MIRL Report No. 88

Characterization and Washability Studies of Raw Coal from the Little Tonzona Field, Alaska

by

P. Dharma Rao Daniel E. Walsh Mineral Industry Research Laboratory University of Alaska Fairbanks Fairbanks, Alaska 99775-1180

> Norm Phillips, Jr. Kathy (Goff) Charlie Doyon, Ltd. 201 1st Street Fairbanks, Alaska 99701

Library of Congress Cataloging in Publication Data

Library of Congress Catalog Card Number: 91-61359 ISBN 0-911043-11-X

March, 1991

Published by

Mineral Industry Research Laboratory 212 O'Neill Building University of Alaska Fairbanks Fairbanks, Alaska 99775-1180

> Doyon, Limited 201 1st Street Fairbanks, Alaska 99701

TABLE OF CONTENTS

Acknowledgements	iv
Introduction	1
Geology	4
Laboratory Procedures	7
References Cited	12
Table 1 Overview	13
Tables 2-7 Overview	17
Tables 8-13 Overview	45
Tables 14-19 Overview	51
Tables 20-25 Overview	60
Tables 26-31 Overview	67
Tables 32-33 Overview	118

LIST OF FIGURES

Figure

Table

1.	Coal Outcrop on West Bank of the Little Tonzona River. Aerial View (a) and Ground Level (b)	1
2.	Coal Resources of Alaska	5
3.	Location Map of Little Tonzona Coal Field (1)	6
4.	Generalized Geological Map; Little Tonzona Coal Field (1,2,10)	8
5.	Flowsheet of Procedures Used in Processing Coal Samples	10

LIST OF TABLES

<u>Page</u>

Page

I.	Analyses of Little Tonzona Coal Samples Taken in 1981 (2)	3
11.	Comparative Analyses of Alaskan Tertiary Coals and the Little Tonzona Coal (3)	3
1.	List of Coal Samples Taken for Analyses	14
2.	Proximate and Ultimate Analyses of Raw Coals, Drill Hole No. 1	18

Page

LIST OF TABLES

3.	Proximate and Ultimate Analyses of Raw Coals, Drill Hole No. 2	24
4.	Proximate and Ultimate Analyses of Raw Coals, Drill Hole No. 3	28
δ.	Proximate and Ultimate Analyses of Raw Coals, Drill Hole No. 4	32
6.	Proximate and Ultimate Analyses of Raw Coals, Drill Hole No. 5	35
7.	Proximate and Ultimate Analyses of Raw Coals, Drill Hole No. 6	38
8.	Hardgrove Grindability Index of Raw Coals, Drill Hole No. 1	46
9.	Hardgrove Grindability Index of Raw Coals, Drill Hole No. 2	47
10.	Hardgrove Grindability Index of Raw Coals, Drill Hole No. 3	48
11.	Hardgrove Grindability Index of Raw Coals, Drill Hole No. 4	49
12.	Hardgrove Grindability Index of Raw Coals, Drill Hole No. 5	49
13.	Hardgrove Grindability Index of Raw Coals, Drill Hole No. 6	50
14.	Concentration of Major Elements in Coal Ash, Percent, Drill Hole No. 1	52
15.	Concentration of Major Elements in Coal Ash, Percent, Drill Hole No. 2	54
16.	Concentration of Major Elements in Coal Ash, Percent, Drill Hole No. 3	55
17.	Concentration of Major Elements in Coal Ash, Percent, Drill Hole No. 4	56
18.	Concentration of Major Elements in Coal Asb, Percent, Drill Hole No. 5	57
1 9 .	Concentration of Major Elements in Coal Ash, Percent, Drill Hole No. 6	58
20.	Fusibility of Ash, ^o F, Drill Hole No. 1	61
21.	Fusibility of Ash, °F, Drill Hole No. 2	62
22.	Fusibility of Ash, °F, Drill Hole No. 3	63
23.	Fusibility of Ash, °F, Drill Hole No. 4	64
24.	Fusibility of Ash, ^o F, Drill Hole No. 5	65
25.	Fusibility of Ash, °F, Drill Hole No. 6	66
26.	Washability Analyses of 3/4 Inch x 100 Mesh Coals, Drill Hole No. 1	68
27.	Washability Analyses of 3/4 Inch x 100 Mesh Coals, Drill Hole No. 2	79

