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Abstract: We recently demonstrated how quantitative X-ray phase
contrast imaging may be performed with laboratory sources using the
coded aperture technique. This technique required the knowledge of system
parameters such as, for example, the source focal spot size and distances
between elements of the imaging system. The method also assumes that the
absorbing regions of the apertures are perfectly absorbing. In this paper we
demonstrate how quantitative imaging can be performed without knowledge
of individual system parameters and with partially absorbing apertures. We
also show that this method is analogous to that employed in analyser based
imaging which uses the rocking curve of an analyser crystal.
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1. Introduction

Coded aperture X-ray phase contrast imaging (CAXPCI) [1] was initially inspired by the syn-
chrotron method known as analyser based imaging (ABI). ABI develops contrast using the
rocking curve of an analyser crystal [2]. Algorithms were developed to extract sample phase and
absorption from images taken on two opposing sides of the analyser crystal rocking curve [3,4].
Algorithms employing a variety of assumptions about the sample and imaging system, and later,
for more general systems were subsequently developed [5–8]. Although this technique has been
demonstrated using a laboratory source [9], it is generally restricted to synchrotron sources due
to the narrow band of energies selected by the two crystals employed in the imaging system.

The restriction to synchrotron sources for applications not compatible with long exposure
times motivated several people to develop alternative methods of performing X-ray phase con-
trast imaging (XPCI) using laboratory sources [1, 10–12]. It is beyond the scope of this paper
to review the substantial number of contributions to this field, however we direct readers to
a review on the subject [13] for such an account. One such contribution resulted from initial
experiments performed using the SYRMEP beamline of the Elettra synchrotron radiation fa-
cility in operation in Trieste [14], an experiment directly inspired by analyser based imaging.
Although initially demonstrated using synchrotron radiation, the technique was soon demon-
strated using laboratory sources [1]. Recently this technique has been extended to a quantitative
method for both laboratory [15] and synchrotron sources [16].

The CAXPCI system is schematised in Fig. 1(a) where all parameters are defined in the fig-
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ure caption. Phase contrast images are obtained by adjusting the position of A1 with respect to
A2 such that the beams formed by A1 illuminate the edges of the A2. A2 is initially aligned with
the detector pixels and remains stationary thereafter. Higher resolution images may be obtained
by scanning the sample in the ξ direction as indicated in Fig. 1(b). CAXPCI imaging can be
performed with synchrotron radiation [16] or laboratory sources [15]. The is no limit on the
spectral width of the source so long as the apertures are thick enough to generate contrast in the
detected signal, in the absence of a sample, which exceeds the noise. The focal spot size should
not exceed the pixel size of the detector [17]. The system has recently been shown to have sensi-
tivity which is at least comparable to that of grating interferometry [18], the only other system
to offer high phase sensitivity when employing a laboratory source. The difference between
grating interferometry and CAXPCI has been discussed in detail previously [17]. However, we
note that the main difference is that CAXPCI employs the edge illumination principle where
the edges of the sensitive region of a pixel are illuminated by X-ray beams. This means that
CAXPCI doesn’t make use of Talbot’s self-imaging phenomenon and doesn’t employ phase
stepping of the detector aperture.

The existing quantitative method [15] was developed from a wave optical model of the CAX-
PCI system which took into account the principal system parameters such as source focal spot
size and aperture dimensions and spacing. This technique thus requires such system parameters
to be known to a reasonable degree of accuracy. However, some system parameters such as, for
example, the source focal spot and spectrum are difficult to measure on a regular basis. It would
be much more convenient if the effect of all system parameters could be aggregated into a single
series of measurements, thus forming a simple method of calibrating the imaging system. We
present such a method in this paper whereby a measurement, analogous to the rocking curve
in ABI, is performed which forms the basis of the algorithm used to obtain quantitative phase
measurements. We shall call this measurement the translation curve (TC) in order to distinguish
it from the rocking curve used in ABI. We shall show in this paper how the measured TC may
be used to perform quantitative phase imaging in a more general manner than our previously
developed method.

