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SUMMARY

The physics of fully ionized gases is a topic of great present

day interest. 1,2 Although a gas: is rarely completely ionized, the

effect of neutral particles may in many important cases be neglected,l’ 3
so it becomes worthwhile to have a theory of fully ionized gases
(plasmas).

The origin of this thesis is due to Professor S. Chapman, who
suggested that computations of various equilibrium and transport
quantities pertaining to a fully ionized gas be carried out by extending

the work of Eddington4 and of Persico. 5

The groundwork for this pro-
blem is discussed in Chapters IV and V. However, basic to the com-
pletion of the problem is the solution of a non-linear differential
equation (Equation 4. 35), which must be solved numerically. The
differential equation problem has been programmed for a fast electron-
ic computer at Los Alamos, but various delays have made it impossible
to include any numerical results in this thesis.

The long range nature of the forces rbetween charged particles
opens to question the validity of the Boltzmann equation approach to
transport phenomena in a plasma. 6 Arguments favoring the validity

are presented in Chapter 1IV.

Up to the time of writing this thesis there was no general



theory of transpor.t phenomena in a system of charged particles inter-
acting via the electromagnetic field. A general statistical theory of
charged particles and electromagnetic field is presented in Chapters
I and II. Chapter I deals with non-equilibrium quantum statistical
mechanics in which the Wigner7 distribution function is utilized. The
method of analysis follows that of Kirkwc:od8 and his collaborators,
but is presented in form suitable for dealing with more general systems
than those considered by Kirkwood. Much of the material presented in
Chapter I may be found explicitly or implicitly in works of other
authors, 9,10 however, the form of the presentation is original and
suited to the problem at hand. It is believed that the explicit equations
for the basic law of transport are new. Some elementary problems in
phase space quantum theory are also given, including a new treatment
of the simple harmonic oscillator (Appendix III), The material in
Chapter II on the transport phenomena in a system of charged particles
is new. Maxwell's equations are shown to be valid for the quantum
statistical ensemble averaged fields, and an exact form of the hydro-
magnetic equations is derived.

Chapter III deals with the fundamental equilibrium properties
of a fully ionized gas. The lack of existence of the classicial canonical

and microcanonical distributions is discussed, and the need for quan-



tum theory established. The quantum statistical treatment is nearly

standard, with emphasis placed upon the grand canonical ensemble.

An approximate expression for the exchange energy as a function of

témperature is new. The exchange energy is quite small for gases

at ordinary densities, but may become important at extreme densities.
The last two Chapters, IV and V, deal with the effective

potential problem. The effective potential idea originated with Debye

and Huckel, 11 who recognized that a given charge on the average

would have near it a preponderance of charge of the opposite sign.

The use of an effective potential in kinetic theory of ionized gases is

due originally to Rossela.nd12

and to Fowler and Guggenheim. 13 The
potential equation, as modified by Eddington,4 is discussed in Chap-
ter IV, and symptotic solutions are found for both small and large dis-
tances. The last chapter deals with the problem of numerical evalua-
tion of integrals occuring in the kinetic theory of gases. Chapmam's14
procedure for treating these integrals is generalized to apply to an
arbitrary central force potential. An asymptotic theory of scattering
is developed and applied to the shielded Coulomb problem. Finally,

a method of numerical integration of Stieltjes integrals is developed

which has direct application to the kinetic theory integrals.




CHAPTER I

STATISTICAL MECHANICAL THEORY

A. Classical Theory

The basic notion of modern statistical mechanics is that of an
ensemble of systems. An ensernblel4 is a hypothetical collection of
a large number of dynamical systems, each identical in structure with
the actual physical system under consideration. The macroscopic be-
havior of the system is traditionally identified with the ensemble
averaged behavior of the systems comprising a suitable representa-
tive ensemble. 15 This averaging technique is quite suitable for
equilibrium situations, but must be modified by further ''coarse-
grained' temporal or phase space averaging in the case of non-equi-
librium situations. 8,15

The state of the system at a given instant of time is determined
by the values §, £ ,* of the coordinates and momenta. The space of
the %ltb variables is the phase space of the system and each point in
the phase space corresponds to an instantaneous state of motion of the

system. The temporal evolution of the state of motion is described in

the phase space by the moving point or trajectory Z[t), Pt

*
3./ represents &, '° .,/ /3 where £ is the number of
degrees of freedom of the complete dynamical system. The equations

’

of motion are assumed to be in Hamiltonian form,f; > _)d%? ) ? = )9‘/” ,




The statistical behavior of the dynamical system is described
by the distribution function f(g /bf . The distribution function is
a probability density in phase space and has the signifigcance that
fdgdp repres:ents the probability that a system, chosen at ran-
dom from the representative ensemble at time f ., will have its co-
ordinates and momenta in the range g,/a J gfdg’,/bm% Clearly

/ £ C/g J b = / 1.1
where the integration extends over the complete range of the
variables. The Hamiltonian form of the equations of motion implies
that the distribution function satisfies Liouville's equa,tion1

;_aw ~ el ) 1.2
f o+ Ly

where the operator L is defined by the relation

n _3_./4.’./3_{ - 2H D 1.3
Lf = 2\; ey Y? fS’é’é}g

Equation 1.2 expresses the fact that points representing the ensemble

move like points in an incompressible fliud. The ensemble average

<%> of a function ? (% fjf)of the coordinates; momenta, and time
is given by the scalar product <-f/ 2)of )C and 9 ,

3y =<F£,.9) = [F9dqdp.

in which the range of integration is the entire phase space. The

scalar product (f/ ﬁ)is symmetric (f, j> = (g' f), and has all the




usual properties of a symmetric scalar product defined on a real
. 17
Hilbert space. The rate of change of <(3>may be expressed by the

relation

2<9)
2t

1

CF, 240 +(2f gy
= <f.34) - <L%g)
— <.F)%%>_<7c) L‘*g), 1.5

where Lf is the operator which is the adjoint of L_ * . Equation 1.5

may be simplified, since L_ is skew-symmetric, i.e.,

+ < 2H +
H

o)
o0
o/
ks

I
I
M
—~
Yo
=
o
C
=
|
E

= — L 1.6
Therefore, equation 1.5 may be written

%5%) = <.{:;j§> -+ <{)[__3>, 1.7

*It is assumed that the function a is sufficiently well-behaved
to ensure the existence of | 1.




which expresses the fact that the time derivative of the ensemble

-]
average of g is the ensemble average of the quantity g defined by

o
g = 29 + L g 1.8
2t
Equation 1. 7 expresses the basic statistical mechanical law of change,
and since observable quantities are associated with ensemble averages,
this equation will be associated with the rates of change of observable
quantities. The actual macroscopic equations of motion for a complex
system are obtained as suitable space-time averages of equations of
18

the type 1. 7.

Equation 1. 7 may also be used tocbtain the equation of motion
for the various reduced distribution functi(oixs. . A reduced distribution
function is obtained by integrating 7C over all save a specified number
of coordinates and momenta, and is thus a distribution function in a

—p — :
specified sub phase space. For example, if r:‘ s R_ are the coordis
nates and momenta of a specific particle & , a one-particle distri-

bution function ﬁ(')[ﬁ,? /may be defined by the relation!®

g zz) = F, §(F-%) 5 (B- B Do

. !
The equation of motion for f ’: ) is therefore

gx‘” = {f, L SE-F)S§F-E)r0




Ordinarily the right hand side of equation 1. 10 may be expressed in
terms of various pair distribution functions. Therefore genuine pro-
gress in non-equilibrium statistical mechanics can be made only when
reasonable approximation procedures become available for the esti-
mation of pair distribution functions. At the present time there exists
19 . .
no general useful theory. What is needed is an analogue of the
Boltzmann equation of kinetic theory which could be applied to the
pair distribution functions. Kirkwood has shown, 20 for gases with
short range forces; that the time averaged distribution function
30 ' T
/ _ 1
]C = :E f ][ /If 1‘4)6/4 satisfies the Boltzmann equation.
o

He also has obtained approximations, based upon a generalized
Brownian motion concept, for the pair distribution functions. Green,
assuming short range forces, obtained a series of approximations for
various reduced distribution functions in which multiple collisions are
taken into account. His method is essentially an extension of the
Ursell-Mayer theory to non-equilibrium theory.

In spite of the fact that there exists at present no general
. method for evaluating the reduced distribution functions, much infor-
mation can be obtained from the theory. For example, exact forms

3 . “ A 8, 18
for various macroscopic transport phenomena can be obtained.

Part of this thesis will be devoted to the derivation of the exact laws



of transport in a fully ionized gas. Since the quantum theory will be
shown, for cases of practical interest, to be formally equivalent to
the classical theory, these derivations will be performed after the
qu#ntum theory is developed. In this manner one derivatipn serves in

a uniform manner both the classical and quantum theory.

B. Quantum Theory

In the quantum theory a pure state is represented by a wave
function ’\k/i f)whmh satisfies Schridinger's time dependent equation

(42 o A 1.11
2t

in which )of is the Hamiltonian operator. A mixed state represented
by an ensemble of systems, for which (Q; is the probability that a
system chosen at random from the ensemble be found in a quantum

state ’\l// g {), is described by the density matrix
{

/0(%)'§'é) ::Z‘ a; ’%{«gt)q%f/@&)l.lz

Observables are represented by operators 8 » and the expectation

=.‘}?or simplicity it is assumed that the quantum mechanical pro-
perties of the system can be described by the scalar Schrbdinger theory.
The analysis in terms of the density matrix is quite general, but the
phase space distribution function can be readily defined only if the spin
can be neglected in the Hamiltonian; however, for an ionized gas the
spin contribution to the Hamiltonian can be neglected.
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value of g for the state 'Yf by the scalar product /’F g Y Q/g )

Thus the ensemble average for the dynamical variable g is expressed
by the equation

(§) =), & [V g +tdg
The function 2 '\K. may be expressed in terms of the matrix elements

9 (4,40 G,
L , f 71.14 .

g b l1) = [ ¥(5) gk

Therefore ‘

<9 =2, & ff’{/-’:’(@')j/‘é‘??/"/’/’é)c/gcf’

pam——y

= [ ,(3579.9)d994
<j> = Jt/‘b ((cg) , | 1.15

in which»j}[jrepresenta the trace or spur of the matrix j . The

density matrix satisfies the equation of motion

. 3 L
LS8 = e - M) o v
where N(tg)signiﬁes that the operator )f is applied to the Q&

variables. Equation 1.16 may also be written in matrix form

ey =[] N—(zcg’z)/d(z”gf)

| - 2egt) H(z"z'f)}d%‘”l '
or, in terms of the commutator [(o H] /OH' N/O , as
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4 ﬂ , o
L& 2/ ] = 1.18
= L »] )
The latter equation is frequently taken to be the quantum analogue of
the Liouville equation. However, Wigner7 has shown that there exists
a function fw (z /P {) which is a closer analogue of the classicial
distribution function. The Wigner distribution function is defined by

the expression
2md P g

7CW (g/’ﬁf) = f e ﬁ/? -‘/’_}‘gfg)‘ 2{;}'{7)1.19

The density matrix is Hermitlan/and therefore '#w is a real function,
although not necessarily a positive function. If 1—17./0 = /) ‘fw is norma-
lized to unity, since f Fi ,ﬁa /O . This distribution
function is the closest analogue to the classical distribution function.

If the Weylz\z representation of operators is used, <%‘ > is obtained

by phase space integration of the product of the classical g and 'fw R

<Cj> = (7[.,\/, 8> = ffw g O/g o//b,l,zo

f23 of relation 1. 20 is included here. This

For completeness a proo
. \ 23
proof is based on the ideas of Irving and Zwanzig. The expression

1. 15 may be written

<%> j S(f ?l/)g(z )/’(i""'l 21

in which a ('L ) is the quantum mechamca.l operator representing g\

but which acts upon the ¢ ‘variables of f'(@ g'}), If g(‘g #.J is the
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classical dynamical variable representing % , the Weyl expression

for g (zl)is given by23

9(z") :/ ke ?*V?(S’P em‘mz"ivéél 22
Lu/?

The operator &'x P 2”1/2/ 09 % fl/ _Z)may be split into the product

627('(2('2/1‘ /%V’ —— ) — 627T sz( Veiﬂ’L‘L(g 27—#9:%1 23

423 to be due to McCoy. 24 However,

This latter expression is reporte
McCoy's paper is not available to the writer, so a one-page proof is

given in Appendix I. The use of relation 1.23 in 1.22 leads to the

following expression for 2 (fg'):

_zﬂ’(l(u, P 1‘# % 27f¢71f1 24
jar=) TG, E Ty
wyv

7 ,
c"x;z(zﬂ'”“v g’ )//3 27) = /2 (g+2mdv, "),

the result of using 1.22 in 1. 21 yields the following expression for

Since

{97 : 27 (- .
(g7 = évzf;fe g ey p.)

arri Au.ov i U % g

e e /»{f,’uup{VJ—?Q

?(g/b).

