
UNIVERSITY 
□ F ALASKA

C O L L E G E
A L A S K A

UAG r s 0

TECHNICAL REPORT NUMBER 1

THE MEASUREMENT OF IONOSPHERIC ABSORPTION 

USING EXTRATERRESTRIAL RADIO WAVES

Signal Corps Contract No. DA-36-039-SC-71137

Department of the Army Project No. 3-99 03-022

Signal Corps Project No. 182B

January 28. 1957



GEOPHYSICAL INSTITUTE 

OF THE 

UNIVERSITY OF ALASKA

TECHNICAL REPORT NUMBER 1 

January 28, 1957

THE MEASUREMENT OF IONOSPHERIC ABSORPTION 

USING EXTRATERRESTRIAL RADIO WAVES

Signal Corps Contract No. DA-36-039-SC-71137

Department of the Army Project No. 3-99-03-022

Signal Corps Project No. 182B

Report prepared by: Report approved by:

C. G. Little C, T. Elvey
Director of the Institute



TABLE OF CONTENTS

Page
Introduction 1

SECTION I Summary of Theory of Ionospheric Absorption 1

SECTION II Extraterrestrial Radio Waves and Ionospheric
Absorption 3

SECTION III The Measurement of Ionospheric Absorption Using
Extraterrestrial Radio Waves 5

A, With a simple receiver 5

B„ The continually self-calibrating system 13

C„ Some additional points 16

SECTION IV Some Experimental Observations of Ionospheric
Absorption Using Extraterrestrial Radio Waves 17

Bibliography 20

i



THE MEASUREMENT OF IONOSPHERIC ABSORPTION 

USING EXTRATERRESTRIAL RADIO WAVES 

C. G. Little 

Geophysical Institute, University of Alaska

Introduction

The discovery by Jansky in 1932 of the presence of radio waves in

cident upon the earth from outer space has led to several new methods 

of studying the earth's upper atmosphere. This report describes the 

manner in which these extraterrestrial radio waves may be used to mea

sure the radio absorption characteristics of the ionosphere. It opens 

with a brief discussion of the theory of ionospheric absorption; this 

is followed by a description of the basic principles involved in this 

new technique. Two different types of equipment which may be used for 

this type of absorption measurement are then discussed. The report con

cludes with a brief summary of three types of ionospheric absorption 

phenomena which have been studied at various latitudes with such equip

ments .

Section I Summary of Theory of Ionospheric Absorption

The Appleton-Hartree magneto-ionic theory shows that a radio 

frequency wave will be attenuated while traversing an ionized medium in 

which the free electrons undergo collisions with other particles. This 

absorption process is analogous to a frictional loss, since the free 

electrons are caused to oscillate at the frequency of the incident radio 

wave and will give up some of their oscillatory energy, derived from the
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radio field, when they collide with other particles.

Quantitatively, the absorption of energy is given by

Absorption A  =-20 l°g^Q g- decibels,

where A  is the absorption in db, EQ is the field strength of the incident 

plane wave, and E is the field strength after traversing a distance s 

through the ionized medium. E and E 0  are related by the equation

In this equation, e and m are the electronic charge and massjyu( 

is the refractive index of the ionized medium, in which the electronic 

density is N and the electron collision frequency is \) ; w is the angular 

frequency of the incident radio wave and w^ is the angular gyromagnetic 

frequency corresponding to the longitudinal component of the magnetic 

field. The positive sign denotes the ordinary wave, the negative sign 

the extraordinary wave.

In studies of ionospheric absorption using extraterrestrial radio 

waves, the observing frequency is usually several times the critical 

frequency and the refractive index in the absorbing region may therefore 

be taken as unity. Also, the electron collision frequency in the absorb

ing region is usually very small compared with the radio frequency, and 

therefore can usually be neglected compared with (w + w^). Under these 

circumstances, the preceding equation reduces to

E - E 0  e 

2  IT e2 1

-ks

where N
me • jd ^  2  +  (w ±  w L ) 2

N 0
■2
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Since both N and £  will vary with height, the total absorption

along the line of sight will be given by

A = — 2 0  log^Q g- decibels =8.69 J "  k ds db,
o

2  r yvo8.69 2 if _ e
(w ±  w L ) 2

or A  = -— j--y „  -gg------  / N 0  ds dn.