<u>Table</u>

LIST OF TABLES

<u>Table</u>		Page
28.	Washability Analyses of 3/4 Inch x 100 Mesh Coals, Drill Hole No. 3	86
29.	Washability Analyses of 3/4 Inch x 100 Mesh Coals, Drill Hole No. 4	94
30.	Washability Analyses of 3/4 Inch x 100 Mesh Coals, Drill Hole No. 5	100
31.	Washability Analyses of 3/4 Inch x 100 Mesh Coals, Drill Hole No. 6	105
32.	Reflectance Rank Distribution of Ulminite, Drill Hole No. 1	119
33.	Distribution of Macerals, Drill Hole No. 1	120

Page

ACKNOWLEDGMENTS

This study was conducted under the sponsorship of McIntyre Mines Ltd. The following individuals helped in the laboratory analyses and test work;

- John Bennet
- Barbara Cook
- Juliet Cruz
- Ed Ellwanger
- Dan Fair
- Dan McCoy
- Jane Smith
- Chris Stark

Introduction

Coal occurs in an isolated exposure of Tertiary, non-marine sedimentary rocks along the southwest bank of the Little Tonzona River, near Farewell, Alaska. The Little Tonzona River coal field is located approximately 150 air miles northwest of Anchorage, Alaska, and 210 air miles southwest of Fairbanks, Alaska; near the boundaries of Denali National Park. The Alaska Railroad and the Parks Highway are approximately 100 air miles from the coal field at their nearest point. The village of McGrath, on the Kuskokwim River, is located approximately 90 miles to the west (1).

An impressive outcrop of coal-bearing Tertiary sediments is exposed for a distance of more than 275 feet on the west bank of the Little Tonzona River (Figure 1). More than seven coal beds, ranging in thickness from 3 feet to 30 feet, with a cumulative thickness of over 134 feet, are interbedded with clay beds up to 40 feet thick. The clays are fine textured, extremely plastic, light grey to nearly white bentonites and/or tonsteins.

Doyon Ltd., an ANSCA Native Corporation, holds land selections covering the inferred limits of the coal field. During 1980 and 1981, Doyon entered into exploration agreements with McIntyre Mines Inc. of Nevada. The two season exploration program took place from June 1, 1980 through August 22, 1980 and from May 27, 1981 through August 22, 1981. During the 1980 field season, geologic mapping, prospecting, stratigraphy, trenching and bulk sampling of all coal outcrops were performed. This produced a total of 34 samples, which were taken for analysis. In 1981, six diamond drill holes with a cumulative length of 2,935 feet were completed. Core recovery was close to 90%, and a total of 147 coal samples, which represented 802.8 cumulative feet of coal, were taken for analysis.

The exploration program confirmed a strike length of over 3 miles to the southwest from the main river bank exposure. Northward extension is unknown at this time. Although outcrop exposure is poor away from the river banks, burnout zones resulting from past coal bed fires form a resistant, recognizable on strike feature in the relatively unindurated Tertiary sequence. The appearance of these burnout zones along strike is often the only surface indication of the buried coal-bearing strata. Well preserved plant fossil impressions in the baked clays date the deposit as probable Miocene (2).

Coal characterization and washability studies were performed on all coal samples by the Mineral Industry Research Laboratory of the University of Alaska Fairbanks. This work was conducted under the direction of Dr. P.D. Rao, Professor of Coal Technology.

