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Abstract 

Dolly Varden char Salvelinus malma are a dominant member of the nearshore Arctic 

icthyofauna and support one of the largest subsistence fisheries within Arctic coastal 

communities in Alaska. Despite this importance, numerous aspects of Dolly Varden 

ecology remain poorly understood, which inhibits efforts to assess the biological 

consequences of anthropogenic disturbances such as hydrocarbon extraction and climate 

change within nearshore areas.  The goal of this research was to develop and apply new 

techniques to measure and assess the biological integrity of Dolly Varden populations.  

To do so, I evaluated the precision of age determination generated from scales, otoliths, 

and fin rays, developed and validated bioelectrical impedance analysis (BIA) models 

capable of predicting non-lethal estimates of Dolly Varden proximate content, calculated 

and correlated retrospective estimates of Dolly Varden growth from archived otolith 

samples to broad-scale environmental variables, and investigated trends in whole body 

and tissue proximate content among years and demographics (i.e. reproductive versus 

non-reproductive individuals).  Dolly Varden age determinations can be produced non-

lethally using scales for fish up to age 5, while otoliths should be used for fish age 6 and 

greater.  Multi-surface BIA models produced estimates of whole body proximate content 

with high precision.  Retrospective growth analyses indicated growth increased 

significantly during the early 1980s, and was positively correlated to air temperature, sea 

surface temperature, and discharge and negatively correlated to ice concentration.  

Analyses of proximate content suggested that non-reproductive fish contained greater 

lipid concentrations than reproductive fish.  Growth and condition analyses suggest that 
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these metrics vary among years and are a function of reproductive cycles and 

environmental variability operating at multiple temporal and spatial scales.  The adoption 

of scale-based aging and BIA technology will increase the precision of age-based 

biological statistics and aid in the detection of change within future Dolly Varden 

research and monitoring.  
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Introduction 

The northern-form of Dolly Varden char Salvelinus malma, herein referred to as 

Dolly Varden, are distributed along the Arctic coast of North America from the 

Mackenzie River in Canada west and south through Alaska to the Seward Peninsula 

(Reist et al. 1997).  Throughout their range, populations are largely organized by major 

river basin, and may contain both resident and sea-run individuals (Craig 1977a, 1977b, 

1989; Everett et al. 1997).  Beginning between ages 2 and 4, amphidromous Dolly 

Varden undertake annual migrations to the marine environment during the short summer 

open-water period from roughly June to September (McCart et al. 1972; Yoshihara 1973; 

Fechhelm et al. 1997).  While at sea, individuals assemble into mixed-stock aggregates 

and forage heavily within nearshore lagoonal habitats that have turned brackish due to 

freshwater input (Craig 1984; Krueger et al. 1999).  The brief sojourn at sea is a critical 

period for Dolly Varden because they must acquire close to 100% of their annual energy 

budget as little to no forage is consumed during the remainder of the year while in 

freshwater (Craig 1984; Boivin and Power 1990).  Amphidromous fish mature between 

ages 5 and 8 and are unlikely to reproduce in consecutive years (Armstrong and Morrow 

1980; Furniss 1975; Dutil 1986). Migrants return to freshwater spawning and 

overwintering habitats in coastal rivers during August and September at which time 

spawning may continue until November (McCart 1980).  Following spawning, Dolly 

Varden move into spring-fed overwintering habitats where they remain, subsisting upon 

endogenous energy reserves until ice-out the following spring (Dutil 1986; Boivin and 

Power 1990). 
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 Amphidromous populations of Dolly Varden inhabiting the Arctic coast of Alaska 

and Canada have received considerable attention since the discovery and development of 

hydrocarbon deposits in coastal areas during the 1960s (Yoshihara 1973; Glass 1989; 

Gallaway et al. 1991; Underwood et al. 1995; Brown 2008).  Initially, this research 

focused on taxonomy and distributions, but gradually shifted to address broader 

ecological topics such as movement patterns and rates, origins, habitat interactions, and 

the identification of abiotic and biotic mechanisms limiting population structure and 

abundance (Craig and McCart 1974; Furniss 1975; Craig and Haldorson 1981; Craig 

1989; Gallaway et al. 1991; Underwood et al. 1995; Everett et al. 1997; Krueger et al. 

1999; Fechhelm et al. 2006).  In support of the latter aim, present day research has 

focused on investigating biotic linkages within nearshore habitats and predicting the 

potential consequences of climate change and other associated anthropogenic 

disturbances on Dolly Varden and Arctic anadromous fishes in general (Carmack and 

MacDonald 2002; Dunton et al. 2006; Reist et al. 2006; Dunton et al. 2012).  However, 

numerous aspects of Dolly Varden ecology and the complexity of nearshore Arctic 

environments make these investigations difficult. 

 Assessing the effects of a changing environment or physiological stressor requires 

the formation of species-habitat relationships (Wiens and Rotenberry 1981).  To date, the 

majority of Dolly Varden research and monitoring activities have taken place during 

summer within nearshore brackish water habitats (Craig and Haldorson 1981; Gallaway 

et al. 1991; Underwood et al. 1995; Brown 2008).  These sampling activities occur more 

frequently at this time of year due to warmer temperatures, favorable weather, and 
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because ice cover precludes access to fish in freshwater for the majority of the year.  

During summer, nearshore lagoon habitats are brackish and exist as a constantly 

changing mosaic of temperature and salinity patches (Hale 1990; Maughan 1990).  

Large-scale temperature and salinity variations are driven by the direction and speed of 

the prevailing winds and freshwater discharge, while local patterns are a function of 

bathymetric conditions, water inflow, and the presence of barrier islands (Hale 1990; 

Gallaway et al. 1991). Spatial and temporal variability in local conditions can be high; for 

example, it is not uncommon to observe alterations in thermal conditions upwards of 5°C 

over a 2- to 3-day period (Hale 1990).  Fish are generally captured using passive gears 

such as fyke or gill nets, and biological statistics such as length, condition, and catch per 

unit effort (CPUE) are correlated to environmental variables measured in situ at the net 

site and used to infer habitat use (Gallaway et al. 1991; Underwood et al. 1995).  

However, the results of these analyses often lack significant correlation, suggesting that 

Dolly Varden do not distribute themselves relative to the physical conditions of their 

environment (Neill and Gallaway 1989; Houghton et al. 1990; Underwood et al. 1995).  

Such a phenomenon is undoubtedly not the case, and likely reflects individual behavioral 

selection and the difficulties in characterizing such a dynamic habitat at relevant temporal 

and spatial scales. 

 While occupying nearshore areas, Dolly Varden continually seek temperatures 

optimal to the joint conduct of their physiological processes (Neill 1979).  Occupation of 

a particular habitat will partially depend on the quality of the current habitat relative to 

adjacent habitats and the juxtaposition of patches in space.  Presumably, movement will 
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occur as habitat patches become reorganized and perceived benefits in a new habitat 

exceed realized benefits in the current habitat (Fretwell and Lucas 1970).  If the state of 

environmental flux is so great as to preclude acclimatization to a particular regime, 

individuals may exist in a continual state of transit (Neill and Gallaway 1989).  Because 

movement is required for capture using passive gears, selection of these individuals may 

result in temperature occupancy data that bears little resemblance to an individual’s 

steady state preferences.  Estimating other common biological statistics from nearshore 

catch data presents similar challenges. 

 Passive gears, such as fyke and gill nets, are used to sample Dolly Varden as they 

roam nearshore habitats while organized in mixed-stock aggregates (Krueger et al. 1999).  

Unless nets are set in the immediate vicinity of river mouths, catches will be comprised 

of varying proportions of individuals from multiple stocks, each with different growth 

trajectories (Craig 1977a; Fechhelm et al. 1997; Krueger et al. 1999).  Furthermore, 

because larger Dolly Varden tend to occupy habitats further from shore, only small 

numbers of mature fish are typically captured (Craig and Haldorson 1981; Underwood et 

al. 1995; Fechhelm et al. 1997).  Visual discrimination of sex or demographic (i.e. 

reproductive versus non-reproductive) attributes are difficult during summer, as 

reproductive fish have yet to develop secondary sexual characteristics; stock origin is 

primarily determined using genetic analysis which may not be feasible for moderate to 

large-scale research and monitoring projects (Everett et al. 1997).  Therefore, using 

nearshore catch data to evaluate temporal and spatial trends in growth, abundance, or 

population structure or responses in these variables to environmental gradients can be 



5 
 

difficult due to net selectivity, variable and unknown movement patterns and rates, 

environmental stochasticity, and the inability to readily partition variability among 

populations and demographics. 

 The inability to control for these additional sources of variability inhibit analyses 

of length and CPUE and have likely contributed to some findings that suggest few 

statistical differences exist in these metrics over time or space or in response to 

environmental gradients (Whitmus et al. 1987; Colonell and Gallaway 1990; Gallaway et 

al. 1991).  Analyses of weight- and length-based condition are often used to supplement 

the aforementioned analyses (Gallaway et al. 1991; Underwood et al. 1997).  

Morphometric condition indices assume that changes in morphology are met by 

proportional alterations to individual energy content, which in fish is primarily in the 

form of lipid (Shul’man 1974; Pope and Kruse 2007).  However, during periods of 

physiological stress or starvation, such as during overwintering, lipid lost to metabolism 

may be offset by water uptake (Glass 1989; Shearer 1994; Navarro and Gutiérrez 1995). 

Such processes maintain individual body mass and morphology despite a potentially 

substantial loss in whole body energy content.  Because morphological condition 

estimates cannot distinguish lipid from water weight, they are less sensitive to changes in 

energy content, particularly within species that require the storage and subsequent 

mobilization of large quantities of lipid such as Dolly Varden (Glass 1989; Sutton et al. 

2000).  These factors may have contributed to the opinion of some that traditional 

condition analyses will always be an ineffective means of assessing the effects of 

environmental variables (Colonell and Gallaway 1990). 
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 As a result of the difficulties in estimating relevant biotic and abiotic variables 

within nearshore environments with precision, we currently have an incomplete 

understanding of numerous aspects of Dolly Varden ecology including life-history 

variation, habitat interactions, movement patterns, and population dynamics (Neill and 

Gallaway 1989; Houghton et al. 1990; Gallaway et al. 1991; Underwood et al. 1995).  To 

improve our understanding of Dolly Varden ecology, new methods and approaches are 

warranted.  Reproductive Dolly Varden exhibit philopatry to natal drainages; however, 

some non-spawning and juvenile individuals may overwinter in non-natal drainages 

(DeCicco 1985; Crane et al. 2005).  Thus, sampling adult fish within freshwater habitats 

may reduce inter-population differences in biological statistics such as growth or 

condition (Underwood et al. 1995).  Furthermore, visual discrimination of demographics 

may be more likely during this time as the majority of reproductive fish will exhibit 

coloration and secondary sexual characteristics.  Successful identification may permit 

variability in growth or condition to be partitioned amongst biologically relevant 

demographic groups more effectively. 

 Estimates of physiological well-being may be improved by using proximate 

analysis in lieu of weight- and length-based condition estimates.  Proximate analysis may 

produce more precise estimates of physiological well-being by estimating energy content 

directly rather than inferring it from individual morphology (Sutton et al. 2000).  

However, this technique is lethal as well as time- and resource-intensive, two factors that 

have likely limited its widespread use within fisheries research thus far.  Recent research 

suggests that rapid estimates of proximate composition may be acquired non-lethally in 



7 
 

the field using bioelectrical impedance analysis (BIA; Cox and Hartman 2005).  

Bioelectrical impedance analysis measures the impedance (resistance and reactance) of a 

current as it is passes through a subject.  Resistance measures the opposition by a body to 

the passage of an electrical current and is related to the amount of lipid-free mass within 

the subject as lipid is a poor conductor of electricity (Kyle et al. 2004).  Alternatively, 

reactance measures the electrical storage capacity of a tissue and is related to the cellular 

volume of a subject as the lipid-bilayer of a cell acts as a capacitor when excited by an 

electrical current (Kyle et al. 2004).  Using electrical property equations, BIA data can be 

converted into numerous predictive variables that can then be used to model proximate 

composition (Khaled et al. 1988; Cox and Hartman 2005; Hafs and Hartman 2011).  

Once calibrated, BIA models have produced estimates of condition that rival proximate 

composition based estimates in terms of quality and traditional estimates in terms of 

speed and resources required (Cox and Hartman 2005).  However, no such model has 

been created for Dolly Varden. 

 Research and monitoring activities within the Arctic are logistically challenging 

and expensive due to the remoteness of field sites, inclement weather, and the short 

duration of the summer open-water period.  These factors likely contribute to the 

relatively short temporal scales over which the majority of Arctic research and 

monitoring projects are conducted (Furniss 1974, 1975; Daum et al. 1984; Wiswar and 

West 1987; Underwood et al. 1995).  Given the cost and difficulty of operating within 

remote Arctic areas, simply extending sampling efforts is often not feasible.  Instead, 

temporal expanse may be lengthened by utilizing archived growth and habitat data that 
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have been collected during past research and monitoring efforts.  North Slope aquatic 

research has been conducted sporadically throughout the past 30 years and a wealth of 

data exists on several populations of Dolly Varden (Wiswar and West 1987; Underwood 

et al. 1997; Viavant 2005; Brown 2008).  Of particular use may be growth data preserved 

within the annular increments of calciferous structures such as otoliths.  Following 

sectioning, back-calculation and other techniques can be used to produce retrospective 

estimates of annual growth (Isely and Grabowski 2007).  Combined with archived habitat 

data collected remotely or on the ground, these data can be used to assess trends in 

growth over time and space or in response to broad-scale habitat alterations (Woodbury 

1999; Rypel 2009; Von Biela et al. 2011)  

 The goal of this research is to develop and implement new tools and approaches 

to Dolly Varden research and monitoring in order to obtain a greater understanding of 

their ecology and dynamics.  To do so, I: 1) evaluated the precision of age determinations 

produced from scales, otoliths, and fin rays, 2) developed and validated BIA models 

capable of producing non-invasive predictions of Dolly Varden proximate content, 3) 

used archived otolith samples collected over the past the past 25 years from Arctic Alaska 

to calculate and then correlate retroactive growth estimates to remotely sensed habitat 

variables collected over similar time scales, and 4) investigated trends in whole body and 

tissue proximate composition among demographics and years from Dolly Varden 

collected within freshwater. 

The first two objectives develop new tools with which to efficiently partition 

variability in biological statistics among cohorts and quantify physiological condition.  
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The evaluation and/or development of non-lethal aging methods will permit the 

collection of more aging data which may contribute to more precise age-based biological 

statistics.  Furthermore, the development of Dolly Varden BIA models will permit the 

production of non-invasive estimates of proximate content (Cox and Hartman 2005).  

Energy-based condition metrics are superior to traditional weight- and length-based 

condition metrics as they measure energy content directly rather than inferring it from 

morphology (Sutton et al. 2000).  The latter two objectives apply new approaches to 

investigating species-habitat relationships and temporal trends in Dolly Varden growth 

and condition. The temporal extent of retrospective growth analyses may shed new light 

onto broad-scale abiotic factors limiting Dolly Varden growth while analyzing proximate 

content of fish captured in freshwater may clarify variability in condition among years 

and demographics.  Together, these analyses will contribute to our understanding of 

Dolly Varden ecology, develop new tools to better quantify biotic and abiotic statistics, 

and guide future Dolly Varden research and monitoring activities. 
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Chapter 1: Precision analysis of three aging structures for amphidromous 

DollyVarden Char from Alaskan Arctic rivers1 

 

Abstract 

The accuracy of population statistics, and the validity of management actions they 

motivate, are in part dependent on the acquisition of quality age determinations.  Such 

data for northern-form Dolly Varden char Salvelinus malma have been traditionally 

garnered using otoliths, despite little research investigating the consistency of this, or 

alternative non-lethal techniques.  To address these data gaps, the precision of age 

determinations generated from scales, otoliths, and fin rays was examined for 126 

amphidromous Dolly Varden collected from two Arctic rivers.  We used three 

independent readers, age-bias plots, coefficient of variation (CV), and percent agreement 

(PA) to estimate bias and precision for within-reader, among-structure and among-reader, 

within-structure comparisons.  Among-reader, within-structure tests of CV suggested that 

otoliths produced more precise age determinations than fin rays, while scale and otolith 

aging precision were similar.  Age-bias plots suggested scales consistently 

underestimated age relative to otoliths beginning at age 6.  Underestimation was also 

apparent, but less distinct, within fin ray-otolith and scale-fin ray comparisons.  Potential 

sources of error and management implications are discussed.  Because scale and otolith 

ages exhibited little bias within cohorts younger than age 6, age may be determined non-

lethally in these cohorts using scales; otoliths should be used otherwise. 

                                                      
1 Stolarski, J. T., and T. M. Sutton. North American Journal of Fisheries Management (submitted). 
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Introduction 

Northern-form Dolly Varden char Salvelinus malma, herein referred to as Dolly 

Varden, are distributed along the Arctic coast of North America from the Mackenzie 

River in Canada, west and south through Alaska to the Seward Peninsula (Reist et al. 

1997).  Throughout their range, populations are largely organized by major river basin, 

and may contain both resident and sea-run individuals (McCart 1980; Everett et al. 1997).  

Amphidromous fish are generally larger and more abundant than residents and support 

one of largest and most important traditional subsistence fisheries within Arctic coastal 

communities of Alaska (McCart 1980; Pedersen and Linn 2005).  Concerns regarding the 

potential ecological impacts of oil and gas exploration and climate change in the Arctic 

have strengthened the need for sound management and monitoring practices 

(Hachmeister et al. 1991; Reist et al. 2006).  The validity of such practices are, in part, 

dependent upon the acquisition of quality age determinations as they are often developed 

using age-specific biological data. 

 Northern fish species, such as Dolly Varden, are typically aged using calcified 

structures due to their longevity and slow rates of growth (McCart 1980; Howland et al. 

