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Abstract 

This work has developed a conceptual geological model for the Pilgrim Hot Springs 

geothermal system supporting the exploration, assessment and potential development of 

this resource for direct use and electric power production. The development of this model 

involved the analysis of a variety of subsurface and geophysical data and the construction 

of a 3D lithostratigraphic block model. Interpretation of the data and block model aimed 

to establish the most likely scenario for subsurface geothermal fluid flow. As part of this 

work well cuttings were analyzed for permeability and correlated with geophysical logs 

from well to well to constrain the stratigraphic architecture of the unconsolidated 

sediments. Hydrothermal alteration of the sediments and bedrock core was also studied 

through reflectance spectroscopy and methylene blue titration in order to investigate past 

fluid migration pathways. The structure of the basin was interpreted through geophysical 

surveys including aeromagnetic resistivity, isostatic gravity, and magnetotelluric 

resistivity. Based on temperature, well logs, geophysical surveys, and lithologic data, the 

system is subdivided into a shallow outflow aquifer and a deeper reservoir beneath a clay 

cap connected by a conduit with 91°C hydrothermal fluid upflow. Stratigraphic 

correlations indicate several clay layers throughout the section with a dominant clay cap 

at 200-275 m depth. Extensive pyritization and the clay mineral assemblage suggest an 

argillic-style alteration facies indicative of past temperatures at or slightly elevated above 

current conditions of hydrothermal activity at Pilgrim Hot Springs. The conceptual model 

supports production from this resource in those subsurface zones where there is sufficient 

permeability and connectivity with the upflow zone.
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Chapter 1: Introduction 

1.1 Overview 

1.1.1 General Introduction 

 Alaska is known for its richness in many resources such as oil, gas, and valuable 

ore deposits. One marginalized resource under renewed state-wide scrutiny is geothermal 

energy. Ultimately, the goal for exploration of geothermal resources is electric power 

production or direct use for the nearby communities.  The geothermal system being 

evaluated for this research is Pilgrim Hot Springs located on the Seward Peninsula. The 

University of Alaska Fairbanks Geophysical Institute, Alaska Center for Energy and 

Power, Alaska Division of Geologic and Geophysical Surveys, and private contractors 

have mapped, drilled, and sampled the site over a period of 30 years.  

 Contributions of this research will provide a concise geologic assessment of the 

Pilgrim Hot Springs geothermal system helping to determine the viability of this 

resource. A conceptual model, the end result of this work, is needed to evaluate the 

potential for geothermal resource development by guiding future exploration of the 

system. Stratigraphy of the sediments and proximal structures will be shown through well 

log correlations. Subsurface conduits for geothermal fluid migration will be ascertained 

through temperature distributions, magnetotelluric (MT) and other geophysical survey 

maps, and stratigraphic correlations. Characterization of hydrothermal alteration in the 

collected samples and bedrock core will be fulfilled through multiple analytical methods. 

The final model will be the combination of a wide range of collected data and derived 
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data products which will also serve to complement and inform the numerical model for 

reservoir simulation and stimulation model scenarios. 

1.1.2 Research Objectives 

 The hypothesis for this research is that Pilgrim Hot Springs can be an 

economically viable geothermal resource for both direct-use applications and electric 

power production. The desired outcome of the conceptual model is locating the deeper 

reservoir of hot fluids feeding the upflow from the bedrock through the synthesis of high-

resolution MT survey maps, interpreted stratigraphy and structure, and temperature 

distributions. The conceptual model will also serve to direct the orientation and 

placement of proposed thermal conduits at depth. To test this hypothesis, several 

objectives have been proposed below: 

• Describe sediment samples of five exploratory wells and estimate porosity and 

permeability. 

• Correlate gamma ray and induction well logs to understand stratigraphic 

architecture. 

• Assess the temperature distribution across the wells to model the mass transfer, 

thermal buoyancy, and transmissivity of upwelling hydrothermal fluids that 

interact with hydrologic barriers. 

• Evaluate MT resistivity and other geophysical survey data to constrain the spatial 

extent of the geothermal system. 
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• Investigate the degree of hydrothermal alteration in clays to infer past 

hydrothermal activity at the site. 

• Incorporate these data sets into a conceptual model of the geologic framework of 

the geothermal system. 

1.1.3 Thesis Structure 

 The structure of this thesis research describes the construction, results, and 

interpretations of the conceptual model of the geologic framework of the Pilgrim Hot 

Springs geothermal system. The first chapter introduces the project and provides 

background information on geothermal systems and conceptual model development. 

Chapter two describes the geologic and physiographic setting of Pilgrim Hot Springs. 

The third chapter lists the data sets used in this research, along with methods used to 

derive data products as model inputs. The fourth chapter is the conceptualized geologic 

model that covers the development, inherent assumptions, limitations, and interpretations 

of the model. A discussion of marrying the data sets, sediment analysis results, and the 

conceptual model is provided in the fifth chapter. The final chapter emphasizes the 

principal findings of this research by reiterating the significance of the model results and 

also suggests future applications for this project.  
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1.2 Background 

1.2.1 Geothermal Systems and Geothermal Energy 

 Glassley (2010) explains that geothermal energy and systems exist as interactions 

of heat escaping from the planet's interior to the outer crust. The heat, derived from early 

planetary formation and radioactive decay, can produce such features as hot springs, 

fumeroles, geysers, or sometimes no surface expression at all as in the case of blind 

geothermal systems. Total heat loss can be quantified for the entire Earth's surface and 

areas of elevated or anomalous heat flow may form a geothermal system. Different 

geologic settings contribute to the existence of geothermal systems. Regional extension 

of a continental plate thins the lithosphere resulting in a higher heat flow near the earth's 

surface. Intrusion of magmatic or plutonic bodies along fractures or fault systems 

conducive for the migration of heated fluids may also induce thermal springs. The energy 

of a geothermal system is transferred through conduction and convection processes. 

Conduction of heat occurs in low permeability settings such as a pluton or fine-grained 

sedimentary basin whereas convection cells are restricted to higher permeability 

pathways allowing for thermal buoyancy of geothermal fluids and significant thermal 

expansion which initiates hydrothermal systems (Glassley, 2010; Kolker et al., 2008). 

Several geologic settings conducive for low-high enthalpy geothermal systems exist 

within Alaska.  
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1.2.2 Alaska Geothermal Systems 

 Alaska contains abundant geothermal resources located in the Aleutian volcanic 

arc, south central Alaska, the southeastern Panhandle, and interior Alaska south of the 

Brooks Range. The Aleutian Islands have the greatest potential in Alaska for geothermal 

development as a result of Pacific plate subduction beneath North America (Swenson et 

al., 2012). The heat that fuels the hydrothermal activity is derived from magmatic bodies 

at depth generated through the melting of a subducting plate. Twelve hot springs have 

temperatures greater than 74°C, whereas only five springs of similar temperatures are 

located within mainland Alaska (Swenson et al., 2012). Several of these springs along the 

Aleutians produce surface discharge temperatures as high as 152°C and geothermometry 

estimates of reservoir temperatures up to 300°C (Swenson et al., 2012). Hot springs 

outside of the volcanic arc are typically low-moderate temperature systems with 

predicted reservoir temperatures of less than 150°C (Swenson et al., 2012). Kolker et al. 

(2008) concluded that within interior Alaska, with over 30 known hot springs, the 

principal sources of heat are proximal shallow high heat producing plutons, which was 

based on helium isotope studies. The regional tectonics resemble a backarc fault-block 

rotation in the eastern and central interior as suggested by Page et al. (1995) that  

provides the necessary fracturing for hydrothermal convection cells. However, the 

western interior/Seward Peninsula exhibits a different structural style related to the 

strongly transtensional tectonic regime (Biswas et al., 1986; Cross and Freymueller, 

2008; Mackey et al., 1997; Ruppert, 2008). Geothermal systems associated with crustal 

extension are typified by deep convection cycles, circulating groundwater into and out of 
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the heat source along major normal fault systems that feed shallow reservoirs (Blackwell 

and Kelley, 1994; Kolker et al. 2008). Although the heat source remains elusive, a similar 

process is proposed for the Pilgrim Hot Springs geothermal system 

(Chittambakkam  et al., 2013; Miller et al., 2013).  

1.2.3 History of Exploration at Pilgrim Hot Springs 

 Pilgrim Hot Springs is located 96 km north of Nome, Alaska, and ~120 km south 

of the Arctic Circle in central Seward Peninsula. This region, principally the city of 

Nome, is in dire need of a low-cost, reliable alternative source of energy as opposed to 

costly imported diesel fuel. Also included in the energy demand are local mining 

operations. This geothermal anomaly has been known by the native community for 

centuries and locals have used the site since the early 20th century as a Catholic mission. 

Over the past 30 years, several exploration programs have been aimed at evaluating the 

site for its potential as an energy source.    

  There is a long history of exploration and assessment of the geothermal system at 

Pilgrim Hot Springs. Initially, the University of Alaska Fairbanks Geophysical Institute 

in cooperation with the Alaska Division of Geological and Geophysical Surveys provided 

a report to the U.S. Department of Energy on the geothermal energy potential of Pilgrim 

Hot Springs (Turner and Forbes, 1980). This work was completed in 1979 and  involved 

mapping the regional surface and bedrock geology, geochemistry of the springs, possible 

radiogenic heat from nearby plutons, and geophysical surveys of the area. The map 

produced from the study indicated normal faulting along the Kigluaik Mountains to the 
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south as well as faults present across the basin evidenced by terraces and scarps in the 

adjacent hills. A radiogenic heat source was discounted after analyzing the mineralogy of 

the local intrusives and finding no elevated ratio of Th/U. Well testing of two 50 m wells, 

drilled during the 1979 exploration work, allowed estimates of permafrost depths to 

100 m and established a local temperature gradient of up to 91 °C. Geochemical studies 

found the fluid composition to be alkali-chloride rich with dissolved carbon dioxide and 

hydrogen sulfide. Oxygen isotope and deuterium analysis suggested deep-seated water-

rock reactions. The high-salinity and dissolved gases suggested a volcanic origin and a 

source temperature of ~130 °C. Geophysical surveys, resistivity and gravity, indicated a 

1.5 km2  reservoir and a downthrown block of basement to the southwest edge of the 

thawed ground bounded by intersecting faults at depth immediately below the springs. 

The recommendations from this study are complemented by exploration well data of the 

second phase of evaluation and are described below.  

 Early resource exploration, by the University of Alaska Fairbanks and Woodward 

Clyde Consultants, sought to determine the viability of Pilgrim Hot Springs as an energy 

resource (Woodward-Clyde, 1983). Initial temperature gradient wells were drilled in 

1979, then resumed in 1982 with four wells of depths ranging from ~60-300 m. Drilling 

targets for the 1982 program were based on the earlier 1979 field work to demonstrate the 

extent of the resource. Wells were designed to provide detailed information on 

temperature variations and act as geothermal supply wells. The temperature gradients 

from the wells drilled from 1979-1983, coupled with soil-helium surveys, extrapolated 

the deeper reservoir to be 150°C at 1500 m depth. The total baseload energy that can be 
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derived from the hot springs was estimated at 1.5 MW based on a flow of 240 gpm at 

90°C (Woodward-Clyde, 1983).  

 Recent exploration of Pilgrim Hot Springs is the product of collaboration between 

the Alaska Center for Energy and Power and the Geophysical Institute (University of 

Alaska Fairbanks). The project is testing the application of remote sensing using Forward 

Looking Infrared Radiometer (FLIR) to reduce the cost of preliminary geothermal 

exploration by quantifying geothermal surface heat losses. Five exploration slimhole 

wells were drilled (in addition to the existing six wells mentioned above) with two wells 

at ~150 m, two wells at ~300 m depth, and one at ~400 m. Over sixty shallow Geoprobe 

temperature gradient holes were drilled and both airborne and ground resistivity surveys 

at the site were also conducted. These data sets provide input to construct an improved 

conceptual model of the PHS geothermal system.   
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Chapter 2: Study Area 

2.1 Pilgrim Hot Springs Location 

 Pilgrim Hot Springs is located on the Seward Peninsula in western Alaska, less 

than 200 km south of the Arctic Circle (Figure 2.1). The springs are within an alluvial 

basin in tundra underlain by discontinuous permafrost that is bounded by the glacially-

eroded Kigluaik Mountains to the south and two prominent hills to the north, Marys 

Mountain and the Hen and Chicken Mountains. The basin is dissected by the east to west 

meandering Pilgrim River that borders the thawed ground of the springs, which occupies 

an ~1.5 km2 area. The thawed ground is associated with anomalous vegetation that 

includes cottonwood trees, alders, grass, and various flowers. The site lies only a few 

meters above sea level and elevation changes are small. 
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Figure 2.1: Pilgrim Hot Springs location map with wells. Map shows the distribution of 
wells, the boundary of discontinuous permafrost, and the extent of the thawed ground 
anomaly (Miller et al., 2013). Optical imagery modified from Haselwimmer et al. (2011).  
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2.2 Regional and Local Geology and Physiography  

2.2.1 Overview of the Regional Geology of the Seward Peninsula 

 As summarized by Till and Dumoulin (1994), the Seward Peninsula is composed 

of two major geologic terranes: the older Seward terrane and the younger York terrane. 