= '27[/’“' ""Vﬁ) (glﬁ)
f'L(VZfZ’ g g

amcwe g’

/(2#7’/’/,[ r‘fﬁﬁ 25
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However, equation 1.19 may be inverted to give (0 in terms of 70‘4/,

P (g +mhv, glmtv) = ] 1”“/’0/‘”/? »y)  1.26

Therefore, equation 1.25 becornes

oy = [ &maanipsy]

(% p) 4]
wgpgp g (2 P

- /ﬁ Je. 0 4, (g, p) , 127

which was to be shown.
The equation of motion for P may be used to find that of £, ,

with the result that

it 2Fw = [ €T [t 740 F a8
ey [3 IH 2]

where u-—,__-:,_é__ﬂ_/t_? , V= 2+7r‘f~31f/0

in the above expression is replaced by the inverse of equation 1. 19,

the following equation is obtained:

L [ TP e T A

Equation 1.26 is in a form suitable for the computation of 7[;w for a
specific H . However, a matrix form is more suitable for proving
general properties of ﬁ/ . The matrix form of 1. 26 is expressed
by the relation

e =i [STHT [ Mty e
T A
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—H(g" gmfy)/‘(?—ﬂ’;; 2 "’)]

—

2. = i B¢
0F ;‘ff e 2T P 01/)%‘/?;7?#;,?”)'
Sy
gL(z’-Z‘#b)/w{g*zjﬂfjfﬁy

— MN(¢l grmty) e'(i(i’_ﬂ"f*”{?)

fw(f 7‘?‘2’5—77'4‘3’ %yfljo

The latter expression may be written in the form

dfw _

where

L fw (g pe) = / Llepizrvf ek
g

and where the kernel L (‘Z P2 r) is given by

Lgrrgrn = & [ T (r0? 2800 274
7
H(Z-—mfj;zg’.g_ﬂ,t) _ e’—”"‘j-(75-}’)612({?’_1),/.44

N(2geg-mdy; 9-mky),
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or, more symmetrically, by the equation

Lgp.g »p7) ==2é fe'i"f"y'(ﬁ'ﬁ’/ezf'(gfp—f/)/g
J

(g-grmity; §-g+7dy)
— TY A p-p) R -8) P4

“ (g'-grrhy; §- g omky).
Because )4 is Hermitian, H(‘l‘i y = N[ﬁi) L is real | = L

and skew-symmetric

L (¢ 2 Z'}") = - L(ﬁ'?',f ?/1,) 1.34

Therefore the quantum mechanical expression for the rate of change

of the ensemble average <3> may be written in the form

2 (0 = <£,28) +<3g)

{

'3—2>—(f7€¢,3>

= <fw 21 ) + <k, L3)

Equation 1. 32 expresses the basic law of change for the quantum

mechanical ensemble average <%> . The rate of change of ( 3) is

-3

the ensemble average of the quantity ‘j defined by
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% = E___%_ _.*—j%‘ 1.36

2t

These last two equations closely resemble the corresponding classical
equation 1.7, 1.8. This resemblance becomes formal identity for the
class of functions SC having the property
L gc e O—ZI gc 1.37

It will be shown that in the case of ionized gases the functions of type

(3c form a class large enough to include most dynamical variables
of practical interest,

The use of the Wigner distribution function as defined above

is limited to systems which can be described by the Schrbtdinger
scalar theory, since, for example, if thevdensity matrix contains

spin quantities there is no simple way to define f Further, the

W
existence of non-classical variables complicates matters. If the
Hamiltonian of the system does not contain spin-dependent terms, a
scalar theory for the density matrix is possible and the Wigner distri-

bution function may be simply defined. This question is considered

further in Chapter I, Part D.

C. Phase Space Representation of Quantum Mechanics®

The Wigner distribution function may be employed to give a

%
Some of the results obtained in this section have been ob-

tained previously and in a different manner by Moya19 and by Uhlhorn.10
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complete theory of both quantum statistics and of ordinary quantum
mechanics. Further, the transition to the corresponding classical
theory is obtained directly by letting ,f—:,- O in the quantum equations.
These assertions will be proved after the operator X in equation
1.28 is re-expressed in terms of the classical Hamiltonian function
H(g,P) - The Weyl definition of the Hamiltonian operators H(w),

H(v) yields the expressions

— 27 Chutv’ 300 Ly u
Hx) = f Sluw) @ ezzrcu woar ! 38
M'V' » e

— -27% 4 utv’ zn'é(-'t/_,z,,- v’.3/2Vv
H(v) 3/ e(uwv) e e e 4 /1.39
u/y/
where 13 is the Fourier transform of H . It follows, therefore,

from equation 1. 26 that

Zh, =i [ g P TR

'

:"“T 7AV3f’

AT (8o y) S (gv) 2L (gerty, p)

+ C.C.




=5 j §luv) g (8 frv),
LIV
£, (ge7tv, p-mhu)
+C.C. #3 -
_ _é.. - L"{ ’52)5’;} » wa

*x
+ ¢. ¢, 1.40

i~
<

where the symbol { W} is defined9 by the expression
°g

2 2 .2 3 J 1.41
3‘2 " } f 3= [(‘az P PR’ )’”%P)g(? fjg:gf
Therefore Z /W is expressed symbolically by r=r

L e = = % PmLIR 2V H 1

and the equation of motion 1. 28 becomes

> Fw _ 2 ,7{~
e T# T lng e

In the limit 4 .» » , equation l. 43 becomes

S €

which is precisely the classical equation of motion 1.2. Equation

wwgﬁflg.jﬁfwz O, 1.44

1.43 corresponds to the Schrtidinger picture, ‘fw carying the time

18

dependence. The Heisenberg picture makes use of the time-independ-

ent state function 7& " ( 0) » the value of 7£W at time zero. The

*
See Appendix II, p. 126.
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solution of equation 1.43, which reduces to 7C /d) at -é = O
w
is expressed by

—fw (¢) = ,:”Jf 71)14/ (9) 1.45

(assuming H independent of 't ) and therefore < g 2=X< fu (4, a)

- a5 .
— < o ;/l‘fw/a) ) j >=_ (ﬁ;/a}/c ﬁ)The latter expression

serves to introduce the Heisenberg operators

g = e"f“ g8 A) 1.46

whose equation of change is

d 9 —_ 1.47
52 g

or, more generally, if 8 depends explicitly upon time, the equation

of motion

d9 _ ~ | 1
mﬁmf'a_%+fg' .48

Since

) —
t <‘j(ﬁ>> = <_§_%)fw(o)>) 1.49

the Heisenberg operator d 2 corresponds to the Schrddinger opera-
° ot
tor Cg given by equation 1. 8.

A stationary state has the property that 9 'Fw = ¢ » and,
-

hence, according to equation 1.43,

Z o222
/f SR 2 Z[,a? "S——P} H']{w — 0’ 1.50

Equation 1. 50 may also be obtained from the relation
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Pdrkere) o gH(i)—E(%')j/ = 0 151
2t 16

If the state is pure as well as stationary,

H (Z)/‘(Q, ‘Z”) — /:7(?/)/9/??/):— Efll'sz

and

//o(??")/c(i”z’ -——-"—-ﬁ (g.87) 1.52a

[

Equation 1.52 may be transformed into the corresponding phase space

equation by means of relation 1.19
Ef —_ E/ eZﬂ'l'/b.y |
B 2§y g y)

= fez.ﬂ'éﬁ/j )ﬂ‘/%“ﬂ'f"j)’
y ‘

- Plg-Thy ) gemda )RR

The Weyl operator for )Qf is substituted into the above equation with

the result that

ﬁ‘. . zc’ p
E fu :[ e’ L/@J,é‘/%v) e TN

yuz/

82/7’1 M(z"ﬁ’# 7)/0(2"7"/‘7"2’71VJZ*”:‘91.54

where g(u V) is the Fourier transform of the classical Hamiltonian

H (f p) It /o in the above equation is replaced by the inverse of
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equation 1.19, there results

E fw = f - amip-y £ () C:.n'*[/f u,‘v
ginv !

szrc’u.g —2rf Ay agipl(u-y)

- ‘/1.55
. € e 1 Grby p)t
Since | ,
E(U V) = f H(%u/,,,J C"Z/f(’ (ui”_,. Vﬁ/[)
LB
Ef, = ezvr[f-a o 2T 2. % 6—7,7‘-:'1/,75’

7 2 V//u,/yli

2/ 2 —ar e Ao —27c Pl (g-1)
S D A R

Hig'#) 1oy (grrtv, pr) 1%

The result of integration of the above equation with respect to zc

is expressed by
E 70w = / ezrnfyf-—;zn‘ V"’;—zm}fj
IELAT
ezr:ﬁ. v 5/?-—74’51‘#;/— Z”)”/Z"/"//{/Zf_“‘ff7
- [ ezm’,b"y c;zm'vif’”

Gy pp”

e—z B ’-. by fzrn’/"ol/
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H(g— ﬂ43+ﬂfv,k”)7£/(2+ﬁi% #7) 1.57

" Therefore, E 7CW —_ ex; l"’z{—;% }%}wa » OT
since according to equation 1. 50, ol A %a_ > EH Fw - O
2 ‘ G“” 25
A+ (2 2 1.58
Coo =< ’zg”z;}H{w:‘EfW ‘

The fact that, for a pure state, /O is a projection operator may be

expressed in terms of 7Cw . Since /0 :/oz

foy = /ez”{ﬁy/cz(?—”%iZ*ﬂﬂ)l'sg
w
9

_ f ezﬂt'ﬁ,g

7 f(‘i-f’f‘a;?’)/"(z';z»‘ﬁa)

— f 2177‘('7,.‘7 C_’t.(f—i :‘”{7)'/74'6 (‘(fiz-‘-riy)'/%—
,:) Z ’?,ﬁ”

’ 4 1.60
+gc ;) > 34
PulB2227y go) . (Legirts )
< +%/‘_ 7,_)*3:2[2_7’_*‘1/,)} Z+f’+”*7 :.2/?-1‘”4’"’);
9'=Q+74(v-v') g = Vet + Then

equation 1.60 may be written as the following expression
_____ 2plvi(p-27/ 27ivi/p-p7)
Vi lﬁ’? w

£ (2-74Y, B o (Fer ¥, 101

Let

or
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Therefore (see Appendix II),
‘714
— ? 1.62
7£w C 2 J'BP 70 -f » \-

Equations 1.57 and 1.62 represent the phase space equivalent of the
Schridinger energy eigenvalue problem. Equation 1.62 is the condi-
tion that fw represent a pure state, and equation 1.57 that fw is
an.eigenfunction of the energy . Equation 1.62 when integrated

10

over the entire phase space expresses an equivalent™ "~ condition that

the state represented by ]ﬁw be pure. This latter condition is ex-

pressed by the relation.

/W’ T
= J

ol A
(Ef2 222
o fz'a/b 27 a;«] / (f’,w/(f »).1.63

The operator § 2 2 "2 ¢ is Hermitian in the space which

287 op 9/r’>z

is the direct sum of the phase space and itself. Therefore equation

5(3-27)8 (#=2)

1.63 becomes

-¢ / 7(’,9/’ ,7;&’) )
— r 4
/ w/{/b)/ ';‘&7 . ’ ﬁ/)l'64
Since ‘fjf;f’/’ W/? ¢ §(¢ g»)gf

2 2
(5% 3 o 2 S(8-27 )82 #)=
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_Rr2 2
/(‘f 2(28 32 2/”2?) 2w (g-87/ 2méy. (B-p7)
c =

ny

”_9—477"2(?,1 v

- 27 (e -y, , , .

j c * u) 27T ¢ 'U'(?'f ) o7V (e P
Py Ve c < =

277¢ m (f-—f ‘) Y
e eV (P /
w/ ¢ = §(g-£) 8/p-p )08

equation 1.63 reduces to

1= Fu o= AT

g7

As an example of the phase space treatment of quantum
mechanics, we consider first the case of a free particle. The
Hamiltonian is given by

—-
H = 77 2/;2 na 1.67

Therefore,

{%’%}/'/'FW:ZH

|
l
My

2 2 77 / =
e 5] whe = Z 2 A, v
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and

@% ’bﬁ} HFW ;3 m> 2 . 1.69

The eigenvalue problem in phase space is therefore expressed by the

"equations

4
/er-/’W = o 1.70

and

[\l

m
I 2
Hf”‘/ “mn Vr 7CW = 57[‘14/ . 1.70a
= -
Since F in equation 1. 70 is arbitrary, f‘/ is independent of 7 .
This means that 7&/ does not really exist. However, if the configu-
ration space is made periodic, and if fw is normalizee in the volume

of periodicity, this difficulty disappears. The second equation 1.70a

becomes
2

7£W == E%}VI/ Vi 1.71

N
310y

which has the solution

JCW _—;-_Cg(;";_;?’)/ 1.72
£

pL 1.73
= K fom :
el
where /’f is arbitrary. The :normalization condition is
> 72 =
f]cwo/rdﬁ = CV =/ 1.74
or ( — I/\/ . Hence

7[‘4/ _ —l g(; ;;) 1.75
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The use of the definition of 7Cw in terms of the density matrix serves

as a check of equation 1. 75. The free particle wave functions in ordi-

26

nary quantum theory are

N(F) = v~ e";«v?/*, 1. 76

Therefore, according to equation 1. 19

;> > —_
£, /9) TP T AL (P rtZ) P (FertE)

I

i

1.77

V-//e,?ﬂ’c'/g’; 5'2-//?—7157)—('};/;*”’#;7:
e .
>
J

I

v fy et T (F R

- - ->
:v'g(,o_,?)) 1.78
which is in agreement with equation 1. 75.
The particle in a box problem would at first sight appear to be
a simple problem. However, this is not the case. The problem of the
walld cannot be built into the problem as simple boundary conditions
on combinations of free particle solutions. A method of solution

would be to solve the problem with an analytical potential which is a
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function of a parameter such that this potential has a limit which is
the potential of the box. Such problems cannot be expressed in closed
form. The complexity of the box problem is demonstrated by the ex-
pression for the result, obtained from the original definition 1. 19 of

*
)CW . For a 1-dimensional box of length |

, / czm’f '
fwr_- C 3 Pl T2 (A 3) oo T (x4 k)

G (x)
= C . .
Coo 2pY R T (x-TAh Th
gy TP A 0 et 79
where
X / X £ L/2
Glx) =
L 1.80
X—L/2, x 2 L/2
Therefore
* .
The wave function for the nth energy state is
o ) X $ o)
Vx) = A @ x| L o & X§&



28

2mux a4 2L G (x)
2 Cor T ["' J . 1.81
P/ &

'lehlhornm hasshown that for the simple harmonic oscillator fw may

be expressed in terms:of Laguerre Polynomials. In Appendix II1,
PP.128 , the simple harmonic oscillator is treated using the elegant

method of Fock, adapted to phase space.

D. Spin and Statistics

Particles having integral spin obey Bose-Einstein statistics
while particles having half odd-integral spin obey Fermi Dirac statis-
tics. 31 The wave functions which represent particles with spin con-
tain spin variables E *, in addition to space variables I . The wave
functions /\l/(‘” f) satisfy a Schr8dinger equation in which the

Hamiltonian operator, in general, depends upon the spin,

* £ stands for £, . §
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w%wmm=ZHmewJﬁ

The density matrix may now be defined by the relation:

pUrs; vsie) =2 o flrse)dls e
7/
If P is a permutation operator which permutes both space and spin

coordinates of indentical particles, the wave functions of appropriate

symmetry are characterized by the property

PV =2, v -

where AP =| for Bose-Einstein systemsand A P = gp , where
G’P is the signature of the permutation P , for Fermi-Dirac sys-

tems. The symmetry of the wave functions expressed by equation

1. 84 is reflected in that of the density matrix.