2004).  For a structure to be useful for age determination purposes, it must produce ages 

that are both accurate (not addressed herein) and precise. Dolly Varden age is almost 

exclusively estimated using otoliths, either viewed whole or broken through the nucleus 

(Heiser 1966; Yoshihara 1973; Armstrong 1974; McCart 1980; Underwood 1995).  Scale 

techniques have been largely disregarded due to research within Arctic char Salvelinus 

alpinus suggesting scale circuli patterns are unreliable predictors of fish age (Barber and 
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McFarlane 1987; Baker and Timmons 1991); fin ray techniques have rarely been used 

(Heiser 1966; Barber and McFarlane 1987).  Non-lethal techniques using scales and fin 

rays conserve fish and allow age data to be collected from a greater proportion of 

individuals within a population.  This may be particularly advantageous when aging 

Dolly Varden, as the length ranges of successive cohorts typically display considerable 

overlap (Underwood et al. 1995).  Such overlap can contribute to error in age-specific 

biological statistics when extrapolating age data from a sub-sample to a larger population 

as is often the case when using age-length keys.  However, before nonlethal techniques 

can be employed, the precision of scale, otolith, and fin ray techniques must be 

compared.   

 In the only study that could be found investigating the reproducibility of age 

determinations for Dolly Varden, Barber and McFarlane (1987) concluded that otoliths 

generally produced older age determinations relative to pectoral and anal fin rays.  

However, this research did not determine age using scales, used a single reader which 

limited analyses to comparisons among structures, and was conducted on pooled samples 

containing both Dolly Varden and Arctic char (Reist et al. 1997).  As a result, the 

precision of Dolly Varden aging techniques both within and among structures remains 

poorly defined.  To address this data gap, the objective of this study was to estimate the 

precision of scale, otolith, and fin ray age determinations for within- and among-structure 

comparisons. 
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Methods 

Study site  

 This study was conducted at spawning and overwintering habitats of 

amphidromous Dolly Varden on the Ivishak and Hulahula rivers, located on the coastal 

plain of the Alaskan Arctic (Figure 1.1; Daum et al. 1984; Viavant 2005).  The Ivishak 

River is a north-flowing tributary of the Sagavanirktok River, the second largest river on 

the North Slope of Alaska.  Both rivers originate in the Brooks Mountain range and drain 

into the Beaufort Sea, the Sagavanirktok River at Prudhoe Bay and the Hulahula River 

near the coastal community of Kaktovik.  Both rivers contain resident and amphidromous 

populations of Dolly Varden.   

Fish sampling 

 Post-smolt Dolly Varden were captured via angling from the Ivishak River during 

sampling events in early September 2009, 2010, and 2011.  Pre-smolt fish were collected 

using minnow traps from the Hulahula River during August 2011.  Sampling exclusively 

within habitats known to be frequented by large numbers of amphidromous fish 

minimized the likelihood of capture and inclusion of resident fish into the study.  Upon 

capture, individuals were sacrificed, weighed to the nearest 1 g, and measured to the 

nearest 1 mm in fork length.  Each fish was individually labeled, wrapped in plastic, and 

transported to the University of Alaska Fairbanks where they were frozen.  In the 

laboratory, scales were sampled from an area posterior to the dorsal fin and above the 

lateral line using a scalpel, then stored on waterproof paper (DeVries and Frie 1996).  
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The right pectoral fin was removed from each fish, rinsed in water, and stored in a similar 

fashion in a well-ventilated area to facilitate drying.  Sagittal otoliths were removed using 

the “open the hatch” method of Secor et al. (1992), rinsed in water, dried, and stored dry 

in individually labeled plastic vials.   

Structure preparation 

 Fifteen to 20 scales from each fish were wet mounted on a glass slide and viewed 

with a compound microscope under transmitted light at 40X magnification.  After 

screening the sub-sample for the presence of regenerated scales, an image of a 

representative scale was captured using a 3.3 megapixel microscope-mounted digital 

camera (Quantitative Imaging Co., Burnaby, Canada). 

 Fin rays were embedded in Epoxycure® epoxy resin (Buehler, Lake Bluff, 

Illinois) following methods outlined in Koch and Quist (2007).  Multiple transverse 

sections, each 0.5 to 0.75 mm in thickness, were cut using an Isomet® low speed saw 

(Buehler, Lake Bluff, Illinois), equipped with a 102 mm diameter diamond wafering 

blade rotating at 240 revolutions per minute.  Care was taken to assure the first thin 

section encompassed or was slightly posterior to the inflection point of the ray (Beamish 

1981).  Sections were affixed to a glass slide using Crystalbond® thermoplastic cement 

(Structure Probe Inc., West Chester, Pennsylvania) and viewed with a compound 

microscope.  A digital image was captured of a representative fin ray at 20X and 40X 

magnifications under transmitted light. 

 The right sagittal otolith of each fish was affixed to a glass slide using 

Crystalbond® thermoplastic cement perpendicular to the long axis of the otolith.  Each 
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otolith was ground to the core in the transverse plane using a thin section machine 

(Hillquist Inc., Denver, Colarado) and remounted to the slide flat side down before being 

ground to a final thickness of approximately 0.3 mm.  The otolith was hand polished with 

a 1-µm diamond abrasive and viewed with a compound microscope under transmitted 

light.  Digital images were captured at 20X and 40X magnifications.  If the mounted 

otolith section was deemed inadequate for age determination, the left sagitta was 

processed in the same fashion. 

Age determination 

 Age determinations were produced by three independent readers trained in 

annulus identification.  Each reader estimated fish age from scales, otoliths, and fin rays.  

Readers were provided with the capture date of the fish, but had no knowledge of fish 

length.  Scale annuli were identified as areas of greater circuli density or when successive 

circuli cut over each other.  Annuli in fin ray and otolith sections were identified as 

alternating opaque and hyaline zones (DeVries and Frie 1996).  Fin ray age estimates 

were derived from the first or second ray.  Images were organized into separate libraries 

by structure and no reader was allowed to determine age from multiple libraries within a 

single day.  To our knowledge, scale, otolith, and fin ray age determinations for Dolly 

Varden have yet to be validated. 

Statistical analysis 

 Age-bias plots were used to assess among-reader, within-structure and within-

reader, among-structure bias (Campana et al. 1995).  Age-bias plots depict the mean age 
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of fish determined by one reader that are assigned a given age by a second reader.  

Cohorts displaying complete agreement among ages assigned by each reader will fall on 

the 1:1 line of equivalence.  Thus, bias is detected visually as persistent (> 2 successive 

years) deviations of the 95% confidence intervals surrounding each mean from the line of 

equivalence.  Detection of among-reader, within-structure bias is important as it indicates 

if readers are using unified criteria to identify and count annuli.  If one or multiple 

readers consistently over- or under-estimates age relative to others, precision within that 

structure will reflect variability in aging methods rather than the reproducibility of age 

determinations.  If bias is detected, the criteria by which annuli are identified and counted 

must be revisited and agreed upon by readers and ages must be redetermined.  

Alternatively, within-reader, among-structure bias can be used to evaluate the relative 

strength of any under- or overestimation of ages between the techniques. Precision of 

among-reader, within-structure and within-reader, among-structure comparisons was 

estimated using percent agreement (PA), percent agreement to within one year (PA1), 

and coefficient of variation (CV).  Percent agreement statistics were calculated as the 

number of pairwise comparisons in which age was in total agreement (in the case of PA) 

or the number of pairwise comparisons in which age was in agreement to within one year 

(in the case of PA1) divided by the total number of comparisons made.  Percent 

agreement statistics, once the predominant means of assessing the precision of aging 

structures, are slowly being replaced with statistics such as CV as the latter measures do 

not account for age structure variation among species (Beamish and Fournier 1981).  As 
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such, these statistics are only mentioned briefly and included primarily as a means of 

comparison to past research.  The coefficient of variation was calculated as: 
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where Xij is the ith age determination for the jth fish, Xj is the mean age of the jth fish, 

and R is the number of times the age of the fish is estimated (Chang 1982).  The 

coefficient of variation was averaged across all fish for each structure in the case of 

among-reader, within structure comparisons and across specific comparisons (i.e., scales 

versus fin rays) for within-reader, among-structure comparisons.  Potential differences 

among structures and comparisons were tested using analysis of variance with a post-hoc 

Tukey’s honest significance test when significant differences were detected.  All 

statistical analyses were conducted using the statistical software package R (R 

development Core Team 2012) and evaluated at an α = 0.05. 

 

Results 

 Of the total 143 pre- and post-smolt Dolly Varden that were collected over the 

three years of sampling, 126 of these fish were included into the final analyses.  

Individuals ranged in fork length from 63 to 680 mm and encompassed ages 0 to 14 

(Figure 1.2).  Annuli were identified from digital images for all three structures (Figure 

1.3).  Scale circuli patterns varied substantially between the freshwater and marine 

periods of growth, with the marine phase exhibiting far greater spacing between 
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successive circuli.  Visual examination of among-reader, within-structure age-bias plots 

showed little persistent (> 2 consecutive years) deviation from the 1:1 equivalence line, 

indicating readers used similar standards in identifying and counting annuli (Figure 1.4).  

Mean PA and PA1 of among-reader, within-structure comparisons were similar among 

structures (Table 1.1).  However, mean PA did not exceed 55% for any structure while 

mean PA1 exceeded 90% for all structures (Table 1.1).  Age-bias plots of within-reader, 

among-structure comparisons indicated that scales began to underestimate fish age 

relative to otoliths beginning at age 6 (Figure 1.5), with errors increasing with age.  These 

plots also indicated that fin rays tended to underestimate age relative to otoliths and that 

scales tended to underestimate age relative to fin rays also beginning at age 6, with errors 

generally remaining constant with increasing age (Figure 1.5).  However, these trends are 

less pronounced relative to scale-otolith comparisons.  Mean PA and PA1 of within-

reader, among-structure comparisons were similar among comparisons but were 

generally lower than among-reader, within-structure estimates (Table 1.1).  No 

differences in CV were detected for within-reader, among-structure comparisons (Table 

1.1: F2, 373 = 0.347, p = 0.707).  The coefficient of variation of among-reader, within-

structure comparisons differed among structures (Table 1.1; F2, 373 = 3.143, p = 0.044).  A 

post-hoc Tukey test indicated that otoliths were more precise predictors of Dolly Varden 

age than fin rays.     
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Discussion 

 This research contributes to a growing body of literature indicating that scales 

typically underestimate fish age relative to otoliths (Silkstrom 1983; Hubert et al. 1987; 

Sharpe and Bernard 1988; Graynoth 1996; Kruse et al. 1997; DeCicco and Brown 2006; 

Stolarski and Hartman 2008).  The onset of scale underestimation corresponded well with 

estimates of the age at first reproduction for Dolly Varden, suggesting underestimation 

was a result of ontogenetic reductions in growth and the formation of a “dense edge” on 

the scale margins (Nordeng 1961; Yoshihara 1973; Craig and Haldorson 1981).  A 

similar artifact was often present in the interior of the scale and was most likely a result 

of slow pre-smolt growth while in freshwater (McCart 1980).  These features highlight 

the importance of training readers in both freshwater and marine annulus identification as 

scale morphology and annuli appearance will change depending upon the growth rate of 

the fish (Carlander 1974). 

 Within-reader comparisons of fin ray and otolith age determinations suggested 

that fin rays underestimated age relative to otoliths beginning at age 6.  Barber and 

McFarlane (1987) noted similar results studying age determinations from a mixed sample 

of Dolly Varden and Arctic char.  Fin ray underestimation has also been reported in 

Arctic grayling Thymallus arcticus (Silkstrom 1983), rainbow trout Oncorhynchus mykiss 

and brown trout Salmo trutta (Graynoth 1996), cutthroat trout Salmo clarki (Hubert et al. 

1987), and brook trout Salvelinus fontinalis (Stolarski and Hartman 2008).  However, 

Zymonas and McMahon (2009) reported no bias among comparisons of ages derived 

from pelvic fin rays and otoliths of bull trout Salvelinus confluentus.  Chronic 
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misidentification of the first few annuli in fin ray sections is commonly cited as a 

potential cause of underestimation (Silkstrom 1983; Hubert et al. 1987).  Working with a 

population of slow-growing white suckers Catostomus commersoni, Beamish (1973) 

noted that the first fin ray annulus was often too closely associated with the ray center to 

be consistently identified, particularly within older fish.  For Dolly Varden, interior 

annuli clarity was often diminished within older fish and also declined as the location 

where the fin ray section was cut moved further from the inflection point of the ray.  The 

effect of the latter phenomenon was minimized by deriving ages from one of the first 

three fin ray sections of the series.  However, evidence of more constant errors within 

older fish suggests that misidentification of freshwater annuli could be occurring within 

these cohorts. 

 Within-reader comparisons of scale and fin ray age determinations suggested that 

scales often underestimated fish age, again beginning at age 6.  However, this 

relationship was less pronounced relative to scale-otolith and fin ray-otolith comparisons.  

Previous research involving similar comparisons has been generally inconsistent, with 

some studies confirming (Silkstrom 1983; Stolarski and Hartman 2008), and others 

refuting (Hubert et al. 1987; Copeland et al. 2007) our results.  Given suspected sources 

of error within each of the two structures (see above), the lack of a consistent trend could 

be a function of the proportion of instances in which reader errors are isolated within a 

single structure versus when errors occur simultaneously in both. 

 Percent agreement of among-reader, within-structure comparisons were generally 

low compared to previous research (Graynoth 1996; Zymonas and McMahon 2009).  
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However, such inter-species comparisons are made difficult by the fact that PA varies as 

a function of the age structure of the species in question (Beamish and Fournier 1981).  

The low percent agreement seen here could be a result of the age structure of the sample 

(Beamish and Fournier 1981; Zymonas and McMahon 2009), the use of multiple readers 

instead of multiple reads by the same reader (Ihde and Chittenden 2011), the relatively 

slow growth rates of high latitude fishes (Silkstrom 1983), or a combination of the three 

factors.  Percent agreement of among-reader, within-structure comparisons of scales, 

otoliths, and fin rays for species with similar age structures such as Arctic grayling and 

bull trout have been found to range between 50 and 67% and are more comparable to PA 

observed in Dolly Varden (Silkstrom 1983; Zymonas and McMahon 2009).  Despite 

these contentions, PA1 was greater than 90% for all structures, suggesting that gross 

disagreements in Dolly Varden age were infrequent. 

 Tests of among-reader, within-structure CV suggested that otoliths were more 

precise estimators of Dolly Varden age than fin rays.  Similar results have been reported 

in other species and are likely a result of misidentification of interior fin ray annuli as 

previously discussed (Graynoth 1996; Stolarski and Hartman 2008; Zymonas and 

McMahon 2009).  However, the precision of age determinations garnered from scales and 

otoliths were found to be similar, which is contrary to the findings of numerous studies 

indicating that scale-based age determinations are often less precise than otolith 

determinations (Silkstrom 1983; Kruse et al. 1997; DeCicco and Brown 2006; Zymonas 

and McMahon 2009; Schill et al. 2010).  This finding may be a direct result of the 

intensity and duration of Dolly Varden grow throughout the year.  Dolly Varden acquire 
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nearly 100% of their annual energy budget during the short Arctic summers, while the 

remainder of the year is spent overwintering in freshwater where little to no food is 

consumed (Craig 1984; Boivin and Power 1990).  Prior to reproductive age, the intensity 

of growth within these periods and the consistency of their occurrence likely contribute to 

the distinctiveness of scale annuli.  The annulus formed following a fish’s first migration 

to sea is particularly distinguishable due to the contrast between it and the adjacent 

freshwater annuli.  The consistency of annulus formation in scales stemming from this 

seasonal pattern likely rivals that of otoliths over the same time interval, and contributes 

to the similarity in precision observed between the two structures.  However, if our 

sample had contained a larger proportion of older fish our results might have differed. 

 This research suggests that Dolly Varden age may be determined non-lethally 

using scales within individuals age 5 and younger.  Our assertion is a result of data 

indicating that bias of within-reader, among-structure comparisons of scales and otoliths 

is minimal within cohorts less than age 6.  Furthermore, no statistical differences in CV 

calculated from among-reader, within-structure comparisons of scale and otolith age 

determinations were detected.  However, beyond age 5, otoliths should be used to 

generate age determinations for Dolly Varden.  The majority of Dolly Varden research 

and monitoring projects have been conducted within nearshore coastal areas using fyke 

nets.  These catch data suggest Dolly Varden distribute themselves along shore in relation 

to size, with smaller individuals occupying shallower habitats closer to shore (Craig and 

Haldorson 1981; Hachmeister et al. 1991; Underwood 1995; Fechhelm et al. 1997; 

Brown 2008).  Age data collected from random subsets of this catch indicate that up to 
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70% of the individuals are less than age 6 (Underwood et al. 1995).  While age 

composition likely varies over time and space, it is reasonable to assume that many Dolly 

Varden captured in nearshore fyke nets can be aged non-lethally using scales.  Scale-

based age determination may be particularly valuable for identifying first year smolts.  

This demographic is often pooled for analysis purposes and can be easily and quickly 

identified using scales due to the contrast between freshwater and marine circuli patterns 

(Fechhelm et al. 1997).  Smolt identification has been previously accomplished using 

graphical methods; however, these techniques are not as successful when sampling 

locations are distant from river mouths (Fechhelm et al. 1997; Brown 2008).  Non-lethal 

age determination will also allow age data to be collected from a greater proportion of the 

population, which may increase the precision of age-specific statistics.  Additional 

research may be required to assess potential side affects resulting from fin ray excision 

within Dolly Varden (Zymonas and McMahon 2006).  As always, it is important to 

independently verify the consistency of scale, otolith, or fin ray based age determinations 

in the field within a subset of fish prior to implementation of a particular technique.   
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Table 1.1: Coefficient of variation (CV), mean percent agreement (PA), and mean 

percent agreement to within 1 year (PA1) of among-reader, within-structure and within-

reader, among-structure comparisons of age determinations based on scales, otoliths, and 

fin rays for Dolly Varden sampled from the Ivishak and Hulahula rivers. 