Located in the central and eastern peninsula, the Seward terrane comprises Precambrian-

early Paleozoic blueschist-, greenschist-, and amphibolite-facies schist and marble, and 

localized granitic intrusions. The York terrane is located in the western peninsula and 

along the Bering Straits and is comprised of Ordovician-late Cretaceous limestone, 

dolostone, phyllite, and local granite. The extent and contact of the terranes is marred by 

complex faulting, including the north-trending, east-vergent Koyuk-Kugruk fault zone in 

eastern Seward Peninsula, with possible thrusting between the terranes. Specifically, 

within the Seward terrane is the Nome Group, which contains a regionally extensive 

metamorphic stratigraphy of pelitic schist, interlayered marble and quartz-graphitic 

schist, a mafic schist, and impure chloritic schist. These units were exposed to high 

pressure-temperature blueschist metamorphism (~34-42 km burial) in the pre-Late 

Jurassic coeval with a similar event in the western Brooks Range. Greenschist 

metamorphism progressively overprints blueschist rocks to the south and also records a 

major deformational event that resulted in the north-south lineated isoclinal foliations of 

the Nome Group. This deformational event is related to Cretaceous magmatism, sharing a 

comagmatic history with plutonism throughout central Alaska and extending far into 
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eastern Siberia, represented by local Cretaceous granite and gneiss intrusives referred to 

as the Kigluaik Group.  

 The Kigluaik Mountains to the south of Pilgrim Hot Springs formed as a result of 

regional extension as an ascending intermediate mantle-derived magmatic diapir intruded 

and overprinted locally hot blueschist-facies rocks of the Nome Complex as indicated by 

a peripheral lack of quench textures (Amato et al., 1994; Amato et al., 2002; Amato et al., 

2003; Amato et al., 2009; Amato and Miller, 2004). A granitic cap overlies the 

intermediate core of the pluton and is emplaced within metasedimentary rocks that grade 

from amphibolite to granulite facies toward the outer flanks of the mountain (Amato et 

al., 1994; Amato et al., 2003; Till et al., 2011). Ages obtained from U-Pb dating of 

zircons within the Kigluaik pluton reveal crystallization around 91 Ma (Amato et al., 

1994; Amato et al., 2003; Till et al., 2011). The contact between the two groups is faulted 

(Till and Dumoulin, 1994). Alkalic and tholeiitc basalts from the Cenozoic basalt maar 

field in central and northern Seward Peninsula indicate recent volcanic activity (Beget et 

al., 1996; Turner and Swanson, 1981). The maar craters are the result of a particularly 

explosive combination of basalt eruption into overlying permafrost (Beget et al., 1996). 

The craters are dated to Pleistocene age and as young as 17500 years B.P. based on 

radiocarbon dating and tephrachronology (Beget et al., 1996).   

 The Kigluaik Mountains and surrounding exposures of bedrock have been subject 

to several intervals of Quaternary glaciation (Brigham-Grette, 2001; Calkin et al., 1998). 

A major advance of glaciation, the Nome River event, occurred between 580,000 and 
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280,000 yr ago and covered an area that stretched past Nome (Calkin et al., 1998). 

Several smaller advances have been noted for the Mid-Late Wisconsin glaciations and 

Holocene (Barclay et al., 2009; Calkin et al., 1998). 

2.2.2 Seismicity of the Seward Peninsula 

 Seismicity and Holocene fault displacement across the Seward Peninsula is 

dominantly manifested by east-striking normal faulting with northwest-southeast 

extension, principally on the Kigluaik and Bendeleben faults (Biswas et al., 1986, Biswas 

and Tytgat, 1988; Cross and Freymueller, 2008; Finzel et al., 2011; Mackey et al., 1997; 

Page et al., 1991; Ruppert, 2008; Turner and Swanson, 1981). Seismicity across western 

Alaska appears diffuse and lacking any linear trends suggesting widespread movement 

across many active faults (Page et al., 1991). Semi-clustered activity of <2.0 M 

earthquakes around the Kilguaik fault occurs both north and south of the fault with 

uncertainty if the epicenters occur directly on the fault (Page et al., 1991). This region 

displays southeast-directed motion with a southwestern rotation into the Bering Sea 

(Cross and Freymueller, 2008; Finzel et al., 2011). The movement is attributed to the 

proposed Bering plate model (Cross and Freymueller, 2008). The Bering plate is defined 

as a clockwise-rotating, large rigid plate evidenced by GPS measurements and seismicity 

studies (Cross and Freymueller, 2008). The Bering plate appears to be rotating south-

southwest relative to the North American plate along the eastern margin of the Bering 

Sea (Cross and Freymueller, 2008). The Bering plate is inferred to have a diffuse 

northern boundary cross-cutting the Seward Peninsula and is hinged on the Kigluaik and 
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Bendeleben faults (Cross and Freymueller, 2008; Fujita et al., 2002). This rotation could 

mark the boundary of the interpreted Bering plate. This could explain the continued 

extension in Seward Peninsula that extends as far inboard as the western Brooks Range 

(Finzel et al., 2011). Dumitru et al. (1995) proposed western Alaskan extension as 

accommodation for western movement of crustal fragments from interior and southern 

Alaska, although that is questioned by Finzel et al. (2011). A large mantle flow field or 

interacting microplates west of the Bering Sea may also impact ongoing western Alaska 

extension (Finzel et al., 2011). Regardless, continued southwestern rotation-induced 

tensional earthquakes coupled with Holocene offset of up to 10 m along faults in the 

region and the recent basaltic volcanism lends evidence to the proposed incipient rift 

model of Turner and Swanson (1981). Sampled alkali and tholeitic basalts from central 

and western Seward Peninsula reflect variable assimilation of ascending magma with 

country rock due to relatively rapid vertical movement common in back-arc 

environments (Turner and Swanson, 1981). Regional tectonic extension is evidenced by 

normal displacement along major faults in the Seward Peninsula. Combined with 

elevated heat flow throughout central Seward Peninsula, Turner and Swanson (1981) 

proposed a rift-related model for the sedimentary basins on the Seward Peninsula. The 

model is set in a back-arc extensional environment related to the Aleutian volcanic arc. 

This could explain the anomalous geothermal activity seen at Pilgrim Hot Springs.  
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Figure 2.2: Seismicity map of central and western Alaska. Sigma 1, 2, and 3 are shown 
by color and symbols for the averaged sigma orientation (Ruppert, 2008). The location of 
Pilgrim Hot Springs is marked by the star.  
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2.2.3 Surficial and Bedrock Geology of the Pilgrim River Valley  

 Pilgrim Hot Springs is located in the middle of a graben valley with alluvial-fill 

derived from the glacially-eroded Kigluaik Mountains immediately to the south (Till et 

al., 2011; Turner et al., 1979). The surface expression of bedrock is only apparent in the 

nearby mountains (Figure 2.3). The composition of the basement block underlying the 

springs is described as Late Proterozoic-Early Paleozoic amphibolite to granulite facies 

metamorphic rock (Till et al., 2011; Turner et al., 1979). Only a few kilometers to the 

north lie Marys Mountain and the Hen and Chicken Mountains that are mainly composed 

of Late Proterozoic metasedimentary and metagranitic units intruded by undifferentiated 

Cretaceous granite present in both (Till et al., 2011). The older units are the same Late 

Proterozoic units exposed in the Kigluaik Mountains (Amato and Miller, 1994). The 

Kigluaik range-front fault at the northern base of the Kigluaik Mountains has an en 

echelon-style step over along the fault line and was previously mapped as a normal fault 

in a strongly extensional setting (Ruppert, 2008; Turner and Forbes, 1980). Abrupt 

truncation at the upper reaches of glacial moraines and outwash gravels approximately 

along the Kigluaik fault indicates recent movement (Turner and Forbes, 1980). A wide 

alluvial apron extends a couple of kilometers from the mountains where the Pilgrim River 

has reworked the valley floor leaving behind a visual trace of past channels and 

floodplains (Figure 2.3). Throughout the valley, the tundra is underlain by discontinuous 

permafrost with surface permafrost-related features such as thermokarst lakes, frost-

heaves, and pingos (Turner et al., 1979). Pilgrim Hot Springs is located in the middle of 

the valley containing a variety of vegetation including cottonwood trees, wild flowers, 
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grassy fields, and farmed rhubarb, atypical for a predominantly tundra region. This 

vegetation aids in delineating the edges of the geothermal anomaly at the site by 

providing a clear and distinct boundary from forest to tundra. Thawed or absent near-

surface permafrost and early snow-melt patterns also distinguish the areas of elevated 

heat flow and shallow subsurface hydrothermal upflow that feed the hot springs (Daanen 

et al., 2012; Haselwimmer et al., 2011). The thawed ground feature of the hot springs is 

only one aspect of the underlying geothermal system. A wide range of data is presented 

in the next chapter that provides a greater understanding of the nature of the Pilgrim Hot 

Springs geothermal system.  
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Chapter 3: Data and Data Products 

 A range of different data sets were collected and measured at Pilgrim Hot Springs 

from June to September 2012. The gathered data consist of rock samples, geophysical 

surveys, well cuttings descriptions, and geophysical and temperature logs. These are used 

to frame the model by determining the stratigraphic architecture, permeability, and 

hydrothermal fluid upflow and outflow pathways. Subsequent analysis of sediments was 

conducted through multiple analytical procedures: reflectance spectroscopy, methylene 

blue titration, x-ray diffraction, and thin-section characterization of rock samples and drill 

core. An array of analytical techniques is used to assess the degree of past hydrothermal 

alteration in the sediments and bedrock.  

3.1 Field Data 

3.1.1 Rock Sample Collection  

 Several rock samples were collected to study the range of lithologies exposed in 

the proximity of Pilgrim Hot Springs (Figure 3.1). The Kigluaik Mountain samples 

consist of mica schist to phyllite with locally abundant garnets and gneissose granites. 

Hen and Chicken has similar gneissose granite exposures. A pegmatitic dike outcrop 

northeast of the hot springs contains quartz, k-spar, fine-grained micas, and abundant, 

well-developed black tourmaline. A calcareous schist/impure marble adjacent to the 

pegmatitic dike was also sampled as it is seldom exposed in the immediate basin area.  
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3.2 Geophysical Data 

 The geophysical resistivity studies provide detailed information on the different 

types of sediment, fluid compositions, and conductive structures at depth in the basin. 

The contrast of resistivity and conductivity is associated with certain geologic materials 

(Figure 3.2) (Palacky, 1988). Unconsolidated glacial sediments, the most common 

sediment type in the basin, show a low resistivity value of ~10 ohm-m for clays and 

trending higher for gravels and sand. Saline fluids yield a very low resistivity (high 

conductivity) at <1 ohm-m and fresher fluids have a higher resistivity at >1-100 ohm-m. 

This is an important distinction where the resistivity surveys show areas of low resistivity 

associated with outflow of geothermal fluids with more dissolved constituents. At 

Pilgrim, the low resistivity of the hot springs are in marked contrast to a highly resistive 

boundary of permafrost at 1,000-100,000 ohm-m which conveniently isolates the extent 

of the geothermal system near the surface.  
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Figure 3.2: Logarithmic scale of resistivity values for geologic materials. Resistivity 
(ohm-m) and conductivity (mS/m) values are plotted for a range of sediments, rock types, 
and fluid compositions (Palacky, 1988).  
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3.2.1 USGS Aeromagnetic and Electromagnetic (EM) Survey 

 An aeromagnetic and electromagnetic survey was conducted over Pilgrim Hot 

Springs by FUGRO with funding support from the USGS and the Alaska Center for 

Energy and Power in the spring of 2011 (McPhee and Glen, 2012). The survey was 

conducted with a FUGRO-Resolve system flown by helicopter with a frequency range 

between 400 Hz and 140 kHz. A Cesium vapor magnetometer was used with a sample 

rate of 10 Hz and sensitivity of 0.01 nT. This survey includes diurnal corrections, 

differential GPS positions, 0.2-0.4 km spacing, and was acquired by helicopter at 60 m 

altitude. The helicopter towed a large induction coil that generated a magnetic field and 

measured the changes in resistivity from the ground below. Processing of the data was 

completed by the USGS and described in more detail in the Pilgrim Hot Springs Phase 1 

Report (University of Alaska, 2012).  