P = X, P 1.85

p .
Further, if P is the same permutation applied to the l’"ﬁ"variables,

p/(o — '>\P/o 1.86

However,
4 — >\ z —
P P /O = Ap /O gt /O 1.87
It is, therefore, observed that the symmetry properties of the
system must be determined by the symmetry of /O with respect to
7
either the variables " § or l’"; , but not both. A spin-independent

density matrix may be defined by the equation
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(r;r) = > (rg;r”/

1.88
P c Prssrs)
In general ﬁ(!’.ﬁ l") does not possess any simple symmetry. The
general equation of motion for f (r; r)is complicated by the presence
of spin terms in the Hamiltonian. However, if the Hamiltonian is
diagonal in the spin,

— F) .
f’(rf r‘) satisfies equation 1.16. The Wigner distribution function
may be simply defined in this case by relation 1.19. That /a(r 5Fhas
no simple symmetry may be illustrated by consideration of a system

I . . . . S,z 2
consisting of two identical particles of spin 1/2. Let Son (f,R)
A, v — ) . .
and se\ <\"‘ , ) be complete sets of symmetric and antisymmetric
configuration space wave functions. Then, if the system has a
Hamiltonian of the form 1.89, a complete set of admissible statesare

given in terms of the product:s?‘6

ﬂ;cs xsesu;;(e) 1.90

A ,
’kj — ?Auj(f) ' 1.91

Ve

The super-scripts S, A on the left-hand side of equation 1.91 refer
to the spacial symmetry alone. The definition 1. 88 gives for /‘ (7 %)

the expression
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r (r;r) = Z EX ?f(r)s“{s utlgs) u?(gg)

ngg”

+ ) Fmj PLI PR () US (587 WS (rr)
Tt ’ ’

.

———

- 2-/;'7 R on ‘CPnS (rJ <, s (rv)
t 2, Q) PACI G 1r) 192
where [” ! ?, ,_a If % ‘S, (70,,\/‘ are en'ervgy eigenstates, belong-
ing to the same energy E n "a weight of 1 wou_ld normally be assigned
to each spin state giving the result QW‘J = Q, - It is observed
that /0 is the sum of a symmetric and an anti-symmetric part, and
hence has no symmetry. (Of course it is symmetric with respect to an
interchange of both sets of variables I,/ —> ’, r ).
A system consisting of A/ weakly interacting spin 1/2 particles

has for state functions the Slater determinants, which apart from a

normalizing factor are given by

YUy, (5,) o U, ()0 )

\ 4

ving) = - |

/Z/n”/ﬂ)u@(f,)u/ 21"’(&)1/2(53 1.93
A
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where the U, 2 =+ /3 are spin 1/2 eigenfunctions. The ’ua have
the properties

= 1.94
Zz'gj"‘ g5 Uz, ()

where

—— 1 o l
” GJz» “ - “o—-\‘ . 1.95
If the spin:' variables are assigned the values * 1/2, equations 1. 94,

1. 95 imply that

WUy, (1h) = U, (-4) =/ .96

I

and
u.rl/;_(-l/&) = u_‘/_L(I/,_) = 0 . 1.97

The assumption that the Hamiltonian is independent of the spin
variables leads to the concluéion that the system may be considered
to be composed of two distinct kinds of partic::les32 corresponding to
spin up (u;particles) and spin down (d-particles). ‘Further, the
number of each type is a constant of the motion. For a state repre-
: senting n\ u-particles and V- d-part_icles the wave function 1.93

becomes



u"‘s u'/z(fz) r

]./LML 'U“/z_(f,) A

I

t

{

’\V ?’(Mh\ uyz— (E‘,) R
'{"mﬂ WUy (8,) + -~

t

|
{

?*v\,v ?A-«/Z(E,) P

The columns of the determinant 1. 98 are of the form

uh.

or

u"! u'/)_<€ﬁ/)

u"’z. i (€4)

u”m ujfz (f/v)

u’?mw Ui (Em)

2y, Uy (E,)
32

33

1.98

1.99

1.100
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Therefore the wave function vanishes unless M of the § are plus

one half and /-1 are minus one half. The value of the wave function

in the latter case is32
uh,(';e,) e L(”/ (,;M} u”w..,{c(*"w)" ’ uh"ﬁ?"”)
L : '
— + ‘ 1.101
M/ N=bn -
u’)h.. (':(,) cr uﬂh(é;\) uﬂN(r;(‘“n) e uﬂm /,;(")
where «,,.. . , &, is some permutation of (1, 2,..... A/ ).

Equation 1. 101 is the configuration space probability amplitude for a
specified set of n u-particles and A/-n d-particles. It is observed
that the m u-particles and ~#-m d-particles separately satisfy the
Pauli exclusion principte. If /;,.. . ,l, are assigned to the u-parti-

cles and rm, R /;y to the d-particles, the normalized state corre-

sponding to 1. 101 is

%, W = (m! (w-m )//"A ot (uh“ - )) wt (u,‘ () 1102

If B" is the probability of the system having m spins up

the density matrix consists of terms of the form

Zm Pon “I{“/N,m(r) ”\{’MJN_M(r’) , 1.103
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which again shows that /’O (r; v')has no special symmetry.
If the Hamiltonian has no spiﬁ dependence, the probability that
a specified electron has its spin up is 1/2, therefore the probability
va that m_electrons have their spins up is Pm = %) .
P\M has its maximum value for M™m = .—2-/ , and if /V is large,
the distribution PM is stl;ongly peaked near this value.
The wave function 1. 102 for m = /V/Z has been u,sed33 in the
statistical treatment of the many electron problem.
For spin zero particles /o(r; r-’) is symmetric in each set
of variables.
Perhaps the most elegant method of handling the problem of
spin and statistics is that of second quantization. To each type )J of

particle is associated an operator field /\}; (?) . The field

satisfies a commutation relation

> + > 2,
[’\l;(r) »'\k, (r’)],__ = 3 F-%) 1.104
the plus sign holding for Fermions and the minus sign for Bosons.

The Hamiltonian involves space integrals of products of the "'k, , ’\{{;

For example, for identical particles interacting via the Coulomb field

bt = "z‘ff:f VIvE dP o+

e [ AV V)N DN (P) 1. 105
Z / [ -/ e,
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The Schrtdinger equation for the system is

ck2V — wE 1.106
2t

The ’{/ are vectors in a Hilbert space ,S , and expectation values

of operators A are given by scalar products

Ay = (¥, AY) 1.104
If ’%‘ is a vector in S , an operator ?_yi- is defined by the

expression

(’I"S?*) é = (Y,@) Y 1.108

where @ is an arbitrary vector in S . It follows from 1.108

that

i

(Y EF ) B LT (P)

= (¥, »8) ¥

= (¥, 8)¥F
= Ef (Nfﬂ})‘*‘]@ 1.109

The density or statistical /0 is defined by

I

° Z) a; ?,/ ’f’j | 1.110

where O(J' is the probability for the state ’SEJ. . It follows from
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equations 1,106, 1.108, 1.109 and 1. 120 that

LA 2 = W - 1.111
>t ~ e
1f &; form a complete orthonormal set of states in S , the

trace of an operator A is defined by

th A -:zZ( (¥.,A¥% ). 1.112
If A is an operator, the trace of {o A is equal to the ensemble

average of A 25, since

WA = L (F Ap %)

= Z_, (%, Ae; B, T/ F.)
=2y (B, A% (%, %)
= Z(» Q. (1[;,/43?;)

= {A) 1.113

The second quantization procedure will be applied to the equilibrium

of a binary gas composed of electrons and bare nuclei.

E. Equilibrium

De Boer15 has given an excellent survey of the methods
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customarily employed in equilibrium statistical mechanics.

Scheidegger and McKay have considered the quantum statistics of free

. 34 . . . 1 ips co s

fields. In this section an outline of the equilibrium theory is given
17

in which the statistical operator /O is employed, contemplating its

use in the equilibrium theory of a binary ionized gas.

The density operator for a canonical ensemble is given by

pP= z~! (5»"/67*7‘>QL 1.114

in which

7 = & e F Pé 1.115
and }G = | /,kr .  The Helmholtz free energy [ is given
by35

F:Ie"‘/@wz 1.116
The energy |J is the ensemble average of ¢

U o=z b Ne AR

or,

—_ 2 .
V,_-;g;&/ewg 1,117

Since36 - = 1~ 7S . the entropy is expressed by

- 2 -1y - 1.118
S = 2 (p2)

Also, since

dFF = - pdV - S aT
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p= - 2

oV
—_— /g p 1.11
e 1
Equation 1.117 and 1.119 are referred to as the cabric and thermal

15
equations of state respectively.

An illustration of the use of this formalism is furnished by the
problem of non-interacting particles of spin . . The treatment is
essentially that of Scheidegger and McKay. 34 It is assumed that the
spin .4 is half-odd integer, so the particles obey the Pauli principle.
Let u&{ (? g) be a complete set of 1-particle energy eigen-
functions. Then the field operator ’\‘f(r? i) may be expanded in
terms of u‘kd

/\4/(;’?) = Zlé( ,M/EJ O‘&d 1.120

where a,&g are the destruction operators for particles in the state

u/té’ .  The exclusion principle requires'?’7 that a}é‘ satisfy the
anticommutation relations

[0"&6 )

The Hamiltonian operator is expressed by

H —_— Eé@‘ F/EG /?-Aé 1.122

where _— 7 and £ are the l1-particle energy
hkd a/aé aéé [ 23

4 =
A i L = Sppr Segr 112
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eigenvalues. Therefore the canonical (O is expressed by

/O — -Lz-l 6_/5 Z/z« E/ééf e ¢ 1.123

The trace of /J is easily obtained by using a representation in which

the nlzé are diagonal {occupation number representation). Equa-

tion 1.121 implies that the eigenvalues of /7/26 are ¢ and 1, hence

Z ‘:—“Z e“ﬁz/égé;é%é

‘%‘:o,/
=TT 3 o7 aMhe
ke Mg

Nl

'EZ’ (/_/_ c'/é’gx;é)

=TT, (1 e-—,af}e)z"aw 1. 124

i
The free energy is, therefore,

F = —,6"/2,04-1)2;1&/(14 6'1‘95@) . 1.125

For particles in a large volume )/ , the free energy may be evalu-

ated in terms of known functions. 34

The average number of particles in the state uk; is

<n/u >

I

2. g P we Cr My
Wil

_ E __é' 1.126
o f:,’a/‘z1‘1-63’6?'15
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or

(o) = (/v e”R)7 v
Equation 1. 127 expresses the average number of particles in the state
ukg as a function of temperature. It represents the number of
particles when equilibrium is truly attained. ( 6{ must include the
rest energy of the particle). Ordinarily equilibrium in the above
sense is not realized, and it becomes meaningful to speak of equili-
brium of a fixed number A/ of particles. The situation in the latter
case may be handled by restricting the statesto those for which
Z ”’A/ké = /l/ . Such a restriction corresponds to what may

fes

be termed a ''particle-microcanonical ensemble, " as distinguished
from the '‘particle-uniform-ensemble' used to derive 1.127. The re-
striction %}V/eé = /]/ makes the evaluation of sums very difficult,
so a grand eisemble is introduced to facilitate the handling of the
computations. In the grand ensemble the average number of particles
is specified, and, if this number A/ is large, the relative fluctuations
from /V will be small, The grand ensemble is defined by the statis-

tical operator

/0 = Z~ (?”/é(# !-/uznké) 1.128

where /u, is the chemical potential. The number of particles and
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the chemical potential are '""complementary'" in the same sense that

temperature and energy are complementary. The average number

(N) of particles is expressed by

Ny = g7l 2 o Z .
<> ~ ’B/*% 1.129

7
and the average number of particles in the state L{t& is found to be

‘<nlzg> = {1.,. e’@(gk"/”}” 1.130

I3

The average number <nk>having energy E/Z is

<n — 2/3+,I 1.131
R> /) + eBER—H)

Equations 1.130 and 1. 131 are the customary expressions for Fermaions.

There has been presented in this chapter an account of the pro-
perties of the Wigner distribution functicns, as well as an account of
equilibrium theory. The Wigner distribution function plays an impor-
tant role in the modern theory of transport phenomena. Ross and
Kirkwood, 27 H.S. Green, 28 and A. W. Saen229 have considered the
transport equation in quantum statistics based upon the Wigner distri-
bution function. In addition, Green30 has considered quantum correc-
tions to the classical equilibrium statistical mechanics. The Wigner
distribution function is particularly useful in that large portions of
classical statistical mechanics can be taken over directly into quantum

statistics.
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CHAPTER 11
TRANSPORT PHENOMENA IN A SYSTEM
COMPOSED OF CHARGED PARTICLES
A. Hamiltonian Description
The system is assumed to consist of N charged particles
interacting via the electromagnetic field. Any external fields present
are assumed to have a macroscopic dependence upon time. Let
?;’.. ,T-:I be the position vectors of the particles, G,ir . Cy their
electric charges, and m,, ..., ¥, their masses. It is assumed
that the particles have no further electrical or mechanical structure,
that is, any spins, and associated magnetic moments are neglected.
The particle motions are treated non-relativistically since a correct
relativistic treatment automatically brings into consideration the
additional complication of spin. * The electromagnetic field, however,
is treated exactly.

-
The electric field E is written as the sum of three terms

— - - -
; T ¢
E = E"+# £ + £ £ 2.1
+
where £ 7 is the transverse part of the field due to the charged
-

c
particles, £ the instantaneous Coulomb part, and ?E the external

part. The instantaneous Coulomb part is expressed by the relation

*
At least for electrons and other half-odd integer spin particles.
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Ec:"Ver “% [ 17 - P , 2.2

->
and £ 7 is characterized by the expression
-

V- ET=o0 |, 2.3

*
The magnetic field /& is written

>
] EI_,_ R 2.4

B -

-
I
where B is the field produced by the particles and B £ is the

i

external field. The system is enclc;sed in a large volume V'—'—‘ L3 80

that the internal electromagnetic field may be described by a denumera-

ble set of coordinates. Inside V Maxwell"s equatioxis are valid and

may be written

7 g — D 2.5

v-E = 47,2 2.6
E 2. E 2.7
B

Y
Vx c 2t o
= 12 + 4T S 2.8
VA Cbt? % e
where v
—_ -
Co = D@ S(P=P), 29
and

-
JC = ZK € x u/( 8()‘?’--&)}2.10

—>
’Mk being the velocity of the xk th particle. The external fields
satisfy the homogeneous Maxwell equations and may be subtracted out

of equations 2.5 to 2. 8.
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Let
-> - :
— c ra
o = Z A 2.11
- -
where (V) / C = and VvV +/7 = ¢, Then equations 2.5,
> >
2.6, 2.7, and 2.8 may be written in terms of /£ 7: Bras the
following:
V“ gr — C) Zu 12
= 2.13
- ET = 472 :
2. z
TxE T — — é“%%ﬁ E 2.14
-
Cx BT = L2272 a7 77 2.15
C 2¢ o

>
Following Heitler 38 a set of real vector functions A) (#) is intro-

duced, complete in V with respect to transverse vector fields, and

with the following properties

[ ZA’Z/A = 477C1 S/,._V 2.16

v

' -
V”z\féq}iz = O 2.17
7.;& = o 2.18

In the above equations S/M} is the Kronecker delta, and ZA
_,
where nl is a vector having non-negative integral components.

