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PREFACE

This report was prepared as a part of the Interdisciplinary 

study of the upper atmospheric disturbance in the polar regions 

that is conducted at the Geophysical Institute under Dr, C. T. Elvey, 

Director of the Institute. The report is primarily intended for 

the student of geophysics who is interested in this subject. A 

part of the mathematical procedure that was previously given by 

Prof. A. T. Price (reference 9 in end of paper) is included in 

Sections 4 to 6 with some modifications so as to enable the student 

to follow, without referring to Prof. Price’s paper, the derivation 

of the formulae which are used in the present discussion* and to 

apply the method to similar problems.

November 15, 1958 M. S.



ABSTRACT

This paper shows that a periodically varying infinite linear 

current, or a periodically varying turbulent circular current of 

small radius (here approximated by a magnetic dipole with a changing 

dipole moment), in the ionosphere, which will give rise to magnetic 

variations of observed order of magnitude, is adequate for producing 

voltage differences in the ground of order 0 .1 to 1 volt per kilo­

meter that are frequently observed in high latitudes during dis­

turbed periods. It appears difficult to interpret the earth-current 

record in terms of its primary origin, unless the distribution 

of the perturbing magnetic field and that of electric conductivity 

of the earth are both adequately known. However, the earth-current 

record is a good indicator of the upper atmospheric disturbance in 

the polar regions.
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1. Introduction

Severe earth-current perturbations are observed in polar regions 

during magnetic disturbances. These earth-current variations are charae* 

terized by rapid oscillations^,̂ ,̂ *^,‘’’̂ , According to Rooney and 

Sherman^ and Rothe^), the amplitude of such short-period variations 

frequently reaches one volt per kilometer or more.

Rooney^ investigated the relation between the earth-current acti­

vity and auroral displays, using the Second International Polar Year data 

obtained at College, Alaska; and showed that the oscillatory disturbance

in the earth-current records and moving type of aurorae are closely associ-
(3)

ated. A similar study was made byCurrie with the Canadian Polar Year data 

from Chesterfield Inlet. Rooney was aware of a possibility that earth- 

currents are more closely correlated to the auroral activity than the geo­

magnetic disturbance; he wrote:

"It is possible that the connection between earth-currents 
and aurorae is more direct than that between magnetic activity 
and aurorae, or it may be that the character of the earth- 
current variations is such as to bring out the relationship 
which exists more clearly. In support of the latter explan­
ation is the fact that the higher frequency-components of 
disturbances are usually emphasized in the earth-current 
records as compared to those of the magnetic elements. Hence 
effects associated with aurorae may be less obvious when 
magnetic records are used in the comparison."

Earth-current records have been made in the College area since July 

1955 by Dr. V. P. Hessler of the Geophysical Institute; similar but not 

quite continuous records have been taken at Barrow. Rapid fluctuations in 

earth-currents are found to be an excellent indicator of the upper atmos­

pheric disturbance, and are used as such by the auroral and radio observers

of the Institute. However, little study has been made on the physical inter­
pretation of these rapid earth-current variations in high latitudes.
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For much slower variations, earth-currents are accounted for as cur­

rents induced by the geomagnetic variations. Chapman and Whitehead^

found a fair agreement, in type and in order of magnitude, between the di-
/ o \urnal variations in earth-currents observed at Ebro and those computed 

theoretically from the diurnal magnetic variations. They found the ob­

served variations of earth-currents to be about five times the computed 

ones. However, considering the inhomogeneous distribution of electrical 

conductivity in the earth, probably too much importance should not be 

attached to this discrepancy.
,(4>Rothe compared earth-current records obtained at Scoresby Sund, a 

French Polar Year station (geomagnetic latitude 76®N.), with magnetic 

changes observed there, and showed that rapid earth-current changes are 

closely connected with abrupt changes in the magnetic field. He pointed out 

that the more abrupt the magnetic variations the stronger the earth-currents. 

This is clearly demonstrated in his reproduction of several samples of 

magnetic and earth-current records (Figures 12-18 in reference 4). He fur­

ther compared magnetic records with earth-current traces obtained by a much 

less sensitive instrument, and demonstrated, with several examples, that it 

is the abruptness of the magnetic field change, not its amplitude, that ia 

most closely related to the earth-current activity (Figures 19-24 in refer­

ence 4), Rothe*did not give any quantitative discussion.

