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Abstract 

In this study, eleven mega predators, coyote (Canis latrans), wolf (Canis lupus), fox (Vulpes 

vulpes), arctic fox (Vulpes lagopus), black bear (Ursus americanus), brown bear (Ursus 

arctos), polar bear (Ursus maritimus), wolverine (Gulo gulo), marten (Martes americana), lynx 

(Lynx canadensis) and golden eagle (Aquila chrysaetos) were selected to represent an 

Ecosystem Unit entitled “Mega Predator”. The most influential factors affecting this 

Ecosystem Unit were determined using a machine learning algorithm (TreeNet) and a 

Geographic Information System (GIS). Public available range layers were corrected for 

errors and detectability using occupancy model, and several ‘robust’ hotspots of the predator 

community were identified. Anthropogenic variables, such as proximity to railways, together 

with regionalized IPCC climate variables (precipitation and temperature), Alaska SNAP data 

and spatial variables (e.g. distance to coast) proved to be the main predictors. A second 

predictive TreeNet model based on climate data forecasting the next 100 years was also 

performed to assess the resilience of these predators. 

The results indicate that the Ecosystem Unit “Mega Predator” shall undergo extreme 

changes in the next decades, commencing in 30 years or less. The TreeNet model points to 

a complete shattering of the current mega predator community food chain within the next 

century as a direct consequence of climate change alone. Owing to the fact that IPCC 

models are underestimates and other factors co-occur, the findings displayed herewith are 

consequently underestimates. 

The results of the first TreeNet model and the second predictive model were used to find the 

optimal potential protected areas for the predator community. This prioritization search was 

performed with the program MARXAN. Results of the MARXAN Model indicate that the main 

importance of protected areas for predators lies in the Brooks Range of Northern Alaska.   

This study could serve as a first (digital) platform and a first step to provide a basis for 

landscape planners and conservationists to react properly to the upcoming impact of climate 

and other changes on entire ecosystems. 
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1 Introduction 

Carnivores are keystone species and play an important ecological role in the landscapes 

they occupy. Predators represent an inherent part of the ecosystem (Begon 1996) and apex 

predators put forth considerable influence in the structure and function of ecosystems (Estes 

and Palmisano 1974; Spiller and Schoener 1990; McPeek 1998). 

In this study a new view on predators is pursued whereby different predators are not 

considered as individual stand-alone species, but rather viewed as the so-called Ecosystem 

Unit “Mega Predator”. In the following introduction, different theories are briefly offered which 

demonstrate the relationship among predators and their joint effect on the ecosystem. 

Furthermore, the conclusions that lead to the definition of the Mega Predator Ecosystem Unit 

are presented.  This approach makes for a new perception of a terrestrial ecosystem. 

 

1.1 Ecological Role and Interactions of Predators  

 

Table 1: Four main theories that describe the influence of predators upon the ecosystem and which are relevant 
for this thesis 

Theory Definition Essential Studies 

Food Web, Food Chain Food webs are systems of 

food chains that are linked 

with one another (Oxford 

2004) 

Lindeman 1942 

Trophic cascade “Progression of indirect 

effects by predators across 

successively lower trophic 

levels.” (Levin 2001) 

Hairston et al. 1960 

Sympatric connection 

 

 

 

In sympatric speciation, 

species diverge while 

inhabiting the same place 

(Feder 2005). 

Poulton 1904. 
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Theory 

 

Definition 

 

Essential Studies 

Predator-Prey Cycles 

 

Simplest individual level 

model of predator-prey 

dynamics Interaction of two 

species (McKane 2005). (Not 

applicable due to the 

complexity of the study area). 

Volterra 1990; McKane 2005 

 

1.2 Influence of Predators upon the Ecosystem  

The influence of predators upon the ecosystem is tremendously broad. One direct effect of 

predation seems obvious though: the decrease of a prey population by a predator. This 

simple approach leads to more complex predator-prey relations. Predation on snowshoe 

hare for example prolongs the cycles of  increasing and decreasing hare populations (Hik 

1995) and in most cases the predators are controlled by the abundance of prey as for 

example many classic studies on the Isle Royal show (McLaren and Peterson 1994; 

Peterson and Page 1988). Even a simple biological problem like the relation between prey 

and predator gets complicated if one is trying to understand it in detail and in space 

(Freedman 1980, Jost et al. 2005). As a matter of fact, and despite decades of study, the  

knowledge of this issue has advanced slowly and with many inconclusive findings that are 

difficult to generalize (Krebs et al. 2001). This poses major problems regarding science-

based management.  

Besides direct effects of predators and their prey, other more complicated interactions within 

the predator community and between predators and prey species can be found. Biodiversity 

and trophic-structure influence ecosystem functions interactively and across scales, though 

the effects are not predictable in isolation (Ricklefs 1987), such as in a classic single species 

approach still widely pursued in research even today. Regional and historical processes, as 

well as unique events and circumstances, profoundly influence the local community structure 

(Ricklefs 1987) as illustrated in an example by Ottersen et al.(2001) where the measurement 

of ecological responses on the North Atlantic Oscillation (NAO) included changes in timing of 

reproduction, population dynamics, abundance, special distribution and also predator and 

prey relationships. The effect of the NAO flows through trophic levels, including primary 

production to herbivores and to predators 
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In another study by Hegel et al. (2010) the recruitment of the population of mountain-dwelling 

caribou (Rangifer tarandus) in the Yukon Territory was best explained by the interaction of 

wolf (Canis lupus Taxonomic Serial No.:180596 [TSN])* density and April- Pacific Decadal 

Oscillation, with wolf density causing the most deviance.  

In Post et al. (1999) it is concluded that the change of behavior of apex predators may be the 

essential link in the path of climate alteration on an ecosystem.  

*Study species are described with Taxonomic Serial Numbers from ITIS (http://www.itis.gov/) 

1.3 Food Web and Trophic Cascades  

The presence of predators in an ecosystem without a doubt affects the diversity of prey 

species (Primack et al. 2002). In Marine ecosystems the food webs are identified and 

described e.g. with the Ecosim software (http://garyentsminger.com/ecosim/index.htm). Here 

predator absence leads to trophic cascade (Daskalov 2002).  

 

- A trophic cascade is a chain-reaction within food webs that results from changing population 

densities at higher trophic levels, shifting the dominance and impact of consumers in lower 

levels- 

 -(AMNH 2010)- 

  

It is also known that top predators influence prey behavior and distribution, as well as animal 

health and disease. As a consequence, different trophic cascades may emerge which are 

able to modify entire ecosystems (Creel et al. 2005; Preisser et al. 2005). The conclusion can 

be drawn that predators indirectly influence the vegetation and plant composition by altering 

the herbivore species in an ecosystem (Ballard et al. 1987), a circumstance which is most 

prevalent in Alaska, e.g. by maintaining high moose populations via predator control (as 

manifested in the Intensive Management Law from 1994 (ADF&G 2010a). 

Research by Estes et al. (1998) shows the complex relations in the oceanic environment for 

instance. A trophic cascade between killer whales (Orcinus orca) and sea otters (Enhydra 

lutris) leads ultimately to a decline of sea otters if the chain of ecological interactions is 

disturbed. A top down trophic cascade is assumed: the chain of ecological interactions 

begins with the reduction or alteration of forage fish stocks. As a consequence, pinniped 

populations are sent into decline. Pinniped numbers eventually became so reduced that 

some of the killer whales which once fed on them expanded their diet to include sea otters. 

This leads to a connection between oceanic and coastal ecosystems where coastal kelp 

forests have changed from three- to four- trophic – levels. In this way, sea urchins are 
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released from the limiting influence of sea otter predation and the unregulated urchin 

population rapidly increased and overgrazed the kelp forest. A host effect in the coastal 

ecosystem was thereby set into motion. These “top down” approaches are discussed with 

reference to “bottom up” ecological approaches (Frederiksen et al 2006). Another example of 

a top down cascade with a closer view on land, and comparable with Alaska, can be found 

on Isle Royal in Michigan/ USA.  

 

The growth rates of balsam fir (Abies balsamea) are regulated by moose (Alces alces) 

density. The moose population, on the other hand, is controlled by predation of wolves 

(McLaren and Peterson 1994). If the wolf population declines for any reason, moose 

population reaches high densities and will suppress fir growth. Only in rare cases, when 

stand-replacing disturbances such as fire or a large windstorm occur at times when moose 

density is already low, is this regulative trophic cascade replaced by bottom-up influence 

(McLaren and Peterson 1994). In Alaska similar reactions of wolves and caribou (Rangifer 

tarandus) are observed due to the implementation of the mentioned Intensive Management 

Law (Rodney et al 1996). As marine examples show, the change from top down to bottom-up 

may not occur (Daskalov 2002), however this change only happens if the food chain is 

already altered. Finding locations in the world with unaltered food chains must be perceived 

as rare these days. 

 

1.3 Reaction of the Ecosystem to missing Apex Predators 

The importance of top predators is shown in anthropogenically-altered landscapes where the 

apex predators has been removed e.g. in central Europe. If top predators are missing, like for 

example in fragmented landscapes, high populations of opportunistic predators occur, 

leading to substantial predation on eggs and nestlings of forest songbirds (Wilcove et al. 

1986). In Southern California heavy predation on bird nests in some canyons occurs due to 

the absence of coyotes (Canis latrans TSN 180599). As a result, populations of 

“opportunistic mesopredators” like gray foxes (Urocyon cinereoargenteus) and Feral cats 

(Felis catus) increase. Soule et al. (1988) also contended that smaller omnivores and 

predators undergo population explosions if top predators are missing. Sometimes 

mesopredators are ten times more abundant. The removal of top predators by human 

influence is a phenomenon that occurs in almost all the western world (Terborgh et al 2001). 

As a matter of fact, this is an explicit characteristic of the western “modern’ culture, which 

spreads with globalization but which has not learned to live with nature in a balanced and 

sustainable way (Diamond 1998).   
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Prey population increase due to the lack of top predators may lead to an outbreak of 

diseases in prey population and thus can even lead to disease transmission to humans 

(Ostfeld and Holt 2004). 

Apart from the fragmentation of landscapes, humans influence the food web in many other 

ways. In urban regions the food sources for predators are widely altered. In most regions of 

the world anthropogenic food sources are available for predators near urban regions (Chapin 

2009). These food resources can be more lucrative, stable and predictable than those in a 

natural environment.  

Animals are subsidized (Soule 1988) through this food source and are able to increase in 

numbers and can expand their range (Boarman 2003). Around the houses cat and dog food, 

waste, and sometimes livestock can be found as food support (McClure et al. 1995; Herrero 

1985). Nitrogen which is now globally abundant (Dentener 2006) functions as a fertilizer to 

increase the food abundance, e.g. via modified ecosystems and vegetation, for herbivores 

and through this predator occurrence. A good example is the increasing roe deer (Capreolus 

capreolus) population in Germany (Ellenberg 1986). 

This leads to the conclusion that there are many relationships within the food chain of 

predators which we may not fully understand, but upon which humans have an inescapably 

major and global impact. The human footprint is probably much wider than it appears or is 

currently estimated. Examples for this are found with the human-caused alteration of the 

carbon cycles, with contamination such as the ‘big brown cloud’ (Ramanathan 2002) and with 

changed water levels, e.g. agriculture, hydro damns and loss of permafrost and glaciers. 

These impacts are found throughout Alaska and the Arctic (ACIA 2004). 

 

1.4 Sympatric Connections of Predators in Alaska 

Many of the mega predators of Alaska occur in identical or overlapping ranges.  Among these 

predators, canidae like wolves, coyotes (Canis latrans; Taxonomic Serial Number [TSN]: 

180599), foxes (e.g. Vulpes vulpes TSN 180604) or ursidae are closely related. This predator 

composition may be the result of sympatric speciation (Poulton 1904). Many of the niches are 

virtually shared: Bears and Wolves occur often together and are known to differentiate 

spatially or temporally in their use of a pulsed prey, causing minimized competition (Garneau 

et al. 2007). If resources are limited, a species of the predator community may be displaced 

by another, for example red foxes by coyotes (Randa et al. 2009) and arctic fox by red fox 

(Hersteinsson and MacDonald 1992): a phenomenon now widely seen in Norway, Alaska, 

Canada and Russia due to climate change (McCarty 2001). 
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As a result, the community of predators can also be seen as a sympatric-developed 

population and community with different speciation’s. A good example of sympatric 

development is found in the instance of a coyote population which expanded after the 

extirpation of wolves in Yellowstone National Park. The coyotes assumed many of the 

ecological characteristics and functions of wolves, including pack formation and predation on 

large ungulates; however they were not able to substitute the wolves completely (Crabtree 

and Sheldon 1999). The vacant niches may also be occupied by other animals which have 

been introduced or have migrated to the area of their own accord (Simberloff 1981).  

Such a case is assumed for Alaska, but is not well documented or studied, and deals with the 

expansion and invasion of coyotes, and to some extent wolves, on Kenai- Penisular 

(Huettmann pers com.).  

1.5 Relevant Summarized Perspectives for this Study 

1.5.1 The Mega Predators as an Ecosystem Unit “Mega Predator” 

An ecosystem consists of all the living components as well as nonliving physical components 

of the environment with whom the organisms interact. The entire array of organisms 

inhabiting a particular ecosystem is defined as a community (Campbell 2009). Some newer 

studies describe parts of the ecosystem e.g. grassland as a community (Grime et al. 2008), 

while other concepts prefer to describe the community more on a regional level, 

characterized by evolutionary taxonomy and biogeography (Ricklefs 2008).   

Among the mega predator species of Alaska, multiple and similar characteristics can be 

found. The term “predator” determines the animals as second or third consumer and defines 

the biological interaction of obtaining food by killing prey (Begon 1996).  

The food web of the mega predators shows high complexity. Connection of wolves and bears 

and wolverines (Magoun 1985) are only an example on the length of the food chain.  As part 

of the Alaskan food chain, Polar bears are on the fifth trophic level (Derocher and Stirling 

1990; Hobson and Welch 1992) and are directly connected to the arctic fox in the food web 

(Stirling 1988). Food chain length of the predator community in Alaska is still rather high 

compared to other apex predator ecosystems of the world (Cohen 1979; May 1979).  

1.5.2 The Predator Community in Alaska 

The mega predator community in Alaska is globally unique (see species list at 

www.iucnredlist.org and Feldhammer et al. 2003). The amount of predator species is very 
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high and in its base-composition nearly untouched even (SEDAC 2009). It can only exist 

because of the prey base that sustains it and has become so established because for 

thousands of years this base was unaltered. This community is important to investigate not 

only for conservation and ethical purposes, but also in order to find thresholds in the 

underlying ecological variables that determine the predator community, e.g. when compared 

with other regions. These identified habitat characteristics may lead to a better understanding 

of the ecosystem, the predator community and the forces which drive them. Furthermore, it is 

important to realize what will happen to this community as a consequence of the climate 

change, and which is more readily apparent already in northern regions. 

Although the exact effects might be difficult to understand, grasping the major trends in a pro-

active fashion would be very useful so that harm can be avoided or at least minimized. 

A similar predator community on approximately the same latitude can only be found in 

Northeast Russia. This community includes the Eurasian lynx (Lynx lynx), wolf (Canis lupus 

TSN: 180596), polar fox, red fox, polar bear (Ursus maritimus TSN: 180542), European 

badger (Meles meles), and asian badger (Meles leucurus), while in the Southern parts of this 

community corsac fox (Vulpes corsa) are also prevalent (IUCN 2010). Further east, for 

instance in the Khabarovsk region, the diversity of the predators rises. The predators are e.g. 

bears (Ursus arctos beringianus, Ursus thibetanus), wolverine (Gulo gulo TSN 180551), tiger 

(Panthera tigris altaica), and leopard (Panthera pardus orientalis). Such predators are 

becoming absent when moving westward towards Europe. 

Considering the native mammalian carnivores in the Rocky Mountains including grizzly bear 

(Ursus arctos TSN 180543 ), black bear (Ursus americanus TSN 180544), gray wolf, coyote, 

red fox , puma (Puma concolor), bobcat (Lynx rufus), lynx (Lynx canadensis TSN 180585), 

Wolverine, otter (Lutra Canadensis ), fisher (Martes pennant ), marten (Martes americana 

TSN 180559), and golden eagle (Aquila chrysaetos TSN 175407) this community is also 

comparable, but far more modified by human presence (SEDAC 2010). Similar compositions 

can be found in parts of Northwest Russia, Amazonia, central Africa, parts of Asia, and in 

some of the Oceans.  However, central Europe has virtually lost these species and even 

more marginal zones like the Alps and regions in Scotland and Scandinavia might have lost 

by now the general ability to host such a diverse number of species already (Swenson et al. 

2000; Breitenmoser 1998). The human alteration of Europe is underlined by a west to east 

increase of the gradient in animal diversity (Tomialojc 2000)  
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1.5.3 Assumptions for the Model 

For this study, the mega predator community which was analyzed consisted of: coyote, wolf, 

fox, arctic fox, black bear, brown bear, polar bear, wolverine, marten, lynx, golden eagle, with 

the above being defined as an Ecosystem Unit “Mega Predator”. The underlying habitat and 

climate factors influencing the Ecosystem Unit are also studied. 

In order to define the Ecosystem Unit, the distribution of each animal of the mega predators 

of Alaska was taken and congregated into one map layer. This has the potential to form the 

basis of a study of the habitat requirements and the possible alterations of the habitat due to 

upcoming climate and other change. The Ecosystem Unit “Mega Predator” thus contains only 

the occurrence and quantity of animals, with the individual species being dissolved.  

1.6 Predator Conservation Management 

The science of predators is a tool often used for conservation management and predators 

are often the focal species for conservation planners (Majka 2007). In this study, possible 

protected areas for the mega predator community in Alaska were examined. 

In the following part, theories are presented that describe predators as a main object for 

conservation. 

