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Transient spatiotemporal chaos collapses into periodic and steady states in an electrically-coupled neural ring network 
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Introduction

The nullclines of the system describe where each of the system equa-
tions equals zero, and thus no change in that variable occurs.  At their 
intersection, the system is in equilibrium.  If the equilibrium point is 
unstable, the slightest perturbation will push trajectories away. 

Figure: A bifurcation diagram (right) demonstrates how the �xed points in the 
system change as a function of the bifurcation parameter.  A saddle-node bifur-
cation occurs around Iapp = 38.8 mA.  This study is restricted to the excitable 
parameter regime Iapp < 38.8, where the neuron remains at resting potential until 
acted upon by an external perturbation.  Phaseplots (below) depict the nullclines.

Chaotic behavior in a spatially extended system is often referred to as spatio-
temporal chaos.  The trajectories of a system as it evolves through state space 
are described by irregular spatial and temporal patterns.

In mathematical biology, spatiotemporal chaos has been demonstrated in che-
motaxis models (Painter & Hillen, 2011) predator-prey models (Sherratt, J. & 
Fowler, A., 1995) and the Hogdkin-Huxley neural model (Wang, Lu, & Chen, 
2006).

Transient chaos is a special case of chaotic dynamics in which the system dy-
namics collapses without external perturbation.  Rather, collapse is an intrinsic 
property of the system.

Here, we di�usively couple many spiking neurons into a ring network and 
�nd that the network dynamics can collapse on to two di�erent species of at-
tractor: the limit cycle and the steady-state solution.  

C V̇ = I app − I Ca − I K − I L

ṅ =
n − nss

τn

I Ca = gCa M ss (V − VCa )

I K = gK n(V − VK )

M ss =
1
2
(1 + tanh

V − V1

V2
)

τn = T0sech(
V − V3

2V4
)
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Electrically Coupled Neural Network
A coupled ring network consists of several Morris-Lecar neurons.  Each 
neuron‘s membrane potential is coupled to the membrane potential of 
its neighbor through a di�usive coupling term:

The coupling term allows information from one neuron to spread 
across the network through neighboring interactions.    In a network at 
resting potential, neurons moved to the excitable region are called 
kicker neurons.
Figures:  a single kicker neuron spreads activity through the network (right).  The 
vertical axis represents time (descending).  The horizontal axis represents indi-
vidual neurons in the network.  The membrane potential is described by the color 
(blue: resting potential).  Below: the e�ect of  several kickers as the bifurcation pa-
rameter is increased.  Starting from the left, Iapp = 28.5, 30, 32, 38.

Existence of Chaos
The Morris-Lecar ring network is a chaotic 
system.  Measurements of the maximum Ly-
apunov exponent (λ) result in a positive 
number, showing that solutions that start near 
each other in phase space diverge exponentially. 

As the bifurcation parameter is increased (top) 
the Lyapunov exponent decreases.  When the 
network size increases (bottom), the Lyapunov 
exponent increases.

Figures: Lyapunov exponent on the vertical axis with 
time on the horizontal axis (right).  For measurements 
across the bifurcation parameter, N = 100.  Measure-
ments across network size are for a constant bifurcation 
parameter, Iapp = 32.

Collapse of Chaos
Transient chaos is characterized by a sudden col-
lapse of chaotic dynamics in the absence of exter-
nal perturbations, indicating that collapse is an in-
trinsic property of many deterministic systems.

Figures: The Morris-Lecar ring network exhibits transient 
chaos that can collapse on to two species of attractor: the 
stable �xed point in which the whole network falls to the 
resting potential (left), or a limit cycle, in which activity 
cycles around the network periodically (right).

Lifetime analysis shows that prior to collapse, 
chaotic behavior can persist over large temporal 
scales.  These lifetimes increase exponentially as 
the bifurcation parameter (left)  is increased..  Life-
times also tend to increase as the network size 
(right) is increased, as is common for systems ex-
hibiting transient spatiotemporal chaos 
(Wackerbauer & Showalter, 2003).

Figures:  Lifetimes of transient chaotic behavior across Iapp 
(left) and system size (right).

Periodic collapse behavior is more common near 
particular bifurcation parameter, and increases uni-
formly with the network size.  Lifetime analysis 
(above) shows that both periodic and steady 
states have the same average lifetime, but the his-
togram details a wider distribution for the 
steady-state solutions.

Figures: Probability of a collapse to periodic behavior (left) 
as a function of Iapp.  A histogram of lifetimes (right); steady 
(blue) and periodic (red) for Iapp = 32.

Transient Basins of Attraction
A basin of attraction gives the set of initial condi-
tions for which a particular attractor is reached.  
Here, the “transient” basin of attraction is com-
puted.  A set of neurons are moved to a point in 
phase space and the network is allowed to evolve 
deterministically for 1000ms.  At that point, the 
state of the network is determined.

Only a particular subset of neurons are repre-
sented by the color of the phase point.  All other 
neurons in the network are either at resting po-
tential, or relaxed on the chaotic saddle, depend-
ing on the study (see Basin Figures 2 & 3).

y Cajal, R. Comparative Study of the Sensory Areas of the 
Human Cortex. Harvard University. 1899.
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The Morris-Lecar model was derived empirically from the 
barnacle giant muscle �ber (Morris & Lecar, 1981).  The 
system equations describe the membrane potential (V) 
of the neuron as a function of ion currents and the state 
of the  potassium channel (n).  The applied current (Iapp) is 
the bifurcation parameter.

