various locations on the North Slope of Alaska [Pfeiffer et al. 

2013].  These wide ranging estimates in the repeated burning of Arctic tundra in this 

region highlight the need for more concentrated work with respect to potential past tundra 

burning.  

4.5.2  Wildland fires and shrub invasion of tundra  

Direct measures of the ecological impacts of tundra fires on vegetation on the 

North Slope of Alaska over decadal and centennial time scales are sparse to non-existent.  

Observations at the Anaktuvuk River Fire indicate that graminoid cover is substantially 

greater than shrub cover in the first four years post-fire [Jandt et al., 2012; Bret-Harte et 

al., 2013].  Observations at the 1977 Kokolik River site spanning the first five years post-

fire also support this pattern [Racine et al., 1987].  At the other large historic tundra fire 

site, the 1993 DCKN190, graminoid cover remained greater than shrub cover 17 years 

post-fire, but the proportion of grasses relative to sedges had increased [Barrett et al., 

2012].  Remotely sensed observations of vegetation change in tundra sites that burned in 

the last several decades also follow this general pattern with an increase in both albedo 

and greenness that is interpreted as an increase in grass cover [Rocha et al., 2012].  Our 

observations from one site located in the northern portion of the Anaktuvuk River Fire 

also follow this short-term trajectory, but we note a substantial difference in grass cover 

(primarily Arctagrostis latifolia and Calamagrostis lapponica) relative to our unburned 

upland moist tussock tundra site in the first five years post-fire (Figures 6b and 7b).  Our 
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results also indicate a greater abundance of grass cover at the 1993 fire site (Figures 6b 

and 7c) similar to that found by Barrett et al. [2012], whereas vegetation present at the 

1977 burned site resembled the younger fire sites but with the addition of lichens that 

were absent from the 2007 Anaktuvuk River and 1993 DCKN190 fires (Figure 6b and 

7d).   

Addition of the Meade River and Ketik River sites to the chronosequence of 

burned upland tundra used to infer fire-related changes in vegetation indicates the relative 

proportion of grasses is less than more recently burned sites, yet still far greater than 

unburned tundra, likely reflecting the legacy of past burning.  Moreover, the proportion 

of shrubs is greatest at these two sites (Figures 6b, 7e, and 7f).  We interpret the greater 

abundance of shrubs to reflect secondary succession from grass to shrub dominance post-

fire.  On the more southerly, warmer Seward Peninsula post-fire secondary succession in 

tundra is known to be accompanied by a transition from grasses to shrubs over a time 

scale of several decades, [Racine et al., 2006].  However, on the North Slope of Alaska 

this transition has not been documented previously, and our results provide the first 

compelling evidence of a shift towards shrubbier conditions post-fire in the region.  

These findings have implications when interpreting the modern distribution of shrubs on 

the North Slope of Alaska [Beck et al., 2011] and indicate that fire could play a key role 

in the ongoing "shrubification" of the region [Sturm et al. 2001; Tape et al., 2006].   

4.5.3  Fire history and permafrost degradation  

Tundra fires can trigger thermokarst by removing insulating layers of vegetation 

and peat and decreasing albedo at the ground surface.  In the southern portion of the 
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Anaktuvuk River Fire, Mann at el. [2010] noted the widespread occurrence of active 

layer detachment slides and several thaw slumps forming over the first three years 

following the burn.  Rocha et al. [2012] synthesized thaw depth measurements for all 

known tundra burn sites in Alaska and found that there was a sustained increase in the 

thaw depth within burned sites even three decades post-fire.  While we lack robust 

measures of active layer thickness variation and did not see widespread evidence of 

stabilized detachment slides and thaw slumps, we did notice widespread formation of 

thermokarst pits at our sites and conducted micro-topographic surveys to capture the 

relief associated with ice-wedge troughs, as the formation of thermokarst pits is also an 

indicator of permafrost degradation [Jorgenson et al., 2006]. 

The microtopography of ice-wedge polygons (raised centers to troughs) in 

undisturbed upland tussock tundra settings was 0.2 to 0.5 m (Figure 7a).  When viewing 

these sites in high-resolution remotely sensed imagery, it is difficult to distinguish 

individual polygons (Figure 3a).  However, in images from the Anaktuvuk River fire four 

years after the burn, the increase in texture is evident (Figure 3b), and the ice wedge 

trough micro-topography show initial signs of thermokarst (Figure 7b).  For the sites that 

had burned in 1977 and 1993, the relief associated with ice wedge troughs ranges from 

0.5 to 1.3 m indicating that the fires disrupted the soil thermal regime leading to 

permafrost degradation (Figures 7c and 7d).  This shows up in the high resolution 

imagery as an increase in texture (Figures 3c and 3d).  DGPS surveys conducted at the 

Meade River and Ketik River sites were more similar to the burn sites than the unburned 

sites, with micro-relief associated with the ice wedge troughs on the order of 0.5 to 1.1 m 
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(Figures 7e and 7f).  However, one notable difference between these sites and the sites 

that burned in 1977 and 1993 (Figures 3c and 3d) was the lack of ponded water in the ice 

wedge troughs (Figures 3e and 3f).  We interpreted that this could be the result of a more 

integrated drainage network in these older burn sites or paludification of the troughs and 

infilling with peat and vegetation. 