In this paper it is shown that a system of electric current flowing in 

the ionosphere that would produce magnetic changes of observed frequency 

and amplitude will necessarily give rise to earth-currents of amplitude of 

order of magnitude that is actually found in the earth-current records taken 

it> the polar regions. As such a system of electric current two idealized



models are considered: (A) an infinite linear current and, (B) a circular

current of radius sufficiently small to be treated as a magnetic dipole at 

distances we are here concerned with. The intensity of the linear current 

in model (A) and the moment of the magnetic dipole in model (B) are assumed 

to vary periodically. The earth is represented by a semi-infinite medium 

of uniform conductivity with a plane boundary,
(9)The mathematical procedure here used follows that of Price , which 

is shown to be applicable, in general, to any case when a certain inverse 

Laplace transform involving the functional form of the magnetic scalar poten­

tial of the inducing field exists.

2. Statement of the Problem

The system we consider consists of a semi-infinite uniform conductor 

with a plane boundary, and a periodic inducing (or primary) magnetic field.

We compute the electric and magnetic field intensities as functions of time 

and space coordinates. In the conductor the electric current density can 

be readily obtained from the electric conductivity and the electric field.

As the inducing magnetic field, (A) a periodic infinite linear current 

flowing parallel to the surface of the conductor, and (B) a periodically 

changing magnetic dipole normal to the surface of the conductor are considered 

in Sections 6 and 7, respectively.

In Cartesian and cylindrical coordinates, both of which are used in this 

paper, the z-axis is taken to be normal to the surface of the conductor with 

its positive axis directed away from it.
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3. The Field Equations

The electromagnetic field quantities in a continuous medium at reat 

satisfy the two pairs of the Maxwell equations:

curl e V  I -i-i » 0 
c j t

(la)

div B* = 0 (lb)

-s>. rcurl If- c = ~c~ J (2a)c

div D* - 4 1>/> (2b)

 p  ^where E and H are respectively the electric and magnetic field intensities, 
 >  >D/ and F  the electric and magnetic inductions, j the electric current 

density, and J3 the charge density; c is the velocity of light. Gaussian 

units are used.

If the medium is isotropic, we have

D* - €  T* (3)
"b* -/*■ T *  (4)

f  (5 )

where £ is dielectric constant,magnetic permeability, and K. electric 

conductivity; £• ,y* and are, in general, functions of the space variables.

From the second pair of the Maxwell equation (2a,2b) we obtain the 

conservation law for charge and current densities,

div = 0 (6)
d c
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+ 41T0</e e - (€//<) j^grad (*/£ ) (7)*

(10)As Lahiri and Price have pointed out, if (a)K/£ is constant or 

(b) 3* i-s perpendicular to grad(^/^), the charge density J> is indepen­

dent of the field vectors, and is given by exp(-4 77Kt! 6 ) > where J>0

is the initial charge density. If is zero initially, it remains so. If 

it is not zero initially, it will decay to 1/e times the initial value in

£/(41?~/0 seconds. For £ = 1, K = 10^ to 10& e.s.u. (or approximately
-11 -15 - 1 1 -7

10 to 10 e.m.u.), this decay time is of order 10 to 10 second.

Here we consider a semi-infinite uniform conductor. Hence we can take

yo to be zero witftout loss of generality. Thus

div 1? = 0 (8)

The displacement current -i- in (2a) is small compared with
o ^ ^

When the field is oscillatory with a period of order T seconds, the
— ^displacement current term is of order 6 E/(cT), and the current term of

order 4/T Ktfc. Hence the former is negligible in comparison with the

latter, if T ?> 6 /(47T K). For this condition to be satisfied T has only
2 -19to be greater than one second, say, even if K  is as small as 10 e.sju.(orl0 emji).

Equations (3), (5) and (6) together with (2b) lead to the equation

Knear the surface of the earth varies very widely, but it is within the range 
of 1010 to 10^ e.s.u. (or 10" 11 to 10“ 17 e.m.u.). Thus, in our case we can 
ignore the displacement current in (2a).
*For comparison with Equation (2,5) in the paper by I.ahirl and Price, 
an elementary calculation will show that

- ( 6  / K )grad (K / 6 ) ~ (.K / e )  grad (€ /k)-

5



—̂
H, satisfy the induction equation of the form

Hence it follows, from (la) and (2a), that the field vectors, E and

tion (9). Using his terminology, "elementary solutions of the first type" 

represent an inducing magnetic field (external to the conductor) and the 

magnetic and electric fields induced by it.

