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SUMMARY

The physics of fu lly ionized gases is a topic of great present 

1 2day interest. ’ Although a gas is ra re ly  com pletely ionized, the

1 3e ffect of neutral particles may in many important cases be neglected, ’ 

so it becomes worthwhile to have a theory of fu lly ionized gases 

(plasmas).

The origin  of this thesis is due to P ro fesso r S. Chapman, who 

suggested that computations of various equilibrium and transport

quantities pertaining to a fu lly ionized gas be carried  out by extending

4 5the work o f Eddington and of P ers ico . The groundwork fo r this p ro ­

blem is discussed in Chapters IV  and V. However, basic to the com ­

pletion of the problem  is the solution of a non-linear d ifferen tia l 

equation (Equation 4, 35), which must be solved num erically. The 

d ifferential equation problem  has been program m ed for a fast e lectron ­

ic computer at Los A lam os, but various delays have made it im possible 

to include any num erical results in this thesis.

The long range nature of the forces between charged particles 

opens to question the valid ity of the Boltzmann equation approach to 

transport phenomena in a plasma.  ̂ Arguments favoring the valid ity 

are presented in Chapter IV.

Up to the time o f w riting this thesis there was no general
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theory of transport phenomena in a system of charged particles in ter­

acting via the electrom agnetic field,, A general statistical theory of 

charged particles and electrom agnetic fie ld  is presented in Chapters

I and n. Chapter I deals with non-equilibrium quantum statistical

7
mechanics in which the W igner distribution function is utilized. The

8
method of analysis follows that of Kirkwood and his collaborators,

but is presented in form  suitable fo r dealing with m ore general systems

than those considered by Kirkwood. Much of the m ateria l presented in

Chapter I may be found exp lic itly  or im p lic itly  in works of other 

9 10authors, 8 however, the form  of the presentation is original and 

suited to the problem  at hand. It is believed that the exp licit equations 

for the basic law of transport are new. Some elem entary problems in 

phase space quantum theory are also given, including a new treatment 

of the sim ple harmonic oscilla tor (Appendix III). The m ateria l in 

Chapter II on the transport phenomena in a system of charged particles 

is new. M axw ell’ s equations are shown to be valid for the quantum 

statistical ensemble averaged fie lds, and an exact form  of the hydro- 

magnetic equations is derived.

Chapter III deals with the fundamental equilibrium properties 

of a fu lly ionized gas. The lack o f existence of the c lass ic ia l canonical 

and m icrocanonical distributions is discussed, and the need for quan-
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turn theory established. The quantum statistical treatment is nearly 

standard, with emphasis placed upon the grand canonical ensemble.

An approximate expression fo r the exchange energy as a function of 

temperature is new. The exchange energy is quite sm all fo r gases 

at ordinary densities, but may become important afc extrem e densities.

The last two Chapters, IV  and V, deal with the effective 

potential problem . The e ffective potential idea originated with Debye 

and Huckel, ^  who recogn ized that a given charge on the average 

would have near it a preponderance of charge o f the opposite sign.

The use of an effective potential in kinetic theory of ionized gases is

12 13due orig ina lly  to Rosseland and to Fow ler and Guggenheim. The

4
potential equation, as m odified by Eddington, is discussed in Chap* 

ter IV , and symptotic solutions are found fo r both sm all and large d is ­

tances. The last chapter deals with the problem  of num erical evalua-

14
tion of integrals occuring in the kinetic theory of gases. Chapman's 

procedure for treating these integrals ia generalized to apply to an 

a rb itrary  central fo rce  potentials An asymptotic theory of scattering 

is developed and applied to the shielded Coulomb problem . Finally, 

a method of numerical integration of S tieltjes integrals is developed 

which has direct application to the kinetic theory integrals.
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CH APTER I 

STA T IST IC A L  M ECHANICAL THEORY

A . C lassical Theory

The basic notion of modern statistical mechanics is that of an

14
ensemble of systems. An ensemble is a hypothetical collection of 

a large number of dynamical systems t each identical in structure with 

the actual physical system under Gonside?%Man. The m acroscopic be­

havior o f the system is traditionally identified with the ensemble 

averaged behavior of the systems com prising a suitable representa-

l 5tive ensemble. This averaging technique is quite suitable for 

equilibrium situations, but must be m odified by further "co a rse ­

grained" temporal or phase space averaging in the case of non-equi- 

librium situations. ^

The state of the system at a given instant of time is determined 

by the values <̂ , p> t of the coordinates and momenta. The space of 

the ^  jh  variables is the phase space o f the system and each point in 

the phase space corresponds to an instantaneous state of motion of the 

system. The temporal evolution o f the state o f motion is described in 

the phase space by the moving point or tra jectory ^ ( t ) , ( i ) -

represents "  where f  is the number of
degrees of freedom  of the complete dynamical system. The equations 
of motion are assumed to be in Hamiltonian form,^j> - _ ̂  ^  ^  t
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The statistical behavior of the dynamical system  is described 

by the distribution function ^ ^  p  The distribution function is

a probability density in phase space and has the significance that

represents the probabUity that a systetn, chosen at ran- 

dom from  the representative ensemble at time "£ , w ill have its co ­

ordinates and momenta in the range J C learly

f  f  J p  =  / 1.1
where the integration extends over the complete range o f the

variables. The Hamiltonian form  of the equations o f motion im plies

16
that the distribution function satisfies L io u v ille ’ s equation

jF ~4~~ JL O  1-2

where the operator is defined by the relation

Equation 1= 2 expresses the fact that points representing the ensemble 

move like points in an incom pressible fliud. The ensemble average 

of a function p>tJof the coordinates, momenta, and time

is given by the scalar product ^ -^ C ^ o f  and ,

^ 9  )  —
in which the range of integration is the entire phase space. The 

scalar product j  ^ i s  sym m etric <\"f / == ^ t an^ has a ll the
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usual properties of a symmetric sealer product defined on a real

1 *7Hilbert space. The rate of change of ̂ ^ m a y  be expressed by the 

relation

| j < « >  =  ( f ,  J l >  +  <  

=  <f ,

/  \ T  . 1_ 'A /  '  5
5>t

where is the operator which is the adjoint of L_ *  . Equation 1. 5 

m aybe simplified, since |___ is skew-symmetric, i.e . ,

-  [ r . . (  - ? « * . )  r

_  _  7  (  U i  -  2 l  )
‘ \ 'z p i  '

~  I— 1.6

Therefore, equation 1. 5 may be written

| . < 3 >  =  - f  l ^ ) >  » • *

It is assumed that the function ^  is sufficiently well-behaved 
to ensure the existence of .
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which expresses the fact that the time derivative of the ensemble
a

average of ^  is the ensemble average of the quantity defined by

i  —  2 ?  - f  L  ^  • 1.8

Equation 1. 7 expresses the basic statistical mechanical law of change, 

and since observable quantities are associated with ensemble averages., 

this equation will be associated with the rates of change of observable 

quantities. The actual macroscopic equations of motion for a complex

system are obtained as suitable space-time averages of equations of

,  18 the type 1.7.

Equation 1. 7 may also be used todbtain the equation of motion 

for the various reduced distribution functions. A reduced distribution 

function is obtained by integrating over all Wave a specified number 

of coordinates and momenta, and is thus a distribution function in a 

specified sub phase space. For example, if t 5̂ are the coordi* 

nates and momenta of a specific particle K , a one-particle distri­

bution function p j may be defined by the relation*®

=  < 7 ,  S C f - r * )  )>,1.9

t (0The equation of motion for T is therefore
'  n

=  <C f ,  l  % ( ? - % )
T i t  '

t
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Ordinarily the right hand side of equation 1. 10 may be expressed in 

terms of various pair distribution functions. There fore genuine p ro ­

gress in non-equilibrium statistical mechanics can be made only when 

reasonable approximation procedures become available for the es ti»

mation of pair distribution functions. A t the present time there exists

19no general useful theory. What is needed is an analogue of the

Boltzmann equation of kinetic theory which could be applied to the

20pair distribution functions. Kirkwood has shown, for gases with

short range fo rc e s , that the time averaged distribution function

"f rr- —  f X  satisfies the Boltzmann equation,
o

He also has obtained approximations, based upon a generalized

21
Brownian motion concept, for the pair distribution functions. Green, 

assuming short range fo rces , obtained a series o f approximations for 

various reduced distribution functions in which multiple collisions are 

taken into account. His method is essentially an extension of the 

U rse ll-M ayer theory to non-equilibrium theory.

In spite of the fact that there exists at present no general 

method for evaluating the reduced distribution functions, much in fo r­

mation can be obtained from  the theory. For example, exact form s

8, 18
for various m acroscopic transport phenomena can be obtained.

P a rt of this thesis w ill be devoted to the derivation of the exact laws
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of transport in a fully ionized gas. Since the quantum theory will be

shown, for cases of practical interest, to be formally equivalent to
1

the classical theory, these derivations will be performed after the 

quantum theory is developed. In this manner one derivation serves in 

a uniform manner both the classical and quantum theory.

Bo Quantum Theory

In the quantum theory a pure state is represented by a wave 

function* t̂ f(% ^)which satisfies Schrttdinger's time dependent equation

i  t  l ±
"a t

in which is the Hamiltonian operator. A mixed state represented 

by an ensemble of systems, for which is the probability that a 

system chosen at random from the ensemble be found in a quantum 

state It ),  is described by the density matrix

=  y .  <2; V? ( i t )  ^  ( i * )1- 12
■ '' i

Observables are represented by operators ^  , and the eaqpectation 

♦
For simplicity it is assumed that the quantum mechanical pro­

perties of the system can be described by the scalair Schrbdinger theory. 
The analysis in terms of the density matrix is quite general, but the 
phase space distribution function can be readily defined only if the spin 
can be neglected in the Hamiltonian; however, for an ionized gas the 
spin contribution to the Hamiltonian can be neglected.
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value of ^  for the state ^  by the scalar product J ' f *■ ^  c/  ̂ , 

Thus the ensemble average for the dynamical variable ^  is expressed
I

by the equation

< 3 > = Z .  a ;  f  ^  1  d % , - 1*
The function ^  may be expressed in terms of the matrix elements

3  ( %,  V > at %  '

s ' * ;  t o  =  I  ■
Therefore

< § >  =  a - t j f  

or; =  / /  / °  Cl

, < V  *  - i n ,  ( > g )  '  1-15
in which jfUl^represents the trace or spur of the matrix ~i . The

density matrix satisfies the equation of motion

^  I f  — \ X-Ci) -  /O 1.16
where ̂ ^Jsign ifies that the operator )=f is applied to the ^

variables. Equation 1. 16 may also be written in matrix form

l k  | - ^ r C i r t )  =  J  [  f - t )

- / ° ( i  v ' - t >  w ( i ' : % v } d % " 1- 17

or, in terms of the commutator £   ̂ yO » as
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‘L^  4 C  ( °  > — O  1.18

The latter equation is frequently taken to be the quantum analogue of

7
the L iou v ille  equation. However, Wigner has shown that there exists 

a function ^  £ ) which is a c loser analogue o f the c lass ic ia l

distribution function* The Wigner distribution function is defined by 

the expression

r  dl tt c

The density m atrix  is Herm itian and therefore -p ^  is a rea l function,

although not necessarily  a positive function* I f  j °  ~ }̂  "f^*8 norm a'

lized  to unity, since f  ■= j£st /O — / . This distribution

function is the closest analogue to the c lassica l distribution function.

22
If the W eyl _ representation o f operators is used, ^v. is obtained 

by phase space integration of the product of the c lass ica l ^ and ,

< % >  =  < f ~ ,  g )  =  j  $  c / f  C ^ . 1.20
23For completeness a proo f o f relation 1. 20 is included here. This

23
proof is based on the ideas o f Irving and Zwanzig. The expression 

1. 15 m ay be written

< < 3 >  =  f t =>( ’?

in which ^  ( ^ )  *8 *ke quantum mechanical operator representing , 

but which acts upon the ^  'va r ia b les  of ^  ^  (%  f*J  i s ^ e
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classica l dynamical variable representing ^  , the Weyl expression

for ^  ^ given by2^

The operator <£x jo  Z trl^U 'g  y- ^V -JS - jm a y  be split into the product

i T i ( n . % ’+ g y . 3 - r )  =  e1TrU* t,- ^ ’r M ^ '^ r r t ^ - . l , z3

23 24This latter expression is reported to be due to M cCoy. However,

M cCoy's paper is not available to the w riter, so a one-page proof is

given in Appendix L  The use of relation 1. 23 in 1. 22 leads to the

follow ing expression for ^ }  ’

} < « - /
Since XL^ % P

f > ' ( 2 . i r * v ' f a  ) / ( % ' % " )  = f O  t " h
the result of using 1. 22 in 1. 21 yields the follow ing expression for 

<%) ■ f  - 2TTi (it_- e  ^  1/. p )  I
< <5 > =  J e  ® ■ <1 ( t  A '  ■o '  ( j K

a j r L U ' % '  ,

<= «  / *

_  f  - z j r i ( - u - %  -+ Y - f > )

e ^ : l' -TTtv).zs
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However, equation 1. 19 may be inverted to give in terms of

f> ( g '-trriv' f C-rMisJ =  V'P -fw( i ;  />'} x-26
Therefore, equation 1.25 becomes

<•> -  L , v * * * *

yf /  ( 1 - V  K ( t . r )  , ‘ -27
which was to be shown.