The Little The Little archorage, of Denali ly 100 air

a distance More than Notecor of e rocared

(i) particulation there is nearly white rentouries and/or tenatural despire Left, an A.W.M.A. Kaira O(a) tradicul helds land selections on turns if a dilation of the read destination (2000 and 1912). Doyon so ared to be explored to one with Molaigne Miles line of Hereday. The two season exploration stages in discontent to 2000 the of Armed 22 1000 and free two season exploration stages in the second state. In the second season exploration of the second season of the second stages in the second state. In the second season exploration of the second season is set for a second second second state.

r e constr les rottin r lind s me form r

in atta Long (1997) Long (1997) State (1997) State (1997)

ed in some she domential abased of the Western States and States and the second of the second states and the second s

Figure 1: Coal outcrop on the west bank of the Little Tonzona River. Aerial view (a) and from ground level (b). In the river bank exposure, the coal rank tends to decline up-section, to the northwest, as the coal beds become younger. The younger beds are thinner and more lignitic. Analyses averages for the 147 samples taken in 1981 are shown in Table I.

	Besis							
	Equilibriu	m Moisture	Dry, A	Ish Free				
Property	Average	Range	Average	Range				
Moisture %	31.73	20.15 - 37.17						
Volatile Matter %	32.40	22.81 - 39.76	56.00	50.44 - 64.31				
Fixed Carbon %	25.71	14.24 - 47.35	43.86	39.06 - 67.47				
Ash %	10.31	3.52 - 36.31						
Heating Value Btu/lb	6,707	3,671 - 7,601	11,574	10,295 - 12,117				
Total Sulfur %	1.04	0.28 - 1.85	2.47	0.83 - 3.36				

Table I. Analyses of Little Tonzona Coal Samples Taken in 1981 (2),

Little Tonzona coal is ranked as subbituminous-C. The 147 coal samples had an average heating value of 6,707 Btu/lb and averages of 31.73% moisture, 32.40% volatile matter, 25.71% fixed carbon, 10.31% ash and 1.04% total sulfur on an equilibrium bed moisture basis. Although the sulfur content of Little Tonzona coal is high for an Alaskan Tertiary coal, it is similar in other ways to other coals of the same age and rank from within the state (Table II).

Table II. Comparative Analyses of Alaskan Tertiary Coals and the Little Tonzona Coal (3).

<u>Coal Field</u>	Moisture <u>%</u>	Volatile <u>Matter %</u>	Fixed <u>Carbon %</u>	Ash %	Heating Value <u>Btu/lb</u>	Total <u>Sulfur %</u>
Herendeen Bay	5.46	25.50	27.83	41.21	6,897	1.81
Chicago Creek	30.70	29.62	29.22	10.46	6,643	0.60
Nenana	26.39	33.25	28.27	12.08	7,058	0.26
Yentna	23.07	34.76	29.13	12.55	7,800	0.16
Unalakleet	19.84	41.45	29.73	8.98	8,741	0.44
Beluga	27.59	34.87	31.57	5.97	8,051	0.12
Little Tonzona	31.73	32.40	25.71	10.31	6,707	1,04

Alaska's 5.5 trillion tons of estimated coal resources comprise about half the United States' coal resources (4). Each one trillion tons of subbituminous coal contains the energy equivalent of approximately 5,500 years of Alyeska Pipeline production (@ 1.5 MM barrels/day). The locations of the major coal regions in Alaska are shown in Figure 2. The largest of Alaska's coal basins, estimated to be over 4 trillion tons, is the Northern Alaska Basin. It consists of a tremendous subbituminous coal deposit, which in areas overlies a rich bituminous deposit (4). The Cook Inlet-Susitna Basin, which is composed mainly of low-rank coals, may contain over a trillion tons (4). The remainder of the coal basins are small by Alaskan standards but still contain billions of tons of reserves. As an examples, the Nenana Basin, which boasts Alaska's only operating mine, the Usibelli Coal Mine, has "only" about 10 billion tons of proven reserves (4).

The outstanding feature of almost all Alaskan coals, regardless of rank, is their extremely low sulfur content (5). The majority of the Alaskan coals are already compliance coals. Many of the low-rank coals have sulfur levels below 0.2%. The latest three year average for the Usibelli subbituminous coal was 0.17%. In addition, many of the low rank coals (LRCs) have moderate ash levels and reactivities typically an order of magnitude higher than their bituminous counterparts.