Table2: Three theories that include predators in conservation planning 

Theory Definition Essential Studies 

Umbrella species 

 

Umbrella species can be 

used to help select the 

locations of potential 

reserves, find the minimum 

size of these conservation 

areas or reserves, and to 

determine the composition, 

structure and processes of 

ecosystems (Roberge et al 

2004) 

 

 

 

Lindeman 1942 
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Management indicator “Management indicator 

species” means that a single 

species is assumed to 

represent the status of all 

other species associated with 

the same habitat (Landres et 

al. 1988). 

Hall and Grinnell 1919 

Focal Species  

 

Large carnivores are useful 

focal species for 

conservation planning (WWF 

2010, Noss et al. 1996) 

Majka 2007 

 

1.6.1 Umbrella species 

Most large predators need extended areas of relatively wild habitat and/or a food base (Noss 

et al. 1996). Therefore, mega predators, for example gray wolves  and bears, are often 

considered umbrella species. An umbrella species is a species with large area requirements. 

When these vast territories are protected, this offers protection to other species that share 

the same habitat. This way of protecting an ecosystem does not include all necessary 

species, following the theory that the area of habitat that is required to support viable 

populations will also protect sufficient habitat of species with smaller area requirements 

(Noss et al. 1996).  However a predator is usually easier to represent as a “Conservation 

goal” in the political field and among landscape managers when compared to, say,  a fungus.   

1.6.2 Management indicator 

The “Management indicator species” means that a single species is assumed to represent 

the status of all other species associated with the same habitat. This approach has already 

been discredited for conservation because one species cannot cover the habitat 

requirements of all living animals in the same habitat (Landres et al. 1988; Noss 1990). 

However predators are accepted as important parts and indicators of the codependency of 

an ecosystem.  

1.6.3 Focal Species  

Large carnivores are useful focal species for conservation planning. When planning 

conservation measures it seems to be easier to deal with vertebrate species requirements 
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and their habitats than actually trying to protect ecosystems and their processes (Noss et al. 

1996). Large predators seem to have greater influence on ecosystems, and their presence 

should be considered as an important protection goal in the conservation of wilderness. 

1.7 Science-based Conservation Management of the Mega Predator 

Community 

Ecosystems are complex systems and cannot be managed easily. They require valid 

scientific studies to feed into valid decisions. Such a science must be explicit in time as well 

as space, include social factors and be pro-active to assure the best possible decisions can 

be made.  Mostly the management identifies vegetation or habitat types as management 

units. These units can be mapped and evaluated in terms of current area and extent 

changes. In addition, historical conditions can be identified and the changes within a habitat 

can be traced (Crumpacker et al. 1988; Scott et al. 1993; Noss et al. 1995). As a matter of 

fact, the protection of large animals alone for ethical reasons can be as inspiring for 

conservation staff as it is for the general public (Noss et al.1996).  

As a second issue, this study intends to identify areas which are suitable for the predators 

nowadays and in the future, and also deals with the question: which parts of these areas 

should be considered for conservation purposes. 

1.8 The Mega Predator Community 

1.8.1 Canidae 

1.8.1.1 Coyote (Canis latrans) 

 
Picture 1: Canis latrans (Source: R. Richardson 2008)  
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1.8.1.1.1 Distribution 

Coyotes are distributed through the range 10°N (Costa Rica) and 70°N (Northern Alaska) 

latitude, this includes the whole mainland of Alaska (Gese and Bekoff 2003). With their high 

ability to adapt to human transformed landscapes they can now also be found in large cities 

(Grinder and Krausman 1998; Finkel 1999).  

 

 
Figure 1 Distribution of Coyote (Canis latrans) in source Alaska from Patterson et al 2007 

1.8.1.1.2 Ecology  

Coyotes occupy a variety of habitats, including grassland, deserts and mountains. They do 

not compete well with larger carnivores and may be killed by them and thus avoid areas and 

habitats occupied by these species. Studies have documented direct and indirect competition 

with larger carnivores such as wolves (Fuller and Keith 1981; Crabtree et al. 1981; Crabtree 

and Sheldon 1999).and cougars (Murphy 1998).  

Interspecific killing commonly occurs in carnivore communities (Peterson 1955; Palomeres 

and Caro 1999). In Yellowstone National Park wolves caused a decline of coyotes of about 

33%. An increase of 32% for coyote population was measured with no wolves around 

(Crabtree and Sheldon 1999; Gese 1996a; 1996b). Great annual variation in population is 

caused by the changes in food abundance, mainly in cyclic lagomorphs populations 

(O´Donguhue et al. 1997). Under certain environmental conditions, direct predation and 

competition for food and space with wolves may limit coyote numbers in some areas 

(Peterson 1995; Arjon and Pletscher 1999). 

Coyotes are competing with red foxes and may not tolerate them in some areas (Voigt and 

Earle 1983; Sargeant and Allen 1989). Red foxes are more tolerated if food is abundant 

(Gese et al. 1996d). Many of the small canids, like kit foxes and gray foxes, are killed by 

coyotes. They control smaller predators like foxes and feral cats. If coyotes are absent, the 
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abundance of the smaller predators increases and which may affect the avifauna negatively. 

Therefore coyotes were considered a keystone predator in Western Texas in the role of 

shaping fauna community structure (Bryant 1999). 

Coyotes have a land- tenure system of exclusive territories (Camenzin 1978; Bowen 1981, 

1982; Knowlton and Gese 1995). Within the packs, they show a dominance hierarchy similar 

to that of wolves (Camenzin 1978; Gese et al 1996a). Transient or nomadic coyotes also 

exist across the landscape (Gese et al. 1988a). Coyotes live as long as 18 years in captivity 

(Young 1951), life expectancy is considerably shorter in nature. Coyotes are active 

throughout the day, but tend to be more active in crepuscular times (Woodruff and Keller 

1982; Gese et al. 1989b). 

1.8.1.1.3 Home Range and Density 

Density of coyotes varies geographically and seasonally in response to changing food 

resources. Most regulating factors are occurrence of rabbits, rodents, and ungulates (Gier 

1968; O`Donoghue et al. 1997). Also, their home range size varies geographically and 

seasonally (Gipson and Sealander 1972; Laundré and Keller 1984).  

1.8.1.1.4 Feeding Habits 

Coyotes are opportunistic, generalist predators and feed on a variety of food items in relation 

to changes in availability (Windberg and Mitchell 1990), amongst others fruits, birds, rabbits, 

insects, but also large native and domestic ungulates (Gipson 1974; Gese and Grothe 1995). 

The reproductive status can influence their feeding habits. Coyotes that are provisioning 

pups may switch to larger, more energetically “profitable” prey (Harrison and Harrison 1984; 

Bromley 2000). Those which occur in suburban areas are adapted to human remains and eat 

dog food as well as other human leftovers (McClure et al. 1995).  
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1.8.1.2 Arctic Fox (Alopex lagopus) 

 

Picture 2: Arctic fox (Source: Canadian Museum of Nature 2010) 

 

1.8.1.2.1 Distribution  

The Arctic Fox (Alopex lagopus) has a circumpolar distribution in North America, Europe, and 

Asia. The prime habitats are tundra, pack ice, and occasionally boreal forests (Garrott and 

Eberhardt 1987). 

 

 

Figure 2: Distribution map of Arctic Fox (Alopex lagopodus) in Alaska from Patterson et al. 2007 
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1.8.1.2.2 Ecology 

Foxes are usually not the top terrestrial predators in the ecosystems in which they appear. 

Larger predators like bears and wolves almost co-occur with foxes. Therefore the foxes are 

considered to be “meso-predators”.  

1.8.1.2.3 Habitat  

Arctic Foxes occur primarily in arctic habitats. They can also be seen near urban regions 

were they are attracted by anthropogenic food sources (Eberhardt 1976).  

Their habitat can be divided in four groups: coastal, inland, alpine and marine (Garrot and 

Eberhardt 1987).The coastal habitat is associated with islands. In this habitat animals feed 

also on carrion near beaches and intertidal zones. Nesting seabirds are the main diet, while 

in inland habitat the primary food sources are rodents and ptarmigans (Labopus spp.). This 

habitat is characterized by the lack of trees and a prevalence of low-growing shrubs, herbs, 

and grasses. Marine habitat is the pack ice in the Arctic Ocean. Alpine habitat, which does 

not really occur in America’s Artic Fox habitat, is characterized by alpine-style tundra 

1.8.1.2.4 Home Range  

Foxes occupy particular ranges during spring and summer while bearing and raising cubs. 

The home range size of Arctic Foxes depends on the abundance of its prey which they 

follow. They move seawards in fall and early winter, and landwards in late winter and early 

spring. In order to find more food, foxes move out to open sea after leaving the land based 

home ranges. The movements in this period can be extensive and go up to 24km per day. 

Foxes have been observed 800 km away from solid land (Wrigley and Hatch 1976). 

1.8.1.2.5 Feeding Habits 

In the tundra region, Arctic Foxes rely on lemmings as a food source (Angerbjörn et al. 

1999). Other rodents can be important dietary constituents where they are abundant. 

Furthermore other food like birds, eggs, arctic ground squirrels, arctic hares, insects, snails, 

fish, berries and carrion of caribou is also taken by the arctic fox (Eberhardt 1977; Garrot et 

al. 1983b). Marine mammals appear to be primary foods on pack ice in winter. Arctic Foxes 

scavenge seal carcasses left by Polar Bears (Elton 1949) and may even routinely follow 

Polar Bears.  

As a consequence of the human settlement, Arctic Foxes also scavenge on refuse in human-

occupied areas. They may become quite dependent on such food when natural foods are 
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scarce (Garrot et al. 1983b).  Arctic Foxes may kill and cannibalize adult animals and cubs 

when food availability is low (Chesemore 1975).  

1.8.1.2.6 Human Impact and Conservation Status 

Arctic foxes were and are still important as an income in arctic regions, although the 

importance of fur as an income has strongly declined (Chesemore 1975). Arctic Fox 

populations appear secure throughout their range in North America. But they now are 

considered to be rare in Finland, Sweden, Norway, and some parts of Russia (Ginsberg and 

MacDonald 1990).  

1.8.1.3 Red Fox (Vulpes Vulpes) 

 

Picture 3: Vulpes vulpes (Source: US National Park Service 2004) 

 

1.8.1.3.1 Distribution  

The Red Fox is the most widely distributed of the North American fox species (Hall 1981). It 

has the most extensive natural distribution of any terrestrial mammal except humans (Nowak 

and Paradiso 1983), although its origin in North America has been disputed. It is suggested 

by evidences that the Red Fox was native to North American boreal and mixed hardwood 

habitats north of 40-45° (Kamler and Ballard 2002). Red Foxes from England were 

introduced into the southeastern United States and New England region in the 1700s for 

hunting (Churcher 1959; Gilmore 1946). 
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Several factors including interspecific competition, adaptability, habitat modification, and 

human influence determine the current distribution of the Red Fox (Sargeant 1982). In the 

southeastern United States the Red Fox population is increasing caused by the reduction of 

Gray Wolf (Canis lupus) and Red Wolf (Canis rufus) as well as the clearing of forests 

(Churcher 1959; Godin 1977). Furthermore, foxes colonized prairie regions following the 

elimination of wolves and the significant reduction of coyotes (Canis latrans) by humans.  

 

Figure 3: Distribution of Red Fox (Vulpes vulpes) in Alaska from Patterson et al. 2007 

 

1.8.1.3.2 Habitat 

Red foxes have an immense ecological plasticity; they inhabit forests, prairie, arctic tundra, 

deciduous landscapes, and urban environments. Heterogeneous and fragmented landscapes 

characterized by high habitat diversity and interspersion are preferred (Catling and Burt 

1995). Such areas include landscapes where woodlots are interspersed with cropland and 

pastures (Ables 1975; Catling and Burt 1995).  

The food availability may be the most important factor for choosing a habitat (Halpin and 

Bissonette 1988; Phillips and Catling 1991). Habitats with a higher diversity may provide 

more food. Foxes are well adapted to inhabit urban regions (Lewis et al. 1993). Although red 

foxes are usually associated with more mesic environments, they may not require open 

water, but can obtain sufficient water from food (Sargeant 1978). 
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1.8.1.3.3 Feeding habits and home ranges  

The home range size of foxes varies between environments habituated and the variation 

among those environments. Home ranges in tundra regions seem to be larger due to lower 

food abundance (Jones and Theberge 1982). 

Foxes are primary, secondary, and tertiary consumers and also scavengers. They are mainly 

carnivorous animals by consuming a diversity of prey species. The red fox is frugivorous and 

consumes a variety of wild fruits (Sargeant et al. 1993). Although rodents and leporids are 

the commonly primary diet, red foxes feed on a diversity of items, depending on the location 

for example birds as well as reptiles, amphibians, and a variety of insects (MacDonald 

1980a). The most frequently consumed rodents include voles, woodchucks, pocket gophers, 

and deer mice, whereas leprids include cottontails, black-tailed jackrabbits, and snowshoe 

hares (Scott and Klimstra 1955). Especially in autumn, red foxes feed on fruits that can 

constitute up to 100% of the diet. Moreover, human refusals provide a good food source if 

abundant (Doncaster et al. 1990; Cypher and Yahner 1996) 

1.8.1.3.4 Human Impact and Conservation Status 

The population status of the red fox is relatively secure in most regions (Feldhamer et al. 

2003). Rabies outbreaks affect them though. Like other predators, red foxes are subject to 

population fluctuations which are a function of food-mediated variation in reproductive 

success (Lindström 1980).The subspecies Vulpes vulpes necator was listed as “threatened” 

in California in 1980 (Feldhamer et al. 2003). 

1.8.1.3.5 Interspecific interactions of foxes  

Red foxes interact with several other fox species because of their wide distribution. In the 

arctic region they compete with the Arctic fox. Red foxes are more aggressive and Arctic 

foxes generally avoid them (Rudzinski et al. 1982; Schamel and Tracy 1986). 

Wolves have been reported to occasionally kill foxes (Mech 1966; Chesemore 1975; 

Laviviere and Pasitschiak-Arts 1996). However, this is neither common, nor does it affect fox 

population dynamics much. In general, red and arctic foxes scavenge on the 

carcasses left by the wolves (Hersteinsson et al. 1989).  



18 

1.8.1.4 Gray Wolf (Canis lupus) 

 

Picture 4: Canis lupus (Source: C. Muiden 2006)  

1.8.1.4.1 Distribution 

The gray wolf (Canis lupus) has one of the most extensive distributional ranges of any 

mammal (Nowak 1983). The subspecies coastal wolf (Canis lupus occidentalis) is distributed 

throughout Alaska and its islands (Paquet 2003).  

 

Figure 4: Distribution map of Gray Wolf (Canis lupus) in Alaska from Patterson et al. 2007 

 

1.8.1.4.2 Habitat 

The gray wolf can be regarded as a habitat generalist. Wolves move long distances and 

require large home ranges. They occur in all major habitats including deserts, grasslands, 

forests, and arctic tundra (Mech 1970; Fuller et al. 1992; Mladenoff et al. 1995). Like for other 

predators the habitat use of wolves is strongly influenced by the availability and abundance 
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of prey (Weaver 1994; Paquet et al.1996). The foraging habitat and prey selection is adapted 

to local conditions. Moreover, the local populations are adapted to physiography and den-site 

use (Mladenoff and Sickley 1998; Callaghan 2002). 

 

The occurrence of wolves is also strongly dependent on snow condition (Fuller 1991a; 

Paquet et al. 1996), absence or low occurrence of livestock (Bangs and Fritts 1996), road 

density (Fuller 1989; Thurber et al. 1994; Mladenoff et al. 1995), human presence and 

topography (Paquet et al.1996; Callaghan 2002). Wolves are not longer present in areas with 

dense human population; however they are still present in Alaska (Mladenoff and Sickley 

1998; Haight et al. 1998; Callaghan 2002). 

1.8.1.4.3 Home Range 

The home range size depends on the type and density of prey, and varies from area to area. 

Some packs of wolves occupy stable home ranges. These home ranges are exclusive 

territories (Mech 1970, Peterson et al. 1984; Messier 1985a; 1985b). Wolves show territorial 

behavior, but home ranges are dynamic and related to the availability of food (Carbyn 1981; 

1982b, Mech et al. 1995a). Territory and home range seem to be more correlated with pack 

size than with prey density (Peterson et al 1984; Messier 1985b). 

1.8.1.4.4 Hunting and Diet 

Wolves are specialized on vulnerable individuals of large prey like ungulates. The important 

ungulate species of North America are deer (Cervus elaphus), moose (Ballard and von 

Ballenberghe 1997) caribou (Ballard et al. 1997) elk (Kunkel et al. 1999), muskoxen (Mech 

1999a) mountain goat (Festa-Bianchet et al. 1994) and mountain sheep (Paquet et al. 1996). 

lf ungulates are not available, they are able to supplement their diet by using different prey 

and habitats (Mech 1991; Weaver et al. 1996), beavers, hares (Lepus americanus), and 

other smaller mammals are taken as food. Moreover, wolves complement their diet with 

scavenging (Forbes and Theberge 1992) and some wolf packs in Alaska and Western 

Canada have been observed to feed on salmon (Woodford 2010). 

1.8.1.4.5 Human Impact and Conservation Status 

The interaction of wolves and humans is affected by multiple factors. Trapping plays a role in 

Alaska. The reaction of the wolves on humans depends on their use of the landscape and 

their response to people (Carrol et al. 2001; Duke et al. 2001). The history of disturbance 

seems to be critical for wolves, since they learn through social transmission. The intensity of 
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response to humans seems also to vary with social context and environmental conditions 

(Curatolo and Murphy 1986). 

1.8.2 Ursidae 

1.8.2.1 Black bear (Ursus americanus) 

 

Picture 5: Ursus americanus (Source: K. Thomas 2008) 

1.8.2.1.1 Distribution 

The Black bear is the most distributed of the three bears in North America. Its distribution 

covers the forested areas of North America and also Mexico. Distribution covers today 62 % 

of the historical range. The distribution is restricted to the less settled regions of the forested 

areas. In North America status and density vary considerably within the existing range 

(Pelton and Vanmanen 1994).  
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.  