Comparison type Structures CV* Mean PA Mean PA1 

Among-reader, within-structure Scales 9.08AB 55.91 94.35 

Among-reader, within-structure Otoliths 7.91A 55.02 94.18 

Among-reader, within-structure Fin rays 11.91B 52.38 94.18 

Within-reader, among-structure Scale-otolith 14.28Z 33.87 81.18 

Within-reader, among-structure Scale-fin ray 14.11Z 40.05 81.74 

Within-reader, among-structure Otolith-fin ray 13.59Z 33.07 83.33 

*Within each comparison type, CV estimates with different alphabetical superscripts are   

significantly different (P < 0.05). 
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Figure 1.1: Map of the Eastern North Slope of Alaska with arrows indicating the general 

locations where post-smolt (A) and pre-smolt (B) Dolly Varden were sampled from the 

Ivishak and Hulahula rivers, respectively.  
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Figure 1.2: Composite length (A) and age (B) data plotted against sample proportion for 

Dolly Varden collected from the Ivishak and Hulahula rivers between 2009 and 2011.  

Age data in panel B were derived from otoliths.
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Figure 1.4: Age-bias plots with pair-wise estimates of coefficient of variation (CV), 

percent agreement (PA), and percent agreement to within 1 year (PA1) for among-reader, 

within-structure comparisons of scale, otolith, and fin ray age determinations for Dolly 

Varden collected from the Ivishak and Hulahula rivers.  Error bars represent 95% 

confidence intervals (for points with multiple observations) around the mean age 

assigned by one reader relative to all fish assigned a given age by a second reader. 
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Figure 1.5: Age-bias plots with pair-wise estimates of coefficient of variation (CV), 

percent agreement (PA), and percent agreement to within 1 year (PA1) for within-reader, 

among-structure comparisons of scale, otolith, and fin ray age determinations for Dolly 

Varden collected from the Ivishak and Hulahula rivers.   Error bars represent 95% 

confidence intervals (for points with multiple observations) around the mean age 

assigned by one reader relative to all fish assigned a given age by a second reader.
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Chapter 2: Bioelectrical impedance modeling of amphidromous Dolly Varden char1 

 

Abstract 

The physiological well-being, or condition, of fish is most commonly estimated 

from aspects of individual morphology.  However, these metrics may only be weakly 

correlated to nutritional reserves stored as lipid, the primary form of accumulated energy 

in fish.  We constructed and evaluated bioelectrical impedance analysis (BIA) models as 

an alternative method for assessing condition in amphidromous Dolly Varden char 

Salvelinus malma collected from nearshore estuarine and lotic habitats of the Alaskan 

Arctic.  Electrical resistance and reactance were measured on the lateral and ventral 

surfaces of 192 fish and tissue lipid, water, protein, and ash content was determined using 

standardized laboratory methods. Prior to analysis, resistance and reactance were 

standardized to a constant temperature using laboratory derived correction equations 

developed from a subset of fish.  Resistance and reactance were not affected by 

reproductive status (i.e., spawner versus non-spawner) or by differences in water ion 

concentration between estuarine and freshwater habitats.  Bioelectrical impedance 

analysis models incorporating electrical variables calculated from multiple surfaces 

displayed the strongest association (R2 = 0.73 to 0.81) between observed and model 

predicted estimates of proximate content.  These models explained between 7 and 20% 

                                                      
1 Stolarski, J. T., F. J. Margraf, J. G, Carlson, and T. M. Sutton. North American Journal of Fisheries 
Management (in preparation). 
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more of the variability in laboratory-derived estimates of proximate content relative to 

models developed from single-surface BIA data only.  This research provides further 

evidence of the validity of the BIA technique, in that models developed here are capable 

of generating high quality predictions of percent-based proximate constituents for Dolly 

Varden. 

 

Introduction 

Estimating the physiological well-being, or condition, of an individual fish or a 

population is a common goal of fisheries research (Pope and Kruse 2007).  Traditionally, 

condition has been estimated from aspects of an individual’s morphology such as length 

or weight, with the assumption that changes in condition are reflected by changes in 

morphology (Gallaway et al. 1991; Brown 2008).  Morphological approaches, including 

Fulton’s condition factor (K), and relativistic measures, such as residuals from a linear 

regression of log-transformed weight and length data, are often preferred as they are non-

lethal and can be easily calculated from commonly collected field data (Brown 2008).  

Although these data are easy to collect, the assumption of a proportional link between 

physiological well-being and morphology may not always be appropriate (Novinger and 

Martinez Del Rio 1999; Sutton et al. 2000; Hartman and Margraf 2006). 

 Lipid is the primary form of accumulated energy and respiratory substrate in fish, 

and on a percentage basis, is inversely related to the amount of water (energetically inert) 

contained within an individual (Shul’man 1974; Shearer 1994; Hartman and Margraf 
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2008).  During periods of physiological stress or starvation, such as overwintering and 

migration, lipid may be metabolized at rates faster than water is lost (Sutton et al. 2000; 

Breck 2008).  Other research suggests further that metabolized lipid may actually be 

replaced with water (Shearer 1994; Novinger and Martinez Del Rio 1999).  These 

physiological processes may aid in the maintenance of individual body weight and 

morphology despite potentially large changes in body composition and energy content 

(Glass 1989).  Because morphological condition estimates cannot distinguish lipid from 

water weight, they may be insensitive to changes in energy content, particularly within 

species or life stages that require the storage and subsequent mobilization of large 

quantities of lipid. 

 Amphidromous northern-form Dolly Varden char Salvelinus malma, herein 

referred to as Dolly Varden, inhabit spring-fed coastal rivers and nearshore areas of the 

Beaufort Sea in Alaska and Canada (Reist et al. 1997).  Individuals aquire close to 100% 

of their annual energy budget during the short three-month sojourn at sea, as the 

remainder of the year is spent overwintering in freshwater where little to no forage is 

consumed (Craig 1989).  Such asynchrous peaks in energy availability and expenditure 

require adult fish to store, and eventually mobilize, vast quantities of lipid (Dutil 1986).  

For example, Dutil (1986) found that non-spawning Arctic char S. alpinus lost on average 

30% of their energy stores during winter, and that these stores were replenished and even 

bolstered following a single summer foraging at sea.  Because these processes have the 

potential to disrupt the relationship between lipid and water content, relativistic condition 
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metrics may not adequately characterize physiological well-being within these and other 

capital breeding Arctic fishes (Glass 1989).  While proximate analysis may permit the 

estimation of proximate constituents such as lipid and water directly, it is time 

consuming, expensive, and requires sacrificing the subject.  What is needed is a link 

between simple and economical field-based approaches and costly, more complicated but 

sensitive lab-based methods.  Recent research using bioelectrical impedance analysis 

(BIA) suggests that this technique may provide that link (Cox and Hartman 2005; Willis 

and Hobday 2008; Hafs and Hartman 2011).  

 Bioelectrical impedance analysis (BIA) has been used in the assessment of human 

body condition since the 1970s, but has only recently been applied to fish (Cox and 

Hartman 2005; Duncan et al. 2007; Pothoven et al. 2008; Willis and Hobday 2008; 

Hanson et al. 2010; Rasmussen et al. 2012).  Bioelectrical impedance analysis measures 

the resistance and reactance of an electrical current of known frequency and amperage as 

it is passed through a subject.  Resistance measures the opposition by a body to the 

passage of an electrical current and is related to the amount of lipid-free mass within the 

subject as lipid is a poor conductor of electricity (Kyle et al. 2004).  Alternatively, 

reactance measures the electrical storage capacity of a tissue and is related to the cellular 

volume of a subject, as the lipid bilayer of a cell acts as a capacitor when excited by an 

electrical current (Kyle et al. 2004).  Using electrical property equations, BIA data can be 

converted into numerous predictive variables that can then be used to model proximate 

composition (Khaled et al. 1988; Cox and Hartman 2005; Hafs and Hartman 2011).   
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 To date, the majority of BIA research has focused on predicting mass-based 

proximate constituents (Cox and Hartman 2005).  However, as pointed out by Pothoven 

et al. (2008), this may be less desirable than predicting percent-based constituents, as 

prediction of the former may be largely driven by the underlying weight-length 

relationship (Lukaski et al. 1985; Cox and Hartman 2005; Hartman et al. 2011).  

Bioelectrical impedance analysis models predicting percent-based constituents are rare; 

however, the majority of these studies suggest that BIA is capable of predicting percent-

based proximate constituents with relatively high coefficient of determination scores 

(0.72 to 0.86; Hafs and Hartman 2011; Hartman et al. 2011; Rasmussen et al. 2012; but 

see Pothoven et al. 2008).  Additionally, there is a lack of research investigating the 

potential effects of confounding variables such as sex, ontogeny, species, reproductive 

status (i.e., spawner versus non-spawner) and others on BIA measures (Hafs and Hartman 

2011; Rasmussen et al. 2012).  The objectives of this research were to: (1) determine if 

reproductive status or differences in the ionic character of the habitat in which an 

individual was sampled affects BIA measures of resistance and reactance; and (2) build 

and validate statistical models relating BIA data to laboratory-derived estimates of Dolly 

Varden proximate composition.  These analyses will further our understanding of 

potential drawbacks to the BIA method and provide statistical models that will permit 

non-lethal estimation of Dolly Varden proximate content in the future. 
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Methods 

Sample collection 

 Dolly Varden were captured from nearshore brackish water (10-25‰) and lotic 

habitats of the Alaskan Arctic (Craig 1989; Figure 2.1).  Nearshore sampling was 

conducted using fyke nets set in Kaktovik and Jago lagoons located near the coastal 

community of Kaktovik.  Fyke nets consisted of a 60-m lead line set perpendicular to 

shore leading to a mesh trap anchored in shallow (< 1.5 m) water equipped with two 15-

m mesh wings emanating from each side.  Nets were checked daily (weather permitting), 

and fish were sampled throughout the summer open-water period from mid-July to early-

September 2005.  Dolly Varden were also sampled using hook and line from 

overwintering habitats in the Ivishak River during September sampling events from 2009 

to 2011. 

Field methods 

 Upon capture, fish were sacrificed via cranial concussion, measured to the nearest 

1-mm fork length (FL), weighed to the nearest 1 g, and internal body temperature 

measured to the nearest 0.1°C through the vent.  Dolly Varden were then immediately 

blotted dry and placed on a nonconductive surface in the left-lateral recumbent position 

in preparation for BIA measurements.  Electrical resistance and reactance were measured 

at consistent locations on both the lateral and ventral surfaces of the fish using a BIA 

analyzer (RJL Systems, Detroit, Michigan; Figure 2.2).  The analyzer consisted of two sets 

of needle electrodes (stainless, 28 gauge, 5 mm in length), each containing a signal-
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emitting and -detecting electrode spaced 10 mm apart.  For lateral measurements, one set 

of electrodes was set in the anterior dorsal region and the second set in the caudal 

peduncle (Cox and Hartman 2005; Figure 2.2).  Ventral measurements were obtained by 

inserting one set of electrodes posterior to the gill isthmus and the other anterior to the 

vent, both on the ventral midline (Figure 2.2).  Once in place, the BIA analyzer sent a 

current (800 µA, AC, and 50 kHz) through the signal electrodes with the proximal 

detecting electrodes measuring the voltage drop.  Resistance and reactance in Ohms (Ω) 

and the distance between anterior and posterior electrodes, or detector length (DL), was 

recorded to the nearest 1 mm.  Fish were then individually labeled, placed on ice or 

frozen, and returned to the laboratory for storage and analysis of proximate composition. 

Laboratory methods 

 In the laboratory, fish were thawed and stomachs were excised, flushed, and then 

replaced to minimize potential among-fish differences in energy content due to the 

quantity and quality of stomach contents.  Fish were cut into sections to increase surface 

area, then desiccated in a freeze drier until they achieved a constant weight, which 

typically took between 7 and 10 days, depending on fish size. Percent water was 

calculated as the quotient of wet weight and the difference between wet weight and dry 

weight for each fish.  Each fish was homogenized using an industrial blender, and 

subsamples (~0.5 to 1.5 g) were then taken for analysis of proximate composition 

following standardized methods (AOAC 1990).  Lipid was extracted using the Soxhlet 

method and protein content was estimated from nitrogen analysis following the 
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application of a nitrogen:protein conversion factor of 6.25.  Ash content was determined 

from weight differences following the combustion of a subsample in a muffle furnace 

operating at 550°C for 24 hours.  All samples were run in triplicate, averaged, and 

expressed as a percentage of the dry weight of the subsample. 

 Temperature correction equations were developed from a subsample of 10 Dolly 

Varden collected via angling from the Ivishak River during fall 2012.  Biological data 

were collected (as described above) and fish were immediately placed on ice and 

transported back to University of Alaska Fairbanks laboratories.  In the laboratory, 

multiple measures of resistance and reactance were collected on the lateral and ventral 

surfaces of each fish (as described above) at four degree temperature increments spanning 

3 to 19 °C.  To speed tissue warming, fish were temporarily placed in water baths at the 

next temperature increment, then blotted dry prior to measurement. Tissue temperature 

was monitored using a digital meat thermometer inserted 5 mm into the musculature on 

the lateral line, proximal to the gills, and was removed prior to each electrical 

measurement.  Total experiment time, beginning at time of capture, did not exceed 6 

hours for any fish (Cox et al. 2011). 

Statistical methods 

 To promote the adoption of standardized methods for the statistical treatment of 

BIA data, analyses followed those of Hafs and Hartman (2011) and references contained 

therein wherever possible.  All statistical procedures were conducted using the statistical 

software program R version 2.15 (R Development Core Team 2012) and were evaluated 



55 

 

at an alpha = 0.05.  Lateral and ventral resistance and reactance were modeled as a 

function of temperature using ordinary least squares regression (OLS).  Temperature 

correction equations were developed following Hafs (2011), and lateral and ventral 

resistance and reactance were standardized to 10°C.  Prior to modeling procedures, 

analysis of covariance (ANCOVA) was used to test for differences in raw measures of 

resistance and reactance among fish captured in freshwater and estuarine habitats.  While 

Dolly Varden maintain osmo- and ionoregulatory homeostasis when exposed to salt 

water (Finstad et al. 1989; Arnesen et al. 1993), it is unknown if differences in the ionic 

character of a habitat affect BIA measures.  Analysis of covariance was also used to test 

for differences in raw resistance and reactance due to the presence (or absence) of ripe 

ova (i.e., spawner versus non-spawner) within mature (FL > 400 mm) females 

(Underwood et al. 1996).  Differences in males were not tested due to the low numbers of 

spawning males within the sample.  Because resistance and reactance are sensitive to 

among-fish variability in lipid content and circuit length (DL), these variables were 

included as covariates into the aforementioned analyses (Kyle et al. 2004; Cox and 

Hartman 2005; Hartman et al. 2011).  

 Electrical resistance, reactance, and detector length were used to calculate a suite 

of electrical parameters for ventral and lateral data independently (Khaled et al. 1988; 

Cox and Hartman 2005; Hafs and Hartman 2011; Table 2.1).  With the exception of 

phase angle and raw measures of resistance and reactance, each parameter was 

standardized to electrical volume by dividing it by DL2.  Standardized phase angle was 
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computed by multiplying phase angle by detector length.  In addition to these electrical 

variables, biological data such as fork length, weight, and a body mass index (BMI; 

Khaled et al. 1988) were also included into the candidate variable set (Gudivaka et al. 

1996; Cox and Heintz 2009; Hartman et al. 2011). 

To evaluate the predictive ability of BIA data collected on the lateral, ventral, and 

combined surfaces of the fish, three independent variable sets were formed.  Each of 

these sets, herein referred to as lateral, ventral, and combined, contained the 

aforementioned BIA data and biological variables.  Proximate components were modeled 

separately as a function of each of the three independent variable sets using multivariate 

OLS regression in the R software package rms (R Development Core Team 2012).  

Mallows’ Cp was calculated for all subsets of the global model using the R software 

package leaps (R Development Core Team 2012).  Models were organized by length, and 

models with the lowest Mallows’ Cp score for each unique length were retained for 

further analysis.  These models were validated using the procedure validate, located 

within the R software package rms (R Development Core Team 2012).  Over a 

predefined number of iterations (set at 10,000), the validate procedure selected random 

training subsets of the data, fit a user defined model, then applied the model to the entire 

data set.  Cross-validated coefficient of determination (R2
validate) and root mean square 

error (RMSE) were calculated and averaged among iterations to measure the performance 

of the model.  Akaike’s information criterion with the small sample correction (AICc) 
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was used to determine the final model from the subset of models previously selected by 

Mallows’ Cp (Akaike 1974; Hurvich and Tsai 1989).   

 

Results 

A total of 192 Dolly Varden, ranging from 131 to 680 mm in fork length, were 

included in the study (Figure 2.3).  This sample was comprised of 95 females, 67 males, 

and 30 fish of unknown sex, and included multiple reproductive classes (i.e. spawners 

versus non-spawners), and juveniles.  Resistance and reactance measurements taken in 

the field were collected at temperatures ranging from 3 to 18°C, with a mean temperature 

of 11°C.  As a result of temporally-stratified sampling and the inclusion of multiple 

demographics, proximate-composition data exhibited a high degree of contrast (Figure 

2.4).  Lateral and ventral measures of resistance and reactance displayed a significant 

negative relationship to temperature (Table 2.2: Figure 2.5).  Furthermore, regression 

slopes of both the resistance and reactance relationships with temperature were quite 

similar among data collected laterally and ventrally.  Following standardization to a 

constant 10°C (Table 2.2), analysis of covariance suggested that both lateral and ventral 

measures of resistance (F1, 190 = 0.76, p = 0.385; F1, 190 = 3.03, p = 0.083) and reactance 

(F1, 190 = 0.07, p = 0.786; F1, 190 = 0.93, p = 0.333) were not affected by differences in 

water chemistry among capture locations.  Similar results were found for reproductive 

status in that lateral estimates of resistance (F1, 55 = 0.77, p = 0.385) and reactance (F1, 55 = 
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0.68, p = 0.411) and ventral estimates of resistance (F1, 55 = 1.75, p = 0.191) and reactance 

(F1, 55 = 0.22, p = 0.639) were not affected by the presence of ripe ova. 