Major reasons for the limited use of Alaskan coals include low population density, distance from high energy use areas, abundant more convenient energy forms (gas and oil) and mining and transportation costs. In addition, the low sulfur, highly reactive LRCs are plagued with the high moisture inherent to their rank. This has restricted the worldwide usage of most LRCs to mine mouth power generation. However, new technologies could expand international use of LRCs and provide a valuable Alaskan export to nations of the Pacific Rim.

The majority of this report consists of the characterization data for the 147 Little Tonzona coal samples taken from diamond drilling during the 1981 exploration program. A brief description of the Little Tonzona coal deposit geology in the next section is followed by the detailed protocol for coal characterization procedures.

Geology

Coal bearing rocks of the Farewell area were first mentioned in the literature in 1911, by Alfred H. Brooks of the U.S. Geological Survey, who traversed the areas in 1902 (6). The impressive coal exposure on the west bank of the Little Tonzona River (Figure 3) was first examined closely by Gary Player, a consulting geologist from Anchorage, Alaska, in August of 1970 (7). In August 1976, the outcrop area was revisited and sampled

Figure 2. Coal resources of Alaska.

S

by Player in conjunction with geologists of C.C. Hawley and Associates, Inc., contractor to the U.S. Bureau of Mines, during a study of mineral resources of Federal D-2 lands being considered for inclusion in Denali National Park (7). In August of 1977, the U.S. Geological Survey performed a reconnaissance survey for coal in the Minchumina Basin and Farewell vicinity. The Little Tonzona coal outcrop was again visited and sampled (8). During the same summer, the deposit was examined by WGM Exploration, Inc., as part of a Doyon Ltd. project. A coal sample was collected 2.3 miles southwest along strike from the main river outcrop (9).

The Little Tonzona coal basin has a strike length of over 3 miles, from the river bank exposure, to the southwest (Figure 4). The coal beds range from 3 to 30 feet in thickness and are interbedded with clay seams. Dips as steep as 75° may be found, but the general range is between 45° and 70° NW. Up to 8 feet of glacial gravel deposits and a thin soil unconformably overlie the main coal exposure. Permafrost is present in the area but is discontinuous, depending upon the slope exposure (1,2).

The coal bearing units are truncated on the southern end by a NE - SW trending strand of the Farewell Fault, the major structural influence of the area. Although the coal and clay beds in contact with the fault trace are crushed and deformed, up-section to the north, away from the fault, the coal is nearly undisturbed, except for the steep dips. The fault trace apparently separates Tertiary sediments on the north side from Paleozoic limestones on the south side. Fault movement appears to have been south-side-up dip slip with a right-lateral component. This movement is the apparent cause of the severe dips where Tertiary strate abut the fault trace. These steep surface dips apparently flatten to the north at fairly shallow depth, according to drilling indications (1,2,11).

Laboratory Procedures

Coal characterization and washability tests were performed on all of the drill core samples submitted to MIRL in 1981. Characterization included proximate and ultimate analyses, Hardgrove grindability index tests, analyses of major oxides in the coal ash and ash fusibility measurements. Washability analyses were performed using representative splits of 3/4-inch x 100-mesh (0.15 mm) coal at 1.30, 1.40 and 1.60 specific gravities. All analyses were performed according to ASTM standards and procedures.

Coal samples were received at the laboratory in tightly sealed plastic containers and some samples showed visible surface moisture on the coal. Sample weights ranged from 4.5-30 pounds.

