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A coupled ring network consists of several Morris-Lecar neurons. Each A basin of attraction gives the set of initial condi- = —
Chaotic behavior i diallv extended svstem is oft farred t i neuron’s membrane potential is coupled to the membrane potential of Space tions for which a particular attractor is reached. s =
aotic behavior in a spatially extended system is often referred to as spatio- ite neighbor throuah a diffusiv lina term: v . o ) = - L
temporal chaos. The trajectories of a system as it evolves through state space ts neighbor through a diffusive coupling term: qé Here, the “transient” basin of attraction is com = -
are described by irregular spatial and temporal patterns. = puted. A set of neurons are moved to a point in

V; = f(Vin)+ D(Viu1 + V1 —2V;) phase space and the network is allowed to evolve
deterministically for 1000ms. At that point, the

state of the network is determined.

In mathematical biology, spatiotemporal chaos has been demonstrated in che-
motaxis models (Painter & Hillen, 2011) predator-prey models (Sherratt, J. &
Fowler, A., 1995) and the Hogdkin-Huxley neural model (Wang, Lu, & Chen,
2006).

The coupling term allows information from one neuron to spread
across the network through neighboring interactions. In a network at
resting potential, neurons moved to the excitable region are called
kicker neurons.

Only a particular subset of neurons are repre-

Transient chaos is a special case of chaotic dynamics in which the system dy- sented by the color of the phase point. All other

namics collapses without external perturbation. Rather, collapse is an intrinsic

; Figures: a single kicker neuron spreads activity through the network (right). The neurons in the network are either at resting po- | =
property of the system It - - - - - - . - : B =
y y : A . iz S vertical axis represents time (descending). The horizontal axis represents indi- tential, or relaxed on the chaotic saddle, depend- Basin Fi 1 The basi < the initia ditions for which th t
| N R A S A TE IR 5 { k| vidual neurons in the network. The membrane potential is described by the color ‘ in Fi asin figure 1: Ih€ basin represents the initial conditions Tor which he system
oo i : : el e A I | - P y ing on the study (see Basin Figures 2 & 3). L .
Eg&eéhvgtetﬂgfgzlglvsz If((;uﬁgemrirzr?; r?rc’:lc)klllggs:gt:r;)nts;/vlgté)i f?e:Lnn% Sne;\cl\i/gglzggg | AR I .,_‘.j._ll;,fiil_,.f}hi T )‘ (blue: resting potential). Below: the effect of several kickers as the bifurcation pa- reached an attractor (blue - steady state, green - periodic) or those for which the
o o y p . p H y Cajal, R. Comparative Study of the Sensory Areas of the rameter is increased. Starting from the Ieft, | = 285, 30, 32, 38. SyStem dynamlcs did not CO”apse (rEd).

tractor: the limit cycle and the steady-state solution. ' Human Cortex. Harvard University. 1899. 2pp

Mechanisms of Collapse

intersection, the system is in equilibrium. If the equilibrium point is

0.01 |
unstable, the slightest perturbation will push trajectories away. | """" 0 0 Collapse Of Chaos x 10°
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Figure: A bifurcation diagram (right) demonstrates how the fixed points in the o Transient chaos is characterized by a sudden col-
system change as a function of the bifurcation parameter. A saddle-node bifur- —_——

cation occurs around | = 38.8 mA. This study is restricted to the excitable
parameter regime | < 38.8, where the neuron remains at resting potential until
acted upon by an external perturbation. Phaseplots (below) depict the nullclines.
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lapse of chaotic dynamics in the absence of exter-
nal perturbations, indicating that collapse is an in-
trinsic property of many deterministic systems.
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Figure Above: Periodic results are aver-
aged for three different cases: the resting
network (blue), the active network (red),
and the randomly perturbed network
from the lifetimes analysis (green).

Figures: The Morris-Lecar ring network exhibits transient
chaos that can collapse on to two species of attractor: the
stable fixed point in which the whole network falls to the
resting potential (left), or a limit cycle, in which activity
cycles around the network periodically (right).

