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Abstract

The reduced modified Ostrovsky equation is a reduction of the modified Korteweg-de Vries

equation, in which the usual linear dispersive term with a third-order derivative is replaced by a

linear non-local integral term, representing the effect of background rotation. Here we study the

case when the cubic nonlinear term has the same polarity as the rotation term. This equation is

integrable provided certain slope constraints are satisfied. We demonstrate, through theoretical

analysis and numerical simulations, that when this constraint is not satisfied at the initial time,

then wave breaking inevitably occurs.
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I. INTRODUCTION

It is well-known that the extended Korteweg-de Vries, or Gardner, equation can be used

to model internal solitary waves in the atmosphere and ocean, see for instance the reviews

by Grimshaw [1, 2] and Helfrich and Melville [3],

ut + µuux + νu2ux + λuxxx = 0 . (1)

Here u(x, t) is the amplitude of an appropriate linear long wave mode, with linear long wave

speed c0, and (1) is expressed in a frame moving with that speed. The coefficients µ, ν, λ are

found from certain internal expressions involving the modal function and the background

density stratification. When the coefficient µ = 0, (1) becomes the modified KdV equation.

This case can be realised in practice, for instance, when the background stratification is

that for a two-layer fluid, with equal layer depths. However, when the effects of background

rotation through the Coriolis parameter f need to be taken into account, an extra term is

needed, and (1) is replaced by

(ut + µuux + νu2ux + λuxxx)x = γu , (2)

where γ = f 2/2c0 6= 0. When (1) is just the KdV equation, that is the coefficient ν = 0,

then (2) becomes the Ostrovsky equation, see Ostrovsky [4], Grimshaw [5], or the review by

Grimshaw et al. [6].

Our concern here is with the reduced modified Ostrovsky equation which is obtained by

setting λ = 0 and µ = 0 in (2),

ut + νu2ux = γu . (3)

Importantly, we note that when γ = 0, equation (3) reduces to a modified Hopf equation. It

is then easily demonstrated that all localized solutions, or all periodic solutions, will break.

That is the solution will develop an infinite slope in finite time. The issue then is how this

breaking is affected when γ 6= 0. This is to be contrasted with the regularisation by the

mKdV equation when breaking is replaced by the emergence of modulated periodic waves,

see Kamchatnov et al. [7]. This present study is motivated by the recent article by Grimshaw

et al. [8] who examined the reduced Ostrovsky equation, that is (2) with λ, ν = 0. They

showed that then the equation is either integrable and solutions exist for all time, or wave

breaking occurs, depending on a certain criterion on the curvature of the initial condition.
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Since (3) can be regarded as the reduced Ostrovsky equation with cubic nonlinearity rather

than quadratic nonlinearity, we expect that a similar type of analysis can be applied here,

and that is indeed the case, with the curvature criterion there being replaced here with slope

criteria.

A canonical form of the reduced modified Ostrovsky equation is obtained by setting

u(γ/2|ν|)1/2ũ , t = t̃/γ , x = x̃, so that

(ut ±
u2ux

2
)x = u . (4)

Here the ˜ has been removed. There are two equations, called respectively MROI, MROII

according to the sign ± in the coefficient in the cubic term, corresponding to the sign of

γν in (2). MROII is also known as the short pulse equation arising in nonlinear optics, see

Sakovich and Sakovich [9, 10], Liu et al. [11], Pelinovsky and Sakovich [12] and the references

therein. Note that equation (4) has the symmetry that if u is a solution, so also is −u. Also,

the equation is invariant under the transformation u(x, t) = Dũ(x̃, t̃) where x̃ = x/D, t̃ = Dt

for any D > 0, and in particular, the slope ux = ũx̃ is invariant. The equation has a zero

mass constraint for periodic or localised solutions,∫
D
u dx = 0 , (5)

where D is the periodic, or infinite, domain. There are also conservation laws for “momen-

tum” and “energy”, similar to those for the Ostrovsky equation, see Grimshaw and Helfrich

[13]. Further, multiplying (4) by ux yields

{ ∂
∂t
± u2

2

∂

∂x
}u2x + 2uux(±u2x − 1) = 0 ,

and hence there is another conservation law,

Ft ± (
u2F

2
)x = 0 , F = |1∓ u2x|1/2 . (6)

This conservation law is crucial for the issue of integrability and breaking.