The presence of near-surface, ice rich permafrost terrain with massive ice in the 

form of wedges was essential for the identification of the previously unrecognized tundra 

fire events.  The degradation of ice-rich permafrost terrain likely plays an important role 

in post-fire vegetation succession trajectories as noted by Bret-Harte et al. [2013].  Thus, 

the increase in shrubbiness at the century-old fire sites is likely due in part to ice-rich 

permafrost degradation and it was the combination of vegetative and geomorphic change 

that aided in our ability to identify these sites.  While it appears that large fires on the 

North Slope tend to occur in this belt of ice-rich permafrost, several small historic fires 

have occurred in areas not indicative of ice-rich permafrost terrain (Figure 1).  Detection 

of fires that pre-date the period of record keeping in these area would be difficult to 

detect by using the techniques applied in this study.  These findings also have 

implications for potential future successional trajectories associated with the Anaktuvuk 

River fire.  Figure 1 indicates that the northern two-thirds of this fire perimeter may 

experience more widespread ground subsidence as a result of post-fire permafrost 

degradation relative to the southern one-third, where surface permafrost deposits tend to 

be less ice rich.  Thus, spatially variable responses in vegetation succession should be 

expected as a result of this fire event in the years and decades to come.        
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4.6  Broader implications 

 Identification of the Meade River and Ketik River fires may have Arctic-wide 

implications.  Mack et al. [2011] found that the 2007 Anaktuvuk River fire released 2.1 

Tg of C to the atmosphere, which is equivalent to the annual net C sink for the entire 

Arctic biome.  If the Meade River and Ketik River fires released similar amounts of C 

during combustion, these events may have had a similar immediate impact on 

atmospheric carbon.  There may also be an important long-term impact of these 

disturbances because the fires here may promote the degradation of the yedoma-like 

deposits (areas with Pleistocene aged permafrost deposits that can be high in ice and 

carbon content) that occur in this region (Figure 1) [Kanevskiy et al., 2011].  The 

apparent shift from sedge-dominated tundra to shrub-dominated tundra that we 

documented in the older burn sites could also have a positive feedback on climate 

warming due to the combination of a decrease in albedo and an increase in 

evapotranspiration associated with this transition [Euskirchen et al., 2009; Bonfils et al., 

2012].  Thus, during a period of already rapid shrub expansion in the Arctic [Myers-

Smith et al., 2011] in which tundra fires are becoming larger and more frequent [Rocha et 

al., 2012], this process may be exacerbated.  Further, an increase in shrub abundance may 

also lead to an increase in the frequency, severity, and areal extent of tundra fires 

[Higuera et al., 2008], which may lead to an increase in C release [Mack et al., 2011].  

However, very little is known about the balance of C storage following tundra fires.  The 

complexities associated with the long-term C budget at burned tundra sites underscore the 
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importance of better understanding the spatial and temporal context of tundra fires in the 

Arctic.         

4.7  Conclusions 

We discovered two large and previously unrecognized tundra fire events on the 

North Slope of Alaska using the increase in landscape texture that resulted from 

vegetation changes and ice-wedge degradation post-fire.  The Meade River fire burned an 

estimated 500 km2 and the Ketik River fire burned an estimated 1,200 km2.  Based on 

radiocarbon dating and analysis of historic aerial photography, and climate proxy data, 

these fires likely occurred between AD 1880 and 1920, making them the oldest 

delineated tundra fire perimeters in Arctic Alaska.  Recognition of these fires potentially 

doubles the estimated area of burned tundra on the North Slope of Alaska during the last 

~100 to 130 years.  Identification of these sites also provides a centennial-scale 

chronosequence of post-fire vegetation and geomorphic change providing a valuable 

temporal context for better understanding the impacts of tundra fires during a period in 

which they are expected to increase in their number, size, and frequency. 
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4.10  Figures 

 

Figure 1:  Fire distribution on the North Slope of Alaska.  Regional map showing 
showing previously identified tundra fires, unrecognized tundra fire sites presented in this 
study, and field survey locations on the North Slope of Alaska.  The blue polygon 
represents the likely distribution of Pleisto-cene-aged silt with high ice and carbon 
content (Yedoma) [Jorgenson and Grunblatt, 2013]. The question mark depicts the site 
shown in SOM figure 2. 
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Figure 2:  Oblique aerial photography of tundra fire sites.  (a) The 2007 Anaktuvuk 
River fire showing the heterogeneous pattern associated with the burn, (b) the 2012 
Kucher Creek fire showing a patchy burn pattern as well as a small stream prohibiting 
fire expansion, (c) the 1993 DCKN190 Fire showing an increase in landscape texture in 
the burned (right side of creek) versus unburned tundra (left side of creek), (d) the 1977 
Kokolik River fire showing shrubbier tundra in the foreground (in burn) and typical 
graminoid tussock tundra in the background (outside burn), (e) the recently identified 
Meade River fire site, and (f) the recently identified Ketik River fire site. 
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Figure 3:  Increase in image texture following fire.  High-resolution satellite images of 
upland tundra settings from (a) a site within the Anaktuvuk River fire prior to the burn, 
(b) the same site as in (a) four years after the fire, (c) the 1993 DCKN190 fire site, (d) the 
1977 Kokolik River fire site, (e) the Meade River fire site, and (f) the Ketik River fire 
site. 
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Figure 4:  Enhanced Landsat images of the (a) Meade River and (b) Ketik River sites.  
The locations of survey sites mentioned in the text are marked with a white dot along 
with their corresponding figure number.  The yellow dots represent the location of 
oblique geotagged photos taken during the aerial surveys in 2012.  
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Figure 5:  Charred material preserved in soil column.  Example of soil plugs taken from 
the (a) Meade River site and the (b) Ketik River site.  Arrows depict charred horizon and 
smear tests shown in lower left. 
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Figure 6:  Difference in vegetation at burned and unburned sites.  (a) Mean canopy 
height among unburned and burned tundra sites (ANOVA, F3,9 =386.56, P < 0.0001) and 
(b) the distribution of vascular plant functional types (χ2=236.728, d.f.=35, P<0.0001).  
Bars in (a) show mean values and brackets denote associated standard errors and site 
means that differ significantly (P < 0.05) are indicated by a subscript.  The x-axis is 
arranged from youngest to oldest fire event.  
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Figure 7:  Ground-based surveys at burned and unburned sites.  Field photos and DGPS 
survey data showing the vegetative and geomorphic expression of (a) an unburned site, 
(b) the 2007 Anaktuvuk River fire, (c) the 1993 DCKN190 fire, (d) the 1977 Kokolik 
River fire, (e) the Meade River fire, and (f) the Ketik River fire.  The pink flamingo lawn 
ornament measures 50 cm from head to tail.  All x-axes represent 50 m and all y-axes 
represent 2 m.  
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4.11  Tables 