A determination of A (the attenuation in db) at a single frequency 

can therefore be used to determine the value of / n o  ds, since the other 

quantities in the above equation are all known. The measurement does 

n o t $ however, give any indication of the variation of N 0 with height.

Section II. Extraterrestrial Radio Waves and Ionospheric Absorption 

The principle behind the use of extraterrestrial radio 

waves for the study of ionospheric absorption is essentially very simple.

The radio noise power incident at a point outside the earth1s at

mosphere from a given direction in space is believed to be constant with 

respect to time. (See Section III for certain exceptions to this state

ment.) The radio noise power received on a fixed receiving system at the 

earth's surface should therefore be a function only of sidereal time, 

since each day the antenna beam will explore the same strip of sky as the 

earth rotates. The transparency of the earth's atmosphere at a particular 

instant of time is therefore given by the ratio of the signal strength 

actually received to that received at the same sidereal time under condi

tions of negligible ionospheric absorption.

In radio astronomical work it is convenient to make use of the con

cept of equivalent antenna temperature when one is dealing with the
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reception of random noise signals from diffuse sources. If a matched 

antenna were installed in an enclosure at temperature T degrees Kelvin, 

it can be shown that a power Pn = k TB could be extracted from it, where 

k is Boltzman's constant and B is the observing bandwidth. Using this 

fact, it is possible to relate any noise power Pn> received over a given 

bandwidth B, to its equivalent temperature Tg given by

Pn = k Te B.

Consider therefore the case of a receiving system whose antenna 

beam is fully occupied by a medium whose effective radio temperature is 

Ti„ Under these circumstances, the antenna signal power would be given 

by Pj = K B. If now, some absorbing medium (such as the ionosphere) 

with a power transmission coefficient oc and temperature T2 is inserted 

over the full width of the antenna beam, the received signal power from 

the original medium would be reduced to Of k B. However, the absorb

ing medium would itself radiate radio noise, in proportion to its temp

erature and effectiveness as an absorber. The antenna would therefore 

receive an additional signal,

P 2 = k (1 - CX ) t2 b,

from the absorbing medium.

In the case where the antenna signal is transferred to the receiver 

via a transmission line whose power transmission coefficient is E, the 

transmission line will itself act both as an attenuator and a generator 

of radio noise,, The noise power reaching the receiver will be given by

E « T L k B +  E(1 -<x) T2 k B + ( l  - E )  k 1 3 8 , 

where T3 is the temperature of the transmission line. It is assumed that
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the antenna and the receiver are both matched to the transmission line, 

and that the power transfer from the antenna to the receiver is complete 

apart from the effect of absorption within the transmission line.

This received noise power will add to the noise power generated

within the receiver itself, which is given by the expression

Pr - (F-l) k TB,

where T is room temperature and F is the noise figure of the receiver.

If the above system is now used to observe extraterrestrial radio 

noise, the power output of the receiver may be written as

Pq = G (Ps + P£ + Pc + Pr + 1 )  (1)

where PQ = output noise power from the receiver;

Ps = noise power from sky = E «  Ts kB;

P^ = noise power from ionosphere= E (1 - «=* ) T^ kB;

Pc = noise power from cable = (1 - E) Tg kB;

Pr = noise power from receiver = (F - 1) T kB;

I ■ power from interfering signals;

G * receiver power gain;

Ts is the effective noise temperature of the sky in the absence of

any ionospheric absorption; and

T^ is the temperature of the absorbing region.