In the parameter range of interest, the Morris-Lecar system has
three fixed points. A stable point (blue dot) a saddle-

point(black triangle) and an unstable focus (red asterisk). The
V-nullcline shifts upwards as the bifurcation parameter (Iapp) s 035
increased and the n-nullcline 1s fixed in this parameter regime.
This results in the intersection points colliding and annihi-
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The basin averages are calculated as a per-
centage of periodic results (green pixels)
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Th M ’ L M d 1 : A transient basin study demonstrates two distinct mechanisms for collapse in the diffusively-coupled ring network. For a
v OITIS-LCCar 0dc i_i = S network mostly at rest, periodic solutions are more probable for higher current values, but for an active network relaxed on
7 ) _ . j‘ s *i -i the attractor, the lower current values carry a higher probability of collapsing onto the limit cycle. As the perturbation size
— — ———— —_— — . . o 4: e e o . . . . .
) The Morris-Lecar model was derived empirically from the ﬁ' i &3 is mcgeaged,;he probbab.lllty of perllc.)lc(il? c.ollahpselbegcllns to sprehad to hlg.her applied currerlmt. On tlt;le .other.h;mﬁ, such Iarge
CV =1 app — | Ca — | K — | L barnacle giant muscle fiber (Morris & Lecar, 1981). The i F— _ S);nc ronlzeII perturbations arleI unlikely in the ¢ osef Is;yster:nt at experiences no ex]clerlna pertfur ation Wr:t t eex.clewptlon
" system equations describe the membrane potential (V) | 1 = i _% = ofa nearclf]o apse. Irlla near”co apse,CImost r?eur_clfrr]\.s alltot Erest statekexlcept a sn;]a C uster.o neurr]ons;c at may e||'t der re-
n— ng of the neuron as a function of ion currents and the state '?_h—__% = i -8 = actlv.atet e.net\(;vor. ,horﬁ.o hapsehlts yn?mllcis. is mrc])ves t. edpetwor _?hoserdto the rest re?jl.mg w erﬁ arger apr;‘le cur-
h — | ofthe potassium channel (n). The applied current (0, )is & —— T == = ;ent s assoszlate Wlt a .|gd.ifrc ance of co apfsehtot e periodic state. These data suggest distinct collapse mechanisms
( T, the bifurcation parameter. 'E;—_—_: L] E_ - ominate interactions in different regions of the parameter space.
| Basin Figure 2: 28.3 28.5 30 32 35 38
‘ | = g M (V —V ) The channel equations describe each current’s value Applied Current Right: the network at rest is per- ”
Ca Ca S5 Ca across the membrane as it depends on each channel’s . turbedfwnh tW?’\kIC}‘I:erS'?:] v?oneq (:)IS- < 1
Nernst potential (V. and V). f Ch tances from each other. The basin be-
I . V V P Ve 2 EXIStence 0 aOS comes indistinguishable from a single _5
}\I K = Ok n( — VK ) neuron perturbation around a dis- \¢
Each channel has a voltage-dependent activation func- The Morris-Lecar ring network is a chaotic o5 lhoo — _ ' ' | ] tance of six. c 2
1 V — V, tion associated with it. The potassium channel has an ad- system. Measurements of the maximum Ly- T | =30 Basin Figure 3: - % e e e e
M = =(1+tanh ) ditional term, t_, describing the time-course of potassium apunov exponent (\) result in a positive 0.02 ] app . Below: an active netV}lork is initiated 2
2 V2 e : . < | =32 by randomly perturbing 1/5 of the = 3
channel activation. number, showing that solutions that start near 0015 app N = 100 | neurons and letting the trajectories )
1 V — V3 \‘ each other in phase space diverge exponentially. loop=35 approach the vicinity of the chaotic qu
Ngs = 5 (1 + tanh ) | Parameters: C = 20 [uF/cmA2] -Membrane Capacitance, gK = 8 [uS/cmA2] - Potassium 0.017 Iapp=38 | saddle that drives the chaotic behav- V 4
4 conductance, gl = 2 [uS/cmA2] - Leak Conductance, VI = -60 [uS/cmA2] - Leak Equili- . . et : : : C
birium Potential, VCa = 120 [mV] - Ca Equilibrium Potential, VK =-80 [mV] - K Equilib- As the bifurcation parameter is increased (top) | ' ' ' ' ' or- Then a fraction of neurons (vertical ]
T " V — V3 rium Potential, V1 = -1.2 [mV] - Potential when Mss = .5,V2 = 18 [mV] - reciprocal the Lyapunov exponent decreases. When the 1 2 3 4 5 6 axis) afehpefturbei at random loca- | +
| T~ = seC slope of Mss voltage dependence, TO = 15 [s] - - time constant, gCa = 4 [uS/cmA2] - oA 6 tions in the network. —~
n 0 ( 2V4 ) Class | Calcium Conductance, V3 = 14.95 - Potential when Nss = .5, V4 = 17.4[mV] network SI.ZE INCreases (bottom), the Lyapunov x10 al 5
! -reciprocal slop of Nss voltage dependence exponent increases. 0.03 28.3 28.5
0.025 — — - 3
v . Figures: Lyapunov exponent on the vertical axis with 2 N=50
Stablllt Anal SlS —_— - time on the horizontal axis (right). For measurements 0.02 N=100 - Y-S | NV S—
y y Class | Morris LecarBﬁurcanon. Dlag.rarr-w,vl?;:.‘lél.QIS across the bifurcation parameter’ N = 100. Measure_ N=500 Iapp = 32 12 Applied Current
The nullclines of the system describe where each of the systemequa- | 2o ——s=e ] """" 5 """" ments acrofs ”et3"‘£°rk size are for a constant bifurcation  0.015 N=1000 . — [ =
tions equals zero, and thus no change in that variable occurs. At their B 0 parameter, I, = 32. N=2000 | . - - - .
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for each | _for all basin plots shown. The