 
Table 1:  Age control for Meade and Ketik fire sites.  Results from radiocarbon dating of charred twig material found 
preserved in the soils at the previously unrecognized fire sites provided as a measured radiocarbon age, conventional 
radiocarbon age, 2-σ calibrated age, and the relative area under the distribution curve. 
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4.12  Supporting online material 

 

 
SOM Figure 1.  Late-1940s aerial photography of fire sites.  Late-1940s historic aerial 
photography of the Meade River and Ketik River sites showing that the increase is 
landscape texture was already apparent when the imagery was acquired. These images 
were used to rule out the possibility that these two events occurred after 1950. 
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SOM Figure 2.  Likely tundra fire site near the Chandler River exhibiting the increase in 
texture in high resolution satellite imagery and a shrub-dominated vegetation community 
atypical of the upland tussock tundra community that lies outside the delineated perimeter 
(black polygon). Note standard pink flamingo lawn ornament for scale which measures 
50 cm from head to tail. This site is shown in Figure 1 as the question mark. 
  

 



 

SOM Table 1:  Raw data table compiled from vegetation surveys.  Raw data table showing species grouped by functional type 
(down) and listing transects and their localities sampled on the North Slope (across). Data are cover abundance (percentage). 
Species occurring on the transect that were not hit are indicated by an 'r' denoting these were rare species (cover << 1%). These 
data were used to compile Figure 7. 
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SOM Table 1 continued 
 

 



 

 
SOM Table 1 continued 
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Chapter 5:  Quantifying landscape change in an arctic coastal lowland using repeat 

airborne LiDAR4 

5.1  Abstract  

Increases in air, permafrost, and sea-surface temperature, loss of sea-ice, the 

potential for increased wave energy, and higher river discharge may all be interacting to 

escalate erosion of arctic coastal lowland landscapes.  Here we use airborne Light 

Detection and Ranging (LiDAR) data acquired in 2006 and 2010 to detect landscape 

change in a 100 km2 study area on the Beaufort Sea coastal plain of northern Alaska.  We 

detected statistically significant change (99% confidence interval), defined as contiguous 

areas (>10 m2) that had changed in height by at least 0.55 m, in 0.3% of the study region.  

Erosional features indicative of ice-rich permafrost degradation were associated with ice-

bonded coastal, river, and lake bluffs, frost mounds, ice-wedges, and thermo-erosional 

gullies.  These features accounted for about half of the area where vertical change was 

detected.  Inferred thermo-denudation and thermo-abrasion of coastal and river bluffs 

likely accounted for the dominant permafrost-related degradational processes with 

respect to area (42%) and volume (51%).  More than 300 thermokarst pits significantly 

subsided during the study period, likely as a result of storm surge flooding of low-lying 

tundra (< 1.4 m asl) as well as the lasting impact of warm summers in the late-1980s and 

mid-1990s.  Our results indicate that repeat airborne LiDAR can be used to detect 

4 Jones, B. M., J. M. Stoker, A. E. Gibbs, G. Grosse, V. E. Romanovsky, T. A. Douglas, 
N. E. M. Kinsman, and B. R. Richmond (In Press), Quantifying landscape change in an 
arctic coastal lowland using repeat airborne LiDAR, Environmental Research Letters. 
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landscape change in arctic coastal lowland regions at large spatial scales over sub-decadal 

time periods. 

5.2  Introduction 

Recent reductions in Arctic sea ice extent have been well documented (Stroeve et 

al 2012).  Reduced sea ice cover, combined with earlier seasonal thaw and later winter 

freeze-up results in increased effective fetch for wind-wave generation and a longer time 

period of open water for storms to impact arctic coastal lowlands (Overeem et al 2011).  

Increases in river discharge may also be enhancing erosion along riverine corridors, 

although pan-Arctic evaluations of river discharge reveal contrasting regional trends 

(McClelland et al 2006).  In addition, warming of terrestrial permafrost (Romanovsky et 

al 2010, Smith et al 2010) may lead to thermokarst development and other thaw related 

phenomena in ice-rich permafrost terrain (Jorgenson et al 2006).  Thus, terrestrial, 

aquatic, and marine environmental changes occurring in the Arctic may be interacting to 

increase erosion of coastal lowland landscapes which in turn may lead to mobilization of 

carbon previously frozen in permafrost (Jorgenson and Brown 2005, Lantuit et al 2009).     

Thus far, most remote sensing studies focused on identifying landscape change of 

near surface permafrost terrain in arctic lowland regions primarily rely on 2-dimensional 

measurements to quantify lateral rates of change for thermokarst lakes (Arp et al 2011, 

Jones et al 2011), thermokarst lake drainage (Hinkel et al 2007; Marsh et al 2009), 

retrogressive thaw slump headwall retreat (Lantz and Kokelj 2008, Lantuit and Pollard 

2008), thermo-erosional gully formation and expansion (Fortier et al 2007), erosion of 

coasts by block collapse and mass wasting (Jones et al 2009), and degradation of ice 
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wedges and thermokarst pit formation (Jorgenson et al 2006).  A few remote sensing 

studies in lowland permafrost terrain have targeted three-dimensional landscape change 

relying on Interferometric Synthetic Aperture Radar (InSAR) techniques (e.g. Liu et al 

2010).  While InSAR is capable of capturing broad regional dynamics of land surface 

heave and subsidence the method is limited in its applicability for detecting thermokarst 

features (Short et al 2011).  In addition, stereo-photogrammetric change detection studies 

have been limited in nature and spatial extent in lowland permafrost regions (Lantuit and 

Pollard 2005, Günther et al 2013), whereas their use is more widespread in mountainous 

permafrost regions (e.g. Kääb 2008).   