The equation of motion for may be used to find that of ^

with the result that

i - i  =  f  <f ^  X / ( v )  j
*3 ■

where ^  ^  %  ^  ^  / g  ^  ^  ^  • If

in the above expression is replaced by the inverse of equation 1. 19, 

the following equation is obtained:

' s *  *  W
Equation 1.26 is in a form suitable for the computation of £  for a

specific jh>/ . However, a matrix form is more suitable for proving
»

general properties of . The matrix form of 1. 26 is esqjressed

by the relation
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T t  4 “ I  e 2 7 r i P j W i - r f y - t ' J -

n f

~  M  ( f ", i - f - v J ; ^ )  - t - f i f f y )

The latter expression may be written in the form

' i f "  +  2? f w -  O 1.31

where

% - f w  ( t ? t )  —  J o ' p '  f j t t y . i z

and where the kernel [_  p  . f ' f ' J  is given by

L U r :  %'pO - i f  *<■'(%'-%) t V *

H ( Z - r * y j  2£ /- g - i r J )  -  e. ^  ^ ^ e ' 21^

U ^ t ' - t - T r J y j  f - 7 r * y ) ,
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or, more symmetrically, by the equation

L ( %P;  t - y )  =  £  f  e- 3ri% ■(*- *'■> e '*-& >/*

1. 33

Because}*/- is Hermitian, ^  (%'%) j 1— is real L= L

and skew-symmetric

L  (? f : f t ' )  =  -  L ( " « > ' ;  f  A )  • 134
Therefore the quantum mechanical expression for the rate of change 

of the ensemble average may be written in the form

= < f ~ ^ > + < 7 t '  S>

/  +  \ 7 L > . *  7 / .  35

Equation 1. 32 expresses the basic law of change for the quantum 

mechanical ensemble average • The rate of change of is
C

the ensemble average of the quantity ^  defined by
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\ =  ± 1  -+■ 2 f q
- a - t  15

1. 36

These last two equations closely resemble the corresponding classical 

equation 1.7, 1.8. This resemblance becomes formal identity for the

It will be shown that in the case of ionized gases the functions of type 

form a class large enough to include most dynamical variables 

of practical interest.

The use of the Wigner distribution function as defined above 

is limited to systems which can be described By: the Schrttdinger 

scalar theory, since, for example, if the density matrix contains 

spin quantities there is no simple way to define . Further, the 

existence of non-classical variables complicates matters. If the 

Hamiltonian of the system does not contain spin-dependent terms, a 

scalar theory for the density matrix is possible and the Wigner distri 

bution function may be simply defined. This question is considered 

further in Chapter I, Part D.

♦C. Phase Space Representation of Quantum Mechanics

class of functions having the property

1.37

The Wigner distribution function may be employed to give a

*
Some of the results obtained in this section have been ob­

tained previously and in a different manner by Moyal^ and by Uhlhorn.*®
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complete theory of both quantum statistics and of ordinary quantum 

mechanics. Further, the transition to the corresponding classical 

theory is obtained directly by letting y O  in the quantum equations. 

These assertions will be proved after the operator 'X  in equation 

1. 28 is re-expressed in terms of the classical Hamiltonian function 

H (* ,  P) • The Weyl definition of the Hamiltonian operators H ( ’u )  »

H (  v )  yields the expressions

H(*0 =  f  f < W J

H(v) = J  zCu'vOe e e uV
39

- u 'v '
where £ is the Fourier transform of H » ^  follows, therefore,

from equation 1.26 that

j $■ <. < *> '') d
'US/

+ c.c.
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j.

Xa \/
f ( u v j  ,

+  C . C -  £  < q  . $ _  ■>
=  L  « -  *  a *  J .

-f- £ . £ . *  . 1.40

where the symbol f  sL , 'S ^ is defined by the expression
i - Z t  Tl/"J

1 = [fe
A — j/9 y JEb**

Therefore "Jr *s expressed symbolically by

^  =  "  X ^ ^ r / ^ ' ^ J ^ T C ' 1-42
and the equation of motion 1. 28 becomes

^  - P w  _  _ £
_  ^  ^ L -  > r ^ h f ^

In the limit  , equation 1.43 becomes

2 _ £ f r  _  / 2 . .  o .  ? t - t  i  —  o  . 1.44
^  ' W  t ' "

which is precisely the classical equation of motion 1. 2. Equation 

1.43 corresponds to the Schrttdinger picture, "f^  caaxying the time 

dependence. The Heisenberg picture makes use of the time-independ- 

ent state function (& ) , the value of at time zero. The

See Appendix II, p. 126.



solution o f equation 1.43, which reduces to at — &

is expressed by
 _

f w ( t )  =  C  ‘ ' 45

(assuming independent of ■£ ) and therefore ^ y —

=  <  , 3 ' ) =  latter expre88ion
serves to introduce the Heisenberg operators

g  l O  =  S , / i  ^  ( l  A )  > K46

whose equation of change is

^  —  V "  Q  1.47
d t  *  9  '

or, m ore generally, i f  depends exp lic itly  upon tim e, the equation 

of motion

-^ -3 - = >  ^  X  3  < 1048
o / t  7> t  J

Since

19

49

the Heisenberg operator <~l 3 corresponds to the SchrBdinger opera-
0 d  "t

tor ^  given by equation 1. 8.

A stationary state has the property that 5 _£ vv C  » and,
^  t

hence, according to equation 1.43,

Jf. ^  , 2 L j  _  O, !.50

Equation 1. 50 may also be obtained from  the relation
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If the state is pure as well as stationary,

H  d )  f d ,  % ' )  =

J f °  ( t  t ( %" t  'J  = = i/ °  (%.%' ■>  *•
%Equation 1.52 may be transformed into the corresponding phase space 

equation by means of relation 1. 19

c i  — r  C 2rr‘cp-y

) 4 - ( % - y r A y ) ’

1

g r 7 T J ? ) ' - s i

The Weyl operator for Jbs/̂  is substituted into the above equation with 

the result that

C £  __ f U -  1/
7IV ~  J  €  /  V  £ ( k * )  C

1/

&* > n “ - (% -r r 4 ,  y )  H/r^ ^ ■ s4

where £  (l*  */) the Fourier transform of the classical Hamiltonian

H  (%/£})• If in the above equation is replaced by the inverse of
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equation 1. 19, there results

=  f  ,  ,  ' - n r 'U u . . v
J c  r f a v j  e

27TC7J-9 - 2 / r *  - 2 / r t> ? U - (/>_

Since

e r * .  ^  =  f  H ( v > " J  c ' " ‘  
% > "

W !✓ 1/ "

j i r r i U ' %  -  i / r xL - 4 u - y  ^ 2 r c P <‘ ( H ~ i ' )
e e- c .

H f t y j  ■ • *
The result of integration of the above equation with respect to z*_ 

is expressed by

£  f „  =  y  e  V  v. + -  _

<r >.'  a >r J /*- C-

*rrifr-V  - i v i v . - p "  . z r c - f i ' - y
c • e . ^  r .
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H ( t -  (% -trr-tv, ? ' )  1 . 5 7

Therefore, E  f  ̂  =  ejt j ,  c d ^  S. , 2 _  j  , or

since according to equation 1.50, yv<* -rf- ? o  ^  7 lj £ —

H fw  = E *
1. 58

IV
The fact that, for a pure state, is a projection operator may be

expressed in terms of . Since ^/O -— a

=  J  c " - " * * ' ?  / o ' C t - * * ' } !  g ^ a ) 1- * 9

<’/ ' 3

e

Let
f  ^  /  '>  ' ^ u b °

% yr-i ^ _  2 ^  t + f ' + t r - * }  =  2 . ( l -4 * 4 V ') ,

o r * '  =  % - t i r 4 ( v - v )  ,  ^  =  • T h e n

equation 1.60 may be written as the following expression

»  ,  .   f  -t-trC mri'v'fp-PV
l/l> p  f

• f*, ( t -  * 4 * !?  'J  K  f h  •61
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Therefore (see Appendix II),

- f w  -  <z r  j w  V1*62

Equations 1.57 and 1.62 represent the phase space equivalent of the 

SchrBdinger energy eigenvalue problem. Equation 1.62 is the condi­

tion that represent a pure state, and equation 1.57 that is

an eigenfunction of the energy . Equation 1.62 when integrated 

over the entire phase space expresses an equivalent*® condition that 

the state represented by be pure. This latter condition is ex­

pressed by the relation.

/ =  /  K
i t

The operator j  2 is Hermitian in the space which

is the direct sum of the phase space and itself. Therefore equation

1.63 becomes

~ h r r ”  » ( r y J e  'Since

€

. £ ( 2 .  2 .  _  3 -  2 _  )
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i  ■£ ./2  — SLJ?  i
"  «- ( * 3 '  */> 2 r r i * * < ( Z - ? ' }  v . 'n iv , (? > -£ ')

e  <r =
1* 1/

-  \s -  v , ^ \  , . .
X 27TC U ‘ ( % - f ' )  2 fT i*V> {r -f ' )

1a \s

c
c

r m - U ’Ci g )  irri l/

equation 1.63 reduces to

1. 66
/ ' / —■ J /I

? / »  f / >
As an example of the phase space treatment o f quantum

mechanics, we consider f ir s t  the case of a fre e  partic le . The 

Hamiltonian is given by

/—/ — ^  / 3 .  in a* 1.67

There fore ,

( k  ‘ % r l  H  =  ?  H  vr  fv  -  - v t £

=  ~  - 0 - ^ r f ^ J

f V ? =  1 - 6 8
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and

( —  , 2— I = 6 , \r\ > Z . 1-69
L n  Tiv J '  '

The eigenvalue problem  in phase space is therefore expressed by the 

equations

“  j f  • V r —  O  i-7 o
/H

and

Since ^  in equation 1.70 is arb itrary , is independent of T

This means that 7^/ does not rea lly  exist. However, i f  the configu­

ration space is made period ic, and i f  is norm alizee in the volume

of period icity, this difficu lty disappears. The second equation 1.70a 

becomes
2-

^  T > 1.71a  m

which has the solution

'ftO =  C £ (  P  — ̂ 2 )  ;  1.72

^

where *s arb itrary. The norm alization condition is

f  f w  d ~ r d p  =  £  1/ =  /

or — / j  \y • Hence

f „  =  I / "  I  ( £ - % ■ ) -

1. 73

1. 74

1. 75



The use of the definition of in term s of the density m atrix  serves

as a check o f equation 1. 75. The free  partic le  wave functions in o rd i-

2 6nary quantum theory are

^ ( ? )  =  . ! . 76 

Th ere fore , according to equation 1. 19

f w  =  £  ^  C r -  r * ?  4 $

z r r c f i . 'y  r r t f )  r f y j
(2 £> l . 77

= v ~ '  /I*

=  V " '  % ( £ - % )  , 1-78

which is in agreement with equation 1. 75.

The partic le in a box problem  would at f ir s t  sight appear to be 

a sim ple problem . However, this is not the case. The problem  of the 

wall’s cannot be built into the problem  as Simple boundary conditions 

on combinations of free  partic le  solutions. A method of solution 

would be to solve the problem  with an analytical potential which is a

26
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function of a param eter such that this potential has a lim it which is 

the potential o f the box, Such problems cannot be expressed in closed 

form . The com plexity of the box problem  is demonstrated by the ex­

pression for the result, obtained from  the orig ina l definition 1. 19 of 

"f . For a 1-dimensional box of length [_  ,

/

st ir I f>y

3

where

a  ( x )

Therefore

*  26 The wave function fo r the nth energy state is
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I  ( K  P ) =  f  ' 3 - i ~  f c i r  *  i| £ ?  ) a  ( X ) ]  
1*/ /  ____________

f i y a r / i )  
v ^  /

^  f  ^  -  £ = P ) *  <*) ]

+

/ j£L _  2. w~n j

0 r / ^ r ^ a( v) J /2  Cur* .    (, 1.81

10 ^  JUhlhorn hasdiown that fo r the sim ple harmonic oscilla tor may­

be expressed in term s of Laguerre Polynom ials. In Appendix III, 

pp. 128 , the simple harmonic oscilla tor is treated using the elegant 

method of Fock, adapted to phase space.

D. Spin and Statistics

P artic les  having in tegra l spin obey Bose-E instein  statistics

while partic les having half odd-integral spin obey F erm i D irac statis- 

31
tics. The wave functions which represent partic les with spin con- 

tain spin variables £  , in addition to space variables T  , The wave

functions /̂ \/~ (  Y' £ )  satisfy a Schrbdinger equation in which the 

Hamiltonian operator, in general, depends upon the spin,

*  % stands fo r £ f • ' '  /  £ a/
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f s ' i ' C ' r  % ' t )  , i .

The density m atrix  may now be defined by the relation:

82

/ * r , )  ' ' r , >  - ? •  « » + * * « * ♦ * % •
I f  P is a permutation operator which permutes both space and spin

coordinates of indentical partic les, the wave functions of appropriate 

sym m etry are characterized by the property

P t  =  ^ f t  ,  1-84

where Xp — l ôr Bose-Einstein systems and /\ =  , where

is the signature o f the permutation P , fo r  F erm i-D irac  sys­

tems. The sym m etry o f the wave functions expressed by equation 

1. 84 is re flected  in that of the density m atrix.