"Elementary solutions of the second type" represent the free decay of 

certain distribution of electric current in the conductor, which has zero 

magnetic field outside the conductor.

Here we are only concerned with solutions of the first type, and refer 

only to them without further mention.

If we assume that the source of the inducing field lies in the region 

z> h, the (total) magnetic field in the region 0 *£z<h is conservative,
'■ i ^and Equation (9) becomes trivial for H, because of (lb). In this region, 

is derived from a scalar potential, say,iA, which satisfies Laplace's 

equation. Hence Jl ■can be expressed as a summation, or an integral, of 

functions of the form

v  X  <H (9)

2where^r is a differential operator (grad div - curl curl).

At the surface of the semi-infinite conductor the tangential compo­

nents oft and H^ and the normal component of ~B* are continuous.

4. Solutions of the Equations 
(9)Price discussed tv*o types of solutions of the differential aqua*

(10)
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i-Ej + +)2p „ 0 (U)a x2 d y2

\ 2In (10) we can identify -A(t)e P(x,y) as the potential of the inducing
mfield and -B(t)e P(x,y) as the induced field.

1? is given by

H* * - grad S h

» grad [ {A(t)e Xz -5- B(t)e~ Az} P (x,y) ] (12)

The solution of (9) for E? is readily obtained in the region 

0 < z < h as
(13 )

where the factor in front of the brackets is introduced so that lî  derived 

from«fl>, andlj* satisfy Equation (la); dots signify time derivatives. Phy­

sically, the part corresponding to the first term in the brackets in the 

expression (13) refers to the electric field associated with the inducing 

magnetic field, and that corresponding to the second term to the electric 

field associated with the induced field.

where A  is real and positive (or zero) and P(x,y) satisfies the equation

In the conductor, i.e. in the region z<0, E can be written as

= Z(z,t) ( ^ y ,- , 0 ) (14)

where Z(z,t) satisfies a differential equation

i l z - x h -  lz . „ (15)
a * 2 s  n
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 ^The boundary condition that the tangential components of E are con­

tinuous gives a relation

Z(-0,t) » - ^A(t) - B(t)j (16)

The corresponding magnetic field in this region is readily obtained 

from (13) and (la):

_ c ( <LLi± £ 1  x2 zp) (17)
 ̂ d z d* ’^z dy * } '

■ ̂This expression and H given by (12) satisfy the boundary condition that 

the normal component of B^(or 1?) is continuous at z = 0 by virtue of (16). 

The remaining boundary condition, that the tangential components of H^are 

continuous at z = 0, leads to

Z'(-0,t) = -'■f- £ A(t) + B(t)J- (18)

where Z1 signifies 3 Z/^z .

The electric current density in the conductor is given by j = K E 

with the expression (14) for E. The immediate inference is that the induced 

current flows everywhere parallel to the surface of the conductor.

5. Applications of the Present Method

The solutions discussed in Section 4 can be applied to any case when 

the scalar potential of the inducing field can be written in the region 

0 <z<h, as a summation over discrete values of X  , or an integral over A. , 

of functions of the form

= - A(t) e P(x,y) 

or, by inti-oducing a constant factor



Putting z1 = h - z, SX0 is

-A(t) e ' P(x,y)a  -
Obviously the case when 12 0 takes an integral form has wide applica* 

tions. Suppose that the p o t e n t i a l i s  given by - A(t) F(x,y,z'), Then 

the problem is to express F(x,y,z') in the form

00 -Xz'F(x,y,z’) = j e P^ (x,y)dX (19)

Regarding F(x,y,z') as a function of z' and denoting it by h(z'), 

Equation (19) may be looked upon as the inverse Laplace transform of the 

given function h(z'), i.e.

h(z') -
00

e Az f( A) d X  (20)

where z1 > 0.

When the inducing field is periodic in time, the problem is much 

simplified because of the linearity of the equations. Talcing a single

harmonic of period 27T/p, the expression (10) may be written as

^  = - (A e + Be ) eipt P (x,y) (21)

where A and B are complex constants and the real part of the right-hand

side is to be taken.

The equation (15) for Z(z,t) now becomes

i j f  .  ) Z -  0 <22)
2> z c*
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The solution of (22) is

where

or

where

„ , 6z - 6z iptZ = (a e + be ) e

0 ^  = i4fi' n.j * .  p/c^ + A

e
sTT

C {2 = 4I f K j j ~ p /c2

(23)

(24)

(25)

(26)

Because of the form of (23) the real part of 6 can be taken to be positive 

without loss of generality.