Detector

P

A2A1

zodzso

Source

p1

∆ξ

A2A1

Source
ξ x

z
xs

a) b)

Fig. 1. Schematic diagram of a CAXPCI system which is not to scale (a) and specification
of the coordinate systems used within this paper (b). The system is formed by two apertures
A1 and A2. The sample is placed immediately after A1. A1 is translated by an amount Δξ
in order to select the operating regime of the system. A1 is placed a distance zso from the
source and A2 is placed a distance zod from A1. The detector has pixels with a width of P
and A1 has a period of p1. The distance along the optical axis is denoted z and is considered
to begin at the centre of the source focal spot. The lateral dimensions within the source focal
spot and within the planes of A1 and A2 are denoted xs, ξ and x respectively. Each lateral
dimension has its origin at the optical axis.
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2. Theory

2.1. Derivation of expression for the translation curve

In this section we develop a forward model which allows the detector pixel signal to be cal-
culated taking into account the salient system parameters. This formula is then used to obtain
an expression for the TC of the system. We begin by mathematically defining the transmission
function of the apertures as:

Ti(x+nP) =

{
1 |x|< ηiP/2
exp(−μcaTi) otherwise

, (1)

where the subscript i takes the value 1 or 2 in correspondence with the apertures A1 and A2

respectively. μca is the energy dependent linear absorption coefficient of the absorbing material
used to form the apertures (generally gold), Ti is the thickness of the absorbing material and
ηi is the fraction of each aperture period which is non-absorbing. The sample is modelled by a
multiplicative complex transparency function:

T (x) = exp

(
−ikφ(x)− 1

2

∫
O

μ(x,z)dz

)
(2)

where μ is the linear absorption coefficient of the sample, k is the wave number, φ(x) =∫
O δ (x,z)dz, δ is the refractive index decrement of the sample and O is the extent of the sample.

φ and μ both depend upon the photon energy, however, we develop the mathematical model
by considering first a single energy before integrating over the source spectrum. Note also that
the sample is assumed to satisfy the projection approximation, meaning that the sample is suf-
ficiently thin and that inhomogeneities are large compared with the wavelength [19]. In this
context, one criterion for being sufficiently thin is that the thickness is much less than zso [20]
although Paganin [21] presents a thorough discussion of this subject.

We now proceed to calculate the signal detected by each pixel assuming a monochromatic
point source. We shall generalise to an extended, polychromatic source later. By applying the
paraxial approximation to the Fresnel-Kirchhoff diffraction integral, we follow a previous pub-
lication [16] in evaluating the complex amplitude incident upon the detector aperture as

U(x) =C
∫ ∞

−∞

√
T1(M(ξ −Δξ ))T (ξ )exp

(
ikξ 2 zso + zod

2zsozod

)
exp

(
−ikξ

x
zod

)
dξ (3)

where

C =
U0√

iλzsozod(zso + zod)
exp(ik(zso + zod))exp

(
ik

(
x2

2zod

))
(4)

and U0 is defined implicitly by noting that the point source is assumed to emit a spherical wave,
prior to applying the paraxial approximation, of the form U0 exp(ikr)/r where r is the distance
from the source.

Without loss of generality, we consider the signal of the pixel bound by |x|< P/2. Then the
signal detected by this pixel is given by

I =
∫ P/2

−P/2
T2(x) |U(x)|2 dx (5)

In order to simplify this expression into a more usable form, we approximate T (x) as

T (x)≈ T̃ (x) = exp

(
−ik(φ(0)+φx(0)x)− 1

2

∫
O

μ(0,z)dz

)
(6)

#181390 - $15.00 USD Received 7 Dec 2012; revised 11 Mar 2013; accepted 16 Mar 2013; published 30 Apr 2013
(C) 2013 OSA 6 May 2013 | Vol. 21,  No. 9 | DOI:10.1364/OE.21.011187 | OPTICS EXPRESS  11190



meaning that we assume that the object has a constant absorption and linear phase variation
within the transmitting region of the pre-sample aperture. φx is thus the derivative of φ with re-
spect to x and corresponds to the angle by which a ray is refracted by the sample. It is important
to note that the coded aperture technique, like grating interferometry, measures refraction an-
gle which, when multiplied by the wavenumber, yields the phase gradient. To avoid confusion
arising due to the choice of wavenumber when employing a polychromatic source, we shall
principally analyse refraction angle rather for the remainder of this paper.