II. INTEGRABILITY

To establish integrability, we follow the same procedure used for the reduced Ostrovsky

equation, see Grimshaw et al. [8]. Thus we transform to characteristic coordinates,

x = θ(X,T ) = X ±
∫ T

0

U2(X,T ′)

2
dT ′ , t = T , u(x, t) = U(X,T ) . (7)
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Equivalently these are defined by

dx

dt
= ±u

2

2
, where x = X at t = 0 . (8)

It then follows that

UT = ut ±
u2ux

2
, UX = φux ,

φ = θX = 1±
∫ T

0

U(X,T ′)UX(X,T ′) dT ′ , φT = ±UUX .

(9)

The Jacobian of the transformation is

J =
∂(x, t)

∂(X,T )
= φ .

Thus equation (4) becomes

UXT = φU , and so UUXTT − UTUXT = ±U3UX . (10)

This is more conveniently written as the system

φT = ±WU , WT = φU , W = UX . (11)

Eliminating U yields the conservation law

(φ2 ∓W 2)T = 0 , (12)

showing that φ2 ∓W 2 is conserved along the characteristics X = constant. Importantly,

this is just the conservation law (6) since

φ2 ∓W 2 = φ2(1∓ u2x) = φ2F 2 . (13)

Next consider the evolution from an initial profile u(x, 0) = u0(x) for some smooth u0(x).

Since X(x, 0) = x, φ = 1, T = 0 when t = 0,

φ2 ∓W 2 = 1∓W 2
0 , φF = F0 , T ≥ 0 , (14)

where W0 = W (X, 0) = UX(X, 0) = u0x(x) , F0(X) = |1∓ u20x|1/2 .

We next introduce the transformations associating a unique Z(X,T ) with each pair (φ,W ),

φ = F0(X) coshZ , W = F0(X) sinhZ , for MROI , u20x < 1 , (15)

φ = F0(X) sinhZ , W = F0(X) coshZ , for MROI , u20x > 1 , (16)

φ = F0(X) cosZ , W = F0(X) sinZ , for MROII . (17)
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These imply in turn

ZT = U , ZXT = F0(X) sinhZ , for MROI , u20x < 1 , (18)

ZT = U , ZXT = F0(X) coshZ , for MROI , u20x > 1 , (19)

ZT = U , ZXT = F0(X) sinZ , for MROII . (20)

Thus Z satisfies the sinh-Gordon, cosh-Gordon or sine-Gordon equation respectively. All

are integrable equations, but only (18, 20) have soliton solutions. For further progress we

examine each of MROI, MROII separately.

III. ANALYSIS AND NUMERICAL RESULTS

A. The reduced modified Ostrovsky equation MROI

1. |u0x| < 1 everywhere

First we examine the case of a + sign in (4), which is the main case of interest here. If

the initial slope |u0x| < 1 for all x, then 0 < F0(X) ≤ 1 for all X. It follows from (14) that

then W 2
0 < 1 for all X, and so φ > |W | ≥ 0 for all X,T . Breaking cannot occur and since

the slope ux = UX/φ = W/φ, |ux| < 1 for all x, t. The equation remains integrable for all t.

2. |u0x| > 1 somewhere

Next suppose that there is a set of intervals X1 < x < X2 where |u0x| > 1 with equality

only at the end points, so that F0(X1,2) = 0. Since F is conserved, see (14), F = 0 is

conserved on characteristics, that is, F (X1,2, T ) = 0 for all T ≥ 0. When the initial value of

1− u20x, takes both positive and negative values, then as long as the solution exists, that is

0 < φ <∞, the arguments above show that the X,T domain is divided into regions where

|W/φ| = |ux| > 1, namely the region between the characteristic boundaries X = X1,2 and

the remaining regions where |ux| < 1 with |ux| = 1 on X = X1,2. Moreover, the wave cannot

break in the regions of the (X,T ) domain where |ux| < 1.