 The predictive ability of single-surface BIA models varied slightly depending 

upon the proximate constituent modeled and the type of data included (Table 2.3).  In 

general, best-fit protein and lipid models developed using ventral BIA data displayed 

better fit (lower AICc and RMSE and greater R2 and R2
validate) relative to models 

developed using lateral data.  The opposite was true for water, with models developed 

using lateral BIA data exhibiting better fit.  There was little difference between ash 

models developed using lateral or ventral BIA data.  Among all proximate constituents, 

BIA models containing both lateral and ventral BIA data (the combined data set) 

displayed lower AICc and RMSE and greater R2 and R2
validate  relative to models 

incorporating either lateral or ventral data alone (Table 2.3; Figure 2.6).  In general, 

models containing combined BIA data explained between 7% and 20% more of the 

variability in laboratory-derived estimates of proximate content than models using either 

lateral or ventral data alone.  Regression coefficients for best-fit single-surface BIA 

models can be found in Table 2.4, while multi-surface BIA model coefficients are located 

in Table 2.5.  

 

Discussion 

Bioelectrical impedance analysis assumes the biological tissues of a subject are 

organized into cylinders of uniform conductivity (Kyle et al. 2004).  Clearly, fish are not 



59 

 

homogenous in composition, nor are they cylindrical, but may be more similar to 

biological cylinders relative to most terrestrial organisms (Hundertmark and Schwartz 

2002).  Statistical analyses permit empirical relationships between BIA measures and 

body condition by matching these metrics through appropriate coefficients, assuming 

individual deviations in body geometry and internal composition from theoretical norms 

are constant.  Among-fish variability in morphology or conductivity may be introduced 

by sampling spawning and non-spawning fish from different habitats (i.e. estuarine 

versus freshwater).  However, the affect of this variation on resistance and reactance has 

yet to be quantified in BIA research.  

Analysis of covariance results suggested that both lateral and ventral measures of 

resistance and reactance were not affected by differences in the ionic character of the 

water in which fish were captured.  Dolly Varden possess a highly advanced 

hypoosmoregulatory ability that permits successful osmoregulation and occupation 

within waters exhibiting a wide range of salinities (Finstad et al. 1989; Arnesen et al. 

1993).  While the transfer to salt water may elicit acute short-term changes in blood ion 

concentration (Arnesen et al. 1993), the first Dolly Varden sampled from estuarine 

environments were not captured until the second week of July.  Considering Dolly 

Varden typically migrate to sea during the latter half of June (McCart 1980; Fechhelm et 

al. 1997), it is unlikely that individuals used in our study were not acclimated to estuarine 

conditions.  Additionally, Cox et al. (2011) found that pouring a cup of salt water under 

the subject prior to measurement resulted in significant changes to resistance and 
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reactance.  When numerous electrical pathways are available, as is the case when the 

subject is in contact with salt water or placed on a conductive surface, ohms law dictates 

that current will tend to follow the least resistant course, which may not include the 

internal surfaces of the fish.  However, because fish in our study were thoroughly blotted 

dry prior to the collection of BIA measurements, this type of error was likely minimized. 

 Analysis of covariance results also suggested that both lateral and ventral 

measures of resistance and reactance were not affected by the presence of ripe ova.  The 

electrical pathway of lateral measurements is likely dominated by muscle tissue and 

bone.  While the amount of bone does not change among reproductive classes, spawning 

fish may mobilize lipid from muscle tissue and other storage areas to facilitate gamete 

production and migration to spawning areas (Aksnes et al. 1991; Jørgensen et al. 1997).  

In fact, the carcasses of spawning Dolly Varden contained significantly greater 

proportions of water (inversely related to percent lipid; Hartman and Margraf 2008) 

relative to the carcasses of non-spawners (J. Stolarski, University of Alaska Fairbanks 

[UAF], unpublished data).  However, this difference was small and similar to the RMSE 

of the best predictive water BIA models, which could account for the lack of significance 

in the model.  Alternatively, the electrical pathway of ventral measurements most likely 

includes peritoneal tissue and possibly organs such as gonads.  The gonads of spawning 

fish were on average 30 times larger by weight and contained 14% less water relative to 

non-spawning fish (J. Stolarski, UAF, unpublished data).  However, no differences in 

ventral measures of resistance or reactance were detected among reproductive groups.  
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These results are difficult to interpret, as the specific current pathway of the ventral 

measurements is less defined.  If the current remained within the peritoneal tissue, these 

results mirror what was observed in the lateral measures of resistance and reactance.  

However, if the current traveled through gonad tissue, resistance and reactance might be 

expected to decrease as lipid-rich tissues offer greater resistance to the passage of current 

(Liedtke 1997).  The fact that this did not occur suggests that the current pathway did not 

intersect gonad tissue and that BIA measures are not affected by the presence of ripe 

gonads.   

 Coefficient of determination scores of the best-fit BIA models developed using 

both lateral and ventral (combined data set) BIA data ranged between 0.73 and 0.81.  

These models are generally consistent with the predictive ability of other BIA models 

predicting percent-based proximate content of brook trout Salvelinus fontinalis and blue 

fish Pomatomus saltatrix, which displayed R2 values ranging between 0.72 and 0.86 

(Hafs and Hartman 2011; Hartman et al. 2011; Rasmussen et al. 2012).  However, our 

results conflict with those of Pothoven et al. (2008) who reported coefficient of 

determination scores of 0.18, 0.31, and 0.53 for BIA models predicting percent lipid 

content for yellow perch Perca flavescens, walleye Sander vitreus, and lake whitefish 

Coregonus clupeaformis, respectfully.  These differences could be a result of species-

specific differences in BIA performance and/or methodological differences as well. 

 Recent research has demonstrated that factors such as electrode needle location, 

needle type, procedure deviation, time after death, experience, and most notably, 
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temperature, can effect BIA measurements (Cox et al. 2011; Hafs and Hartman 2011).  

Temperature may be controlled for by maintaining the subject at a constant temperature, 

a task made difficult in field applications of BIA, particularly when sampling is 

temporally stratified (Hafs and Hartman 2011).  Alternatively, BIA measures can be 

standardized to constant temperature post hoc, provided adequate corrective equations are 

available (Cox et al. 2011).  Pothoven et al. (2008) did not control for fish temperature, 

collected a relatively small sample exhibiting low contrast in proximate constituents, and 

used hollow hypodermic needles as electrodes, all of which could, at least, partially 

explain poor model performance.  However, BIA research in general is fraught with 

procedural variations in the collection and statistical treatment of BIA data.  For example, 

considerable variation exists in the number, types, and combinations of electrical 

variables used to model proximate constituents.  The majority of research uses 

volumetric-based calculations of electrical variables; however, confusion exists as to the 

relationship between these parameters and total impedance.  The electrical circuit formed 

when a current is applied to biological tissue can be thought to be arranged in series (Z2 = 

R2+Xc
2) or in parallel (Z-2 = Rp

-2+Xcp
-2; Liedtke 1997).  Some researchers choose to 

model proximate content as a function of series- (Rasmussen et al. 2012) or parallel-

based (Pothoven et al. 2008) calculations in isolation while others use both (Cox and 

Hartman 2005; Duncan 2007; Hafs and Hartman 2011; Hartman et al. 2011).  

Furthermore, phase angle, which is the ratio of the two vector components R and Xc (see 

Table 2.1), has shown to be a good predictor of body condition but is often left out of 
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analyses (Pothoven et al. 2008; Cox and Heintz 2009; Hanson et al. 2010).  Considering 

the variability in methods used by researchers, it is not surprising that there is some 

contention regarding the utility of the BIA technique (Pothoven et al. 2008; Hanson et al. 

2010). Comparative research investigating various modeling and measurement 

techniques is required. 

 Among all proximate constituents, BIA models developed using lateral and 

ventral data (combined data set) were more precise estimators of Dolly Varden proximate 

content than models developed from either lateral or ventral data alone.  Hafs and 

Hartman (2011) also noted that brook trout models developed using BIA data collected 

on multiple surfaces were superior to models developed using single-surface data.  

Multisurface models incorporate greater amounts of information about the internal 

composition of a subject, which likely improves predictive ability.  However, single-

surface BIA models developed by Rasmussen et al. (2012) were capable of predicting 

proximate content with a relatively high degree of precision (R2 = 0.72).  Decisions 

regarding the number of surfaces on which to collect BIA data should be made only after 

research goals and data quality requirements are determined. 

 These results suggest that BIA is capable of producing high quality predictions of 

Dolly Varden proximate content.  However, the validity of these BIA models should be 

confirmed on a subset of fish using the methods and equipment outlined here prior to 

implementation in field studies.  Additional research is required to gain a greater 

understanding of how variability in equipment such as electrode type (needle gauge, 
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separation, and depth), and other potentially confounding factors such as ontogeny, gut 

fullness, and size affect BIA measurements and the generality of models.  Furthermore, 

research investigating BIA model output among different formulations and combinations 

of independent electrical variables using parametric and nonparametric techniques would 

aid in the development of standardized modeling practices for BIA data.  These efforts 

would standardize practices for the collection and statistical treatment of BIA data, 

improve the quality of model predictions, and facilitate BIA model comparisons among 

species. 
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Electrical parameter Symbol Units Equation

Reactance x Ohms Measured by Quantum II analyzer

Resistance r Ohms Measured by Quantum II analyzer

Reactance in parallel Xcp Ohms DL
2
/(x + (r

2
/x))

Resistance in parallel Rp Ohms DL
2
/(r + (x

2
/r))

Impedance in parallel Zp Ohms DL
2
/(r·x/(r

2
 + x

2
)

0.5
)

Reactance in series Xc Ohms DL
2
/x

Resistance in series Rs Ohms DL
2
/r

Impedance in series Zs Ohms DL
2
/(r

2
 + x

2
)

0.5

Phase angle PA Degrees Arctan(x/r)·180/π

Standardized phase angle DLPA Degrees DL·(arctan(x/r)·180/π)

Capacitance Cpf Picofarads DL
2
/((1/(2·π·50,000·r))·(1·10

12
))

Body mass index BMI Ohms (((r
2
 + x

2
)^

0.5
)weight)/DL

2
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Table 2.2: Regression slopes, t values, and associated P values from ordinary least 

squares regressions of lateral and ventral measurements of electrical resistance and 

reactance and temperature (°C) developed from ten Dolly Varden collected from the 

Ivishak River.  In the temperature correction equations developed from the regressions, T 

= the temperature (°C) in at which the electrical measurement was taken and Ts = the 

standardized temperature (°C) that is being corrected to. 

Variable Slope t p value Correction equation 

Lateral         

  Resistance (r) -7.8025 -11.1585 < 0.001 -7.8025*(Ts-T) + r 

  Reactance (x) -1.7600 -8.2461 < 0.001 -1.7600*(Ts-T) + x 

Ventral         

  Resistance (r) -7.3175 -6.7609 < 0.001 -7.3175*(Ts-T) + r 

  Reactance (x) -1.0750 -3.3333 0.002 -1.0750*(Ts-T) + x 
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Table 2.3: Model fit and cross-validation statistics of BIA models for all proximate 

constituent and independent variable set combinations.  Model fit statistics include 

number of parameters (K), Akaike’s information criterion with the small sample 

correction (AICc) and coefficient of determination (R2); cross-validation statistics include 

root mean squared error (RMSE) and mean R2 of observed and cross-validated predicted 

values (R2
validate). 

Proximate component and data set K AICc R2 RMSE R2
validate 

Lipid      

  Lateral 9 1325.78 0.57 7.40 0.55 

  Ventral 5 1310.76 0.59 7.21 0.57 

  Combined 16 1220.65 0.77 5.57 0.74 

Water      

  Lateral 10 917.78 0.66 2.56 0.64 

  Ventral 6 972.50 0.53 2.99 0.51 

  Combined 15 883.04 0.73 2.32 0.70 

Protein      

  Lateral 10 1238.42 0.57 5.90 0.54 

  Ventral 6 1206.27 0.62 5.47 0.61 

Table 2.3 continued:       
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  Combined 14 1152.18 0.74 4.69 0.71 

Ash      

  Lateral 7 549.68 0.70 0.99 0.68 

  Ventral 6 550.56 0.69 1.00 0.68 

  Combined 12 472.03 0.81 0.80 0.79 



 

 

77  
 

Parameter Lipid Water Protein Ash Lipid Water Protein Ash

Intercept 65.9535 45.1752 20.2392 1.4602 52.4281 52.4943 42.7139 7.8730

Biological variables

FL -0.3909 0.1310 0.2608 0.0290 …. 0.0173 …. -0.0143

Weight …. …. …. …. 0.0095 -0.0044 -0.0089 ….

Body mass index (BMI) 9.9899 -3.6379 -5.9804 -0.6048 …. …. …. ….

Electrical variables

Reactance (x) -0.3739 0.1721 0.2443 0.0265 -0.2185 0.1250 0.1842 0.0189

Reactance in parallel (Xcp) -53.8870 24.0874 65.1811 0.0992 -0.3968 …. -2.0111 -0.0473

Resistance in parallel (Rp) -448.0030 187.1088 499.0031 …. …. …. …. ….

Impedance in parallel (Zp) …. …. …. -346.6878 …. …. …. 328.0952

Reactance in series (Xc) -0.8248 0.4117 1.2242 …. -0.0282 0.0100 …. 0.0014

Resistance in series (Rs) -285.3004 116.4487 310.0435 …. …. 0.0278 6.4655 ….

Impedance in series (Zs) 745.4179 -309.1565 -824.6681 …. …. …. -6.0060 ….

Phase angle (PA) …. 0.7446 1.5762 0.5067 …. …. …. ….

Standardized phase angle (DLPA) 0.0273 -0.0114 -0.0227 -0.0044 …. …. …. 0.0010

Capacitance (Cpf) …. …. …. …. 2.7499 -1.3539 -2.0905 ….

 Lateral data     Ventral data

Proximate component

 

Table 2.4: Single-surface BIA model coefficients for best-fit models developed using either lateral or ventral BIA 

data organized by proximate constituent.  Electrical or biological variables not included are indicated by a series of 

dots.
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Parameter Lipid Water Protein Ash

Intercept 56.9367 57.9891 41.3514 0.5354

Biological variables

Fork length -0.1976 0.0956 0.1481 0.0154

Body mass index (BMI) 6.1901 -2.8534 -4.8834 -0.6168

Lateral BIA variables

Reactance (x) -0.2187 0.1801 0.2289 0.0301

Resistance (r) -0.0723 …. …. ….

Reactance in parallel (Xcp) -53.9209 22.8374 50.9030 0.1233

Resistance in parallel (Rp) -417.8390 176.4037 385.8771 ….

Impedance in parallel (Zp) …. …. …. -579.9346

Reactance in series (Xc) -0.9154 0.3735 0.9295 ….

Resistance in series (Rs) -260.1150 109.3261 238.5641 ….

Impedance in series (Zs) 690.5391 -290.9841 -636.5997 ….

Phase angle (PA) …. …. …. 0.4406

Standardized phase angle (DLPA) 0.0184 -0.0090 -0.0138 -0.0042

 Proximate component  

 

Table 2.5: Bioelectrical impedance analysis model coefficients for best-fit models developed using combined BIA data 

organized by proximate constituent.  Electrical or biological variables not included are indicated by a series of dots.
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Ventral BIA variables

Reactance (x) …. …. …. -0.0335

Resistance (r) 0.0606 -0.0123 …. 0.0078

Reactance in parallel (Xcp) 2.2431 …. …. -0.1322

Resistance in parallel (Rp) …. 21.9520 46.6852 ….

Impedance in parallel (Zp) -1086.9941 484.1092 1152.4623 413.8573

Resistance in series (Rs) -4.8567 19.6177 42.4412 ….

Impedance in series (Zs) 4.5407 -41.5593 -89.0604 ….

Standardized phase angle (DLPA) -0.0116 0.0032 0.0059 0.0030

 

Table 2.5 continued:
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Figure 2.1: Map of the Eastern North Slope of Alaska with arrows indicating the general 

locations where Dolly Varden were collected.  Nearshore sampling occurred in summer 

2005, while freshwater habitats were sampled in fall of 2009, 2010, and 2011. 
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Figure 2.2: Electrode placement schemes of BIA electrodes for the collection of lateral 

(solid arrows) and ventral (hollow arrows) measurements of resistance, reactance, and 

detector length on Dolly Varden. 
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Figure 2.3: Sample proportion plotted as a function of composite length data for Dolly 

Varden collected from Kaktovik and Jago lagoons during 2005, and the Ivishak River 

between 2009 and 2011. 
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Figure 2.4: Percent composition of proximate constituents for Dolly Varden collected 

from Kaktovik and Jago lagoons and the Ivishak River.  Boxplot whiskers encompass 

1.5X the interquartile range. 
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Figure 2.5: Trends in electrical resistance and reactance collected laterally (A and C) and 

ventrally (B and D) across a 16°C temperature range for 10 Dolly Varden collected from 

the Ivishak River. 
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Figure 2.6: Bioelectrical impedance analysis model predicted versus observed percent 

proximate constituent with associated coefficient of determination (R2) and root mean 

squared error (RMSE) statistics for BIA models developed using combined (lateral and 

ventral) BIA data. 
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Chapter 3: Temporal trends and environmental correlates of amphidromous Dolly 

Varden growth inferred from otoliths. 

 

Abstract 

The Arctic is warming at rates that exceed global averages; however, little is 

known regarding how altered thermal regimes or other associated environmental changes 

will affect fish.  Recent research using long-term growth data derived from otoliths has 

shown promise in clarifying relationships between broad-scale environmental 

characteristics and fish populations.  Using otolith growth as a proxy for fish growth, 

temporal trends and environmental correlates of Dolly Varden Salvelinus malma growth 

were examined from 202 otoliths collected from the Alaskan Arctic over the past 25 

years.  Annual estimates of Dolly Varden growth increased significantly from 1980 to 

1989, which coincided with similar increases experienced by other Arctic fishes.  