In order to proceed, we substitute T̃ (x) for T (x) into Eq. (3) and apply the stationary phase
approximation in a manner similar to previous publications [16, 22]. The first order asymptotic
solution to Eq. (3) is thus given by:

U0(x)∼U0
exp(ik(zso + zod))

zso + zod
exp

(
ik

(
x2

2zod

))
exp

(
−1

2

∫
O

μ(0,z)dz

)

·
√

T1 (zodφx(0)+ x−MΔξ )exp

(
−ik

zso

2zod(zso + zod)
(zodφx(0)+ x)2

)
(7)

which may be substituted into Eq. (5) to obtain

I =
|U0|2

(zso + zod)
2 exp

(
−
∫

O
μ(0,z)dz

)∫ P/2

−P/2
T2(x)T1 (zodφx(0)+ x−MΔξ )dx (8)

Then, if the source focal spot is assumed to have a non-negative distribution, S(xs), at the target
and the source spectrum and detector characteristics can be represented by a weighting σ(E),
the detector signal for an extended, polychromatic source may be obtained as [22]:

I =
|U0|2

(zso + zod)
2

∫
spectrum

exp

(
−
∫

O
μ(0,z)dz

)

·
∫ P/2

−P/2
T2(x)

[
T1 (zodφx(0)+ x−MΔξ )∗S

(
x

zso

zod

)]
dxσ(E)dE (9)

where ∗ is the convolution operator. We note that the convolution with S applies only to T1
since, formally, the argument x of T1 is written as x+ xszod/zso where xs is a position within
the source focal spot [22]. Since xs only appears in the argument of T1, the convolution with
S applies only to T1. As a final step, we note that it is possible to consider the polychromatic
system as being equivalent to a monochromatic system at an equivalent or effective energy, to
a good degree of accuracy [23]. We note also that this assumption was integral to one of the
first demonstrations of quantitative phase imaging with polychromatic sources using a grating
interferometer [11]. As a result we simplify Eq. (9) further to

IP(φ x,μ,Δξ ) =
|U0|2

(zso + zod)
2 exp

(
−
∫
O

μdz

)∫ P/2

−P/2
T 2(x)

[
T 1

(
zodφ x + x−MΔξ

)∗S

(
x

zso

zod

)]
dx

(10)

where overlines have been added to the quantities above to denote that they are evaluated at the
effective energy of the system. Furthermore, we have omitted the spatial dependence of μ and
φ x for brevity. We have now derived the key theoretical result of this paper. To further elucidate
this result, consider Eq. (10) in the absence of a sample, which we write as:

ITC(Δξ ) =
|U0|2

(zso + zod)
2

∫ P/2

−P/2
T 2(x)

[
T 1 (x−MΔξ )∗S

(
x

zso

zod

)]
dx (11)
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where ITC denotes the TC as it is obtained by translating the pre-sample aperture with respect
to the detector aperture. We can then relate the pixel signal obtained with a sample in place to
the TC as:

IP(φ x,μ,Δξ ) = exp

(
−
∫

O
μdz

)
ITC(Δξ − zodφ x/M), (12)

from which we can derive inversion formulae for μ and φ x.

2.2. Design of system parameters to enable quantitative imaging

So far we have shown how a sample phase gradient, sample absorption and position of the pre-
sample aperture affect the pixel signal. Now we show how this relationship may be inverted.
Since we intend to determine two quantities, two measurements are required which correspond
to different values of Δξ , the values of which we now derive. Our strategy is to obtain two
values of Δξ which will enable the absorption term to be factored out of Eq. (10). In particular,
we acquire two images, I1 and I2 corresponding to two positions of the pre-sample aperture,
Δξ1 and Δξ2 respectively. In order to extract the absorption term from sum of I1 and I2 we must
thus find Δξ1 and Δξ2 which results in

F(zodφ x(0)) =∫ P/2

−P/2
T 2(x)

[(
T 1

(
zodφ x(0)+ x−MΔξ1

)
+T 1

(
zodφ x(0)+ x−MΔξ2

))∗S

(
x

zso

zod

)]
dx

(13)

being approximately constant as zodφ x(0) varies. We thus seek values of Δξ1 and Δξ2 which
minimises |F ′(zodφ x(0))| everywhere. Within the domain x ∈ [−P/2,P/2], T 1

′
(x) is well ap-

proximated by T 1
′
(x) = δ (x+η1P/2)−δ (x−η1P/2), where in this case, δ refers to Dirac’s

delta function. Thus our task reduces to minimising the expression:
∣∣∣∣
∫ P/2

−P/2
T 2(x)

[
(δ (x̃1 +η1P/2)−δ (x̃1 −η1P/2)+δ (x̃2 +η1P/2)−δ (x̃2 −η1P/2))∗S

(
x

zso

zod

)]
dx

∣∣∣∣
(14)

where, for brevity, we have introduced x̃1/2 = zodφ x(0)+ x−MΔξ1/2 +η1P/2. This expres-
sion cannot be made equal to zero in general. In order to proceed we assume only that S(xs)
is symmetric about xs = 0 and that it has its maximum value at xs = 0. By noting that the
convolution operator results in four shifted and scaled replicas of S, we select Δξ1 and Δξ2

such that two of them cancel and the other are shifted principally to where T 2(x) has a small
magnitude. The symmetry of these two criteria dictates a choice of Δξ1 = −Δξ2 and equating
−δ (x̃1 −η1P/2) + δ (x̃2 + η1P/2) = 0 gives the result Δξ2 = η1P/(2M) = Δξ0 which is in
agreement with our previous inversion technique [15] and thus defines the quantity Δξ0.