In the region X1 < X < X2,

F0(X) = [u20x − 1]1/2 = [W 2
0 − 1]1/2 > 0 , (21)
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and it follows that |ux| > 1, throughout the region. In this case, we can use (16) to obtain

the cosh-Gordon equation (19). This can be written in terms of φ or F alone, as follows

{ ψX

[1 + ψ2]1/2
}T = { ψT

[1 + ψ2]1/2
}X = F0(1 + ψ2)1/2 , ψ =

φ

F0

=
1

F
. (22)

Integrating (22) yields

ψX = (1 + ψ2)1/2{− F0X

F0(1 + F 2
0 )1/2

+

∫ T

0

(1 + ψ2(X,T ′))1/2 dT ′} . (23)

Hence, in any region where F0X ≤ 0, ψX > 0 and hence ψ cannot take its minimum value

in any such region. Instead a minimum can only be reached where F0X > 0, that is where

|u0x| > 1 and is increasing.

The system (11) subject to the initial conditions that φ = 1,W = u0x at T = 0 is solved to

spectral accuracy following Esler et al. [14] and Grimshaw et al. [8]l. As noted by Esler et al.

[14] solving in characteristics space is particularly useful for investigating wave breaking as

the wave breaks when an order unity quantity passes smoothly through zero. Esler et al.

[14] show that the characteristic integrations can be carried smoothly past breaking where

they agree closely with finite volume integrations which fit “equal area” shocks to the waves

after breaking.

The system (11) was integrated numerically with spectral accuracy by performing the

integration in Fourier space and then normalising in real space using the result that the

trapezium rule is spectrally accurate for periodic functions. Integrations up to T = 100 with

2048 nodes showed F was conserved with an accuracy of 10−6. Figure 1 shows the wave

profile u(X,Tb) and the Jacobian φ(X,Tb) at the instant of breaking, T = Tb = 108.25 for

the initial profile

u0x(x) = b cosx , (24)

with b = 1.00005 so that max[u20x − 1]1/2 = 10−2 For this initial condition F0 has period

π and thus so too does φ, while u0x has period 2π and hence so too do W and U . The

wave first breaks in small intervals surrounding X = π/2 and X = 3π/2 where |u0x > 1.

In particular, the wave first breaks just below the points of maximum |u0x| at X = π/2

and X = 3π/2. Let the minimum of the Jacobian φ in (0, π) at time T be φm(T ) and

lie at Xm(T ). Figure 2a shows φmT ) for the same evolution as Figure 1, with φm(T ) first

vanishing at Tb = 108.25 and Figure 2b shows that Xm(T ) lies below, but close to X = π/2

as expected. Figure 3 shows the variation in the time to breaking, Tb with Fm, the value of
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FIG. 1. (a) The wave profile u(x, tb) at the instant of breaking, T = t = tb = 108.25, for the initial

profile (24) with b = 1.00005 so that max[u20x− 1)1/2] = 10−2 computed with N = 1024 nodes. (b)

The Jacobian φ(X, tb) at the instant of breaking. The thinner curve shows F0(X) = |1−u20x(X))|1/2.

The initial profile slope satisfies |u0x| > 1 in small intervals surrounding X = π/2 and X = 3π/2.

As expected from (14), the Jacobian exceeds F0(X) outside these intervals and so breaking first

occurs inside these intervals..

F0 at the point of initial maximum gradient for the initial profile (24) with varying b. The

behaviour with decreasing Fm is consistent with the relation

Tb = AF−4/3m (25)

for some constant A.

B. The modified reduced Ostrovsky equation MROII

Although this case is not our main interest here, we record here some known results for

completeness and comparison with the case MROI, see Liu et al. [11] and Pelinovsky and

Sakovich [12] for instance. Now the initial condition is such that F0(X) ≥ 1 is defined for

all X as a bounded smooth function of X. Hence MROI is integrable provided that φ 6= 0,
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FIG. 2. (a) φm(T ), the minimum of the Jacobian in (0, π) at time T for the evolution of figure 1.