Z must tend to zero as z tends to - Oo. Therefore, the coefficient 

b is zero. The two conditions (16) and (18) determine a and B in terms 

of A:
2/* ip .

(27)c(3 +y*)

6 + (28)

Thus the scalar potential of the induced magnetic field outside the 

conductor is

{I m 6 - K M  A Q- Xz + iptT A e
i B+X/l

The electric field outside the conductor is

P(x,y) (29)

i*. - - M - Ac A
X z _ ft. K M  - 

S+
A; (30)
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The electric field inside the conductor is given by

E (31)

The current density inside the conductor is

. . ±*£±2. a eiP‘ + SzijL2,--lL ,0)
c(«+V»> i i

(32)

6. Periodic Infinite Linear Current

In this Section we consider, as the source of the inducing field,
ipta periodic infinite linear current of intensity cjQe e.s.u. flowing in 

the direction of the (positive) x-axis parallel to the surface of the 

conductor. The magnetic scalar potential of this inducing field can be 

written as
(33)

Using the Laplace transform*'*^

r*5tan**̂  (ap” )̂ * e**)t t”  ̂sin (at) dt, (34)

iQj0 can be expressed as
o

From (29)

(35)

O
—̂From (30) E inside the conductor is given by

o
11



When /*- = 1, Equation (37) is much simplified; the x-component of E 

becomes

Ex - - eipt f (<9-\) e + 2 cos Ay d \ (37a)Tr K o
where 0 is a complex number containing o< and >\ ; it is given by (25).

At z * 0, Equation (37a) is further simplified; the real part of (37a) 

becomes
E « ?..1oP

I 1  ̂f ’ 008 pt + I 2 ^  8in pt (38)

where

du (39)11 ( ̂   ̂ ^J2u - 7 2  1 + u^+u2 e ^ cos ̂  u

12 < ? . ? > -  ( V #  + u^ - u2 e" cos^ u du

and ̂  a <Xh,  ̂« c< y. Here the variable of integration was changed 

from A to u by a transformation u *= \/ q( .
The integrals 1̂  and I2 can be written as

(40)

I l ( ^  )  =  T f  f  j ^ 2 u - * / 2  / \ / 1 +  U ^ U 2 j  ^ e ”  ^ u -}- e  ^ ) d u  

^ H u ' - u ^ e ' h e ^ )  duI2( X.
2

where

(41)

(42)

For large values of |^j> ^  an(* ^  can 1,6 evalusted by expanding the 
coefficients of the exponential functions in series. The results are

1 2~$ -^jT(^ + 3^ - 45^ + ....)

+ 2^" 2-V2 (’tj~1+ ̂ ”3+ 3f “5 - 45^ ?± ...)
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I2( f ) - f '\/2 (^"l-Y’3+ 3 p  5+45^" ?+ .....)

+ V F  (^"1̂ * * 3+ 3 ? " 5 + 45<f "7 + .... )

For y = 0, ̂  m ̂  ; and 1̂  and I2 become
-2 1— - 1  -3 5 -7

I2(^ »°> “ V 2 (E," 1 + 3^"^+ 45?/' + ..... )

Values of ̂  which we are interested in are not always large compared 

with unity. Hence the integrals flnd I2(lf »0) are computed numeri­

cally for^ ■ 0.1, 0.2, 0,25, 0.5 and 1. For ̂  » 5, 3, 10, 100 and 1000, 

the integrals are estimated by the expansion method shown above. The de­

tails of the numerical integration, and the estimate of the remainders of 

the integrals are given in Appendix.

Values of l^(i^,0), »0) and rj I2 + ij* are given in Table 1.

Fig. 1 graphically shows I^(^,0) and I2(<̂  >°) as functions of ̂  in the
- 1 3 vrange 10 to 10 ; logarithmic scales are used for 1 ,̂ l£ and V .

,-3 -5 -7

Table 1. ^(§,0), I2(^ ,0) and +

I, (g ,0) *2(g»0> K + 1>

0 .1 -0.743 2.918 3.011
0 .2 -0.706 2.313 2.419
0,25 -0.672 2.114 2.218
0.5 -0.586 1.524 1.633
1 -0.460 1 .0 1 1 1 .1 1 0

5 -0.217 0.274 0.350
8 -0.148 0.174 0,229

10 -0.123 0.140 0.136
102 -0.0139 0.0141 0.0198
103 -0.0014 0.0C14 0.0020
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Fig. 1. 3^(1,0), l2(f,0). and Jl* (1,0) + I 2(^,0) as functions
of | . Logarithmic scale is used both for ordinates and abscissae.