As a final step before deriving the inversion formulae we show that |ITC
′(Δξ )| is maximised

at Δξ =±Δξ0. To proceed we note that ITC
′(Δξ ) is given by

ITC
′(Δξ ) =

−M |U0|2
(zso + zod)

2

∫ P/2

−P/2
T 2(x)

[
S

(
(x−MΔξ +η1P/2)

zso

zod

)
−S

(
(x−MΔξ −η1P/2)

zso

zod

)]
dx (15)

Since we have not assumed a particular form of S, only that it is centred and maximised on
xs = 0, we conclude that |ITC

′(Δξ )| is indeed maximised at Δξ = ±Δξ0 since this maximises
the overlap between one of the S terms with the T 2(x) term and minimises the overlap with
the other.
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2.3. Derivation of inversion formulae

We are now ready to derive the inversion formulae. In particular, we form images

IL = IP(φ x,μ,−Δξ0) = exp

(
−
∫

O
μdz

)
ITC

(−Δξ0 − zodφ x/M
)

(16)

IR = IP(φ x,μ,Δξ0) = exp

(
−
∫

O
μdz

)
ITC

(
Δξ0 − zodφ x/M

)
. (17)

In taking these measurements one must ensure that when the position of the pre-sample aperture
is changed, the sample is also moved by an equivalent amount so that the same portion of the
sample is within each X-ray beam. Alternatively, if the sample is scanned to improve spatial
resolution, the left and right images must be co-registered. We now form the quantities:

IΣ = IL + IR = exp

(
−
∫

O
μdz

)[
ITC

(−Δξ0 − zodφ x/M
)
+ ITC

(
Δξ0 − zodφ x/M

)]
(18)

IΔ = IL − IR = exp

(
−
∫

O
μdz

)[
ITC

(−Δξ0 − zodφ x/M
)− ITC

(
Δξ0 − zodφ x/M

)]
(19)

Furthermore, we now introduce some additional notation to distinguish between the reference
TC and image data. In particular, from this point on we place hats on any image data from
which phase and absorption will be retrieved. As shown previously, Δξ0 is chosen such that
ITC

(−Δξ0 − zodφ x/M
)
+ ITC

(
Δξ0 − zodφ x/M

)
is approximately constant, and thus approxi-

mately equal to 2ITC(Δξ0), which allows
∫
O μdz to be found according to:

∫
O

μdz = log

[
2ITC(Δξ0)

ÎΣ

]
. (20)

In order to derive the inversion formula for φ x, we note that without making any further approx-
imations, that the quantity ÎΔ/ÎΣ depends only upon Δξ0 and zodφ x. We then form the function
using the reference TC:

f : ΩΔξ → ΩO

Δξs �→ ITC (−Δξ0 −Δξs)− ITC (Δξ0 −Δξs)

ITC (−Δξ0 −Δξs)+ ITC (Δξ0 −Δξs)
(21)

where ΩΔξ = [−a,a] for some positive real a, is chosen to ensure that f is injective. Then, any
image data ÎΔ/ÎΣ with values within the range ΩO can be related to a sample refraction angle,
φ x, by inverting f . This inversion technique is valid for a wider range of refraction angles
than the existing CAXPCI inversion method. This is because the current method requires fewer
assumptions and is based upon a single measured quantity, the TC.

It is, however, possible to obtain a linear inversion formula valid for smaller refraction
angles. By expanding IR and IL in a Taylor series and again making the approximation
ITC

(−Δξ0 − zodφ x/M
)
+ ITC

(
Δξ0 − zodφ x/M

)≈ 2ITC(Δξ0), gives

IΔ
IΣ

≈ (zodφ x/M)I′TC(Δξ0)− (zodφ x/M)I′TC(−Δξ0)+O((zodφ x)
3)

2ITC(Δξ0)

=
zodφ x

M
I′TC(Δξ0)

ITC(Δξ0)
(22)
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where the remainder term in the numerator is of third order because the second derivative of
ITC is approximately zero in the vicinity of Δξ0, since it was shown that the first derivative of
ITC is minimised at Δξ0. Eq. (22) can then be manipulated to reveal the sample refraction angle
image as:

φ x =
M
zod

ÎΔ

ÎΣ

ITC(Δξ0)

I′TC(Δξ0)
(23)

where ITC(Δξ0)/I′TC(Δξ0) is known from the experimentally measured TC.