Figure 5: Distribution Map of Black Bear (Ursus americanus) in Alaska from Patterson et al. 2007 

1.8.2.1.2 Habitat  

Black bears are difficult to census due to their generally sparse numbers, shy and secretive 

nature and the inaccessible habitat (Pelton 2003). If not overharvested, the population of 

black bears stay stable when close to urban regions. However, if no refuge is available, the 

local population succumbs to intolerance of humans.  

The primary habitat is characterized by relatively inaccessible terrain, thick understory 

vegetation and abundant sources of food in the form of shrub or trees, soft or hard tree mast. 

If the bears are forced to leave relatively protected areas in order to forage on less protected 

sites, the mortality increases and which results in a declining population. 

1.8.2.1.3 Home range and movement 

Size and shape of black bears´ home ranges depend on the capability of an area to provide 

the animal´s annual needs (Hamilton 1978; Garshelis et al. 1983). Home ranges change 

dramatically if food resources vary. They also depend on such factors as sex, age, season, 

and population density. It is reported that individuals have moved more than 160 km to take 

advantage of isolated pockets of available food (Rogers 1977).  

Concentration of soft mast (Piekielek and Burton 1975), hard mast (Sauer et al. 1969), or 

artificial food sources (Rogers 1977) provide, at least temporarily, the stimulus for extensive 

movements and consequent range expansion. Home range size of males is three to eight 

times larger than that of adult females (Pelton 2003) 
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1.8.2.1.4 Feeding Habits 

Black bears are no active predators and feed only on vertebrates if the opportunity arises, 

however mostly in the form of carrion. Generally only a small portion of their diet consists of 

animal matter, and then primarily in the form of colonial insects and beetles. Black bears 

consume primarily grasses and forbs in spring, soft mast in the form of shrub and tree-borne 

fruits in summer, and a mixture of hard and soft mast in fall. Their diet consists predominantly 

of food high in carbohydrates, protein and fat. When feeding on aliment rich in protein, a 

significant weight gain and an enhanced fecundity can occurr. Moreover they like food and 

garbage of humans (McLean and Pelton 1990).  

1.8.2.1.5 Behavior  

The black bear is normally a solitary animal; however, they are social animals and interact 

with each other. Exceptions are female groups, with an adult female and cubs. Other groups 

are breeding pairs and congregations at feeding sites. 

Commonly the black bear is crepuscular, feeding activities and breeding can delay the 

activities seasonally (Gershelis and Pelton 1980). The activities are depressed when above 

25°C or below freezing. Most activity is shown after the passage of a low pressure weather 

front (Garshelis and Pelton 1980). Black bears exhibit a high level of curiosity and 

exploratory behavior, they also possess a high level of intelligence (Bacon and Burghardt 

1976; Pruitt 1976). Generally they are shy and secretive towards humans, but considering 

the actual physical contact, black bears are less aggressive than the other North American 

Ursidae (Tate and Pelton 1980). 

1.8.2.1.6 Human Impact and Conservation Status 

The status of the black bear ranges from a pest to threatened in North America. In regions 

with large expanses of forested areas like Alaska and relatively sparse human population, the 

bear population is stable. The species has a tendency to adapt to the presence of humans if 

it is allowed. Around 40.000 black bears are harvested each year in North America (Pelton et 

al. 1999). In 2007, 3,250 bears were killed in Alaska (ADF&G 2010). The mortality of the 

black bear population is in many cases human-related and includes hunting, poaching, road 

kills and depredation control. Other factors are less well known and studied. 
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1.8.2.2 Polar Bear (Ursus maritimus) 

 
Picture 6: Ursus maritimus (Source: USGS 2010) 

1.8.2.2.1 Distribution 

Polar bears are distributed exclusively in the circumpolar Arctic. Their range is limited to 

regions with sea ice cover for most of the year (Amstrup and Gardner 1994). Polar bears are 

most abundant near shore in shallow-water areas and in other areas with currents and 

upwellings where ice cover is not becoming too solidified in winter (Stirling and Lunn 1997; 

Amstrup et al. 2000). Animal distribution changes in most of the areas due to the changes 

and extensions of the ice. In areas were the ice melts completely, polar bears stay ashore 

during this period (Stirling 1988). 
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Figure 6: Distribution of the Polar Bear in terrestrial Alaska (Map derived from WWF & PBSG 2009; The Arctic 
Sounder 2010) 

1.8.2.2.2 Habitat 

The main habitat of the polar bear is the annual sea ice covering the waters over the 

continental shelf and the Arctic inter-island archipelagos (Stirling 1988, Derocher et al. 2004). 

Because the Polar bear spends many months of the year at sea, it is classified as a marine 

mammal (Stirling 1988). This feeding habitat is known as the “Arctic ring of life” with high 

biological productivity in comparison to the deep waters of the Arctic (Stirling 1988, Derocher 

et al. 2004). Polar bears follow the migrating seals during the year. Seals have to change 

their position due to weather changes throughout the year, and the change of ice content in 

the sea. 

1.8.2.2.3 Feeding Habits  

The polar bear is the apical predator of the arctic marine ecosystem. Polar bears are more 

predatory than other bears. The main prey are ringed seals (Phoca hispida) and to a lesser 

extend, bearded seals (Eignathus barbatus). Polar bears also kill larger animals like walruses 

(Odobenus rosmarus) and belugas (Delphinapterus leucas). Observations confirm that polar 

bears feed on a variety of other wild foods, including muskox, reindeer, birds, eggs, rodents, 

shellfish, crabs, and also other polar bears. However, none of these are a significant part of 

their diet (Clarkson and Stirling 1994). Polar bears are poorly equipped to digest plants, and 

except for the fruiting bodies, plants will contribute little to their energy balance (Bunnell and 

Hamilton 1983). If available, they also take human refuse as supplemental food (Lunn and 

Stirling 1985). 
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1.8.2.2.4 Interspecific Interactions 

Several animal species, particularly arctic foxes, Snowy Owl (Bubo scandiacus)and glaucous 

gulls (Larus hyperboreus) routinely scavenge polar bear kills (Stirling 1988). 

Ringed seals have been a principal food of polar bears for a significant portion of their co-

evolutionary history (Stirling 1977). The relationship between ringed seals and polar bears is 

so close that the abundance of ringed seals in some areas appears to regulate the density of 

polar bears, while polar bear predation in turn regulates density and reproductive success of 

ringed seals. Although wolves are rarely encountered, there are at least two records of wolf 

packs killing polar bear cubs (Richardson and Andriashek 2007). 

1.8.2.2.5 Human Impact and Conservation Status 

Key danger comes from global warming resulting in habitat loss and as a consequence in 

malnutrition or starvation. Main hunting grounds are the platforms of sea ice.  

Rising temperatures cause the sea ice to melt earlier in the year, driving the bears to solid 

land before they could build sufficient fat reserves to survive the period of scarce food in late 

summer and early fall (Regeher et al 2007). On 14 May 2008 the U.S. Department of the 

Interior listed the polar bear as a threatened species under the Endangered Species Act 

(ESA, but with a special reference to the Marine Mammals Act), citing the melting of Arctic 

sea ice as the primary threat to the Polar bear (Wenzel 2004).   

1.8.2.3 Grizzly Bear (Ursus Arctos) 

 
Picture 7: Brown bears (Source: Chris Servheen, U.S. Fish and Wildlife Service) 
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1.8.2.3.1 Global Distribution 

The brown bear was widely distributed throughout the North American continent before the 

European settlement (Schneider 1977; Craighead and Mitchell 1982). With the beginning of 

the European settlement, the range of the Grizzly bear was drastically reduced (Mattson et 

al. 1995). During just a 100- year period, Grizzlies were extirpated from 98% of the historical 

range in the lower 48 States (Mattson et al. 1995). In contrast, Alaska (coincidentially carrying 

a very low human population) stil has the largest population of brown bears of any state in 

North America (Miller and Schoen 1999). This population is considered overall stable and 

has probably remained relatively unchanged since the mid 1700 (Miller 1993). However, the 

Kenai Peninsula population of brown bears is declared as “Species of Special Concern” since 

1998 (ADF&G 2010), and many local issues exist.  

 

Figure 7: Distribution Map of Grizzly Bear (Ursus arctus) in Alaska from Patterson et al. 2007 

1.8.2.3.2 Ecology 

Brown bears have relatively broad environmental limits. They occupy a variety of habitats 

throughout North America (Craighead 1998). The omnivorous general lifestyle and 

intelligence help the bears to adapt and use vastly different landscapes. The active 

landscape season for brown bears is compressed to 5-7 months. During this period the 

bears must gain sufficient weight to supply their energetic needs for the next denning cycle. 

In Alaska bears use a variety of habitats including meadows, coastal sedge, old growth 

forests and south-facing avalanche slopes. Bears use alpine and subalpine meadows in early 

summer and during midsummer. Through early fall the bears move to coastal habitats to feed 

on spawning salmon (LeFranc et al. 1987, Schoen et al.1994). This movement is not shown 

by all bears, some do not visit salmon streams but remain in higher habitats (Schoen et 

al.1986). In late fall bears alternately fish or use berry-producing habitats (Le Franc et al. 

1987; Schoen et al . 1994). In consistently similar appearing habitats, the habitat selection of 

individual bears differs (Mace and Waller 1997).  
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Although in Alaska and northern Canada habitats occupied by the Grizzly are not significantly 

altered by humans, most of the productive lands is dominated by humans in the contiguous 

48 states and some portions of southern Canada. This drives the grizzly bear population in 

remote and rugged mountain area habitats. These habitats may not represent what 

historically were the best habitats (Craighead and Mitchell 1982; Gibeau 1998). As a result 

the human settlement alteration of landscape is a limiting factor for habitat choices of bears 

(Feldhammer et al. 2003). 

1.8.2.3.3 Home Range 

Movement is influenced by many factors like key food items, breeding, reproductive and 

individual status, and it can be extremely variable within and among populations of brown 

bears. Ranges of adult male bears are typically several times larger than those observed for 

adult females with cubs (Blanchard and Knight 1991). Due to the lack of mobility of the cubs 

home range of females and cubs are the smallest (Blanchard and Knight 1991). Late 

summer and fall ranges are more variable. They coincide with the hyperphagic period of 

intense foraging. Foraging opportunities are temporally and spatially unpredictable (Nelson et 

al. 1983b)  

1.8.2.3.4 Feeding Habits 

Brown bears are omnivorous opportunistic feeders. They find their food in multiple taxa, from 

insects to vertebrates and fungi to angiosperms. They have adaptations for a herbivory diet, 

including expansion of molar chewing surfaces and longer claws for digging. Their 

unspecialized digestive system is capable of digesting protein with efficiency equal to that of 

carnivores (Bunnel and Hamilton 1983). 

During spring and early summer Grizzlies consume herbaceous vegetation in many 

ecosystems. In areas with abundant meat or fish resources, grasses, forbs, and sedges are 

preferred diet in spring and early summer (LeFranc et al. 1987). Male bears need more 

protein because of their body size, consequently they are more carnivorous than females 

(Jacoby et al. 1999): Apart from the coastal environments with abandoned fish prey, meat is 

less available and more difficult to obtain for interior brown bear populations. Instead of fish, 

ungulates as prey and carrion are used seasonally.  

In contrast to coastal environments with abandon fish as protein supply, meat is much less 

available and more difficult to obtain for interior brown bear populations, Use of ungulates as 

prey and carrion is common and seasonally important. Winter- starved ungulates including 

caribou, moose (Alces alces), Cervus elaphus and bison (Bison bison) are a welcome diet.  
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Bears can also be effective predators, in early summer neonates are actively hunted. Moose, 

caribou and elk calves are seasonally important foods (Green et al. 1997; Mattson 1997; Gau 

1998). 

Were bear territory crosses human settlement, anthropogenic foods (i.e. garbage, livestock 

feed, pet food, bird seed, human foods, garden crops, honey) are used by brown bears 

(Herrero 1985). Food is often found in garbage dumps. This food can be a source of highly 

nutritious supply for the brown bears (Meagher and Phillips 1983), and can become a big 

driver for bear behaviour. 

1.8.2.3.5 Intraspecific killing  

Grizzly bears are known to kill one another (McLellan1994), cubs of the year are the greatest 

victims, but adult females are also killed. Bears of all age and sex classes are killed, which 

indicates that intraspecific killing is not limited to infants (McLellan 1994). It is arguably a big 

factor for bear populations even. 

1.8.2.3.6 Human Impact and Conservation status 

In Alaska and all Canadian provinces exists a legal hunting season that includes Grizzly 

bears. However, south of Canada the species is protected as threatened under the ESA 

since the populations have been dramatically reduced in abundance and distribution. They 

are now only left in the Rocky mountains near Canada and in the Yellowstone Ecosystem. 

Grizzlies occupy only    1-2% of their historical range south of Canada. A truly viable 

population remains only in Alaska, but even there excessive mortality and habitat destruction 

in areas such as the Kenai peninsula are leading to decimation. In the same way the 

population south of Canada, and globally, has been placed at risk (Feldhammer et al. 2003). 
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1.8.2.4 Wolverine (Gulo gulo) 

 

Picture 8: Gulo Gulo (Source: Zefram 2006) 

1.8.2.4.1 Global Distribution 

Wolverines are a circumpolar species, occurring from Scandinavia eastwards across the 

taiga and forest-tundra zones of Eurasia north of 48° N latitude (Copeland 2003). In North 

America the current distribution is limited to the mountainous regions of the western United 

States, north of 37°N latitude, extending north along the Rocky Mountain corridor into and 

across the boreal- tundra regions of Canada and Alaska (Copeland 2003). Alaska has a 

viable wolverine population (Copeland 2003) and no documented range reductions. The 

wolverine extends throughout the state except of islands in the Bering Sea, the Aleutian 

chain, Kodiak, Prince William Sound, and outer islands in the Alexander Archipelago.  

 
Figure 8: Distribution Map of Wolverine (Gulo gulo) in Alaska from Patterson et al. (2007) 
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1.8.2.4.2 Habitat  

Wolverines occur most commonly within boreal forest and taiga communities dominated by 

black spruce (Picea mariana) white spruce (Picea glauca), balsam fir (Abies balsamea), jack 

pine (Pinus baksiana), tamarack (Larix laricina), alpine fir (A.lasiocarpa), lodgepole pine 

(Pinus contorta), white birch (Betula papyrifera), and balsam poplar (Populus balsamifera), 

as well as in tundra ecosystems.  They are most common in regions that receive regular 

annual snowfall; thus, a connection with climate can be expected. Across the Arctic of 

northern Alaska and Canada, Wolverines occur from sea level to 2000 m elevation. Their 

presence at southern latitudes appears restricted to high-elevation habitats. In south-central 

Alaska, wolverines prefer spruce (Picea spp.) habitats during winter (Gardner 1985, Whitman 

et al. 1986) and rocky areas during summer. Elevational and habitat shifts in wolverine 

distribution may be related to prey availability (Gardner 1985, Whitman et al 1986; Copeland 

1996), human avoidance (Hornocker and Hasch 1981; Copeland 1996) or thermoregulatory 

needs (Hornocker and Hasch 1981). Wolverine populations are most viable where human 

activities have done little to alter the landscape (Hatler 1989; Copeland 1996).  Whether 

human presence has forced wolverine into remote regions is not well understood. It is likely, 

however, that large tracts of pristine habitat may be the only assurance of their continued 

existence (Copeland 2003). The role of road kills and garbage dumps is not so well 

understood for wolverines, yet. 

 

Elevational and habitat shifts in wolverine distribution may be related to prey availability 

(Gardner 1985; Whitman et al. 1986; Copeland 1996) or thermoregulatory needs (Hornocker 

and Hash 1981). No particular components typify wolverine habitats, and that lack of large 

scale refugia may be the limiting factor in their distribution (Hatler 1989). Dens in Alaska 

occur in deep snowdrifts along minor drainages at elevations of 560-625 m (Magoun and 

Copeland 1998). 

1.8.2.4.3 Feeding Habits 

Wolverines are opportunistic feeders, with a variety of prey and carrion as contents of their 

diet (Pasitschniak-Arts and Lariviere 1995). Despite its relatively small size, Gulo gulo has 

been observed hunting and killing full-sized caribou and deer. 

 

In Alaska, wolverines feed on moose and caribou. Near the coast the consumption of walrus 

was reported. During the summer months the diet consists of berries (Rausch 1959). Often, 

the wolverine uses carcasses of caribou or moose that were left by wolf packs or bears, 

furthermore whale, walrus, and seal carcasses. Caribou and arctic ground squirrel carrion 
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are the most important winter food (Magoun 1985). Sleeper (1995) stated that they will also 

eat eggs, wasp larvae, and berries. In areas with low concentrations of other scavengers, 

wolverines often cache their food in snow crevices or trees for later consumption (Murray 

1987). Hunters and trappers have reported many stories of mountain lion, bears, and wolves 

retreating from their kills at the approach of wolverine (Jameson and Peters 1988; Caras 

1967). It makes the wolverine the strongest dominating mammal predator!  However,there 

have been reports of mountain lion, black bears, and wolves attacking and occasionally 

killing wolverines, most likely the young and inexperienced (Hornocker and Hash 1981).  

1.8.2.4.4 Human Impact and Conservation 

Wolverines occur in a generally low density (see Table 1.3). The populations are most viable 

where human presence has done little to alter the landscape. As a converse argument large 

tracts of pristine habitat may be the only assurance of continued existence of Wolverines.In 

Alaska 600-1000 wolverines are harvested annually where most wolverine are probably 

taken as incidental catches during other fur-trapping activities. (Copeland 2003) 

1.8.2.5 Pine marten (Martes americana) 

 

Picture 9: Martes americana (Source: Tom Walker 2010) 

1.8.2.5.1 Distribution 

Martes americana has a circumboreal distribution. The species is distributed like the fisher 

with an extension further north, to the northern limits of trees. In the pacific states the marten 

occurs as far south as southern Sierra Nevada. 
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Figure 9: Distribution Map of Marten (Martes americana) in Alaska from Patterson et al. 2007 

1.8.2.5.2 Habitat  

Martens occupy mesic, conifer-dominated forests with abundant physical structure near the 

ground. They avoid areas lacking overhead cover (Buskirk and Powell 1994). Talus or 

boulders, subterranean lava tubes, or shrubs provide suitable overhead structure, where in 

open areas shrubs are sufficient to provide suitable overhead structure.  