 A differential resistivity map at 20 m depth produced by the USGS 

electromagnetic resistivity survey is provided below in Figure 3.4. The survey area spans 

the Pilgrim River valley between the Kigluaik Mountains and the hills to the north. 

Pilgrim Hot Springs is located in the center of the map that shows a low resistivity 

anomaly emanating from the site and extending north-northeast. Highly resistive zones 

correlate to more commonly resistive materials such as the exposed igneous and 

metamorphic bedrock as well as the discontinuous permafrost. The more conductive/low 

resistive zones outside of the hot springs site could be the result of conductive clay 
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formation through diagenetic processes independent of the geothermal system or 

conductive structures at depth connected to geothermal fluid outflow.  

 

 

Figure 3.3: Flight path for aeromagnetic and electromagnetic survey (McPhee and Glen, 
2012).  
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Figure 3.4: Differential resistivity map at 20 m depth. Produced by the USGS airborne 
electromagnetic resistivity survey (McPhee and Glen, 2012).  
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3.2.2 Magnetotelluric (MT) Resistivity Survey 

 The locations of the MT stations at Pilgrim Hot Springs were determined by 

maximum spacing for best resolution and constrained by accessibility. In total, 59 

stations recorded at 0.001-10000 Hz range overnight with an average distance of 100 m 

apart with a remote station 5 km SE from the site (Figure 3.5). Data processing and 

recording equipment was provided by FUGRO Electric Magnetics Italy Srl. MT 

evaluation of the site provides insight into the changes in resistivity (decreasing 

resistivity is casually referred to as increasing conductivity in this discussion) to elucidate 

the geologic caps and plumbing of the reservoir. MT is a deeply focused electromagnetic 

method that measures the wide -range of surface recordings of natural fluctuations in the 

earth's magnetic and electric fields. This is recorded for both period and location beneath 

24-hour recording stations emitting an induced current at different orders of magnitude 

(FUGRO, 2012). The relationship between the electric and magnetic field variations 

produces an impedance tensor that normalizes the observed electric resistivity in order to 

determine the distribution of resistivity at depth (Heise et al., 2007).  

 MT resistivity survey data highlights the spatial extent of the geothermal system. 

The dynamics of high conductivity, or inversely low resistivity, in outflowing and 

upflowing geothermal fluids, proximity to the heat source, and stratigraphic architecture 

of the hydrothermally altered swelling clays can be inferred from MT data (Cumming, 

2009). Three 1D smoothed inversion profiles down to 1000 m that show resistivity 

variations with depth are present (Figures 3.6-3.8). A lack of station coverage over a 
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section of the profile results in poor or no resolution at depth as apparent in the profile 

lines as bank spaces. Figure 3.5 is a location map of the station coverage with the profile 

lines plotted. MT Profile D (Figure 3.6) shows a large, very low resistivity pattern 

(<1 ohm-m) from 150 m to 400 m that extends into the top of the basement at 320 m and 

is sharply bounded by increasingly resistive zones on the west (left) and east (right). A 

very thin, flat-lying conductive zone near the subsurface is also apparent in the profile. 

Areas of high resistivity values are interpreted as permafrost (0-100 m) and cold regional 

groundwater influx. The same low resistivity body is seen in Profile C (Figure 3.7) in the 

vicinity of PS-12-2 where it intersects the sharp highly resistive boundary to the 

southeast. Profile 2 (Figure 3.8) shows the low resistivity body dissipating to the 

northeast where it becomes less distinct. Well S-1, a relatively cold well, appears to have 

been drilled into the more resistive zone.  
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Figure 3.5: Locations of magnetotelluric resistivity recording stations (FUGRO, 2012).  
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3.2.3 Ground-based Gravity Survey 

 A ground-based isostatic gravity survey was conducted by the USGS Menlo Park 

team headed by Jonathan Glen in spring of 2010. Two teams ran several profile lines 

across the Pilgrim River valley. Each gravity meter station base was placed at a known 

elevation along the profile line. The field gravity readings were normalized to several 

base station gravity meters located at the site, the nearby camp, in the Nome Post Office 

and airport, as well as in Anchorage at the University of Alaska Anchorage and airport. 

By normalizing to gravity stations at known elevation points, topography can be 

extracted from the gravity meter readings and produce a map of changing elevation and 

basin depth.  

 Figure 3.9 shows the gravity survey lines and station locations with initial gravity 

readings. In general, the figure shows the shallow bedrock surface depth under much of 

the alluvial fan and glacial outwash deposits along the base of the Kigluaik Mountains 

and to the east and north of the hot springs. The blue color indicates the deeper basin 

appears to terminate beneath the hot springs and deepen to the southwest (Figure 3.10).  
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Figure 3.9: Isostatic gravity survey station location map. Map provided by Jonathan Glen. 
Warmer colors (orange and red) indicate above sea level, green equates to sea level, and 
cooler colors (blue and violet) are below sea level. In this case, light blue (immediately 
below Pilgrim) correlates to a basin depth to basement at 320 m (corroborated with 
drilling contact).  The deeper basin indicated by the dark blue and violet colors, is 
estimated to be twice as deep as below Pilgrim to ~700 m depth (Jonathan Glen, personal 
communication). 
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Figure 3.10: Isostatic gravity anomaly map of the Pilgrim River Valley. Overlaid by an 
Alaska High-Altitude Photography (AHAP) image of the Pilgrim River valley. Isostatic 
gravity anomaly map provided by Jonathan Glen, USGS Menlo Park. The red box around 
Pilgrim Hot Springs marks the edge of the conceptual model boundaries that 
encompasses the extent of the observed thermal anomaly at the surface.  
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3.3 Geoprobe Data 

 The Geoprobe, operated by the USGS Central Region Research Drilling Team 

and the Alaska Center for Energy and Power, is a small drilling track vehicle that uses the 

direct push method of hammering pipe to shallow depths via a small hydraulic system. 

This unit was used to conduct a shallow temperature survey with 64 holes of 10-60 m 

depths that covered the hot springs site as well as several holes in the surrounding tundra, 

some intercepting permafrost (Figure 3.11). The Geoprobe holes outside of the thermal 

expression provide a background temperature gradient that is not enhanced by the heat 

flux of the geothermal system. This wealth of data provides extensive coverage of 

temperature variations at the surface and in the shallow reservoir that complements the 

data obtained from the deeper drilling.  
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Figure 3.11: Well and Geoprobe hole location map. All Geoprobe holes drilled on site 
(red dots) with several of the deeper wells plotted (black dots). Image credits, Christian 
Haselwimmer. 
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3.4 Drilling Data   

3.4.1 Sediment Characterization 

Sediments obtained through sieve tables from reverse circulating mud while 

drilling were described and characterized to quantify the porosity and permeability of the 

sampled depth intervals. The descriptions of the sediments include grain size, shape, 

sorting, and mineralogy. These are critical input parameters for defining the 

lithostratigraphy of each drilling interval, making the construction of lithologic well logs 

and stratigraphic correlations possible. Also derived from this data is the calculation of 

the porosity and permeability of the sediments.  

The permeability of a porous medium, k, is its natural ability to transmit fluids 

through interconnected pores. The unit of measurement for permeability, defined as m2, 

is Darcy (D=9.86923*10-23 m2) (Bundschuh and Suarez Arriaga, 2010; Fitts, 2005). 

Permeability can be divided into four distinct types: permeability related to the 

intergranular spaces of the porous medium, micropermeability associated with 

interconnected microfractures, permeability related to nets of fractures, and 

macropermeability of open faults (Bundschuh and Suarez Arriaga, 2010; Fitts, 2005). 

The volume of intergranular space in the sediments is the focus of this assessment. 

Permeability also accounts for the fluid dynamic viscosity and pressure gradient of the 

aquifer (Bundschuh and Suarez Arriaga, 2010). However, without these fluid parameters, 

the intrinsic permeability can be estimated from sediment measurements.  
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To properly quantify intrinsic permeability, the sediment grain diameter, 

distribution, and porosity are calculated. Grain diameters of the clay to gravel-sized 

sediments are measured by grain size card. The distribution of the grain diameters for 

every given sample interval (~3 m of drilling depth) are also recorded through visual 

determination. For every sampled interval, a percent is given for clays through gravel 

adding to 100%. This allows for an average grain diameter to be estimated for that 

interval by multiplying the percent of each grain diameter by the representative diameter 

and summing the results for an average diameter for the interval. Porosity values are 

obtained from the table of average porosity values for unconsolidated sediments 

(Table 3.1). Beard and Weyl (1973) obtained porosities of the range of poorly to well-

sorted sediments. The average porosity of each sorting parameter is multiplied by the 

average grain diameter for intrinsic permeability (Shepherd, 1989).   

Bear (1972) showed distributions of various sediment types by plotting particle 

diameter versus percent clay finer by weight (Figure 3.12). Percent finer by weight plots 

the distribution of coarse to fine grains in a given mix of sediments by percent. Gravelly 

sand to common clay minerals (montmorillonite and kaolinite) also appear in the 

examined sediments of Pilgrim Hot Springs (Table 3.2). The particle diameters of the 

range of sediment types for the Pilgrim samples match closely to the diameters reported 

by Bear (1972) (Figure 3.12).  
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Table 3.1: Average porosity values for sediment size and sorting. Average porosity 
values are for very well to very poorly sorted, coarse to fine sands. The shaded section 
represents the values used in the intrinsic permeability calculations for the Pilgrim Hot 
Springs drill cuttings. Modified from Beard and Weyl (1973). 

Size Coarse Medium Fine Very Fine AVG 

Porosity 

Std. 

Dev. 

(%) 

Sorting Upper Lower Upper Lower Upper Lower Upper Lower   

V. Well 40.8 41.5 40.2 40.2 39.8 40.8 41.2 41.8 40.8 0.6 

Well 38 38.4 38.1 38.8 39.1 39.7 40.2 39.8 39 0.8 

Moderate 32.4 33.3 34.2 34.9 33.9 34.3 35.6 33.1 34 1 

Poor 27.1 29.8 31.5 31.3 30.4 31 30.5 34.2 30.7 1.8 

V. Poor 28.6 25.2 25.8 23.4 28.5 29 30.1 32.6 27.9 2.8 

AVG 

Porosity 

35 35.2 35.3 35 35.5 36.4 36.7 37.4   

Std. Dev. 

(%) 

6 6.3 5.5 6.2 4.9 5.3 5 4.2   
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Table 3.2: Grain diameter and intrinsic permeability by sediment type. Representative 
grain diameters (d) in mm and intrinsic permeability (mm2) for sampled intervals in wells 
PS-12-1, PS-12-2, and PS-12-3. The samples are organized with gravel as the highest 
permeability to clay with the lowest. Listed representative diameters are the commonly 
accepted diameters of these sediment types.  

 

Sediment Type Diameter (mm) Intrinsic Permeability (mm2) 

Gravel 2 2E+00 

Very Coarse Sand 1.2 6E-01 

Coarse Sand 0.6 1E-01 

Medium Sand 0.3 4E-02 

Fine Sand 0.08 3E-03 

Silt 0.03 4E-04 

Clay 0.002 2E-06 

Indurated Sand 0.1 4E-03 
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Figure 3.12: Logarithmic chart of particle diameter by sediment type. Figure from Bear 
(1972). 
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3.4.2 Geophysical Well Logs 

 The USGS Central Region Research Drilling Team ran geophysical logs for the 

Pilgrim Hot Springs wells consisting of gamma ray, conductivity, and resistivity. The 

equipment used to run the tools consisted of a computer-controlled winch system that 

lowered the tools downhole at a constant speed with real time depth readings. Gamma ray 

is the most valuable log as it allows for real time lithology prediction at the well site and 

can be run in cased holes, thus avoiding downhole logging issues with swelling clays. 

Conductivity and resistivity logs were only run for PS-12-1 and PS-12-2 due to the 

demanding drilling schedule and drilling issues in PS-12-3. Gamma ray logs are provided 

next to the lithologic logs for direct comparison (Figure 3.13).  