3. Experimental example

The TC of the system is measured routinely whenever the pre-sample aperture is aligned with
the detector aperture. An experimentally acquired TC is plotted in Fig. 2 using our laboratory
CAXPCI system which has system parameters zso ≈1.6m and zod ≈0.4m. These quantities
are approximate since the apertures and detector are initially placed in these positions and an
alignment procedure is used to accurately position them. The pre-sample aperture, A1, has
period p1=134μm and pixel width P=85μm. The detector aperture A2 has a period of 83.5μm
to allow it to be placed in front of the detector. The width of the transmitting regions of A1 and
A2 are 16μm and 20μm respectively. The quantity Δξ refers to the displacement of A1 from
the position of perfect alignment with A2. Note that in practice, every second pixel was skipped
to minimise detector pixel cross talk. We employed a Rigaku 007HF X-ray tube generator
operated at 35 kVp/25 mA with a rotating Mo target, an Anrad SMAM flat panel detector and
the gratings were fabricated by Creatv Microtech (Potomac, Maryland, USA). The TC was
acquired by taking the average over all pixels for each displacement of the pre-sample aperture.
Note that the measured data points are unequally spaced as two separate measurements have
been combined and one of the measurements was acquired only for negative values of Δξ . The
fitted curve was found by fitting a fourth order Fourier cosine series thus assuming symmetry
about Δξ = 0. We showed in Sec. (2.2) that Δξ0 should be chosen to be equal to half of the
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Fig. 2. Plot of experimentally acquired ITC. The fitted curve was found by minimising the
least square error with Fourier series containing four harmonic terms.

width of the transmitting region of the pre-sample aperture, which is 8μm in our experimental
system. Figure 3 shows plots of IL, IR and IΣ for the sampled TC which shows that IΣ is indeed
flat for a range of values of Δξs = zodφ x. We can, however, show using the experimentally
acquired TC, that the selected value of Δξ0 results in IΣ being maximally flat over a range of
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Fig. 3. Plot of IΣ = ITC (−Δξ0 −Δξs) + ITC (Δξ0 −Δξs), ITC (−Δξ0 −Δξs) and
ITC (Δξ0 −Δξs) using the fitted TC plotted in Fig. 2.

values of Δξs. In order to show this we define a measure of flatness as:

ε(Δξ0) =

max
Δξs∈ΩΔξs

(IΣ(Δξ0,Δξs))− min
Δξs∈ΩΔξs

(IΣ(Δξ0,Δξs))

mean
Δξs∈ΩΔξs

(IΣ(Δξ0,Δξs))
(24)

where ΩΔξs
= [−5×10−6,5×10−6] m was chosen to accommodate extreme values measured

experimentally [16]. The maximum, minimum and mean values were found using the fitted TC.
ε(Δξ0) is plotted in Fig. 4 which shows that it exhibits a minimum value in the vicinity of Δξ0

as expected.
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Fig. 4. Plot of ε(Δξ0), a measure of the flatness of IΣ for particular values of Δξ0 when Δξs

takes values in the range [−5×10−6,5×10−6] m.

Another important factor which influences the choice of Δξ0 is the sensitivity to sample
refraction angles. Figure 5 shows a plot of the derivative of the curve fitted to the experimentally
observed TC data. This plot verifies the result obtained in Sec. (2.2), that the optimal values of
the derivative of the TC appear in the vicinity of Δξ =±Δξ0. A similar approach was employed
by Diemoz et al. [24] for the case of grating interferometry. In particular, rather than phase
stepping the detector grating, the pre-sample and detector gratings were offset by an amount
which maximised the change in pixel signal for a given change to offset between the gratings.
In their method, they make use of a principal analogous to the TC but, instead of separating

#181390 - $15.00 USD Received 7 Dec 2012; revised 11 Mar 2013; accepted 16 Mar 2013; published 30 Apr 2013
(C) 2013 OSA 6 May 2013 | Vol. 21,  No. 9 | DOI:10.1364/OE.21.011187 | OPTICS EXPRESS  11195



phase and absorption, obtain a single image containing a well described combination of phase
and absorption information. This technique carries the advantage that a single acquisition is
acquired per angle of rotation when performing CT imaging.
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Fig. 5. Plot of the derivative of the fitted ITC(Δξ ), the vertical lines denote Δξ =±8μm.