1.8.2.5.3 Density, Spatial Organization,Home Range and Management 

The density is about 1.5 marten/ km², the home range depends on densities of prey (Powell 

1994a). Home ranges are smaller when prey density is high (Thompson and Colgan 1987) 

and are about 8.1 km² for males and 2.3km² females. As a response to fluctuation in prey 

populations, the marten population changes in an order of magnitude (Powell 1994a). 

Martens population fluctuate in response to the roughly 10-year cycle in snowshoe hare 

density, their main prey (Bulmer 1974; 1975).Martens are trapped for their fur in all but a few 

states and provinces in the United States and Canada (Ruggiero et al. 1994;Ray 2000) 
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1.8.3 Felidae 

1.8.3.1 Lynx Canadensis 

 

Picture 10: Lynx canadensis (Source: U.S. FWS 2010 ) 

1.8.3.1.1 Global Distribution 

The lynx is distributed throughout the boreal forests of North America from approximately the 

border of the United States / Canada up north to the treeline (Feldhammer et al. 2003). The 

lynx was once found in 24 states of the United States. (McKelvey et al. 2000a). Changes in 

habitat and human persecution probably extirpated the lynx from a large area of the 

contiguous United States. 

 
Figure 10: Distribution Map of Lynx (Lynx canadensis) in Alaska from Patterson et al. 2007 
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1.8.3.1.2 Habitat 

Lynx generally occur in association with boreal forests. In Alaska on the Kenai Penisula the 

dominant tree species are white spruce (Picea glauca), black spruce (Picea mariana), paper 

birch (Betula papyrifera), willow (Salix spp.) and quaking aspen (Populus tremuloides) (Bailey 

et al. 1986). To a large extent, snowshoe hare habitat is also lynx habitat. High stem density 

is directly related to the presence of hares, and thus lynx (Litvaitis et al. 1985). Other 

important habitat factors are protection from severe weather, availability of resting and 

denning sites, dense cover for hunting and escape, and lack of disturbance (Bailey 1974). An 

optimal habitat for lynx provides a suitable forest environment for snowshoe hares and 

adequate blowdown for den and kitten-rearing sites. 

For the lynx itself habitat is an uneven-age forests with relatively open canopy as well as 

« patchy » areas of disturbed forest. Although strip or block cutting within dense forest 

provides that ideal habitat mix, extensive clear cuts would not meet lynx habitat requirements 

(Quinn and Parker 1987). A creation of early-successional forest might not be the best way to 

provide habitat for lynx prey (Buskirk et al. 2000b). 

Lynx appear to avoid large open areas, even though they have abundant potential prey 

(Koehler and Aubry 1994) 

1.8.3.1.3 Home Range  

Lynx home range size appears to be linked to prey availability in a non-linear way. The home 

range size of lynx increases when hare density falls under 0.5-1.0 hare/ha (Mowat et al. 

2000). In the northern Yukon, Lynx become nomadic when hare densities decrease to >0.5 

hare/ha (Ward and Krebs 1985). 

The movement of Lynx depends on snow characteristics and prey density and is highly 

variable (Nellis and Keith 1968). The average distance between consecutive 24-hr 

relocations of lynx was 2.7 km up to 5.4 km, depending on the hare density (Ward and Krebs 

1985). Lynx is considered nocturnal, the major activity is centred during the period of sunrise 

and sunset. Lynx are good swimmers, one account records a Lynx swimming two miles 

across the extremely cold Yukon River (Kobalenko 1997). 

1.8.3.1.4 Hunting and diet 

Lynx` diet constitutes 35-100 % of snowshoe hare. Hares are influencing significantly the 

distribution and abundance of lynx. Lynxes increase their numbers with a higher hare density 
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, as well as their individual kill rates (Keith et al 1977). With low hare density the hunt on 

other species like red squirrel increases (Staples 1995, Krebs et al. 2001). 

1.8.3.1.5 Impact of Humans and Conservation 

Lynx occur less likely in areas with year-round human habitation, but they are tolerant of 

human presence and disturbance (Staples 1995; Mowat et al. 2000). In several ways the lynx 

is affected by roads and trails. On one hand Lynx use some roads for hunting and travel 

(Koehler and Aubry 1994). On the other hand roads give access to areas by hunters and 

trappers and may provide access for competing carnivores (Feldhamer et al. 2003). For 

translocated individuals traffic becomes a significant cause of death (Brocke et al. 1991). 

Since 2000 the Lynx is listed as threatened in the contiguous U.S. (U.S.Fish and Wildlife 

Service 2000). Nonetheless trapping and hunting is still allowed in Alaska (ADF&G 2010b) 

1.8.4. Aves 

1.8.4.1 The Golden Eagle (Aquila chrysataeus) 

 
Picture 11: Golden Eagle (Source: http://www.manausa.com/wp-content/uploads/golden-eagle.jpg) 

1.8.4.1.1 Distribution  

In North America, the golden eagle occurs in the western half of the continent, from Alaska to 

central Mexico including some small numbers in eastern Canada and scattered pairs in the 

eastern United States. Within its holarctic distribution the golden eagle occurs also 

throughout Eurasia and Northern Africa (Kochert et al. 2002). 
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Figure 11: Distribuiton Map of Golden Eagle (Aquila chrysataeus) in Alaska from Patterson et al. 2007 

1.8.4.1.2 Habitat 

The Golden Eagle occurs in appropriate seasons from forested areas to deserts including 

Death Valley and Salton Sea, during the warmest season he is absent here. The habitat of 

the Golden Eagle has the need of open areas in any seasons for hunting. In the nesting 

season the Golden Eagle needs a small  distance from shelves on cliffs, large trees, or 

equivalent nesting possibilities. Many nests are build in niches, in cliffs, escarpments and 

bluffs, some in steep dirt banks along boreal rivers but not  restricted to these. Nesting takes 

generally place in lower elevations but can go up to 2500 m. (Palmer 1988). Moreover the 

habitats needs the availability of small to medium sized mammalian pray, in particular ground 

squirrels and rabbits (Zeiner et al. 1990, Kochert et al. 2002). 

 

Wintering golden eagles in the western Unites States use a variety of open habitats 

dominated by native vegetation. The eagles tend to avoid urban, agricultural, and forested 

areas (Craig et al. 1986, Marzluff et al. 1994, Kochert et al. 2002).  

1.8.4.1.3 Home Range 

The size of the home range varies with the quality of the habitat and the season. In North 

America the home range is from 20 up to 33 km² of size. The boundaries of the home range 

is defended against intruders by flight displays (Kochert et al. 2002). It has been seen in 

Alaska that birds from Nome can cross the ocean and go to Russia virtually daily, back and 

forth (McIntyre unpublished). 
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1.8.4.1.4 Ecosystem Roles 

The hunting of the golden eagle impacts the local populations of the hunted prey. They also 

compete with other species for prey and habitat, for example with bald eagles and coyotes or 

common ravens and other species for territories (Kochert et al. 2002). 

1.8.4.1.5 Food Habits 

The primary diet consists of small mammals such as rabbits, hares, ground squirrels, prairie 

dogs and marmots. Additionally the golden eagle feeds also on birds, reptiles and fish. 

Occasionally it catches seals, ungulates, coyotes and badgers, large flying birds such as 

geese or cranes. A pair often hunts together by chasing the prey to exhaustion and one go 

down to kill the prey(Kochert et al. 2002).  

1.8.4.1.6 Predation  

Wolverines and grizzly bears are the only recorded predators of golden eagle nestlings 

(Kochert et al. 2002). The role of diseases should not be underestimated though. 

1.8.4.1.7 Conservation Status 

The golden eagle is federally protected under the Bald Eagle Protection Act of 1962. 

Recreational activities may disturb breeding, migration and wintering activities. Like most 

birds, Golden Eagles are likely to abandon nests during incubation if they are disturbed 

(Terres 1980). Birds have been known to suffer from pesticides, lead shot contamination and 

poaching. The role of road kill for prey and distribution is likely very big, making them directy 

affected by humans. 
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Table 3: Brief overview of the Predator Community of Alaska, Home Range and Conservation Status 

Name Main Prey 
(adapted 
from 
Feldhamer 
et al. 2003) 

Max 
Min 

Home range 
size m (SD) 

Home range size f 
(SD) 

Density   Status Red 
List (IUCN 
2010) 

Status U.S.  

Coyote   Omnivorous   7.7 km² British 
Columbia 

17.0 km² British 
Columbia (Atkinson 
and Shackleton 1991) 

0.01-0.09/km² (winter) (O´Donoghue et al. 1997) Least concern 
(IUCN 2009) 

Status 
Undefined (U.S. 
Fish & Wildlife 
Service 2010) 

Wolf Omnivorous Min Homerange 
size of packs 
283km² in the 
boreal 
areas(Carbyn 
1981)      

  Alaska 1/50-91  ( n/100 km²) (Peterson et al. 1984) Least concern 
(IUCN 2010) 

Endangered (U.S. 
Fish & Wildlife 
Service 2010) 

    Max >2500km² 
arctic region 
(Mech 
1987,1988) 

  1/ 227-667  (n/100 km²) Alaska south central (Ballard et 
al 1997) 

    

Arctic Fox  Omnivorous  1022 km² in 
Alaska 
(Anthony 
1997) 

Home range f 457 
(Anthony 1997)Home 
range of both sexes 
combined 2080 
Eberhardt et al. 1982) 

0,086/km² (Hersteinsson and Macdonald 1982) Least concern 
(IUCN 2010) 

Status 
Undefined (U.S. 
Fish & Wildlife 
Service 2010) 
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Name Main Prey 
(adapted 
from 
Feldhamer 
et al. 2003) 

Max 
Min 

Home range 
size m (SD) 

Home range size f 
(SD) 

Density   Status Red 
List (IUCN 
2010) 

Status U.S.  

Red fox Omnivorous   1610 (both sexes)  in British Columbia 
(Jones and Theberge 1982) 
  

0,1/km² (Voigt 1987) Least concern 
(IUCN 2009) 

Status 
Undefined (U.S. 
Fish & Wildlife 
Service 2010) 

Polar 
bear 

Ringed seals 
(Phoca 
hispida) 

  Unclear most mobile of all quadrupeds 
(Amstrup et al. 2000) 
  

  Vulnerable   
A3c (IUCN 
2010) 

Threatened (U.S. 
Fish & Wildlife 
Service 2010) 

Grizzly 
bear  

Omnivorous Min 71 km² Kodiak 
Island  
(Feldhammer et al 
2003 after Mc 
loughlin et al 
1999) 

185 km² Kodiak 
Island  
(Feldhamer et al 
2003 after Mc 
loughlin et al. 
1999) 

 1,5/100km² Alaska Range (Miller 1988) Least concern 
(IUCN 2009) 
  

Endangared (U.S. 
Fish & Wildlife 
Service 2010) 
  

    Max  132 Alaska range 
(Feldhamer et al 
2003 after Mc 
loughlin et al 
1999) 

710km²   Alaska 
range  (Feldhamer 
et al 2003 after 
Mc loughlin et al. 
1999) 

28/100 km² Kodiak island  (Feldhamer et al. 2003 
adapted from  McLellan1994)  

Black 
bear  

Omnivorous 
mainly plants 

  112.1 km² in Idaho 
(Amstrup and 
Beecham 1976) 

48.9 in Idaho 
(Amstrup and 
Beecham 1976) 

  Least concern 
(IUCN 2010) 

Similarity of 
Appearance 
(Threatened)  and 
Status 
Undefined (U.S. 
Fish & Wildlife 
Service 2010) 
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Name Main Prey 
(adapted 
from 
Feldhamer 
et al. 2003) 

Max 
Min 

Home range 
size m(SD) 

Home range 
size f (SD) 

Density   Status Red 
List (IUCN 
2010) 

Status U.S.  

Wolverine      666km² arctic 
Alaska (Magoun 
1985) 

104km² Alaska 
(Magoun 1985) 

1/192 km²  Kenai peninsula (Golden 1996) Least concern 
(IUCN 2010) 

Status 
Undefined (U.S. 
Fish & Wildlife 
Service 2010) 

Marten      8.1km² (Powell 
1994) 

2.3km² (Powell 
1994) 

0.6/km² Yukon Territory (fall) (Archibald and Jessup 
1984) 

Least concern 
(IUCN 2009) 

Status 
Undefined (U.S. 
Fish & Wildlife 
Service 2010) 

Lynx Snowshoe 
hare 

Max Max 266(106) 
Northern boreal 
forest with low 
hare density 
(Slough and 
Mowat 1996; 95% 
minimum convex 
polygon from 
Mohr 1947) 

Max 506(297) 
Northern boreal 
forest with low 
hare density 
(Slough and 
Mowat 1996; 95% 
minimum convex 
polygon from 
Mohr 1947) 

45 ( n/100 km²) Northern boreal forest with low hare 
density (Slough and Mowat 1996)  

Least concern 
(IUCN 2009) 
  

The Canadian Lynx 
is a threatened 
species in the US 
(U.S. Fish & Wildlife 
Service 2010) 

    Min Min 14(1)Northern 
boreal forest high 
hare density 
((Ward and Krebs 
1985 90% 
minimum convex 
polygon) 

Min 13(7)Northern 
boreal forest high 
hare density 
(Ward and Krebs 
1985 90% 
minimum convex 
polygon) 

3  ( n/100 km²)Northern boreal forest with low hare 
density (Slough and Mowat 1996) 

Golden 
eagle 

  

Rodents and 
Birds  

  

Min 
Max 

20 km² (Kochert et al. 2002) 
33 km² (Kochert et al.2002) 

  Least concern 
(IUCN 2009) 

Status 
Undefined (U.S. 
Fish & Wildlife 
Service 2010) 
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2. Methods 

2.1 Software 

All computations of this thesis were performed with a PC and the Windows XP operating 

system. For the Geographic Information System (GIS) processing ArcGIS 9.3 (ESRI ArcMap 

9.3; www.esri.com) was used. Data Mining, analysis, calculations and predictions were 

applied with TreeNet (Salford Systems 2009; www.salford-systems.com) Marxan 2.1.1 

(Possingham et al. 2000; http://www.uq.edu.au/marxan/) was used for the calculation of the 

protected areas. This study is based on the distribution maps of eleven Alaskan predator 

species: coyote, wolf, red fox, arctic fox, black bear, brown bear, polar bear, wolverine, 

marten, lynx, and golden eagle. The distribution maps used in this study are free open 

access data and can be downloaded at www.naturserve.org. Moreover, in part, the “Digital 

Distribution Maps of the Mammals of the Western Hemisphere Version 3.0“ (Patterson et al. 

2007) and “Digital Distribution Maps of the Birds of the Western Hemisphere Version 3.0“ 

(Ridgely et al. 2003; www.natureserve.org/getData) were used.  

A distribution map of the mega predator ecosystem was needed to show not only one 

individual distribution of a single animal, but instead a more ecologically meaningful 

ecosystem community involving eleven predators. Here we chose to use eleven predators to 

represent the main Habitat- Variables in a Top down view of an ecosystem part. Therefore, a 

new GIS layer was created as an ArcGIS 9.3. ESRI grid, which combined all distribution 

maps in one single map. This layer shows a map of the mega predator community in Alaska, 

revealing how many predator species can be found at one specific point. It further can be 

brought into a presence/ absence shapefile layer for the community as such. 

For further calculations, a layer with discrete information about the predator community and 

environmental variables was created. This layer was basically an overlay of GIS based maps 

of Alaska with different information, for instance a layer of the Streets of Alaska, climate 

factors etc. The mega predator community layer was used to grab the underlying parameters 

for a regular point layer (=lattice, resolution of c. 57,000 points).  
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Figure 12: Overlay of distribution maps of 11 predators in Alaska 

 

Using the publicly available Hawths Analysis Tools for ArcGIS (2009; 

www.spatialecology.com /htools/tooldesc.php), a regular point lattice layer with a grid size of 

5 km was created, resulting in a total of 57,435 measuring points for the whole of Alaska. 

The actual information of this map is determined by the underlying data layers and their 

resolution. Five km is a decent resolution to achieve highest possible performance in that 

regard.  

At a large scale view like the state of Alaska, this lattice point layer then resulted into 57,435 

measuring points. With shorter distance between the points, the amount of data would be 

rising, and calculations take significantly longer. On the other hand, it is assumed that a more 

detailed layer would not provide further necessary information for this study.  
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2.2 Building an Occupancy Model of eleven Predators in Alaska  

Ecology is frequently defined as: The understanding of distributions, relations and abundance 

of organisms and their interactions with the environment (Begon et al. 2006). It includes the 

study of the distribution and abundance of plants and animals (Andrewartha und Birch 1954; 

Krebs 1972). In this study, the estimation of the occupancy of eleven predators was used as 

a theoretical method by describing the predator community as a probability of occurrence. 

The key goal was to correct the detectability (=errors in range maps for the predator 

community as such), allowing eventualy for more precise population estimates. The single 

species distribution is not longer the main value and focus, but instead the “Ecosystem unit” 

of eleven predators becomes the information to portray, and corrected for points that are 

“outliers” or which do not fit detection model assumptions. The key goal was to correct the 

detectability. This should allow for a more realistic picture of predators in Alaska.  