_
L

/ZA is related to the angular frequency &JA by the relation
&)A - C /éA , C Dbeing the speed of light. The vector potential

, —
Z £ is expressed in terms of AA and the field coordinates
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%A by the relation, 18

=2, % A , 219

p=g 4
which yields the following expressions for £7— and B

T= — 1L "
Z Z‘l 2* ) 2.20
and
-
B = Z,\ ?A Zx A 2.21
The current density 77' may be expanded in the series
J7T = Z; v /Z;\ 2.22

where the coefficients ‘//‘ /f) are determined by using the orthogon-

ality relations 2. 16.

Since
a4 , > -
e mZAJAA;{ + J¢ ) 2.23
L =7 _ 57
b= e J, (T Ay

The contribution from 7C is zero, since

- > 23
f, 74, = -,g’-; fv(v Zi)’Z
[Z vt/ 2.25

However, YV X (V/\t‘/ €)=vVVJ TE T __gand therefore
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2.26

[
|

| 7 -2 ~
yre® K/z: W S (F-Tx)

L |
4re> Zk /Txl(ﬁ) :ak 2. 27

Since

V x Err—" Z; 25 VX(vxAy)

—m—

A O VA,
-
— @
- . 2.28
X A £a é /4,1, J
a system of equations equivalent to Maxwell's equations is given by

the set
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Grel o =

*
= Cx 7, . 2
2? 1P AA<VR) 2.29
The Hamiltonian [{ for the coupled particle and electromagnetic field
system is given by38

- "
H=2, 5’1,,;; (R — S& A7)
A % L%
+U(\')+2§A(,‘j+% &))2.30
where

A= &+ 2, §a A0,

is the vector potential at the position of the ¥k th particle, and

_ e ce R ~l 2.;
U = Uf +3 Zikec%ln-ﬁl ' 2.32

is the total potential energy. Hamilton's equations of motion for the
system are

[ 3
— __ '
T”K = A —

2.34
)- RV
?A —_ a 2.35
¢ - 2
/,2; :-—./{"gzﬂ'z,;%’-‘%gfi)\(a) 2.36

é—
The symbol |/ signifies the usual gradient operator acting upon the
quantity on the left.
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The distribution function f is a function of F [7 3,2, z
and the Liouville operator |_ defined by the relation 1. 3 is given

by the expression

s % . A (F)y D F _
ZA& & 2 A, () =
A :
. N 3
Z:A wA 7’15—_/{2: i) 2.36a
where it is to be understood that does not act upon Uy .

A formal difficulty appears in that the distribution function is
a function of infinitely many variables. This difficulty may be cir-
cumvented by employing an arbitrarily large cut-off value for the
number of field coordinates. However, all results of practical interest
will be expressed in terms of reduced distribution functions having
small numbers of variables, so the formal difficulty appears only in
the basic equations. Until a valid approximation procedure to esti-

mate the various reduced distribution functions is found, this theory
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is not useful for the computation of numerical values. Nevertheless
it is a useful theory for the derivation of the basic macroscopic
equations of transfer.

It is convenient to introduce a new distribution function f
which is a function of I“'.‘ LA , f,\, /ﬁ) ¢ The Jacobian of the trans-

formation I P ?A;P}L —> T, w, q,, & is, using an obvious nota-

tion,

-.’

v -y

: 2 WU 28 24

Y. - —t

0 J— ‘a__?q‘; v & €

T o

307’«\
?9/0,(

= m Ve - 2.37

Therefore, since f- is a scalar density in phase space,

7(:'* 3(77;2%()78 , 2.38

and 7{* is normalized to the same value a8 ?ﬂ ,

S iy = S5
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»
The distribution function )f satisfies the Liouville equation

*x
’E__f +L*)C%:=:.O 2.40

-

Since under the above change of variables

‘7’/( —> Va

> % — = (2 AR)w

c
2R B4
2 l Ch ?A(?‘x)
PHn . 2% Z Va4

L.* is found to be

L* £ Zu +Z

/ 2 > '
Dol Xt efcfi)+g~szzxm)}%f"

‘f‘ 6‘:: > Z 3 2, *
0 [ = U A () - W2 _.B_f 2.42
where Xk is the value of the non-electrical external force at the

position ’/'t . The average value (g) of any function ﬁ =

%()‘j Y, ?A)'ﬁ) may be expressed as
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<C]> ()[ j) 2.43

where (fj#g) is the symmetric scalar product

% #
G q)= [ r*3
* r’ %) 21.) PJ\
The Liouville operator L_ is skew-symmetric with respect to the

scalar product 2. 44,

(L*f*jfj):: - ({’i L*ﬁ) 2.45

Therefore,

2 {37 X |
S (;}3%) (thj

(#7 23) - (L7 )
= (f’f 5_{?)4(][161“*5)92946

The relation 2.46 is the basic classical equation of transport. The
derivation of expressions for the law of change for specific dynamical
variables may be accomplished by the use of equation 2.46. These
derivations are postponed until after the corresponding quantal ex-
pressions are established, since, for the class of dynamical variables
of immediate interest, the quantal and classical expressions are for-

mally the same. The quantal expressions, however, make use of



quantal (Wigner) distribution functions JCW‘ , 7CW which replace
%, .
jC) 7(,‘ in equations 1.7, 2.46.
The quantum mechanical Hamiltonian is obtained from the
classical Hamiltonian by the replacement
B> £
L
2.47
A 22
T2

therefore the quantum mechanical Hamiltonian is expressed by

. -
ot =3 o (7 — =A®)

+U((r) 4 ZLZ‘A {(fé:’;-ﬁ) ;U/l‘]—fxz};z,zxs

The wave functions y' [Z t) are functions of the coordinates
e d - .
. PR and the time. Z' . The quantum
Z ,: T ?;1

mechanical Liouville operator given by equation 1.42 may be ex-

pressed as

Lhy =% H
]C /4‘/"‘"" % V. } fw ;249
where H is the classical Hamiltonian2. 30, Equation 2.49 may be

written in the form

Zfi = 2 H {6l £5p ) e (%)

54
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or using the ‘equation 2. 30, in the form

Ly =3, { L - ) o (259035 £,

T

b2, R 2L
7 Za

/ (13 e 1 > 1 2
[ —ZAGZY) + V) #3153 gF 1
sz" < 24,18 J; 2%
In the limit )f —> & , equation 2.51 reduces to the classical
equation 2. 36.

A class of dynamical variables sufficiently general for many

applications consists of functions %C of the form

de = 9,0 * 2 9B + D5 an Vi Tha 252

where the % are independent of % 2 For such functions
. 2.53
z jc_ = L %c
and the classical and quantal equations of transport are formally
identical. For such functions it is again convenient to transform
from the { P %}\ P/\ variables to the Y'/ u./ lef’l variables,

with the result

<f3c> (£ c) (7" Agc)

55
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which is formally identical with equation 2.46. The remainder of this
chapter will deal with the applications of equation 2. 46 or its formal

equivalent equation 2. 54.

B. Maxwell's Equations

The charge density at a point ? is defined by the relation

Qe Zk e 0 (¥ —-1%) . 2.55

If the average value (fw*; 96) is designated by /Oe » then according

i

to equation 2. 54,

%_C;C = (ﬁ:‘l L*Zkexg(?-‘?'k))

I

(7[;/ Z, " > & (- )

2 >

—_ - . >

= = V- (£ 5, e sET0%) 5t
The average value ‘;f of the electric current density is defined by

the relation

= (5], 5 et s(@-1)e

Therefore, equation 2.56 may be written

(e ~+ V‘*j; = 0 2.8
=5
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Equation 2. 58 expresses the law of conservation of charge in terms
of the quantum mechanical ensemble averaged charge and current
densities. The classical and quantum mechanical expressions are for-

mally the same, the only difference occurring in the distribution

functions f:*} fw*

The internal magnetic field intensity is expressed by

3(: = 'é:r(?) -__—.Z) il VX,Z]T\(‘-F)J

and, therefore,

A
/7[!1/) %Z VXA,\(?))
L = Vx(fw} Z Z(F”)

Since E la _ E Z; E{ Z/\ (’V), equation 2. 60 may be

written in the following manner:

¢ ;Tt(B S = = Vx<ET> 2.61
The average value of the instantaneous Coulomb field is given by the

equation

) - >
<2c> = (/Ch/’e Zc Sk f,r;_ o 2.62

-3
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and since |/ X o it follows that

————
r——
a—

3
VvV X <§C) = O 2.63

The combination of equations 2. 16 and 2. 63 and the corresponding

(¢

equation for the external fields leads to the Maxwell equation .

> {2 e
X E— e /3 > . O ; 2.64
The internal transverse electric field is given by

—_— { -
De = — FZ/\ //D{ ,4/\ ,  2.65

and, hence
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The last equation may be simplified by the use of the identities
V x(Vx = ~-VvV* Z — > and =
(vxA ) = -V = A A J

A Z/g G u A,\(rlc) Z (¥) , There results
'W/‘C"'

E r>—_4p—</r)+vx®z 67

Czt

R
-
where <~/) represents the ensemble average of the transverse

electric current density.

-
e T-%

If % is the instantaneous Coulomb field = P"

¢ % Z fr-%)

it follows that
2 _ » > 1
5 <EY = (L0, & 5775z )

Equation 2. 68 may be simpliﬁed by the application of Fourier analysis.

Let -

o 277l B v
T = f e rf (B)AE  2.69
Then |

-5 277 o :
]C{&)r—‘fezm rat?-s 2, 2.0

and, therefore,

l
IT-Tl T

-
eﬂ.‘ﬂ'i’k'(?‘ )'—?'k) dz
%ﬂ—

2.7T1

The gradient of the above expression is
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A ,eZ 2.72

-
l . ‘R >
v S5 = -‘-7/?£/(‘:‘27f"é (F-FK)o
| A

and \vAl v is, therefore,
I — 'Kl
> > ol R (P-R 2,73
e |

The right hand side of equation 2. 68 may now be written in the form
- 7 (/’* 7c) where 7(’, is defined by the relation
c w)

—>

/C

il

-_9,
= P> apik. (P-Y
} Ckf Ty £ A e /E,(‘) k) 2.74
K B o>
> > -
Since aKZ é/k"' is the projection of 24« upon k}je

is the longitudinal electric current density. Egquation 2. 68, therefore,

becomes
)
< [d _ 4
¢ S LBe) — ‘t’ <7 2.75
~>
The total average current density e is the sum < 77‘)

>
+ < JS) , and, if equations 2.67, 2.75 are combined with the
corresponding external field equations there results the second

Maxwell equation

~> e d >
Vx B> =%~7-7~/e7‘“é_;2£_<£) 2.76

Clearly, [/- <g)=—0, and

V-KZ) = .- Bcy =
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. 27

QPR = TR

(£ Z;ekvvgti’;z =
'k

<£“"*) ZK Se 475(?“?k)>:

477’@ , 2.77

which demonstrates that Maxwell's equations are valid for the quantum
mechnical ensemble-averaged fields

These equations have the form of the usual equations of the
macroscopic electromégnetic field. However, as has been emphasized
by Irving and Kirkwood, 18 the true macroscopic fields should not be
identified vﬁth the ensemble averaged fields, but with suitable space-
time averages of the ensemble averaged fields. The equations derived
above correspond more precisely to the Maxwell-Lorentz equations.
The form of the equations is preserved under space-time averaging,
so the usual macroscopic Maxwell equations are valid for a system of

charged particles.
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C. Hydromagnetic Equations

The mass density of particles of type )  is defined by

> >
= m E (¥ —-F 2.78
where the symbol 2 () designates summation over all A be-

longing to type 1% The mass current density for particles of

type » 1is defined by

—
(3C - MVZ(V) Uk 8(?«- —\zk) . 2.79

Let ﬁ be the ensemble average of the mass density 2. 78, and
"y
—> that of the current density 2. 79. Considerations of
/3‘, A
the same type as those which led to the laws of conservation of charge
lead to the equation of continuity for particles of type Y .
—
2 Omy ¢ V»[ﬁh W, ) =0. 280
2t v
The exact form of the hydromagnetic equations is obtained by
application of the law of change 2. 46 to the momentum density

-
Mmy Z{y) W, S (?..._rz) for particles of type ¥ . The

result  is expressed by

2 3% — »
2w =y, mY, Taw st ) +

(fW*J Z;ﬁ){c”z“"' %E?'xx& t ;‘)k}S('r’?-‘h) ). z.81
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The kinetic stress tensor 7, is defined by

o, (F) = -m, (ﬂx; ZM Cye -Ty) (e %)S(?-ﬁy}z.az

and the number density /7, of particles of type » by

h, (%) —_—-(f::) Z_@) S(?—ﬁ)} =N, fvi”(;r) 2.83

where /VV is the total number of particles of type Y . The use

of the definitions &v , n, in equation 2. 81 leads to the follow-
[Po——

. . _’ N
ing gquatmn for 9,}; (/o'w 'uy) P

2 = S
'ST(: (/?hqu) -_ V'G)JI A ay{zv

+(f:) e’va) E‘_‘*kz+ gkx EI(F,:)}S(?-—?k’)))z.u

where /08 is the electric charge density for particles of type ) ,
Y

%
/%y = 9 (J[w, Z-(,) S(?-—?k)):nﬂq'}'as

—y
and /ey is the electric current density for particles of type 1/,

—-’ .
—>
Se, = y €, U, . 2.86
If the mobile operator iyz 2 4 7':;,[7 is introduced, equation
‘ - 2F
2. 84 may be written




v —>
/0”‘» =Vv-8, +m X *
E 7 r-4a e
/g, 7~ %‘VX 8 G, 2.87

E
-
where G is defined by the relation

= >
G,, = o, Z(») (fw, [(é-;r* %xZ} J(F’-—T—’,‘)z.ss

S(F -7, ) . 2.89

, - >
If the fields AE) A B are defined by the relations

=<E)> +alk 2.90

and

<§> *4—5 2.91

equations 2. 87 may be written in the form

/fvw uy""VG/u‘-l—an-l-

64

/O,,ey (E> +__gﬂ,x<g) + /Té/ ) 292
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where |,  is defined by

% — ~-> — )
== g -

R, e, E(v) (fw)[AEK" _C_kxdék}S(FTi) 2.93
Equations 2.87 or 2.92 are exact forms of the hydromagnetic
equations. The quantum hydromagnetic equations and classical hydro-
magnetic equations have precisely the same form, only the distribution

* ‘x * *
functions ]c/ fw being different. The form 2. 92 may be compared
with the equations customarily considered exact for a gas. ! Spitzer's
equations have the same form as equations 2,92. However they are

-
not the same, since Spitzer's Py represents a momentum transfer
due to'collisions', and to the extent that collisions are meaningful for

a completely ionized gas the collision term corresponds {ignoring mag-

netic interactions) to the entire Coulomb term,

y(ﬁ,)Z‘M r~nc L & (¥ ),

of equation 2. 88. If there were colhslons of a non-electrical type,

—>

PV of equation 2.93 would contain terms corresponding to them,
but in addition has terms corresponding to fluctuations of the electric

and magnetic fields from their average values.