7. Magnetic Dipole

In this Section we consider a magnetic dipole of moment at R = 0,

z 83 h, with respect to cylindrical coordinates (R, 0, z). We assume that

f? = (0, 0, m,, eipt). The magnetic potential of the dipole is

- m. e o
ipt h - z

f R2 + ( z-h) 2| 3/2

Using the Laplace transform p. 182 in reference 11

(p

~~0 2 372
<*2+ P )

t JQ(at) e”pt dt,

©

we can express ouQ asA

S I
ipt r Co

(AR) e'^(h'z)d X  (h-z > a) (39)

where J0( A R )  is the Bessel function of order zero.

By means of Equation (29) we obtain the expression for the scalar 

potential of the induced field:

S I
,-Cc
f e ~

i  -  -  mo e
ipt

e A  Jft(\R) e"X ( h ”z) d\ (AO)

(12)* This expression can also be derived from the integral of Lipschitz
00 - 1 / 2  — a£ O 0 'e JQ(bt)dt ■ (â  + b )

_ >with certain conditions imposed on a and b to secure the convergence of 
this integral. By differentiating both sides with respect to a, one obtains.

t e"at JQ(bt)dt - a (a2 + b2)
-3/2
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—^The electric field E has only one non-vanishing component E^ in both 

regions z > 0 and z < 0. The lines of electric force are everywhere cir­

cular and parallel to the surface of the conductor,

In the region z > 0,
.Go

Jf-m o elpt J e"A h (eX s - - | ^ ^ - e " A Z )(o,A^(A8),0 )dX (41)

where J^(\R) is the Bessel Function of order 1, 

In the region z<0,

= _ ? ^ i p  mg.  e ^ P t f* X. - A h + fiz
<9+ A / t

(0, XjiCXR), 0)d/\ (42)

Taking^A " 1 , we simplify the expression of Eg in the region z X. 0:
2

1______ & - A  ^ {$ - A ) c
a  + X  i< X 2 i 47T  K P

so that we have
0 - Ah + <9 z + i  pt

. Jgqc_ ( A 2 (g -A)J1( AR) e d\(z>0)
2'fr

-ec 2 - X h + <9 z + ipt
A (3 -A) (AR) e dA (z>0)

where 0 , as before, is

<9
a/2

« 4 + A4 - * 2

Taking the real part of the right-hand side of the expression for Eg 

we h a ve
2

E m
e p,P9i . Kl (c* h ,AR) cos pt + K£ (cXh,<XR) sin pt (43)
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where
r - /_ = ~" - e «

2u- /T//l -I- u4+ u2

*

J5o

u2 J.̂ (ŷ  u) e du (44)

K2 < ^ )  - J / T u 2 / A  + ?  " ° 2 u) e du )
o

Noting that for real x j JQ(x)J 1 , | Jr(x)|^ 1 / /iT (r«l,2,,. .)(p.31 of 

reference 12), and expanding the coefficients of J^(^u)e“^ u in powers 

of u \  one can easily show that the two integrals are convergent. For 

the purpose of order estimation and K2 are numerically integrated for 

a particular set of values of ̂  and ^ ^  ■ 1 and ^ « 0.1. The numerical

integration is made for u *» 0 to 4 with intervals of 0.2 and for u * 4 to 

10 with intervals of 0.25.

The valuse of and for a 1 and >^*0.1 are

1̂ ( 1 .0, 0.1) * - 0.006 

K2(l.0,0.1) = 0.095

Kj is rapidly convergent; the remainder of the integral is of order of

0.001 or likely to be less, converges less rapidly than K̂ , but the 

remainder of the integral is of order 0.01 or less.

8. Discussions

8.1 Periodic linear current

From Equation (38) the amplitude of the electric field, |e I , is

2 P̂i>. + 1 2 * or ^  x/l2 + I2 * where T is the period of thec T
variation (T ■ 2TT7p).
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At the ground directly beneath the current, i.e., z = 0 and y = 0, 

the amplitude of the total magnetic field, |h | , is 2jc/h Gauss; its 

period is T seconds.

Hence we can express 1EI in terms of |h | as follows.