Occupancy can be estimated as:                     
s

x̂
ˆ =ψ  

Equation 1 

where ψ  is the probability that a randomly selected site or sampling unit in an area of 

interest is occupied by a species (i.e. the site contains at least one individual of the species), 

x is the number where the species has been detected and s is the total number of sights. x is 

typically not known, instead it is the count of sites where the species has been detected, but 

this count will likely be smaller than x. 

2.3 Building the Model Ecosystem Unit “Mega Predator” 

The conceptual model is based on whether the species (=predator community in our case) is 

detected at a site or not. A site might be occupied with the probability ψ  or unoccupied with 

the probability ( )ψ−1 . If the site is unoccupied the species cannot be detected there. (If the 

location is occupied there is a probability jp  for each survey (j) that the species is detected, 

whereas the probability of not detecting the species in the survey is 1 - jp .This assumption 

implies that the occupancy status of sites does not change between surveys.) 

A detection history with ih =01010101010 indicates the presence/ absence of 11 species for 

a given site, meaning the species was not detected in survey 1, it was detected in survey 2, 
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was not detected in survey 3, ], was not detected in survey 11. A survey is in this specific 

case an overlay of distribution map of the 11 predators.  

This verbal example can be translated into a mathematical description through a series of 

equations.  

Pr( ih =01010101010)= ψ ( ) 211 pp− ( ) 431 pp− ( ) 651 pp− ( ) 871 pp− ( ) 1091 pp− ( )111 p−  

∏
=

−
11

1

)1(
i

jpψ  

Equation 2 

There are two possibilities for a non-occupied site. Firstly, the site may not be occupied at all. 

This probability can be described with the equation )1( ψ− . Secondly, the site may be 

occupied by the species, but the species was not detected in any of the surveys. These two 

possibilities cannot be distinguished from each other, which leads to the probability 

statement: 

 

)1()1(
11

1

ψψ −+−∏
=i

jp

                                                                
 

                                                                                                                                                          Equation 3 

 

For this study, the model described was implemented with the program PRESENCE 2.3 with 

the present model 1 group, constant p. The software can be freely downloaded at 

http://www.mbr-pwrc.usgs.gov/software/presence.html. The eleven predators considered 

“one species” were detected at all sites with a single probability (p). 

Out of the distribution layers and the regular point lattice layer an observation history was 

obtained. The observation history had 57.355 sites and eleven visits on every site.  

The occupancy model implied describes the eleven predators as one single species with the 

probability of occurrence (MacKenzie et al. 2006). This is a rather ecological, but probably a 

more realistic view for predator distributions, than previously done when using single species 

maps drawn by experts.  
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2.4 Geological and Environmental Variables 

2.4.1 Mean Normalized Difference Vegetation Index (NDVI) 

The NDVI (Gates 1980; NASA 2010) is calculated using the visible light and near-infrared 

light reflected by vegetation (biomass, chlorophyll). Healthy vegetation absorbs most of the 

visible light and reflects a large portion of the near-infrared light. Damage, sparse or 

unhealthy vegetation reflects more visible light and less near-infrared light. For use in 

photosynthesis, the chlorophyll in plants absorbs visible light from 0.4 to 0.7 µm. On the other 

hand, the cell structure of the leaves strongly reflects near-infrared light from 0.7 to 1.1 µm. 

These wavelengths highly depend on the number of leaves of a plant (Weier and Herring 

2000).  

To determine the NDVI, the National Oceanic and Atmospheric Administration (NOAA) uses 

an Advanced Very High Resolution Radiometer (AVHRR) .The AHVRR instrument of NOAA 

has five detectors, two of which are sensitive to the wavelengths of light ranging from 0.55–

0.70 and 0.73–1.0 micrometers. Out of these values the NDVI is calculated. To calculate  

NDVI the near-infrared radiation (NIR) is subtracted by the visible radiation (VIS) and then 

divided by near-infrared radiation plus the visible radiation (Weier and Herring 2000, Tucker 

et al. 2005).  

 

                                                                                                                   Equation 4    

2.4.2 Vegetation Classes 

The Vegetation map of Alaska (Fleming 1997, 

http://agdc.usgs.gov/data/projects/fhm/index.html#G ) has 23 classes from which 19 are 

vegetated. The classification was developed by Michael Fleming (1997) using the phenology 

of a vegetation index, the AVHRR and NDVI. Data for the map were collected during the 

growing season 1991. For classification and accuracy see Appendix 1.  
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2.4.3 Alaska Ecoregions Mapping 

In order to include the ecoregions in the model, the identified ecoregions of Alaska from 2001 

were taken from the USGS webpage (USGS 2010). We used a shapefile obtained from 

agdc.usgs.gov/data/usgs/erosafo/ecoreg/index.html. The ecoregion map combines the 

approach from Bailey and Omernik (1997) for ecoregion mapping in Alaska. Presumably, no 

real and consistent statistics such as clustering has been used to derive and assess these 

‘ecoregions’. The ecoregions were developed cooperatively by the U.S. Forest Service, 

National Park Service, U.S. Geological Survey, The Nature Conservancy, personnel from 

many other agencies, and private organizations (Nowaki et al. 2001). The datasets used for 

this map were: climate parameters, vegetation, and surficial geology and topography. 

Additional datasets incorporated in the mapping process were lithology, soils, permafrost, 

hydrography, fire regime and glaciations. The ecoregion units are based on the newly 

available datasets and field experience of ecologists, biologists, geologists and regional 

experts. Out of this knowledge the major ecosystems have been expert-assembled, mapped 

and described for the State of Alaska and nearby areas.  

Thirty-two units are mapped using a combination of the hierarchical (Bailey 1983) and the 

integrated (Omernick 1987) approach. The ecoregions are grouped into two higher levels 

using a blended "triarchy" based on climate parameters, vegetation response and 

disturbance processes (USGS 2010). For accuracy estimations see Appendix 1.  

 

2.4.4 Distance to roads, railways, airways, lakes, coast and towns and 

topographic maps 

Topographic maps were obtained from ESRI (2009), airways from the Alaskan Department 

of Natural Resources (1995). These maps were used in ArcGIS 9.3 to calculate the 

distances to roads, railways, airways, lakes and coast lines.  

The distances were calculated in 1000 meter intervals in the Alaska State Albers NAD 1983 

projection (see Table 1). Moreover, each of the factors (slope, aspect, and elevation) of the 

digital elevation model (DEM) was included. The DEM was obtained from the USGS (2009) .  

Maps of the National Parks of Alaska (National Park Service 2002) and National Wildlife 

Refuges (USFWS 2001) were used to show the status of protected wildlife in Alaska.  
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2.4.5 Computation of the Human Influence Index and the Human Footprint  

With an overlay of a number of global data layers (see Appendix 1 for details) representing 

various factors presumed to exert an influence on ecosystems, the layers of the Human 

Influence Index and the Human Footprint were produced. The combined influence of the 

factors human population distribution, urban areas, roads, navigable rivers, and various 

agricultural land uses yield the Human Influence Index (see Appendix 1 for details). The 

Human Influence Index (http://sedac.ciesin.columbia.edu/wildareas/) in turn, is normalized by 

global biomes to create the Human Footprint dataset. Human Footprint values range from 1 

to 100. A score of 1 indicates that the grid cell is part of the 1% least influenced “wildest” area 

in its biome. Though the absolute amount of influence in places like moist tropical forests and 

temperate broadleaf may be different, all areas with less than 1% influence are defined as 

”wildest” (SEDAC 2010). For detailed information on the Indices see Appendix 1 and 

Sanderson et al. (2003).  

2.4.6 Climate layers, the General Climate Model, future Climate Prediction and 

Climate Change  

“Climate change in IPCC usage refers to a change in the state of the climate that can be 

identified (e.g. using statistical tests) by changes in the mean and/or the variability of its 

properties, and that persists for an extended period, typically decades or longer. It refers to 

any change in climate over time, whether due to natural variability or as a result of human 

activity. This usage differs from that in the United Nations Framework Convention on Climate 

Change (UNFCCC), where climate change refers to a change of climate that is attributed 

directly or indirectly to human activity that alters the composition of the global atmosphere 

and that is in addition to natural climate variability observed over comparable time periods.”  

- IPCC AR4 synthesis report, Page 30, 2007 – 

General Atmospheric Circulation Models (AGCMs) are numerical/ mathematical models that 

simulate three- dimensional global atmospheric flows. Combined with an oceanic general 

circulation model (OGCMs) and a land surface model, they form the coupled model that is 

used for climate prediction of global warming (SATOH 2004). The coupled ocean-

atmosphere GCMs use climate simulations to project and predict future temperature and 

precipitation changes under various scenarios.  
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Most commonly in the predictive climate scenarios, an increase of 1% of CO2 per year is 

assumed. There are more realistic assumptions like the IS92a (Leggett et al. 1992) and the 

Special Report on Emissions Scenarios (Nebojsa et al. 2001) developed for the AR4-Fourth 

Assessment Report from the IPCC,that state a higher increase of CO2 (Pachauri and 

Reisinger 2007). 

In all non- mitigated models that were assessed by the IPCC, an increase of a global mean 

surface air temperature (SAT) continuing over the 21st century is projected. This increase is 

mainly driven by increases in anthropogenic greenhouse gas concentrations, with the 

warming proportional to the associated radiative forcing (The mean SAT warming for the 

early 21st century, averaged for 2011 to 2030 compared to 1980 to 1999 is between +0.64°C 

and +0.69°C, with a range of only 0.05) (Meehl et al. 2007). This warming rate is little 

affected by different scenario assumptions or different model sensitivities, and is consistent 

with the observed warming for the past few decades (Meehl et al. 2007).These scenarios do 

not include unknowable events like volcanic eruptions, human landcover transitions, insect 

outbreaks or a change in solar forcing. Although these effects are believed to have a smaller 

effect, volcanic eruptions for example are known to have a temporary cooling and global 

effects (Self et al. 1996). However, this is not man-made. It became clear by now that IPCC 

consistently underestimates (conservative models, but not correct), which can be seen on 

the yearly sea ice estimates for instance (Vellinga et al. 2009, Richardson et al. 2009).  

The climate data used in this study were projections for the state of Alaska based on 

downscaled (‘regionalized’) outputs from five IPCC Global Circulation models. The outputs 

were downscaled from a two-degree resolution to two kilometre resolution for Alaska with the 

PRISM methodology.  

These were performed by Dr. John Walsh and SNAP, more detailed Information can be found 

on the website: http://www.snap.uaf.edu (Walsh et al. 2008). 

Out of 15 professional IPCC climate models that are usually available, five models have 

been ranked as the best models for Alaska: ECHAM5, GFDL21, MIROC, HAD, CCCMA. Of 

these five models a composite using the mean values from the outputs of all five models are 

available. The ‘five model composite’ was used in this work with the A1B- scenario. In the A1 

storyline a world of very rapid economic growth is assumed. The global population will peak 

in mid-century. It is also assumed that new and more technologies will be introduced rapidly. 

The A1B scenario implies a balance across the used fossil and non fossil energy resources 

(Nakicenovic 2000, IPCC 2009). 
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Air temperature and precipitation are monthly mean values of a decade, as an example 

mean values of December temperatures for 2030-2039. The air temperature is specified in 

degrees Celsius, the precipitation in total monthly millimetres (snow water equivalent). 

Table 4: Geological and environmental variables used and their dimensions, source and processing 

Name of The Variable Dimension of the 
variable 

Format and Source Processing 

Elevation 

Meter ArcView Image File 

(USGS 2009 
http://agdcftp1.wr.usgs.gov/pub/projects/dem/300m/akde
m300m.tar.gz 

To raster  

 

Aspect Degree (360°) ArcView Image File 

 (USGS 2009) 
http://agdcftp1.wr.usgs.gov/pub/projects/dem/300m/akde
m300m.tar.gz 

To raster  

Slope  Non dimensional  ArcView Image File 

 (USGS 2009 
http://agdcftp1.wr.usgs.gov/pub/projects/dem/300m/akde
m300m.tar.gz ) 

To raster  

 

Distance to Towns Meter (1000 Meter 
Steps) 

Tom Paragi, AK Fish & Game Dept 

Shapefile: http://dnr.alaska.gov/SpatialUtility   

Topographic map to a 
distance raster file 

Distance to Roads Meter (1000 Meter 
Steps) 

Shapefile  http://dnr.alaska.gov/SpatialUtility    Topographic map to a 
distance raster file 

Distance to Coast Meter (1000 Meter 
Steps) 

Shapefile: http://dnr.alaska.gov/SpatialUtility 

/SUC?cmd=vmd&layerid=56 

Topographic map to a 
distance raster file 

Distance to Railways Meter (1000 Meter 
Steps) 

Shapefile  http://dnr.alaska.gov/SpatialUtility    Topographic map to a 
distance rasta file 

Distance to Airways Meter (1000 Meter 
Steps) 

Shapefile  http://dnr.alaska.gov/mlw/index.htm Topographic map to 
adistance raster file 

Ecoregions 1 and 2 Categorial (0-3/0-8) Shapefile 

http://agdc.usgs.gov/data/usgs/erosafo/ecoreg/index.htm
l) 

 To raster  

 

Mean NDVI from 2000 Non dimensional Shapefile 

D. C. Douglas US GS Alaska Science Center, Biology & 

Geography  Sciences, Juneau Office download at: 
(http://glcf.umiacs.umd.edu/data/) 

To raster  

 

Vegetationclasses Categorial (1-23) Shapefile 

http://agdc.usgs.gov/data/projects/fhm/index.html#G 

To raster  

 

Distance to Rivers  Meter (1000 Meter 
Steps) 

Shapefile Topographic map to a 
distance raster file 
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Name of The Variable Dimension of the 
variable 

Format and Source Processing 

Temperature Celcius  ASCII 

(SNAP 2009) http://www.snap.uaf.edu/ 

To raster  

 

Percipitation mm day -1 ASCII 

(SNAP 2009) http://www.snap.uaf.edu/ 

To raster  

 

Human Footprint Categorial (Range 1-
100) 

Shapefile (CIESIN 2009) 
http://sedac.ciesin.columbia.edu/wildareas/ 

To raster  

 

Human Influence Index Categorial (0-64) Shapefile (CIESIN 2009) 
http://sedac.ciesin.columbia.edu/wildareas/ 

To raster  

 

  

2.5 Using TreeNet Algorithm for Data Mining and Climate 

Predictions 

TreeNet® is a data mining tool, capable of consistently generating prediction models. 

TreeNet can work with regression and classification as well as with varying sizes of data sets 

(Salford Systems 2009; www.salford-systems.com). To achieve this, TreeNet uses a decision 

tree learning algorithm. In general, decision tree learning is widely applied in data mining and 

machine learning. 

TreeNet uses a decision tree as a predictive model which maps observations about an item 

to draw conclusions about the item's target value.  

The model generated in TreeNet is similar to a long series expansion, such as a Fourier of 

Taylors series (Salford Systems 2009; Taylor 1715). The model becomes progressively more 

accurate as the expansion continues. This can be written up as: 

)(...)()()( 22110 XTXTXTFXF MMβββ ++++=  

Equation 5 

Every iT  is a small tree. The expansion is a weighted sum of terms, each of which is 

obtained from the appropriate terminal node of a small tree. 
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As an example, a regression model begins with an estimate of a mean value, e.g. predator 

occurrence. It then uses this as a baseline from which adjustments will be made in order to 

reflect characteristics of other pedictor variables, e.g. temperature and distance to 

watersheds.  

In the first term, the model states that the mean value would be adjusted upwards for warmer 

temperature and then adjusted upwards again for the distance to watersheds. 

In practice, the adjustments are usually small and hundreds of adjustments may be needed 

in a model run. The final model is thus a collection of weighted and summed trees, 

summarized in a (digital) code. For binary classification problems, with a „yes“ or „no“ 

response determined by climate the predicted outcome is positive or negative. For multi-

class problems a score is developed separately for each class via class specific expansions, 

the scores are converted into a set of probabilities of class membership. Continuous 

applications employ specific regression optimizations.This description of TreeNet is very 

rudimentary but shows the concepts. The method used in TreeNet is called stochastic 

gradient boosting and was developed 1999 by J.H. Friedman (http://www-

stat.stanford.edu/~jhf/). 

Examples for the use of these decision-trees for  ecological analysis examples can be found 

in Elith et al. (2009), Popp et al. (2007), Craig and Huettmann (2009), and others. These 

types of analyses are not limited to the program TreeNet, other programs like CART from 

Salford Systems and BRT, MART for R can be used as well (Elith et al. 2008). This group of 

analysis and algorithms is fastly raising. 

2.6 Marxan Model Methods 

2.6.1 Implementing Conservation Areas for eleven Predators in Alaska 

Marxan is a software that delivers decision support for reserve system design 

(http://www.uq.edu.au/marxan/). A planner for a big reserve system for instance has to 

choose between large numbers of potential sites to select new conservation areas. To make 

a good decision, ecological, social and economic criteria and principles have to be included. 

Marxan is primarily intended to solve a particular class of reserve design problem known as 

“minimum set problem” where the goal is to achieve for instance some minimum 

representation of biodiversity features for the lowest possible costs (McDonnell et al. 2002). If 
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relatively comprehensive data on species, habitats and/ or other relevant biodiversity is 

given, Marxan aims to identify the best reserve system (a combination of planning units), by 

minimizing the costs to its lowest possible level and meeting the user defined biodiversity 

targets at the same time.  

 

Finding “the best” or the near best solution for a reserve system is very complex, and often 

not possible and not even needed for real world solutions. Marxan helps to prioritize the 

solutions according to the goals and penalties set by the user and stakeholder community. 

The number of possible (spatial) solutions of even a small reserve selection is vast. If one 

considers 200 planning units, there are over 1.6x 6010 possible ways a reserve system could 

be configured. To solve the selection problems of conservation areas, computer algorithms 

such as MARXAN and SITES have been developed (Ball et al. 2009; Ward et al. 1999); 

much research is done on this subject, and more is found in the (economic) discipline of 

Operations Research and Decision-Support Systems. 

There are at least two possible types of reserve design solutions with a computer program. 