Section III. The Measurement of Ionospheric Absorption Using Extra

terrestrial Radio Waves

A, With a Simple Receiver

The simplest equipment capable of ionospheric absorption measure-
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ments by the ’’cosmic-noise" method consists of a receiver connected to

an antenna by means of a transmission line, and a monitoring system

(usually a pen recorder) to measure the receiver output noise power.

The absorption measurements made with a simple receiving system

such as that described above are based on the comparison of the observed

values of PQ with those obtained at times of negligible absorption. After

correcting, wherever possible,, for variations in the other parameters in

equation (1 ), any residual discrepancy is attributed to variations in

P , and in particular to variations in o c , the transparency of the s
ionosphere at the frequency concerned., It is clear that the simple 

equipment described above is very susceptible to variations in receiver 

gain G, and also to a lesser degree, to changes in P^, P , Pr , and I„

These factors are discussed in the succeeding paragraphs„

1„ Variations of receiver gain

It is clear from equation (1) that the accuracy of the measure

ments of absorption, which rely upon the comparison of PQ on different

days, will be critically affected by the stability of the receiver gain, G.

For this reason, it is important to try to stabilize the gain in

receivers of the type indicated above. It is therefore customary to use 

electronically stabilized a-c and d-c power supplies to the receiver. 

Further improvements in receiver gain stability can usually be obtained 

by using crystal-controlled local oscillators, temperature stabilization 

of the equipmental environments and by stabilizing the current through 

each radio tube.

Even when all the above steps have been taken, it is important to 

check the stability of the receiver. This is usually done by periodically
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disconnecting the antenna from the receiver and feeding a standard, fixed 

quantity of noise power from a noise diode source into the receiver.

When possible, it is desirable that these calibrations should be done at 

several levels of noise diode powers since this enables the complete in- 

put-oitput calibration of the receiver to be checked, rather than just 

one point on the curve. As an example, one of the equipments at the 

University of Alaska makes use of a one revolution per hour electric 

motor and a series of micro-switches to calibrate the receiver automati

cally at three different levels of noise diode input power. As an addi

tional check, the noise diode current is itself recorded continuously.

2. Variations of extraterrestrial radio noise power

In the above discussion, it has been assumed that the strength 

of the extraterrestrial signal reaching the earth's upper atmosphere 

from a particular direction in space is constant, and therefore that any 

variation observed at ground level can be attributed to ionospheric 

effects.

The suns howevers provides an important exception to this statement. 

At wavelengths of the order of 10 meters, the signal power from the sun 

when undisturbed is less than 1 per cent of the signal power from the 

diffuse background of radio noise observed on a wide beam antenna, and 

can therefore normally be neglected. When active sunspot groups are 

present, and also occasionally at other times, the sun's radio output 

at these frequencies may increase enormously and render this absorption 

measuring technique useless during the daytime for the duration of the 

activity. This must be regarded as a serious fault of the technique, 

since it is often at these times that one desires information on the

7



ionospheric absorption. The effect can, however, often be limited to 

the major phases of the activity by utilizing a polar diagram that 

discriminates against the sun, e.g. an antenna beamed toward the Pole Star.

Four other minor sources of variation in Ps may be mentioned.

Three of these are due to true variations in the signal power from dis

crete sources, namely the planets Jupiter and Venus and a source recently 

discovered by the Australian workers. In these cases the ratio of source 

signal power to diffuse background signal power is so low as to render 

their effects negligible on a wide beam antenna. The fourth source of 

variations in Ps is the scintillation of the discrete sources due to 

diffraction effects in the ionosphere. These scintillations take the 

form of variations (of period about 30 seconds) in the intensity of the 

localized sources, but average out for the diffuse background radiation. 

When one of the more intense sources, such as the Gygnus or Cassiopeia 

source, is in the antenna beam, these scintillations may result in 

fluctuations of the order of 2 or 3 per cent of the input power on a 

wide beam antenna; however, their effect is rarely serious, since the 

power received from a source, averaged over several fluctuations, is un

affected by the presence of scintillations.