Significant positive correlations were found between Dolly Varden growth and air and 

sea surface temperature and river discharge; in contrast, ice concentration was negatively 

associated with growth.  Temporal patterns in the strength of correlations between Dolly 

Varden growth and sea surface temperature and discharge suggest these environmental 

characteristics become increasingly important during late summer and early fall.  Growth 

implications of nearshore estuarine habitat quantity, quality, and persistence and 

methodological and study design limitations are discussed.  Future research should 

determine if, or the degree to which, Dolly Varden behaviorally thermoregulate as this 
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information will greatly improve our understanding of how Dolly Varden may respond to 

future climate warming. 

 

Introduction 

 Amphidromous northern-form Dolly Varden char Salvelinus malma, herein 

referred to as Dolly Varden, inhabit spring-fed coastal rivers and nearshore areas of the 

Beaufort Sea in Alaska and Canada (Reist et al. 1997).  Individuals spawn and overwinter 

in freshwater and undergo annual migrations to coastal brackish waters to forage during 

the short, three month Arctic summer (Craig 1989).  During this brief period, Dolly 

Varden must consume close to 100% of their annual energy budget, as little to no forage 

is consumed in freshwater (Craig 1989; Boivin and Power 1990).  Energy consumed fuels 

growth and daily metabolic demands, but is also sequestered for subsequent mobilization 

during spawning and the lengthy overwintering period.  Because Dolly Varden forage 

exclusively in nearshore areas and access to this habitat is temporally limited, it is likely 

that nearshore habitat quality and quantity imposes substantial consequences on every 

aspect of the annual life cycle of adult fish, including growth, fecundity, and overwinter 

survival (Craig 1989). 

 Recent observations and climate-model predictions suggest that the Arctic is 

warming at rates that exceed global averages (Serreze et al. 2000; Solomon et al. 2007).  

Elevated atmospheric temperature has the potential to alter ocean and terrestrial ice 

dynamics, hydrology, water temperature and salinity, primary and secondary production, 
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and food-web interactions, which will, in turn, directly and indirectly alter the biotic and 

abiotic structure of nearshore coastal environments, ultimately affecting fish (Magnuson 

et al. 2000; Carmack and Macdonald 2002; Prowse et al. 2006; Reist et al. 2006; Wagner 

and Benndorf 2007).  While it has been suggested that changes in thermal regimes and 

associated losses in sea ice may ultimately result in a more productive Arctic, species 

specifically adapted to Arctic conditions may be negatively affected (Reist et al. 2006; 

Pabi et al. 2008).  For example, Arctic-dwelling Dolly Varden inhabit the northern 

fringes of their geographic distribution and may be adapted to operate most efficiently 

within narrow temperature tolerances (Jarvela and Thorsteinson 1997; Reist et al. 2006; 

Mortensen et al. 2007).  Considering the importance of temperature to ectothermic 

organisms and the short length of the growing season, even small increases in nearshore 

water temperature have the potential to elicit large biological responses (Brett 1976; 

Craig 1989). 

 Assessment and prediction of the population-level effects of an environmental 

stressor require knowledge of species-habitat relationships (Wiens and Rotenberry 1981). 

Currently, these relationships are poorly understood for Dolly Varden.  While this is 

partly a result of the complexity of Dolly Varden ecology and the highly dynamic nature 

of their habitats, logistical challenges associated with operating within remote and often 

extreme environments have impeded the collection of long-term data (Neill and Gallaway 

1989; Hale 1990; Krueger et al. 1999).  Recent research using otoliths to derive long-term 

growth histories has shown promise in elucidating relationships between fish populations 

and environmental regimes (Guyette and Rabeni 1995; Black et al. 2005).  These 
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methods assume otolith growth represents a running average of fish growth, with 

individual growth chronologies reflecting the integrated outcome of age-specific 

physiological, behavioral, and environmental characteristics experienced by an 

individual.  Using otolith growth as a proxy for fish growth, long-term chronologies have 

been applied to evaluate the effects of broad environmental phenomenon such as El Nino 

events, as well as the effects of individual environmental characteristics such as water 

and air temperature, precipitation, and ice conditions on fish growth (Guyette and Rabeni 

1995; Woodbury 1999; Lebrenton and Beamish 2000; Rypel 2009; Von Biela et al. 

2011). 

 Due to the absence of detailed field or laboratory data regarding Dolly Varden 

habitat relationships, there is a poor understanding of how Dolly Varden may be affected 

by anthropogenic stressors such as climate change (Reist et al. 2006).  Recent research 

extracting long-term growth histories from otoliths has shown promise in describing 

relationships between fish growth and broad scale environmental characteristics (Guyette 

and Rabeni 1995; Woodbury 1999; LeBrenton and Beamish 2000; Rypel 2009; Von 

Biela et al. 2011).  Such relationships for Dolly Varden would provide an initial first step 

toward a greater understanding of the potential consequences of anthropogenic stressors 

such as climate change for these fish.  Thus, the overall goal of this work is to explore 

growth data extracted from both archived and contemporary Dolly Varden otoliths within 

the Alaskan Arctic over the past 25 years.  The specific objectives are to: 1) examine 

temporal trends in growth and compare these data to growth of other Arctic fishes during 

similar time intervals, and 2) correlate growth data to broad-scale environmental 
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characteristics to gain a greater understanding of Dolly Varden-habitat relationships.  It is 

important to emphasize the exploratory nature of these analyses given the reliance on 

samples collected during previous work which, at the time of collection, were not 

intended to be applied to a retrospective analysis of growth.  However, while tenuous in 

nature, these analyses are unrivaled in the literature, and may guide future research 

investigating the effects of anthropogenic stressors such as climate change on Dolly 

Varden.  

 

Methods 

Sample collection 

 Archived Dolly Varden otoliths were gathered from six research projects and 

surveys conducted within nearshore and freshwater habitats of the Alaskan Arctic during 

the past 25 years (West 1987; Thorsteinson et al. 1991; Underwood et al. 1995; Wiswar 

and Fruge 2006; J. Carlson, University of Alaska Fairbanks, UAF, unpublished data; J. 

Stolarski, UAF, unpublished data; Figure 3.1).  Nearshore habitats were primarily 

sampled using fyke nets supplemented by variable-mesh gill nets set within 50 to 60 m 

from shore, typically in depths less than 1.5 m (Underwood et al. 1995).  While sampling 

occurred throughout the open-water season (June - September), the majority of fish were 

captured in July and August.  Freshwater sampling was conducted during September 

using hook and line at overwintering habitats in the Ivishak River, a tributary of the 

Sagavanirktok River.  While the objectives and methods of each study varied, in general 
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individuals were measured to the nearest 1-mm fork length and weighed to the nearest 1 

g following capture.  Otoliths were removed and the sex of mature fish was recorded after 

examination of external characteristics or following dissection.  While date of capture 

was known for every fish, accompanying information on length, weight, or sex was 

occasionally incomplete.  However, fish length was known for more than 85% of 

samples. 

Structure preparation 

 In preparation for sectioning, otoliths were affixed to glass slides using 

Crystalbond thermoplastic cement (Structure Probe Inc., West Chester, Pennsylvania) 

perpendicular to the long axis of the otolith.  Otoliths were ground to the core in the 

transverse plane using a thin section machine (Hillquist Inc., Denver, Colarado), 

remounted to the slide flat side down, and ground to a final thickness of approximately 

0.3 mm.  In preparation for viewing with a compound microscope, otoliths were hand 

polished using a 1-µm diamond abrasive.  Mounts were viewed and digital images 

captured at 10X and 40X magnifications using a Micropublisher 3.3 mega pixel 

microscope mounted digital camera (Quantitative Imaging Co., Burnaby, Canada) under 

transmitted light.  If, after inspection, the mounted otolith section was deemed inadequate 

for age determination, it was discarded and the other sagitta was processed in the same 

fashion if available. 
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Annuli identification and measurement 

 Annuli were identified as alternating opaque and hyaline zones (Devries and Frie 

1996).  Annuli were counted on two separate occasions by a single reader trained in 

annulus identification.  When age estimates were in disagreement, the sample was 

revisited with the aid of a second trained reader.  If age remained in contention, the 

sample was discarded.  The birth year of each fish was determined by subtracting fish age 

from the year in which it was captured.  All otolith measurements were taken using 

Qcapture pro image processing software (Quantitative Imaging Co., Burnaby, Canada) to 

the nearest 0.0001 mm.  Otolith diameter was measured at 10X magnification as the 

longest axis that bisected the focus.  Annular increments each consisted of one opaque 

summer growth zone and one translucent winter growth zone, and were measured along a 

standard transect at 40X magnification (Figure 3.2).  The transect on which 

measurements were collected was chosen based on preliminary data suggesting greater 

measurement precision relative to other transects tested (Figure 3.2). Annular 

measurements were only collected from otoliths with clear annular delineations. 

 Following annuli measurement and the assembly of individual increment width 

chronologies, ontogenetic growth effects were isolated from environmental effects and 

removed from each chronology.  Typically, ontogenetic growth effects are removed by 

fitting a negative exponential or similar but more complex function to each chronology 

(Black et al. 2005; Rypel 2009).  Detrended annual adjusted increment widths are then 

calculated as the observed increment width minus the expected increment width predicted 

by the function (Black et al. 2005; Rypel 2009).  However, these methods were 
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inappropriate for Dolly Varden for two reasons.  First, because Dolly Varden are a 

relatively short-lived species, the temporal scope of each individual chronology was 

limited, spanning on average only 6 years.  As a result, we lacked sufficient degrees of 

freedom to fit moderately complex or even simple functions to the majority of 

chronologies.  Second, Dolly Varden experience a significant habitat shift when they 

migrate to sea for the first time, and as a result individual growth chronologies may not 

conform to the simple negative exponential model used by some researchers when 

applying these methods to short-lived species (Rypel 2009).  Seaward migration is 

initiated between ages 1 and 5; however, the majority of fish enter the sea for the first 

time between the ages of 2 and 3, with 95% of all fish having migrated at least once  by 

age 4 (Yoshihara 1973; Underwood et al. 1995; Fechhelm et al. 1997).  Upon the onset of 

amphidromy, somatic and thus otolith growth may increase substantially as a result of 

productivity differences between marine and freshwater environments (Craig 1977).  The 

magnitude of this anomalous otolith increment and its effect on the fit of the function 

applied to each growth chronology will likely differ depending on the age at which fish 

first migrate to sea.  Because these dates are both unknown and variable among 

individuals, their effect cannot be accounted for.  As a result, applying a function to 

remove the effects of size at age from Dolly Varden increment width chronologies may 

be inappropriate. 

 In lieu of applying a mathematical function to control for ontogenetic growth 

effects, a single index of growth for each individual was calculated by dividing the sum 

of increment widths of the age-0 to -3 cohorts by the width of the age-4 increment.  This 
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method attempts to control for age and size affects in two ways.  First, by examining only 

a single year of growth, ontogenetic affects may be minimized as they are more likely to 

be similar among individuals of the same age.  Second, by standardizing the width of the 

age-4 increment by the summed width of the otolith at the beginning of the fourth year, 

age-4 growth differences resulting from variability in size at the beginning of the growing 

season may be minimized.  For example, fish that are smaller at the beginning of their 

fourth year may be less efficient swimmers and possess smaller gapes, two characteristics 

that could impede piscivory and growth as fish are generally a higher quality forage 

(Mittelbach and Persson 1998).  The age-4 increment was chosen as the basis for the 

index because previous research indicated that 95% of individuals had migrated to the sea 

at least once by this age and assessment of marine-growing conditions was desired 

(Yoshihara 1973; Underwood et al. 1995; Fechhelm et al. 1997). 

 These methods represent a conservative approach to standardizing growth among 

individuals as they ignore growth data contained in otolith increments beyond age 4.  

Cross-dating techniques used to validate age estimates were also not possible due to the 

collection of only one year of growth information from each individual (Black et al. 

2005).  However, the removal of samples with contentious age estimates and indistinct 

annular boundaries may help to prevent aging errors.  Furthermore, because measurement 

of the entire age-4 increment is required to calculate the growth index, fish must be at 

least age 5 to be included in the study.  While these constraints will likely reduce the 

number of individuals included in the study, we feel they are the most suitable for 
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standardizing increment widths and growth estimates within a relatively short-lived 

species that undergoes a substantial habitat shift. 

Collection of environmental data 

 Broad-scale environmental data from the Alaskan Arctic were collected from a 

variety of sources and expressed at time lags of 0 to 2 years to attempt to account for the 

multi-year life cycles of common prey items such as mysid shrimp, amphipods, and fish 

(Craig et al. 1982; Boudrias and Carey 1988; Weslawski 1989; Von Biela et al. 2011).  

The growth and abundance of such prey species in a particular year is potentially a 

function of environmental conditions experienced in previous years.  Thus, correlations 

between Dolly Varden growth and environmental conditions can be out of phase.  To 

account for potential delays in the biological expression of environmental conditions 

resulting from the storage of biological production among years, lags were incorporated.  

Unless otherwise specified, environmental data were gathered exclusively from the 

portion of the year encompassing the open water period and monthly and seasonal (open-

water period) means were used to summarize each environmental characteristic.  The 

open-water period lasts from June to September and corresponds with annual peaks in 

Dolly Varden growth (McCart 1980).  Thus, environmental data collected during this 

time should explain the greatest amount of variation in Dolly Varden growth.   

 Air temperature (ºC), wind speed (km/hr), and wind direction (degrees; Table 

3.1), collected at the airport in Deadhorse, Alaska, were assessed from the on-line 

database of the National Climate Data Center (2012).  Typically, measurements were 
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collected hourly; however, during periods of inclement weather, multiple observations 

per hour may have been recorded.  To equalize sampling effort within hours, only the 

observation recorded at or closest to the beginning of each hour was retained for analysis.  

Wind speed and direction were converted to linear coordinates (x and y), with the x axis 

representing the east-west component and the y axis representing the north-south 

component (Fechhelm et al. 2007). Only the east-west wind component was retained for 

analysis due to its effect on nearshore productivity during the open-water period 

(Gallaway et al. 1991; Fechhelm et al. 2007). 

Discharge data (m3/sec) from the Sagavanirktok and Mackenzie rivers were 

gathered due to their influence on the quantity and quality of nearshore estuarine habitat 

during summer (Table 3.1; Carmack and Macdonald 2002).  Sagavanirktok River 

discharge was measured at USGS gauging station number 15908000 and accessed from 

the on-line National Water Information System database (2012).  Mackenzie River 

discharge was measured at station 10GC001and accessed from the online database of the 

Water Survey of Canada (2012).  Analysis of discharge data from both rivers was 

conducted on monthly averages during the open water period but also on an annual 

average.  The Mackenzie River flows year round which, during winter, results in the 

formation of a large freshwater lake within coastal areas proximate to the river’s mouth 

(Carmack and Macdonald 2002).  The water is released following breakup in spring, and 

may move west along the Beaufort Sea coast altering the temperature and salinity of 

nearshore habitats (Carmack and Macdonald 2002).  Thus, because winter flow may 
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affect summer habitat conditions and ultimately Dolly Varden growth, it must be 

accounted for. 

Arctic Oscillation Index data were accessed via the NOAA National Weather 

Service Climate Prediction Center (2012) from their on-line database (Table 3.1).  The 

Arctic Oscillation Index is a broad-scale statistical summary of air pressure anomalies 

over the Arctic Ocean.  The index displays negative and positive phases associated with 

high and low pressure anomalies that reflect the major mode of climate variability in the 

Arctic, affecting conditions such as air temperature, wind speed and direction, sea ice, 

and ocean currents (Thompson and Wallace 1998).  Optimum interpolation sea surface 

temperature (SST) and ice concentration version 2 data were provided by the 

NOAA/OAR/ESRL PSD, Boulder, Colorado, and accessed from the online database of 

the NOAA Earth Systems Research Laboratory (2012; Table 3.1).  These data 

incorporate in-situ and remote measurements of SST (ºC) and ice concentration (% area 

covered) that are optimally interpolated over a 1 x 1 degree grid (Reynolds and Smith 

1994).  Data were obtained from the coordinates 69.5 to 71.5°N by 134.5 to 152.5°W, 

which encompassed a broad swath of some nearshore, but primarily marine habitat 

between Barrow, Alaska, and the mouth of the Mackenzie River, Canada, excluding land. 

Statistical analyses 

 To confirm the relationship between otolith and somatic growth, otolith diameter 

was modeled as a function of capture length using ordinary least-squares linear 

regression.  The potential effect of capture age on growth estimates was evaluated using 
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one-way Analysis of Variance (Von Biela et al. 2011).  Based on the findings of Lee 

(1912), the selective removal of the largest and fastest-growing individuals of a 

population by fishing may restructure populations such that the oldest and largest 

members display the smallest rates of growth.  While the amount of fishing pressure 

exerted on these populations is unknown, the identification of capture age effects is 

warranted because they may bias growth estimates if the age distribution of samples 

varies among years.  Data were standardized by subtracting the mean and dividing by the 

standard deviation and ordinary least squares linear regression, weighted by sample size 

within years, was used to evaluate change Dolly Varden growth over time.  Pearson’s 

product-moment correlations were used to measure and test the strength of associations 

between standardized growth and environmental data.  Nonlinear associations among 

pairwise comparisons were evaluated visually using scatter plots fitted with Loess 

smooth functions.  Statistical procedures were performed using the statistical software 

package R (R Development Core Team 2012) and all statistical tests, including sequential 

tests of Pearson’s correlation coefficients, were evaluated at alpha = 0.05 (Cabin and 

Mitchell 2000).  However, when evaluating the significance of multiple comparisons 

using an unadjusted alpha, the probability of type I error increases as the number of 

comparisons increase.  
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Results 

A total of 349 otoliths collected from six general locations within freshwater and 

nearshore estuarine habitats of the Alaskan Arctic were included in the study (Figure 

3.1).  These fish ranged in length from 91 to 672 mm and encompassed ages 1 through 14 

(Figure 3.3).    Retrospective growth data were calculated for 202 fish following the 

exclusion of samples younger than age 5 and individuals whose age-4 growth increment 

was assigned to a calendar year with fewer than four observations.  These fish ranged in 

length from 285 to 672 mm, encompassed ages 5 to 11, and were collected from the 

aforementioned locations, minus Pokok Bay (Table 3.2; Figure 3.3).  Capture length and 

otolith diameter data were not available for all samples due the absence of length data, 

poorly mounted otoliths, or both.  Following exclusion of samples with incomplete 

records, a significant positive relationship was found between otolith diameter and 

capture length (F1, 286 = 2988, R2 = 0.91, p < 0.001; Figure 3.4).  Analysis of variance 

results suggested capture age had no effect on growth estimates (F6, 195 = 1.49, p = 0.184).  