P  =  X p >-85

Further, i f  p  is the same permutation applied to the r  £  variab les,

== ~?\p j O  1>86

However,

p p '  —  A p  ~  1.87

It is , therefore, observed that the sym m etry properties of the 

system must be determined by the sym m etry of ^O  with respect to

. _ / f
either the variab les i £ or T jf , but not both. A spin-independent 

density m atrix  may be defined by the equation
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/ ° ( r ;  rO ^7 ^ ( r ? ;  r ' 5 )  1.88

In general ^ > iX J redoes not possess any simple symmetry. The 

general equation of motion for ^  C rJ r ')  is complicated by the presence 

of spin terms in the Hamiltonian. However, if the Hamiltonian is 

diagonal in the spin,

|c=4*£ ^ '  W "  ( r )  > 1* 89

y ^ C T j .r^) satisfies equation 1. 16. The Wigner distribution function 

may be simply defined in this case by relation 1. 19. That ^ ( r j f ^ h a s  

no simple symmetry may be illustrated by consideration of a system 

consisting of two identical particles of spin 1/2. Let cp (T ,  .r j  )  

and ^  ^  (  H ,, )  be complete sets of symmetric and antisymmetric

configuration space wave functions. Then, if the system has a

Hamiltonian of the form 1. 89, a complete set of admissible states are

26given in terms of the products

=  ^  S -U A U )  1.90

A _ cO A <• . 1.91
•“j ~  x .  u j  ( ? )  ■

The super-scripts iŜ  A  on the left-hand side of equation 1.91 refer

to the spacial symmetry alone. The definition 1.88 gives i o r ^  

the egression
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/O ( r j  r ' )  —  o,^  cp^ ( r )  (p s v l a ( z $ ' )  i a a  ( $ $ ' )
{ n $ s '  *

f  2 1  a ~J 9 ^  O J  < p A ( r'J n *
J  J

a ~  cPHS ( r J  Cj(r's

r ^ y  a 9° ^  ^  9 *  M  1
92

where P  : ? » , *£  M are energy eigenstates, belong­

ing to the same energy £* a weight of 1 would normally be assigned

a . (X . It is observedW-vto each spin state giving the result la.
J

that is the sum of a symmetric and an anti-symmetric part, and

hence has no symmetry. (Of course it is symmetric with respect to an

interchange of both sets of variables r  r  /  >  r  r* )•

A system consisting of f\J weakly interacting spin 1/2 particles 

has for state functions the Slater determinants, which apart from a 

normalizing factor are given by

t 6,

1.93
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where the VL̂  f <g are spin 1/2 eigenfunctions. The XA^ have

the properties

where ^

II «4  II
I ©
O -  I

1.95

If the spin ; variables are assigned the values i  1/2, equations 1.94,

1. 95 imply that

' U ' a C ' / O  —  ’u . , / ^  ( - ' & . )  = /  1, 96

and

^  =  0  . 1- 97 

The assumption that the Hamiltonian is independent of the spin

variables leads to the conclusion that the system may be considered

32to be composed of two distinct kinds of particles corresponding to 

spin up (u-particles) and spin down (d-particles). Further, the 

number of each type is a constant of the motion. For a state repre­

senting iw u-partides and //—m  d-particles the wave function 1.93 

becomes
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T -

U. / t CF,)

U,M, 1A

u

' ' '

^'/L f  C*J

^  Uyz (? „ ) 

**-&  t€* )

u ~'/x
32The columns of the determinant 1. 98 are of the form

/ U u

F =  V*

1.98

1.99

or

\

U \s\Ka4- (

-  '/z. 1.100
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Therefore the wave function vanishes unless fn of the £ are plus 

one half and A/~fv\ are minus one half. The value of the wave function

Equation 1. 101 is the configuration space probability amplitude for a 

specified set of l>\ u-particles and A/-fy d-particles. It is observed 

that the fVi u-particles and A'- m d-particles separately satisfy the 

Pauli exclusion principle. If 1“/, « - - j are assigned to the u-parti­

cles and t~hn4_f J > - * / to the d-particles, the normalized state corre­

sponding to 1. 101 is

If (ty is the probability of the system having tn spins up t 

the density matrix consists of terms of the form

32in the latter case is

N-Wy
1. 101

where U { , . . . ; U ^  is some permutation of (1. 2 , V  )•

, 1.103
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which again shows that ( r’J, Y'^has no special symmetry.

I f  the Hamiltonian has no spin dependence, the probability that 

a specified electron has its spin up is 1/2, therefore the probability 

that m  electrons have their spins up is fV * — (  CC>)  • 

has its maximum value for ~  t and i f  /V  is la rge,

the distribution is strongly peacked near this value.

. 33
The wave function 1. 102 for frvt ~  NfZ. has been used in the

statistical treatment of the many electron problem .

For spin zero  particles ( r  J IT") is sym m etric in each set

o f variables.

Perhaps the most elegant method of handling the problem  of 

spin and statistics is that of second quantization. To each type \) of 

particle is associated an operator fie ld  £lr) . The fie ld

satisfies a commutation relation

L ' V f ( t )  1.104

the plus sign holding fo r Ferm ions and the minus sign for Bosons.

The Hamiltonian involves space integrals o f products of the ^

For example, fo r identical particles interacting via the Coulomb fie ld

• %.
H -  -  -

2>n

J J  1 ■105
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The Schrbdinger equation for the system  is

I  3 .  -as- > f  ^  1. 106
''at

The 'it- are vectors in a H ilbert space ,$ , and expectation values

of operators ^  are given by scalar products

< A >  =  ( f  ,4 ^ )  u r n

I f  is a vector in 3  » an operator /f ” 5r is defined by the

esqaression

=  ^  t i o g

where ^  is an arb itrary  vector in 3  • It fo llows from  1. 108

that

<5 =  ( w f )

= ( I , :P 

=

* =  F p  (  W  ^  $  1 1 0 9

The density or statistical is defined by

r -  27,
where 6ty is the probability fo r the state . It  follows from
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equations 1„ 106, 1. 108, 1. 109 and 1= ll'O that

l - f c  —  h  i . m
^  "t >

i f  ^  form  a complete orthonormal set o f states in ,£> , theJ

trace o f an operator / {  is defined by

^  A  —  Z (* ( ' i v  j A '3'c )  , 1.112

I f  is an operator, the trace o f /\  is equal to the ensemble

, A 25 average of ^  , since

=  I  A / * * , )

=  Z " / ,  ^  'Z j  )

-  C * , ^ )

=  2 t> O-c f ' i ij A $1 )

=  < A >  1113

The second quantization procedure w ill be applied to the equilibrium 

of a binary gas composed o f electrons and bare nuclei.

E. Equilibrium

15De Boer has given an excellent survey of the methods
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custom arily employed in equilibrium statistical mechanics.

Scheidegger and McKay have considered the quantum statistics of free  

34
fie lds. In this section an outline of the equilibrium theory is given

17
in which the statistical operator yO is employed, contemplating its 

use in the equilibrium theory of a binary ionized gas.

The density operator for a canonical ensemble is given by

1* 114 

in which

?  —  jfc . e  ~  t3 * *  i n s

and p  =  I / 4 r  ■ The Helmholtz fre e  energy p  is given

• 35 by

F~ =  p - '  ?

The energy I T  is the ensemble average of

1. 116

X T  =  H  e . H
or,

V  =  -  ' ' 117
36 ^Sine e p~ "J~& ' t îe entr°Py expressed by

s = ~TCr'^)
A lso , since

i  r  =  -  -  s <*r

1. 118
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^

p  =  ±  I 2 _  _ ‘ - " 9
I3  ~ d V

Equation 1.117 and 1. 119 are re fe rred  to as the caloric and thermal

15
equations of state respective ly.

An illustration of the use of this form alism  is furnished by the

problem  of non-interacting particles of spin yO . The treatment is

34essentia lly that of Scheidegger and McKay. It is assumed that the 

spin is half-odd in teger, so the particles obey the Pauli principle. 

L e t f  )  be a complete set of 1-partic le  energy eigen­

functions. Then the fie ld  operator % ) may be expanded in

term s of ^  ^

*  Z * ,  ^  O-JU 1120
where CLll \ are the destruction operators for particles in the state

37 _
• The exclusion principle requ ires that 6 *.^  satisfy the 

anticommutation relations

t  & A  4 > C L k '4 ' ] +  "  ^ k k '  $><6 4 '  1,121

The Hamiltonian operator is expressed by

M  =  ‘ -122
where /7. —  s\ and ^  are the 1-partic le energy

kd “ ‘b e  &



eigenvalues. Therefore the canonical ^  is expressed by

j O  = r  ~ 1 g  ^  ^ 1. 123 

The trace of is easily  obtained by using a representation in which

the j f X ^  are diagonal (occupation number representation). Equa­

tion 1 o 121 im plies that the eigenvalues of /?  ̂ are q  and 1, hence

? =z e~fl ̂  e* ^
= n z

h i  M k (

- n o* c-s**)
T*-r— / | ^  /

~  TTk ( ! -+ e V s ** J , 1124
The free  energy is , th ere fo res

p  r=  . 1.125
k.

For particles in a large volume V  , the free  energy may be evalu-

34ated in terms of known functions.

The average number of particles in the state
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or

< Kki> =  ( / +
Equation 1. 127 expresses the average number of particles in the state 

VLfag as a function of temperature, It represents the number of 

particles when equilibrium is truly attained. ( must include the 

rest energy of the partic le ). O rdinarily equilibrium in the above 

sense is not rea lized , and it becomes meaningful to speak of equ ili­

brium of a fixed number of partic les. The situation in the latter

case may be handled by restricting  the states to those for which 

✓ ^  t? /  tsr „ Such a restriction  corresponds to what may

be term ed a "partic le-m icrocanon ica l ensemble, " as distinguished 

from  the "partic le-un iform -ensem ble" used to derive 1. 127. The r e ­

striction makes the evaluation of sums very  difficult,

so a grand ensemble is introduced to facilitate the handling of the 

computations. In the grand ensemble the average number of particles 

is specified, and, i f  this number /V is large, the re lative  fluctuations 

fr om N w ill be small, The grand ensemble is defined by the statis­

tical operator

P  =  f - ' 1. 128

where kA~ is the chemical potentials The number of particles and
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the chem ical potential are "com plem entary" in the same sense that 

temperature and energy are complementary. The average number 

of particles is expressed by

^  ( 3 ^  —  1.129
'  r  /u. *

and the average number of particles in the state *s ôun^ to be

+  i . n o

The average number having energy is

2/0+ i

< ^ >
1. 131

~  / +  e  **
Equations 1. 130 and 1. 131 are the customary expressions for Ferm ions.

There has been presented in this chapter an account of the p ro ­

perties of the Wigner distribution functions, as w ell as an account of 

equilibrium theory. The Wigner distribution function plays an im por­

tant ro le  in the modern theory of transport phenomena, Ross and

27 28 29Kirkwood, H„ S. Green, and A. W. Saenz have considered the

transport equation in quantum statistics based upon the Wigner d is tr i-

30bution function,, In addition. Green has considered quantum c o r re c ­

tions to the classica l equilibrium statistical mechanics. The Wigner 

distribution function is particu larly useful in that large portions of 

c lassica l statistical mechanics can be taken over d irectly  into quantum 

statistics.
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CH APTER II

TRANSPORT PHENOMENA IN A SYSTEM 
COMPOSED OF CHARGED PA R T IC LE S

A . Hamiltonian Description

The system is assumed to consist of N charged particles 

interacting via the electrom agnetic fie ld . Any external fields present 

are assumed to have a m acroscopic dependence upon time. L et f  ;

'  W  ke position vectors of the particles,  ̂ , , ,  , <2̂  their 

e lectric  charges, and ty\.f $ . . . > their m asses. It is assumed

that the particles have no further e lec tr ica l or mechanical structure, 

that is , any spins, and associated magnetic moments are neglected. 

The partic le motions are treated non -re la tiv istica lly  since a co rrect 

re la tiv is tic  treatment automatically brings into consideration the 

additional complication of spin. The electrom agnetic fie ld , however, 

is treated exactly.