 Lithology and gamma ray logs for several wells are correlated by depth with 

equidistant spacing (Figure 3.13). The construction of the lithologic logs is guided by 

correlations of similar gamma ray peaks. Sticking issues with logging PS-5, PS-12-3, and 

PS-12-1 prevented more complete well log profiles to total depth. Gamma ray counts are 

highest and most definitive in clay at 175-300 API. Low counts from 0-100 API are 

observed for the gravels and mixed sands. Indurated zones are typically within 

100-200 API. The thick clay interval at 180-260 m depth occurs in PS-12-1, PS-12-2, and 

PS-12-3.  
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Figure 3.13: Lithologic and gamma ray logs for selected wells.  
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3.4.3 Static Temperature Logs 

 Well temperatures were recorded using a Kuster Strain temperature probe. A 

continuous logging technique of recording temperatures every 3 m per minute allowed 

the probe to measure the equilibrated ambient temperature in the well at detailed 

intervals. This approach was typically run at least a week after drilling ceased and the 

well was cased to allow for equilibration. Temperature curves for several wells on site 

show a spike in temperature up to 91 °C at 25-50 m and subsequent reversal at 30-100 m 

(Figure 3.14). All wells show an increasing temperature gradient below the reversal. The 

shallow temperatures are highest in wells PS-12-2 and PS-12-3 which also have the 

highest bottom hole temperatures of 91 °C and 80 °C, respectively. The influx of 

groundwater is estimated to have a flow rate of ~200 gpm flowing through the system 

from the south to the north, eventually feeding into the Pilgrim River (Lofgren, 1983). It 

should be noted that the curve for PS-4 is not reliable below 140 m and the multiple 

fluctuations in PS-5's curve are equipment-related. These measurements were recorded 

during earlier exploration in the 1980's (Woodward-Clyde, 1983). The shallow peak in 

temperature is the result of the outflow of geothermal fluids and the increasing 

temperature gradient is due to the heating of the deeper geothermal reservoir. Wells S-1 

and S-9 seem to have only residual outflow fluids and a higher degree of mixing with 

meteoric groundwater water. These wells also have low temperatures compared to the 

other wells at the corresponding depth of peak outflow temperatures. The reversal from 

30-100 m is attributed to a large degree of mixing with this colder meteoric water where 

permeability is sufficiently high (Daanen et al., 2012; Woodward-Clyde, 1983).  
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Figure 3.14: Temperature curves for all Pilgrim Hot Springs wells. Measured in Celsius 
from 0-400 m depths.  
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Figure 3.15: Lithology, gamma ray, and temperature curves for selected wells.  
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3.5 Sample Analytical Techniques 

3.5.1 Reflectance Spectroscopy 

 Visible near infrared to shortwave infrared (VNIR-SWIR) reflectance spectra 

were acquired over the 400-2500 nm wavelength region with an Analytical Spectral 

Devices (ASD) FieldSpec Pro and a high-intensity contact probe using a white Spectralon 

panel as reference. Each sample was measured by holding the probe perpendicular to a 

preferentially flat or smooth surface to minimize measurement errors associated with 

stray light. Reflectance spectra were recorded every seven centimeters to detect detailed 

variations in the mineral spectral absorption features with depth. In the VNIR-SWIR 

wavelength region, hydroxyl, hydrate, and carbonate anions as well as transition elements 

(dominantly iron) produce distinctive absorption features (Hunt, 1977). These spectral 

features can be used to investigate mineral assemblages or variations in specific mineral 

chemistry that may be related to changing alteration conditions. For example, the depths 

and wavelength positions of absorption features, such as those related to AlOH and FeOH 

compounds, can be utilized as proxies for the extent and magnitude of hydrothermal 

alteration (Calvin et al., 2010; Haest et al., 2012; Harraden et al., 2013; van Ruitenbeek et 

al., 2005) (Figure 3.17). Geochemical signatures of hot fluids are recorded in subsequent 

alteration minerals where the fluids emanate from a deeper source. Reflectance 

spectroscopy is cost-effective and can accommodate large numbers of samples in a 

relatively short amount of time compared to XRD or XRF (Calvin et al., 2010).  
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Figure 3.16: AlOH and FeOH absorption features. Red, green, and blue bands define the 
AlOH absorption feature. Modified from van Ruitenbeek et al. (2005).  

 

 Pre-processing of the acquired spectra involved calibrating the data to absolute 

reflectance using a reflectance spectrum of the Spectralon white reference panel and the 

use of a ‘jump correction’ to remove wavelength dependent offsets associated with the 

boundaries between the different sensor arrays of the ASD system. This pre-processing is 
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performed using the Spectral Analysis and Management System (SAMS) software 

package (SAMS, 2005). The pre-processed spectra are compiled into a spectral library 

file that was imported into the ENVI (Environment for Visualizing Images) software 

package. To better visualize the vertical changes in spectral reflectance properties an IDL 

(Interactive Data Language) script (provided by C Haselwimmer) was used to build a 

hyperspectral image cube that stacks spectral data against sample depth to provide a 

convenient method for visualizing the results (Figure 3.18). Using ENVI, false color 

composites of three spectral bands focused on specific mineral absorption features were 

produced to qualitatively investigate the range of mineral assemblages and variation in 

alteration intensity with depth. A continuum-removal procedure (Clark and Roush, 1984) 

was applied to the hyperspectral cube to better enhance the depth of specific absorption 

features as well as remove slope effects that impact the absorption depths and wavelength 

positions. Qualitative interpretation of major spectral classes manifested in the data was 

undertaken with reference to the USGS Digital Spectral Library (Clark et al., 2007) in 

order to identify the dominant mineral assemblages. Using scripts implemented in IDL, 

the continuum-removed depth and wavelength position of major mineral absorption 

features in the VNIR-SWIR was determined from the spectral data. These scripts were 

based on procedures adapted from Haest et al. (2012) that involved fitting polynomial 

curves of various orders of magnitude to the continuum-removed spectra for different 

absorption features. The spectra are stacked and continuum removed to highlight the 

profile subtleties for clarity of comparison (Figure 3.18). Red (2145 nm), green 

(2205 nm) and blue (2235 nm) define the ALOH absorption feature to distinguish Al-rich 
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mineral phases by color association as a function of absorption depth (Figure 3.18). The 

resultant spectral parameters were used to determine specific mineral assemblages 

following the procedures outlined by Haest et al. (2012) as well as providing variables 

that were cross-compared with the results of methylene blue and XRD analyses. Analysis 

of the sample spectra was also undertaken using The Spectral Geologist (TSG) software 

package to provide an independent check concerning the interpreted mineral assemblages 

(Figure 3.19).   
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Figure 3.17: Hyperspectral image cube of PS-12-2. Stacked spectra corresponds to 
sample depth for a total of 375 m depth. Reference mineral spectra (USGS Spectral 
Library) have been selected: montmorillonite (magenta), chlorite (yellow), muscovite 
(red), illite and kaolinite (blue), and highly crystalline sediments with quartz as an 
example (white to very light pink-magenta).  
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Figure 3.18: The Spectral Geologist spectral analysis mineral results. Results are listed 
from most abundant to least abundant for both PS-12-2 sediments and core. 

 



53 
 

 

 Analysis of the reflectance spectra indicates alteration mineral assemblages within 

the well sediments and core samples comprised of various clays and micas. The dominant 

mineral assemblages include montmorillonite and chlorite (Figure 3.18). The absorption 

features of OH at 1400 nm, H2O at 1900 nm, and specifically the AlOH absorption 

feature at 2205 nm with shoulder peaks at 2160 nm and 2240 nm are strong indicators of 

montmorillonite. Chlorite was identified by low reflectance in the visible spectrum, the 

multiple absorptions in the H2O band, and a small AlOH absorption on the shoulder of 

the much more pronounced FeOH band at 2250 nm and MgOH band from 

2330-2450 nm. However, muscovite and kaolinite, detected in XRD, were not as easily 

separated by visual determination in spectral analysis due to the mixed-layer nature of the 

clay samples and ambiguities in the spectral absorption features. The USGS reference 

spectra for mixed montmorillonite-kaolinite offered the closest resemblance to sample 

spectral profiles, but this particular mineral assemblage is almost indistinguishable from 

pure montmorillonite reference spectra. 

 To further characterize the extent of alteration within the samples, the White Mica 

Alteration Index (WMAI) was calculated. This index is the ratio of the AlOH absorption 

depth of white mica to the depth of the FeOH absorption feature in chlorite (van 

Ruitenbeek et al., 2005); the ratio increases with white mica relative to the abundance of 

chlorite (Figure 3.20). WMAI values that plot higher than 0.75 are interpreted to be 

mostly white mica while chlorite dominates the lower half at 0.5 and below (van 

Ruitenbeek et al., 2005). The relative Al content of the white micas determines the 

wavelength position of the AlOH absorption feature and changes with temperature, 
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hydrothermal fluid chemical substitution, and the mineral composition of the host rock 

type (van Ruitenbeek et al., 2005). Figure 3.20 is a WMAI scatter plot of wavelength 

values within 2190-2215 nm that is the characteristic range of the AlOH absorption band. 

The WMAI for the PS-12-2 sediments tend to exhibit a relatively low Al content possibly 

as a result of increased temperature (100+ °C) or evolving hydrothermal fluid chemistry 

(van Ruitenbeek et al., 2005). Figure 3.21 shows a similar distribution of WMAI values 

for the sediments of PS-12-1 and PS-12-3. The deeper sediments and shallow basement 

surface rock cuttings of PS-12-2 and PS-12-3 plot in or near the chlorite dominant range. 

The PS-12-2 core displays a wide spectrum of variable white mica-chlorite values. The 

Spectral Geologist program, designed for automated mineral detection using spectral 

data, produced results that indicate the abundance of (Fe,Mg) chlorite relative to a lesser 

amount of white micas such as muscovite and paragonite (Figure 3.19).  
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Figure 3.19: White Mica Alteration Index scatter plot for PS-12-2. AlOH and FeOH 
absorption feature depth and wavelength position changes are plotted. 
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Figure 3.20: White Mica Alteration Index scatter plot for selected wells. PS-12-1, 
PS-12-2 (and core section), and PS-12-3 AlOH and FeOH absorption feature depth and 
wavelength position changes are plotted.  
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3.5.2 Methylene Blue Titration 

 Methylene blue (MeB) analysis is a common approach to determining the 

composition of clays intercepted in geothermal exploration (Gunderson et al., 2000). This 

analysis requires titration of methylene blue into solution containing a powdered sample 

of clay. In solution, methylene blue is a cationic dye with the molecular structure 

C16H18N3S+ that readily adsorbs onto smectite clays due to their very high cation 

exchange capacity and hydrogen bonding with the alumino-silicate lattice structure 

(Santamarina et al., 2002; Yukselen and Abidin, 2008). It is an important application as 

smectite clays form in temperatures in excess of 50  °C and conversion to illite 

composition begins at 80 °C and becomes increasingly dominant above 100 °C 

(Gunderson et al., 2000). The results of MeB analysis of clay-rich samples can be 

combined with zones of low resistivity to delineate areas of possible high-temperature 

alteration in association with the migration of geothermal fluids (Gunderson et al., 2000). 

For this analysis, 78 clay samples were analyzed with methylene blue titration.  

 The procedure used for the methylene blue analysis is provided in Harvey (1993). 

The main purpose of this method is to fully saturate the clay particles with a methylene 

blue solution. Drop counts of the methylene blue-clay solution are recorded until a blue 

halo forms on the paper (Figure 3.22). This halo forms as a result of full adsorption of 

methylene blue onto the clay structure where the excess methylene blue is suspended in 

the solution. For each one ml of methylene blue solution required for saturation, 

1% swelling clay is estimated. The composition of the clay and a calibrated quantification 
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of %smectite is typically ascertained by x-ray diffraction. A range of smectite content was 

detected in the clay samples in the MeB analysis.  

 For well PS-12-1, the MeB analysis showed an increase in smectite percentage 

with depth. The top of the well had an average of 2-3% smectite, which increased to 

8.5% near the bottom of the well. In PS-12-2, high values of MeB saturation indicate 

smectite content up to 10% occurring at 200-300 m depth. PS-12-3 displayed a similar 

trend and average to PS-12-2. However, it only had a high of 7.5% smectite. The table of 

MeB values for these wells is located in Appendix B.1-B.3.  

 

 

Figure 3.21: Methylene blue solution "halos". Halos indicate excess MeB (Methylene 
blue) remaining in solution after full adsorption onto free clay fraction in the prepared 
mixture.  
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3.5.3 X-ray Diffraction Analysis 

 Samples were analyzed using the PANalytical X'PERT PRO Materials Research 

Diffractometer (MRD) x-ray diffraction (XRD) in the Advanced Instrumentation Lab at 

the University of Alaska Fairbanks. Using a CuKα source, the analytical range was from 

2-59 °2θ with a 0.01 step size and 15 seconds per step. Four clay samples obtained from 

drill cuttings from PS-12-2 were prepared for oriented clay x-ray diffraction analysis. The 

clays were decanted, separated from >2µm particles, and saturated with a 2M solution of 

MgCl2 as expanding with an index cation yields predictable results that allow for 

differentiation of the clay mineralogy (Bain et al., 1987). The clays were then oriented in 

a vacuum filter apparatus and placed on glass slides. Separate XRD runs were completed 

after air-drying and ethylene glycolation. Expandable clays like smectites, principally 

montmorillonite, shift in measured Å peaks of 10  Å air-dried at 7 °2θ to 14 Å at 5 °2θ 

with ethylene glycol (Mosser-Ruck et al., 2005). The results of XRD analysis are 

compared to the results of the other methods to test the agreement of mineral 

determinations.   