IE | -  - 2 1 *  | H| / l *  +  I 2

For T =* 60 seconds and K ® 10 e.m.u.,C< is 1.1 x 10 . We assume that
7the height of the current is of order 100 km, or 10 cm. Then t, h) 

is of order 1. For £ = 1 and  ̂= 0, / i j  + is very nearly 1 

(Table 1). Thus

|e I jL ID L -M L  Ih | ^  3 x  l o " 5 IH j e . s . u .in I I 11
3 x 1 0  x 60 . 5 ,

= 300 x 3 x 10 j H| volts/cm
_ o

^  10 |H j volts/cm

* 10 IHI volts/km

•* 3Thus, for |h I of order 100 gamma (= 10 Gauss) |e| is of order 1 volt/km, 

or 1000 milli-volts/km.

8.2 Periodic magnetic dipole

From Equation (43) the amplitude of the electric field |E| is
2 ———————————— 2 .

%2— .. /v2 + or 2TTmp oC—  2 + „  ̂where T is the period of thec v l  2 * c f V i  z
variation of the dipole moment. The magnetic field of a dipole with a

3moment m0 is of order mc/r at distance j:. The electric field is zero

directly beneath the dipole (R = 0), because Jĵ (O) = 0. We estimate the
6electric field at a distance 10 km ( = 1 0  cm) from the point on the ground 

directly belox? the dipole. We again assume that T = 60 seconds, K, m 10

17



e.m.u., h » 100 km («= 10̂  cm). Then (X ® 10 ^ = c<h * 1, and yj ~ o(
r X 2 2R * 0.1. For these values of t, and ^ , y  + K2 o  0.1 (Section 6). The

t ^amplitude of the magnetic field |h | is of order m0/h . Hence we have

1*1 -  J 4  + 4

j % 7 4  |„i

^  2-n-x 1021 x 10-1* X l 0 -1 |B
3 X 1010 x 60

3 x 10  ̂ |H | e.s.u.
A .

10” j H | volts/cm

102 J H| volts/km

For |H t of crder 100 gamma (= 10 3 Gauss), |e| is of order 0.1 volt/km, 

or 100 milli-volts/km.

8.3 General discussion

The infinite linear current may be considered as being a typical 

example of a system of electric current of fairly large scale, and the 

circular current as representing an example of a regional current system 

of limited size. The above results indicate that in both cases the cal* 

culated electric field is of the same order of magnitude as that actually 

observed in high latitudes.

In the above discussions the electric conductivity of the earth is 

assumed to be uniform and isotropic. This is, of course, an idealized 

model of the earth. In reality the conductivity varies horizontally as 

well as vertically, and is, in general, not isotropic near the surface of

18



the earth. However, the non-isotropy may be ignored in the order of mag­

nitude estimate we are concerned with.

We now give some consideration to the non-uniformity of the electric 

conductivity. The penetration of the inducing magnetic field into the 

earth, and hence the spatial distribution of the induced electric current, 

depends on the period of the inducing field, if it is periodic, or on the 

rapidity of its change, if aperiodic, Therefore, when a model with a 

uniform conductivity is adopted to represent the earth, the 'effective' con­

ductivity is dependent on the period, or rapidity, of the change in the 

inducing magnetic field.

With this in mind, let us re-examine the result for the infinite linear

current. Suppose that the amplitude of the electric field, I eI , is in

the range 10 E 103 milli-volts/km, or 3 x 10 *^|e|^3 x  10”® e.s.u.

in e.g.s. units, and that the amplitude of the magnetic field, Ih I , is not
-3greater than 100 gamma, or 10 Gauss. We examine if the 'effective' con­

ductivity that is compatible with the relation between |e | and IHI with 

|e | and |h | within the prescribed ranges is of a reasonable order of mag­

nitude. Here we consider changes with period (i) 1 second, (ii) 1 minute, 

and (iii) 5 minutes.

(i) T = 1 second.

For |H| =10 Gauss (100 gamma), the inequalities

^ 3 x lO” 8 e.s.u.

as

1.5 x 10-2
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i -4For |H | * 10 Gauss (10 gamma), the inequalities give us

1.5 x 10’3<  /i* + I* ^1.5 x 10” 1

For large values of i* , tends to - -/l /ef , and I  ̂to Vz/^ ; thus

y/I1 + I2 is very nearly 2/^ , when ̂  is large. Using this asymptotic
n  2"expression and the curves in Fig. 1, the above inequalities foryl^ + 

can readily be transformed to those for ^ .