φm(T ) first vanishes at tb = 108.25. (b) The distance Xm(T ), the position of the minimum of the

Jacobian, lies below π/2.

which is the case unless ux →∞, that is unless breaking occurs. Also W = UX is bounded

for all X,T , and so the case φ→∞ cannot occur. At T = 0, φ = 1, |Z| < π/2, see (17). and

so φ > 0 until breaking occurs, when φ = 0, Z = ±π/2. Hence the issue of breaking/not

breaking in MROI (4) from an initial condition u(x, 0) = u0(x) can be restated in terms of

the sine-Gordon (SG) equation (20), which can be written as

ZY T = sinZ , Y =

∫ X

F0(X
′) dX ′ . (26)

That is u0(x) generates a Z(X, 0) = Z0(X) initial condition for the SG equation (20) such

that−π/2 < Z0(X) < π/2. Then if the evolving solution is such that−π/2 < Z(Y, T ) < π/2

for all T ≥ 0, then there is no breaking. In particular, note that the kink solution of the SG

equation violates this condition, and hence any initial condition for the SG equation which

generates a kink, corresponds to a breaking solution for the MROII equation. Equation (26)

has an infinite set of conservation laws inherited from the SG equation, and especially we
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FIG. 3. The scaled time to breaking, F
4/3
m tb, as a function of 1/Fm, where Fm is the value of F0

at the point of initial maximum gradient for the initial profile (24) with varying b.

note

(
Z2

Y

2
)T − (1− cosZ)Y = 0 ,

(1− cosZ)T − (
Z2

T

2
)Y = 0 ,

(−Z2
Y Y +

Z4
Y

4
)T + (Z2

Y cosZ)Y = 0 ,

(Z2
T cosZ)T + (−Z2

TT +
Z4

T

4
)Y = 0 .

(27)

Using these and other conservation laws, it can be shown that, on the one hand, there is

now breaking and solutions exist for all time if the initial condition has sufficiently small

amplitude and slope, while on the other hand, an initial condition with a large amplitude

and slope will break, see Liu et al. [11] and Pelinovsky and Sakovich [12]. However, a more

precise breaking condition analogous to that for MROI in section 3.1 is elusive.
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IV. CONCLUSION

For the MROI equation (4), we have shown that when the initial condition u(x, 0) = u0(x)

is such that |u0x| > 1 somewhere, then wave breading inevitably occurs, and does so in a

location close to the left-hand end point of the region where |u0x| > 1. On the other

hand, if u0x| < 1 everywhere, then the equation is integrable, since it can be transformed

to the sinh-Gordon equation (18). The precision of this result is analogous to that found

for the reduced Ostrovsky equation, see Grimshaw et al. [8], where the slope condition is

replaced by a curvature condition. On the other hand, although the MROII equation (4)

can be transformed to the integrable sine-Gordon equation (20), we have not found any

similar precise wave-breaking conditions, although the available numerical and analytical

evidence suggests that initial conditions with sufficiently steep slopes lead to breaking, but

solutions exist for all time when the initial slopes are sufficiently small, see Liu et al. [11]

and Pelinovsky and Sakovich [12].

Finally, we recall that the MROI, MROII equations are obtained from extended Ostrovsky

equation (2) by omitting the quadratic nonlinear term, and the third-order linear dispersive

term. When wave-breaking occurs, then this latter term needs to be restored, with the

outcome that the potential discontinuity with an infinite slope is, in practice, resolved by the

formation of an undular bore, see Kamchatnov et al. [7]. Hence, we infer that the breaking

condition, now expressed in terms of the original variables, |u0x| > |γ/2ν|1/2 implies the

formation of an undular bore in the full equation (2) (with µ = 0). Thus, as expected strong

rotation, (large γ) inhibits the formation of undular bores.
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