The e lec tr ic  fie ld  f  is written as the sum of three terms

7- r ^  F
E  ^  E -t  E  + £  2.i

where g  is the transverse part of the fie ld  due to the charged 

partic les, E. the instantaneous Coulomb part, and ^  ^  the external 

part. The instantaneous Coulomb part is expressed by the relation

$
At least for electrons and other half-odd integer spin partic les.



f '  I , 2.2
T"and £ is characterized by the e g re s s io n

V  • E T =  . 2 3

The magnetic fie ld  is written

-> ->■ _  ^

3  =  B  +  B  2 4
j- -»■

where ^  is the fie ld  produced by the particles and is the

external field . The system is enclosed in a large volume V= L so 

that the internal electrom agnetic fie ld  may be described by a denumera- 

ble set of coordinates. Inside S / M axw ell' s equations are valid and 

may be written

44

where

17- 3 a> 2.5

v-2 =  4*r/% 2.6

£: =  -  J - j _  t
c -at

2. 7

3 -  J. a ?  +  4?  ^  
C c

2. 8

and

f s  =  I *  <?* s  ( ? - % )  ,  2 .9

j&  e K S C ^ -  T k ), 2.10
being the velocity  of the /c th partic le . The external fields 

satisfy the homogeneous M axwell equations and may be subtracted out 

o f equations 2.5 to 2. 8.



where J  C rr c> and 7" r s  ^  , Then equations 2.5,
r

2. 6, 2. 7, and 2. 8 may be written in term s of the

following;

3 11 *=* &  2 ° 12

c —  a. rr  2.13K7 , E  =  4 r r /%

_L  J 
C ^

=  ± £ - J r  +  * X J

' 7 x £ r  =  -  ^  2- 1*

~*7~ 2.15
3 i  s-

38 ^Follow ing H eitler a set of rea l vector functions ^  (ft ) is in tro-

duced, complete in with respect to transverse vector fie lds, and

with the follow ing properties

f v  —  47 T C ^  ^  2.16

t  ^ 4 *. ~  a  2 1 7

~  °  2 1 8

In the above equations Syuv Kronecker delta, and
-> L

where " x  is a vector having non-negative in tegral components.

is related to the angular frequency by the relation

CO.. — C » C  being the speed o f light. The vector potentialA> >%

^  is expressed in terms of an(* t îe coordinates
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18by the relation,
A*

A  —  jL x %  A a } 2.19
->  _

which yields the follow ing expressions fo r and >3

2 . 20

and

2  =  Z A f A .
_

The current density f  may be expanded in the series

J r r  -  Z A J A  2 22

where the coefficients J [  are determ ined by using the orthogon-

ality  relations 2. 16, 

Since

*4  *=* 1LX JxA^ +  J  C j 2.23

The contribution from  J *  is zero , since

V

However, ^  X  =  V  V  c —V*- j f - ^ a n d , therefore
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/
-  k  -  /  ( v - K

V

~  O  . 2.26

The coefficients iJ/^ may now be expressed by the relation

J, =  — f  X -  A

<

4 -rc

i r e * -  ' ’U
2. 27

K

Since

=  f *  v * < > x ^ O  

=  ~  &  v %

=  Y k U  j  2 28
a system of equations equivalent to M axw ell's equations is given by 

the set
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z .29

The Hamiltonian f-j for the coupled partic le and electrom agnetic fie ld

• • u 38system is given by

h -  z „  i/C

+  V t v )  + t l  2 - 3 0

where

a  (r$)+ tx 2 3 1

is the vector potential at the position o f the k; th partic le , and

X T -  ~ L r r  - h r T  e<: * *  1̂ ' “ ^  P 1 2-32
t,x fc

is the total potential energy, Hamilton's equations o f motion fo r the

system are
•
r K ^  T A *  =  ^  (  ?K  -  ^  3 C & ) )  2.33

%  =  a  3 * -  \  2- “

ix =  9

The symbol ^7 signifies the usual gradient operator acting upon the 

quantity on the left.



The distribution function -r is a function of f* Z5 ? ,  P. t  

and the L iou v ille  operator L- defined by the relation 1. 3 is given 

by the expression

L f  =  "  =

Z K 'U K - X% f  +  PA ^  +

2 x [ - £  +■

49

A form al difficu lty appears in that the distribution function is 

a function o f in fin itely many variables. This difficu lty may be c ir ­

cumvented by employing an a rb itra r ily  large cu t-off value fo r  the 

number of fie ld  coordinates., However, a ll results of practical in terest 

w ill be expressed in term s of reduced distribution functions having 

sm all numbers of variab les, so the form al difficu lty appears only in 

the basic equations. Until a valid approximation procedure to e s t i­

mate the various reduced distribution functions is found, this theory
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is not useful fo r the computation of num erical values. Nevertheless

it is a useful theory for the derivation of the basic m acroscopic

equations of transfer.

It is convenient to introduce a new distribution function ^

which is a function of V  t x  ft £  The Jacobian of the trans-t , »A , A >

form ation ^  ^ is , using an obvious nota­

tion,

T  ■

^  V*i

o

' TTk v***
Th ere fore , since is a scalar density in phase space,

j :  *  —  f a  ^  )  f  ,

and X  is norm alized to the same value as ^

2. 37

2. 38

c=£r d -u - c£fx  U/%
2.39
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The distribution function X satisfies the L iouv ille  equation

/ *  r  *6 T  +  L  f  O  , 2.40
t

Since under the above change of variables

v r< — >
^  -  -

"d

"2> _

is found to be

l _ *  f *  —  V
£->k 4 - ^

F 5 ( % A & ) } v Vk 2 . 4 1

f > 2 - 4 2

where is the value of the non-electrica l external fo rce at the

position ^  o The average value \%f/ of anY function ^  

^0*5 may exPresse<l as

■*
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~~ (■ f  )  ^  )  2.43

where ( j -  j  is the sym m etric scalar product

<J* 2 )  =  f
The L iouville  operator | is skew-sym m etric with respect to the 

scalar product 2.44,

( * - 7  * , < 8 )  -  -  0 * .  1 * 1 ) -  * • «

Therefore,

'd  /■ r *  -> a  \ / -. r ^
=  C f *  1 3 )  +  f l i

4- -s ■ J

9  *
The relation 2,46 is the basic c lassica l equation of transport. The 

derivation of expressions for the law  of change for specific dynamical 

variables may be accomplished by the use of equation 2.46, These 

derivations are postponed until a fter the corresponding quantal ex­

pressions are established, since, for the class of dynamical variables 

of immediate interest, the quantal and classica l expressions are fo r ­

m ally the same. The quantal expressions, however, make use of



quantal (W igner) distribution functions which replace

£ > in equations 1. 7S 2.46.

The quantum mechanical Hamiltonian is obtained from  the 

classica l Hamiltonian by the replacement

~A  ^
K L <  >

2.47

c ^
therefore the quantum mechanical Hamiltonian is expressed by

Z_
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+ V ( r )  i  ^  2.48

The wave functions are functions of the coordinates

^ , . mj "p? and the time. ~fr - The quantum

mechanical L iouv ille  operator given by equation 1.42 may be ex ­

pressed as

- J -  H  * - £ [ % %  ■ % }  f w  , 2-49

where is the classica l Hamiltonian2o 30. Equation 2„ 49 may be 

written in the form

t f w  -  ^ ( £ %  vp )
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—  * V/ ° )  f\ A S  2. 50

or using the equation 2. 30, in the form

=  X * f ;I  -  I s ^  \  f w

+  Z ; i  a  /

' ^ * 4  ̂  ~ < r  ^  } lfî Y r )% > 51

In the lim it —> © , equation 2„ 51 reduces to the c lassica l

equation 2. 36.

A class of dynamical variables sufficiently general for many 

applications consists o f functions ^ of the form

~  %0 (% )  ^  2,52 
where the are independent of ^  . For such functions

2 ^ 3 c  =  L . 1 t

and the c lassica l and quantal equations of transport are form ally  

identical. For such functions it is again convenient to transform  

from  the f  p  variables to the  ̂ 'U.^ ^  j/^ va riab less

with the result

i t < ^ >  =  ( & *  || "y>  +  C ^ L ' S c ) ,  2-54
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which is form ally  identical with equation 2.46. The rem ainder of this 

chapter w ill deal with the applications of equation 2. 46 or its form al 

equivalent equation 2. 54.

B. M axwell's Equations

The charge density at a point "j^ is defined by the relation

~  Z s k e *  k  ( r  -  t ^ )  . 2.55

If the average value *s designated by ^  , then according

to equation 2. 54,

=  ( C J Z j ,  }

-  -  V  • (  C ,  2 ^  £JL. S ^ - ? e ) ^ ) 2- 56

The average value of the e lec tr ic  current density is defined by

the relation

'JL
There fore , equation 2. 56 may be written

^  +  V ' 7 & = O  2 - 5 8
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Equation 2„ 58 expresses the law of conservation o f charge in term s 

of the quantum mechanical ensemble averaged charge and current 

densities. The classica l and quantum mechanical expressions are fo r ­

m ally the same, the only d ifference occurring in the distribution 

functions f  *  f *  .

The internal magnetic fie ld  intensity is expressed by

S c  =  3 X ( F )
and, therefore,

- t  f  =  r

60
_  =  F *  2-

Since £  ^  ^  , equation 2. 60 may be

written in the follow ing manner:

~  ~  < ? * >  2 6 1

The average value of the instantaneous Coulomb fie ld  is given by the

equation

< * V -  G C ! I >
*  -  r - - ? K

l r - % l
3 / 2.62



58

and since X  T~   , it follows that

V  x  <  £ c />  zr- O  2.63

The combination of equations 2. 16 and 2. 63 and the corresponding 

equation fo r the external fields leads to the M axwell equation

V  X  < < ? >  +  —  a  2' 64

The internal transverse e lec tr ic  fie ld  is given by

and, hence

1  2 . / ? > - >  =  _  ±  r  r *
c  ^ 4  '  (-2- ^ /V- j

f *  ^ ^  %x ]  I -  =
A -A

I E *  u t  ■ c ? , )  ~

- ? ( v ,

f  ( f * , Z x 4 t r A A A ( ? j ) .  , 6 6
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The last equation may be sim plified  by the use of the identities

V  X  ( V x  % x )  ■= - V 2- ^  =  ^  A x  “ d ~7 T : =

^ JT *x ^  A , ^  A \  C ^ ) . There results

J . _5 _  < ^ £ r }  =  +- W r < 2??2-67
c  3 1  c

where < ? >  represents the ensemble average of the transverse 

e lec tr ic  current density.
— r  -  ~T~~Y*

I f  K  is the instantaneous Coulomb fie ld  O  =  /
o c  Y c  fa  i r - K . 1 3

it follows that

i i i  < ? * >  -  ( C . L , #

Equation 2. 68 may be sim plified  by the application of Fourier analysis.

L e t  ^
1   f  'ITT I J k - 'T  -*  ~*r

r  ' J  e -f ( A )  2.69

Then
• ~or  f ?  \ __ f  - 2.TTL 'fe- ̂  -9 v

( '& , )  — j  e  d d r  r r  )

and, therefore,

^  I ^  -  =  - 1-  /  ^ i Z - ( r ~ ^  2 71
I ? - ? *  I i r  j  e  —  2-71

The gradient o f the above expression is



and t -— c— is, therefore,
i ^ T l

_ 4 t t  r i J e xri^ ' c?^  2 ' 7 3

k  ^
The right hand side of equation 2. 68 may now be written in the form  

-  W  ( f * j  J c)  wh" '  is defined by the relation

—> • "7* ,
747 ^ =  y c k f  ^ - k k  -<?-%)*■

^ K  J t
^ y  ^    ̂ '2- ' ^  ̂ _ v

Since • /e /k /  t*ie projection  o f *2^^ upon k , J e

is the longitudinal e lec tr ic  current density. Equation 2.68, therefore, 

becomes

The total average current density i / e  is the sum <  _ j  7~ -̂
— y

-+■ C x  y and, i f  equations 2. 67, 2. 75 are combined with the 

corresponding external fie ld  equations there results the second 

M axwell equation

Vx < t >  =  t ? Z  2' 76

C learly, \/r - and
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( f * , L k ^  4 7 r i C ? - ? k) )  =

4 T T  ( %  , 2.77

which demonstrates that M axwell's equations are valid for the quantum

mechnical ensem ble-averaged fields

These equations have the form  of the usual equations of the

m acroscopic electrom agnetic field . However, as has been emphasized

18
by Irving and Kirkwood, the true m acroscopic fields should not be 

identified with the ensemble averaged fie lds, but with suitable space­

time averages of the ensemble averaged fields. The equations derived 

above correspond m ore p rec ise ly  to the M axw ell-Loren tz equations. 

The form  of the equations is p reserved  under space-tim e averaging, 

so the usual m acroscopic M axwell equations are valid  for a system of 

charged partic les.
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C. Hydromagnetic Equations

%  —  $  ( ? - \ )  , 2-78

where the symbol T o ,  designates summation over a ll /C b e­

longing to type V  The mass current density fo r particles of 

type V is defined by

%  “  S  r k )  2.79

The mass density of particles of type is defined by

Let /® be the ensemble average o f the mass density 2. 78, and
( Vviy

—  - V

X3 '  that of the current density 2. 79. Considerations of
(*** U

the same type as those which led to the laws of conservation of charge 

lead to the equation of continuity for particles of type ^

+  V  • (  /> )  z=  o  2.80
7> t I

The exact form  of the hydromagnetic equations is obtained by

application of the law o f change 2. 46 to the momentum density

J fo r partic les of type ) )  . The
W

result is expressed by

i i  ( t f v U j  = ( f *  , <-
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&  =  -  tup ( £ *  Z m

and the number density of particles of type V  by

^  =  6 C ,  I f y )  ? =  A y  f J 'J (t ) 2- 83

where /V£> is the total number of particles of type y) . The use

of the definitions f Hy in equation 2.81 leads to the fo llow ­

ing equation fo r ^  Zty J J

'V t  ^  ~  “' V

+~ X y - f  fi ^  +  ^ g > x  B  e

The kinetic stress tensor is defined by

H- ( / w  ,  s  r ? -  t o ; , *. 84

where S )  is the e lec tr ic  charge density for particles of type l )  , 
( ev

( %  =  ^  ( f * , S ( ? - % ) )
and J is the e lec tr ic  current density fo r partic les o f type i>  ,

y Ca> =  flu <Ŝ  . 2.86

I f  the m obile operator — ^  4. - U  is introduced, equation

2. 84 may be written
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/5 L „ A ?  v - y  =  v - £ i  +  ~ x l  +

d "t

/ t  *  £ ,

where is defined by the relation

^  Z (w 6 c ;  / £ r + £ x Z ] s o ' - * j ) * . » »  

~  K  < V  ( f * j  p
A  '

-  /  Z A 5  ^  f W  t  I A ?A t ™ ^ 3

$ ( ? - % )  )  ■ 2 89

I f  the fields  ̂ A E> are defined by the relations

£  =  < ^ >  + a £  2 . 9 0

and

£  =  < B >  +  4E>  2. 9i

equations 2. 87 may be written in the form

/^v» ~  V  ‘ C y  4- r?y X u  -H

( E y  +  J z y  x < C S )  +  P y  ,  2,92
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Py =  e v J , , v > ( j C ,  { A E K +  ”
o

Equations 2.87 or 2.92 are exact form s of the hydromagnetic 

equations. The quantum hydromagnetic equations and classica l hydro- 

magnetic equations have p rec ise ly  the same form , only the distribution 

functions J T\*/ being different. The form  2. 92 may be compared 

with the equations custom arily considered exact for a gas. * Spitzer's 

equations have the same form  as equations 2„ 92. However they are 

not the same, since Spitzer's f^, represents a momentum transfer 

due to 'to llis io n s ", and to the extent that collisions are meaningful for 

a com pletely ionized gas the co llis ion  term  corresponds (ignoring m ag­

netic interactions) to the entire Coulomb term ,

of equation 2. 88. If there were collisions of a non-electrica l type,

of equation 2.93 would contain terms corresponding to them, 

but in addition has terms corresponding to fluctuations of the e lectric  

and magnetic fields from  their average values.