Figure 4. Generalized Geologic Map, Little Tonzona Coal Field. (1,2,10)

\$

Figure 5 is a flowsheet of procedures used in the laboratory for processing the samples. The cores were first crushed in a jaw crusher to produce a minus 3/4 inch product, then riffled. Half the sample was screened at 100 mesh, and the 3/4 inch x 100 mesh fractions were used for washability studies. The other half of the sample was further crushed to minus 3/8 inch in a jaw crusher. 500 g samples were split out of the -3/8 inch coal and air dried for Hardgrove grindability index (HGI) tests. Moisture content was determined for the samples used for HGI determination. 5 pound samples were split out of the -3/8 inch coal analyses, then crushed to minus 14 mesh (1.41 mm). From the minus 14 mesh coal, samples were split for equilibrium moisture determination and 500 g samples were split for air dry loss determination and further pulverization to 60 mesh (0.25 mm). The pulverized coals were used for proximate and ultimate analyses. Coal samples combusted at 750°C yielded ashes, which were used for ash fusibility measurements and for determination of major oxides in the ash by x-ray fluorescence spectrometry.

Float-sink separations were made in 15 gallon containers at 1.30, 1.40 and 1.60 specific gravities using perchlorethylene - naptha mixtures as heavy liquid. The floatsink products were air dried, weighed, crushed, and pulverized. They were analysed for moistures, ash, heating value, total sulfur and pyritic sulfur. All weights and analyses were calculated on a moisture free basis.

Tables 2 through 7 show proximate and ultimate analyses of raw coals for the six drill holes. The analyses are presented on 1) equilibrium bed moisture basis, 2) as received basis, 3) moisture free basis and 4) moisture and ash free basis. Most samples had higher as received moisture than equilibrium moisture. The difference was the extraneous surface moisture introduced during drilling. Coal, as mined, would be expected to have moisture levels comparable to equilibrium moisture.

HGI values are presented in Tables 8 through 13. The distribution of major oxides in the coal ashes are shown in Tables 14-19 and the ash fusion temperatures are presented in Table 20 through 25. HGI averages within drill holes ranged from 30 to 38 with an overall average for all 147 samples of 35. These values indicate that raw coal from the Little Tonzona field would be relatively hard to grind or pulverize. The low sodium content of Little Tonzona coal ash indicates its low boiler fouling propensity. Likewise, the high calcium levels would also reduce the boiler fowling propensity of sulfur. The high calcium content would likely fix much of the sulfur in the ash and reduce sulfur emissions. Calculations using emperical formulas show that the ash will have intermediate slagging characteristics. This was also verified from the ash fusibility data.

Figure 5: Flowsheet of Procedures Used in Processing Samples.

Tables 26 through 31 show washability data for all samples from the six drill holes. The tables show weight percent distribution, ash, heating value, pyritic sulfur, and total sulfur on a moisture free basis for the various gravimetric fractions as well as values for cumulated floats. The quality of the floats at any of the three densities can be read directly from the tables. The tables also show cumulative sink weight percent and ash content that may be expected at any of the three densities.

Finally, Tables 32 and 33 present petrologic data for certain samples from the drilling program. Table 32 gives ulminite reflectance rank distribution data and Table 33 presents coal maceral distribution for samples from drill hole no. 1.

Each set of tables is preceded by a table(s) overview, which presents a summary of data contained within a group of tables. This should facilitate the reader's rapid comprehension of tabulated data.

References Cited

- 1) Thorpe, W.H., 1981, Tonzona Project Summary Report for 1980. Doyon Limited unpub. report.
- 2) Thorpe, W.H., 1982, Tonzona Project Summary Report for 1981. Doyon Limited unpub. report.
- Rao, P.D. and Wolff, E.N., 1982, Characterization and Evaluation of Washability of Alaskan Coals. U.S. Dept. of Energy Contract DE-FG22-78ET13350, Final Technical Report for Phase IV, Aug. 1, 1980 - Jan. 31, 1982.
- 4) Merritt, R.D. and Hawley, C.C., Map of Alaska's coal Resources. Alaska DNR Special Report 37, 1986.
- Merritt, R.D., 1987, Alaska's Low-Sulfur Coal Resources May be World's Largest.
 J. Coal Quality, pp. 104-108.
- Brooks, A.H., 1911, The Mount McKinley Region, Alaska: U.S. Geol. Survey Professional Paper 70, 234 p.
- Player, Gary F., 1977, The Little Tonzona Coal Bed Near Farewell, Alaska. An Important Extension of the Coal Fields North of the Alaska Range.
- Sloan, E.G., Shearer, G.B., Eason, J.E. and Almguist, C.L., 1980, Reconnaissance Survey for Coal Near Farewell, Alaska. Focus on Alaska's Coal '80, MIRL Report No. 50, University of Alaska Fairbanks.
- Andrews, T., Kirsten, D., and Rishel, J., W.G.M. Inc., 1978, Coal Occurrence on the Little Tonzona River, Block 11. Annual Progress Report, Doyon Project, Vol. 17.
- 10) Goff, K.M., 1980, The Structural Relationship of the Farewell Fault to the Little Tonzona Coal Basin, Unpublished Report.
- Goff, K.M. 1987, The Little Tonzona Coal Field (Interior Alaska, Doyon Ltd. Block
 11); Review of Data, Unpublished Report.