The ability to detect vertical change in permafrost regions is critical to advancing 

our understanding of landscape evolution and carbon cycling.  Light Detection and 

Ranging (LiDAR) measurements provide a powerful method for imaging the spatial and 

vertical intricacies of the landscape (e.g. Ritchie 1995).  Successful applications of 

airborne LiDAR include the study of stream morphology (e.g. Snyder, 2009), mapping 

coastline morphologic change (e.g. White and Wang 2003), measuring volumetric change 

in sand dunes (e.g. Woolard and Colby 2002), landslide monitoring (e.g. Glenn et al 

2006), and topographic change of periglacial mountainous terrain (Fischer et al 2011).  

However, airborne LiDAR data has seldom been used to characterize periglacial lowland 

regions (Marsh et al 2009, Hubbard et al 2013).  To date, an airborne LiDAR change 

detection study for coastal lowland permafrost terrain has not been attempted to the best 

of our knowledge. 
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In this study, we contrast airborne LiDAR data collected in July 2006 and July 

2010 for a 100 km2 area on the central Beaufort Sea coastal plain in northern Alaska.  We 

use repeat LiDAR to test whether this approach is capable of detecting geomorphic 

changes occurring in arctic coastal lowland landscapes, particularly those associated with 

thermokarst and other thaw-related processes.  We also present trends in mean annual air 

temperature, thawing degree days (TDD), near surface permafrost temperature, and 

active layer thickness for monitoring sites in close proximity to our study region.  In 

addition, we provide an example of how repeat LiDAR data may be used regarding 

questions of carbon mobilization from permafrost terrain.  These inquiries align with the 

increasing interest in the spatial and temporal dynamics of permafrost-dominated 

landscapes from a wide range of science and engineering disciplines (landscape ecology, 

hydrology, civil engineering, and biogeochemistry) and will be helpful in addressing land 

management issues such as infrastructure planning, habitat mapping, and landscape 

evolution in the Arctic.   

5.3  Study area 

The study area is located on the Beaufort Sea coastal plain of northern Alaska and was 

selected due to existing, overlapping coverage of airborne LiDAR data acquired in July 

2006 and July 2010.  Repeat LiDAR data were available for a nearly 100 km2 land area 

along the coast from the Sagavanirktok River delta in the west to Point Thomson in the 

east, with an inland coverage of 2 to 4 km (figure 1).  The study region contains 

thermokarst and other thaw-related landscape features as well as nearshore coastal and 

fluvial morphology (figure 2).  The backshore lithology consists of ice-cemented, pebbly 
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silty sand, with 70-80% volumetric ground-ice content, and 10-20% by volume of ice-

wedge ice (Jorgenson and Brown 2005; Kanevskiy et al 2013).  Sea ice, predominantly 

landfast ice, is typically present along the coast for 8 to 9 months of the year.  The 

astronomical tides in this region are typically less than 0.2 m, however, atmospheric and 

oceanic conditions have led to storm surges as high as 1.4 m above mean sea level during 

the last two decades (Sultan et al 2011).  Long-term mean annual coastal erosion rates in 

our study region are 0.9 m/yr and maximum observed rates are 7.0 m/yr (Jorgenson and 

Brown 2005, Gibbs et al 2011), and there has been a doubling of the mean decadal-scale 

coastal erosion rate since the 1980s (Ping et al 2011).  Estimates of total organic carbon 

(OC) in the upper 1 m of the landscape range from 56-66 kgOC/m2 at particular sample 

sites (Ping et al 2008) and estimates of carbon mobilization in our study area as a result 

of coastal erosion range from 3.2-7.1 Gg/yr (Jorgenson and Brown 2005).   

The study area also encompasses existing and planned oil and gas infrastructure.   

Development within the study area primarily consists of commercial resource extraction 

and resource transportation infrastructure emplaced by the oil and gas industries (e.g. 

drilling pads, pipelines, airstrips and docks).  There are approximately eight known 

exploratory or production well sites within the bounds of the study area, the largest being 

the Badami oil field.  Standard construction methods for development in this area utilize 

gravel pads to thermally buffer the underlying permafrost.  These gravel features provide 

an excellent location for validating the comparability in the two LiDAR datasets as their 

vertical motion should be near zero (figure 3).   
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5.4 Methods 

5.4.1 Airborne LiDAR data 

LiDAR was collected in the summers of 2006 and 2010 by Aero-metric Inc.  The 2006 

data were delivered as classified point clouds in NAD 83 Alaska State Plane Zone 3 in 

feet, with elevations referenced to Geoid99 in US Survey feet.  The 2010 data were 

delivered as last return point clouds in NAD 83 UTM zone 6N in meters, with elevations 

referenced to the GRS 1980 Ellipsoid.  The 2006 data were transformed to match the 

horizontal and vertical units and Ellipsoid reference frame of the 2010 data.  Nominal 

point spacing for the data was on average one point per 1-1.5 m for both datasets.  Both 

last return, point cloud datasets were clipped to their overlapping extents, and then 

converted to surfaces, first by using Terrascan (version 12)® and a Triangulated Irregular 

Network (TIN) approach.  The TIN connects LiDAR returns by a set of contiguous, non-

overlapping, Delaunay triangles.  The elevations between each triangle vertex are 

interpolated as definitions of planes and thus together construct a surface. These surfaces 

were then exported to lattice datasets, and finally converted to 1.5 m raster grids to be 

used in a GIS. 