The follow ing pair distribution functions are introduced:

O )

where is defined by

2.95



66

and

C ( ? " * , )  = ( f Z >
in which ^  p- 8 8̂ni^y any coordinate and ve loc ity  of type yw» »

The value of £(*■) is independent of which coordinate or velocity  of 

given type is chosen since a sym m etric function of identical

partic le  coordinates

'^ , 1 ^ - . . ^ ^ */2. 98

since the density m atrix  has the property

( • •  ,m?H' * ‘ ~r±> . J t. )  = r

( • '  * Ijl”  • j  *** ^  /) ✓ 2.99

If the pair distribution functions 2. 95, 2. 96 and 2. 97 are  introduced
—>■

into the expression 2. 88 fo r (-j*  ̂ there results

-  i ^ Z ^ T )  f t  t'-’tr.vd,
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Equations representing the transport of other quantities can be ob­

tained by the methods employed here. The theory is useful fo r d e r iv ­

ing general relationships, like the hydromagnetic equations, but at 

the present time cannot be used to compute num erical values. The 

reason for this lack is that, so far, the theory is exact and thus depends 

upon the exact solutions of the equations of motion fo r the entire sys­

tem. These equations a re , of course, quite intractable. An approxi­

mate procedure is needed to estimate reduced distribution functions.

The present status of the theory is analogous to a kinetic theory of 

gases for which a Boltzmann equation exists, but the form  of the 

collision  term s is com pletely unknown. Possib le avenues of approach 

w ill be discussed later.
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CH APTER  in

EQUILIBRIUM  PRO PERTIES OF A F U L L Y  IONIZED GAS

A. C lassica l Theory

The c lassica l Hamiltonian for a system composed of 

charged particles is expressed by

H -  )  -  x l l̂   ̂ 3. 1
k I'*.®.

where f .=• jl^. —' | • -A1 equilibrium the canonical distribution

function is given by

/ ^ r ,  p )  -  F )  j 3.2

f-~ being the Helmholtz free  energy. The norm alization

f  f  =  I , 3.3
r, p

yields fo r  p  the expression

P
The presence of charges of opposite sign, g  e ,  <  O in 3. 1 leads 

to the conclusion that the integral in equation 3.4 d iverges at least as 

rapidly as the in tegral,

Magnetic interactions are here neglected.
4



therefore, as is known, the c lassica l canonical distribution function 

does not exist. The physical interpretation of this mathematical r e ­

sult is that, according to c lassica l statistical mechanics, the equ ili­

brium state is "com pletely collapsed. "

Another way of looking at this situation is to ignore the non­

existence o f , and "compute" the average value o f the potential

energy "Sf . The average value o f ~\/~ i s given by the 

expression

69

39

r

=■ -  j
^  ]fO Y"

However, ~\/~ is homogeneous of degree -1,

3. 6

3.7

therefore,

<v> - - % s,

=  _  Z A / k T -  3-9
According to the V ir ia l theorem, the pressure of the gas is given by



PV = A/kr -h i  (V >  3.10

Hence,

P V  -  /i/Ar -M A 7- ^  o  3 . 1 1

The "resu lt" that is zero  is in agreem ent with the statement

that the gas is com pletely collapsed. Equation 3. 9 is independent of 

the attractive or repulsive nature of the inverse square law of fo rce .

If the charges are a ll of one sign, \/ =  O  corresponds to the 

com pletely expanded state. I f  walls are introduced in the latter 

situation, the result 3. 9 does not obtain, since the wall potential in­

troduces an inhomogeneity into

The presence of a rb itrary  large negative values of the 

potential energy is responsible for the divergence of the canonical d is ­

tribution function. The canonical distribution function perm its a rb i­

tra r ily  large negative values for the total energy. On the other hand, 

the m icrocanonical distribution function pertains to a fixed value ET 

of the total energy. The possib ility  that the m icrocanonical distribution 

function m ay exist appears to o ffer some hope for a classica l theory, 

but it w ill be shown that in general the m icrocanonical distribution 

function also fa ils  to exist.

The m icrocanonical distribution function is defined by the

70
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equation

~  C S C E  "  ^ )  ' 3. 12
where ^  is the 1-dimensional D irac delta function, and £  is the

norm alization constant

3. 13C"1 =  f %(.e~HCr,p)) 
r r  _

New coordinates and momenta F tP  are introduced by means of the

transformation
—?
n =* r ,

fix -  /y

— Z5/ >3

-  ^

%

3. 14

3. 14

The Jacobian of the transformation 3. 14 is expressed by the relation 

I

T  =

'iH  i t l

'X t i
^  fix

3. 15

and, therefore, equation 3. 13 becomes



where The integration with respect to

H is ca rried  out, with the result

f  i i r  f 3.17
Jht = e  i & l

Let

^  ^  f t  3-18
and

then equation 3. 17 may be written

3. 19

= i [7 T k (*m<) 3'
u J -y ~ -  £  7/ *

C  L f TT /•_ _  v ? 7 I [ e - i r - r f  3.20

1 r - f - 7 / o
where /- » *ar as'the integration

with respect to ^  is concerned, the integrand is a function of 

alone, so the follow ing spherical polar coordinates are introduced 

into the Y\ =  3 /K— / dimensional momentum space:

A, =
l

'  A  0  3 - 2 1
* ‘ * ^  ^ f . /

*5: /M+’L'frj ^ j
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where 0 9-  ̂ <  77- > f j , , ^  ^  ^  and O ■$• ^ 2 7T<

Expressed in term s of the solid angle d J2. , the volume element c/6̂

is

where

ci (h)jb -  f >h~/ d p  qLq_ 3.22

X L  *■» J--2. * * • 3.23

The total solid angle _/7 is

J« ch^n-t ' j 0 s3,

2. TT^3'  /  P  ( * / ? - )  ) 3. 24

and, therefore, the in tegral 3. 20 may be written

C> - 1 f  ; r  /- ^  ,

?  z 7^ ^ ;  r f r ( ^
w  ‘  J ;

=  17 T  ^  _ r V ^ 9  (  ( £ - V - y \ * r
rĈ h) J «? pfaj*) J

or £ - i r > o
- 1 , C ^  i±ti /- M-i.

^  ~  z  ]  - 2 U :  f  x

r  1 3A~ ^  3/VA  /• , **-/
—jH "Hi f-2^ )  (  n/aA/T y  c/r , ?6

^  ;  r ( ¥ J  / i r * o  1 3-26
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The in tegral over configuration space in expression 3. 26 d iverges for 

/V ^  2. and, hence, the m icrocanonical distribution function 

fa ils  to exist. For two particles the m icrocanonical distribution 

function exists. However, the average value of the potential energy 

d iverges; fo r the average potential energy for two particles of oppo­

site charge is given by

— oO 3>27

The origin  of the divergence of the c lassica l partition 

functions lies  in the potential energy term  of the. Hamiltonian. A cco rd ­

ing to quantum theory, the possible energy values o f the system are 

bounded from  below, and this c lassica l d ifficu lty disappears. It is, 

therefore, clear that there exists no valid  c lassica l statistical theory 

of charged partic les. Any valid theory must be based upon a quantum 

theoretical foundation. This conclusion does not mean that classica l 

theory has no application to the problem . For example, the classica l 

v ir ia l theorem, under conditions of high temperature, is a valid 

approximation provided that the average energy is computed using 

quantum theory.
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This section w ill be completed with a derivation of the equation 

of state, using the classica l v ir ia l theorem fo r a system of charged 

particles including magnetic interactions up to order • The

force on the K th particle due to e lectric  and magnetic interactions 

is expressed by

/
Fk -  Z j *

C - J

The v ir ia l due to the forces 3. 28 is given by

V  -  i ; * . *

"  -“v V  e« cJ )/r-3. 4-

- Ik : yJ K 'Kj

 ̂ ^

J
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KJ

=  ~ \ r  +

The equation of state fo r a system of charged particles is, therefore

P V  =  / u k r  -h /  < s Y ^  * 3.29

where

iZji
Except at extrem ely high temperatures (where re la tiv istic  

effects cannot be neglected) the magnetic contribution^- to 

the pressure is nil, and to a very  high degree of accuracy equation 

3. 29 may be written

P V  =■ M A T  t  J  <V> 3.31

The correction  to t îe Per êct gas *aw i® not large. -An e s ti­

mate of can be obtained by computing the potential energy of

a uniform ly distributed system of charges. The contribution to 

from  a stric tly  uniform distribution of charge is , of course, zero  for 

a neutral gas. However, fluctuations w ill produce a charge density 

of order of magnitude

l/ -  * / v 3. 32
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and, consequently, a contribution to the energy of magnitude.

~  3.33
where is a linear dimension of the container. Therefore,

F V  *  A/kr O -  —  )  3-34( /fk r  '
For , the correction  to p  \/^ is approximately

M ' 3 / T  , which is quite small.

That the estimate 3. 34 is o f the co rrect order of magnitude

for a uniform ly distributed system of charged particles may be

demonstrated in another way. Consider a binary gas composed of

electrons and /I/ nuclei of charge ?  £  . The e lec tro -
c

static energy is given by the expression

A e  /*£

v -  7  ^  ^  - i  ^  ■
k j

The assumption of uniform ity im plies that the average of the 

reciproca l distance between any two particles is the same. Hence,

< y > =  T  ? ^ / ^ / ( f > 3 .  36

The condition of e lec trica l neutrality is /Ve — so equation

3. 36 becomes

a?-I-1 a/ I
< ^ >  =  - t ? A r e e * < - L y

3. 37
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3. 38

T h ere fo re ,

—  3 _
s (z+i)  e y R 3. 39

The tendency of negative charges to swarm around positive 

charges (Debye effect) w ill produce a contribution to the potential 

energy. This effect w ill be considered in some detail in Chapter IV.

B. Quantum Theory

The grand ensemble statistical operator for a binary gas is 

given by the equation

wave fields for the two constituents, the Hamiltonian may be expressed

f  2
In equation 3.40, JA,  ̂ jU- represent the chem ical potentials of the 

two constituents, is the Hamiltonian operator, and ^ ^  are

total number of particle operators. I f

37
as

2 k* ) ^
'  _  f  1-

*A1 L
r
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#* fL [VflVVtfvJ V̂ *7*yi?-?i
r  v/

+  ¥ V L  [ V * t o  r V i  ? -  r' lr r'
-  Z e -  J J  1 ' ,t( ? ' ) 1 ' ' ( ' , ')M *  13.41

Let the subscript 1 re fe r  to electrons, and the subscript 2 to nuclei 

of charge ?  . Then 'r']f̂  * satisfy the commutation relations

D ' K f r J ,  =  g  3.42

C ' t 2- ( r ) ,  ' t i t ( r ,J ] ±  = .  S ( T - r V  3.43

[  ' V ( r )  , 0 ,3 .4 4

where the plus sign in 3. 38 holds for odd A nuclei and the minus sign 

for even A nuclei. I f  Cj^  ̂ form  complete sets of 1-partic le

wave functions, the wave fields '\j^k K~iZ  may be expressed in 

terms of destruction operators CL

=  X . 7 5/ *  

" t k +  = 3.46

The functions are c^osen to be free -p a rtic le  eigen functions,

which satisfy the equation
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-  ^  V * f *  ~  ^  9? *    £ *  3 47
^  /At ^  ^  ^  ^  3*47

In term s of Q, ^ ^ ^  the Hamiltonian 3. 36 is
K- J

»  -  I f*  *  n * ^  hfc

^  J tjkJL U f * v + ( « l * v

where
* 1 , i ? . ^ s *■  < KLjkji <JKJL c j

i* ? ' ~ I ? - ? ' !