The accuracy of Eq. (23) depends significantly on how constant the derivative of the TC is in
the vicinity of Δξ0. Figure 6 shows how this derivative varies over a region which corresponds
to a sample refraction angle satisfying |φx| < 10−5rad/m. The derivative of the rocking curve
varies by at most approximately 15% over this range. Whilst this maximum error would be
experienced only for extreme refraction angles, as explained in Sec. (2.3), it is possible to derive
a refraction angle inversion formula without making such an assumption. Figure 7 shows a plot
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Fig. 6. Plot of ITC(Δξ0 − Δξs) with Δξ0 = 8μm for a range of Δξs corresponding to
|∂φ/∂x|< 10−5rad/m.

of IΔ/IΣ versus Δξs for the experimental system being considered, using the fitted TC plotted in
Fig. 2. The plot shows that, in order to uniquely determine Δξs from an observed value of ÎΔ/ÎΣ,
it is necessary to restrict the domain of Δξs to |Δξs|� 0.011 mm which implicitly restricts the
observable refraction angles to the range |φ x| � 0.034 rad/mm. The refraction angle may be
extracted from an observed value of ÎΔ/ÎΣ by numerically determining, from Fig. 7, the value
of Δξs to which it corresponds. This numerical inversion may be performed very accurately and
efficiently.
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Fig. 7. Plot of IΔ/IΣ versus Δξs. The domain of the plot is restricted to the non-shaded
region so that there is a one-to-one mapping from Δξs to IΔ/IΣ. The plot was calculated
using the fitted TC in Fig. 2.

4. Examples and analysis

In this section we analyse the TC refraction angle retrieval method and show some examples of
how it may be applied. In particular, we show how the TC method differs from that previously
published for the experimental system considered in Sec. (3) using some experimentally ac-
quired images. We also perform some numerical simulations to demonstrate the improvement
offered by the TC method.

We begin by comparing the TC refraction angle extraction algorithm with that published pre-
viously, derived analytically and based upon the assumption of perfectly absorbing apertures.
In particular, we have previously published [15] a phase extraction algorithm which extracts
the refraction angle according to the formula:

φ x =−erf−1
(

ÎΔ

ÎΣ

)
σd

zod
(25)

≈−
√

π
2

ÎΔ

ÎΣ

σd

zod
(26)

where erf is the standard error function erf(z) = 2/
√

π
∫ z

0 exp(−t2)dt and σd =

FWHMd/
(

2
√

log(2)
)

and FWHMd is the full width at half maximum of the beams projected

onto the detector aperture. Figure 8 shows a comparison between the analytic inversion formu-
lae and those obtained using the TC plotted in Fig. 7. All of the plots relate to the system used
to obtain the TC plotted in Fig. 2. σd was found to be approximately 12.5μm by determining
the focal spot size which gave the best match between calculated and measured TCs. The TC
approach should, in general, predict a refraction angle greater or equal in magnitude compared
with the analytic method, since the TC method implicitly takes account of the partial absorption
by the apertures.

The refraction angle retrieval curves in Fig. 8 reveal that the full and approximate TC meth-
ods are equivalent for small refraction angles yet diverge strongly for large refraction angles.
This will lead to the approximate TC method underestimating refraction angles. This phe-
nomenon results from the partial transmission of X-rays through the apertures as is demon-
strated by the remaining plots in Fig. 8. In particular, the full analytic method (Eq. (25)) and the
ideal TC methods coincide. The ideal TC inversion curve was obtained from a simulated TC
for the case of perfectly absorbing apertures. The approximate analytic curve (Eq. (26)) departs
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only slightly from the full analytic curve.
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Fig. 8. Comparison of the inversion formulae. TC-approx is described by Eq. (23), TC-full
by inverting Eq. (21) using the experimental TC in Fig. 2, Analytic-approx by Eq. (26) and
Analytic-full by Eq. (25), TC (ideal)-full is found using an ideal TC, calculated assuming
fully absorbing apertures.