The two datasets were differenced to identify potential changes in elevation 

between 2006 and 2010.  The reported vertical accuracies of the data were 0.12 m (2006 

dataset) and 0.14 m (2010 dataset) RMSE.  To determine if there were any errors 

introduced in the conversion/transformation process we compared elevations along 

transects that likely represented stable terrain features associated with oil infrastructure 

gravel pads between the two acquisition dates.  The difference in elevation along the 
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unvegetated land surfaces were less than ± 0.10 m (figure 3).  However to be 

conservative in our detection of change, and with the realization that comparison of the 

data acquired over gravel pads represent a best case scenario, we used the RMSE of the 

individual datasets to calculate (equation 1) a threshold that describes the minimum 

difference between both datasets that meets a significant elevation change at the 99% 

confidence level or those pixels exceeding three standard deviations (Jaw 2001): 

3 * SQRT((2006 vertical accuracy)2 + (2010 vertical accuracy)2)  =  0.55 m (1) 

In the surface differenced raster, we considered any pixel with a height difference 

residual above or below 0.55 m as a statistically significant change in elevation.  These 

areas were reclassified as <significant increase> or <significant decrease> per pixel.  

Objects demonstrating significant increases or decreases in elevation were extracted from 

the dataset by selecting areas that had at least five contiguous pixels of significant 

change.  This resulted in a minimum object size greater than 10 m2 and helped minimize 

potential errors associated with raster grid creation and horizontal positional accuracy (± 

0.60 m).  While there were detectable changes of smaller amplitude in the difference 

image we did not consider these in our further assessment.  In addition, all changes 

interpreted as indicating water level differences as well as a result of human-caused 

landscape changes, such as from infrastructure construction or material movement, were 

excluded from further analysis. 

5.4.2  Geomorphic classification of landscape change units 

Objects that represented a statistically significant change in elevation were manually 

classified as one of 13 categories via visual inspection of the LiDAR imagery.  Nine of 
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these classes represented land subsidence or loss and four represented land uplift or 

deposition.  Objects that were indicative of subsidence included thermokarst and thaw-

related features associated with ice-bonded coastal, river, and lake bluffs, frost mounds, 

ice-wedges, and thermo-erosional gullies.  Non-thaw related erosional features included 

beaches and spits, river bars and deltas, and sand dunes.  Areas that represented 

landscape uplift or deposition included permafrost heave features and deposition 

associated with beaches and spits, river bars and deltas, and sand dunes (often in close 

proximity to an eroding feature).    

5.4.3  Air and permafrost temperature and active layer thickness measurements  

The West Dock (WD) and Deadhorse (DH) Thermal State of Permafrost (TSP) 

permafrost observatories were established in the late 1970s (Osterkamp 2003).  The WD 

TSP site is located 0.3-0.4 km from the coast and the DH TSP site is located 15 km from 

the coast (figure 1).  Vegetation at each site consists of wet non-acidic tundra with a 

continuous cover of graminoid and moss species and wet and moist non-acidic tundra 

composed of graminoid-moss tundra and graminoid, prostrate-dwarf-shrub, moss tundra, 

respectively (Walker et al 2008).  In 1986, a string of calibrated thermistors attached to a 

data logger were installed at each site (Osterkamp 2003, Romanovsky and Osterkamp 

1995).  In 1997, the measuring systems at each site were upgraded with new calibrated 

thermistor strings (MRC thermistor string) and Campbell Scientific data loggers 

(Romanovsky et al 2003).  The old and new measuring systems were run concurrently for 

two years and differences in the temperature readings obtained from the two measuring 

systems at the same depth were typically within 0.2°C.  Mean annual ground temperature 
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at a depth of 70 cm for the time period of 1987-2010 was calculated using the daily-

averaged records from the WD and DH TSP sites.  In 1996, a one hectare grid was 

established at each permafrost observatory to measure active layer thickness. 

Measurements were conducted every 10 m in accordance with the Circumpolar Active 

Layer Monitoring (CALM) program protocol (Brown et al 2000).  To derive mean annual 

air temperature trends and TDD (based on 0°C) we used data from the Deadhorse airport 

climate station (figure 1).  This station has been in operation since 1973, however due to 

data continuity issues we only present data for the period 1983 to 2010. These two 

permafrost monitoring sites and the climate station are considered representative of 

conditions within the repeat LiDAR study area. 

5.5  Results 

Comparison between the 2006 and 2010 LiDAR datasets revealed that 0.3% (by area) of 

the landscape experienced a statistically significant change in elevation (> 0.55 m) over 

the four year period.  A total of 1,718 discrete objects (>10 m2) with significant change 

were identified.  Changes in elevation were classified by geomorphic unit where the most 

likely mechanism of change was inferred to be:  thaw slumping (figure 4a), coastal bluff 

erosion (figure 4b), river bluff erosion, thermokarst lake expansion, thermokarst pit 

subsidence (figure 4c), thermo-erosional gully erosion, permafrost heave, beach/spit 

erosion/deposition, delta/river bar erosion/deposition, and sand dune erosion/deposition 

(table 1).  Coastal bluff erosion, thermokarst pit subsidence, and beach/spit erosion 

accounted for 66% of the identified objects.  Thaw slumps, thermokarst lake expansion, 

river bluff erosion, thermo-erosional gullies, delta/river bar erosion, and sand dune 
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blowouts accounted for the remainder of the land lowering/loss.  Beach/spit deposition 

accounted for 82% of the significant increase in surface elevation; whereas heave 

features, delta/river bar deposition, and sand dune accumulation accounted for the 

remainder of the detectable increase in the land surface elevation. 

 The largest individual, contiguous erosional objects by mean area were coastal 

bluffs (360 m2), beaches/spits (295 m2), and expanding thermokarst lake margins (115 

m2).  All other erosional and depositional objects had a mean surface area of less than 

100 m2.  Coastal bluff erosion accounted for 40% of the total area where elevation 

changes were observed and beach spit erosion accounted for 43%.  Thermokarst pit 

subsidence, river bluff erosion, and delta/river bar erosion each accounted for 2% of the 

area with observed elevation change.  All other erosional features accounted for less than 

1% of the total detectable surface area change.  In terms of vertical change, coastal bluffs 

(4.4 m), river bluffs (3.8 m), beaches/spits (2.6 m), and thermokarst lake bluffs (2.4 m) 

accounted for objects with the greatest maximum change in elevation.  Volumetrically, 

coastal bluff erosion accounted for 51% and beach/spit erosion 47% of the detectable 

changes.  Beach/spit deposition accounted for 1.5% and all other features were equal to 

or less than 0.1% of the volume change. 