*  ? ^ Y /  ^  y> & '
and ”2- j ~x — ~̂ ' ~\ "

50

J L 'h k J i  -  -  ? e-  / /
—  7 ^ ,  I p  -  f '/

In equations 3.43 to 3.45 the integration includes summation over spin 

variables, and each index is actually double i L where <£̂  is 

a spin index and c a space index. The wave functions may be 

written as a product

f t =  %  ( ? )  ,  3. 52

where

15 ( ? )  =  i / ' - *  ■ ? / *€  '  3.53
J
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and

f t  -  | ~ J l  . 3.54

Because of the orthogonality of the spin functions, there obtains

*  ^  ;  3 - 5 5

I 2-. r n-2- 3*56
‘ j k >  -  X  t j  fe-e- j

and ^  j

where
^  C j f e x  -  ^  4 2  'c jk .* -  3 57

JL -, ~ c l (( e <*?&-?' 3-58
‘ J fe-e- = z y>- J J  I ? - ? ' /

etc. Equation 3. 52 may be integrated by use of the expansion of ■— = 

/ | y- _  Y“ ; | in the Fourier series,
~T

_  t ^  / t k.* r

r  ^ T x f ( ^ ) e  = f -  ^

where ; f „  »  V *  ThuS’

, „__  t ^  _ /  i b ' r
I _  N r /  * \ *> _  f  <4tt \ /“  /

2.y * -
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a ■* "  -* -£ 3.60
;

< % . f  ( « >  ,

xtt^ jc^i v i £-Ar ,$-X = &.-?$*3-61
with sim ilar expressions for Q  and 4 - % ^ . The

- ' c  j  fe-«. c 'j ’ /t-a-
Hamiltonian 3.48 may, therefore, be written as

w  =  f ot ” " U  + f  *  )

* *  f  ^

+ ^ r 2 ~  c ^ v f K ^ o
^  % - % * % - % * *  T t c  -  i z * 3-62

The statistical operator 3.40 with the Hamiltonian 3. 62 serves as a 

basis fo r a rigorous theory of the thermodynamics of plasmas. Once 

the partition function j? is found, a ll thermodynamic properties

___ W  —
become known. The partition function is the trace of p  f

t  , or

W j '  ' '
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The evaluation of expression 3. 63 is quite d ifficu lt and has not been 

done.

The pressure is expressed by equation 1. 119,

P  =  - JL t. e- v * ( w V - i J s . *

or by

PV^ - J -  t , c'^H-A'w"-X^V365

Equation 3. 65 may be transformed into the quantum mechanical v ir ia l 

15expression

F V  —  J r  " fe  K )  +  - j  t  ( f ~ V ~ )  3.66

where /”£  is the kinetic energy operator and ~\/~ the potential energy 

operator. A t high temperatures K J  ?? A / f ^ T  where /\ /

the average total number of partic les. An estim ate of 

= ( fV )  is obtained by fir s t  computing ôr a state

JL (  Vt*'" )  an<̂  then summing over a ll states using the

number densities H j> ) X\~j given by equation 1. 125:

is

<  n.’; >  =  \ I p i E i - p ' )
-h e. 3-67

<-n j >  =  l / |  -j- 3.68

(It has been assumed that both types o f particles obey F erm i
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statistics). The average value of for the state

found to be

t e '1'  / ‘ffrJt'*' v » V n ‘
—   --  / . • -rrse— =*" _ ' l "  ;Z  y  ^  lj J

-  i  £ j s ? y  '  4 £ ^ ^ n f n ' .  3.69
V  £>tj J

Equation 3. 69 must be averaged over the various states (occupation 

numbers) using 3.67 and 3.68 for the average occupation numbers, and

^  ^  - 4 * The resu lt is

< 1 r )  =  f  ( * + • )  f ( ° )

I y  '  y i r - t ' *  _________ 2-

1  y i  ■ y > 7 ^ v  2 ^ V I _____________________________

*  i  v i K - 0  +■ 70
The firs t  term  in < ^ y -^ o f equation 3. 70 corresponds to fluctuations,

and has the same value as that given by equation 3. 39. The next two

term s are exchange term s. Congelation term s have been neglected in 

this crude approximation, but w ill be considered in Chapter IV. The
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sums in 3. 70 may be approximated by in tegrals, 

Define

V  '   1
n _ d a c<0 - ^ j  3.71

£Sf V  r f  _______________ d  Px-_____________— 3.72

7 T ( i r J t p  J J e f C & r ^ u  < f < £ -r y ,
I f  & is the angle between ^  and p  / the above expression may

be expressed as

ck? «3> '7T

x  ^  f  fJ J  J
g> e> e *■

L&fr

, 3. 73

[ l - t

_ _  m r v  f  / /  * (ft f id  ft* p, f~  p * r )

(u r jg p  I X  ( u c * r > y ^ ) )  ( i  t  ^ )

The value o f the exchange terms in equation 3. 70 may be expressed 

in terms of the integrals ^ T * ^ w i t h  the result that

K y )  =  i  f  (•) (-g+i) //̂  c*-
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For T~ O  (ground state) the integrals become

r '  . p -  ,  „  . » -

(V T 4 i) 1  f i

T
I

_  P .?  ,  3.75
( zttA ) V

which gives for the exchange energy of the electrons,

=  -  l r c_ y  p /  . 3.76

^  33The above result agrees with that given by Gombas. For other

values of temperature the integrals 3. 73 are not elem entary, and have

not been evaluated. The exchange energy is extrem ely sm all for a

com pletely ionized non-dense gas, but is quite large for electrons

bound in an atom, and may be important fo r extrem ely dense gases.

This chapter is concluded with a derivation of an expression

for the quantum mechanical phase space distribution function for a

system  of spinless particles in thermodynamic equilibrium . The

density m atrix  ^  (% '% ' )  is given by the expression

and, therefore, the Wigner ditribution function is given by
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f w  -  ^ 2 . ^  e  3-78
where are the phase space eigen functions. However, according

to equation 1.58

^ w f w —  £  [ v % 3- 7’

and, since H w  is a linear operator,

e ~ f E ~  L  =  c T ^ / k

r p H *

3. 80

The operator e  r is independent of ft ,. Thus,

. > «
Let

3. 82

and

F  =  ,  ,

^  3.83

be an arb itrary integrable function. The are orthonormal,

3.84K Vvw

and

3. 85

Therefore,
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< ^ F  ;  =  < ^ f K j r >  =  x ^  3 . 86
K

However,

<1,  F >  =  <1 , 3-87

and therefore

<( - Z’ ~ ? ; F >) =  J  ( / ~ 2 ) F  ^  O  3.88

which yields the result * >

3  =  -  I ■ 3.89

The equilibrium canonical distribution function 3. 81 may now be 

written

f w =  ? ' *  e ~ f  ^  1  3.90

In the limit *"  ̂ <9 the canonical Wigner distribution function goes 

over into the classical canonical distribution function 3. 2. It is to be 

noted that only even powers of are contained in the canonical ’j~y\yr 

Wigner noted this fact, but did not express *n a cl ° se<i form.
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CHAPTER IV  

THE E FFE C TIV E  PO TE N T IA L

A. Introduction

The difficu lties with a long range potential such as the Coulomb

potential are well-known. For example, in the kinetic theory of gases,

certain integrals required for the computation of transport phenomena 

42,43
diverge. The reason for this divergence resides in the kinetic

theory assumption that the motion of a m olecule consists of an 

essentially free  part interrupted by occasional collisions which produce 

sudden changes in the velocity. The change in the 1-partic le m o le­

cular distribution function is described by a L iouville  type equation 

with an extra term  accounting fo r the re la tive ly  infrequent collisions.

The collision  term  is then expressed in terms of the 1-partic le  d is tr i-

43
bution functions and param eters describing a binary encounter. The 

Coulomb potential, however, is such that at any time a partic le is 

acted upon by a ll of the other particles in the system, and, although 

distant particles exert sm all forces, the cumulative effect may be 

appreciable. Of course close encounters producing large changes of 

velocity also play an important ro le . There are thus two aspects of 

the situation, which have been c learly  recognized by Gascorow icz,



Neumann and Riddell, the "Po isson" aspect, corresponding to a d is­

crete set of re la tive ly  rare large scale events (collisions), and the 

"stochastic" aspect corresponding to a nearly continuous set of indivi­

dually small scale but co llective ly appreciable events. Chapman much

43,45
earlie r noted the difficulty and handled it by means of a cut-off

at the mean-molecular distance. Arguments supporting the cut-off

procedure are given by Chapman and Cowling,43 and by C o w l i n g .

46
These arguments may be summed up by the assertion that although 

the electrostatic forces are large with respect to other (e. g. , external 

fie ld ) forces, they are not strong enough to produce large effects ex ­

cept at distances small compared with the mean distance between pairs 

of molecules. The motion is then amenable to treatment using the 

Boltzmann equation, in which the close encounters are treated as 

binary, and the distant encounters as contributing to the body force 

terms in the Boltzmann equation. This method appears to be correct 

in principle but there is some question as to the value of the cut-off^

and to the method to be used to account for the long range contributions.

47 48Sji tzer and his collaborators ’ have attempted to treat the long 

range interactions as a diffusion process in velocity space. In this 

treatment the collision term in the Boltzmann equation is split into 

two parts, the f irs t  a binary collision term with a cat-off and the

90

44
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second a Fokker-Planck type term to account for the diffusion or 

Brownian motion in velocity space. Spitzer's treatment suffers cut­

off problems also, but the results agree roughly with those of Chapman 

and Cowling.

There appear to be three main approaches to the problem of

long range interactions. The f irs t  approach may be termed stochastic,

and treats the long range part of the interaction statistically.

Gasiorowicz, Neumann, and Riddell have given a clear account of this 

44method, in which the behavior of a plasma is described due solely

to the Markovian motion of single particles, and in which the effect of

close encounters is neglected completely. The second approach,

49, 50
initiated by Bohm and Pines makes use of "co l lec t ive "  coord i­

nates which depict ordered motions of the entire system (Plasma 

oscillations). The behavior of the charges is analyzed in terms of 

their density fluctuations. These fluctuations are split into two compo­

nents, one corresponding to organized motion and the other to random 

thermal motions. It is shown that for phenomena involving distances 

greater than the Debye length ^ ^  TT ff. ’ the

system behaves collectively. For phenomena involving distances 

less than the Debye length, the motion of the system may be treated 

on a binary collision basis. The third approach may be termed the



effective interaction theory, and was initiated in its simplest form 

by Debye and HUckel. ^  The remainder of this chapter w ill be devoted 

to an approximate treatment of the effective potential.

The above discussion shows that the effect of the long-range 

interaction is quite naturally divided into two parts, one representing 

the effect produced by individual close particles and the other r e p re ­

senting a collective effect produced by the combined effects of distant 

particles. Both of these effects may be taken into account by the use 

of an effective two body potential, which, in general, w ill be velocity 

dependent.

Following along lines of the Debye-Hlickel theory o f strong

12 13electrolytes, Rosseland and Fow ler and Guggenheim estimated

4
the electrostatic correction to the perfect gas law. Eddington 

pointed out that the Debye-HUckel approach, although correct in 

principle, was actually incorrect. Eddington also indicated lines 

along which improvement can be made. According to the Debye- 

HUckel theory, the average charge density ^  around a nucleus due 

to nuclei of charge ?  d? and electrons of charge -  g  is given by 

the expression

, o  =  =  C - Z t t / f c T  - Y M  4.1
I c  g- i? & I  & — C

92
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where j~| ^ is the average number density of nuclei, and /rŷr’ is the 

average or effective potential. Close to the nucleus the boundary con­

dition ^  obtains and the charge density behaves as

?  e  e 2 e ^ k T r  . 4.Z

The charge density 4. 2 approaches minus infinity in an exponential
£

manner, which shows that the total amount of charge ^ 7T J  ^  

in an arb itrary £ neighborhood of the nucleus is also infinite. This 

divergence of the charge density in the Debye-Hlickel theory is quite 

analogous to the "collapsed" state situation for the classical canonical 

distribution. Eddington showed that the difficulty can be removed.

The erro r  in the theory is due to the fact that arb itrar ily  large nega­

tive energies of an electron are allowed, whereas for a completely

4
ionized gas, the total energy must be positive. Eddington made a

very  rough correction to the theory in order "to remove its most

glaring defects. "

5
Pers ico  applied Eddington's method to the kinetic theory of

ionized gases, by using the approximate statistical potential as an

effective two-particle interaction. P e rs ico 's  results agree in order

51of magnitude with those obtained by Chapman, using the cut-off at 

mean molecular distance. The present approach to the problem was
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suggested by S. Chapman, and consists in extending the work of 

Eddington and Pers ico  by computing more accurately the effective 

potential around nuclei and electrons in a fully ionized gas. This done, 

the equation of state may be obtained by use of the v ir ia l  theorem. The 

effective potential can also be used to estimate the transport properties 

of the gas. In the latter problem, the effective potential is used to 

evaluate certain kinetic theory integrals, the values of which determine 

the various transport coefficients.

B. The Effective Potential

Consider a binary gas consisting of nuclei of charge and

electrons of charge — £  . At equilibrium the number of free  (non­

bound) electrons per unit volume is approximately given by the F e rm i-

52Dirac distribution law

n ,  —  (  p ' - j t p / i  +  4,3
Jf f » o

where H =  ■P ‘'/z —> C ^  and ^  is the effective potential,

C 1
'"'f' 7/ & • Recently Kirkwood and P lock  developed a sim ilar

theory of plasmas in which was taken to be

o o

h e  = -  \ - f i t " - / * )  * -4
J o  7 C

However, it is clear that Eddington's argument applies to the problem
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at hand, and equation 4. 3 is a m ore nearly correct  expression for 

nearly free  electrons. Of course, expressions 4. 3 and 4.4 differ by 

very  little except where /^ r  is large. Therefore, the expressions 

for /̂ f/r differ only in the immediate neighborhood of the nucleus. 