 The common minerals detected in the XRD results include abundant 

montmorillonite, common illite/chlorite, kaolinite, and minor biotite (Figure 3.23). Peak 

matches within the 2-59 °2θ range and respective d-spacings for known minerals show a 

strong match with montmorillonite clay. Peak position and count intensity matches with 

other minerals may be slightly variable as the samples were oriented with the C-axis of 

the clays preferentially aligned. Thus, correlations to peaks of other mineral structures at 
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a specific °2θ are limited to the 001 line. Peaks on other lines and orientations may not 

show up. When considering a mineral identification, this orientation served as a 

mechanism for filtering out other mineral structures by looking at database results of 

measured °2θ angles and d-spacing values at the 001 line.  
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Figure 3.22: XRD results of PS-12-2 clay samples. XRD detected (M) Montmorillonite, 
(I) Illite, (K) Kaolinite, (B) Biotite from depths of 235-296 m in well PS-12-2. Results are 
dominated by montmorillonite with variable abundances of illite and kaolinite 
composition and minor biotite.   
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3.5.4 Thin-section Characterization 

  The thin-sections were created from selected samples that represent the three 

distinct lithologies present in the PS-12-2 core. The bedrock is composed of mica schist 

with a granitic pegmatite dike and a diabase dike. A thin-section was also created from a 

field sample of a previously identified granitic pegmatite dike for comparison (Turner et 

al., 1979). Photomicrographs of the biotite schist bedrock, pegmatitic dike, diabase dike, 

and the contact of the pegmatitic dike and biotite schist are illustrated (Figure 3.24). The 

pegmatitic dike contains plagioclase and quartz minerals of sizes ranging from 0.5-2 cm. 

Minor biotites are seen in the pegmatite at the contact with the biotite schist. The diabase 

dike has <3 mm sized hornblende crystals and several thin  (<1 mm) quartz-filled veins 

with a groundmass of very fine plagioclase crystals. Fine-grained pyrite (only discernible 

in reflected light) is very common as a replacement mineral along both dike-schist 

contacts. 

 Mineral alteration seen in thin-sections of the core is limited to micas at or near 

dike contacts, pyritization in quartz veins and mineral contacts, and hornblende 

replacement in the deeper diabase dike sections. Minor alteration is present in some 

biotites producing a mottled sweeping extinction. Mineral degradation and the early 

stages of hornblende replacement by quartz are visible. The inspection for clay content in 

thin-section and precise alteration accessory mineralogy is best pursued in scanning 

electron microscopy and microprobe analysis, both of which are expensive endeavors and 

were not undertaken in this research.  
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Figure 3.23: Thin-section photomicrographs of bedrock core samples. All images are 
under crossed polars. [A] Representative sample of the biotite (Bt) schist. Minor 
alteration is present in some biotites. [B] Pegmatitic dike with large plagioclase (Plag) 
and quartz (Qtz). [C] Diabase dike with a 3 mm hornblende (Hbl) crystal cut by two 
quartz veins with a groundmass of plagioclase. Mineral degradation and the early stages 
of hornblende replacement by quartz are visible. [D] Contact of the pegmatitc dike and 
biotite schist. Hornblende, quartz, plagioclase, and biotite are common.  
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3.6 Discussion of Analytical Results  

  The sediments and mica schist bedrock are experiencing hydrothermal alteration 

as evidenced by a mineral assemblage of montmorillonite, illite, and kaolinite, as well as 

a host of accessory minerals. The mixed montmorillonite, illite, and kaolinite clays 

suggest low-temperature alteration between 80-120 °C in both the sediments and 

bedrock.  

 The AlOH absorption depth and methylene blue estimated smectite content is 

plotted for wells PS-12-1, PS-12-2, and PS-12-3 with the aim of correlating 

montmorillonite-rich horizons as proxies for hydrothermal alteration (Figure 3.25). 

Discovering these zones of hydrothermal alteration can highlight the pathways, both past 

and present, of hydrothermal fluid flow in the geothermal system. The AlOH absorption 

depths for each well show a general increasing trend to the bedrock surface, yet smaller 

scale variations do not typically correlate directly well-to-well. One notable exception is 

the two data points in PS-12-1 at ~30 m depth that exhibit significant absorption up to 

0.07-0.09%. These two points are indicators of montmorillonite on their respective 

spectral profiles. When compared to the other wells, AlOH absorption increases appear to 

occur at the same depth. However, this is limited to only a few data points and the 

absorption features of PS-12-2 and PS-12-3 are too subtle for a well-supported 

correlation. The methylene blue data for each well show a trend similar to the increasing 

trends of the AlOH absorption features to the bedrock surface. Each well exhibits low 

values (<3% smectite) until 130 m depth where the wells display an increase in smectite 
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content to the bedrock. Also, similar to the AlOH trends, small scale correlations between 

wells are not achievable. Increasing the sample data may help to resolve this issue.  

 Examination of the methylene blue and AlOH absorption data reveals broad 

similarities yet there is a lack of correlations at a higher frequency (Figure 3.25). Both 

methods produce trends with depth that signify increases in montmorillonite in all three 

wells. PS-12-2, for example, shows the trends with depth against lithology, temperature, 

and mineralogy as detected through The Spectral Geologist and XRD (Figure 3.26). 

Methylene blue and AlOH absorption both increase and decrease in identified clay-rich 

intervals. It is important to note that AlOH absorption is not uniquely a montmorillonite 

or smectite indicator and could be indicating the presence of other minerals as well. Also, 

the methylene blue analysis is only a measure of its affinity to the smectite clays in 

suspension. Montmorillonite is a specific smectite clay and other smectite clays in the 

sample solution could affect the outcome of estimated montmorillonite content. The 

discrepancy in the two trends may also be the result of heterogeneity of the clays and 

sediments. Increases in illite or kaolinite relative to montmorillonite could produce the 

variation observed in both trends. This is supported by Figure 3.26 where plotted XRD 

results show multiple clay minerals are detected throughout the selected well cutting 

samples. Temperature also does not appear to greatly influence the higher frequency 

changes of the two methods (Figure 3.26). This suggests the heterogeneity of the clay-

rich intervals may be influenced by other environmental conditions.   
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Figure 3.24: AlOH absorption depths and methylene blue results combined plot. AlOH 
absorption feature depth (AlOH D) at the 2200 nm wavelength (or approximately located 
at the maximum depth of absorption for this specific feature) and methylene blue 
estimated smectite content in percent (MeB %) plotted against depth for wells PS-12-1, 
PS-12-2, and PS-12-3. Absorption depth is measured in total percent absorbed light (not 
reflected).  
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Figure 3.25: Lithology, temperature, spectral, and methylene blue analysis plot. A 
correlation of results for PS-12-2. All data sets are compared to detect changes in 
mineralogy that relate to the degree of past hydrothermal alteration.  

 

 The degree of alteration present in the Pilgrim Hot Springs wells resembles an 

argillic alteration facies with the assemblage of white micas and clays, dominantly 

kaolinite, montmorillonite, and illite (Mas et al., 2006). The formation of these clays is 

strongly dependent on fluid temperature and also on fluid chemistry (Browne, 1978). The 

presence of kaolinite indicates an environment with temperature and pH conditions 

necessary to strip the alkalis from muscovites as well as iron, calcium, and magnesium 
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from montmorillonite through the process of hydrolysis (Guilbert and Park, 1986). The 

montmorillonite in the PS-12-2 core provides further evidence for argillic-style  alteration 

as it is a common alteration product in many ore vein deposits and hydrothermal systems 

(Guilbert and Park, 1986; Browne, 1978). Similarly, illite and chlorite typically require a 

temperature range of 100-200+ °C for formation and are commonly used as a 

geothermometer (Gunderson et al., 2000; Harvey and Browne, 2000; Lagat, 2007). The 

temperatures required for the mixed-layer smectite-illite clays detected in the well 

samples are most likely the result of the hydrothermal alteration within the system and 

would require greater burial depth for conversion to illite through diagenetic processes 

alone (Jennings and Thompson, 1986). Chlorite, although common in geothermal 

systems, is most likely derived from the low-grade metamorphics of the nearby 

mountains and dike intrusions in the basement that may have had more impact on 

mineralizing the shallow basement than hydrothermal processes. The low-grade 

metamorphism and dike intrusions of the bedrock may likely be responsible for the 

abundant presence of chlorite and mineral replacement in the dikes, as the temperatures 

required for their crystallization are well above any other hydrothermal alteration features 

observed in the sediments. Regardless, extensive pyritization and the clay mineral 

assemblage suggest an argillic-style alteration facies that is present in both the core and 

sediments.  

 The alteration assemblage points to past temperatures at or slightly elevated above 

current conditions of hydrothermal activity at Pilgrim Hot Springs. The presence of 

abundant pyrite and the clay mineral assemblage of montmorillonite, illite, and kaolinite 
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is a common feature of both low- and high-temperature geothermal systems around the 

world (Browne, 1978). The various geothermal systems of Yellowstone in Wyoming, 

The Geysers in California, many systems in New Zealand, the Philippines, and Iceland all 

contain the presence of these particular minerals (Browne, 1978). The lack of high 

temperature (>150 °C) alteration in the sediments may indicate that the heat source 

remained nearly constant through time.  
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Chapter 4: Lithostratigraphic and Temperature Model Development 

4.1 RockWorks15 Model Parameters 

 RockWorks15, a geologic modeling program from Rockware, was used to create 

the visual model to generate cross-sections and maps for data comparison. All Pilgrim 

Hot Springs well data were imported into the program for mapping, contouring, visual 

analysis, and 3D modeling. The model encompasses an area of 4 km2 that includes the 

observed anomalous thawed ground of the hot springs and surrounding boundary of 

permafrost (Figure 4.1). The node density of the model is 20 m laterally in the X-axis and 

Y-axis and ~2 m (5 ft) along the Z-axis. Lithologic observations made from describing 

drill cuttings were directly imported into the program as discrete intervals within each 

digital well log.  

 Well data points, both lithologic and temperature, are interpolated via an 

anisotropic modeling algorithm. The anisotropic algorithm constrains the interpolation of 

values to the nearest data points in the surrounding model nodes much like connecting a 

series of dots. This method is most applicable to continuous downhole data sets similar to 

the lithologic and temperature logs. The inverse method, isotropic modeling, assigns node 

values in between wells with an equal distribution in all directions. This interpolation of 

data does not reflect the real-world spatial variability of the sediments or hydrologic 

controls on the temperatures. The anisotropic algorithm more realistically constrains the 

data in interpolation as well as extrapolation to the model boundaries.  
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Figure 4.1: RockWorks15 conceptual model dimensions. Boundaries of the 
RockWorks15 model includes all Geoprobe and well locations. The model dimensions 
are 4 km2. The map is a USGS Alaska High-Altitude Photography near-infrared image.  
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4.2 Model Assumptions and Limitations 

 Assumptions and Limitations 

 Several assumptions were integrated into the construction of this model: 

• The porosity and permeability values obtained from published sources are 

accurate and can be applied to sediment analysis of well cuttings for this model.  

• The geophysical well logs, most notably gamma ray, can be reliably correlated 

across the site to provide the best understanding of the subsurface stratigraphy.  

• Well temperature data reflects a fully equilibrated ambient temperature.  

 The conceptual model is also restricted by limited understanding of the structural 

geology controlling fluid flow under Pilgrim Hot Springs. The placement and orientation 

of any faults at depth or offset in sediment layers between wells is difficult to ascertain 

due to relatively small area of exploration. The lack of any seismic reflection data makes 

interpreting the bedrock surface difficult as well. Another limitation to the model is the 

confidence in the sampling and sediment description reports of previous exploration 

drilling at the site. Without clarity on the conditions and procedure of sediment 

classification during the earlier drilling, previous lithologic logs utilized in the conceptual 

model have the potential to be overgeneralized or miss thinner, yet important sediment 

intervals.  
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4.3 Data Integration   

4.3.1 Lithostratigraphic Model 

 Unconsolidated to poorly consolidated Quaternary alluvial, fluvial, 

glaciolacustrine, and brackish lagoon sediments ranging from clay to gravel were 

intercepted in the wells to depths of 320 m where the mica schist basement was 

encountered below. Characterization of the drill cuttings from each well were used to 

produce lithologic logs that provide the framework for development of a conceptual 

geological model of the geothermal system. The sediments were characterized based on 

mineralogy, grain shape, sorting, and distribution of grain size from clay, silt, very fine-

coarse sand, and gravels. The sediment characterization also provides porosity and 

permeability values that are important as input parameters for the numerical reservoir 

model.  