The above relates to the variations in the extraterrestrial signal 

strength reaching the antenna. The proportion actually received by the 

receiver is determined by the power transfer efficiency factor, E, of the 

transmission line9 and by the accuracy of the impedance matching at each 

end of the line. In order to minimize the effect of the receiver noise, 

it is important that the efficiency of power transfer should be as high 

as possible; for accurate absorption measurements,, it is also important
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that this efficiency should remain constant with time. It is therefore 

usually desirable to bury any appreciable length of RF cable in the 

ground and to shield the remainder from direct sunlight. This serves to 

minimize temperature variations and any resultant variations in attenua

tion or impedance matching. Air or gas filled transmission lines are 

preferable to solid dielectric cables, since they are considerably less 

temperature sensitive; the gas filled lines also have the advantage of 

significantly lower attenuation. For accurate work, it is important to 

use a metal reflecting screen (usually made of parallel wires) below the 

antenna. This serves to eliminate the effect of changes in the electrical 

properties of the ground due to changing meteorological conditions. Such 

changes could cause significant variations in the reflection coefficient 

of the ground, and therefore of the antenna impedance and of the amount 

of power picked up by the antenna after reflection from the ground.

The above indicates design features which should be incorporated 

to ensure that the proportion of the antenna power that actually reaches 

the receiver is constant with time. Checks of the antenna and receiver 

input impedances and of the transmission line attenuation should be made 

periodically, to confirm that everything is operating as expected.

3. Radio noise from the ionosphere

The intensity of the radio noise originating in the ionosphere 

will normally be very small compared with that of extraterrestrial radio 

origin, except perhaps at low frequencies. For example, at 30 me the 

equivalent antenna temperatures are about 20,000 degrees while electron 

temperatures in the absorbing region are not likely to be in excess of a 

few hundreds of degrees Kelvin. Moreover, to determine the magnitude of
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the ionospheric contribution to the antenna noise power, it is necessary 

to multiply this latter figure by the absorption coefficient, which is 

usually less than 10 per cent at 30 me. Under extreme conditions, and 

at low frequencies, where the absorption of the extraterrestrial signal 

is much greater, uncertainty in the value of can limit the accuracy 

of the measurement of the absorption.

4. Radio noise from the transmission line

In the case of radio noise from the transmission line, it is 

possible to correct for this source of noise since the temperature of 

the cable and the attenuation within it can be determined with fair 

accuracy. In general, however, and particularly in the case of low-loss 

cables, no correction is required.

5. Radio Noise generated within the receiver

All electronic devices have a certain minimum noise power gen

erated within them due to the statistical fluctuations in the flow of the 

electrons. By careful design, it is possible to reduce the equivalent 

input noise power from a matched radio frequency amplifier to, say, three 

times that generated in the matched input resistor, assuming this to be 

at room temperature. In this case, the noise power generated within the 

receiver itself is 2kTB, since kTB is the noise power available from the 

input resistor at temperature T. The equivalent noise temperature of the 

receiver input due to receiver noise would therefore be about 600° Kelvin,

i.e. considerably less than the equivalent antenna temperature.

For accurate work, it is clearly important to know what proportion 

of the output noise power is generated within the receiver, since this 

determines the base level from which all other signals must be measured.
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Its value can be obtained by means of a noise diode calibration of the 

receiver input/output characteristic and of the noise factor. Periodic 

checks of the receiver noise figure are necessary, since it is likely to 

change as the input tubes age.

6 „ Interference

The signal powers used in these absorption measurements are 

weak, and the equipments are very susceptible to interfering signals, 

whether man-made or of natural origin. It is therefore important to use 

a site where man-made interference due to power lines, electrical machin* 

ery, automobiles, etc. is at a minimum, and to try to use frequencies that 

are not affected by transmitted signal^.. The latter problem is particu

larly severe, since there is no assurance that an interference-free 

channel will remain clear indefinitely. For this reason,, it is becoming 

customary to use a sweep frequency receiver and filtering circuits that 

record the minimum signal intensity received during the frequency sweep.