One works with an exact algorithm, the other one works according to the heuristic method. 

Heuristic solutions do not provide an exact solution, but a number of good, near-optimal 

solutions, which not only offer a set of options for planners and stakeholders to consider, but 

can also be generated very quickly (Possingham et al. 2000; Cabeza 2003). The Marxan 

software uses simulated annealing as a heuristic method.  

2.6.2 Simulated annealing 

The term Simulated annealing actually derives from the annealing in metallurgy, which is a 

technique involving heating and controlled cooling of a material to increase the size of its 

crystals and reduce their defects (Kirkpatrick et al. 1983) Transferred to the optimization 

process from the simulated annealing, ”temperature” here corresponds to the probability that 

an intermediary result of the optimization can change for an outcome that is worse. Unlike to 

a local search algorithm, this procedure can leave a local optimum again. This safes the 

method of being stuck at a local minima, thus a better optimum can be found in the data, or 

for the global optimum of the entity. The “temperature” decreases in a fixed rate during the 

iterations of the process.  

In order to compare different solutions in Marxan, it must have a basis. Marxan does that by 

testing alternate selections of planning units, aiming to improve the whole reserve system 



53 

 

value. The reserve system value is not connected to an already established conservation 

area (Ball and Possingham 2000).  Every planning unit in Marxan has a cost. Marxan tries to 

meet all the biodiversity and other constraints for a minimum total cost. 

These costs are usually calculated either as a simple reflection of area or as an economic 

cost. Moreover the costs can represent an ecological issue where high cost sites are the 

ones the program tries to avoid (Ardron et al. 2008). 

 

The core equation Marxan tries to minimize is:  

654321 )(∑ ∑ ∑ +++
PUs PUs ConValue

toldPenaltyCostThreshxPenaltySPFBoundaryBLMCost  

Equation 6 

1.  

As described above, these are the total costs of the reserve network.  

2.  

The Boundary Length Modifier (BLM) is used to determine how much emphasis should be 

placed on minimizing the overall reserve system boundary length. 

3. 

 The total reserve boundary length is multiplied by the modifier (2.). 

4. and 5.  

The penalty for not adequately representing conservation features. 

SPF is the Species Penalty Factor or conservation feature penalty factor. The SPF is the 

penalty of not including a species or another conservation feature in the reserve system. If 

the setting it higher than 1, it will increase the motivation for the system to perfectly represent 

that conservation feature.  

6. 

Number 6 describes the penalty for exceeding a preset cost threshold (not used in this 

study).  
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2.6.2 Questions to be answered from Marxan 

Based on real and best available data, here the question is pursued: How efficient is the 

current Alaskan reserve network system to fulfill the conservation objectives and protect the 

eleven mega predators? Are there gaps in the current network system and can they be 

closed? 

 How much area must be conserved in order to achieve that 10% of the ecosystem 

unit is protected and where are these areas specifically located, and connected? 

 How comprehensive is the existing network in relation to the conservation targets? 

 Where will the focus of conservation effort be located in a particular region/ tenure? 

 

 How should a planner proceed to maximize conservation for minimum socioeconomic 

impact? 

2.6.3 Implementation of Marxan 

A raster grid with pixel sizes matching the regular point lattice layer with a grid size of 5 km 

(described in part 3: Results) was created in order to calculate the optimal conservation 

areas for the eleven predators  

2.6.4 Defining the costs for eleven predators 

Two approaches to find preferable areas for conservation in Alaska were utilized.  

Approach 1: 

TreeNet offers in the solution a ranking of variable importance. The first 11 out of 21 variables 

with the highest score were used to build a cost equation for Marxan.  

 

Equation 7  

a= variable threshold cost; b= TreeNet ranking; n= 11 
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Variable threshold costs (a) were determined by the partial dependence of each variable. If 

the partial dependence of a variable is negative, the cost is 1 which equates to a poor habitat 

for the community. If the Partial Dependence is positive, the costs are 0. This approach 

reflects the ecological thresholds for a predator community for instance.  

The different variables (a) are weighted after their importance for the predator community by 

the factor (b). This approach determines the optimal habitat for predators with low costs, 

while regions with minor habitat have high costs. 

 

Only taking the first variables had two reasons: The ranking of the last 10 variables was low, 

therefore having small influence on the equation. Furthermore, the thresholds for the last 10 

variables were not as clear as the first ones. The cost function is based on thresholds which 

made it difficult to imply all variables. 

Approach 2:  

For the cost function in MARXAN it was first assumed that the implementation of a 

conservation area is more expensive near urban regions. Therefore, the distances to towns, 

distance to roads, to railways and airports were calculated. The costs were decreasing the 

further the grids were away from urban regions. It was assumed, that the implementation of a 

conservation area was cheaper if it is away from human settlement. 

Because the numerical value (in meters) of the distance to urban regions was too high, the 

maximum value was set to 100. From this value, the reciprocal value was taken. As a 

consequence, all grids which are lying on urban regions have the cost value 100. This results 

in a “wilderness solution”.  
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3 Results 

3.1 Descriptive Maps of the Ecosystem Unit “Mega Predator” 

Figure 13 shows the combination of predators, the deep red colour illustrates the highest 

predator diversity, on the other hand, the yellow areas indicate lesser diversity.  

This map is based on the raw data overlays, and then modelled and corrected for 

detectability to correct for errors in the expert maps. It is meant to be a more realistic and 

ecologically correct indicator of the ‘presence of the eleven predator community’; being less 

flawed/biased by expert-derived species range maps outlining general ecological processes 

on an Alaskan Landscape scale. 

Figure 13: Map of the occurrence of the Ecosystem Unit “Mega predators of Alaska”. The colours show the 
probability of occurrence of the Ecosystem Unit Yellow indicates a high probability, were purple and orange 
indicates low density of predators.  

The numbers from 0.12 to 3*10-8 in the legend indicate the mathematical probability of 

occurrence of the predator community. The area in yellow shows that the probability of 
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occurrence is high, hence many predators can be found in this region, whereas the purple 

and blue colors demonstrate that the probability of predator occurrence is low.  

The highest occurrence of the predator species is approximately a band with some hotspots 

forming the interior coastal line with a distance between 50 and 300 km from the coast of 

Alaska. A decreasing gradient of mega predator species towards the coast of Alaska and 

towards the center can be seen in the map. 

This map indicates the highest density of predators within and around the southern Brooks 

Range, and near the Seward Peninsula; both areas can be described as “far away from 

modern human influence”; arguably, it represents one of the key wilderness areas in North 

America. This requires more study and management attention. The band of high density tops 

on the Norton Sound from the East, from there it is crossing the Kuskokwin Mountains and 

the Alaska Range in the South and goes around the Cook inlet.  

Within this band we can make the assumption that the interactions and sympatric 

connections between the predators are highly evolved and the food chain and interactions 

with other parts of the ecosystem is still complex and as undisturbed as it gets on a 

landscape level anywhere in the U.S., and partly on the American continent.  

3.2 Ranking of Value Importance for the Predator Community 

The model for the ranking of the variables shows a high precision, where 75% seem to be 

correctly predicted. The optimal tree number was 9904.  
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Figure 14: ROC-Curve of the value ranking model  

The occurrence data from the eleven predators was taken for an analysis of the importance 

of the variables. The internal score of TreeNet shows the importance of the variables. The 

most important variable here has always the value 100 %.  

As it can be seen in Table 5, in this model “Distance to Railways” seems to be most important 

while for example “Distance to towns” has a lower importance.  

However, taken together, human factors seem to be major drivers one way or another 

(railways, airways, roads and towns). Arguably, the climate in Alaska is “man-made” too 

(Hinzman et al. 2005). 

Table 5: Variables of the model and their score 

Variable Score Visualization  

Distance to railways 100.00 |||||||||||||||||||||||||||||||||||||||||| 

Mean precipitation in June 2000 - 2009 63.17 |||||||||||||||||||||||||| 

Distance to coast 57.80 |||||||||||||||||||||||| 

Mean temperature in December 2000 - 2009 55.88 ||||||||||||||||||||||| 

Distance to airstrips 45.75 ||||||||||||||||||| 

Mean precipitation in December 2000 - 2009 44.02 |||||||||||||||||| 

Eco region 2 43.43 |||||||||||||||||| 

Vegetation classes 41.94 ||||||||||||||||| 

Mean temperature in June 2000 - 2009 32.06 ||||||||||||| 

Distance to roads 28.12 ||||||||||| 

Distance to towns 27.32 ||||||||||| 

 

The importance of the different factors decreases slowly. Other variables with importance 

under 25 % of the internal TreeNet Score are Human Footprint, Height, and Distance to 
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lakes, Human Influence Index, Distance to Rivers, Mean NDVI from 2000, Slope, Aspect and 

other two Ecoregions (see Appendix 3). 

The first six variables with the highest score are shown with their partial dependence 

(response curves) in the results, other variables with less importance can be found in 

Appendix 3.   

In addition, the variable “Distance to Railways” has a positive dependence between 250 km 

and approximately 550 km of distance; the optimum lies around 360 km (Figure 15). The 

green line shows the linear fitting as provided by TreeNet. In this figure a real peak and a 

clear avoidance area is shown. The “Distance to Railway” seems to be an important factor 

for the predator occurrence.  
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Figure 15: Partial Dependence for “Distance to Railway” (in meters) 

 

The Variable “Mean Precipitation in June during the decade “2000-2009” has a positive 

partial dependence between 0 cm/m² and approximately 30 cm/m². The apparent avoidance 

and preferred areas of the mega predator community can clearly be seen.  
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Figure 16: Partial dependence for precipitation in June during the decade 2000-2009 (in cm) 

 

The variable “Distance to coast” shows a positive dependence within approximately 170 to 

325 km distance, the peak lies around 260 km away from the coast. As a visual proof the 

dependence of this variable can also be presumed in Figure 13.  
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Figure 17: Partial dependence for distance to coast (in meters) 

 

Mean temperature in December shows a positive partial dependence between app. -19°C 

and -28°C. The temperature -19°C seems to be a threshold for the mega predator 

community. The curve of the partial dependence decreases drastically around this 

temperature.  
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Figure 18: Partial dependence for temperature in December during the decade 2000-2009 (in Celsius) 

 

Airways seem to have a small negative effect on predators in the first 150 km of distance. 

The partial dependence of this variable seems to be weaker as in the other variables 

(Figures 15-18). 
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Figure 19: Partial Dependence for „Distance to Airstrips“ (in meters) 

Precipitation seems to have only a positive dependence from 0 cm/m² up to 25-50 cm/m ². 

This result is shown in Figure 16 and Figure 22 in the second model.  Between the mean 

precipitations for June and December, the precipitation in December during the decade 2000-
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2009 shows almost the same result. Positive partial dependence is shown between 0 and 23 

cm/m². 
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Figure 20: Partial Dependence for „Precipitation in December“ 
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Figure 21: Partial dependence for Ecoregions 

 

As it can be seen in Figure 21, the only positive partial dependence is the Bering Taiga. 

Other Ecoregions have almost no, or negative partial dependence for the predator 

community. 
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Table 6: Ecoregions of Alaska 

ID Ecoregion 

0 Bering Taiga 

1 Aleutian Meadows 

2 Alaska Range Transition 

3 Coastal Rainforest 

4 Bering Taiga 

5 Pacific Mountain Transition 

6 Intermontane Boreal 

7 Coastal Mountain Transition 

8 Bering Tundra 

 

                    (Nowaki et al. 2001) 

 

A positive partial dependence of the different variables is shown in Table 7. After the variable 

“Distance to town” the partial dependence of the variables becomes more and more unclear 

(see Figures 2 to 11 in Appendix 2)  

Table 7: The variables and their range of positive partial dependence 

Variable Positive dimension Dimensi

on 

Distance to railways 250-550 Km 

Mean precipitation in June 2000 - 2009 0-25 cm/m² 

Distance to coast 170-325 Km 
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Mean temperature in December 2000 - 2009 -28°-  -19° Celsius 

Distance to airways 150-275 Km 

Mean precipitation in December 2000 - 2009 0--24 cm/m² 

Eco region 2 Bering Taiga --- 

Vegetation classes - Alpine Tundra & 

BarrensDwarf Shrub Tundra 

- Closed Mixed Forest 

- Spruce Woodland/Shrub 

- Open Spruce 

Forest/Shrub/Bog Mosaic 

- Spruce & Broadleaf Forest 

- Open & Closed Spruce 

Forest 

- Open Spruce & Closed 

- Mixed Forest Mosaic 

-Tall & Low Shrub 

--- 

Mean temperature in June 2000 - 2009 7-12,5 Celsius 

Distance to roads  From 50 Km 

Distance to towns  From 64 Km 

 

3.3 Climate Predictions for the Model 

In the Boxplots 1-3 the temperature development is shown as a main base for the prediction 

model of the predators. It can be seen that the median/ average temperature is increasing; 

as well as the minima and maxima temperature. During four decades - from 2000-2009, 

2030-2039, 2060-2069, and 2090-2099 - precipitation increases but not as much as the 
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temperature. The temperature and precipitation is obtained from the SNAP scenarios 

provided by John Walsh (see Methods 2.4.6 for details). 

 

 

 

 

 

 

 

Boxplot 1:  Temperatures of the four decades in Alaska. The vertical line in the middle of the green 

boxes shows the median, the horizontal line shows the minima and maxima. The green box shows the 

quartiles. (T129099= Mean temperature in June of the decade 2090-2099, T126129= Mean 

temperature in June of the decade 2120-2129, T123039= Mean temperature in June of the decade 

2030-2039, T120009= Mean temperature in June of the decade 2000-2009). 

 

 

 

 

 

 

 

Boxplot 2:  Temperatures of the four decades in Alaska. The vertical line in the middle of the green 

boxes shows the median, the horizontal line show the minima and maxima. The green box shows the 

quartiles. (T129099= Mean temperature in December of the decade 2090-2099, T126129= Mean 

temperature in December of the decade 2120-2129, T123039= Mean temperature in December of the 

decade 2030-2039, T120009= Mean temperature in December of the decade 2000-2009). 

Temperature in °C  

-20 -10 0 10 20 
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Temperature in °C 
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Boxplot 3: Precipitation in mm/ month in the four decades in Alaska. The black line in the middle of 

the green boxes shows the median, the horizontal line show the minima and maxima. The green box 

shows the quartiles (T129099= Mean precipitation in December of the decade 2090-2099, T126129= 

Mean precipitation in December of the decade 2120-2129, T123039= Mean precipitation in December 

of the decade 2030-2039, T120009= Mean precipitation in December of the decade 2000-2009).  

 

In addition to the Boxplots 1-3, the mean and median temperatures of the decades up to 

2099 as well as the minima and maxima values for each decade are shown in Table 4.   

Table 8: Precipitation and temperature means and 50% medians, with minimum and maximum values. 

Precipitation is shown in cm/ m² and temperature in Celsius.  

Variable Mean Min Max 50% 

Median 

December precipitation  from 2000-2009 71.08 0 1561.30 35     

December precipitation  from 2030-2039 71.32 0 1557.00 36 

December precipitation  from 2060-2069 74.24 0 1564.00 37 

December precipitation  from 2090-2099 91.18 0 1587.00 55 

June precipitation  from 2000-2009 61.10 0 519.28 45 

June precipitation  from 2030-2039 63.43 0 524.00 47 

June precipitation  from 2060-2069 68.49 0 537.00 52 

Precipitation in mm/month 
0 200 400 600 

P6_0009 

P6_3036 

P6_6069 

P6_9099 
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June precipitation  from 2090-2099 73.69 0 535.00 59 

Mean temperature in December 2000-2009 -17.26 -29 3.64 -18 

Mean temperature in December 2030-2039 -15.30 -26 4.00 -16 

Mean temperature in December 2060-2069 -11.92 -22 6.00 -13 

Mean temperature in December 2090-2099 -6.89 -19 7.00 -8 

Mean temperature in June 2000-2009 9.05 -17 15.10 10 

Mean temperature in June 2030-2039 9.57 -16 16.00 10 

Mean temperature in June 2060-2069 10.49 -15 17.00 11 

Mean temperature in June 2090-2099 11.81 -14 18.00 12 

 

3.4 Predictions until 2099 of the 11 Mega Predator Community 

based on Climate Data 

TreeNet found the optimum after creating 9736 trees. The model shows high predictive 

values. 

Table 9: Variable importance of the four different climate factors in the decade 2000-2009. June precipitation, 

December precipitation, Mean temperature in June, Mean temperature in December 

Variable Score   

June precipitation  from  100.00 ||||||||||||||||||||||||||||||||||||||||| 

Mean temperature in December from  94.57 |||||||||||||||||||||||||||||||||||||||| 

Mean temperature in December  85.90 |||||||||||||||||||||||||||||||||||| 

December precipitation   82.54 |||||||||||||||||||||||||||||||||| 

 

 

As well as in part 3.1, the four variables are presented with their partial dependence. Positive 

Partial Dependence indicates the preference of the predator community, negative values 

indicate avoidance in relative units. The precipitation has a positive partial dependence near 

the ordinate in-between approximately 0 mm/ month and 50 m/m²per month. 
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Figure 22: Partial Dependence for “Mean precipitation in June during the decade 2000-2009” (in cm/m²)  

 

 

The mean temperature in June has a positive dependence between approximately 10.7 and 

13.6°C, with a strong negative dependence towards the end. 
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Figure 23: Partial Dependence for “Mean temperature in June during the decade 2000-2009” (in Celsius) 
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As shown in Figure 23, the temperature is more important in-between the minus degrees.   
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Figure 24: Partial Dependence of the “Mean temperature in December during the decade 2000-2009” (in Celsius) 
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Figure 25: “Mean Precipitation in December during the decade 2000-2009” (in cm/m²) 

The precipitation during June and the temperature during December seem to have the 

highest importance for the predator community, whereas the temperature of the month June 

and the precipitation during December have less importance.  
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3.4.1 Model accuracy  

The model was evaluated by taking a 50 % subsample of the 57340 measure points.  It has 

been built with the 50 % subsample and was then evaluated by comparing the constructed 

model with the original data of the other 50 % subsample.  
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Figure 26: ROC-Curve of the scored 50 %-subsample with a relatively high precision 

In order to visualize the precision, the whole data is scored as shown in Figure 27. The 

legend demonstrates the scores of TreeNet, divided in ten categories. 
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Figure 27: Map of the modeled probability of occurrence of the eleven predators of Alaska. During the period 
from 2000 to 2009 climate data from SNAP scenarios has been used. For better visualization, the “Response”- 
data from the TreeNET model is divided in 10 levels. The division is categorized in 10% Quartiles applied from the 
ArcMap GIS program.   