5.6  Discussion 

5.6.1 Airborne LiDAR change detection  

Our results indicate that repeat airborne LiDAR measurements provide a straightforward, 

readily applied tool for quantifying landscape change in arctic coastal lowland regions.  

Comparison of the two LiDAR datasets revealed that 0.3% of the landscape area 
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experienced a significant change in elevation between 2006 and 2010 that resulted from 

thaw and non-thaw related processes.  Thermokarst or thaw-related landscape features 

associated with ice-bonded coastal, river, and lake bluffs, thermokarst pits, thaw slumps, 

and thermo-erosional gullies accounted for 46% of the change in area over the four year 

study period and more than half of the significant change (56%) resulted from erosion 

and deposition associated with beach and spit deposits, riverine and deltaic flats, and sand 

dunes.  These short-term landscape dynamics are likely a result of a combination of 

factors related to both natural processes and changes in the terrestrial, aquatic, and marine 

controls on the region. 

 Detailed examples of features detected in the study area include frost mound 

degradation (figure 4a); coastal bluff erosion, thermo-erosional gully expansion, and 

upland ice-wedge degradation (figure 4b); and lowland ice wedge degradation and thaw 

pit formation (figure 4c).  Comparison between the 2006 and 2010 LiDAR data for the 

frost mound shows the excellent agreement (typically ±0.15 m) between the two datasets 

for a vegetated and sloping surface that experienced a minimal change in height.  

Degradation or slumping of the eastern margin of the feature accounted for quantifiable 

change.  In the example given in figure 4b, the ~4 m high bluff-face migrated 13 m 

inland over the four year study period.  Also, evident in this example is an overall lower 

tundra relief in 2010 compared to 2006.  Tundra lowering in this example did not meet 

our minimum threshold for change detection however, a consistent decrease in the 

elevation is visible in the plotted data that could be a result of top down permafrost thaw 

and soil consolidation.  This general pattern of tundra relief lowering is also evident in 

 



146 

 

figure 4c for which we also detected a number of degrading ice wedges.  The changes 

evident in this example may be a result of frequent inundation of the terrain during storm 

surges (Sultan et al 2011) which may lead to degradation of the ice-rich permafrost and 

degradation of ice wedges (figure 2b).  With more local ground control statistically 

significant changes in elevation could be refined to capture these more subtle surface 

changes. 

5.6.2  Factors contributing to landscape change  

Arctic coastal lowland regions are particularly vulnerable to change given the interaction 

of atmospheric, terrestrial, aquatic, and marine influences on landscape configuration.  

Thermokarst and other thaw-related landscape features are driven by either local or 

regional disturbances.  Jorgenson et al (2006) noted an abrupt increase in ice wedge 

degradation and thermokarst pit formation on the Beaufort Sea coastal plain that was 

attributed to an increase in TDD in the late 1980s and throughout the 1990s.  A 

compilation of TDD from 1983 to 2010 for the Deadhorse climate station shows that the 

TDD in 2006, 2008, and 2010 exceeded the ~30 year average (figure 5).  In addition, the 

2006 to 2010 time period experienced some of the highest combined, continuous mean 

annual and mean summer temperatures over the course of the record for the Deadhorse 

climate station.  No individual year rivaled the number of TDD that occurred in 1989, 

1995, or 1998, which Jorgenson et al (2006) attributed to the widespread formation of 

thermokarst pits.  It should be noted however that the warm summers in the late-1980s 

and mid-1990s could also be responsible for some of the observed increase in pit 

formation in our study region between 2006 and 2010, as the thermokarst pits that likely 
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formed during the 1990s have continued to subside.  A recent analysis of thermokarst pit 

formation over a 60 year period in the Prudhoe Bay oil fields indeed shows a substantial 

increase in thermokarst pit formation between 1990 and 2001 that has continued through 

2010 (Raynolds et al In Review). 

Mean annual air temperature and the temperature of the ground as measured at a 

depth of 70 cm have warmed in the study region during the past ~20 to ~30 years, 

respectively (figure 5 and 6a).  Interestingly, there is a mismatch between these warming 

trends and the trend in active layer thickness (figure 6b).  This lack of coherence may be 

explained by the thaw of ice-rich permafrost and settlement of the ground surface as 

excess ice melts and the soil consolidates.  Liu et al (2010) measured ground deformation 

using InSAR from 1992 to 2000 in this region and found that seasonal vertical 

displacements occurred as a result of freezing and thawing of the ground surface but that 

there was a secular subsidence of the land surface on the order of 1-4 cm/decade.  Ground 

based studies on the Beaufort Coastal Plain from 2001 to 2006 indicate that 2.0 cm/yr of 

subsidence occurred and that when combined with mechanical probing measurements of 

the active layer that there was an increase in the “true” thaw depth (Streletskiy et al 

2008).  Thus, while general ground subsidence was not detected due to our conservative 

measure of change some of the lowering of the landscape observed in the data outside our 

defined level of confidence may indeed be a result of top down permafrost thaw.  

The Alaskan Beaufort Sea coast has experienced varying levels of increased rates 

of erosion since the 1950s (Jones et al 2009, Gibbs et al 2011, Ping et al 2011).  Factors 

responsible for this likely include loss of sea ice, warming ocean temperatures, and an 
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increase in total wave energy (Overeem et al 2011).  While no comprehensive studies on 

river discharge or river bluff erosion exist in the study region, Arctic wide assessments 

indicate varying degrees of changes to river discharge (McClelland et al 2006) which 

may be impacting erosion of river bluffs.  These changes are likely interacting to increase 

the effectiveness of thermal erosion and thermal abrasion of coastal and river bluffs in 

our study area.  These processes likely accounted for the dominant permafrost-related 

degradational processes with respect to area (42%) and volume (51%) in the study region.  