The width of the frequency sweep is usually many bandwidths3 to insure 
*

high probability of at least one clear channel per sweep. This techniques 

which has been used with considerable success by Dr. W. 0. Roberts of the 

High Altitude Observatory of Colorado University, is likely to become 

increasingly desirable as radio propagation conditions in the HF band im

prove with the sunspot cycle. The problem mays however, be solved if 

certain bands are cleared of man-made transmissions to enable them to be 

used for research purposes.

In addition to the above experimental uncertainties, there remains 

a fundamental practical limitation to the accuracy with which the noise 

power can be measured. As has been shown by Ryle, there is a statistical
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fluctuation in the output level, whose r.m.s. value is given by

AP0 ^  Po ___! __________ ,

where B is the input bandwidth as far as the second detector and T is the 

output time constant.

Typical values of B and T for absorption measuring equipments are 

104 cycles per second and one second respectively; hence A  PQ is of the 

order of 1 per cent of the output power (0.05 db). Greater accuracy can 

be obtained only by using wider input bandwidths and longer output time 

constants, or by integrating over several output fluctuations„ In prac

tice, the input bandwidth can be increased only at the risk of increasing 

the amount of interference from man-made transmitters. The time constant 

is usually kept fairly short in order to be able to follow rapid changes 

in signal, and to have a fast recovery time after a burst of interference.

An idealized simple equipment would therefore incorporate an antenna 

with a metal ground screen. The antenna could with advantage be directed 

toward the Pole Star, in order to eliminate the sidereal variation of sig

nal power, and to minimize the effects of the sun and the strong radio 

sources in the constellations of Cygnus and Cassiopeia. The antenna 

should be carefully matched to a short, low-loss transmission line, buried 

in the ground or otherwise protected from temperature variations, and 

should be located at an interference-free site. The receiver should be 

carefully matched to the transmission line, and should have a low noise 

factor. All power supplies should be carefully regulated, and every effort 

should be made to obtain maximum stability of receiver gain. The receiver 

input/output characteristic should be monitored periodically (say once
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per hour) and such parameters as the observing frequency, receiver and 

antenna input impedances, and transmission line loss should also be 

checked periodically.

Under such carefully controlled conditions, it should be possible 

to maintain a long term accuracy (over several months) of the order of

0.2 db. Over shorter periods (say several days) an accuracy of the order 

of 0,1 db should be obtainable. In general, the most important limita

tions likely to be met in such an equipment are the variations in receiver 

gain and in receiver noise factor.

B. The Continually Self-Calibrating System

The above discussion has been limited to the simplest form of absorp

tion measuring equipment, in which the gain of the receiver is implicitly 

assumed to remain constant for the period (usually many minutes) between 

automatic gain calibrations. However, a very elegant radiometer developed 

by Ryle and his colleagues for use in radio astronomical work may be used 

with advantage in the study of ionospheric absorption.

The basic principles of the equipment are as follows: The receiver

input-connection is switched at a rapid rate (many cycles per second) be

tween the antenna and a noise diode. If any inequality exists between 

the noise power fed into the receiver from these two sources, the output 

of the receiver will include a component at the switch frequency. Here 

it is amplified in an amplifier tuned to the switch frequency and fed into 

a phase-sensitive detector. This stage produces a d-c signal whose amp

litude is proportional to the inequality of the two noise signals, and 

whose polarity is dependent upon which of the two signals is the greater.
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This d-c signal is then used to adjust the filament temperature, and 

hence the noise power, from the noise diode in such a way as to make the 

two input signals equal in strength. As the antenna signal varies in 

strength, the power from the noise diode is thereby automatically adjusted 

to bring it into equality. To measure the antenna noise power, it is 

therefore necessary only to record the current through the noise diode, 

since this current is accurately proportional to the noise power generated 

by the diode.