We now present an example showing how three of the refraction angle inversion relation-
ships in Fig. 8 result in different values of refraction angle in an experimental case. We used
the experimental system for which the TC in Fig. 2 was obtained, to image a titanium wire of
radius 125μm. Images were taken at a total of 16 sub-pixel object positions in order to increase
spatial resolution. Each such image had an 8.75 second exposure time. We selected this sample
due to its very high value of δ throughout the source spectrum, even though it is also highly
absorbing. High values of δ causes high values of |ÎΔ/ÎΣ| to be measured which is where the
greatest difference between the three inversion formulae occurs. We have also shown, for ref-
erence, the theoretical refraction angle at the estimated mean energy of the spectrum (18keV).
We do not expect the experimentally acquired results to match this profile due to beam hard-
ening which results from absorption by the wire [25]. The main point of these plots is to show
an experimental case where the full TC inversion formula is required for accuracy in order to
account for large refraction angles. This difference arises because the linearity of the TC breaks
down for large separations between the pre-sample and detector apertures. We also imaged alu-
minium, sapphire, polyetheretherketone and boron wires but these samples did not result in a
difference between the full and approximate TC refraction angles. The expected refraction an-
gle in Fig. 9 can only be calculated with accurate knowledge of the source and detector spectral
responses and the sample absorption [25]. In light of this and in order to further demonstrate
the advantages of the TC inversion method we now present some numerical simulations.

We modelled the experimental system considered in Sec. (3) using an estimated spectrum as
plotted in Fig. 10 and assuming that the Anrad SMAM flat panel detector is energy integrat-
ing with photon weighting directly proportional to photon energy. We also assumed that the
source has a focal spot with a FWHM of 60μm. All other system parameters are as described
in Sec. (3). We considered a polyetheretherketone (PEEK) fiber of radius 100μm, assumed
to have chemical composition C19O3H18 and density 1.3 gm/cm3. The refractive index data
was obtained theoretically [26] which is also plotted in Fig. 10. Note that we use β to refer
to the imaginary part of refractive index. The refractive index for the gold apertures was also
calculated from theory [26]. The simulation method is described fully in previous publica-
tions [17, 22] however it takes as its starting point Eq. (3) which is evaluated numerically for a
range of photon energies within the spectrum. The values of T and T1 are calculated accord-
ing to photon energy. As such, the simulation is accurate to within the approximations of the
paraxial Fresnel-Kirchhoff diffraction integral and the projection approximation as discussed in
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Fig. 9. (left) an image of IΔ/IΣ for a 125μm titanium wire, (top right) line profiles of φ x
through the titanium wire and (bottom right) a zoomed in version of the top right plots.
Line profiles were calculated using the three inversion formula indicated by the legend. E
is the estimated mean energy of the spectrum and φx at E is the theoretical value of φx at
the mean energy.
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Fig. 10. Plots of the source spectrum (left) and refractive index of PEEK (right) as employed
in the simulation.

Sec. (2.1). Each refraction angle was calculated at 51 sample points by scanning the object to
increase spatial resolution. This was only for the purposes of numerical comparison, to ensure
that the integrated refraction angle did not experience artefacts resulting from the integration.

We have performed simulations for both the polychromatic and monochromatic cases, how-
ever, assuming a 60μm FWHM focal spot in both cases. The monochromatic simulation serves
to demonstrate that the TC technique performs very accurate quantitative phase retrieval in a
scenario when phase is well defined. When a polychromatic source is employed, the concept
of phase is ambiguous since it implies an averaging of phase. Furthermore, any such measured
phase will depend on the source, aperture, detector and sample spectral properties [25].

Figure 11(a) shows the calculated TC for the polychromatic case for aperture gold thick-
nesses of 10, 20, 40 and 80μm respectively. We note that no significant variation in calculated
TC or retrieved refraction angle was observed for aperture gold thicknesses exceeding 80μm.
Figure 11(b) shows the calculated TC for the monochromatic case at the spectrum mean energy
of 18keV. The two simulations assume the same source power density. Figure 11(c) shows the
refraction angle retrieval relationship, Eq. (21), corresponding to the polychromatic TCs of Fig.
11a) and Fig. 11(d) shows the retrieval relationship corresponding to the monochromatic TCs
of Fig. 11b). The two cases are similar, but not identical. In particular, we note that in the poly-
chromatic case, thicker gold is required to achieve the ideal refraction angle relationship where
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there is insignificant transmission through the apertures.
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Fig. 11. Plots of the translation and inversion curves for the four aperture thicknesses em-
ployed which are indicated in the legend. Plots a) and c) correspond to the polychromatic
case whilst plots b) and d) correspond to the monochromatic case at the spectrum mean
energy of 18keV.