3.4.2 Prediction of the decade 2030-2039 
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Figure 28: ROC-Curve of the scored climate data of the decade 2030-2039 with a relatively high precision. 
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Figure 29: Map of the modeled probability of occurrence of the eleven predators of Alaska during the period from 
2030 to 2039 with climate data from SNAP scenarios. For better visualization, the “Response”- data from the 
TreeNET model is divided in 10 levels. The division is categorized in 10% Quartiles applied from the ArcMap GIS 
program.    

The map shows that the predator community will start to undergo change during the decade 

from 2030 to 2039. The region with the occurrence probability of eleven predators shows an 

increase in the northern regions of Alaska, while the probability of occurrence in the southern 

parts decreases. Much fragmentation starts already. 

3.4.3 Prediction of the decade 2060-2069 

This changes more drastically in the decade 2060-2069 as it can be seen in Figure 18. The 

prediction map shows a movement of predator-occurrence towards the northern regions of 

Alaska, and a simultaneous expansion towards the South. The former “band” of predator 

occurrence seems to be completely broken. The middle of Alaska seems to be no longer 

preferable for the predator community.  
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Figure 30: ROC- Curve of the scored climate data from the decade 2060-2069 

 

Figure 31: Map of occurrence of the 11 predators of Alaska during the period from 2060 to 2069 with climate data 
from SNAP scenarios. For better visualization, the “Response”- data from the TreeNET model is divided in 10 
levels. The division is categorized in 10% Quartiles applied from the ArcMap program.   
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3.4.4 Prediction of the decade 2090-2099 

The last simulation, in Figure 33, shows the predator community spread out over Alaska with 

a dense population in middle-east Alaska. The structure from the decade 2000-2009 cannot 

be found anymore.   
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Figure 32: ROC-Curve of the scored data from the decade 2090-2099 

 

Figure 33: Map of occurrence of the 11 predators of Alaska during the period from 2090 to 2099 with climate data 
from SNAP scenarios. For better visualization, the “Response”- data from the TreeNET model is divided in 10 
levels. The division is categorized in 10% Quartiles applied from the ArcMap program.   
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Table 6 shows the classification of the prediction maps (Figures 27, 29, 31, and 33) and the 

percentage of grid points in the classes. The changes in the first two categories (0.034-0.153 

and 0.012-0.025) are very obvious. The change in these categories seems to be extensive 

for the habitat of the predator community. The categories 3, 4, and 10 (0.012-0.025; 0.008-

0.0130 and 0.025-0.001 respectively) are increasing during the models, while others like 5 

and 6 (0.007-0.008 and 0.006-0.007 respectively) are continuously decreasing. 

 

Figure 34: Change in the 10 quartiles from the TreeNet model of the decade 2000-2009 
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3.5 Near-best Solution of Protected Areas for the Eleven Mega 

Predator Community provided by Marxan 

Figure 34 shows the potential protected areas in Alaska derived from the cost function 

(Equation 7) described in the Methods. The protected areas encompass among others the 

previous described band of predators in the North of Alaska with the main areas around the 

Brooks Range of Alaska.  

 

Figure 35: Map of Alaska with Marxan solution 1 for potential protected areas for the predator community. The 
potential protected areas of Alaska found with Marxan are illustrated by black/ green  patches, the blue patches 
are the National Parks and National Wildlife Refuges. 

 

Southern Alaska provides smaller potential protected areas in this solution.  

In a second approach the occurrence data from the scenario 2090-2099 was taken, to find 

future potential protected areas for the predator community. The same cost function as in the 
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first approach was taken Only the climate data from 2090-2099 was used instead of the 

climate data from 2090-2099.  

 

Figure 36 : Map of Alaska with Marxan solution 2 for potential protected areas for the predator community. The 
potential protected areas of Alaska found with Marxan are illustrated by black/ green striped patches, the blue 
patches are the National Parks and National Wildlife Refuges 

 

As a third approach of potential protected areas the “cheapest” solutions for protected areas 

are shown in Figure 36. It is assumed here that protected areas are preferred by landscape 

planners if they are far away from urban structures, and also that the predator community is 

better protected in wilderness areas without human disturbance. 

The potential protected areas are found near the areas of the other two approaches. For this 

approach the presence absence data from 2009 was taken.  
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Figure 37: Map of Alaska with  Marxan solution 3 for potential protected areas for the predator community. The 
potential protected areas of Alaska found with Marxan are illustrated by black/ green striped patches, the blue 
patches are the National Parks and National Wildlife Refuges 

 

As a conclusion the intersection of all three Marxan results are shown in Figure 37. The 

areas with the highest intersection can be found around the Brooks Range.  
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Figure 38: Map of Alaska with the intersection of all three Marxan Approaches for potential protected areas for 
the predator community. The intersections are red striped, the blue patches are the National Parks and National 
Wildlife Refuges of Alaska.  

Figure 38 shows the intersection of all three Marxan approaches. These areas can be 

considered as most important for the predator community. Except of two small patches in the 

South and West of Alaska, the other patches are covered by National Parks or Wildlife 

Refuges.  

 

 

 

 

 

 



80 

 

4.Discussion 

In this study, a new ecological concept of Ecosystems and Predator Ecosystem units was 

applied. The mega predator community as its own ecosystem unit was developed in order to 

present  the driving spatial factors of predators amongst the mega predators in Alaska and to 

predict their probable future. Climate variables were taken as a main basis for the prediction, 

but many other features, also known to increase, have been omitted even.  The range layers 

of the animals were corrected for errors and detectability using Occupancy models. This 

approach is a robust top- down view (Power 1992) of the predators and gives a clear view of 

those factors which are influencing the whole predator unit. Factors that influence only one of 

the species might be overruled by the values of the whole predator community. 

In the first TreeNet model the main factors driving the Mega Predator Ecosystem unit were 

identified. The main influencing variables of this Ecosystem unit are “Distance to railways”, 

“Distance to the coast”, Distance to airways”, as well as the climate variables of “Temperature 

in December” and “Precipitation in June”.  

The dependence of the variable “Distance to railway” may perhaps not be seen as a human 

influence but more as an influencing spatial variable because railways are usually located in 

flat or valley regions etc. The railway is visualized by only one line going from South to North, 

and only throughout half of Alaska; however it seems to have an important influence on 

predators. On the one hand it may act as a disturbingly loud mechanical intruder, which is 

demonstrated by the positive Partial dependence after 250 km distance from the railways. 

Further, railways can provide carcasses from killed animals for some predators and thus 

support the population. In Alaska, railways are usally free of snow, being attractive as 

corridors and for mushers. In Canada, railways have further been identified as bear hotspots 

and sinks because of leaking grain. 

As it can be seen in Figure 18 the innermost temperatures in December have a positive 

dependence. This may lead to an important change for the predator community since the 

minimal temperature will rise up to -20° C until 2099 (SNAP 2010). The initial positive 

dependence changes into a negative dependence, a tipping point (Gladwell 2002), around -

19°C, almost excluding the positive dependence for the predator community. 

All Partial dependence of the distance to urban influence like roads, cities etc. seems to have 

a negative value at least in the first 50 km (see Figure 19 and Figure 3, 5, and 8 in Appendix 

2). That could indicate that human influence is actually very high, even in regions were the 
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human density is generally low like in Alaska. At least in the ‘western world, it is probably 

rather difficult to find a large landscape place more pristine and remote than Alaska, and 

even here we see strong human influences.  

On the other hand, direct measurements of human presence, such as the Human Influence 

Index, show almost no importance in the model. Alaska is claimed to be one of the “last of 

the wild” Areas (SEDAC 2010), which would testify to the relatively minimal influence of 

humans in Alaska.  

According to this model, most of the ecoregions, NDVI, as well as Slope and Aspect have 

only marginal  influence on the actual predator community.  

Variable importance scoring conducted using TreeNet indicated that many factors influence 

the mega predator community and in a multivariate fashion with interactions. It should be 

noted that some variables may have stronger influence on individual species than on others, 

and that even the variables with a smaller score still have an important influence on the 

predator community Some variables may influence only parts of the ecosystem community 

positively, with these positive effects being overlapped by the negative effects that they have 

on the other parts of the predator community. A TreeNet- model of one individual species 

may lead to different and misleading, spurious scoring of the variables. Ecology means 

complexity, and a valid analysis and interpretation must take it into account.  

4.1 Climatic Model of the Ecosystem Unit “Mega Predators of 

Alaska” 

In order to predict future movements of the predator community a second model was 

constructed. This model was based on four climate variables (see Table 4). It presented a 

relatively small error as it can be seen in the ROC curve (Figure 26). The Partial dependence 

of the four climate variables is comparable with those of the first model. The addition of more 

variables to this model  would have increased the bias further, since other variables e.g. 

roads, railroads etc. undergo more unpredictable and directly human influenced changes in 

the future. It is pretty clear that the human footprint will not decline, any time soon. 

The habitat that was identified for the predators seems to change extremely within the four 

described decades. In the decade 2030-2039 the optimal habitat can be found more in the 

North (Figure 29). During the decade 2060-2069 the habitat seems to decrease in the North 

and expand in patches throughout Alaska. In the final decade the main habitat can be found 
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towards the “middle – east” of Alaska. Using climate alone, predator habitats seem to change 

already very fast. The drastic results as shown in Figure 12-17 of the model may not come 

into effect in the predicted 100 years. This model is only based only on climate data and does 

not include other variables such as natural succession and human activities. The latter 

actions are forecasted to have a massive expansion in Alaska, the Arctic and beyond, and 

thus, predicted effects will show even stronger.  

General vegetation may not spread out in the same speed as the predator community could. 

This leaves the predators some refuge regions in areas without optimal climatic conditions. 

On the other hand, the predators could have a smaller habitat since the vegetation is not 

moving with the predators to climate conditions that are favorable for predators and their 

prey. To avoid the uncertainties, the predictive modeling of vegetation and prey species, and 

other features, would be necessary. This is not feasible for now because apart from the high 

expense, a model would be build out of ‘modeled data’ and errors can increase. The bias of 

such a model would probably be too high to detect conclusions, or simply indescribable. 

However, it makes for a great start, and platform, to complete such gaps. Model-predicting 

invasive species makes for a great start already. 

Different plant species and also animals may enter with changing climate conditions (USDA 

2010). This could lead to different ecosystems that are not suitable for some species. 

Predators, as the last members in the food chain, may eventually suffer due to lack of prey 

species and other factors. 

It can be safely concluded that the Predator Ecosystem Unit will undergo severe changes in 

the next 100 years. This will probably result in a trophic cascade (Pace et al. 1999) and may 

be also accompanied by the disappearance of some predator species and habitat features.  

As a result, the distribution of some species with small resilience will shrink. This includes for 

example some traditional wilderness species like the Polar bear, but also the Wolverine and 

the Black bear. Some other predators like Red foxes and Coyotes may profit from the 

drawback of the big carnivores. Predators dependent on other predators, like for example the 

Arctic fox which depends on Polar bear prey carcasses might also decrease (see Chapter 

1.8 for species description). It is clear that endemic species will be affected dramatically. 

The emergence of pests and diseases may also pose a significant threat to the predator 

community. A warming climate enlarges the area of distribution of animal diseases and pests 

(Harwell et al. 2002). Some species, especially ones with a lower resilience compared to 
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endemic species, may suffer from formerly unknown diseases and pests in this region 

against which they have no natural defenses. 

The  downscaled underlying predictive SNAP climate data are underestimates. The 

scenarios are based on IPCC-GCMs from 2007.  Due to the ongoing melting of the arctic ice, 

it can be concluded that the actual climate change will be faster than current estimates 

suggest it is (Vellinga et al. 2009, Richardson et al. 2009).  However these climate 

predictions are the most precise and reliable data that can be obtained for the Alaska region 

at present. 

4.2 Potential Protected Areas  

The first MARXAN model shows a band that encompasses the high predator occurrence in 

the north as it can be seen in Figure 3.1.  This result can be explained as the main factors 

determining the predator community occurrence are optimal in the Brooks range and Yukon 

territory. The cost function was build to have minimum costs for implementing a reserve area. 

In the MARXAN model it was assumed that the costs are minimal where the habitat is 

optimal for the predator community. No polar bears are found in the South, which makes the 

solution obvious. However, southern occurrences of Polar bears have been stated in earlier 

times, e.g. on the Aleutians (Feldhamer et al. 2003; Schliebe et al. 2006). 

The main patches of the first presented model are in the Brooks Range of Alaska. This region 

includes one of the highest predator densities and was never of excessive economic interest, 

so far.  

As Figure 34 shows, National Wildlife Refuges and National Parks are already implemented 

in the Brooks Range. However, the implemented protected areas do not reach the MARXAN 

solution in that region. We show that the Brooks Range might well be one of the last 

wilderness areas in North America, if not in the world, with a more or less complete predator 

food chain. 

The second MARXAN approach (Figure 35) is based on a TreeNet model, that predicted the 

occurrence of the predator community into the decade 2090-2099. Lesser patches of 

potential protected areas can be found in the South of Alaska. This MARXAN solution 

emphasizes again the importance of the Brooks Range and also the importance of the Yukon 

territory And Kobuk region. The second MARXAN Model has a predication, but is based 

among others on two predictive models, the TreeNet model, and also the climate model from 

the SNAP scenarios. Other factors in the cost function are the same as in the first MARXAN 
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approach. The error of this model cannot be determined exactly, the results seem however 

consistent and should not be ignored.  

The third approach of MARXAN shows the preferable protected areas for the most 

wilderness regions in Alaska. This approach may have two advantages. First, the nature and 

ecosystem in these regions are lesser influenced, and the implementation of national Parks 

or preserved areas is less expensive than in other regions near urban settlement. As Figure 

36 shows, the main patches of potential protected areas are again in the Brooks Range. 

Other patches are further South than in the first and second approach of MARXAN. This 

patches in the South, for example one near Bethel, are not or only marginally covered by the 

National Wildlife Refuge or National Parks.  

In all three approaches, National Parks and Wildlife Refuges in the South and middle of 

Alaska are often completely without, or only with few patches from MARXAN, indicating a 

broken food chain lacking relevant predators. 

The intersection of all three MARXAN approaches emphasizes the importance of the Brooks 

Range. Except of two small patches in the South and West of Alaska, the other patches are 

covered by National Parks or Wildlife Refuges.  

All of the MARXAN approaches lead to the conclusion that the current protection of the 

predator community is not sufficient. The area of protected land seems perhaps to be 

sufficient, but National Parks and Wildlife Refugees are currently not well sited at locations to 

guarantee the protection of the predator community.  

To advance the efficiency of the protected areas for the predator community, more protected 

areas are needed in the Brooks Range, especially near the South, and new protected areas 

should be implemented in the Yukon and Alaska Range territories, and elsewhere. Again, 

these suggestions are only based on ‘climate’. Including more variables will make the picture 

more dramatic but realistic. 

The approach of using an Ecological Unit “Mega Predator” as a focal conservation goal 

seems to be promising. This method brings together many different conservation aims 

composed of such issues as habitat types suitable for many animals, a coherent food chain 

and the suitability to such a landscape of big predator animals. This conservation attempt 

might not be as efficient an approach as one based on the protection of an entire ecosystem 

and biodiversity, but it is infinitely more efficient than opting to concentrate ones focus on only 
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one species (see umbrella and focal species), and as widely done still, and legally 

implemented. 

4.3 Possible Errors of the Models 

A potential error might occur because the borders of Alaska are not well defined in the GIS 

maps. Some of the distribution maps overlapped the coastline of Alaska, though this was not 

an error of the projection, since all maps were projected in Alaska Albers NAD 1986, but 

rather an error of the base maps for the distribution maps. This error might be marginal for 

the developed models but it does mean that the accuracy of the TreeNet model towards the 

last decades is decreasing with the last two decades showing no more than 50% accuracy. 

Nevertheless the performance is quite acceptable to see the general trend, and it is 

recommend to put more effort of obtaining reliable models in the future. 

 

4.4 Wildlife and Human- Influence   

It is well known that the occurrence of big predators causes especially big problems with 

humans (Woodruff 2005). Humans involved in these scenarios reacted mostly with calls for 

reducing the “disturbers“ by hunting, control and poaching. Bears and wolves were drastically 

reduced throughout the European continent, as well as in North America. This shows the 

overlapping habitats of humans and animals. As a consequence this would signify that the 

habitat preferred by humans is also preferred by predators in the first place, which might be 

the main reason for this conflict. Most of the mega predators have omnivorous diets like 

humans do. On the other hand the predators are attracted by the humans and they like to 

consume human waste and livestock.  

To manage the predator community appropriately this conflict has to be understood: before 

an extension of the human range is made, the existence and the probable attitude of 

predators have to be reconsidered both within the legal frameworks and within what is 

actually possible and achievable, e.g governmental funds. After that, only few true options 

really remain, and these must be prioritized for efficient and realistic measures.  

Furthermore it has to be appreciated that within and around human settlements measures 

dealing with the predators have to be established; building a conscience for waste 

management is only one example of many. The need for management includes not only the 
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big predators like bears or wolves, but also foxes and marten that profit from the human 

presence and increase in uncontrollable amounts. 
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Appendix 1: 

 

Calculating Human Influence Index 

The procedures to calculate the indexes were developed by Sanderson and others 

(Sanderson 2002). The composite human influence index (HII) was developed out of the 

combination of the Wild/Not Wild scores for each of the eight input layers.  