The following pair distribution functions are introduced:

() - > o
-/:/.«w (,;9’7’) :(/W‘; S(F—E.)J(Fﬁ“’l)) 590
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* » 3
wy S(h-R) S (R -R)) 2.9

and

£ R g = (50, 8(B-12) 6 (5200 (8 ~8) 297

/

in which '/? a'“' signify any coordinate and velocity of type & -

The value of [ (2) g independent of which coordinate or velocity of
given type is chosen since f”* is a symmetric function of identical

particle coordinates

since the density matrix has the property

™
i
Y

¥, 2> 9
T _(,)G,%l-..avd.)lz. 98

-

f(!ll?“-ol-”‘}--;o" kl"'}t-("‘ )

i

ﬁ(ﬂ-ann 42('“)'*'3;_"‘?,"' ) / 2.99

If the pair distribution functions 2.95, 2.96 and 2.97 are introduced

-—
into the expression 2. 88 for qx) there results

= v 5 >
q)’ - MC’),Z M .;:..f (" wd,-

/bt.
_M/cyZZA(?)f 0 (¢ a)dﬁ

— N > - > (2 >
5 o e o
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Equations representing the trapsport of other quantities can be ob-
tained by the methods employed here. The theory is useful for deriv-
ing general relationships, like the hydromagnetic equations, but at
the present time cannot be used to compute numerical values. The
reason for this lack is that, so far, the theory is exact and thus depends
upon the exact solutions of the equations of motion for the entire sys-
tem. These equations are, of course, quite intractable. An approxi-
mate procedure is needed to estifnate reduced distribution functions.
The present status of the theory is analogous to a kinetic theory of
gases for which a Boltzmann equation exists, but the form of the
collision terms is completely unknown. Possible avenues of approach

will be discussed later.
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CHAPTER III

EQUILIBRIUM PROPERTIES OF A FULLY IONIZED GAS

A. Classical Theory
The classical Hamiltonian for a system composed of
charged particles is expressed by*
— N * [} [ adf
H=0, #lmq+55) e | 3.1
k K22 KA
where 1, =|% — 7T | . At equilibrium the canonical distribution

function is given by

P, p) = tfw’g(H-F) , 3.2

F being the Helmholtz free energy, The normalization
[ o= 1, 3.3
P

yields for [ the expression

- -p H

PP = f e 7, 3.4
v, P

The presence of charges of opposite sign, = &, e, <o, in 3.1 leads

to the conclusion that the integral in equation 3.4 diverges at least as

rapidly as the integral,

L

Lo YCrr"csr _ 3.5
a ®

a—>» O

*
Magnetic interactions are here neglected.
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therefore, as is known, 39 the classical canonical distribution function
does not exist. The physical interpretation of this mathematical re-
sult is that, according to classical statistical mechanics, the equili-
brium state is '"completely collapsed. "

Another way of looking at this situation is to ignore the non-

existence of /O » and '"compute' the average value of the potential
energy '\/ . The average value of "\/' is given by the
expression

V)

AV |
SY'_V‘C /S c“/G_V- 3.6
.

_ P _e Vv
= — 2 o s 3.7
”2)@ gr €

However, \/ is homogeneous of degree -1,

)ﬁ"v’(/-) :V<r/ﬁ) S 3.8
2 -V (%)
V) = — ;5/—@ e g\r “ -
_ 2 -V (G | g3V
= — 5/-"6 Mo Su.e /5
— 3INAT. 3.9

According to the Virial theorem, the pressure of the gas is given by

s
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FV

!

VMET + 4 (V) 3.10

Hence,

PV = A7 —akyr =0 3.11

The ''result' that /DV is zero is in agreement with the statement
that the gas is completely collapsed. Equation 3.9 is independent of
the attractive or repulsive nature of the inverse square law of force.
If the charges are all of one sign, PI/ = (¢ corresponds to the
completely expanded state. If walls are introduced in the latter
situation, the result: 3.9 does not obtain, since the wall potential in-
troduces an inhomogeneity into T

The presence of arbitrary large négative values of the
potential energy is responsible for the divergence of the canonical dis-
tribution function. The canonical distribution function permits arbi-
trarily large negative values for the total energy. On the other hand,
the microcanonical distribution function pertains to a fixed value E
of the total energy. The possibility that the microcanonical distribution
function may exist appears to offer some hope for a classical theory,
but it will be shown that in general the microcanonical distribution
function also fails to exist.

The microcanonical distribution function is defined by the
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equation

/0"—';' CS(E"H)/ 3.12
where B is the 1-dimensional Dirac delta function, and (

is the
normalization constant
¢! = [ S(e-Hum) 313
TP
New coordinates and momenta F,P are introduced by means of the
transformation
= ~»
n =N
_— -
v, = Y 3.14
Fx = H
P \5 = ﬁ 9
Pe = Pz
o= h
’ > 3.14
P = P

The Jacobian of the transbrmation 3. 14 is expressed by the relation

3

AH M,
J-: A 3Fy

= ?_H 3.15
I 3 Px

!

and, therefore, equation 3.13 becomes
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C™ = f $Ce - H)/;

ru P SE. 3.16

where p’: B, R, By, -+, /Ap . The integration with respect to

H is carried out, with the result

=& |

Rx |

Let

- -
&:Wﬁ 3.18

and
> _ -2
7 Z:« Az 47 | 3.19

then equation 3. 17 may be written

= ! ¥z - g 3.20
= 377 Cam [E Vf‘j Jr-d f
(7%, ")j LV 70

where d(”)f_g df’ "[fa " dﬁva' So far as the integration

with respect to f’ is concerned, the integrand is a function of #
alone, so the following spherical polar coordinates are introduced

into the <= 3NV -/ dimensional momentum space:

Poy = P
Pz = f i), o nd

' , 3.21
f/"j —_ 744'—\-./\,, ,444-—492"' /44*\-49‘1_..2 Ml‘g)...

Py = pp o P SR s R VY
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whereOSQA{ﬂ',K:[J,.,)h_z and O&ﬁ',,_,s_zﬂ',
Expressed in terms of the solid angle d 42 ., the volume element 0/6'/)6
is

c((")/@ = 27 dp dn 3.22

where

h~a

< L2 A ,\.9'/ /04'\"\-—- 49- L.V ,.9‘“_2’ d’sl”‘c{“z 3.23
ﬁ
The total solid angle _()_ is

T r T
L = j; olIw— ‘fo ey Ay 7 Jo Piie :S,afs,

= 277_“/:,/ rin/2) 324

and, therefore, the integral 3.20 may be written

C™' = /7(% [77' (QMK)}g/L[drf 2 ap

, W

/ ; -t
M/a. Tz
= JTT (o] 2 L9 ()%
F(u/2> 2 F(kﬂ/z)
or d 'V">/0
V2 |

=2 TG IE [ (e

MY v

3/;_, 3N/L M-/
— /A -
= m(lm")i F@gé’iﬁ V) T 52
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The integral over configuration space in expression 3. 26 diverges for
N 22 and, hence, the microcanonical distribution function
fails to exist. For two particles the microcanonical distribution
function exists. However, the average value: of the potential energy
diverges; for the average potential energy for two particles of oppo-

site charge is given by

o~ = [ (6 E)9R4E g P
~ = R 3.27

The origin of the divergence of the classical partition
functions lies in the potential energy term of the Hamiltonian. Accord-
ing to quantum theory, the possible energy values of the system are
bounded from below, and this classical difficulty disappears. It is,
therefore, clear that there exists no valid classical statistical theory
of charged particles. Any valid theory must be based upon a quantum
theoretical foundation. This conclusion does not mean that classical
theory has no application to the problem. For example, the classical
virial theorem, under conditions of high temperature, is a valid
approximation provided that the average energy is computed using

quantum theory.
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This section will be completed with a derivation of the equation
of state, using the classical virial theorem for a system of charged
particles including magnetic interactions up to order ‘/C’J—. The
force on the K th particle due to electric and magnetic interactions

is expressed by

- 7 - -
F; = ZJ' e, (’7&"/3)/!1? 1-

v

_ ’ > S
= Z,/( exc; K .(rk-?. )/rkj’ 4

{

— e i€ > > - T

c? ‘f,-;g("i-uj)(uk'(’k’r/))
JK K,



4

N €x e, - > - - 2 > 2)
20 Z,"K r 3 ;(CK W, ), ";/c)'/r;r /%Lﬁ)\]
ks

= V+ AW

The equation of state for a system of charged particles is, therefore

PV = /V/br‘/‘ ?/<V)f'zc,_ <W>“’~' 3.29

where

,-.,: o ¢ P 24
Z /K ;( /P 7/6<}3. 30
3 r “ rs
Except at extremely hlgh temperatures (where relativistic
effects cannot be neglected) the magnetic contribution _— <W,> to

the pressure is nil, and to a very high degree of accuracy equation

3.29 may be written

PV = p,hk7 + §£<V> 3,31

The correction 3—’-(*)/‘) to the perfect gas law is not large. An esti-

mate of <V> can be obtained by computing the potential energy of

a uniformly distributed system of charges. The contribution to <V>
from a strictly uniform distribution of charge is, of course, zero for
a neutral gas. However, fluctuations will produce a charge density

of order of magnitude

A("J\‘: We/\/ 3,32
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and, consequently, a contribution to the energy of magnitude.

<'V'> ~ - /Ve"/,e 3.33

where R is a linear dimension of the container. Therefore,

2
I/;e/i//éf//— e* ) 3.34
Rrr
For /Q = / ¢m. , the correction to FV/ v xa is approximately
6~ 3 /T' , which is quite small.

That the estimate 3. 34 is of the correct order of magnitude
for a uniformly distributed system of charged particles may be
demonstrated in another way. Consider a binary gas composed of

/Ve electrons and A/Z' nuclei of charge Z € . The electro-

static energy is given by the expression

V= Z~— +Z <) Eet e
. P
(< Y% K<2 ok K

The assumption of uniformity implies that the average of the

reciprocal distance between any two particles is the same. Hence,

VD= £ SMefWemr) + 27 Wy Wy -1)- 2Netly [(£ 3. 36
The condition of electrical neutrality is A/e = Z /\4_ so equation

3. 36 becomes

<V> = 'Eﬂ/vcel<?ﬁ'>, 3.37
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For a sphere of radius RJ

<-'_> _ A g c{?aﬁ?’ . 6 3 38
r v ) ) | P-¢| SR '

Therefore,

vy = —2(ze) /R

The tendency of negative charges to swarm around positive
charges (Debye effect) will produce a contribution to the potential

energy. This effect will be considered in some detail in Chapter IV.

B. Quantum Theory
The grand ensemble statistical operator ' for a binary gas is

given by the equation

po= e

In equation 3. 40, /U,I//Uz represent the chemical potentials of the

_ s (W =i pip
/6(4- /AVV,MVI//3

.40

two constituents, H is the Hamiltonian operator, and VV///" are
total number of particle operators. If ’}%; % ¥ are the quantized

wave fields for the two constituents, the Hamiltonian may be expressed

37
as

2m ),
r

o= KX f,%/fp‘a—%/ __2__,5"’1 N
v
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f/ [V (F9] wb(uwm/,,- 24

Z2e® 2/ 2, ! %/ z
+ Ze /[é [V VUPI] 2By () Ji2_e

— Ze* ff LT Y TR) A (Y '}L/'?J/" ?’13.41

Let the subscript 1 refer to electrons, and the subscript 2 to nuclei

of charge ZC . Then ¥ Y- satisfy the commutation relations
[ (P, v*(29), = § (7% 5.0

["’]’L(?)) "/’Zf ?7]1_ — g(,:’_;’/) 3.43

[ +(ry '\}”'(r')];- [y Y] = 0,3.44

where the plus sign in 3. 38 holds for odd A nuclei and the minus sign
for even A nuclei. If CP ! QP * form complete sets of 1-particle
n oy "
. . K .
wave functions, the wave fields ’\}" ; k=/ 2 may be expressed in

terms of destruction operators Q,i

~L K S @kat
- 3.45
> 92’ £ ouk f , 3.46
Loy " w
The functions ?’\K are chosen to be free-particle eigen functions,

which satisfy the equation
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£> 2 K A = s
by Al = e A = £, b 3.47
In terms of O._i at T the Hamiltonian 3. 36 is
J

ek
+ E /'élz, atfaa.a‘:ai):‘;‘is
where Ghe t) ke J
2! > 0! 21 3, 5,
/QL‘)- ka = % {L’ ,L(?)CGU)%(?)?O{ 49
TR
7 T T2 ., T2 > . X 50
/Q'L'J/e_z = ?_'_E'// %(")‘6(?") C/,L/')Z/‘)
and z P |'Y;F_':'\:-:1
,Z’—/‘/e,e = - 2e* SRR SGEA e W
- P IE - 77

In equations 3.43 to 3. 45 the integration includes summation over spin
variables, and each index is actually double 1 L dg where 6)“ is
a spin index and L oa space index. The wave functions (ﬁ, may be

written as a product

CJDL‘ = 9DL () Y (€ ) 3.52
where

T (F) = V" 4'7?7'-7//#
ot
/
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and

N 4
-
I — 2 ”‘ ;
/. —:«f /7 3.54
Because of the orthogonality of the spin functions, there obtains

=1

1

‘LJ'}?-Z = Séq 7 8 /Q ‘J‘Q"Q' ) 3.55
L

j_l_, 2 3.56
and - > = g dizé/z Séj‘él.s: /Q ij R

I”’ = $, ., 65 _L/Q’_z_ 3.57
where Skl € ¢ Sy Su Cle

| a%{ﬁ -E) P (Bl) P
L LJ}Q,JZ = V [f k] ‘ d?é-‘i,) 358
2 r—

etc. Equation 3.52 may be integrated by use of the expansion of

i
F
\/”‘_’_‘Fll in the Fourier series,_) S .
L”é'r o~/ (ke
Zk?”’/‘)e ERCAA
>

where jL —_ ?—17'7’7/1—- ;
}' I" p _g_:.z - 7 ‘
L/k.ﬂ 2\/" Zk f(é)