Sex data were not collected or reported for the majority of samples, thus it was not 

included as a covariate in any analyses. 

 The reliance on otoliths collected during previous research and surveys resulted in 

several research design difficulties as once these data sources were exhausted, it was not 

possible to procure additional samples.  In general, the spatio-temporal distribution of 

samples mirrored the discrete nature in which research projects and surveys are designed 

and implemented.   Due to limited sample sizes, data were pooled among locations within 

years to extend the temporal record of the data.  As a result, growth data were available 
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for two general periods, the first spanning from 1980 to 1989 and the second from 2003 

to 2009, with the exception of 2005 (Table 3.2).  Due to the large gap in growth data 

between the years 1990 and 2002, separate weighted linear models were fit to each 

general period.  Linear model results suggested that Dolly Varden growth increased 

significantly from 1980 to 1989 (F1, 101 = 19.48, R2 = 0.16, p < 0.001).  A decreasing 

trend is noted from 2006 to 2009, but was not significantly different from zero (F1, 81 = 

2.52, R2 = 0.03, p = 0.116; Figure 3.5).  Pearson’s correlation coefficients were computed 

for a total of a total 86 pairwise comparisons between Dolly Varden growth and 

environmental characteristics expressed at various time lags.  Sequential tests of 

Pearson’s correlation coefficients indicated significant correlations between Dolly 

Varden growth and SST and air temperature, ice concentration, and discharge (Table 3.3; 

Figure 3.6).  While sample size was limited, visual examination of scatter plots fitted 

with Loess smooth functions did not reveal evidence of the presence of non-linear 

relationships among pairwise comparisons of growth and non-significant or significant 

environmental characteristics (Figure 3.7).  

 

Discussion 

Our results suggest that Dolly Varden growth increased significantly from 1980 to 

1989.  Unfortunately, there are few data available to compare to our results.  Fechhelm et 

al. (2004) noted that Dolly Varden smolt growth increased from 1985 to a peak in 1989, 

then declined to 2003.  Our results also suggest that Dolly Varden growth increased to a 
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peak in 1989, but data limitations prevent assessment in subsequent years.  Growth of 

age-0 Arctic cisco Coregonus autumnalis collected from the Colville River delta also 

increased during the 1980s (Von Biela et al. 2011).  While the authors did not investigate 

the presence of non-linear trends, Arctic cisco growth appears to asymptote beginning 

around 1990.  Although the causes of growth shifts in Dolly Varden smolts and Arctic 

cisco around 1990 are unknown, they do correspond to when a major climatic regime 

shift was reported in the North Pacific Ocean and Bering Sea (Hare and Mantua 2000; 

Minobe 2002).  Unfortunately, assessment of similar trends in adult Dolly Varden growth 

post 1989 is not possible here due to data limitations.   

 Analyses of correlations between Dolly Varden growth and environmental 

characteristics tested 86 multiple comparisons of which eight were found to be 

significant.  Based upon number of tests that were evaluated, four significant results 

would be expected by chance alone.  However, if a Bonferroni correction was applied 

there would be no significant results.  Given the exploratory nature of these analyses and 

the general lack of information regarding long-term trends in Dolly Vaden growth we 

feel our methods are appropriate.  However, caution should be used when applying the 

results of these analyses to similar species or locations. 

Correlations of Dolly Varden growth and environmental characteristics suggest 

the importance of three broad types of environmental characteristics: air and water 

temperature, ice concentration, and freshwater discharge.  These analyses incorporated 86 

multiple comparisons of which eight were found to be significant.  However, based on 

the number of tests, 4 comparisons would be expected to exhibit significant correlations 
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by chance alone.    Dolly Varden are ectothermic organisms whose physiological 

processes are largely dictated by the temperature of the surrounding environment (Jobling 

1994).  As such, significant positive correlations between growth and air temperature, 

through its influence on water temperature, and SST may seem intuitive, provided 

unlimited forage (Murphy et al. 2007).  Additionally, the strength of association between 

SST and growth increases from June to August, suggesting that thermal environments 

become increasingly important as summer progresses.  Summer Dolly Varden growth 

may be sigmoidal in shape, with early and late season lulls potentially resulting from an 

ecological strategy favoring migration over foraging (Fechhelm et al. 1997).  Beginning 

in August, nearshore areas are marked by decreasing temperatures and increasing 

salinities as declines in freshwater input lead to fragmentation of estuarine habitats and 

the slow dissolution of the estuarine band.  Late season variability in thermal conditions, 

coupled with the energetic consequences of this variability on migration costs and the 

efficiency in which forage is captured and assimilated may magnify the effect of 

temperature on growth, potentially resulting in a tighter temperature-growth relationship 

during this period (Brett 1976; Beamish 1980; Jobling 1994). 

 Increased temperature of nearshore areas is one mechanism by which growth of 

Arctic amphidromous fishes may be affected by climate change (Reist et al. 2006).  Dolly 

Varden and other stenothermic Arctic fishes may be physiologically adapted to operate 

most efficiently at relatively cold temperatures (Larsson 2005; Reist et al. 2006; 

Mortensen et al. 2007).  The general relationship between salmonid growth and 

temperature is nonlinear in form with growth increasing from zero at the lower thermal 
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threshold to the thermal optima, then declining back to zero again as temperature 

approaches the upper thermal threshold; growth is negative outside threshold values 

(Brett 1976; Jobling 1994).  The specific temperatures of the upper and lower thresholds 

vary by fish size and ration and are unknown for Dolly Varden; however, it is believed 

these fish are capable of growing at temperatures close to zero (Larsson and Berglund 

1998; Reist et al. 2006).  While our data are limited, visual examination of growth and 

temperature plots do not convincingly indicate the presence of non-linear relationships 

that would suggest nearshore thermal conditions have exceeded upper threshold values.  

However, the relationship between growth and temperature may be far more complex if 

individuals behaviorally select for, or avoid subsets of, available thermal habitat (Neill 

and Gallaway 1989; Bevelhimer and Adams 1993; Neverman and Wurtsbaugh 1994). 

 Dolly Varden are highly mobile and, within heterogeneous thermal landscapes, 

capable of selecting conditions most beneficial to the joint conduct of their physiological 

processes (Neill 1979; Krueger et al. 1999).  If Dolly Varden disproportionally select for 

a subset of available thermal habitats, estimates of mean SST may have little relationship 

to growth.  This is further exacerbated by the inability of SST estimates to capture the 

thermal profile of the water column.  Because nearshore areas may thermally stratify 

during parts of the summer, SST estimates may not reflect the true diversity and 

abundance of thermal conditions available to fish (Hale 1990).  However, despite these 

difficulties, the presence of significant linear associations between growth and SST 

suggest that Dolly Varden are at least, in part, responding to changes in SST or other 

correlated, but unmeasured, variables.  Without knowledge of the degree to which Dolly 



104 
 

 

Varden behaviorally thermoregulate, and given the potential error associated with SST 

measurements, assessment of the quality of nearshore thermal habitats for Dolly Varden 

growth is not possible. 

 Significant positive correlations between freshwater discharge and Dolly Varden 

growth highlight the importance of coastal rivers, particularly the Mackenzie River, to 

nearshore ecosystems.  Mackenzie River discharge, supplemented by additional 

freshwater contributions from smaller systems such as the Sagavanirktok River, largely 

influences the abundance of estuarine habitat along the Beaufort Sea coast during 

summer (Gallaway et. al 1991; Carmack and Macdonald 2002).  These waters are 

generally warmer and less saline (5-10°C, 10-25‰) than adjacent marine waters (-1-3°C, 

27-32‰), which afford Dolly Varden occupying these habitats several physiological 

advantages that may allow them to grow more efficiently (Craig 1989; Jobling 1994; 

Larrson 2005).  Furthermore, freshwater runoff contains substantial quantities of 

dissolved organic carbon and other nutrients which may be important drivers of 

production within nearshore food webs (Dunton et al. 2006, 2012).  Thus, Dolly Varden 

growth may be inherently linked to freshwater discharge of the Mackenzie River and 

other rivers through their effect on the quantity and quality of estuarine habitat.  In 

addition, as evidenced by significant correlations between Dolly Varden growth and late 

summer discharge, freshwater inputs may become increasingly important as the open 

water season comes to a close.  Increased late summer discharge may contribute to the 

persistence of estuarine habitats into fall and afford Dolly Varden access to favorable 

foraging and growing conditions for longer periods of time.  As a result, predicted 
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changes in Arctic precipitation, air temperature, and the amplitude and timing of annual 

discharge events have the potential to affect Dolly Varden growth through alterations in 

the quantity, quality, and persistence of estuarine habitat along the Beaufort Sea coast 

during summer (Maxwell and Barrie 1989; Miller and Russell 1992; Solomon et al. 

2007). 

 Sea ice concentration over the southern Beaufort Sea in June was negatively 

correlated with Dolly Varden growth.  A decline in sea ice concentration may result in 

greater phytoplankton production through increased nutrient and light availability and 

decreased production of ice algae (Carmack and MacDonald 2002).  Increases in primary 

productivity associated with decreased ice concentrations may facilitate greater Dolly 

Varden growth, and vice versa, if this production (or lack thereof) is transferred through 

adjacent trophic levels (Arrigo et al. 2008).   Additionally, sea ice cover likely contributes 

to the thermal characteristics of the underlying water.  Lower concentrations of ice in 

June may contribute to higher water temperatures that can facilitate increased growth 

through reductions in swimming costs and increases in the rate at which forage is 

captured, assimilated, and evacuated (Brett 1976; Beamish 1980; Jobling 1994). 

 While the results of this research are intriguing, several limitations imposed by 

the opportunistic nature by which samples were gathered limit our conclusions.  First, the 

temporal and spatial continuity of growth data used in this research reflected the discreet 

nature by which most biological studies are designed and implemented.  Limited sample 

sizes among locations and years necessitated pooling data among locations so that even 

the most basic statistical analyses could be implemented.  By pooling data, we introduced 
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the assumption that growing conditions, primarily forage abundance, temperature, and 

salinity experienced by Dolly Varden, were similar throughout nearshore areas during 

summer months.  Evidence of high forage densities and dietary overlap among secondary 

consumers suggest that forage may not be limiting (Craig 1989).  However, given our 

knowledge of the physical structure of nearshore systems, the homogeneity of other 

abiotic conditions is unlikely (Hale 1990; Gallaway et al. 1991). 

 The nearshore estuarine environment has been likened to a constantly changing 

mosaic of temperature and salinity patches (Maughan 1990).  At large scales, the 

proximity to and quantity of freshwater inputs influences the size of the estuarine band 

while prevailing winds modify its location and composition by pushing or pulling it to 

and from shore (Gallaway et al. 1991; Carmack and MacDonald 2002).  Broad-scale 

conditions are modified locally by lagoon bathymetry and barrier islands that trap or 

promote water exchange between the lagoon and the marine environment (Hale 1990; 

Gallaway et al. 1991).  As a result of these modifying factors, nearshore habitats are 

diverse and highly dynamic in both spatial and temporal scales (Hale 1990).  However, 

the dynamic and spatially heterogeneous nature of nearshore habitats may not translate 

directly to variability in the collective environmental conditions experienced by fish if 

individuals select for preferred subsets of available conditions.  Assuming that 

individuals of the same age have similar habitat preferences, directed occupancy of a 

selected subset of preferred conditions may dampen differences in individual 

environmental histories (Neill 1979).  However, it is not currently known if, or the degree 

to which, Dolly Varden behaviorally select habitats.  While behavioral regulation may 
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mediate some differences among individuals, it seems unlikely that this mechanism could 

completely homogenize environmental histories and validate our assumption that the 

biotic and abiotic environments experienced by fish are similar among locations. 

 Despite pooling samples across locations within years, sample sizes remained 

small.  Overwintering aggregations of Dolly Varden from the Ivishak River have been 

estimated to be in excess of 20,000 individuals in some years (Viavant 2009).  Sampling 

only 12 fish, on average, within each year most likely is not representative of North Slope 

Dolly Varden populations, especially considering that the Ivishak River aggregation is 

but one, albeit the largest, of many overwintering aggregations on the North Slope 

(Viavant 2009).  Because of the reliance upon otoliths collected in previous research and 

surveys, little control could be exerted over the number of samples available for use. 

 Environmental data were also limiting, not in time, but in space.  For example, air 

temperature and wind data were only available from the Deadhorse airport.  By using 

these data we were forced to assume that air temperature and wind conditions in 

Deadhorse were representative of conditions throughout the roughly 300 km of Beaufort 

Sea coast where Dolly Varden were sampled.  Such an assumption is unlikely to be valid 

given variability in topography and local weather conditions throughout such a vast area.  

New weather stations have recently come online within Arctic Alaska, and will aid in the 

description of environmental variability over space and time.  However, it will be many 

years before such stations can accumulate a temporal record suited to more robust long-

term analyses.  Sea surface temperature and ice concentration data, while spatially 

adequate, were quite coarse.  These data were collected on a 1 x 1 degree grid (Reynolds 
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and Smith 1994), which translates to an average cell size of roughly 64 by 64 km.  At this 

resolution, each cell is dominated by marine information as nearshore environments only 

comprise a small fraction of the area of such a large cell.  In using these data, we must 

assume that marine SST is representative of nearshore SST which may be unlikely given 

the influence of freshwater input within nearshore habitats (Hale 1990).  Finer resolution 

images, such as those collected by the Landsat satellites or the Advanced Very High 

Resolution Radiometer (AVHRR), may be more capable of measuring nearshore SST.  

However, persistent cloud cover over coastal areas of the Alaskan Arctic inhibits the 

collection of a spatially or temporally continuous SST record (Prakash et al. 2008).  

Analysis of partial records will be further inhibited by thermal stratification and our 

incomplete understanding of Dolly Varden behavioral thermoregulation and movement 

patterns. 

 The application of growth chronology techniques to such an ecologically complex 

and short-lived species is not ideal.  In general, growth-chronology techniques are 

reserved for long-lived sedentary species (Strom et al. 2004; Black et al. 2005).  The 

otoliths of long-lived fishes contain greater numbers of increments which permit the 

application of flexible functions to these data resulting in a more comprehensive analysis 

and removal of age and growth effects (Black et al. 2005).  Furthermore, correlating these 

detrended data to environmental conditions may be more straightforward within 

sedentary fishes as growth will most likely be responsive to environmental variability at 

local scales.  For Dolly Varden, first seaward migration represents a significant habitat 

shift that, due to productivity differences between freshwater and marine habitats, 



109 
 

 

magnifies growth (Craig 1977).  Relative to juvenile growth in freshwater, marine growth 

at the age at first migration, and in subsequent years, represents a substantial shift in the 

lifetime growth trajectories of individual fish that is recorded in the increment widths of 

otoliths (Bain 1974).  However, variability in the age at first migration and the onset of 

the marine growth shift can result in very different ontogenetic growth patterns among 

individuals.  Rigid negative exponential functions typically applied to increment 

chronologies of short-lived fish may not be suitable to account for the presence of this 

marine growth shift or variability in its location within each chronology.  As a result, a 

different method to isolate and remove ontogenetic signals was needed.  Assuming 

ontogenetic growth effects are similar among individuals of the same age, a single year of 

growth data from each individual was isolated for analyses.  These growth data were 

standardized to the size of the otolith at the beginning of that year to account for potential 

differences in growth resulting from size differences among individuals.  While this 

approach may be supported in theory, its application is largely unprecedented in the 

literature (Boehlert et al. 1989). 

 In conclusion, Dolly Varden growth data inferred from otoliths were tabulated for 

two general periods: 1980 to 1989 and 2003 to 2009, with the exception of 2005.  

Increases in Dolly Varden growth observed during the 1980s were mirrored in age-0 

Arctic cisco and Dolly Varden smolts captured from the Alaskan Arctic over similar time 

intervals (Fechhelm et al. 2004; Von Biela et al. 2011).  Significant correlations were 

observed between growth and air and sea surface temperature, discharge, and ice 

concentration.  However, due to limitations in sample size and methodology, these results 
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should be considered tenuous, but may be useful to guide future research investigating 

Dolly Varden-habitat interactions.  Future efforts should focus on investigating if, or the 

degree to which, Dolly Varden behaviorally regulate their exposure to the abiotic 

environment.  This information may provide insight into the ability of Dolly Varden to 

avoid deleterious thermal environments, a behavior that may become increasingly 

important if projected temperature increases within Arctic environments are realized 

(Solomon et al. 2007). 
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Environmental data Units Location described Coordinates Data source
Wind speed and direction km/hr Deadhorse, AK 70.1917N -148.4722W www.ncdc.noaa.gov/oa/dataaccesstools.html
Discharge

Sagavanirktok River m
3
/sec Alyeska pump station 3 69.839722N -148.806944W http://waterdata.usgs.gov/nwis 

Mackenzie River m
3
/sec Fort Simpson, NWT 61.86833N -121.358889W www.climate.weatheroffice.gc.ca

Arctic oscilation NA Throughout the Arctic NA http://www.cpc.ncep.noaa.gov
Sea surface temperature ºC Barrow, AK to Makenzie River mouth, NWT 69.5 to 71.5N by -134.5 to -152.5W http://www.esrl.noaa.gov
Ice concentration % area covered Barrow, AK to Makenzie River mouth, NWT 69.5 to 71.5N by -134.5 to -152.5W http://www.esrl.noaa.gov

 

Table 3.1: Summary of environmental data incorporated into analysis including units, location collected, coordinates 

collected, and online source.
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Table 3.2: Sample sizes of Dolly Varden otoliths age 5 or older organized by location 

and year in which age 4 growth occurred.  Calendar years with fewer than four samples 

have been omitted. 