Table 1 Overview

Table 1 follows on pages 14 - 16. 147 drill hole samples were taken from 6 drill holes during the 1981 exploration program. Table 1 describes each sample by identifying number, weight in grams, drill hole footage increment, and the cumulative footage of the sample.

Coal samples were received at the laboratory in tightly sealed plastic containers and some samples showed visible surface moisture on the coal. Sample weights ranged from 4.5-30 pounds.

Sample Number	Weight (grams)	Depth (feet)	Length (feet)
	Hole 1	<u>No. 1</u>	
41676	2718	28.5 - 31.0	2.5
41677	2269	48.0 - 50.0	2.3
41678	5085	100.0 - 105.0	5.0
41679	4702	112.5 - 116.0	3.5
41680	5626	116.0 - 121.0	5.0
41681	7466	121.0 - 127.5	6.5
41682	4576	128.9 - 133.9	5.0
41683	4747	133.9 - 138.9	5.0
41684	3246	1 39.9 - 1 42.0	2.1
41685	4612	155.0 - 159.5	4.5
4 1 686	8453	160.0 - 167.5	7.5
41687	2030	170.0 - 172.0	2.0
41688	5832	178.5 - 183.5	5.0
41689	5371	1 83.5 - 1 89.0	5.5
41690	5403	189.0 - 194.0	5.0
41691	5553	194.0 - 199.0	5.0
41692	5112	199.0 - 204.0	5.0
41 6 93	5899	204.0 - 209.3	5.3
41694	4090	209.4 - 213.0	3.6
41695	4491	224.5 - 229.5	5.0
41696	7494	229.5 - 234.5	5.0
41697	5055	234.5 - 239.5	5.0
41698	4169	239.5 - 244.5	5.0
41699	5008	244.5 - 256.0	11.5
41700	4503	259.0 - 263.0	4.0
41701	8101	271.3 - 279.0	7.7
41702	5912	279.3 - 285.0	5.7
41703	2837	328.0 - 333.0	5.0
41704	4637	333.0 - 337.0	4.0
41/05	5922	368.0 - 373.0	5.0
41705	0345	373.0 - 378.5	5.5
41/0/	4828	378.5 - 383.5	5.0
41/08	4350	383.5 - 387.0	3.5
(1800	Hole 1	No. 2	
41709	4403	41.0 - 45.5	4.5
41710	3428	78.0 - 83.5	5.5
41711	5044	83.5 ~ 90.0	6.5
41712	7136	92.0 - 99.5	7.5
41713	5659	109.0 - 115.0	6.0
41/14	7172	115.0 - 124.0	9.0
41/13	5453	124.0 - 129.0	5.0
41/10	5364	129.0 - 134.0	5.0
41/1/	5210	134.0 - 139.0	5.0
41/18 41710	3023	139.0 - 144.0	5.0
41/19	3109	144.0 - 151.0	7.0
41/20	5/94	151.0 - 159.0	8.0
41/21	5392	159,0 ~ 163.0	4.0