. - -, Z
/ iRCF-RY BT (RTE GBIt
>, e e e e e
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- 2 - S
—e* (- EL) § (k- EB2))
~_2_2i+fﬂg)g - S(Z Ll
2 - > > -
- { Vo §(L54%), F-h=k-F
o ) /3:"’;"; 7& Z"E 360
e, £(o) ﬁ 7’,< —Z. = o
= IWCXI/V]F ?l‘ /_é- }i:}: 3:}03.61
with similar expressions for ﬂ: e and -ﬁ‘/g-i,:‘._jhl;?j . The

Hamiltonian 3. 48 may, therefore, be written as

N ) . + [ 1 '
v T HOLZ, (0ip &g ) (Gl
k=

-
-7 =o
Am &A™ ) (al o
V P ? ; ‘éaJc') ( k&olﬁg’)
= — 3.62
Feste-fto l?c__,ﬁkll

+ )
The statistical operator 3.40 with the Hamiltonian 3. 62 serves as a

basis for a rigorous theory of the thermodynamics of plasmas. Once

the partition function 2’ is found, all thermodynamic properties

b cus . . . _,f }:‘-—-
ecome known. The partition function is the trace of e .
e i)

é , of

( - *ﬁ(Pf"/ﬂf-V-'—,uV‘)

IR F iy )
hPint ¢

‘
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The evaluation of expression 3. 63 is quite difficult and has not been

done.
The pressure is expressed by equation 1. 119,
/ — -
D Ry
/62 RV
or by

PV = —L 2 t”c”G(H—/’lW’"/uz”fﬂ/s.ss
62 dinv

Equation 3. 65 may be transformed into the quantum mechanical virial

15

PV = %t((off)'f%t(fV) 3. 66

where /’L is the kinetic energy operator and V the potential energy

operator. At high temperatures '-z‘tt K)= /V/"'T where A/ is
3

expression

the average total number of particles. An estimate of <’V'>
= t\, /0 V) is obtained by first computing <V> for a state
(n} nt ) and then summing over all states using the

) J ‘

number densities n‘i ) nY¥ given by equation 1. 125:

J

LNy = \/ e S LEH) 3.67

i) = 1))y R ET1T 3.68

(It has been assumed that both types of particles obey Fermi
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statistics). The average value of V for the state ?(h’ n,,) is
G

found to be

Vo =3dfetnm-zey, n

[

2 / >
t e 4rA n.n'
—_— i pe— . C v
“_/ I ‘// v

Equation 3. 69 must be averaged over the various states {occupation

numbers) using 3. 67 and 3. 68 for the average occupation numbers, and

<h1°') < > + < n; > The result is

<‘V"> = Z{’ (2-(-') cl/}é 7[(0)

[ ¢ grK” 2
-3 -> 3> ‘e ti) 1 4
2 T VIR -E*ﬁ {1+ /“)/(/fef@/ 7Y
,_Z 9rr,t" 2.07¢|

“ VIF- By (18 LEPY 14 EF) T

The first term in <V) of equation 3. 70 corresponds to fluctuations,
and has the same value as that given by equation 3.39. The next two
terms are exchange terms. Corelation terms have been neglected in

this crude approximation, but will be considered in Chapter IV. The
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sums in 3. 70 may be approximated by integrals,

Define

T =5 _47£" ' [
- >
4:,’VIE-6~I"/¢-CFC€"‘_/“J ) # el (E—p)  3.71

o JB J72
- W(zme)" [[/P "(wf(—‘* Wi+ "Q»Jﬂ

If A is the angle between f and ,0 the above expression may
be expressed as

T (myp, 0) = 7Y // " pap, Brfs o84
(27£)7 PR app b

/ |
(1+ cﬁ(ﬁ%h—ﬁ‘)) (1+ eP("*Z?.-H)

[7 par e 2l EEED) 13
(277' f)‘l ) (,L A7 /zm'/u)) (1 P Tom N)

The value of the exchange terms in equation 3. 70 may be expressed

in terms of the integrals I/ﬂ]/'!{d)“’ith the result that

SVY = 4 () (240) K ™

’(2;‘/)? {2 T (g g slaiZraigh ™
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For 7_-‘—-' O (ground state) the integrals 7 become

; YA s
Fupy =L, i, TR A ()

/>

= 2L o/,’/ﬁ,g(ﬂ‘—/w%:fv_::‘f’u/;g}
(27%) % “° R~

= 47V p7
(27 2%

which gives for the exchange energy of the electrons,

<VM4> = - f/-%g—-%l/ RY . 3.76

The above result agrees with that given by Gombas. 33 For other

, Przamue

values of temperature the integrals 3.73 are not elementary, and have
not been evaluated. The exchange energy is extremely small for a
completely ionized non-dense gas, but is quite large for electrons
bound in an atom, and may be important for extremely dense gases.
This chapter is concluded with a derivation of an expression
for the quantum mechanical phase space distribution function for a
system of spinless particles in thermodynamic equilibrium. The

density matrix +g/}is given by the expression
y (" i, g y

-oEn -
("(?,’%') = }L Zh C r %(%)%(‘6’)}3.77

and, therefore, the Wigner ditribution function is given by
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87

3.78

where ﬁ\ are the phase space eigen functions. However, according

to equation 1.58

H ‘)CW‘-' M%SG% ‘afjH‘)Cn/

and, since HH/ is a linear operator,

~ & E,.
f '6 /fh = C—/Qh/wfn

The operator C'/a HW is independent of A . Thus,

-FW "’:EL C-—/dHW Zu,f:&— 2
9= 2, Ffu
2, ay f.

Let

and

3.79

3.80

3.82

3.83

be an arbitrary integrable function. The ﬁl are orthonormal,

<ﬁ~’; 7Cw~> = S"“""

and

<o, £) = <LAD =

Therefore,

3.84

3.85
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{UF7=<K%p, AP =% a. s

However,

<1, F) = < Zha""ﬁ'\«> - Z@aw 3. 87

and therefore

{z-9, F) f (/-3)F = © 3.88

which yields the result

‘j——zwfhzl. 3. 89
The equilibrium canonical distribution function 3. 81 may now be

written

JC e Z2 ' F H"‘“ 3.90
- = .

In the limit j ~» O the canonical Wigner distribution function goes
over into the classical canonical distribution function 3.2. It is to be
noted that only even powers of /f are contained in the canonical ]Cn/

Wigner noted this fact, but did not express fH/ in a closed form.
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CHAPTER IV

THE EFFECTIVE POTENTIAL

A. Introduction

The difficulties with a long range potential such as the Coulomb
potential are well-known. For example, in the kinetic theory of gases,
certain integrals required for the computation of transport phenomena

42,43
diverge. The reason for this divergence resides in the kinetic
theory assumption that the motion of a molecule consists of an
essentially free part interrupted by occasional collisions which produce
sudden changes in the velocity. The change in the l-particle mole-
cular distribution function is described by a Liouville type equation
with an extra term accounting for the relatively infrequent collisions.
The collision term is then expressed in terms of the l-particle distri-

43

bution functions and parameters describing a binary encounter. The
Coulomb potential, however, is such that at any time a particle is
acted upon by all of the other particles in the system, and, although
distant particles exert small forces, the cumulative effect may be
appreciable. Of course close encounters producing large changes of

velocity also play an important role. There are thus two aspects of

the situation, which have been clearly recognized by Gascorowicz,
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Neumann and Riddell, 44 the '"Poisson'' aspect, corresponding to a dis-

crete set of relatively rare large scale events {collisions), and the

""stochastic' aspect corresponding to a nearly continuous set of indivi-

dually small scale but collectively appreciable events. Chapman much
. , 45

earlier noted the difficulty and handled it by means of a cut-off

at the mean-molecular distance. Arguments supporting the cut-off

43 46

procedure are given by Chapman and Cowling, and by Cowling.
These arguments may be summed up by the assertion46 that although
the electrostatic forces are large with respect to other (e.g., external
field) forces,; they are not strong enough to produce large effects ex-
cept at distances small compared with the mean distance between pairs
of molecules. The motion is then amenable to treatment using the
Boltzmann equation, in which the close encounters are treated as
binary, and the distant encounters as contributing to the body force
terms in the Boltzmann equation. This method appears to be correct
in principle but there is some question as to the value of the cut-off1
and to the method to be used to account for the long range contributions.
Spitzer and his collaborators47’ 48 have attempted to treat the long
range interactions as a diffusion process in velocity space. In this

treatment the collision term in the Boltzmann equation is split into

two parts, the first a binary collision term with a cut-off and the



91

second a Fokker-Planck type term to account for the diffusion or
Brownian motion in velocity space. Spitzer's treatment suffers cut-
off problems also, but the results agree roughly with those of Chapman
‘ahd Cowling.

There appear to be three main approaches to the problem of
long range interactions. The first approach may be termed stochastic,
and treats the long range part of the interaction statistically.
Gasiorowicz, Neumann, and Riddell have given a clear account of this
method, 44 in which the behavior of a plasma is described due solely
to the Markovian motion of single particles, and in which the effect of
close encounters is neglected completely. The second approach,
initiated by Bohm and Pines49b >0 makes use of '"collective' coordi-
nates which depict ordered motions of the entire system (Plasma
oscillations). The behavior of the charges is analyzed in terms of
their density fluctuations. These fluctuations are split into two compo-
nents, one corresponding to organized motion and the other to random
thermal motions. It is shown that for phenomena involving distances
greater than the Debye length ~— ( k 7"/% N Cz)‘/?. , the
system behaves collectively. For phenomena involving distances
less than the Debye length, the motion of the system may be treated

on a binary collision basis. The third approach may be termed the
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effective interaction theory, and was initiated in its simplest form
by Debye and Htiickel. 11 The remainder of this chapter will be devoted
to an approximate treatment of the effective potential,

The above discussion shows that the effect of the long-range
interaction is quite naturally divided into two parts, one representing
the effect produced by individual close particles and the other repre-
senting a collective effect produced by the combined effects of distant
particles. Both of these effects may be taken into account by the use
of an effective two body potential, which, in general, wiil be velocity
dependent.

Following along lines of the Debye-Hlickel theory.of strong
electrolytes, Rosseland12 and Fowier and Guggenheiml3 estimated
the electrostatic correction to the perfect gas law. Eddington4
peointed out that the Debye-Hlckel approach, although correct in
principle, was actually incorrect. Eddingtonalso indicated lines
along which improvement can be made. According to the Debye-
Htickel theory, the average charge density /oe around a nucleus due
to nuclei of charge Z ¢ and electrons of charge -~ € is given by

the expression

(e =Ny zele 2et/eT_ egy’/uf 4.1



93

where h; is the average number density of nuclei, and ’\l/‘ is the
average or effective potential. Close to the nucleus the boundary con-

dition A} ~ Ze/r obtains and the charge density behaves as

(Oéfv-—ho—& 2 e ezem/hrr. 4.2

The charge density 4. 2 approaches minus infinity in an exponential
manner, which shows that the total amount of charge 47}"-/06f‘ yedlr
in an arbitrary £ neighborhood of the nucleus is also infinite. This
divergence of the charge density in the Debye-Hlckel theory is quite
analogous to the ''collapsed' state situation for the classical canonical
distribution. Eddington showed that the difficulty can be removed.
The error in the theory is due to the fact that arbitrarily large nega-
tive energies of an electron are allowed, whereas for a completely
ionized gas, the total energy must be positive. Eddington4 made a
very rough correction to the theory in order ''to remove its most
glaring defects. "

Persico5 applied Eddington's method to the kinetic theory of
ionized gases, by using the approximate statistical potential as an
effective two-particle interaction. Persico's results agree in order
of magnitude with those obtained by Chapman, 51 using the cut-off at

mean molecular distance. The present approach to the problem was
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suggested by S. Chapman, and consists in extending the work of
Eddington and Persico by computing more accurately the effective
potential around nuclei and electrons in a fully ionized gas. This done,
the equation of state may be obtained by use of the virial theorem. The
effective potential can also be used to estimate the transport properties
of the gas. In the latter problem, the effective potential is used to
evaluate certain kinetic theory integrals, the values of which determine

the various transport coefficients.

B. The Effective Potential

Consider a binary gas consisting of nuclei of charge Z¢€ and
electrons of charge — € . At equilibrium the number of free (non-
bound) electrons per unit volume is approximately given by the Fermi-

Dirac distribution law52

n, — L’F, j P*A P /[ AR 4 5
e 3 + &€
/2\’ H>/O
where H = P*,.. - € ’l/f and + is the effective potential,
~N 7 O . Recently Kirkwood and Plocks3 developed a similar

theory of plasmas in which Ile  was taken to be

O
No — F/fj PEAP 8 (H-1+) 4.4
T I3 Jo Jiv o HF)

However, it is clear that Eddington's argument applies to the problem
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at hand, and equation 4. 3 is a more nearly correct expression for
nearly free electrons. Of course, expressions 4.3 and 4. 4 differ by
very little except where /\,l" is large. Therefore, the expressions
for /‘7& differ only in the immediate neighborhood of the nucleus.
However, this difference will be of significance in the estimates of
thermodynamic properties of the gas. If N= 0
> a
s prar/ gL )
ne — / e VT t 4.5
€ % 3 o !+ s

this serves to determine the chemical potential ,.A, as a function of
temperature and density. The order of magnitude of t" l@/u' may be

estimated from that of the quantity

— 2 \ 32
< = p’ (QV’tﬁ/m) , 4.6
If XK << ) eXP(\—ﬂ/L)>> | and since H = o,
equation 4. 3 may be written in the classical form
2
hem ST [ bl pp

3
A3 JHro
It is to be noted that the Kirkwood-Plock expression 4.4, does not

possess this feature. The condition oL L& | may be expressed as

Ne /T3/2- < L ]o'e ) 4.8

which is assumed valid in a subsequent work.
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The integral of 4. 7 may be evaluated simply, the result being‘lr2

Ne = p,° {V-T%;Y + ey:wgc» }K} 4.9
where X"': em‘b/hr and

Afe =/—- 2 /3_70% 4.10
e X Z . 4
The number of nuclei per unit volume, in a region where A 20 is

expressed by

2.
/7,2 = ¢ CVZ%

2 4.11

Where /\P = O the total charge density is assumed to be zero,

hence

[ °
ne = zn >, 4.12
and, therefore, the total charge density at any point where ’% 70 is

given by the expression

/o = - Zen; Z(‘Y—;_'_-_Xi- ex,;b(cx - 6'277.4.13

The effective potential satisfies Poisson's equation, hence

Vz"yl; = 472 n;fg—_?‘?-f 613%1}’:“3%2?4“14

Close to a nucleus ’\k&’v so equation 4. 14 has for boundary

1Y

L\
“T‘m

conditions

/\]é—»Ze/\- » Yo 4.15



97

r«qf?_.?o , r oo 4.16

Similar considerations lead to the equation for ’)be , the potential

in the vicinity of an electron. The result is expressed by

1

Vit =—amens [Elete yx-c%/fj‘w

where Xe‘z - — Ze '%C/k A and

Ay —> — e/ , r>o 4.18

r’\#ﬁ—h‘) o ) “‘—-—}OO : 4.19

The substitution

/\/f':_’i?gaz

= 4.20
where [ "’(/ﬁ’_r/ﬁlr«?eﬁ'ﬁo)/" and A?

to the following equation for %

L% "(Ogrﬂ_-f—c c,&z Cf('ﬁf 4.21

The boundary condxtlons 4.15, 4. 16 become

NS
N
o

2 N
4]% — H(o> = Ze -_;llﬂ—’“‘"“‘,,p (_:t’_g’)) 4.22
kT /7 SN\ pT /7’ psa
CPE —5 o ) o o 4.23
In a similar fashion, the substitution
e Fe
Vo = - Ae 7e P 4 24

le (°
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where o *(@7'/%72”;”)2 ) "and /46 = _Ig.; e

leads to the following equation for %

Jz._fi//?;‘+c;;/§“_czfj4zs

The boundary conditions on % are

Equations 4.21, 4.25 are the same except for the replacement
These equations must be solved by numerical methods, and to date
have not been solved.