Applled Current lifetime curve is taken from the averages

0.25 Lifetime analysis shows that prior to collapse,

lating each other as I approach 38.8 . chaotic behavior can persist over large temporal : : of N = 20 30. 40 and excludes | = 38
mA, where a stable limit cycle is born >/ @ 02 scales. These lifetimes increase exponentially as s e D]SCUSS]OH T wp
(be}ow). The blue frace represents a oas g the bifurcation parameter (left) isincreased.. Life- | - wgma - sy The empirically-derived Morris-Lecar neuron model makes a powerful element for a network study, allowing a compromise
typical trajectory for a single neuron. os times also tend to increase as the network size | ) r | between complexity and computational efficiency. The system can express drastic changes over short temporal scales,
(right) is increased, as is common for systems ex-_ °| | T f ’ shifting from an active chaotic state to simple periodic or steady-state behavior. Correlation studies reveal no long-term
o hibiting  transient  spatiotemporal chaosg of . | Q S . spatial or temporal correlation between members of the ensemble and collapse comes suddenly, without warning. System
04l % 02 (Wackerbauer & Showalter, 2003). o i / - Al %//Zé// collapse is an intrinsic property, occurring in the absence of external influence.
T T e N Figures: Lifetimes of transient chaotic behavior across || | Chaos can persist in the network for long lifetimes, but the system always inevitably collapses to either a periodic (on) or
03l 0.1 Membrane Potential [mV] (left) and system size (right). 1 L | T S steady (off) state. That complicated interactions with a binary result can occur in a diffusively-coupled system of spiking
0.25 0.05 ] FTEe m me m me w o we w s @ we %w = w = &« w =  neuronsimplies a significant role for gap junctions in neural computation, especially with respect to lateral information
.\ | - transfer in parallel wired transmission. Gap junctions serve as gateways between cells. In the CNS, both astrocytes and neu-
G ozl 0 . Excitable Cell Periodic collapse behavior is more common near »———— """ o rons rely on gap junctions for intercellular communication. In neurons, gap junction coupling is sufficient to evoke action
5o I particular bifurcation parameter, and increases uni- ' | potentials and can synchronize activity across a network (Velazquez & Carlen, 2000). Gap junctions have been found con-
B ST A O S Q. ® formly with the network size. .Llf.etlme analysis . : necting axons in the adult hippocampus (Hamzei-Schiani et al, 2007) and throughout the adult cerebral cortex (Nadarajah,
01t (above) shows that both periodic and steady - | , et al, 1998). They have also been shown, in conjunction with inhibitory synapses, to modulate inspiratory motoneuron syn-
ol | Collision! states have the same average lifetime, but the his- ., I chronization (Bou-Flores, C. & Berger, A., 2000).
k togram details a wider distribution for the: |
0 - steady-state solutions. _ Gap Junction References:
0.05 | | | | | | | | | Pacemaker Cell Figures: Probability of a collapse to periodic behavior (left) | ) 52‘&1??@&Bpeé?i[éofﬁocgas fuancl:il;‘)cr;CisO:r? Erpdpg}cglrk:g:lynfgssi/pgﬁz:\/::(gﬁ!a;eemf)?:::z;%hg;t&ﬁusreocr':l(S))rlmneclzg'zrnc)lﬁa:rfcnroissga;r?cj EZZLZ?R);SCEI?eg:/eific(:)i’rlf:\ljr-\l)zstjla labeling. PNAS 104 (30), 12548-12553.
%0 S0 40 30 hﬁibmne';gtemial [mOV] 10 20 30 40 as a function of |app. A histogram of lifetimes (right); steady .| . . . . . é N | \l\/ladarajah, B etal (1998). Gap junctions in the adult cerebral cortex: Regional differences in their distribution a_nd cellular expression of connexins. The Journal of Comparative Neurology 376 (2) 326-342.
S T g . elazquez, JLP and Carlen PL (2000). Gap junctions, synchrony and seizures, Trends in Neurosciences 23 (2), 68-74.
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