In addition, areas lower than 1.4 m relative to mean sea level have been inundated during 

storm surges over the past two decades (Sultan et al 2011).  Two of the ten highest storm 

surges between 1993 and 2010 occurred during our study period and all but one occurred 

between 2000 and 2010.  Inundation of the low-lying coastal zone in our study area has 

likely contributed to the formation of thermokarst pits, with 60% of the observed change 

associated with these features below this approximate elevation (figure 4c).  These 

inundation events may have also contributed to some of the general land lowering along 

the low-lying coastal zone that was observed in the data but outside our defined level of 

confidence. 

5.6.3  Organic carbon mobilization  

Estimates of total organic carbon in the upper 1 m of the studied landscape range from 

56-66 kg OC/m2 at sample sites located in the study region (Ping et al 2008).  Based on 

these estimates, the loss of land between 2006 and 2010 along coast and river bluffs may 

have mobilized 1.8-2.1 Gg/yr.  However, given our conservative estimates of quantifiable 

change this number should be viewed as a minimum estimate since long-term estimates 
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of carbon flux from this coastal stretch range from 3.0 to 7.0 Gg/yr (Jorgenson and 

Brown 2005).  This exercise simply illustrates a basic type of analysis for carbon-related 

studies in permafrost terrain where repeat airborne LiDAR surveys have been acquired.   

5.7  Conclusion 

We compared airborne LiDAR data from 2006 and 2010 and demonstrated that it 

is possible to detect and characterize a number of thaw-related and non-thaw-related 

landscape changes occurring in arctic coastal lowlands.  Erosion of ice-bonded coastal 

and river bluffs, thaw slumping, thermokarst lake expansion, thermokarst pit subsidence, 

and thermo-erosional gully expansion indicated ice-rich permafrost degradation and 

accounted for nearly half of the area and half of the volume change that occurred over the 

four year study period.  Erosion and deposition associated with beach and spit deposits, 

riverine and deltaic flats, and sand dunes accounted for the majority of the remaining 

significant landscape change.  Our study demonstrates the utility of assessing landscape 

change in an arctic coastal lowland with repeat airborne LiDAR data, in particular for 

spatially small but widespread permafrost thaw-related processes.  We hope that this 

study will encourage the collection of repeat LiDAR data in other permafrost terrain.  
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5.11  Figures 

 

 

Figure 1.  Repeat airborne LiDAR study area.  The 100 km2 repeat LiDAR study area on 
the central Beaufort Sea coastal plain is outlined with the yellow polygon.  The 
background image is a 30 m resolution Landsat image.  The climate station is the location 
of observations on mean annual air temperature and thawing degree day sums.  The West 
Dock (WD) and Deadhorse (DH) Thermal State of Permafrost (TSP) observatories are 
the location of ground temperature data and active layer thickness measurements used in 
this study.  The location of the study region (red box) in Alaska is shown in the map on 
the right. 
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Figure 2.  Oblique photos of features in the study region.  Oblique photos from the study 
region acquired in 2006 showing the coastal setting and hinterland features (Gibbs and 
Richmond 2009).  (a)  A coastal bluff showing a thermo-erosional gully, thermo-
denudation, and ice wedge polygons; (b) a coastal lowland setting showing degraded ice 
wedges, thermokarst ponds, and beach deposits; (c) spit and beach features enclosing a 
shallow lagoon; and (d) a low gradient river channel, river bar, and cut bank.  
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Figure 3.  Example showing agreement between the two datasets.  Detailed comparison 
between the 2006 and 2010 LiDAR datasets for presumed vertically stable features on an 
unvegetated land surface in the study area.  The Badami oil field pad and road show that 
the difference in elevation between the two datasets is on the order of ±0.1 m.     
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Figure 4.  Examples of permafrost degradation features.  Example of change detection 
results from the repeat LiDAR datasets showing a hillshade image on the left and 
elevation difference profiles on the right.  The red polygons on the left indicate 
significant change objects as do the segments of the elevation difference profiles (taken 
from transects marked with white line on left) below the red dashed line.  (a) Degradation 
of a frost mound in a drained thermokarst lake basin.  Note the excellent agreement 
between the 2006 and 2010 profiles.  (b) Erosion along a 4 m high coastal bluff.  
Thermokarst gully and thermokarst pit formation are also evident (similar to the setting in 
figure 2a).  (c)  Thermokarst pit formation in coastal lowland (similar to the setting in 
figure 2b).  Note general lowering of the land surface in examples (b) and (c).   
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Figure 5.  Air temperature and thawing degree day sums.  Mean annual air temperature 
and summertime (June to September) thawing degree day sums from 1983 to 2010 for the 
Deadhorse, AK climate station (NCDC 2013).  The dashed line indicates the mean value 
for TDD over the period of observation.   
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Figure 6.  Permafrost temperature and active layer data.  (a) Near surface permafrost 
temperature data measured at a depth of 70 cm and (b) active layer thickness 
measurements from the Deadhorse (DH) and West Dock (WD) Thermal State of 
Permafrost (TSP) sites between 1987 and 2010 and 1996 and 2010, respectively.  

 



 

5.10  Tables  

Table 1.  Classified landscape change objects.  Classified change objects in the repeat LIDAR study area.  The table provides 
information on the type of feature, the number of discrete polygons greater than 10 m2, the minimum, maximum, mean, and 
sum for 2-D and 3-D changes, and the rate of change in 2-D and 3-D space.  
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Chapter 6:  Summary 

6.1  Overview 

Surface air temperatures in the Arctic have warmed by ~0.35°C per decade 

between 1970 and 2000, which is two times faster than the average global rate of 

warming [Serreze and Francis, 2006].  In turn, permafrost has warmed throughout much 

of the Northern Hemisphere since the 1980s, with colder permafrost sites warming more 

rapidly than warmer permafrost sites [Romanovsky et al., 2010; Smith et al., 2010].  