 In Figure 4.2, a SW-NE cross-section is used to demonstrate the lithostratigraphic 

stacking of the underlying sediments. Both N-S and E-W cross-sections are seen in the 

3D model image (Figure 4.3). Coarse sand is the most common sediment type derived 

from the edge of the proximal alluvial apron. Several laterally extensive clay layers are 

evident and are most abundant in PS-12-1. The thickest and most extensive clay-rich 

layer seems to be located between depths of 200-275 m, about 50 m above the buried 

basement surface, and is intercepted in wells PS-12-1, PS-12-2, and PS-12-3. Another 

clay layer above the basement at ~300 m is present in all of the deep wells except 
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PS-12-3. The extensive clay layers may have formed during periods of increased 

subsidence relative to sedimentation or during high sea level as a marine-influence 

brackish lagoon. Understanding more about these clay layers beyond their geometry and 

alteration is outside of the scope of this work. Beneath this clay is a zone of silty sand 

that extends down to the basement-sediment contact. There are other laterally extensive 

clay layers and they are typically grey and silty-sandy (Figure 4.2). The lenses of gravel, 

most likely fluvial channel lag, have the highest primary porosity of the sediments and 

allow for the best communication of groundwater into the system as well as hydrothermal 

fluid migration. The gravels are typically thin and interbedded with clay or form distinct 

layers in the indurated zones.  

 Indurated sediments occur in the subsurface to the basement with varying degrees 

of cementation. The indurated sediments have a clean silica cement and tend to be 

moderate to well-sorted silty sand. The cement was analyzed through XRD and was 

found to be principally silica with trace amounts of muscovite and calcite (Woodward-

Clyde, 1983). Penetration of these zones occurred in every well with the exception of S-1 

and S-9. Induration seems to be greatest around PS-4 and forms a "chimney" with various 

lateral splays up section (Figure 4.4).   

 The composition of the bedrock is a mica schist that was determined from the 

lowermost ~20 m of core from the well PS-12-2. Bedrock was also intercepted in PS-12-

3 with possible difference in depth. Due to the obliqueness of the cross-section, the actual 

change in depth to bedrock between the two holes is less dramatic than Figure 4.2 
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indicates. The maximum difference is ~10 m where the depth to bedrock in PS-12-3 

might be lower. The exact bedrock contact while drilling PS-12-3 was ambiguous and 

was only indicated by an increase in mica flakes in the well cuttings. If this is a small 

offset and not the effect of changing surface topography, this could be evidence of a fault 

at depth. However, the orientation and dip of the probable fault remains elusive. 

 

Figure 4.2: Southwest-northeast cross-section of interpolated lithologic logs. Created in 
RockWorks15.  
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Figure 4.3: RockWorks15 3D model of the interpolated lithologic logs. Reservoir 
stratigraphy is interpolated between wells and extrapolated out of the model area.  
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Figure 4.4: RockWorks15 3D model of major clay intervals and indurated zone. Modeled 
low permeability hydraulic barriers of clay intervals and the indurated zone with a 
"chimney-style" morphology extending from basement to surface. The six deepest wells 
are plotted on top.  
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4.3.2 Temperature Model 

 Temperature logs from the 11 wells and 64 Geoprobe holes were incorporated 

into the RockWorks15 isotropic model to produce the distribution (Figure 4.5). This 

temperature model has the same dimension of 4 km2 as the lithostratigraphic model. The 

conditions of the model include the highest temperature 91 °C measured at depth to the 

lowest temperature of 1 °C measured in the permafrost. The permafrost temperatures 

were measured in Geoprobe holes to establish background temperatures. This range 

highlights the anomalously high heat of the hot springs in the center of the model. The 

western, southeastern, and eastern boundaries are marked by permafrost to depths of 

100 m. The model extrapolated the cold background temperatures with a slightly 

increasing temperature gradient down to the bottom of the model. The increasing gradient 

of background temperatures surrounding the hot springs in the model is influenced by 

interaction with the hotter fluids at depth. The 40-50 °C isotherms extend from the center 

of the model to the southwest. Similarly, 40-50 °C isotherms are close to or below the 

basement surface on the edges of the model. The river cuts off the northwest corner of the 

model where no Geoprobe or well data is available. 

 To achieve an overall temperature distribution that reflects current observations 

from the field and other independent observations (Chittambakkam et al., 2013; Daanen 

et al., 2012; Haselwimmer et al., 2011), control wells were inserted into the model by 

using Geoprobe temperature data. The control wells were synthetically replicated from 

actual Geoprobe holes that intersected permafrost. The wells were placed at the model 
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boundaries to simulate realistic conditions and constrain the temperature model iteration. 

Three control wells (two on the western boundary and one in the southeast corner) were 

placed down to 30 m depth where the pink, ~1 °C isotherms are seen in the model to 

make the permafrost more robust (Figure 4.5). With a more constrained temperature 

model, the isotherms better reflect the nature of the geothermal reservoir.  

 The vertical and horizontal temperature distributions show the center of the 

geothermal system where the north-south and east-west cross-sections intersect 

(Figure 4.6). The geothermal system forms a large plume from the basement to the 

shallow subsurface. The width of the plume gradually decreases upwards where three 

depth slices and two cross-sections show the narrow neck of the 90+ °C temperatures of 

the plume between wells PS-12-1, PS-12-2, and PS-12-3 (Figure 4.7-4.8). The 

characteristics of the temperature model combined with the framework of the geologic 

model produce a cohesive conceptual model of Pilgrim Hot Springs discussed in the next 

chapter.  
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Figure 4.5: Southeastern view of the RockWorks15 temperature model. The total depth is 
400 m and 4 km2 wide. All eleven wells from the site are plotted.  
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Figure 4.6: Vertical and horizontal slices of the RockWorks15 temperature model. A 
southeastern view of the RockWorks15 temperature model with north-south and east-
west cross-sections and a 300 m depth horizontal temperature distribution slice slightly 
above the basement surface. All eleven wells are plotted as reference points.  
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Figure 4.7:  Three depth maps of the RockWorks15 temperature model result. A 
southeastern view of three depth slices at 100, 200, and 300 m from the RockWorks15 
temperature model indicate the extent of the higher temperature distribution which 
narrows from the basement surface to the shallow subsurface. All eleven wells are plotted 
as reference points.  
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Figure 4.8: Two cross- sections of the RockWorks15 temperature model. The top is an 
eastern view (N-S) and the bottom is a southern view (W-E). Reference wells show 
lithostratigraphic units. The profiles are 2 km wide.  
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Chapter 5: Development of the Conceptual Model 

5.1 Introduction 

 The goal of building a conceptual model of a particular resource is to best assess 

the gathered data as a cohesive picture of where different observed anomalies may 

correlate (Cumming, 2009). This provides possible targets for exploration. Essentially, 

this conceptual model integrates the cross-section of interpreted stratigraphy and 

structure, interpolated temperature isotherms, and mapped geophysical and geochemical 

surveys. These are overlaid to highlight the framework of the geothermal system. 

Understanding the geothermal system through a conceptual model allows for the 

prediction of subsurface conduits for the migration of hydrothermal fluids.  

 In order to achieve this understanding, several data sets are assessed and used to 

develop the conceptual model. Initially, lithostratigraphic relationships are surmised from 

lithologic and geophysical well logs. These relationships include comparing well log 

response to lithology and correlating from well to well. The correlations guide the 

construction of the 3D lithostratigraphic model as constraints to anisotropic interpolation 

and extrapolation to the model boundaries. The same process is conducted for 

temperature data with temperature logs being directly imported into the model software 

to create points for anisotropic interpolation. Temperature and lithostratigraphic 

integration demonstrates the geologic controls of isotherm placement through generating 

model profiles. The MT data can be directly applied to the lithostratigraphic and 
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temperature relationships as indicated by changes in low-to-high resistivity. These data 

sets comprise the conceptual model.  

 The interpretations of the geothermal system through this conceptual model are 

not without limitations. The spatial extent of the data gathered at the site was greatly 

limited by access on stable ground and existing trails. This includes the MT stations 

placed around the site that had to avoid flooded fields and permafrost, suitable ground for 

drill pad placement for the drilling locations of the deep wells, and general road/trail 

access for vehicle and heavy equipment. The largest constraint of the conceptual model is 

the lack of deep well lithostratigraphic and temperature data outside of the NE-SW 

lineated density of wells on site. The density of the well data, both Geoprobe and deep 

well, is greatest in the middle of the model which inherently produces biases on the 

consideration of various scenarios on the transport of hydrothermal fluids in the 

subsurface. However, no compelling evidence has been discovered as of yet that would 

justify drilling deeper wells outside of this trend on the hot springs site.  

The conceptual model is complemented by the numerical model which evaluates 

the temperature and fluid flow conditions at Pilgrim Hot Springs for the purposes of 

testing the total energy flux estimation and deeper reservoir location. The sediment 

descriptions and lithostratigraphic architecture presented in this conceptual geologic 

model have been incorporated into the numerical model to provide permeability 

calculations for a more effective fluid flow model. 
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5.2 Discussion of the Conceptual Model  

  In general, the Pilgrim geothermal system can be subdivided into a shallow 

outflow aquifer and a deeper reservoir beneath a clay cap connected by a very narrow 

conduit with 91 °C upflow (Figure 5.1). Temperature logs increase to 91 °C at 25-50 m 

with a reversal at 30-100 m. The isotherm distribution is visually interpreted from 

temperature logs (Figure 5.1). The peak in temperature is the result of the outflow of 

geothermal fluids and the increasing temperature gradient is due to the heating of the 

deeper geothermal reservoir. The outflow direction is mostly concentrated to southwest 

and northeast. All wells show an increasing temperature gradient below the reversal with 

differing rates. The temperature gradients suggest the upflow is located between PS-12-1, 

PS-12-2, and PS-12-3. Stratigraphic correlations based upon well log data indicate 

several clay layers throughout the section with a dominant clay horizon at 200-300 m 

depth. Induration in the sediments is mostly concentrated between wells PS-4 and 

PS-12-3 and occurs from basement to the shallow subsurface with a chimney-like shape.  
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Figure 5.1: Stratigraphic cross-section of the geologic model with isotherms. 
Temperature isotherms are derived from the temperature model and indicate a shallow 
outflow aquifer above 100 m, a narrow upflow from 100 m to 300 m, and a deeper 
reservoir connecting to the system in the vicinity of PS-12-2 and PS-12-3.  
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 Regarding the lithostratigraphic and temperature data, the conceptual model 

contains a data set greatly restricted in the size of inspection area. This is the result of the 

density of well data occurring in a small area, many as close as 100 m, and along a 

SW-NE trend. This trend makes confident extrapolation into other areas of the model that 

lack well data difficult. Inferring the extent of the modeled lithostratigraphic units and 

isotherms without well data is achieved through the geophysical surveys, notably the MT 

survey. The combination of MT ground-based resistivity and temperature data may 

delineate the upflow of hydrothermal fluids from depth. The temperature data of both the 

deep wells and shallow Geoprobe holes guide the modeled isotherms. However, the MT 

does not directly image the high-temperature fluids, but rather the associated 

hydrothermal alteration products in the sediments and bedrock (Cumming, 2009). The 

spectral investigation of AlOH absorption and estimated smectite content through 

methylene blue analysis reveal a close relationship of low MT resistivity and 

hydrothermal alteration (Figure 5.2). This can be used to elucidate the areas of past and 

present alteration through the interaction with hydrothermal fluids. By these proxies, the 

location of the upflowing fluids can be inferred.  