For |Hj = 100 gamma: 1.3 x 10^ ^  ^ 1.3 x 10̂

for |HI — 10 gamma: 1.3 x 103 15

In terms of K these relations give

for }H| = 100 gamma: 2 x 10”® ̂  K  ̂ .3 x 10 ^  e.m.u.

for |H | = 10 gamma: 2 x 10**^ ̂  K  ̂  3 x 10 ^  e.m.u.

Thus J H | of order of 10 gamma and less will account for the variation 

of ~i? with this period and its amplitude in the range considered here.

(ii) T * 60 seconds.

By a similar procedure as in (i), the inequalities

3 x 10 ^  1E I $  3 x 10 e.s.u.

give . Y
for jH| «= 100 gamma: 0.01 ^y/l^ + I2 ^  1

for | H| * 10 gamma: 0 .1 ^  v^l * *2

In terms of these relations become

for JH| = 100 gamma: 200 ^  6 ^.1.5

for |H! * 10 gamma: 20 ^  § (lower limit for ̂  4. 0.1 )

Or, in terms of hC we have

for jH1 = 100 gamma: 3 x 10"^® ^  1.7 x 10

for |H | = 10 gamma: 3 x 10 ^  ̂  \C (lower limitf for ^  10
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Thus jHI of order 100 to 10 gamma and less can produce the variations
—^of E of the period and amplitude considered here.

It is now apparent that we can interpret without any inconsistency 

the electric field of order 10 to 100 milli-volts with period of order 1 

second to several minutes as being the electric field induced by some in­

ducing magnetic field with amplitude of order 100 to 10 gamma or less and 

with the same period as the electric field.

An exact interpretation of the observed earth-current data is extremely 

difficult and is practically impossible because of the following two rea­

sons. First, the complete knowledge of the inducing field is required to 

compute the induced magnetic or electric field, and conversely the distri­

bution of the induced magnetic or electric field must be known in order to 

deduce the inducing field. Secondly, in addition to this, the distribution 

of the electric conductivity in the earth must be known through the depth 

in which the inducing magnetic field penetrates.

Another approach to the problem of earth-currents is to assume the 

inducing magnetic field, which may, to a certain extent, if not completely, 

be inferred from the magnetic observations made over areas comparative with 

the extension of the inducing field, and to determine the distribution of 

the electric conductivity of the earth so as to give as good an agreement 

as possible with the actually observed induced field. This method does not, 

in general, determine the distribution of conductivity uniquely. But with 

suitable assumptions, we can obtain useful informations on the distribution 

of the electric conductivity of the earth. This method has been widely em­

ployed to determine the conductivity in the interior of the earth, e.g. by 

Chapman^"^, Chapman and Whitehead^ \  Chapman and Price^*^, Price^*^,



Lahiri and Price^^, and others, A similar method may be used for a 

regional conductivity survey. Such a study will also be valuable in eval­

uating the observational results of the geomagnetic field on a regional 

basis. The utilization of the (natural) electromagnetic field for geolog­

ical surveying is now studied in Russia under the sponsorship of the Geo­

physical Institute of the Academy of Sciences of the U.S.S.R.^*^

8.4 Some remarks on a simple method of estimating the electric 

field which is frequently misused

By integrating Equation (la) over a surface 'S with a closed boundary 

r , we obtain
(curl 1? ) * d 2  = - J f  • d Z  (46)c

where d£ = n* d 2  , n being a unit vector normal to the surface element 

d 2  . By applying Stokes's theorem to the member on the left-hand side 

of (46), we have

_ 1 f  JJL , r
a tt- di - - i ( ■ d z

J,
(47)

where d Jl =* T d I , t being a unit vector tangent to the line element d£ ,
—j -5>The direction of n and 'Z are to be taken so that looking from the side

—5’of the surface to which n is pointed, ~C is directed counterclockwise.
-  7The equation of lines of force is given by E x d K s 0; with respect

to Cartesian coordinates the equations are dx/Ex = dy/Ey ■ dz/Ez. If the 

contour]”’ coincides with a line of e lectric  force, E*d Jl = IeI d / ,  and i f  

further |1e| is constant along the contour, one can write Equation (47)
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in the fora

E| A I dJL • &Z/L (48)

j  d Jl, i.e.

c St 
L

where L 88 ffl d i . e .  the length of the contour.V
Equation (48) is frequently used for the purpose of estimating the 

intensity of the induced electric field. This procedure is valid only (i) 

when the contour jT that forms the boundary of the surface 2  is coincident 

with a line of electric force*, and further (ii) when |li| is constant along 

it. In general, lines of electric force are unknown; even if a line of 

force is known, is not necessarily constant along it. It should be
ifborne in mind that the equation of lines of force, i.e. E x dX * 0, does 

not contain the magnitude of the field vector, but only its direction.