The solutions of the potential problem may be used to estimate
the average potential energy per unit volume. The average energy of

interaction between a nucleus and its statistical charge cloud is

— e 4.28
_VZ: Ze

where
A = Aewr | (r) — 7—}
¢ PSR T 4.29
= 2 /
&gl = KTp () s
Therefore,
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Similarly, the average energy of interaction of an electron with its

charge cloud is

Va=:%fgnw. 4.32
It is to be noted that both _V; and 'VE are negative. The total

average potential energy per unit volume is, therefore,

vy =z Vy + Freve

or

< / o / - j

= o a)
'V'> ZfzzéT(«rZ%{)-/-%( 4.33
Equation 4. 33 may also be obtained from the rigorous expression for
<'\/‘> in terms of pair distribution functions, provided the corre-
lation function is suitabley related to (06 , f& . The virial theorem

yields the equation of state
= P | L e k?’[??’/[o) /)
P o=y (2e) kT + V3 2 (1 F &
or
—  goe / 4 /
= £ + L (29 (0) + Fl )5
P=rRT f1 4 o (B9 @+ 706
C. Asymptotic Solutions

The basic potential equations, as was mentioned previously,
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must be solved by numerical methods. The equations, however, may
be solved asymptotically for large and small values of /° . The
asymptotic solutions will be of value when the numerical solutions are
obtained, since they will serve as analytic representations of the po-
tentials at large and small distances.

The basic equations may be written in the form

P'=piEx+ e ey - 4;27:7)4,35
where YK = ﬁ and ) =2: Cf’ Cf’ and A = S f= %%

47
Near the origin ja//o is large. Therefore,

Pl g xr (1= gt 2 )

A , 3/1— 2
F~Li22 + 2 -;,{4(-;-;) v 2 (L)
AT r 7
The potential t.f is not an analytic function of P since the

y"’ . s s 1/7/

origin is a winding point. However, 39 is analytic in /0

Fd
Voo = e 4.37
=LA
_ w/ 4,38
T = ZW Io,v/*’ '
W/ 2 4,139

ij?/;:‘ Zh Cw/‘? )
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and
w/2
g* =2 dop
h i ) 4.40
where
>
bn - kK=o ak ah'—-K 4.41
n
Cn = Z Ay bn-k 4.42
K=o
and
dn = 57 hob
" - « n-
n K= 0 K ' 4. 43

Retaining the first three terms on the right hand side of 4. 36 results

in the expression

X’ 7 =‘—-—V~§(z7<"+x1-%) ot
or 4
Y2 7 >
33 Cj’o’:_[j (Q_Z_f_ff-.z_'>4.45
However, /}/7;:- fl /O
= b, W h-14 l -
9p// —_— Z: “n n ":‘:3-) 2z ":1-;12:(”’1)5;7/” 4. 46
Hence
P = L. Y h e
h=

h = ‘f/’ ) 7[”’ f 4.47
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n

fo=p  ar-2) b Oy s
h A =0

The potential 4. 38 will satisfy equation 4. 45 if the coefficients satis-

fy the identity
= n/2 4- L74% > "\/'z.-
N A R

.L/:zh b.,\/oh/v -~ 2-{—/»" } 4.49

Since 4. 49 is an identity the coefficients of “/2 must be the same

on each side of the equation. Therefore,

7C°=)C/':7€2_ ""703:: 7(;, = &

I o
765"—‘,6:"[0
=& J
7(‘6 4f7;'— {
5 ::1/_3: d +7/_.j-: b, 4.50
b/ 7
#Sy W’ 3 MTF
£
a

and
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Using the above recursion relations, there obtains

50”‘"%’“52/0 /51—/- / 50(’ z)/”+'452

with b2 = ‘(o) . Equation 4.52 is the asymptotic solution
for small /° . For large values of /o » X 1is small, and the differ-

ential equation 4. 35 may be conveniently written in the form

o ::;Z\-o /’Q‘/hi + 22 X
V/’—..-

2h

2 = X Z’(,\)1453
- 2.4 -1 2
A P v

, Y 2 5/
~/y+037’ +C1f+05-50 re. 4.54
P
where /a /a
RBr=l+a, Ca = Vo C"r/o-? 1-X" /2
and Csr = ~ 5’/; sy - The asymptotic solution is found by applying

a technique similar to the procedure of Chapman and Enskog. Write

cJo",/_;”cf = AC, <70 + 1 cc,f, + ar_f+<4 54a

/° P (o 32

where ;)\ is a parameter whose power measures the order of magni-
tude of a term. After the analysis is completed A will be set equal

to unity. Let

1y K
C)o/ —_ Z 7(_;(/”) Aw 4.55
h=o
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/

<p -:.Zh g, " , 9. =KZJO£< Fo-n 456
73/“—_: S RN, ’p‘hizi"f‘"" , =27

F =2 0. X, 0. :zk G Yook 258

and
iy’S "
Cf) = Zh /)nj 2 //’J' ‘:z'ew )CnﬂK
~ .

Then, equation 4.54 may be written

C(}h” _(Qq'jh = qw.q 4.60

%*
where

C‘}h-—l = C3 ‘p\“"' + Q‘{ :Q_.“__:._l + Cs P73 feee

m 4.61
2 om———
VY-
Write /O {a /0
CL\ = %a Wi 4.62
Then it follows that
W, = f 7;;;}30 Gnor 42, 463

»
ARt > Lk S %’-k ,°+ " » etc., are all zero, and,
therefore, (,; Kk =0 K >O .
- )
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io = C e*/d/ot 4,64

The asymptotic solution for large {0 is therefore

7~3n+3|+jﬁ_+"' 4,65

or

?’\" %’b (l+ W‘ B M/z' 4o e ) 4.66
Each term is completely determined by preceding terms. The zeroth

—v/r
term C e~ /d(/o = C e ® where = is the Debye

I»)
radius, is frequently taken to be the complete approximate solution.

The integrals 4. 63 may be evaluated asymptotically. Let

Cmn tf- mﬁf/& /e 4.67

and ﬁ
Eh«n - S Crn "L/> . 4.68

The integral 4. 68 has for its asymptotic expression

|

[~ —4

2 S (-0 Mee
M/G k=0 (Mf‘)K

E\M“ r—~ M, nt+alk J4.69

where
) 4,70

r'\,\\( = V\(n+')—)(h+1)": (Mzk—l) ,4.71
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Define

W 4 [ =
R Crmint Ep L dp . a2
Then, using the above results, equation 4. 72 may be integrated

asymptotically to yield the asymptotic expansion

oD

-
Wi o~ 2 ¢ Pf-fmm,, 4.73
) Mmw MM pvn) (6",(:0 f?r Ren pa
where
‘-
D,_ = Z _{:,vxk r’hfh’q—a.k s v -k
K=o m K (h,‘.,_w\,)r--k . 474
In terms of the above definitions
9. = C e.o 4.75
e ¥ n_
C},a = C €4 o 4.76
and
3/
Cv. = €4 € SR 4.77
Therefore,
W, = c’™c, (4
(= 3 4P &y Jef,éf/" 4.78
Ya
= C C3 S‘d/" g__qaé'r/ 4.79
or
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Therefore,

o2 4 ) Doe

W, ~C,Cc"" oS sar 4.81
But, for this case,
rf
D = E p‘KF'le'Jr"‘ 4.82
r ~ k=0 5K

and, hence,

g 46

l/\/, ~ Q3 ¢ 5‘/47— f/-—-/s/a a:@sz-—g}[—p—});-..fj.‘;. 83

Expressions for h1gher approximations may be obtained in a similar

fashion. For example,

W, ~ < (C +‘ C)SWG/:-H 4.84
,G

The resulting asymptotic approximation for 7’@ is therefore ex-

pressed by

B F £ - - £
p~ce ] £p 4/97.—?7)(’ 7
+

) - 9€5 . +
PO At 2 ‘ -
25(pp) = a8 Yo )
4.85
L (c
Aside from being an analytic representation of ?9 for large /o

the above result may be used to start a numerical integration of the
potential equation. To each value of C there is one solution, but

which solution it is cannot be foreseen until 90 is integrated back
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to /"=0

The constants (. and CP/[’) in equations 4. 85, 4.52 are
both determined by the value of % ; however, the determination

cannot be made until the entire solution 7’ is known.
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CHAPTER V

KINETIC THEORY INTEGRALS

A. Introduction
. 55 .
In this chapter some of the results of Chapman™ on certain
integrals occurring in the kinetic theory of gases are generalized. In
43
the notation of Chapman and Cowling, the integrals to be evaluated

are defined as follows:

. oo
/z(ﬂ’) =/0 C/‘—‘ Wl?()jioc”: 5.1
and
'Q(f?)- = f/_ﬂ—“J: Yl 75(” A 5.2

/2

in which g is the magnitude of the relative velocity before collision,
b is the impact parameter, ?( is the angle of scattering,
W= E/p. RT ,and E  is energy of relative motion,
=i'-mo/“,f4,f Maxwell treated the case of inverse 5th power for- -

55 .
s 56 while Chapman treated the general inverse )/ -power forces.55

ce
The general central force law is treated in this chapter. The poten-
tial of interaction is taken to be an arbitrary functionof [ , the

distance between molecules, and may be attractive or repulsive.

The angle ?( of scattering may be expressed57 by the
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relation modulo 77 ;

2/\90 /4 /}o
X(4.€) = T - 24, 8,

where ,,90 is defined by the integral

R
° — a . , __k .vz- .
,//";:T(»v)“

where v, is the zero of the denominator:

N\

.
5.3
T

in

J

’

| = 2V(E) -t =0 5.5

The value ,‘90 gives the value ¢oo ) through the relation

Cou X = — (oo 2/90 , 5.6
The integral 5.4 for ,So is not in a form suitable for numerical
integration, because of the singularity in the neighborhood of A/, ,
This singularity can be removed by a standard procedure. 58 The ex-

pression L b -+ * is substituted for 1 in the radicand
£ Vs ¢

of the integral 5.4, yielding the expression
Vv
= [ == 3
, = , , 5.
/ b /]
o0 /T V”#—E((VAZ‘)’V/V)}

The singularity in the above relation is observed to be of the form

v,
fo oL‘v‘/ s 5.8
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which can be removed by the substitution

IVO
z ~ A
—~ o J“V// V-1 5.9
Let

g 2

-~ z ‘:_"’V; f—'l/' ; 5.10

which transforms the integrals 5. 7 into the form

Vo

0

9 ZJ‘ A
o = N 2y _y{L)] 5.11
o/wo-g PR TERTEY

\
If "a = ?/“V,/L and X = b/"‘/o , the integral 5.11 becomes

l 4 4

— e 5.12
By = 2 fojz—- L*E%f%%

The integrand in the integral 5. 12 is non singular, or, rather, has a

’ -~y [-X
removable singularity at \3 =0 , since .,Q::. ZW) V{-g})j
—— / ' 1x 4oon Lt
= Ao A ( / 7 —_— = —XVZ*)I‘he expression 5. 12 for f‘ﬁo ex-
Fe ri

presses as a function of X and £ , where 72X satisfies

a

the equation

) - Vi LT,

pewe—d

£ x* ’ 5.13

The solution of equation 5.13 for X as a function of b and &

involves, in general, the solution of a transcendental equation. On
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the other hand, b is simply expressed as a function of X and £,

7
and is given by
é"’ — x * / .i V(X) ‘
- - 5.14
&
As b ranges from O to o2 ranges from X, to oD,
where t
f O for attractive potentials
X, = 5.15

~!
l/ [E) for repulsive potentials
It has been assumed for attractive potentials that

Ao =PV (x) = o, 5.16

A Do

which rules out, for example, attractive inverse cube-law forces.
The kinetic theory integrals 5.1 involve integration over the complete
range of the impact parameter b . However, because of the above-
mentioned difficulty of expressing K as a function of [ , itis
convenient to change the variable of integration in 5.1 from b to x,
The result of this change of variable in equation 5.1 is expressed by
the following equation
oL
_e) ) rd

() _ 5 /' 1 - wzmg}c/jxp-ﬁ%_ .

/- 2 ‘% £ 7
Equation 5. 17 has two features which require further discussion.

Firstly, the range of integration is infinite, and secondly the expres-
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sion is in the form of a Stieltjes integral J.f Ag , where )C) ‘} are
only known numerically. The first difficulty may be resolved by a
change of variable; or if the asymptotic form of ‘V’{X) is known ana-
lytically, an asymptotic expression for %(}; E)may be found. Then
expression 5. 17 may be integrated numerically up to a suitably large
value = L , and then analytically from [/ to o© . The second
difficulty is resolved by the use of a generalized method of numerical

integration. Of course, the integral ff &% may be written

[f49 = S99 ax 518

/
and % may be computed numerically, after which .f % “may be inte-
grated using standard techniques. However, it is simpler to develop

ab initio a theory of numerical integration of Stieltjes integrals. The

remainder of this chapter will be devoted to the asymptotic form of

% , and to the theory of numerical Stieltjes integration.