   

 

 

 



90 
 

 

Figure 5.2: AlOH absorption and methylene blue results plotted on MT profile. An 
example MT resistivity profile is used for comparison to AlOH absorption (top) and 
methylene blue analysis (bottom). Both methods correspond with an increase in AlOH 
absorption and estimated smectite content as proxies for hydrothermal alteration in the 
low resistivity zone. MT data provided by FUGRO (2012).  
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MT and temperature distribution plan maps are used to highlight the various elements of 

the geothermal system and demonstrate the extent of associated alteration. The base of 

the shallow thermal aquifer is located at 50 m depth and shows an area of low resistivity 

(<3 ohm-m) constrained by >70+ °C isotherms between wells PS-12-1, PS-12-2, and 

PS-12-3 (Figure 5.3). The conductor is most likely discontinuous altered clay (smectite) 

layers, common low-temperature (<100 °C) hydrothermal alteration products, as no clay 

intervals appear laterally continuous through all the wells at this depth. The western and 

southern resistive zones bordering the hot springs are due to permafrost. With present day 

temperatures and interpreted alteration in the MT map showing a similar spatial extent, 

the outflow is apparently discharging hot fluids at this location and depth without much 

lateral movement or migration from this area through time. Both the 100 m and 200 m 

MT and temperature maps show similar-sized conductive and high temperature zones, 

respectively (Figures 5.4-5.5). At 100 m, the hottest temperatures are modeled to occur 

slightly to the northwest of PS-12-2 while the MT map shows a conductive zone of 

proportional size to the southeast of the same well. This discrepancy may result from the 

temperature model prediction of where the high temperatures occur. At this depth, the 

model is relying on 11 wells as control points for isotherm placement and all wells are 

displaying a temperature reversal at this depth. The higher temperatures could just as 

likely be placed at the approximate location of the conductive zone in the MT map. Both 

maps suggest the conduit feeding the outflow is narrow (<100 m) and difficult to predict 

as well as resolve through modeling.  
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Figure 5.3: MT and RockWorks15 temperature model plan maps at 50 m depth. The red 
triangles indicate MT station location.  
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Figure 5.4: MT and RockWorks15 temperature model plan maps at 100 m depth. The red 
triangles indicate MT station location. 
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Figure 5.5: MT and RockWorks15 temperature model plan maps at 200 m depth. The red 
triangles indicate MT station location. 
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 The 200 m depth maps both indicate a broader zone of conductivity and zone of 

higher temperatures as all the wells show an increasing temperature gradient. The 

numerous intervals of interbedded clays, sands, and gravels at this depth may be 

effectively transmitting hydrothermal fluid across the wells, protecting against the colder 

meteoric water. The 300 m depth maps show a significant difference in interpreted 

alteration due to high conductivity and the predicted zone of high temperatures. Until this 

depth, both data sets demonstrate a reliable correlation of alteration and high temperature 

fluids. However, the MT suggests a zone of increased conductivity in a large area that 

centers near PS-12-1 and bends back away from wells PS-12-2 and PS-12-3. This is 

surprising as the temperature map of the same depth indicates a large area of high 

temperatures centered between these wells with PS-12-2 being the hotter well at 91 °C 

and PS-12-1 at 80 °C. Both wells display similar values of estimated smectite content and 

AlOH absorption at this depth, indicating that both have experienced similar degrees of 

alteration. Also, the mineral assemblage of mixed smectite-illite and kaolinite clays have 

very similar abundances at this depth in both wells (Appendix B.1-B.3) and form in the 

active hydrothermal flow regime of fluid circulation (Mas et al., 2006). This means both 

wells have been subject to nearly the same extent of hydrothermal alteration in the past. 

However, the MT shows a more conductive signature at PS-12-1 and higher temperatures 

are centered on PS-12-2. This is interpreted to mean that the conductive signature, 

associated with smectite clay development, possibly shows a large clay layer extending 

from PS-12-1 to the north, west, east, and tapers around PS-12-2 and PS-12-3 where the 

clay abruptly pinches out and hot fluids may migrate up and around its edge. The pinch 
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out is supported by the southwestern wells PS-4 and PS-5 where this interval contains 

sands and indurated sediments, thus the loss of the conductive signature.  
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Figure 5.6: MT and RockWorks15 temperature model plan maps at 300 m depth.  
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 The hot fluids are seemingly upwelling from a location closest to PS-12-2 due to 

the highest bottomhole temperature of 91 °C at the basement-sediment contact. The 

outflow temperatures in PS-12-2, PS-1, PS-2, PS-3, and PS-12-3 all exhibit 90-91 °C 

temperatures, meaning rapid and/or insulated transport to the shallow subsurface through 

a conduit of significant permeability. This interpreted location of the upflow is also 

supported by the extent of the indurated sediments. The cement of the indurated sand is 

dominantly composed of silica, as verified by x-ray diffraction analysis (Woodward-

Clyde, 1983). All wells (with the exception of S-1 and S-9) show induration down to 

depths of 150 m (PS-12-1 with a very thin 3 m indurated interval at 60 m), PS-4 with 

induration to 250 m, and PS-12-3 being indurated to 275 m. PS-12-2 is not indurated at 

this interval above bedrock, maybe due to size of the sediments. From 300-320 m, 

PS-12-2 has coarse sand that is more porous than the silty-fine sand where induration 

occurs.  Smaller pore spaces in the finer sediments tend to become cemented through 

precipitation from super-saturated fluids first whereas larger pore spaces in the coarse 

sand are often preserved and non-cemented (Cox et al., 2002). With high temperatures 

centered around PS-12-2 and dense induration occurring close to the bedrock surface in 

PS-12-3, the upflow is predicted to occur between the two wells from the bedrock 

fracture and/or fault conduit. This location plots underneath wells PS-1 and PS-2. 

Although both are shallow wells of only 50 m depth, these wells are very well indurated 

and PS-2 in particular, "vigorously degassed" at 15 m depth during drilling (Kline, 1980). 

The composition of the gas was guessed to be CO2. Liss and Motyka (1994) sampled H2 

in Pilgrim wells and discovered the highest concentrations in PS-1. These gas 
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concentrations may imply close proximity to rapidly upwelling hot fluids where tightly-

sealed indurated sediments retain the exsolved gases directly from the fluids. Regardless, 

considering an estimated diameter of <100 m for the upflow conduit, the best placement 

of this conduit appears to between PS-12-2 and PS-12-3.   

  A simple conceptual model of MT profiles and isotherms is shown in 

Figures 5.7-5.8. MT Profile D shows a large, very low resistivity pattern (<1 ohm-m) 

from 150 m to 400 m that extends into the top of the basement and is sharply bounded by 

increasingly resistive zones on the west (left) and east (right) (Figure 5.7). Areas of high 

resistivity values are interpreted as permafrost (0-100 m) and cold regional groundwater 

influx. The <0.5 ohm-m zone matches very closely to the modeled stratigraphy of the 

thick clays from 200-275 m in wells PS-12-2 and PS-12-3 (Figure 5.8). The clay interval 

is a mixed layer clay and resembles a low permeability, low resistivity clay cap to a 

geothermal reservoir underneath (Cumming, 2009). A shallow, flat, low resistivity layer 

of 2.4 ohm-m at 50 m depth aligns with the indurated zone in MI-1 and PS-12-1 

(Figure 5.8). A deep conductor at ~800 m depth appears in Figure 5.8 as marked by the 

blue box. This is an artifact of the 3D MT modeling algorithm that projects the conductor 

into infinite size beyond the spatial boundaries of the survey data range. Above the blue 

box is a strongly conductive zone beneath MI-1 and stretches to PS-5 in other MT cross-

sections. This zone could be the result of smectite clay development in the bedrock 

through hydrothermal fluid flow contact or localized heterogeneity in the mica schist 

bedrock. Turner et al. (1979) mapped local graphitic schist in the bedrock exposures in 

the Kigluaik Mountains. If graphite is present in the bedrock beneath Pilgrim, it would 
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result in a very conductive signature and would transmit fluids very efficiently due to its 

mineral structure (Cumming, 2012). Both interpretations are inherently difficult to prove 

or disprove with the lack of bedrock drilling on the western edge of the hot springs site. 

However, PS-5 has a bottomhole temperature of <50 °C just 50 m above the bedrock 

surface. This makes extensive smectite development in the shallow bedrock seem 

unlikely. In the event that it is smectite from past alteration, the clay is likely plugging 

fractures or faults and mitigating vertical flow to a point of entry into the sediments 

closer to the center of the hot springs area. This is incorporated into the cross-sections as 

lateral splays of decompressing heated fluids exiting the bedrock fractures shown as 

kinks in the isotherms at the bedrock surface. 

 Groundwater flows from the resistive western and eastern boundaries into the 

system where it eventually mixes with the outflow. A blue resistive zone under MI-1 

shows how the cold water enters the system from the south and west from under the 

permafrost (Figure 5.8). Realistically, the flow is generally directed into the cross-section 

and continues to the north towards the Pilgrim River. The thermally-buoyant outflow 

emanates out from the top of the 91 °C plume with a stronger flow to the west and 

southwest above the influx. Isotherm placement is based on the distribution of 

temperatures from the wells. The tightly-spaced isotherms of 90-60 °C indicate low 

permeability correlating to clay layers and indurated sediments (Cumming, 2009) 

(Figure 5.7). Similarly, the close 30-80 °C isotherms converge at the top of the clay cap 

of the geothermal reservoir. A deeper heat source of 100+ °C has been placed under the 
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PS-12-2, although the exact depth and location is hypothetical and only corresponds with 

the dip of the low resistive zone into the bedrock.  

 The conceptual model proposes a shallow outflow aquifer in the indurated 

sediments with a thin clay cap at 50 m depth. The upflow has been placed between 

PS-12-2 and PS-12-3, although it is very narrow (<100 m) and the exact location is 

uncertain. A small convection cycle may feed into the influx of cold water where cooler 

outflowing fluid mixes with the meteoric water. The upflow of the 91 °C geothermal 

fluids is a vertical conduit from basement to outflow and is constrained by the low 

permeability indurated sediments. The upflow also correlates well with the indurated 

zone possibly due to the porosity and permeability of the cemented sand that acts as a 

reservoir for geothermal fluids and can vertically transmit fluid with less heat loss than 

unconsolidated sediments. When contemplating future drilling targets, drilling between 

PS-12-2 and PS-12-3, close to PS-1, is the most promising location. Both the MT and 

temperature maps suggest lower temperatures any direction more than 500 m outside of 

the area from MI-1 to PS-12-1. This is evidenced by colder Geoprobe hole data and an 

increase in resistivity.  
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  As indicated in the broader, yet more shallowly focused electromagnetic survey, 

the conductive signature of the geothermal system at Pilgrim shows a narrow extent west-

east and a larger extent north-south marked by the red boxes (Figure 5.9). The extent of 

the geothermal system is inferred from the occurrence of permafrost at the system's 

boundaries. With resolution only to 100 m depth, the shallow conductive response from 

outflowing hydrothermal fluids discharging into the groundwater and river extends as 

much as 4 km to the north at the base of Hen and Chicken Mountain. The conductive 

signal could be the result of the increased salinity of the northern directed regional 

groundwater flow mixing with the geothermal fluids which would make the system 

appear much larger in the north-south cross-section. Geoprobe shallow temperature 

surveying and an MT survey could be used to evaluate the conductive response, 

specifically to the northeast where Turner and Forbes (1980) identified a small thermal 

expression at the base of Hen and Chicken Mountain. 
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5.3 Conceptual Model in a Regional Context  

 When considering the structural style and sedimentary architecture of the Pilgrim 

River valley alluvial basin with limited subsurface lithologic data, comparison to 

analogue basins can provide context for discerning the basin morphology. The Basin and 

Range geologic province in the Western U.S. contains many low-temperature geothermal 

systems that exhibit similar characteristics to Pilgrim. The structural controls on many 

Basin and Range systems are large normal faults commonly with step-overs, fault 

intersections, and terminations (Cashman et al., 2012). Heat for the geothermal systems is 

derived from deep circulation along the major fault systems (Blackwell and Kelley, 

1994). Models for rift valley and asymmetric alluvial basin stratigraphy commonly 

include wide aprons of coarse-grained sand to gravel alluvium along the range faults and 

less extensive finer sediment fill in the center at the distal edges of the alluvial fans 

(Blackwell and Kelley, 1994; Bosworth and Morley, 1994; Okaya and Thompson, 1985). 

Lacustrine and floodplain clays, deposited during periods of subsidence in active 

extension, act as low permeability aquicludes that promote heat retention in the migrating 

hydrothermal fluids. The coarse-grained alluvial gravels form thick wedges along the 

deeper portions of the basin and thin distally (Blackwell and Kelley, 1994). These gravels 

allow mixing with groundwater or cross-range flow and typically exhibit depressed 

isotherms where heat loss is greatest (Blackwell and Kelley, 1994). Low permeability 

sediments are necessary for shallow geothermal systems to exist in alluvial basins 

because they facilitate heat conduction from upflowing fluids (Blackwell and Kelley, 

1994).  
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 The facies model examples mentioned above of asymmetric alluvial basin 

stratigraphy guided the understanding of the Pilgrim River Valley basin in the context of 

the geophysical survey results and field observations. Figure 5.10 shows the idealized 

cross-section of overlapped isostatic gravity, ground magnetic, and aeromagnetic 

resistivity data with fault orientations drawn to scale to illustrate the basin. The ground 

magnetic line shows an anomalously low value while the isostatic gravity dips in 

response to a relative increase in gravity. Low values in the ground electromagnetic 

survey possibly indicate hydrothermal fluid flow zones that reduce the magnetization of 

the bedrock (Schwering and Karlin, 2012). The Pilgrim Hot Springs conceptual model is 

placed in the context of this figure.  
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Figure 5.10: Interpreted basin cross-section of the Pilgrim River Valley. Interpreted from 
isostatic gravity (iso), ground magnetic (ground mag), aeromagnetic (aeromag), and 
drilling data as well as measured strikes and dips of fault planes that intersect the surface. 
The cross-section is south to north (left to right). Survey data provided by Jonathan Glen.  
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 In a larger context, Pilgrim Hot Springs may be located in an area of significantly 

deep and numerous fractures and faults in the underlying graben. Miller et al. (1975) 

concluded from a regional aeromagnetic survey conducted in 1972 that the springs may 

be fed from an east-west trending conductive fault extending from the Bendeleben fault 

into the vicinity of Pilgrim Hot Springs. This was also previously proposed by Sainsbury 

et al. (1969). The bedrock and surficial geologic map, however, has a major ~N-S 

directed fault projected across the basin that transects the western edge of the thawed 

ground at Pilgrim (Turner et al., 1979). The fault is placed here due to a ~1 m terrace that 

runs roughly in the same direction. The terrace is most likely the result of frost-heaving in 

the active layer of the permafrost where frozen soils expand, causing an uplift in the 

immediate subsurface, as it forms an arc around the thawed ground anomaly. Both the 

Bendeleben and Kigluaik Mountains are bounded on the south and north respectively by 

range-front normal faults with opposite directions of dip (Figure 5.11). The convergence 

of these two faults can be explained by a transfer fault to accommodate the change in dip 

(McDannell, 2011). A series of offsets occur in the lithologic contacts south of the 

location of the proposed transfer fault (Figure 5.11). These offsets display movement 

consistent with the motion of the transfer fault orientation (Figure 5.11). The en 

echelelon-style step-overs of the Kigluaik range-front fault may be the result of 

movement along the transfer fault. The significance of this inferred fault may suggest 

locally deep faulting and intense fracturing of the bedrock which may be hydraulically 

conducive to deeply circulating hydrothermal fluids. However, any number of smaller 

fault splays from this transfer fault could be feeding directly into the hot springs and this 
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fault by itself is not a likely target for deep drilling. The fault could also be a remnant of 

older tectonism that resolved the difference in stress direction of the surrounding faults 

and is no longer active or conductive. Regardless, it is likely the mica schist bedrock 

below Pilgrim Hot Springs is significantly fractured and may explain the location of the 

hot springs and its connection to a deeper heat source.   