In such an equipment, the receiver is used as a null-detector, and 

the accuracy of the reading is therefore not affected by relatively large 

variations of receiver gain. Since the equipment operates under balanced 

conditions, equation (1 ) is replaced by

Pnd = Pg + Pi + Pc + A  Pr + I 9 (2)

where Pn(j is the noise power from the noise diode (proportional to the 

current following through it), Ps, P^, P , and I have the same meaning 

as in equation (1), and A  Pr is the difference between the equivalent 

noise input power of the receiver when connected to impedances equal to 

the antenna impedances and noise diode impedances respectively. It will 

be seen that the accuracy of the readings is no longer dependent upon 

variations in receiver gain; also, A  Prjthe change in receiver noise

factor as the receiver switches from antenna to noise diode, is normally 

very much smaller than Pr and the equipment is therefore relatively in

sensitive to changes in receiver noise figure* A third important advantage 

is that the recording system is now linear with input power. To measure 

relative signal power it is necessary dnly to divide the two meter read

ings- This is far simpler than the procedure for the simple equipment,
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for which it is necessary first to correct the observed chart readings 

for possible gain variations and then to use a receiver input/output 

calibration to determine the actual received powers.

This servo systems which can result in Increased accuracy and in 

simplification of the data scaling, requires careful design if these ad

vantages are to be fully realized. The problem of receiver stability is 

now replaced by that of accurate, stable switching between the two noise 

sources. In practice, this may be done either by a capacity switch or by 

diode switches; in both cases, good long-term stability may be expected. 

It is important, however, to check the switch periodically, by replacing 

the antenna by a second noise diode„ Considerable attention should also 

be paid to impedance matching, since the Pr of equation (2 ) will be 

zero only if the noise diode and the antenna present equal impedances to 

the receiver input when connected via the switch. It is also important 

to insure that the noise diode is operated with a sufficiently high 

plate voltage9 since it is only under temperature limited conditions that 

the noise power will be accurately proportional to the current flowing 

through the diode. The equipment also requires that the precautions
i

already outlined in the discussion of the simple equipment be taken to 

insure that the antenna and the transmission line are functioning satis- 

factorily.

Using a self-balancing radiometer of this type, with a carefully de

signed antenna and transmission line system, it is believed that relative 

signal powers can be measured with a long-term accuracy of better than

0 . 1  db, with a short-term accuracy probably limited by temperature
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effects in the system.

C Some additional points

Three additional points should be remembered in interpreting the 

absorption measurements made by use of extraterrestrial radio waves.

(1) Ionospheric absorption is only one of the mechanisms by which 

the extraterrestrial signal may be reduced in strength. Measurements 

made at vertical incidence with sweep frequency ionospheric sounders 

have shown that at vertical incidence effects such as reflection and 

scatter are not sufficiently strong to reduce the extraterrestrial signal 

at frequencies well above the critical frequency. At low angles of ele

vation, however, significant reflection and refraction effects may be 

expected to occur at frequencies up to at least five times the critical 

frequency.

(2) These equipments measure the average value of the absorption 

over the polar diagram. Particularly at high latitudes, the absorption 

may be nonuniformly distributed across the sky.

(3) As was seen from the equation in Section I, the ordinary wave

is less strongly absorbed than the extraordinary wave, and polarization

effects can therefore be introduced by the absorbing region. For values

of w w , these effects will be small, but even at 30 me the extra- L
ordinary wave will suffer 2 0  per cent more absorption in db than the 

ordinary wave. Careful measurements of the absorption of the ordinary and

extraordinary waves may offer an opportunity to determine the ratio of
2 2\) to ( w + w^ ) , and hence the possibility of determining something 

about the height of the absorbing region. In this connections it should
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be remembered that, although it is normally taken that the extraterrestrial 

radio noise is randomly polarized, few accurate polarization studies have 

been made. It is important that such studies be made, especially on the 

lower frequencies, where the magneto-ionic effects may be expected to be 

greater.