Year Beaufort 

Lagoon 

Bullet 

Point 

Camden 

Bay 

Ivishak 

River 

Jago and 

Kaktovik 

Lagoons 

Total 

1980 7 0 0 0 0 7 

1981 13 0 0 0 0 13 

1982 7 0 0 0 0 7 

1983 7 2 4 0 1 14 

1984 2 0 4 0 1 7 

1985 1 0 9 0 1 11 

1986 1 0 8 0 2 11 

1987 1 0 3 0 12 16 

1988 4 0 2 0 3 9 

1989 8 0 0 0 0 8 

2003 0 0 0 0 3 5 

2004 0 0 0 1 10 11 

2006 0 0 0 4 0 4 

2007 0 0 0 22 0 22 
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Table 3.2 continued:       

2008 0 0 0 32 0 32 

2009 0 0 0 26 0 25 

Total 51 2 30 87 33 202 



125 
 

 

Table 3.3: Pearson’s correlation coefficients and p values of significant pairwise 

comparisons of environmental characteristics and standardized Dolly Varden growth. 

Environmental characteristic Pearson’s r P-value 

June SST 0.576 0.031 

July SST 0.607 0.021 

August SST 0.649 0.012 

August air temperature 0.714 0.004 

June ice concentration -0.598 0.024 

August discharge Mackenzie River 0.636 0.008 

Mean discharge Mackenzie River 0.504 0.046 

September discharge Sagavanirktok River 0.596 0.024 
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Figure 3.1: Map of nearshore and freshwater areas of the Alaskan Arctic with black 

arrows indicating the general locations where otoliths were collected in previous research 

and surveys. 
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Figure 3.2: Transverse section of a Dolly Varden otolith depicting transects, each 

emanating from the focus, on which preliminary (dashed lines) and final (solid line) 

annuli measurements were taken.  Transect B bisects the angle created by radii A and D 

joining at the focus and transect C bisects the angle created by radii B and D joining at 

the focus. 
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Figure 3.3: Stacked length-frequency histogram of Dolly Varden sampled from 

nearshore and freshwater habitats of the Alaskan Arctic conditioned by age.  Open bars 

indicate fish older than age 4, while grey bars are fish age 4 and younger. 
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Figure 3.4: Otolith diameter as a function of fork length for all age-classes of Dolly 

Varden captured from freshwater and estuarine habitats of Arctic Alaska. 



130 
 

 

 

Figure 3.5: Weighted linear regressions with 95% confidence intervals (grey shading) of 

standardized, age-4 Dolly Varden growth and calendar year.  Separate models were fit to 

data groupings spanning from 1980 to 1989 and from 2006 to 2009. 
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Figure 3.6: Standardized environmental characteristics (dashed line) and age-4 Dolly 

Varden growth (solid line) plotted by year with Pearson’s correlation (r) and associated p 

values (p).
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Figure 3.7: Standardized Dolly Varden growth plotted as a function of environmental 

characteristics, each fitted with a smoothed loess function.  Solid points refer to data 

collected between 2003 and 2009, while empty points are data collected prior to 1990. 
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Chapter 4: Dolly Varden whole body and tissue energy content: demographic effects 

and reproductive investment. 

Abstract 

Seasonal and ontogenetic cycles of lipid storage and depletion likely influence 

Dolly Varden Salvelinus malma population structure and abundance through tradeoffs 

between reproductive output and post-spawning and overwintering mortality.  To our 

knowledge, no data exists regarding variation in Dolly Varden whole body or tissue 

energy content among years or demographics (i.e. reproductive versus non-reproductive 

individuals).  We quantified percent-based whole body proximate and tissue water 

content of reproductive and non-reproductive adult Dolly Varden (N = 90) collected in 

2010 and 2011 from the Ivishak River, Alaska.  The gonadal somatic index of 

reproductive and non-reproductive females increased significantly with fork length, but 

no significant trends were apparent for males of either reproductive status.  Dolly Varden 

captured in 2010 were in overall poorer condition relative to 2011 and displayed 

significantly lower whole body estimates of lipid and greater estimates of carcass and 

viscera water content.  In both years, non-reproductive fish contained greater proportions 

of lipid relative to reproductive fish, likely reflecting differences in freshwater residence 

times among the two groups.  Furthermore, reproductive fish exhibited significantly 

greater percentages of carcass and viscera water content suggesting energy is mobilized 

from these tissues during reproduction and freshwater residence.  Despite substantial 
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differences in whole body lipid content among years, reproductive fish invested similar 

amounts of energy (as a percentage of body weight) into gamete production.  Tradeoffs 

between reproductive investment and post-reproductive and overwintering mortality are 

discussed. 

 

Introduction 

 Amphidromous northern-form Dolly Varden char Salvelinus malma (herein 

referred to as Dolly Varden) are a dominant member of the nearshore Arctic ichthyofauna 

and support one of the largest traditional subsistence fisheries in coastal Arctic 

communities (Craig et al. 1984; Pedersen and Linn 2005). During summer, adults 

undertake two to three month sojourns to sea where they forage heavily upon marine 

invertebrates and fish (Craig et al. 1984).  The summer foraging season is a critical period 

for Dolly Varden as these fish must acquire close to 100% of their annual energy budgets 

while at sea (Craig 1989).  The remaining portion of the year is spent subsisting upon 

endogenous energy reserves (primarily lipid) within deep pool habitats and spring areas 

of coastal rivers where little forage is consumed (Boivin and Power 1990).  Seasonal 

patterns in lipid concentration, and to a lesser extent, morphological-based estimates of 

condition (Glass 1989; Brown 2008), often mirror these patterns in resource availability, 

with annual peaks and depressions occurring in late summer and early spring (Jobling et 

al. 1998). 
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 Seasonal limitations in resource availability and energy costs associated with the 

lengthy overwintering period tax individual energy reserves within any given year (Glass 

1989).  Reproductive fish face a greater burden as they must allocate additional resources 

for gamete production and the formation of secondary sexual characteristics (Shul’man 

1974; Dutil 1984).  For example, Dutil (1986) noted that mature, non-reproductive Arctic 

char Salvelinus alpinus lost close to 30% of their energy reserves during winter compared 

to 52% for reproductive fish.  High reproductive costs amid a temporally limited resource 

landscape likely inhibit Dolly Varden from accumulating energy reserves sufficient to 

reproduce in consecutive years (Furniss 1975; Dutil 1986).  Thus, interwoven within the 

annual cycle of lipid accumulation and depletion is an ontogenetic lipid cycle operating at 

multi-year intervals and characterized by fish in two different states of energy 

accumulation, one en route to, and the other recovering from, reproduction. 

 To our knowledge, there are no data describing the size or magnitude of annual 

variability in Dolly Varden lipid content both within and among fish.  Endogenous lipid 

dynamics reveal the relative importance and storage capacities of different tissues, 

including energy invested into gonads (Jørgensen et al. 1997; Jobling et al. 1998).  At the 

organismal level, variability in lipid content among sexes and demographics (i.e. 

reproductive versus non-reproductive individuals) suggest possible mechanisms (post-

reproductive and overwintering mortality) responsible for the regulation of population 

abundance or structure (Dutil 1984, 1986; Jonsson et al. 1997).  Of particular importance 

may be the relationship between parental condition and reproductive investment as 

research suggests a linkage between parental condition, ova quality, and recruitment (as 
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reviewed by Kamler 2005).  To obtain a greater understanding of Dolly Varden energy 

dynamics and their potential effect on mortality and reproductive investment, we 

quantified whole body and tissue composition among demographics, sexes, and years for 

Dolly Varden collected from the Ivishak River in 2010 and 2011. 

 

Methods 

Fish sampling 

 Sampling occurred at overwintering habitats on the Ivishak River, Alaska.  The 

Ivishak River originates in the Brooks Mountain range, and is a north-flowing tributary of 

the Sagavanirktok River, which empties into the Beaufort Sea at Prudhoe Bay (Figure 

4.1).  The Ivishak River is generally thought to contain the largest overwintering 

aggregation of Dolly Varden on the North Slope of Alaska (Viavant 2005). 

 Mature Dolly Varden (> 400-mm fork length) were captured by angling during 

multiple sampling events in late August and early September 2010 and 2011 (Underwood 

et al. 1996).  The sample was to be partitioned equally among combinations of 

demographic and sex.  Reproductive fish were defined as those that contained ripe 

gonads and would spawn that year, while non-reproductive fish were defined as fish that 

contained developing gonads and would not spawn in the given year.  Sex and 

demographic were determined visually from external characteristics, such as coloration 

and presence or absence of secondary sexual characteristics.  The first 12 to 15 

individuals caught within each combination of demographic and sex were retained for 
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this study.  Upon capture, fish were sacrificed via cranial concussion, weighed to the 

nearest 1 g, and measured to the nearest 1 mm in fork length.  Each fish was individually 

labeled, wrapped in plastic, and transported to the University of Alaska Fairbanks where 

they were frozen at -40°C prior to subsequent laboratory analyses. 

Laboratory methods 

 In the laboratory, fish were thawed and dissected, stomachs were excised, and 

forage items were removed to eliminate variability in energy content associated with the 

quantity or quality of forage.  Viscera, including the stomach and swim bladder, gonads, 

and the remaining carcass, were weighed separately to the nearest 1g.  Egg diameter was 

measured as the mean length in mm of 10 non-water swollen ova, and fecundity was 

assessed using the gonadal somatic index (GSI), calculated as the ratio of the wet weight 

of the gonads versus the wet weight of the fish.   Sectioned carcasses, gonads, and viscera 

were desiccated in a freeze drier to a constant weight.  Percent water content was 

calculated as the quotient of the difference between sample wet- and dry-weight and wet 

weight.  The carcass, viscera, and gonads were then combined and homogenized using an 

industrial blender, and subsamples (0.5 to 1.5 g) were taken for analysis of proximate 

composition following standardized methods (AOAC 1990).  Lipid was extracted using 

the soxhlet method, and protein content was estimated from nitrogen analysis following 

the application of a nitrogen:protein conversion factor of 6.25.  Ash content was 

determined from weight differences following the combustion of a subsample in a muffle 
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furnace operating at 550°C for 24 hours.  All samples were run in triplicate, averaged, 

and expressed as a percentage of the dry weight of the subsample. 

Statistical analyses 

 Prior to analysis, all dependent variables were arcsine square root transformed to 

meet assumptions of normality.  Differences in whole body proximate composition (i.e., 

percent lipid, protein, water and ash) and water content of anatomical subdivisions (i.e., 

carcass, gonad, and viscera) among sex, demographic, year, and their interactions were 

assessed separately using multivariate analysis of variance (MANOVA) at an alpha = 

0.05.  If interaction effects were significant, sequential tests of analysis of variance 

(ANOVA) were used to test each dependent variable separately (Jonson and Wichern 

2007).  Sequential tests were evaluated at a Bonferroni corrected alpha  = 0.05/ t, where t 

= the number of sequential tests performed.  Length-based trends in GSI were tested 

using ordinary least squares regression and evaluated at an alpha = 0.05.  All statistical 

analyses were conducted using the statistical software package R (R development Core 

Team 2012). 

 

Results 

 A total of 90 Dolly Varden were collected in 2010 and 2011 and were apportioned 

somewhat unequally among different combinations of demographic and sex (Table 4.1).  

Reproductive males were particularly difficult to capture and thus were poorly 

represented in the sample.  Furthermore, visual discrimination between reproductive and 
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non-reproductive females was also difficult and contributed to sample inequality.  Dolly 

Varden included into the study ranged in length between 400 mm (the lower size limit for 

inclusion) and 680 mm and in weight between 530 and 2,776 g (Figure 4.2, 4.3).  

Gonadal somatic index was significantly related to fork length within reproductive (F = 

7.55; p = 0.011) and non-reproductive (F = 11.79; p = 0.002) females (Figure 4.4).  No 

significant trends were observed in GSI data in reproductive (F = 0.46; p = 0.519) or non-

reproductive (F = 1.70; p = 0.204) males (Figure 4.4).  

 Multivariate analysis of variance of whole body estimates of proximate 

constituents (i.e., lipid, protein, water, and ash) indicated significant interactions among 

the independent variables sex, demographic, and year.  As a result, each dependent 

variable was tested separately using ANOVA.  Analysis of variance indicated that whole 

body estimates of lipid, protein, and water differed significantly (P < 0.013) among years 

and demographics while ash content differed significantly only among demographics 

(Table 4.2).  More specifically, lipid content was significantly lower in 2010 relative to 

2011(F = 98.63; p < 0.001) and among both years, non-reproductive fish exhibited 

significantly greater percentages of lipid (F = 36.90; p < 0.001) relative to reproductive 

fish (Figure 4.5).  Whole body estimates of protein and water content were significantly 

greater in 2010 relative to 2011 (F = 74.20; p < 0.001; F = 108.03; p < 0.001), while 

among both years, non-reproductive fish exhibited significantly lower percentages of 

protein (F = 36.45; p < 0.001) and water (F = 7.39; p = 0.007).  Reproductive fish 

exhibited significantly greater percentages of ash (F = 14.81; p < 0.001) relative to non-

reproductive fish among both years (Figure 4.5).  
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 Multivariate analysis of variance of tissue subdivision (i.e., carcass, viscera, and 

gonad) water content also indicated significant interactions among the independent 

variables sex, demographic, and year.  Analysis of variance results of carcass and viscera 

water content suggests these metrics were significantly (p < 0.017) greater in 2010 

relative to 2011 (F = 84.78; p < 0.001; F = 117.36; p < 0.001; Figure 4.6).  Among both 

years, reproductive fish exhibited significantly greater percentages of water within 

carcass (F = 15.12; p < 0.001) and viscera (F = 117.36; p < 0.001) tissues (Figure 4.6).  

Significant interactions between sex and demographic prompted analysis of gonad water 

content to be conducted separately among demographics.  No differences in gonad water 

content within non-reproductive fish were detected among sex, year, or their interaction.  

Gonad water content of reproductive females was significantly (P < 0.01) lower than that 

of reproductive males (F = 549.20; p < 0.001) and did not differ among years (F = 0.03; p 

= 0.858; Figure 4.7). 

 

Discussion 

 During periods when metabolic costs exceed rates of energy consumption, stored 

energy (primarily lipid) is allocated to cover deficits resulting in a decline in proportion 

of body lipid (Shul’Man 1974).  Research suggests that many salmonids may reduce or 

completely curtail foraging activities for some time prior to reproduction (Brett 1995; 

Kadri et al. 1996; Tveiten et al. 1996).  Within North Slope Dolly Varden populations, 

reproductive fish generally precede non-reproductive fish at spawning and overwintering 
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grounds by up to a month (Glova and McCart 1974; McCart 1980).  Certain segments of 

Dolly Varden populations in northwestern Alaska are known to forgo seaward entry 

entirely during the summer in which they are to reproduce (DeCicco 1997). Upon or 

possibly prior to freshwater entry, Dolly Varden cease to consume forage (Boivin and 

Power 1990; J. Stolarski, University of Alaska Fairbanks [UAF], unpublished data).  

Thus, the lower lipid content observed within reproductive relative to non-reproductive 

Dolly Varden may be a result of longer freshwater residence periods.  However, 

differences may also, in part, reflect energy deficits incurred during vitellogenesis and the 

endogenous processing and transport of lipid in support of morphological alterations and 

the development of ova (Jonsson et al. 1991; Jobling 1994; Tocher 2003).  Regardless of 

their origin, energetic deficits within reproductive fish likely contribute to greater rates of 

post-reproductive and overwintering mortality within this demographic (Furniss 1975; 

McCart 1980).  Boivin and Power (1990) noted that in late winter, reproductive Arctic 

char exhibited lower body condition relative to non-reproductive char.  Given that these 

fish had already spawned, reduced condition might be expected due to the energetic costs 

of agonistic behaviors, ova release, and the development of secondary sexual 

characteristics (Jonsson et al. 1991).  However, our research suggests that energetic 

deficits within reproductive fish may already exist in early fall, prior to the release of 

gametes.  These results suggest that the cessation of foraging and freshwater residency 

may play a larger role in energy depletion of reproductive fish than previously thought 

(Dutil 1984). 
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 Trends in other whole body proximate constituents among years and 

demographics are more difficult to interpret due to their inherent interrelationships.  

Lipid, protein, and ash content were expressed as a percentage of dry weight, thus 

changes to one component will invariably alter the relative values of others (Shearer 

1994).  During fall, lipid undergoes the greatest percent change as it is selectively 

consumed in the early stages of starvation and during the production of gametes 

(Shul’Man 1974; Navarro and Gutierrez 1995).  Alternatively, ash content may change 

relatively little among fish of similar sizes (Shearer 1994).  Trends in protein content 

among years and demographics are opposite that of lipid, which suggests these trends are 

more reflective of lipid dynamics rather than true energetic phenomenon (Shearer 1994).  

Previous research suggests that protein metabolism increases during the latter stages of 

starvation after lipid stores have been largely depleted (Shul’man 1974; Castellini and 

Rea 1992; Navarro and Gutierrez 1995; Hendry et al. 2000). 