Table 1. List of Coal Samples Taken for Analyses

, . 	· · · · · · · · · · · · · · · · · · ·		
Sin Number	Weight (gram i)	Depth (feet)	Length (feet)
41722 41723 41724 41725 41726 41727 41728 41729	3515 4305 -456 2893 2642 2643 4781 3307	-176.5 - 180.5 181.5 - 186.5 186.5 - 192.0 192.0 - 195.5 273.0 - 277.0 277.0 - 282.0 284.0 - 290.0 291.3 - 294.0	4.0 5.0 5.5 3.5 4.0 5.0 6.0 2.7
	lole N	<u>lo. 3</u>	
41730 41731 41732 41733 41734 41735 41736 41737 41738 41737 41738 41739 41740 41741 41742 41743 41744 41745 41744 41745 41746 41747 41748 41749 41750 41826 41827	9997 5838 10816 6539 6306 5341 6410 3879 9238 6842 5068 6533 6146 9165 3304 6142 6577 5579 9161 6521 8829 9020 2701	121.0 - 130.5 $291.5 - 298.0$ $313.0 - 322.0$ $322.0 - 328.0$ $345.0 - 351.5$ $351.5 - 357.5$ $362.5 - 368.5$ $368.5 - 372.0$ $389.0 - 397.0$ $397.0 - 403.0$ $403.0 - 408.0$ $414.0 - 422.0$ $422.0 - 428.0$ $429.0 - 438.0$ $441.5 - 444.5$ $445.0 - 451.5$ $451.5 - 457.0$ $457.0 - 462.0$ $462.0 - 470.0$ $470.0 - 477.5$ $478.5 - 487.5$ $487.5 - 497.3$ $519.0 - 522.0$	9.5 6.5 9.0 6.0 6.0 3.5 8.0 6.0 5.0 8.0 6.0 9.0 3.4 6.5 5.5 5.0 8.0 7.5 9.0 9.8 3.0
41828	9311	529.0 - 539.0	10.0
41829 41830 41831 41832 41833 41834 41835 41836 41837 41838 41839 41840 41841 41842 41843 41843 41844 41845	3978 4310 7163 3045 5779 5172 5831 7106 4617 8442 8366 7528 10975 5036 11475 9763 5848	$\begin{array}{c} 109.5 - 113.5 \\ 117.4 - 121.6 \\ 152.5 - 158.5 \\ 160.8 - 163.8 \\ 174.5 - 179.5 \\ 208.0 - 213.0 \\ 312.0 - 218.5 \\ 229.0 - 235.0 \\ 237.3 - 242.0 \\ 370.0 - 379.5 \\ 379.5 - 387.0 \\ 387.5 - 394.5 \\ 394.5 - 404.5 \\ 404.5 - 409.5 \\ 409.5 - 419.5 \\ 419.5 - 429.3 \\ 430.5 - 436.5 \end{array}$	4.0 4.2 6.0 3.0 5.0 5.5 6.0 4.7 9.5 7.5 7.0 10.0 5.0 10.0 9.8 6.0