The channel equations describe each current’s value 
across the membrane as it depends on each channel’s 
Nernst potential (VCa and VK).

Each channel has a voltage-dependent activation func-
tion associated with it. The potassium channel has an ad-
ditional term, τn, describing the time-course of potassium 
channel activation.

In the parameter range of interest, the Morris-Lecar system has 
three fixed points.  A stable point (blue dot) a saddle-
point(black triangle) and an unstable focus (red asterisk).  The 
V-nullcline shifts upwards as the bifurcation parameter (Iapp) is 
increased and the n-nullcline is fixed in this parameter regime.  
This  results in the intersection points colliding and annihi-  
lating each other as Iapp  approach 38.8 
mA, where a stable limit cycle is born 
(below).  The blue trace represents a 
typical trajectory for a single neuron.

Complex

Systems
Dynamical

Basin Figure 1: The basin represents the initial conditions for which the system 
reached an attractor (blue - steady state, green - periodic) or those for which the 
system dynamics did not collapse (red).

Mechanisms of Collapse
A transient basin study demonstrates two distinct mechanisms for collapse in the di�usively-coupled ring network.  For a 
network mostly at rest, periodic solutions are more probable for higher current values, but for an active network relaxed on 
the attractor, the lower current values carry a higher probability of collapsing onto the limit cycle.  As the perturbation size 
is increased, the probability of periodic collapse begins to spread to higher applied current.  On the other hand, such large 
synchronized perturbations are unlikely in the closed system that experiences no external perturbation with the exception 
of a near collapse.  In a near collapse, most neurons fall to the rest state except a small cluster of neurons that may either re-
activate the network, or collapse its dynamics.  This moves the network closer to the rest regime, where larger applied cur-
rent is associated with a higher chance of collapse to the periodic state.  These data suggest distinct collapse mechanisms 
dominate interactions in di�erent regions of the parameter space.  
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Basin Figure 2:
Right: the network at rest is per-
turbed with two kickers at varied dis-
tances from each other.  The basin be-
comes indistinguishable from a single 
neuron perturbation around a dis-
tance of six.
Basin Figure 3:
Below: an active network is initiated 
by randomly perturbing 1/5 of the 
neurons and letting the trajectories 
approach the vicinity of the chaotic 
saddle that drives the chaotic behav-
ior.  Then a fraction of neurons (vertical 
axis) are perturbed at random loca-
tions in the network.
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Figure Above: Periodic results are aver-
aged for three di�erent cases: the resting 
network (blue), the active network (red), 
and the randomly perturbed network 
from the lifetimes analysis (green).

The basin averages are calculated as a per-
centage of periodic results (green pixels) 
for each Iapp for all basin plots shown.  The 
lifetime curve is taken from the averages 
of N = 20, 30, 40 and excludes I app = 38.Discussion

The empirically-derived Morris-Lecar neuron model makes a powerful element for a network study, allowing a compromise 
between complexity and computational e�ciency.  The system can express drastic changes over short temporal scales, 
shifting from an active chaotic state to simple periodic or steady-state behavior.  Correlation studies reveal no long-term 
spatial or temporal correlation between members of the ensemble and collapse comes suddenly, without warning.  System 
collapse is an intrinsic property, occurring in the absence of external in�uence.

Chaos can persist in the network for long lifetimes, but the system always inevitably collapses to either a periodic (on) or 
steady (o�) state.  That complicated interactions with a binary result can occur in a di�usively-coupled system of spiking 
neurons implies a signi�cant role for gap junctions in neural computation, especially with respect to lateral information 
transfer in parallel wired transmission.  Gap junctions serve as gateways between cells.  In the CNS, both astrocytes and neu-
rons rely on gap junctions for intercellular communication.  In neurons, gap junction coupling is su�cient to evoke action 
potentials and can synchronize activity across a network (Velazquez & Carlen, 2000).  Gap junctions have been found con-
necting axons in the adult hippocampus (Hamzei-Schiani et al, 2007) and throughout the adult cerebral cortex (Nadarajah, 
et al, 1998).  They have also been shown, in conjunction with inhibitory synapses, to modulate inspiratory motoneuron syn-
chronization (Bou-Flores, C. & Berger, A., 2000).
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Parameters: C = 20 [uF/cm^2] -Membrane Capacitance, gK = 8 [uS/cm^2] - Potassium 
conductance, gl = 2 [uS/cm^2] - Leak Conductance, Vl = -60 [uS/cm^2] - Leak Equili-
birium Potential, VCa = 120  [mV]  - Ca Equilibrium Potential, VK = -80 [mV]    - K Equilib-
rium Potential, V1 = -1.2 [mV] - Potential when Mss = .5, V2 = 18 [mV]     - reciprocal 
slope of Mss voltage dependence, T0 = 15 [s] -   - time constant, gCa = 4 [uS/cm^2] - 
Class I Calcium Conductance, V3 = 14.95 - Potential when Nss = .5, V4 = 17.4[mV] 
-reciprocal slop of Nss voltage dependence

nss =
1
2
(1 + tanh

V − V3

V4
)