A simple case for which Equation (48) can be used is the one in which 

the field quantities are axially symmetrical. In this case, if the axis 

of symmetry is known in some way, Equation (48) may be used.

Summarizing, while Equation (47) is always valid for any contour C""1 

and any surface that is bounded by P , Equation (48) is valid only under 

limited conditions.

9. Conclusion

There appears to be no internal inconsistency in the interpretation 

that the rapid fluctuations in earth-currents observed in high latitudes

* Since div if * 0, the vector field E is solenoidal, and lines of 
force are always closed.
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are due to the electromagnetic induction by some inducing magnetic 

field.

Exact physical interpretations of the observed earth-current 

records are practically impossible. However, assuming a suitable distri­

bution of the inducing magnetic field, the earth-current records may 

be used to determine the distribution of the electric conductivity of 

the earth.

Though the amplitude analysis is probably not helpful in construc­

ting a physical picture of the upper atmospheric disturbance, the period 

analysis may contribute greatly to our understanding of the physical 

properties of the upper atmosphere.

As a disturbance indicator the measurement of earth-currents appears 

to be superior to that of the geomagnetic field with the instruments 

currently used.
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APPENDIX

The integrals 1 ^  ,0) and I2(§ ,0) are

/

.0a
[ 2u - /2 1 + u4 + u^ e " du

I2(^ ,0) - ̂ 72 / /Thm? - u2 e" ̂  U du

where £, > 0. o

and I2(§ ,0) were numerically integrated from 0 to 4 with in­

tervals of 0.2, from 4 to 10 with intervals of 0.25 from 10 to 15 with inter­

vals of 0.5, and from 15 to 20 with intervals of 1. The remainders of the 

integrals were estimated in the following way.

For large values of u, 2u - -fl J K  + u4 + u2 can be expanded in a 

convergent series o 7• \ & +  -& Hr>* .
Hence, when u^ is large, we have

f  [2u - ft Jjl+ . s7 le ^udu - A  - (-i) + . . . e duJU1 \
- $ uThus this integral tends to - 1/ u~3 <f “du, when uL is large. Since

J  un

du <  -jL j u“ 3 du » ■g u^ which is 0.0003125 for 

U1

u^ =» 20. The values of I^(<5,0) evaluated by the numerical integration from 

u a 0 to 20 range from - 0.743 to - 0.460 for ■ 0.1 to 1. Hence the re­

mainder of the integral can be considered as being negligible in all cases.

For the integral I2(^,0),/2 u^ - u2 can be expanded in a con­

vergent power series

1 1 , 1  5
u • 8 ( u >  ±
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Hence, when is large, we have
idu ? • dU

*1
Thu8 the integral tends to

-60

•1 - 4 uu e du. Now
u,

0 <

rtO

U.

U -1 - I Udu
"?ul e _ 1.

Do

"2 " ^ u u e du.

Since 4 and û  are positive,
- § u! . r

—  > ° <  f
tX?

Hence r 00

^ U1

- 1 • 2 u

-2  "  §  u u e du > 0.
u1

- 4 u,
u

ux

For û  *» 20, the member on the right-hand side of this inequality is 

0.068, 0.005, 0.001, for I5 ■ 0.1, 0.2, 0.25, respectively; it is less than 

0.0001 for if ■ 0.5 and 1. The values of I2 evaluated by a numerical inte­

gration over u ■ 0 to 20 for^ ■ 0.1, 0.2, 0.25, 0.5 and 1 are 2.918, 2.314, 

2.115, 1.526 and 1.015, respectively. Therefore, the remainder is not more 

than a few percent of the integral in each of the cases.

For^ = 5, 1̂  and I2 were computed both by the numerical integration 

and the series expansion. The value of 1̂  obtained by the former method is 

- 0.2147, and that obtained by the latter - 0,2174; the two values agree • 

within 1.3%. The value of evaluated by the numerical integration is 

0.2742 and that by the series expansion 0.2737; these agree within 0.2 7..
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