However, this difference w ill be of significance in the estimates of 

thermodynamic properties of the gas. If /̂ /' zzz O

e  Jo  /  j

this serves to determine the chemical potential jj^ as a function of

temperature and density. The order of magnitude of £ P may be

45
estimated from  that of the quantity

^  =  n %  (  %7r^ z 3

I f  U  +  <  \  ̂ > >  / and since / -/ >  ^

equation 4. 3 may be written in the classical form

tle -  k E  f ° °  ; >  . 4.7

It is to be noted that the Kirkwood-Plock expression 4. 4, does not 

possess this feature. The condition | may be expressed as

n  e /  T  ^  ^  ^  1 0 ' ^ J 4 ‘ 8

which is assumed valid in a subsequent work.



The integral of 4. 7 may be evaluated simply, the result being42
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f # ' * '  i -  }  4-9

where ^  e  ^  /  f e T  and

■ W 6 *  =  / “ #  /  • 4‘ 10
The number of nuclei per unit volume, in a region where *\l*' is

expressed by

■= / %  e ~  4 . n

Where "=■ O  the total charge density is assumed to be zero , 

hence

K  =  ?  k ’*  ,  4 - 12

and, therefore, the total charge density at any point where "?/ O is

given by the expression

f °  —  ~  n ^ ' / ■ h e  -  C  *  J  . 4° 13

The effective potential satisfies Po isson ’ s equation, hence

=  + r ? e  +  J t '  e " ' * ? 4 - 14

Close to a nucleus 80 equation 4. 14 has for boundary

conditions

j  4. 15
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*  j ** 4. 16

Similar considerations lead to the equation for ' i- 'g » the potential 

in the vicinity of an electron. The result is expressed by

V *  %  + e  ^ 4 .17

where ^  V e  / h -T  an^

The substitution

4, 18

4. 19

'f*  - *  -  e / r  ; v

(r- 'vf £ —*  o r C O

, / U  9?.

I
where f  ̂  T f  2  e 'V ?  % J) ^  and

to the following equation for ^

^  -  _  r  * .

=/r -
The boundary conditions 4. 15, 4„ 16 become

4. 20

A s  -  k T ^  leads

?  —  « < • >
•a- .

4’ 22krn  ̂ 2 K kJ/ f-**
%•b  '  j  r

In a sim ilar fashion, the substitution

—^ o o  t 4. 23

^ ) e  _ 9 e

>
4. 24
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where jp* *  ( _h. T / f  7T 2  J ^ a n d  A e  ~ J ~  Ke >

leads to the following equation for :

i p . - r l k J f +  -  < f  ?  j 4 - 25

The boundary conditions on are

ê ~ > °  j  ^  — >  «= »  . 4 .27

Equations 4. 21, 4. 25 are the same except for the replacement 

These equations roust be solved by numerical methods, and to date 

have not been solved.

The solutions of the potential problem may be used to estimate 

the average potential energy per unit volume. The average energy of 

interaction between a nucleus and its statistical charge cloud is

where

Therefore.

4.28

== Cv) _  
g )r~*0 L J 4 ‘ 2^

-  4. 30

- y j  =  z  f e r  <f' (*) . 4 . 3 1
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Similarly, the average energy of interaction of an electron with its 

charge cloud is

1/e, =  h i  Co )  . 4.32

It is to be noted that both and are negative. The total

average potential energy per unit volume is, therefore,

or

<V > = ^  n ‘ i  r  J  2 <f'(o) ■+ <? '(■ ») 4 . 3 3

Equation 4. 33 may also be obtained from the rigorous expression for 

< v - >  in terms of pair distribution functions, provided the c o r r e ­

lation function is suitabley related to ^ , The v ir ia l theorem

yields the equation of state

f  =  (2 h ) I t  -/■ {  »Zkr(?9%'w+fZfa)

or

f  =  n °k r  f  / + 7 — f a 34
L 6( 2 +1)

C. Asymptotic Solutions

The basic potential equations, as was mentioned previously,
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must be solved by numerical methods. The equations, however, may 

be solved asymptotically for large and small values of . The

asymptotic solutions w ill be of value when the numerical solutions are 

obtained, since they w ill serve as analytic representations o f the po­

tentials at large and small distances.

The basic equations may be written in the form

e ~ 2 r l > 3 5

where %  ~ a° d ^  ~  ?  '  %  and ^  = '  ? ~ '

Near the origin ^ j is large. Therefore,

The potential cj? is not an analytic function of , since the

. . . . . . . . . is analytic in ft- '

4. 37

J

kv/V- 4, 38

k/"V^ 4. 39

)
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and

-  £  r 4.40

where

b n  =  X
H

k ~ o 4. 41

and

°/K  =  y  k  b K . K
K -  a 4. 43

Retaining the f irs t  three terms on the right hand side of 4. 36 results 

in the expression

or

X 3 <?" =  -C- (z  +  x ^ -  X )  4- 
y j f

5>v V '  =  1 1  ^  ( 2 -3 L  +  r  J

44

However, y i F  ^

) 4.45

_
^A-

? -r zn̂y*.*
Hence

o**

where



/  — y ~  J L ( & ~ z )  Q -ts t -ji  , 4.48

The potential 4. 38 w ill satisfy equation 4.45 if  the coefficients satis­

102

fy the identity

t  cs h/ l  SZ* f  , *-/i

r ~ v  - J - r  M .  v

4' / 3 2 k j  4.49

Since 4,49 is an identity the coefficients of must be the same

on each side of the equation. Therefore,

f o  =  f ,  -  £  «  £  =

f j  ~  ~  ̂ 2, +  b a 4.50
ĴtT /fTr

f  =r i: J. 4 -4 ^
V 5 " V ir

^  ~  f i r  (x * ^ - 7 ) j  ^ 7 /^4 . 51

and
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Using the above recursion relations, there obtains

? - % +  f/ y yl  ^  r / o - ^ r t .4. 52

with |p xz Cf> ( ,  Equation 4. 52 is the asymptotic solution 

for small f °  , For large values of JC is small, and the d if fe r ­

ential equation 4. 35 may be conveniently written in the form
oo , J-V>

? "  =  r „ , < ,  / °  * / » \  x

. qq +-/ v~°

iw  /  h=o

53

/  Y  ^  c ,  r v , f  c  c,_ y ^ . . . 4- 54
1 „>/*. ^ T i A

where
/ 3 * = / + i  . c ,  -  -  * 5 ^  ,  « f  = / - A V z

and C 3- ■=• -  ^ J> S'ftfrr - The asymptotic solution is found by applying 

a technique sim ilar to the procedure of Chapman and Enskog, Write

Cf > ' ~ y  =  % C , J A  + ^

' ^  r  p 7 *
where is a parameter whose power measures the order of magni­

tude of a term. A fter the analysis is completed w ill be set equal

to unity. Let

. <5<S»
'/> _  V  r  f  \ 4 . 5 5

h
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Then,

where

Write

Then i
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?  = 1  ^  =  4.56
* K.=c

^ ,/a=  X - J L A * 1 ,  j  4.57

,  J 2 ^ X
*L '

f / 1-

4. 58

/ a ^  / w
K

equation 4. 54 may be written

3  k - f V  -

■K , 4.59

4. 60

^ h_, -  c 3 ^ l i z '  f  -e " - ^  +  Cr / » - J f . . . 4 . 6 1

c\,

f
r

4. 62

t follows that

w .w
{a , r

^  ^  < > - ,  «e^° j 4. 63

~£.-/c. JL  ̂  ̂ ■ • • , etc. , are all zero , and,
therefore, ~  O } /< 7 °  •



<̂o =sr C e f9 , 4.64
The asymptotic solution for large ^  is therefore

?  ~  1 .  + 1 , + *}*- + "  '  4.65
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or

5 ° ^  ^  ft 0  + ■+ ^ s l  }  4. 66

Each term is completely determined by preceding terms. The zeroth 

term C  £ -fir =■ c  <? ■ where is the Debye

radius, is frequently taken to be the complete approximate solution. 

The integrals 4. 63 may be evaluated asymptotically. Let

r r /,

/and

^  W, v-» ' ' ^  ^ ^  ” 4.68

The integral 4. 68 has for its asymptotic expression

os K
E — ~ y  m-a-is 4.69Vv\v\ i ^ A-/ " J

• y  * * o  ( v v y O  *
where / /

r 1̂  o =  I } 4. 70

■=■ K  + (n  t 1) ■ - ' ( m x K - z )  t 4. 71
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Define

; Jvi k J  <l̂ > t
Then, using the above results, equation 4. 72 may be integrated 

asymptotically to yield the asymptotic expansion

w  . 4  _ y  c~or JV e

where

A- -  Î  J  L  ^

+-■2-k. * x~ - k
h a *

In terms of the above definitions

cjo C exo

v  =  f -  e * 0

and

There fore ,

W ,  =  c . ,/x“ C3 e-^0 J

^  ^  *fa E~s

or

-  C  £3 I . * * / ” c  S '!

«A
I V  -  C  C ,  V i/I »  vv -  4 o - j-/

4. 73
fa-r

4. 74

4. 75 

4. 76

4. 77

4. 78 

4.79

4. 80

4. 72
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Therefore,

C*>

^1  ^3  C ^  r  ^ ^ M t > r  4.81
r/  r ~

But, for this case,

r

I > r  = 2 7r  /■— > * -  <?
P  i K r \ «  -h  * ir-_      4. 82

^ r  k ~ o
and, hence,

IV, ~ c +_f2_ - 83
'  4  6  ^  -  7 * -  < ^  -< •

Expressions for higher approximations may be obtained in a s im ilar 

fashion. For example,

vV ^  -— • J L -  ^ c 3 +  ■£ _£? )  - £ -  ^ -■ • • 4.84■sy  ̂ r s'-' r
The resulting asymptotic approximation for is therefore ex ­

pressed by

f ~ C  / ' '  h * ~  r̂ r

+  _ £ J .  -  ? A £  +•
2- r 7"  ^  r J '

U L /<? 4- 85

Aside from  being an analytic representation of for large

the above result may be used to start a numerical integration of the 

potential equation. To each value of C, there is one solution, but 

which solution it is cannot be foreseen until Cp is integrated back
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The constants C, and in equations 4. 85, 4. 52 are

both determined by the value of ^  ; however, the determination

cannot be made until the entire solution Cp is known.
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CHAPTER V 

KINETIC THEORY INTEGRALS

A. Introduction

55
In this chapter some of the results of Chapman on certain

integrals occurring in the kinetic theory of gases are generalized,, In

43
the notation of Chapman and Cowling, the integrals to be evaluated 

are defined as follows;

oo

fc/J * ^  Iff 0 ^ ^  t  d L> 5.1

and

%  ir> -  X  ^  5 - 2

in which ^  is the magnitude of the re lative velocity before collision, 

Ip is the impact parameter, is the angle of scattering,

'\ju '  =. E j x  k.T • an<* & *® energy of re lative motion,

Maxwell treated the case of inverse 5th power fo r -  

c e s ^ ’ ^  while Chapman treated the general inverse y) -power fo rces .^  

The general central force law is treated in this chapter. The poten­

tial of interaction is taken to be an arb itrary function of T , the

distance between molecules, and may be attractive or repulsive.

57The angle of scattering may be expressed by the
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relation modulo TT

2 X  -  TT J *  *  TT

77 -  z j ,  ^  TT j
where £  is defined by the integral

5. 3

V?
5.4

5.5

5. 6

where T/J is the zero  of the denominator:

/ -  ~ i r ( £ )  -  ^  ,

The value J ) g i v e s  the value Cxmy through the relation

X  =  —  2 j }0 ,

The integral 5.4 for is not in a form  suitable for numerical

integration, because of the singularity in the neighborhood of 'KTa

58
This singularity can be removed by a standard procedure. The ex­

pression 'VJ is substituted for 1 in the radicand

of the integral 5.4, yielding the expression

* - 1 —   ”* J k " -  ^  H v W -
e aoove relation is observed to be of t'The singularity in the above relation is observed to be of the form

  5.8
■v; ~\r
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which can be removed by the substitution

r

?  ^  j  o f t f e -  xr 5.9

Let

? =  v a f  v

which transforms the integrals 5. 7 into the form

V '/t-

5. 10

■ M  "

/  ’/x- /
“  1  = "? Av ', and % =  b /v j * the integral 5. 11 becomes

^  ^  5 12

The integrand in the integral 5. 12 is non singular, or, rather, has a

removable singularity at M ~ o 0 since -'&-**-* £ ^

~  —l — i—------------  "  - X V $The expression 5.12 for ex-
* - * •  ^  ;

presses $ Q as a function of and £  , where "% satisfies

the equation

/ -  T f W  -  ^  =  a
^  ' 5.13

The solution of equation 5. 13 for JL as a function of and £  

involves, in general, the solution of a transcendental equation. On



112

the other hand, h  is simply expressed as a function of %  and £~j 

and is given by

b - =  f  I  -  ± - i r ( x ) ]

As ranges from <3 to o o  ranges from  to

where r
I & for attractive potentials

%0 ^ {  5.15

~ V ( e )  for repulsive potentials

It has been assumed for attractive potentials that

~ZC V )  —  O  j  5. 16
JC ~ > 0

which rules out, for example, attractive inverse cube-law forces.