B. Asymptotic Theory of Scattering
A
Let /Do , ,?_ be the initial and final relative momenta of the

scattering system. Then 5 = ?. , and 2’ is the angle between
> >

£, B

The change in momentum is given by the impulse equation

—> - »
AP:/;C__%_T j/‘?a/t 5.19




114

and, therefore,

-~ > N
Vo Pe/p> b+ aB)-F. /p

Coa X

-

P >
*‘ 4-.._2 ,
| F:’ SF‘H: . 5.20

- >
Let ?D be the angle between -~/ and I . Then the law of con-

servation of angular momentum is expressed by

ba :mDM,Mzr"-‘_i_i:' 5.21

If 30 replaces T as integration variable in equation 5. 20, there

results

2.9,
/ | 2
Coo =/ = = r*Fr
X = ¥ R4L fd F()w&ﬂdﬁﬁ 5.22
Equation 5. 22 may be cast into a more symmetrical form upon letting

T :-.49- —_ 7& . Thus, after some rearrangement,
o

e

Cx | o
= ::Zé‘fo rFr) cood 4 5.23

Equation 5.23 is in agreement with the expression derived by Gordon. 52

For the Coulomb laws'2

r*Fe) = C 5.24
59

and equation 5. 23 becomres
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or

et X — Q"’E/C_ 5.25

2

l

which is the well-known result. For other laws of force, knowledge
of the orbit, = v({’) , is requisite to the evaluation of the integral
in 5.23. However, since asymptotic values are sought, the orbit may
be taken in first approximation to be a straight line. The approxima-

tions b =& X and , x 7 then lead to the following expression.
z

for %

y 4

—~ — .26
2 2E Vr —x™> °

The singularity in the above integrand is removed by the substitution
x g% = r-x 5.27
whence,
o<
A 2{ X~ x / f(#?) ‘% 5.28

< f e ,‘/2_ > _y 2 )
Expression 5. 28 may be expected to yield the leading term in the

asymptotic expression for X

A more accurate expression, in which the deviation  of the
orbitfrom a straight line is taken into account, may be found starting
from equation 5.12. Define Q(v) by means of the expression

() = ! {V(X)”V/T:?z)j B
R e
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then equation 5. 12 may be expanded into the infinite series

D, (,E) = ZZ- (—‘/2') G'(;)J”’ 5. 30

Equation 5. 30 is exact, and expresses ,3; in powers of \/ (x),

Since \Ml-_—;]z/&o,_.ﬁ‘

= |3 R[]

The asymptotic value of /X , correct to the first power of V ()()
is given by the first term in the expression 5.31. Hence, apart from

sign,
) - V{Z% =
E-——V'(X) ) ?7—(2___‘?1_)3/2

){ 2~ ¢¢?5.32

Expression 5. 32 may be transformed into a form suitable for asympto-
T -2
tic integration by means of the transformation '-} = 2(/"'2) . There

results

X ~ 2-‘/«.« ﬁ (X)' Z’;‘(’*?’)Js 33
£-Y 1) me) “T e

For charged particles

) /' _KY
Vo~ Ce /r 5. 34

where [ is the reciprocal Debye distance. Hence equation 5. 33

becomes
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...A

j: -2 c
—~ 2 ———————T \7

--—-—'A E’V(x) 5.35

where ( = kK Q" ;l=Kx and
- 22"

4 2
o (I1+2 D -

After some simplification J  may be expressed as the sum

I = T, + J, 5.37
where
To = foo/_‘—"/\zzo/a > 38
o ?7'
and
5.39

"/z
]I_'-_—.- [ /-—(,*?)

is simply evaluated, by forming the derivative

The integral \7;

I /w-;w‘“o/ = AT )77z 540
o ¢ =z '

oA o

Therefore,
5.41

ygrm+f

but since J:(o) — , c=a and
5.42

Jo = J7mA"
§ 72,

The integral J; is more complicated. However, for e

/"(’*%1 7 Z (3/2 . 5.43
21——
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6
Therefore, by Watson's lemma, 0 the asymptotic expression for \7,_

is given by

O o 2
J x - ffﬂ‘;l‘»’&nja ?ch"lza/z

ms=p

_Z ( 3/-;. ___]__’]35'“.(2»:-1) 5 44
\M-H ""fl PSS /{

and X is asymptotmally given by the expression

- Kk
X,\,_.___._.. e xl [/,4—._3,-».[....}’5.45

If % is estimated by using equation 5.23, the result is

[0 K [ 1
%-—v ?Ce ﬁg/+?kxf“”‘j.5.46

It is observed that the leading terms of expressions 5. 45 and 5. 46 are

in agreement. If L_ is sufficiently large that 5.45 is a good approxi-
mation for Z* )L , the contribution to 4)"') from X 2 |_can be

estimated; and is given by

VAN R e (B A

2 O
£790 [ e % 7 xdx =
EY < 2KX

2kl _EL)® 5 47
g2 C e *" e/Ce ) |
?ix)"’ = =7 (e
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C. Numerical Evaluation of Stieltjes Integrals

Consider the integral

A
— .4
I = f )C(XDoljcx) 5. 48
a
where 79 and % are known functions of _Z . The interval

is split into a number of sub-intervals, a typical one of which is the

interval [ Z , % +n,ﬁ,] . Then T is equal to a sum of terms of

which
o + h »2\.

I, = j () d 4 (x) 5.49
is typical. The functions 70) a are approximated on sz; x, Ha,l;]by

Newton's interpolation formula,6 1

n
f(xa+u,4)€’:z %(z‘)a‘% 5.50
L=0 '

where

CKQ (w) = (r) = V(u—/);’;/u_,e#/) 5.51
and p

A-r s 2
| A,cﬁ :Z (-1) (r)]lr‘ 5.52
with F=o
Foo= p(xetra) 5.53

Similarly,

"W

9 (%rst) = 77 ¢rgs"y,

A= 0

5.54
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The integral 1 _, therefore, may be approximated by the expression

n
/ ' 4
T, = fa L AOIF mand®f, 457, 5.5

or, by the expression

. £ k 5.56
Ih &= ZZ Tak A fa 4 ja
where £ K
n /

T = fo B () 2 (rretre 5,57

The integrals J;k -may be evaluated by use of the generating function
2
(14 2™ = 5, Bl 22, 5.58

If the above expression is differentiated with respect to ¢ , there

results:

A(/#g)(/#;)'w—;z_k?;(u)';k 5.59

The product of 5.58 and 5.59 is integrated from 14 = 0 to e=n

with the result

n [ L (142)(11y) .
,}/\«.(/f-g)e -1 .___-ZZ ‘Zgl y . 5. 60
Lali+x)1+y) * &

The left-hand side of equation 5. 60 may be expanded into the power

series
-/

o m
~ 2, K
'QW(H’:;)Z "'LZ*E”('“’)(H‘j)} - ZZ Lex X - 61
£ m/ 2 &
=/
and J;Kis the coefficient of xj'yk in the left-hand side of equation

5.61.

For N =2, one finds




121

o 2 /
(J-K,L) = o 2 5/3 )k'(/c::oj/,z' 5.62
o Y3 Y
The substitution 4°f = fa 4 Z = £ - £,
Azt‘ — }[ 27{:1 + 7‘; - 30 . etc., into equation

5.56 yields the generalized Slmpson s rule formula

X2 L
L pageo Fl=3£5 v 448,17

Q

—4£d, + 4fiz + % 29, = %03, + 3% 72/6563

The evaluation of () of 9Q(x) is achieved by splitting the
< y g

interval [, 4] into an even number A of intervals [ %, x, |

[I’b 2, ] 50 [:Z”_z} x4, })[)CV-/ ",Wlapplying the result 5. 63
to each of the sub-intervals [ %o, Xi, %23, [Xa, X3, X4 ]) ‘ce

£ '[J,y_,J XM,) X,v_] and finally summing the /V/z contributions,

The result is expressed by the formula

FOLg6) = < ['3ﬂ3, +

az=2,

4 (ﬁ g, + % G210 +fv-; Zv)' ‘P{?aﬁ*%f’z*'“ﬁm: F,y)

= (fo §o tA Gyt thh, 5”)-}(30 b+ G fvre 4 )
+ 31 5(”52 5. 64
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The above formula is quite simple to handle, and has a form indepen-
dent of the parameterization of the functions f and % .  That
is, the formula 5. 64 is invariant under the transformation r—>Y ;,-7@
Higher approximations may be obtained in a similar fashion, but they

are very complicated.
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APPENDIX I

McCOY'S THEOREM

Theorem: f = e (/uzf)/b) = ¢ < c"ﬂz C‘/‘fj

where /4, )\ are scalars and [Z}/t]_ = ?f-'fz =¢34

Proof:

2 “
5 (Hi#ap) =

5 (3428 (was2p) e oo (pegr1 )=

[% (v1+27) | (~ ff)/b)“-lv‘—

| M-z
(M AR5 (pg#ap] (143 FF
(M +Jﬁ)h‘/33 //sz/)/):

P(MZ f/)p)‘ﬂ’{/‘ (/"( Z?‘ 2/’) f(/Af,LJP)h;f,, //4?;,/)?)“_?7

But, | -t
[P, [rieaps™] = I*“*ifé-(/“f")f%

Hence

h h-/ “-2
5 (Ferap) = n(pgrap) P+ M2 bt fuy

and, therefore /'3
P = ety
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The latter equation may be integra ted, with the result

f=g ci(Ap,Lg,«»a)

where j is independent of A . Then ):o > f ::j = £ [t

and therefore,

)[ if‘f‘/"‘)cif‘"zeé;’/b

= c [
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APPENDIX II

THE OPERATOR ezf’[ A[az 3;5}}

The result of application of the operator & tA {?og ‘7 ; to
the function g (4 /’)70 (3,,) is evaiuated simply by using Fourier

analysis. If § % are the Fourier transforms of Z, £,

L"[zg 9}» j j &(uv) ')7(wv') ""[32 apz

uvwy’

e (u. ) 2wtV )
e * ‘ t+v ?) c = %

f ;(Z‘V)‘)((ulv'} @—q”\t“/l (2, v'~v. 1)
Uvsy/

e 21l fus g evip) ez;ré’ (wq +vip)

(

il S Yes'rip(se) ¢ (e p ) 2T v )

Wy wly !
279 p” . 4% ) Gv'-y. u”) Mi(“'?*“’)cz”';(“'%”c’)
e
= [ aripars prver) spivigpe 77
N < §(1-g Lamlv)
7f”f’/”

‘ 5(‘Z~g”-—zﬂ'2v)

:f 2wl v (p-pr) v (p-p) ,
Wrpe &FTV Y g (q-amavip) ltemv, 3)

An equivalent form is obtained from the second line above by integra-

ting with respect to 1/, V',




(n[/ﬂz~/-f/ﬂ’.£/z*2) 4 (a5 o
(z{'/\-}z,.n)?ﬂz_a 5

:fg S/, >
[ %o

L1
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APPENDIX III

PHASE SFACE TREATMENT
OF THE SIMPLE HARMONIC OSCILLATOR

The phase space wave function must satisfy the equations

.g[;?% %b} f =o ) 111 1
| III 2
0 TR G = EF
where

H = Plam + muwrg®/2 I 3

The use of expression III 3 in III 1 and III 2 leads to the equations

o w?> Z' f - ,£3D—éf :0}
and EF —
(Pl + ML) f — ft/‘" 22y Y

CIII S
2pr " 2g*
Let the operators 61,/ b be defined as follows:

III 4

/
_—_-;:;.;afié/;,;;%; I 6
oI 7

It then follows that

[a at]. [bb"] = ] I 8

/
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and

[a,b]=Catb] =[a, b*] =[a* b'] =0, m9

In terms of the operations &, b equations III 4 and III 5 become
abt f = atbp W

2

vﬁ__,{a*&Jr b*b +13 £ =EF 11 11
Egquation III 11 may be simply solved using the method of Fock. The

solutions of equation III 11 are expressed in terms of two integers

h,} h. and are given by

E, = _#“7‘:) (Vt1+n:,+l) I 12

t M

n, h,
Fov = A @O,
where i h.{ Nl o |

0—%00 = bﬁp - 0. 11 14

The normalized solution of equation III 14 is

4 -2/
7[00 7/-/# e /l&“ﬁ:

The solutions ﬁ‘(” are degenerate, but this degeneracy is removed
3

f

III 15

by the requirement III 10. The most general solution of III 11 is
Na

7[ = Zn Co fﬂ”’“) hy ot | I 16

n:z

and the energy £

i

=y
A Lo {”,+/17,f/)' Since
2
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+
73 =/ -
nen, At f;/f/,nz. IIx 17

= T~ II1 18
a 70“'"" - A, 7%1,—1, ha
+
b 7£n,n, = ¥y A”o Nat/ I11 19

and
b b = Vo2 B on III 20

the condition III 10 may be expressed by the equation

Na
o 3 Q»,!)n;-wrr £ =
MR ey

h:‘n,

F
o Z Qn‘/hz—n ]K,,._,,.,Ja g, -~ ) II1 21

h=~n'
or by
Na
2, Cnflrien)im-nei) Tajrn-ijmene =
hx ~-n,
N+
DRI vy eyl S
=y
n2+2 I
I 22
Z Ch-2 //mm—/)/”f”*’) ];f =1 Namn ¢y .
Nz-~hn,+2

The fhz h, 2T independent. In fact, they are orthogonal

. —_ 2
< Fuinn Foins Y = On 1 23

/h// S'h-h-{ ’

Therefore,

|
o

Convr = Ca, ) I 24




131

and

¢,_, = (urn)n—nrr) C.. 11 25
(hy+n-1)(Py-142)

Hence h, =N, = /v, say, and

II1 26

C,. = (/_an)//l/-nr/f Cuw

Al

while (Wrn ’)W ~h72)

E, = A w(weh) ,N=0,1, 212

n-

The coefficients (,_ are all expressed in terms of , which is

Cv

determined by the normalization
Ao, hud = 26
The usual formula III 27 has been obtained. fIhlhorn found the solutions
)C/V in terms of Laguerre functions, while the solutions here are ex-
pressed in terms of Hermite functions 7‘,;’ ny * That the two solutions
are in fact the same follows from the addition theorem for Hermite

polynomials )

(*/)Z (”) L (o M, /a)-/v/é (rPry*) 12

whcre L/V is the Laguerre polynomical.
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