We first explain how the numerical results are analysed. As previously discussed, the system
results in a measurement of refraction angle, φ x. In this example we consider the object to have
a circular cross section and so within the support of the object, φ is given by φ = 2δ

√
R2 − x2

where, as usual, overlines are used to denote quantities averaged over the spectrum. Spatial
variation is thus contained within the function which describes the shape of the object. In what
follows, we plot the integrated refraction angle, φ =

∫
φ xdx which enables δ to be determined

since the shape function is known. The integrated refraction angle can be used to obtain an
measurement of integrated phase through multiplication by an effective wavenumber.

Figure 12 shows the integrated refraction angle for the polychromatic ((a) and (c)) and
monochromatic ((b) and (d)) cases and using the TC refraction angle retrieval ((a) and (b))
and the approximate linear method Eq. (26) ((c) and (d)). The integrated refraction angle, cal-
culated analytically, at the spectrum mean energy has also been plotted. We note that only
in case b) do all integrated refraction angles match the analytic profile. Agreement should be
expected in this case since it has not been necessary to assume the existence of an effective
energy for the spectrum in order to obtain Eq. (10). In both c) and d), the approximate linear
method results in a large variation between measured integrated refraction angle for the dif-
ferent aperture thicknesses, although we note that in the monochromatic case, the solution is
very close to the analytic case for the 80μm thick apertures. Both the approximate linear cases
exhibit wide variation simply because the method doesn’t take into account X-ray transmission
through the apertures. The polychromatic case returns a generally greater phase change than
the monochromatic simply because the average value of δ across the spectrum is greater than
δ at the mean energy of the spectrum. The plots in Fig. 12(a), however, demonstrate the main
result of this paper. Here we see a much smaller variation in the integrated refraction angle as
aperture thickness varies. This shows that the TC method reduces the impact of the system’s
spectral properties on the measured refraction angle. In order to more thoroughly analyse the
results plotted in a) we present the values of δ measured for each aperture thickness in Table 1.
We expect the predicted value of δ to converge towards the value of δ averaged over the spec-
trum, ie, δave =

∫
δ (E)σ(E)dE = 1.16×10−6. Whilst this value is within the range of predicted

values of δ , the values do not converge to this value. This error arises due to the approximation
that the system has an effective energy made in order to simplify Eq. (9) to Eq. (10).
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Fig. 12. Plots of integrated refraction angle across the simulated PEEK fiber of 100μm
radius. Plot a) and c) correspond to the polychromatic case whilst plots b) and d) correspond
to the monochromatic case at the spectrum mean energy of 18keV. Plots a) and b) have been
obtained using the TC inversion technique whilst plots c) and d) have been obtained using
the linear approximation. The analytic sample phase at the spectrum mean energy has been
plotted on all axes for reference.

Table 1. Numerically determined values of δ for four different values of aperture gold
thickness. Eδ is the photon energy at which PEEK has δ = δ .

Gold thickness (μm) δ ×106 Eδ (keV)
10 1.28 15.0
20 1.17 15.7
40 1.12 16.0
80 1.10 16.2

5. Conclusions

We have demonstrated a new quantitative technique for measuring X-ray refraction angle and
absorption using the coded aperture method with a laboratory source. The quantitative tech-
nique requires knowledge of only the so-called translation curve which is obtained by recording
the detector signal as the pre-sample aperture is translated relative to the detector aperture. The
translation curve is measured routinely when the system is aligned.

We showed that the new technique is more accurate for measuring larger refraction angles
and also is more accurate in the case where the apertures are only partially absorbing. We
compared the new technique with that previously used which assumed that the apertures were
perfectly absorbing. We showed that the new method is significantly more accurate in the case
of partially absorbing apertures. Finally, we showed that the proposed technique measures an
average value of refraction angle based upon the sample’s value of δ averaged over the spec-
trum, rather than, for example, measuring δ at the average energy of the spectrum.

Acknowledgments

This work was funded by the UK Engineering and Physical Sciences Research Council
(EP/G004250/1 and EP/I021884/1). P.M. is currently supported by a Discovery Early Career
Research Award from the Australian Research Council (DE120101331).

#181390 - $15.00 USD Received 7 Dec 2012; revised 11 Mar 2013; accepted 16 Mar 2013; published 30 Apr 2013
(C) 2013 OSA 6 May 2013 | Vol. 21,  No. 9 | DOI:10.1364/OE.21.011187 | OPTICS EXPRESS  11201