The kinetic theory integrals 5. 1 involve integration over the complete 

range of the impact parameter b> . However, because of the above- 

mentioned difficulty of expressing as a function of |p , it is

convenient to change the variable of integration in 5. 1 from to X, (

The result of this change of variable in equation 5. 1 is expressed by 

the following equation

J2.
Equation 5. 17 has two features which require further discussion. 

F irst ly , the range of integration is infinite, and secondly theexpres-
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aresion is in the form  of a Stieltjes integral ^  ^  , where ^  ^

only known numerically. The firs t  difficulty may be resolved by a 

change of variable; or i f  the asymptotic form  of ( x )  is known ana­

lytically, an asymptotic expression for J X ^ f^ m a y  be found. Then 

expression 5. 17 may be integrated numerically up to a suitably large 

value » and then analytically from  to oO  . The second

difficulty is resolved by the use of a generalized method of numerical 

integration. Of course, the integral may be written

f t  d i> =  5 f  a '  > 5 - 1 8

and ^  may be computed numerically, after which f  ^ may be inte­

grated using standard techniques. However, it is simpler to develop 

ab initio a theory of numerical integration of Stieltjes integrals. The 

remainder of this chapter w ill be devoted to the asymptotic form  of 

» and to the theory of numerical Stieltjes integration.

B. Asymptotic Theory of Scattering

Let be the initial and final re lative momenta of the

scattering system. Then Pa ~  , and is the angle between

/ Q / f  ̂ • The change in momentum is given by the impulse equation
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and, therefore,
-9

Coo y  =  + A - p ) . ~fo j  ^

1 ^  J}- ' 5 F  J  t  . 5. 20

-*■
be the angle between and f  . Then the law of con­

servation of angular momentum is expressed by

t> ?* ~  ryi0 h, Mi*, r*- ■ 5.21
d fc

If replaces t  as integration variable in equation 5. 20, there

results
2- A

— I T  jT*£- X r ^F(^  5 . 2 2

Equation 5. 22 may be cast into a more symmetrical form  upon letting

^  _  fjU . Thus, after some rearrangement,

j f  r - f  f r )  5.23

52Equation 5. 23 is in agreement with the expression derived by Gordon

52For the Coulomb law

-  C 5.24

59and equation 5. 23 becomes

^  i  Site xt.e *■
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or

, -  5.25

which is the well-known result. For other laws of force, knowledge 

of the orbit, IT =  , is requisite to the evaluation of the integral

in 5. 23. However, since asymptotic values are sought, the orbit may 

be taken in f ir s t  approximation to be a straight line. The approxima­

tions b  7C and $  Ti then lead to the following expression
6 z.

for ^  :

wo
_ * /V f  p  f r )  tA.tr

5. 26

The singularity in the above integrand is removed by the substitution

^  = r - z  5-27

whence,

±  f  5.28

Expression 5. 28 may be expected to yield the leading term in the 

asymptotic expression for

A more accurate expression, in which the deviation of the 

orbit from a straight line is taken into account, may be found starting 

from equation 5. 12. Define means of the expression

S ( j )  - - j -
e - y t x )
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then equation 5. 12 may be expanded into the infinite series 

Equation 5, 30 is exact, and expresses in powers of \f~ ( x )  ,

Since | Y  \ =  1 *  A  “  r r  I

1* 1  -  + \ ¥  “ •
H » |  '  ( I - '  ' f )  ^  \

The asymptotic value of ^  , correct to the f irs t  power of " y

is given by the f ir s t  term in the expression 5. 31. Hence, apart from 

sign,

r '-!/-/✓ J
5. 32V  -v. ^ - [ ' J*.. ̂ f - rw  -4

Expression 5. 32 may be transformed into a form  suitable for asympto-

/ , 3Vr'/J
tic integration by means of the transformation ^  rr c: \J *  i  J  . There 

results

*  U f r ; * —

For charged particles

T  '---------  €  j  r  5.34

where is the rec iproca l Debye distance. Hence equation 5. 33

becomes
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%  - £ rr * . 5.35^ e -r (* )
where t  =  ) (  t '  J - - K X  and

T  -  f  "  ~  c  JL? , 5.36
Jo 0 +

After some simplification \J~ may be expressed as the sum

t  -  t 0 + r,

a / 1

where

Tc

and

5.37

5. 38

5. 39
JT -  f ~ L z £ ± £ > ? *o -g . f .

The integral \T0 is simply evaluated, by forming the derivative

J cr„  j w  I- '/-

Therefore,

e
0

bat since j r  ^ £  =  „  and

T a =  J W T  5 ' 42
The integral is m ore complicated. However, for e ^

•2"  £ 5.43
hv—O

, / ^ " + 1
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60 __ 
Therefore, by Watson's lemma, the asymptotic expression for

is given by ^  ^

oO
as -  T "  1—  « ( » » - ■ ■> / y  5.44

and ^  is asymptotically given by the expression

5.45

If %  is estimated by using equation 5. 23, the result is

'X ^  -L . C e ^  l< + f-kx f " ‘ 1. 5 46
It is observed that the leading terms of expressions 5. 45 and 5. 46 are  

in agreement. If L  is sufficiently large that 5.45 is a good approxi­

mation for TC'P/L. » the contribution to from ~X can be

estimated; and is given by

*  L X K X

v  _  z k L  //7 j 5.47- v  ~ zK L / p  — )

) ■
( y - K X )  t
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C. Numerical Evaluation of Stieltjes Integrals 

Consider the integral

r
X  =  J  f  d 5 *48

where ^  and ^  are known functions of . The interval 

is split into a number of sub-intervals, a typical one of which is the 

interval C ^  j  +■ j . Then X  is equal to a sum of terms of 

which n
-4* kt

X k  =  J "  Cx)  5 .49

is typical. The functions -f } Cj are approximated on [_Xn j  

Newton's interpolation fo rm u la^
n

f(x, + uJl)ez2L %(*■)*fa 5-50

where

and

with

Similarly,

Cf ('u ) =  ( ^  ‘ “ (K -*H ) 5 .51

=  J  5 ' 52
r  =  o

5.53

5.54
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The integral , therefore, may be approximated by the expression

e *  
or, by the expression

*  r i  * xf -  * * 3 .  5 ' 5 6

where "*■ *

-5. f i  ^  * 5.57

The integrals maT  be evaluated by use of the generating function

n +  5- 58

If the above expression is differentiated with respect to , there 

results:
- ^ - 0 4 ^ )  ( u  ~  - -  2 ,  y ;  ^

The product of 5. 58 and 5. 59 is integrated from i*-  — o  to "i-*-— n

5.59

with the result

5 ' 6 0

The left-hand side of equation 5. 60 may be expanded into the power 

series

tn.~f

and s^t^is the coefficient of X  in the left-hand side of equation

5. 61.

For ^ , one finds
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W K j l  3 — I ° 2. f / *  \ . it o — n I f  5.62

O /? ' /z
The substitution j  ° ^  — /~0

A *f> -  A -  -2 f, t  f °  ,  * ‘3 0 = % * ,  etC' ■ int°  eqUati0n
5.56 yields the generalized Simpson's rule formula

f * *  ( * )  d  ^  ?  f , +■ 4 f o % , ~ f a 3z

- H I . *  + f > h  +  4  9* ~  *  - i t h l k * - *
r  6 .

The evaluation of J  £  ( x )  a ^ ( * )  is achieved by splitting the 

interval La, hi into an even number A/ of intervals £ -*> J

C ^ x ^ l  > * “  J  ,£<v-/ ,-Wjapplying the result 5* 63

to each of the sub-intervals £  X|y A-j. 3  , X3 , X? J > *

t y j  and finally summing the /V/2 contributions. 

The result is expressed by the formula
. b — X//

+ (f. 3 ,  * i  2* + " <  ? < & < ■ ' ' ' & *  f„)

~  i f *  Sz + £ %  + ■• '  + $ „ ■ ) + ( %  fz + 9 i£ t + ,~  + $ * -& )
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The above formula is quite simple to handle, and has a form  indepen­

dent of the parameterization of the functions ^  and ^  . That

is, the formula 5.64 is invariant under the transformation X —^ 

Higher approximations may be obtained in a sim ilar fashion, but they 

are very  complicated.
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APPE N D IX  I 

McCOY'S THEOREM

Theorem: ^  = ■  ^  =  ‘ ^ ^  £ ^ t  t Af>

where \  are scalars and t t / J -  =  l ? ~ ? t

Proof:

^  ( W ^ V J  =

Q ( V f  f  (y ^ f ^ / ? )  ' '  - (m %1-AP)x

[ %  f a  * ■ * ? ) ]  ( h %  t ^ r )
H- l

-h

■ H >wr'i
kK_/ xt (/+1+ ■*/>) i>(ri+)i>) t'~ (rt̂ f>r*p

L f ;  +

Hence

-3  / , .  .  / . ,  .  i/!_/ .. /■ / .“ -■*

and, therefore

r  I f  =  +



The latter equation may be integrated, with the result

f  =  2  e  l ( \ f >  *

where ^ is independent of ^  . Then j j r O  ^  ^

and therefore,

/ =  e . > i  ^

125
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APPE ND IX  II 

THE OPERATOR G  X  ^  ^  ^  }  j

The result of application of the operator Q J to

the function ^ (%/ * )  -p (&p) is evaluated simply by using Fourier 

analysis. If are the Fourier transforms of £  ̂ -f J

j ' J / > L r  =  j "  £ (u r )  y j(u w )e —  ? f

Uvu ' v

'i.TTL V ' f )
&  &  —

J ' f ( * v ) y u i v ' j  e  ( H ' V ' - v - i a - )

HkTtV/
^7T / fu  • ^Tr i  (t+ ‘ t  ^ ^ 7*9

C e

vvu 'v '
-  qirh/iC 'U v ' - v . i i ' )  vn  i f a  • % * - * £ )  i i r l (u /$  f t ''/*) 

e  t  t

-  [  W r ' ) f ft " r )
yy'  e  •

? t  V ' ' " '

An equivalent form  is obtained from  the second line above by integra­

ting with respect to "H', ,



C 4 (* * * • ]$  ^ f1
(V  V\ 4 %-yi.JnMr, J

[ z, i l  i'-

L Z\
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where

APPEND IX  III

PHASE SPACE TREATM ENT 
OF THE SIMPLE HARMONIC OSCILLATOR

The phase space wave function must satisfy the equations

H f  = ®
III 1

m  2

H — ^/z-w +■ ^  */ z- m 3

The use of expression III 3 in III 1 and III 2 leads to the equations

^  U)-* % 2. /  -  J? -P -  O  III 4

and S  f  ~

Let the operators /? be defined as follows:

a  =  = L  f> / m e

m 7

fhtiaJt 7 *  ] °

"3
IUJ

It then follows that

f > , a + J .  =  =  <j
III 8
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and

f * - ,  b  1  -  [ > +  b ]  =  I > , / , / J  =  l a *> h * J  ~  1119

In terms of the operations CL, fc> equations III 4 and III 5 become

a b +  f  =■ 11110

■ ^ r  {  ^  a  + b ' - b  f  i ]  f  =  £ -  /  11111

Equation III 11 may be simply solved using the method of Fock. The

solutions of equation III 11 are expressed in terms of two integers 

hx. j  and are given by

£ » ,  ( u ' + n * +  0  11112

where

o -  =  b  f .

The normalized solution of equation III 14 is

=  = ± 2 . ( a * )  ' ( b + f  m i 3

~  o  m  14

m is
The solutions are degenerate, but this degeneracy is removed

by the requirement III 10. The most general solution of III 11 is

/  -  2  £ l+-n, K HI 16
*1 = ~*7, J

and the energy =r- ^  ^kj/ ■+■ -f / )  t Since
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and

& + f*,nt — aJ»' + < Ĥl+t j ̂ 2. m  17

f’yit-tj 3̂-
III 18

1 ^ m  19

-  ^  , m 20

the condition III 10 may be expressed by the equation

H.-t.; *  T*\+” ) r ± - h + (

or by
H=~M,

_Ha.

-V),

h

2 7  <it + yn-t)(ni.-n) fh, + n r t * nx - n - i
n -~n<

»3.+ -Z

1
H -  -Ht-hZ

The A  are independent. In fact, they are orthogonal 
rnt Hi,

in 22 
nti  *

in 23 / /^  ^A/«x j  y

Therefore,

C _ * ,  + , => = -  <? , HI 24
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and

C-„_z ■=* f w + njinu-n+t) r in 25

III 26

Hence >\( ~  *  y V .  say, and

C n . - i  =  C k  j

while "

a  , / V = « ,  I, 2 , - - m  27

The coefficients Cw are aH expressed in terms of , which is

determined by the normalization

n

The usual formula III 27 has been obtained. Uhlhorn found the solutions 

f/V in terms of Laguerre functions, while the solutions here are ex ­

pressed in terms of Hermite function*, • That the two solutions

are in fact the same follows from  the addition theorem for Hermite 

polynomials, ^

‘ " f l "  < ? ) # „ < »  ' W * >  =  M  U t e r i ' )  “  ”
K-0

where / is the Laguerre polynomical.
* /V
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