 Estimates of water content among tissues indicate the proportion of energy 

(primarily lipid) contained therein due to the inverse relationship between whole body 

and tissue energy and water content (Medford and Mackay 1978; Jonsson et al. 1997; 

Hartman and Margraf 2008).  Greater proportions of water within the carcasses of 

reproductive Dolly Varden suggest that the carcass is an important store from which 

energy is mobilized within reproductive fish (Jørgensen et al. 1997; Jobling et al. 1998; 

Hendry et al. 2000).  The majority of this energy is most likely used to fuel gamete 

production in the case of females and to cover the metabolic costs of agonistic behavior 

and the development of secondary sexual characteristics in males (Shul’man 1974; 
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Jonsson et al. 1991).  Viscera water content exhibited similar trends among years and 

demographics as carcass water content, suggesting that lipid is mobilized from this depot 

as well (Shul’man 1974; Boivin and Power 1990).  However, relative to contributions 

from muscle or skeletal tissues, visceral lipid may comprise only a small fraction of 

mobilized energy (Jørgensen et al. 1997; Jobling et al. 1998). 

 Given the energetic differences between ova and milt, it is not surprising that 

reproductive males exhibited greater gonad water content relative to reproductive females 

(Wootton 1998).  However, no relationship existed between whole body lipid and 

reproductive investment (gonad water content) within spawning fish.  For example, Dolly 

Varden collected in 2010 exhibited significantly lower whole body and tissue energy 

content relative to 2011, yet reproductive investment presumably remained similar 

among years.  The parental effects hypothesis proposes that parental condition is 

conveyed to offspring through alterations in the amount of energy allocated to 

reproduction and predicts that reproductive fish in greater condition should invest more 

energy into gamete production, resulting in higher quality products (as reviewed by 

Kamler 2005).  While seemingly intuitive, support for this hypothesis has not been 

universal, and may not apply to Dolly Varden (Keckeis et al. 2000; Ouellet et al. 2001; 

Bunnel et al. 2005; Moles et al. 2007; Wiegand et al. 2007; Muir et al. 2010).  However, 

such a relationship might be masked if reproductive investment, or the decision to 

reproduce at all, was dependent upon lipid status at some point earlier in the seasonal 

cycle (Moles et al. 2007). 
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 Dutil (1986) and others have hypothesized that there exists a threshold body 

condition below which gamete production is not initiated (Kadri et al. 1995; Tveiten et al. 

1996).  Temporal patterns in egg diameter among reproductive and non-reproductive 

Dolly Varden captured in nearshore habitats indicate that ova begin to ripen in early 

summer (Craig and Haldorson 1981).  This suggests that reproductive decisions (i.e., the 

assessment of endogenous energy stores) are made during spring, prior to marine 

residence.  These periods correspond to seasonal nadirs in Dolly Varden condition 

resulting from the exclusive reliance upon endogenous resources during the previous 

winter (Dutil 1986; Boivin and Power 1990).  Thus, the decision to mature will largely 

depend upon energy reserves acquired in past years (Dutil 1986).  Individuals not 

meeting energetic thresholds will defer maturation, while maturing fish will begin to 

allocate resources according to the abundance of their individual internal stores.  

Sampling data suggests that reproductive fish may only spend brief amounts of time 

within marine environments the year they are to spawn, if they migrate to sea at all 

(Glova and McCart 1974; DeCicco 1997).  Dolly Varden acquire close to 100% of their 

energy from the marine environment, thus, the failure to fully exploit this resource may 

suggest that, in spring, reproductive fish already possess the majority of energy required 

for spawning later that fall.  Individuals with energy levels close to but not exceeding 

critical thresholds may then undertake protracted seaward migrations to supplement 

energy stores with failure to acquire sufficient energy resulting in gonad reabsorption.  

By scaling reproductive effort according to body reserves, this strategy would maximize 

individual reproductive effort.  However, if during this process somatic growth is not 
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realized or overwintering energy stores are compromised, future reproductive effort may 

be affected through reductions in fecundity and increased post-spawning and 

overwintering mortality (Dutil 1986; Wootton 1998).  Because reproductive decisions 

may be made at a time when Dolly Varden are at seasonal nadirs in condition, the amount 

of energy invested into reproduction may always be relatively small, especially if 

maturing fish undertake only limited seaward excursions the year they are to reproduce 

(Johnson 1980).   

 The lack of a clear relationship between body lipid and gonad energy content and 

similarities in reproductive investment among years could also indicate an upper limit to 

gonad energy density.  Energy accumulated in excess of reproductive requirements might 

then be allocated to somatic growth or used to bolster overwintering reserves.  Because 

gonad size increases with fish size, absolute energy investment will increase with fish 

size and possibly lead to reductions in somatic growth, condition, and senescence within 

older fish (Dutil 1986).  Given temporal limitations to forage and the energetic costs of 

the lengthy overwintering period, a conservative and cautious approach to the 

maintenance of sufficient energy stores is certainly warranted.  Future research should 

attempt to collect Dolly Varden during spring while in freshwater.  The tissue and whole 

body energy content of these fish may reveal, in greater detail, reproductive investment 

strategies and the critical energy level that must be attained before reproduction is 

initiated. 
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Table 4.1: Sample size of Dolly Varden collected from the Ivishak River in 2010 and 

2011 for each demographic and sex combination. 

  2010   2011 

Sex Spawner Non-spawner   Spawner Non-spawner 

Male 5 14   5 11 

Female 13 9   15 18 
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Table 4.2: F values and associated p values for significant (p < 0.013) coefficients of 

ANOVA models investigating differences in whole body proximate constituents as a 

function of sex, year, demographic and their interactions. 

  Year   Demographic 

Constituent F p value   F p value 

Whole body lipid 98.63 < 0.001   36.9 < 0.001 

Whole body protein 74.2 < 0.001   36.45 < 0.001 

Whole body water 108.03 < 0.001   7.38 0.007 

Whole body ash …. ….   14.82 < 0.001 
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Figure 4.1: Map of major rivers on the Eastern North Slope of Alaska, with a black 

arrow indicating the general location on the Ivishak River where adult Dolly Varden were 

captured in 2010 and 2011. 
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Figure 4.2: Composite length data plotted against sample proportion for Dolly Varden 

collected from the Ivishak River in fall of 2010 and 2011.
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Figure 4.3: Weight-length relationship for reproductive (solid points) and non-

reproductive (open points) Dolly Varden collected from the Ivishak River in fall of 2010 

and 2011. 
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Figure 4.4: Gonadal somatic index of reproductive (solid points) and non-reproductive 

(open points) individuals plotted as a function of fork length for female (A) and male (B) 

Dolly Varden collected from the Ivishak River in 2010 and 2011.  Trend lines are 

presented for significant (P < 0.05) correlations of length and GSI for reproductive 

(broken line) and non- reproductive (solid line) fish. 
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Figure 4.5:Percent composition (with standard error bars) of whole body estimates of 

proximate constituents from reproductive (striped bars) and non-reproductive (empty 

bars) Dolly Varden collected in 2010 and 2011 from the Ivishak River.  Letters signify 

significant (p < 0.013) differences in a particular percent constituent among years (Y) 

and/or demographics (D).
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Figure 4.6: Carcass and viscera water content of reproductive (striped bars) and non-

reproductive (empty bars) Dolly Varden expressed as a percentage of tissue wet weight 

with standard error bars.  Letters signify significant (p < 0.017) differences in percent 

water content of a particular tissue among years (Y) and/or demographics (D). 
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Figure 4.7: Gonad water content of reproductive (striped bars) and non-reproductive 

(empty bars) Dolly Varden expressed as a percentage of tissue wet weight, with standard 

error bars.  Letters signify significant (p < 0.01) differences in percent water content 

among sexes (S). 
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Conclusion 

 With this research, I have developed and applied new tools and techniques with 

which to measure and partition variability in Dolly Varden biological statistics among 

ecologically relevant sub-groupings.  Scale-based aging techniques will permit the 

collection of age information from a greater proportion of individuals within population, 

which will contribute to more precise age-based biological statistics such as growth and 

condition.  Furthermore, the successful identification of trends in Dolly Varden energy 

content among years and demographics (i.e. reproductive versus non-reproductive 

individuals) highlight the utility of proximate analysis.  Future efforts examining this 

metric will be greatly simplified by the use of bioelectrical impedance analysis (BIA) 

models developed here to predict estimates of energy content from easily collected field 

data (Cox and Hartman 2005).  Finally, retrospective growth analysis identified 

environmental variables correlated to Dolly Varden growth which may serve as the 

impetus for more in-depth studies of growth dynamics in the future. 

 Despite this work, however, substantial gaps remain in our current understanding 

of Dolly Varden ecology and life history that will hamper future research and monitoring 

programs (Holland-Bartels and Pierce 2011).  Foremost among these is a lack of 

information regarding migration timing and patterns and movement rates within North 

Slope Dolly Varden populations, particularly that of reproductive fish.  Egg size and 

testes weight data indicate that at least some reproductive fish enter nearshore habitats 

during the summer they are to spawn (Griffiths et al. 1977; Craig and Haldorson 1981).  

Catch per unit effort  of these fish is generally small relative to non-reproductive 
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individuals, which may in part reflect sampling bias, but could also indicate that 

relatively fewer reproductive fish frequent marine environments the year they are to 

spawn (Craig 1977; Craig and Haldorson 1981).  During fall, reproductive Dolly Varden 

precede non-reproductive fish by up to a month at freshwater spawning and 

overwintering grounds, suggesting that if these fish do migrate all the way to sea, 

residency within the marine environment must be short lived (Glova and McCart 1974; 

Griffiths 1975).  Particular segments of Dolly Varden populations within Northwestern 

Alaska may defer seaward migration entirely the year in which they are to spawn 

(DeCicco 1997).  Following break-up, these fish ascend from overwintering habitats in 

lower river reaches to spawning grounds where reproduction occurs during July and 

August (DeCicco 1997).  The presence of mature Dolly Varden within North Slope rivers 

during summer is largely supported by anecdotal evidence and observations (McCart 

1980), and has been recently confirmed scientifically for a single fish in the Hulahula 

River (R. J. Brown, U. S. Fish and Wildlife Service, unpublished data).  However, the 

significance of this life-history variant within North Slope populations is unknown, as 

large numbers of mature summer freshwater residents or summer spawning populations 

have not been confirmed scientifically.  Efforts to identify such aggregations during 

summer are hampered by high water, turbidity, poor weather, and the logistical 

challenges and costs associated with sampling in remote locations (West and Wiswar 

1985; Wiswar 1994).  These investigations will further our understanding of life-history 

variation within North Slope populations and provide important information to managers 

charged with the protection and sustainability of all Dolly Varden populations. 
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 Once at sea, Dolly Varden roam nearshore habitats foraging upon epibenthic prey 

during which time relatively little is known regarding their specific movements, habitat 

preferences, or foraging ecology (Craig 1984).   Dolly Varden temperature preference 

may be of particular interest as external temperature plays a dominant role in regulating 

key physiological rates, including growth, within ectothermic organisms (Brett 1976; 

Elliot 1976; Jobling 1994).  Nearshore environments may be warming as a result of 

global climate change which, all things being equal, has the potential to dramatically alter 

the growth rates of a stenothermic species such as Dolly Varden (Zhang et al. 1998; Reist 

et al. 2006).  Assessment or prediction of the potential effects of this warming is made 

difficult by the general lack of data regarding the thermal spectrum of Dolly Varden.  

Reist et al. (2006) hypothesized that greater temperatures would initially result in higher 

growth rates, but if temperatures began to exceed optima, growth would decline.  

Potential growth effects may be mediated, however, if Dolly Varden are capable of 

behaviorally regulating their thermal environments (Neill 1979).  During summer, 

nearshore habitats offer a diverse array of thermal environments to occupy (Hale 1990; 

Maughn 1990). Thus, by restricting habitat occupation to only those thermal 

environments optimal to the joint conduct of physiological processes such as growth, 

Dolly Varden may be capable of avoiding any deleterious growth effects (Neill 1979; 

Bevelhimer and Adams 1993; Neverman and Wurtsbaugh 1994). 

Recent investigations using acoustic and satellite tags to collect temperature and 

depth data remotely may provide more accurate thermal preference and tolerance data 

than previous research using passive capture gears (Houghton et al. 1990; Underwood et 
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al. 1995; Spares et al. 2012; A. Seitz, University of Alaska Fairbanks, unpublished data).  

However, satellite and acoustic tags are relatively large, which restricts investigations to 

all but the largest and oldest members of a population.  Archival tags, on the other hand, 

are smaller and can be surgically implanted within a wider range of fish sizes.  Capturing 

information over a range of fish sizes is warranted as temperature preference likely varies 

as a function of ontogeny (Jobling 1994).  However, for information to be retrieved from 

archival tags, individuals must be recaptured and the tags removed.  This will likely 

restrict such analyses to relatively small rivers and is complicated by the tendency of 

some Dolly Varden not to return to the same drainage annually (Crane et al. 2005).  

While difficult to collect, thermal occupancy data is essential to understanding how a 

warming environment will affect the growth Dolly Varden on the North Slope of Alaska. 

 Temperature and depth occupancy data may also offer insight into aspects of 

Dolly Varden foraging ecology within nearshore environments (Spares et al. 2012).  

During summer, Dolly Varden aggregates roam nearshore areas feeding heavily upon 

epibenthic prey such as mysid shrimp and amphipods (Furniss 1975; Craig and 

Haldorson 1981).  However, it is unknown if these summer movements exhibit any 

directional patterns.  One hypothesis suggests that individuals simply travel within 

prevailing water currents (Hachmeister et al. 1991).  Such a strategy would minimize 

energy expenditure while maintaining proximity to forage as the same water currents are 

thought to transport the majority of prey items into and out of nearshore areas (Craig et 

al. 1984).  This hypothesis conforms to sampling data which suggests Dolly Varden show 

affinity to habitats immediately adjacent (< 40 m) to shore (Craig and Haldorson 1981; 
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Craig 1984).  However, more distant and deeper habitats, particularly those outside 

barrier islands, are rarely sampled (Craig 1984; Jarvela and Thorsteinson 1999).  

Satellite, acoustic, and archival tags offer a novel means by which to collect habitat 

occupancy data which may shed new light onto movement patterns, their motivations, 

and the ecology of Dolly Varden within nearshore areas (Spares et al. 2012). 

Obtaining a more detailed understanding of Dolly Varden ecology within 

nearshore areas is important given the rate at which Arctic habitats are changing. 

(Solomon et al. 2007).  Recent research suggests that the structure and productivity of 

nearshore food webs in the Beaufort Sea is tightly coupled to terrestrial processes through 

freshwater input provided by coastal rivers (Dunton et al. 2006, 2012).  Terrestrial 

organic matter fuels heterotrophic production and while suspended in the water column, 

limits autotrophic production by increasing turbidity (Dunton et al. 2012).  Accelerated 

permafrost melt resulting from warmer temperatures may increase organic matter 

contributions to nearshore areas (Reist et al. 2006; Solomon et al 2007).  However, 

changes in discharge resulting from glacier loss and patterns of precipitation may 

partially offset these increases (Peterson et al. 2002; Symon et al. 2005).  Climate 

warming has also been implicated as the cause of reductions in sea ice which may also 

limit autotrophic production by decreasing ice algae abundance and increasing turbidity 

through increased storm frequency and the resuspension of benthic sediments (Solomon 

et al. 2007; Gradinger 2009; Dunton et al. 2012).  Once again, however, this decrease 

may be offset by longer ice-free periods which will allow more light to penetrate into the 

water column, possibly spurring greater production.  While the net response of these 
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alterations remains unclear, predicting the potential consequences of such change within 

a mobile predator such as Dolly Varden will require a deeper understanding of their 

ecology within nearshore habitats.  

 Gaps in our knowledge of Dolly Varden ecology and life history make it difficult 

to assess the potential consequences of anthropogenic disturbances such as climate 

change and hydrocarbon extraction activities (Reist et al. 2006; Holland-Bartels and 

Pierce 2011).  In the latter instance, these gaps prevent a thorough assessment of the risks 

involved in the extraction of oil and gas from nearshore areas (Holland-Bartels and Pierce 

2011).  Nearshore studies attempting to examine non-lethal effects of habitat alterations 

will always be complicated by the multi-stock nature of nearshore Dolly Varden 

aggregates during summer (Krueger et al. 1999).  Without genetic analysis, isolating a 

single population within the marine environment may only be possible when targeting 

smolts within or adjacent to river mouths (Everett et al. 1997; Fechhelm et al. 1997).  

While minimizing inter-population variability in biological statistics, such protocols may 

do little to assess the effects of oil and gas extraction as structures associated with these 

activities may not always coincide with smolt habitat.  Furthermore, non-lethal effects of 

habitat manipulations will likely differ within older and larger fish as these individuals 

may be more tolerant of, or capable of avoiding environmental extremes (Gallaway et al. 

1991; DeCicco 1992).  Scale-based aging and bioelectrical impedance techniques 

developed in our research may permit the collection and calculation of more accurate 

biological statistics (Cox and Hartman 2005).  However, if inter-population variability 
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exceeds variability associated with a particular phenomenon of interest, such as 

alterations in temperature, the effects of this phenomenon will likely be obscured. 

 Future research should continue to attempt to isolate populations whenever 

possible.  Because some non-spawning and juvenile Dolly Varden may not overwinter in 

natal drainages, sampling reproductive or pre-smolt fish may be the only means by which 

to completely isolate a population in freshwater (Everett et al. 1997; Crane et al. 2005).  

As previously mentioned, nearshore sampling within or adjacent to river mouths targeting 

out-migrating smolts may also successfully isolate a single population (Fechhelm et al. 

1997).  These protocols, in conjunction with aging and condition techniques developed 

here and the continued application of remote data collection using data-logging tags, may 

permit the collection and calculation of more precise biological statistics.  Applied over 

greater temporal scales within the context of a long-term research and monitoring 

program, these efforts may aid in the detection of spatial or temporal change in Dolly 

Varden populations (Fechhelm et al. 2006; Reist et al. 2006).  Such an effort would be a 

large undertaking considering the costs and logistics associated with operating out of 

remote Arctic habitats.  However, these investigations are warranted given the threats 

imposed by climate change and hydrocarbon extraction, and our current inability to 

properly assess the risks and effects of such disturbances (Prowse et al. 2006; Reist et al. 

2006; Holland-Bartels and Pierce 2011). 
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