 

Table Appendix 1. 1 Eight input layers for the HII development 

Variable category  Influence 

Score  

Influence of Population Density/  

sq. km  

  

0 – 0.5  0 

0.6 – 1.5  1 

1.6 – 2.5  2 

2.6 – 3.5  3 

3.6 – 4.5  4 

4.6 – 5.5  5 

5.6 -  6.5  6 

6.6 – 7.5  7 

7.6 – 8.5  8 

8.6 – 9.5  9 
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> 9.5  10 

    

Influence Score of Railroads    

Within 2 km of railroads 8 

Beyond 2 km of railroads  0 

    

Influence Score of Major Roads    

Within 2 km of roads  8 

Within 2 to 15 km of major roads  4 

Beyond 15 km of major roads  0 

    

Influence Score of Navigable Rivers    

Within 15 km of navigable rivers  4 

Beyond 15 km of navigable rivers  0 

    

Influence Score of Coastlines    

Within 15 km of coastlines  4 

Beyond 15 km of coastlines  0 
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Influence Score of Nighttime Stable Lights 

Values  

  

0  0 

1-38 3 

39 - 88  6 

>=89 10 

    

Urban Polygons   

Inside urban polygons 10 

Outside urban polygons  0 

    

Land Cover Categories    

Urban areas  10 

Irrigated agriculture  8 

Rain-fed agriculture 3 

Other cover types including forests, tundra, and 

deserts  

0 

 

  

The Composite Human Influence Index (HII) was calculated by adding influence 

scores of all eight input variables. Range of HII the values goes from 0 (no human 

influence) to 64 (maximum human influence possible under the method). 
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2 Calculating the Human Footprint Score 

With the equation below, the Human Footprint (HF) was calculated by normalizing the 

Human Influence Index across the 15 World Wildlife Fund terrestrial biomes: 

 

 

where: 

Z = Human Footprint value 

Xb = Input HII value in a biome 

Xbmin = Minimum HII in a biome 

Xbmax = Maximum HII value in a biome 

Ymin = Minimum HII on Earth (0) 

Ymax = Maximum HII on Earth (64)  

The normalization assigns zero to minimum HII values and 100 to maximum HII 

values  

 

Information from: Human influence Index and Human footprint calculated 

http://sedac.ciesin.columbia.edu/wildareas/methods.jsp 

 

Ecoregion Mapping 

Detailed information at: 

http://agdcftp1.wr.usgs.gov/pub/projects/fhm/akecoregions.htm 

 
Description: 
 
  
“Thirty two units are mapped using a combination of the approaches of Bailey (hierarchical), 

and Omernick (integrated). The ecoregions are grouped into two higher levels using a "tri-
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archy" based on climate  parameters, vegetation response and disturbance processes].The 

Ecoregion units are arranged in two higher levels along  gradients of climate, vegetation and 

disturbance processes. Thirty two ecoregions fit into eight groups at Level 2, and three 

regimes at Level 1 (Boreal, Maritime and Polar). Please refer to the tri-archy found on the 

back of the published map. Written descriptions are located in the  section of Overview 

Description, following the individual  ecoregional descriptions.”  -Metadata from : 

http://agdcftp1.wr.usgs.gov/pub/projects/fhm/akecoregions.htm(2010) 

 
      Level 1              Level 2                     Ecoregion 
 
     1 Polar (-like) 
                                Arctic Tundra 
                                                                Beaufort Coastal Plain 
                                                                Brooks Foothills 
                                                                Brooks Range 
                                Bering Tundra                    
                                                                Kotzebue Sound Lowlands 
                                                                Seward Peninsula 
                                                                Bering Sea Islands 
     2 Boreal (-like) 
                                Bering Taiga 
                                                                Nulato Hills 
                                                                Yukon-Kuskokwim Delta 
                                                                Ahklun Mountains 
                                                                Bristol Bay Lowlands 
 
                                Intermontane Boreal      
 
                                                                Kobuk Ridges and Valleys 
                                                                Ray Mountains 
                                                                Davidson Mountains 
                                                                Yukon-Old Crow Basin 
                                                                North Ogilvie Mountains 
                                                                Yukon-Tanana Uplands 
                                                                Tanana-Kuskokwim Lowlands 
                                                                Yukon River Lowlands 
                                                                Kuskokwim Mountains 
 
                                Alaska Range Transition 
 
                                                                Lime Hills 
                                                                Alaska Range 
                                                                Cook Inlet Basin 
                                                                Copper River Basin 
     3 Maritime (-like) 
                                Aleutian Meadows 
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                                                                Alaska Peninsula 
                                                                Aleutian Islands 
 
                                Coastal Rainforests 
 
                                                                Alexander Archipelago 
                                                                Boundary Ranges 
                                                                Chugach-St. Elias Mountains 
                                                                Gulf of Alaska Coast 
                                                                Kodiak Island 
 
                             Coast Mountains Transition 
 
                                                                Wrangell Mountains 
                                                                Kluane Range 
 

Statewide Vegetation/ Land Cover 

More Information’s at: http://agdc.usgs.gov/data/projects/fhm/index.html#G 

 

Cell values and Vegetation Class Names: 

     0      Ocean Water 

     1      Water 

     2      Glaciers & Snow 

     3      Alpine Tundra & Barrens 

     4      Dwarf Shrub Tundra 

     5      Tussock Sedge/Dwarf Shrub Tundra 

     6      Moist Herbaceous/Shrub Tundra 

     7      Wet Sedge Tundra 

     8      Low Shrub/Lichen Tundra 

     9      Low & Dwarf Shrub 
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    10      Tall Shrub 

    11      Closed Broadleaf & Closed Mixed Forest 

    12      Closed Mixed Forest 

    13      Closed Spruce Forest 

    14      Spruce Woodland/Shrub 

    15      Open Spruce Forest/Shrub/Bog Mosaic 

    16      Spruce & Broadleaf Forest 

    17      Open & Closed Spruce Forest 

    18      Open Spruce & Closed Mixed Forest Mosaic 

    19      Closed Spruce & Hemlock Forest 

    20      1991 Fires 

    21      1990 Fires & Gravel Bars 

    22      Canada/Russia 

    23      Tall & Low Shrub 
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Appendix 2: Results of the TreeNet Models 

 

File: Treenet.csv 

 Target Variable: PSIPJ 

Predictor Variables: VEGCLS, AKECORE, HII_N_A, HFP_N_A, ECO2, ECO1, 

AKASPECT, AKSLOPE, TOWNS, MEANNDVI2K, ROADS, DISTRAI, AIRRWY, 

P120009, P6_0009, T120009, T60009, AKDEM30, DISTRIV, DISTOCO, DISTLAK 
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Figure App.2 _ 1: Mean Absolute Error of the TreeNet Model 

Bin Target 

Bin Avg. 

% Target 

in Bin 

Cum % 

Target 

in Bin 

Cum % 

Pop 

% 

Pop 

Cases 

in Bin 

Cum 

lift 

Lift 

Pop 

1 0.089 56.63 56.63 11.00 11.00 3,156 5.15 5.15 

2 0.028 17.68 74.32 22.00 11.00 3,157 3.38 1.61 

3 0.015 9.68 84.00 33.00 11.00 3,156 2.55 0.88 

4 0.007 4.05 88.05 43.50 10.50 3,013 2.02 0.39 

5 0.007 3.86 91.91 53.50 10.00 2,870 1.72 0.39 

6 0.007 3.67 95.58 63.00 9.50 2,726 1.52 0.39 

7 0.005 2.77 98.35 72.50 9.50 2,726 1.36 0.29 
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Figure App.2 _ 2: ROC- Curve 

 

 

 

8 0.002 0.83 99.18 81.50 9.00 2,582 1.22 0.09 

9 0.001 0.65 99.83 90.55 9.05 2,596 1.10 0.07 

10 0.000 0.17 100.00 100.00 9.45 2,713 1.00 0.02 
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Figure App.2 _ 3: Cumulative Lift of the  Data Mining- TreeNet Model 
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Figure App.2 _ 4: Partial Dependence of the vegetation classes. (See Appendix 1  and Methods for 
description) 
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Figure App.2 _ 5: Partial Dependence of the mean temperature in June during the decade 200Partial 
Dependence of the mean temperature in June during the decade 2000-2009 
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Figure App.2 _ 6: Partial Dependence of the  variable “Distance to Roads” 
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Figure App.2 _ 7: Partial Dependence of the  variable “Distance to Towns” 
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Figure App.2 _ 8: Categorial Partial Dependence of the  Human Footprint  
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Figure App.2 _ 9:Partial Dependence of the variable “Aspekt” 

 

 

-0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

10000 20000 30000 40000 50000 60000 70000 80000

P
ar

tia
l 
D

ep
en

de
nc

e

DISTLAK

One Predictor Dependence For
PSIPJ, Penalized SSE = 3.52789e-008

 

Figure App.2 _ 10: Partial Dependence of the variable” Distance to Lakes” 
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Figure App.2 _ 11: Categorial Partial Dependence of the variable “Human influence Index” 
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Figure App.2 _ 12: Partial Dependence of the variable “Distance to Rivers” 
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Figure App.2 _ 13: Partial Dependence of the variable “ Mean NDVI of 2000” 
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Figure App.2 _ 14: Partial Dependence of the variable “Slope” 
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Figure App.2 _ 15: Partial Dependence of the variable “ Aspect” 
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Figure App.2 _ 16: Categorial Partial Dependence of the Variable “ Ecoregions category 1” see Ecoregion 
Mapping for explanations 
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Figure App.2 _ 17: Mean squared Error of the Prediction Model 

Table App.2_ 1: Table of the TreeNet Gains Data of the prediction model 

Bin Target 

Bin Avg. 

% Target 

in Bin 

Cum % Target 

in Bin 

Cum % 

Pop 

% 

Pop 

Cases 

in Bin 

Cum 

lift 

Lift 

Pop 

1 0.085 55.80 55.80 11.00 11.00 2,521 5.07 5.07 

2 0.028 18.25 74.05 22.00 11.00 2,521 3.37 1.66 

3 0.014 9.13 83.18 33.00 11.00 2,521 2.52 0.83 

4 0.007 4.23 87.41 43.50 10.50 2,407 2.01 0.40 

5 0.007 3.97 91.38 53.50 10.00 2,292 1.71 0.40 

6 0.007 3.73 95.11 63.00 9.50 2,177 1.51 0.39 

7 0.005 2.99 98.10 72.50 9.50 2,177 1.35 0.32 

8 0.002 0.88 98.98 81.50 9.00 2,063 1.21 0.10 

9 0.001 0.64 99.62 90.52 9.02 2,067 1.10 0.07 

10 0.001 0.38 100.00 100.00 9.48 2,173 1.00 0.04 
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Table App.2_ 2: Table of the TreeNet Gains Data of the scored Data from the decade 2000-2009 

Bin Target 

Bin Avg. 

% Target 

in Bin 

Cum % 

Target 

in Bin 

Cum % 

Pop 

% 

Pop 

Cases 

in Bin 

Cum 

lift 

Lift 

Pop 

1 0.083 53.67 53.67 11.00 11.00 6,307.00 4.88 4.88 

2 0.028 17.82 71.49 22.00 11.00 6,308.00 3.25 1.62 

3 0.016 10.57 82.06 33.00 11.00 6,307.00 2.49 0.96 

4 0.007 4.48 86.54 43.50 10.50 6,021.00 1.99 0.43 

5 0.007 3.92 90.46 53.50 10.00 5,734.00 1.69 0.39 

6 0.007 3.71 94.17 63.00 9.50 5,447.00 1.49 0.39 

7 0.006 3.06 97.22 72.50 9.50 5,448.00 1.34 0.32 

8 0.002 1.25 98.47 81.50 9.00 5,160.00 1.21 0.14 

9 0.001 0.79 99.26 90.65 9.15 5,245.00 1.10 0.09 

10 0.001 0.74 100.00 100.00 9.35 5,363.00 1.00 0.08 

 

Table App.2_ 3: Table of the TreeNet Gains Data of the scored Data from the decade 2030-2039 

Bin Target 

Bi:n Avg. 

% Target 

in Bin 

Cum % Target 

in Bin 

Cum % 

Pop 

% 

Pop 

Cases 

in Bin 

Cum 

lift 

Lift 

Pop 

1 0.041 26.68 26.68 10.99 10.99 6,303.00 2.43 2.43 

2 0.030 18.15 44.83 21.50 10.51 6,026.00 2.08 1.73 

3 0.023 13.85 58.68 32.00 10.50 6,021.00 1.83 1.32 

4 0.020 13.08 71.76 43.00 11.00 6,306.00 1.67 1.19 

5 0.013 8.00 79.76 53.50 10.50 6,021.00 1.49 0.76 

6 0.010 5.95 85.71 63.50 10.00 5,734.00 1.35 0.60 

7 0.009 5.21 90.92 73.00 9.50 5,449.00 1.25 0.55 

8 0.008 4.04 94.97 82.00 8.99 5,156.00 1.16 0.45 

9 0.005 2.56 97.52 91.01 9.01 5,167.00 1.07 0.28 

10 0.005 2.48 100.00 100.00 8.99 5,157.00 1.00 0.28 
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Table App.2_ 4: Table of the TreeNet Gains Data of the scored Data from the decade 2060-2069 

Bin Target 

Bin Avg. 

% Target 

in Bin 

Cum % 

Target 

in Bin 

Cum % 

Pop 

% 

Pop 

Cases 

in Bin 

Cum 

lift 

Lift 

Pop 

1 0.026 16.70 16.70 11.00 11.00 6,307.00 1.52 1.52 

2 0.018 11.34 28.04 21.50 10.50 6,022.00 1.30 1.08 

3 0.017 10.68 38.72 32.50 11.00 6,306.00 1.19 0.97 

4 0.015 8.97 47.70 43.00 10.50 6,021.00 1.11 0.85 

5 0.015 8.90 56.60 53.00 10.00 5,735.00 1.07 0.89 

6 0.017 9.99 66.59 63.00 10.00 5,733.00 1.06 1.00 

7 0.015 8.18 74.77 72.50 9.50 5,448.00 1.03 0.86 

8 0.012 6.23 81.00 81.50 9.00 5,161.00 0.99 0.69 

9 0.018 9.40 90.40 90.50 8.99 5,157.00 1.00 1.05 

10 0.017 9.60 100.00 100.00 9.50 5,450.00 1.00 1.01 

 

Table App.2_ 5: Table of the TreeNet Gains Data of the scored Data from the decade 2090-2099 

 

Bin Target 

Bin Avg. 

% Target 

in Bin 

Cum % 

Target 

in Bin 

Cum % 

Pop 

% 

Pop 

Cases 

in Bin 

Cum 

lift 

Lift 

Pop 

1 0.029 18.47 18.47 10.99 10.99 6,301.00 1.68 1.68 

2 0.019 11.69 30.15 21.50 10.51 6,027.00 1.40 1.11 

3 0.014 8.93 39.09 32.50 11.00 6,308.00 1.20 0.81 

4 0.017 10.59 49.67 43.00 10.50 6,022.00 1.16 1.01 

5 0.020 12.25 61.92 53.50 10.50 6,019.00 1.16 1.17 

6 0.017 10.00 71.93 63.50 10.00 5,734.00 1.13 1.00 

7 0.016 8.77 80.69 73.00 9.50 5,450.00 1.11 0.92 

8 0.012 6.11 86.80 82.00 9.00 5,160.00 1.06 0.68 
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9 0.013 6.74 93.54 91.01 9.01 5,164.00 1.03 0.75 

10 0.012 6.46 100.00 100.00 8.99 5,155.00 1.00 0.72 
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3 Appendix 3: Brief Metadata 

 

Name of The Variable Format and Source 

Elevation 

ArcView Image File 

(USGS 2009 

http://agdcftp1.wr.usgs.gov/pub/projects/dem/300m/akdem30

0m.tar.gz 

Aspect ArcView Image File 

 (USGS 2009) 

http://agdcftp1.wr.usgs.gov/pub/projects/dem/300m/akdem30

0m.tar.gz 

Slope ArcView Image File 

 (USGS 2009 

http://agdcftp1.wr.usgs.gov/pub/projects/dem/300m/akdem30

0m.tar.gz ) 

Towns Tom Paragi, AK Fish & Game Dept 

Shapefile 

 http://dnr.alaska.gov/SpatialUtility  

Roads Shapefile  http://dnr.alaska.gov/SpatialUtility    

Railways Shapefile  http://dnr.alaska.gov/SpatialUtility    

Coast Shapefile  http://dnr.alaska.gov/SpatialUtility    

Airways Shapefile http://dnr.alaska.gov/mlw/index.htm 

Ecoregions 1 and 2 Shapefile 

(http://agdc.usgs.gov/data/usgs/erosafo/ecoreg/index.html) 

Mean NDVI from 2000 Shapefile 

D. C. Douglas  

US GS Alaska Science Center, Biology & Geography  
Sciences, Juneau Office download at:  

 (http://glcf.umiacs.umd.edu/data/) 
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Vegetationclasses Shapefile 

http://agdc.usgs.gov/data/projects/fhm/index.html#G 

Rivers  Shapefile http://dnr.alaska.gov/mlw/index.htm 

Temperature ASCII 

(SNAP 2009) http://www.snap.uaf.edu/ 

Percipitation ASCII 

(SNAP 2009) http://www.snap.uaf.edu/ 

Human Footprint Shapefile (CIESIN 2009) 

http://sedac.ciesin.columbia.edu/wildareas/ 

Human Influence Index Shapefile (CIESIN 2009) 

http://sedac.ciesin.columbia.edu/wildareas/ 

Alaska National Park Shapefile 

http://www.nps.gov/gis/data_info 

Alaska Wildlife Refuge  Shapefile 

http://www.nps.gov/gis/data_info 
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