 The highly speculative heat source has been investigated by numerous researchers 

and at present, no single heat source has been identified (Liss and Motyka, 1994; Miller 

et al., 1975; Turner and Forbes, 1980; Woodward-Clyde, 1983). Liss and Motyka (1994) 

posit the source has a mantle component. This is based on gas chemistry of helium 3/4 

isotope values of 0.9 that are well below volcanic origin, but elevated for a crustal source 

(Liss and Motyka, 1994). They favor a deep circulation origin of the heated fluids. Miller 

et al. (1975) mention that although Seward Peninsula has experienced geologically recent 

volcanic activity, no hot springs or any thermal expressions have been discovered in or 

around the basaltic or intermediate volcanic rocks. Evoking a magmatic source for 

Pilgrim related to the young volcanism must explain why no fumeroles or any other 

related-geothermal systems presently exist in those areas. Miller et al. (1975) conclude 

that the saline and nonsaline fluids sampled in Seward Peninsula geothermal systems 

resemble deeply circulating meteoric fluids based on preliminary chemical and isotopic 

data. These fluids may still be interacting with different heat sources such as radiogenic 

plutons at depth. However, evidence suggests these fluids have a strong component of 

deep-circulation through large fault systems and fracture networks as well. 
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Figure 5.11: Location map of the inferred transfer fault. Map modified from Till et al. 
(2011).  
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Chapter 6: Conclusions and Recommendations 

6.1 Conclusions 

 A conceptual model is presented to demonstrate the lithostratigraphic architecture 

as a control on the fluid migration pathways of the Pilgrim Hot Springs geothermal 

system. Results of the conceptual model show the geothermal system is comprised of 

Quaternary sediments down to 320 m depth that overlie a mica-schist basement. Based on 

temperature, geophysical well logs, MT survey, and lithologic data, the system can be 

subdivided into a shallow outflow aquifer and a deeper bedrock reservoir beneath a clay 

cap connected by a very narrow, <100 m wide, conduit with 91 °C upflow. The 

temperature gradients suggest the upflow is located between PS-12-2 and PS-12-3. 

Lithostratigraphic correlations based upon well log data indicate several clay layers 

throughout the section with significant clay horizons at 100 and 200-300 m depth. These 

clay layers act as major hydraulic barriers to vertical fluid migration and mitigate 

horizontal flow of geothermal fluids and regional groundwater. Magnetotelluric 

resistivity data matches closely to the modeled stratigraphy where thick clays from 200-

300 m in wells PS-12-1, PS-12-2, and PS-12-3 correlate to the <0.5 ohm-m zone in the 

MT cross-sections. Reflectance spectroscopy and methylene blue titration detect highly 

conductive smectite clays in this zone as well as illite and kaolinite. Induration in the 

sediments is mostly concentrated between wells PS-4 and PS-12-3 and occurs from the 

shallow subsurface to the basement surface. The indurated sediments may also facilitate 

hydrothermal fluid flow by insulating higher permeability coarse sand and gravels. 
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Potential production from this resource is limited to where sufficient permeability exists 

in connection to the upflow. The silty sands beneath the clay layer at ~300 m close to PS-

12-2 could have a high enough temperature and flow to be a feasible target for a large 

diameter production well. Additionally, extensive pyritization and a hydrothermal 

alteration clay mineral assemblage suggest an argillic-style alteration facies. This points 

to past temperatures at or slightly elevated above current conditions of hydrothermal 

activity at Pilgrim Hot Springs. The conceptual model supports production from this 

resource in those subsurface zones where there is sufficient permeability and connectivity 

with the upflow zone. 

6.2 Recommendations 

 Further evaluation of the site is required to produce the upflow source from the 

bedrock fault or fracture network feeding the hot springs. A deep seismic survey would 

provide critically needed information for depth to bedrock changes across the basin as 

well as identify major structural features of the bedrock. If a large transfer fault is located 

nearby, seismic surveying would be needed to delineate zones of increased fracturing or 

faulting that may be directing upwelling hydrothermal fluids. Geoprobe shallow 

temperature surveying and a smaller, more targeted MT survey of the thermal expression 

at the base of Hen and Chicken Mountain would also be beneficial in understanding the 

deeper bedrock reservoir. If these two sites are connected by the same conduit, this may 

imply that Pilgrim Hot Springs is a surface expression of a much larger reservoir at depth.  
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 The next step in assessing the Pilgrim Hot Springs geothermal resource is the 

integration of new drilling data to test the interpretations of the current conceptual model. 

The zone of high permeability coarse sands above the basement surface in connection to 

the upflow between PS-12-1, PS-12-2, and PS-12-3 is being targeted for drilling. A 

production well and temperature gradient slimhole wells will be drilled in the fall of 

2013. This will serve to increase the accuracy of the predicted framework of the 

geothermal reservoir and the understanding of the upflow location and trajectory. Success 

of these efforts will determine the viability of Pilgrim Hot Springs as a resource with 

electric power production capability.  
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Appendix A 

Spectral assessment of mineral abundances.   

Table A.1: Mineral abundance for PS-12-1.  

PS-12-1  
Mineral % 

Montmorillonite 34.18 
Siderite 15.89 
Kaolinite  14.22 
Muscovite 6.39 
Palygorskite 4.33 
Magnesite 3.22 
Aspectral 3.16 
Muscovitic Illite 1.65 
Ankerite 1.36 

 

Table A.2: Mineral abundance for PS-12-2.  

PS-12-2  
Mineral % 

Montmorillonite 26.57 
Kaolinite  14.83 
Siderite 14.64 
FeMgChlorite 6.13 
Muscovite 5.86 
Aspectral 3.25 
Palygorskite 2.51 
Ankerite 2.08 
Magnesite 1.75 
Muscovitic Illite 1.58 
MgChlorite 1.58 
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Table A.3: Mineral abundance for PS-12-2 core.  

PS-12-2 Core  
Mineral % 

FeMgChlorite 19.43 
Phlogopite 19.31 
MgChlorite 14.34 
Montmorillonite 12.64 
Palygorskite 6.94 
Muscovitic Illite 3.31 
Muscovite 2.92 
Calcite 2.4 
Siderite 1.71 
Ankerite 1.49 
Biotite 1.27 
Hornblende 1.09 

 

Table A.4: Mineral abundance for PS-12-3.  

PS-12-3  
Mineral % 

Montmorillonite 25.65 
Siderite 18.48 
Kaolinite  13.8 
Aspectral 4.24 
Muscovite 2.3 
Muscovitic Illite 1.37 
Ankerite 1.07 
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Appendix B 

Methylene blue (MeB) titration results.  

Table B.1: Estimated smectite content per sediment sample for PS-12-1.  

PS-12-1 
MeB concentration: 3.742 g/L    
Duplicate sample (D)    
Sample (ft) Depth (m) Weight (g) MeB (mls) %Smectite 
25-35 9 1.002 1.5 1.5% 
75-85 24 1.000 1.5 1.5% 
190-200 59 1.001 2.5 2.5% 
400-410 123 1.003 1.0 1.0% 
450-460 139 1.003 5.0 5.0% 
490-500 151 1.003 3.5 3.5% 
550-560 169 1.003 3.0 3.0% 
550-560D* 169 1.000 3.0 3.0% 
600-610 184 1.002 5.0 5.0% 
650-660 200 1.000 6.5 6.5% 
710-720 218 1.000 5.5 5.5% 
753-763 231 1.002 5.0 5.0% 
800-810 245 1.003 8.0 8.0% 
850-860 261 1.000 4.5 4.5% 
880-890 270 1.001 8.0 8.0% 
900-910 276 1.002 7.0 7.0% 
930-940 285 1.001 6.0 6.0% 
960-970 294 1.000 8.5 8.5% 
990-1000 303 1.000 8.5 8.5% 
*D=Duplicate analysis for QC 
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Table B.2: Estimated smectite content per sediment sample for PS-12-2.  

PS-12-2 
MeB concentration: 3.742 g/L    
Duplicate sample (D)    
Sample (ft) Depth (m) Weight (g) MeB (mls) %Smectite 
45-55 15 1.002 1.5 1.5% 
125-135 40 1.003 2.0 2.0% 
195-205 61 1.002 2.0 2.0% 
385-395 119 1.004 2.0 2.0% 
465-475 143 1.004 3.5 3.5% 
495-505 152 1.003 5.0 5.0% 
545-555 168 1.002 5.0 5.0% 
595-605 183 1.002 8.0 8.0% 
655-665 201 1.000 5.0 5.0% 
705-715 216 1.001 3.0 3.0% 
705-715D* 216 1.002 3.0 3.0% 
745-755 229 1.002 4.5 4.5% 
765-775 235 1.003 10.0 10.0% 
805-815 247 1.002 6.0 6.0% 
825-835 253 1.003 5.5 5.5% 
855-865 262 1.002 5.0 5.0% 
885-895 271 1.002 5.0 5.0% 
895-905 274 1.003 5.0 5.0% 
945-955 290 1.004 10.0 10.0% 
965-975 296 1.002 6.0 6.0% 
995-1005 305 1.002 4.5 4.5% 
1025-1035 314 1.001 2.5 2.5% 
1045-1055 320 1.003 1.0 1.0% 
1093-1103 335 1.003 2.0 2.0% 
1163-1173 356 1.000 4.0 4.0% 
1193-1203 365 1.003 2.5 2.5% 
1233-1243 377 1.003 9.5 9.5% 
1233-1243D* 377 1.002 8.0 8.0% 
*D=Duplicate analysis for QC 
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Table B.3: Estimated smectite content per sediment sample for PS-12-3.  

PS-12-3 
MeB concentration: 3.742 g/L    
Duplicate sample (D)    
Sample (ft) Depth (m) Weight (g) MeB (mls) %Smectite 
24-34 9 1.002 3.0 3.0% 
193-203 60 1.003 2.0 2.0% 
393-403 121 1.002 2.5 2.5% 
443-453 137 1.003 3.5 3.5% 
493-503 152 1.002 3.5 3.5% 
543-553 167 1.003 5.0 5.0% 
593-603 182 1.004 7.5 7.5% 
653-663 201 1.002 5.0 5.0% 
703-713 216 1.003 7.5 7.5% 
743-753 228 1.002 7.0 7.0% 
813-823 249 1.001 5.0 5.0% 
853-863 262 1.003 6.0 6.0% 
883-893 271 1.001 7.5 7.5% 
953-963 292 1.003 3.0 3.0% 
953-963D* 292 1.001 3.0 3.0% 
1003-1013 307 1.004 7.5 7.5% 
1023-1033 313 1.003 4.0 4.0% 
1083-1093 332 1.001 7.5 7.5% 
1153-1163 322 1.000 4.0 4.0% 
*D=Duplicate analysis for QC 
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Appendix C 

X-ray diffraction results of glycolated clay samples.  

 

Figure C.1: X-ray diffraction results of glycolated clay samples for well PS-12-1.  
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Figure C.2: X-ray diffraction results of glycolated clay samples for well PS-12-2.  
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Figure C.3: X-ray diffraction results of glycolated clay samples for well PS-12-3.  
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