Section IV „ Some Experimental Observations of Ionospheric Absorption 
Using Extraterrestrial Radio Waves

Three different types of ionospheric absorption studies 

have been made using extraterrestrial radio waves. The first studies were 

those of the Australian workers (at 18.3 me), who studied the regular 

ionospheric absorption at about latitude 38°S. This work has been con

tinued and has shown that the E-region of the ionosphere frequently plays 

an important role in the absorption of the extraterrestrial signal, the 

effect increasing in severity as the critical frequency of the layer in

creases. A regular D-region absorption was also observed. Typical values 

of absorption at noon were of the order 0.5 to 1 . 0  db at vertical inci

dence and 18.3 me; both the above types of absorption tended to show 

regular daily variations associated with the changes in the sun's zenith 

angle.

A second type of study conducted using this technique is the study 

of sudden ionospheric disturbances (SIDs) associated with solar flares. 

Several examples of the sudden cosmic-noise absorptions (SCAs) associated 

with SIDs and/or solar flares have been published by Shain and Mitra. Dur

ing a period of one year commencing July 1950, 176 SCAs were observed; the 

most intense exceeded 7 db for 18.3 me radiation from the zenith. A typical
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SCA shows an abrupt onset lasting a few minutess followed immediately by 

a slow recovery lasting several tens of minutes. Occasionally, the burst 

of absorption is compound and seems to be built up of two or more simple 

bursts^ superimposed upon each other. The onset of the absorption is 

sometimes masked by the outburst of solar radio noise often associated 

with solar flares.

Such SCAs are only seen during daylight hours and may be expected to

be most severe near the subsolar point.

A third study is that of high latitude absorption,, made at the 

Geophysical Institute of the University of Alaska. At such latitudes,

(near the auroral zone) the absorption phenomena are very different from 

those observed at lower latitudes, both in intensity and origin. Direct 

solar effects, such as the D and F-region effects observed by the 

Australian workers and the SCAs that occur simultaneously over the whole 

sunlit hemisphere, decrease with increasing latitude owing to the greater

solar zenith angle. Near the auroral zone, the absorption effects due to

solar electromagnetic radiation are masked by absorption arising from 

corpuscular bombardment of the earth’s upper atmosphere. In an extreme 

case, this corpuscularly-induced absorption may be so severe as to cause 

a "polar blackout,” during which ionospherically propagated HF signals are 

rendered so weak as to be unusable. Since the College work is largely 

unpublished, a brief summary of the major results of these absorption studies 

is given here;

1. The absorption can occur at any hour of the day, but is most 

frequently detected during the noon hours.
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2. It is frequently intense ( >  3 db at 30 me for vertical inci

dence; on occasions it has exceeded 15 db).

3o This excess absorption shows pronounced equinoctial maxima.

4 The duration of individual bursts of absorption can range from

a few minutes to many hours, and usually shows a more rapid onset than 

decay.

5. The occurrence of absorption correlates well with periods of 

m a g n e t i c  activity, as night absorption is usually, if not always, 

associated with auroral luminosity.

6 . The absorption is usually not equal at the different azimuths 

from College, the NW and NE quadrants typically showing greater absorp

tion than those in the SW and SE.

Many important problems remain to be solved, particularly the height 

at which the absorption is taking place. The observations at College in

dicate that is must be occuring at heights below 95 km, but as yet give 

no further information.

A second important factor is the average lateral extent of the ab

sorbing region. The observations at College indicate that the absorption 

often varies largely over a range of 5 degrees in latitude. Whether the 

absorption is uniform across a 60 degree beamwidth directed toward the 

zenith is not known. Experiments are now being made to investigate this.

Other important unknowns are the latitude dependence of this corpus

cular bombardment type of absorption, its variation with elevation angle, 

and its correlation with different types of ionospheric irregularities 

and disturbances.
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