Warming of the near surface permafrost may lead to widespread terrain instability in ice-

rich permafrost deposits in the Arctic and result in thermokarst development and other 

thaw-related landscape features [Jorgenson et al., 2006; Gooseff et al., 2009].  However, 

information on rates of landscape change as well as the spatial and temporal distribution 

of landscape disturbances remains limited.  For my dissertation, I assessed four different 

facets of permafrost-related, arctic landscape dynamics using remote sensing.  In 

particular, I focused on permafrost coastline erosion, thermokarst lake dynamics, fire-

related arctic landscape change and disturbance, and the quantification of surface 

deformation using repeat airborne LiDAR data.  Information from each of these studies 

demonstrates the utility of and need for applying high spatial resolution remote sensing 

for change detection studies in the Arctic.    

6.2  Dissertation results 

In Chapter 2, the acquisition of high-spatial resolution satellite imagery at high-

temporal resolution between 2008 and 2013 allowed for the quantification of bluffline 

erosion rates on annual and seasonal scales [Jones et al., In Review].  This analysis 
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showed that the heightened erosion reported at Drew Point in the early to mid-2000s has 

generally been maintained.  This annual-scale imaging of the permafrost bluffs also 

allowed for the comparison to several environmental variables thought to play a role in 

driving the rate of erosion.  This analysis showed that the erosion of the permafrost bluffs 

at Drew Point has directly responded to an increase in the number of open water days and 

the number of storms impacting this coastline.  These increases have likely resulted in an 

increase in the number of block collapse episodes per year.    

In Chapter 3, I assessed the decadal-scale dynamics of thermokarst lakes on the 

northern Seward Peninsula using historical aerial photography and contemporary satellite 

imagery [Jones et al., 2011].  Surprisingly, decadal-scale thermokarst lake expansion 

rates have remained stable (~0.35 to 0.39 m/yr) from the 1950s to 1980s and 1980s to 

2000s.  Maximum measured expansion of lakes was on the order of 5 to 6 m/yr and 

approximately half of the lakes in the study region showed signs of lake expansion.  Even 

though lake expansion was the prevailing mechanism driving lake change, lakes drained 

at a fairly constant rate (~2 lakes/yr) between the two time periods under observation.  In 

the first time period the expansion of lakes and drainage of lakes offset one another, 

however, in the second time period the drainage of several large lakes resulted in three 

times more land gain relative to land loss.  These observations were somewhat surprising 

given the reported lake change observations from other continuous permafrost regions.  

They also highlight the complexities associated with the role of thermokarst lakes in the 

northern high latitude carbon cycle. 
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In Chapter 4, I combined field surveys with remotely sensed data to demonstrate 

the ability to extend the northern Alaska fire history database beyond the late-1940s (the 

beginning of the remote sensing period for the region) [Jones et al., 2013].  This research 

was guided by the question:  Was the Anaktuvuk River fire of 2007 unprecedented on the 

North Slope of Alaska?  In order to address this question, I combined field observations 

with satellite imagery from past known tundra fire sites in northern Alaska in order to 

develop diagnostic characteristics of landscape change following fire.  This information 

was then combined with aerial observations from the North Slope loess belt, historical 

aerial photography, high-resolution satellite imagery, and Landsat satellite imagery to 

identify other potential fire sites that likely predated the period of record keeping that 

began in the late-1940s.  This coupled analysis essentially demonstrated how information 

could be used to extend the observations on tundra fire events beyond the remote sensing 

archive period by utilizing the remote sensing archive.  It also demonstrated that other 

large tundra fire events occurred on the North Slope prior to 2007.  Identification of these 

sites also provides a centennial scale chronosequence in which to study landscape change 

and carbon cycling associated with arctic tundra fires.     

In Chapter 5, I highlight the utility of acquiring repeat airborne LiDAR data for 

quantifying vertical surface deformation in an arctic coastal lowland [Jones et al., In 

Press].  I demonstrated that it is possible to detect and characterize a number of thaw-

related and non-thaw-related landscape changes occurring in arctic coastal lowlands with 

the use of repeat airborne LiDAR data.  Erosion of ice-bonded coastal and river bluffs, 

thaw slumping, thermokarst lake expansion, thermokarst pit subsidence, and thermo-
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erosional gully expansion indicated ice-rich permafrost degradation and accounted for 

nearly half of the area and half of the volume change that occurred over the four year 

study period.  Erosion and deposition associated with beach and spit deposits, riverine 

and deltaic flats, and sand dunes accounted for the majority of the remaining significant 

landscape change.  This study demonstrates the utility of assessing landscape change in 

permafrost dominated landscapes with repeat airborne LiDAR data, in particular for 

spatially small but widespread permafrost thaw-related processes.  This is the first study 

to attempt this in the Arctic and I hope that it will lead to the acquisition of repeat LiDAR 

data in other permafrost terrain in the future.   

6.3  Future directions 

 As previously mentioned, remote sensing provides an excellent tool for observing, 

documenting, and better understanding landscape change in the Arctic from local, to 

regional, to pan-Arctic scales.  It has emerged as one of the primary tools for advancing 

the field of thermokarst research [Kokelj and Jorgenson, 2013].  Rowland et al. [2010] 

noted that with the scale of questions and facets of landscape change in the Arctic that “a 

particular focus must be placed on identifying existing and developing new remote 

sensing technologies to detect near-surface and subsurface changes in the Arctic”.  With 

an increase in the number of high-resolution optical satellite observations since the early-

2000s, the quantification of climate-induced landscape change and disturbance over large 

areas in the Arctic is now possible.  However, analysis of high-resolution optical satellite 

imagery remains limited due to the often manually intensive classification and extraction 

techniques.  Future work should be dedicated to the automated extraction of various 
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thermokarst and thaw-related landscape features in high-resolution imagery such that 

regional and pan-Arctic patterns of the response of the landscape to ongoing climate 

change in the Arctic will be realized.  Also, going forward, the acquisition of repeat 

airborne or spaceborne LiDAR data will prove to be a valuable tool for the study of arctic 

landscape dynamics. 
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