Sample Number	Weight (gra	ms)	Depth (feet)	Length (feet)
		Hole No. 5		
41846	4839	AAVACAINI	436 5 - 443 5	70
41847	5204		297.0 - 302.0 -	50
41848	3909		378.5 - 382.0	3.5
41849	4386		400.0 - 404.0	4.0
41850	4669		432.0 - 435.5	3.5
41851	4295		436.0 - 442.0	6.0
41852	5631		442.5 - 448.5	6.0
41853	8838		44 8. 5 - 45 6.5	8.0
41854	12237		469.8 - 481.5	11.7
41855	5232		496.3 - 502.5	6.2
41856	4050		509.0 - 513.5	4.5
41857	5308		514.5 - 521.0	6.5
41858	3109		526.0 - 529.0	3.0
41859	3223		558.5 - 563.0	4.5
		Hole No. 6		
41860	3980		81.5 - 85.5	4.0
41861	4914		85.5 - 90.5	5.0
41862	7501		90.5 - 99.0	8.5
41803	2124		48.5 - 50.5	2.0
41804	5701		198.0 - 203.5	5.5
41000	4224		210.5 - 220.4	3.9
41000	3484		242.5 - 245.5	3.0
41868	5677		209.1 - 292.2	2.5
41869	2495		304.5 - 309.0	3.1
41870	5665		3257.3307	5.0
41871	5405		330 7 - 335 7	5.0
41872	5074		335.7 - 340.2	4 5
41873	8498		343.0 - 350.7	77
41874	2555		380.5 - 383.0	2.5
41875	5435		385.8 - 391.0	5.2
41876	4160		391.0 - 395.0	4.0
41877	5396		418.0 - 423.0	5.0
41878	5182		423.0 - 428.0	5.0
41879	5743		428.0 - 433.0	5.0
41880	6000		433.0 - 438.0	5.0
41881	5403		438.0 - 443.0	5.0
41882	5977		443.0 - 449.0	6.0
41883	2954		450.0 - 452.8	2.8
41884	4102		454.0 - 458.0	4.0
41880	5288		468.8 - 473.2	4.4
41880	4933		4/7.5 - 481.5	4.0
41007	4633 2≰07		480.0 - 491.0	5.0
41880 A1880	5037		491.0 - 490.0	5.0
41890	4799		5015,501.0	2.0
41891	5790		506 5 - 512 0	2.U 5.C
41892	5321		512.0 - 517.0	5.0
41893	4397		517.0 - 521.6	4.6
41894	3502		526.8 - 530.0	3.2
41895	4839		532.0 - 537.0	5.0
41896	5272		537.0 - 542.0	5.0
41897	3627		548.5 - 551.5	3.0

2

:.2

🗲 🖓 ۽ د

.

Tables 2-7 Overview

Table 2-7 follow on pages 18 - 44. They present proximate and ultimate analyses of the raw coals from the six drill holes. The analyses are presented on 1) equilibrium bed moisture basis, 2) as received basis, 3) moisture free basis and 4) moisture and ash free basis. Most samples had higher as received moisture than equilibrium moisture. The difference was the extraneous surface moisture introduced during drilling. Coal, as mined, would be expected to have moisture levels comparable to equilibrium moisture.

Proximate analyses averages, from Tables 2-7, are shown in Table I, page 3, which is reproduced below for the readers convenience. Table I shows a broad range of analytical values. This is due in part to the variation in the nature and percent ash in the coal samples taken from the drilling program.

Coal rank tends to decline up-section, to the northwest, as the coal beds become younger. The younger beds are thinner and more lignific.

	Besis							
	Equilibriun	n Moisture	Dry, A	Ash Free				
Property	Average	Range	Average	Range				
Moisture %	31.73	20.15 - 37.17						
Volatile Matter %	32.40	22.81 - 39.76	56.00	50.44 - 64.31				
Fixed Carbon %	25.71	14.24 - 47.35	43,86	39.06 - 67.47				
Ash %	10.31	3.52 - 36.31						
Heating Value Btu/lb	6,707	3,671 - 7,601	11,574	10,295 - 12,117				
Total Sulfur %	1.04	0.28 - 1.85	2.47	0.83 - 3.36				

Table I. Analyses of Little Tonzona Coal Samples Taken in 1981 (2).

Little Tonzona coal is ranked overall, as subbituminous-C. The 147 coal samples had an average heating value of 6,707 Btu/lb and averages of 31.73% moisture, 32.40% volatile matter, 25.71% fixed carbon, 10.31% ash and 1.04% total sulfur on an equilibrium bed moisture basis. Although the sulfur content of Little Tonzona coal is high for an Alaskan tertiary coal, it is similar in other ways to other coals of the same age and rank from within the state. See Table II, page 3.

Sample		Moisture	Volatile	Fixed	Ash	Heating Value					Sulfu	и %
Number	Basis*	%	Matter %	Carbon %	%	Btu/lb	C %	<u>H %</u>	N %	0%	<u>Pyritic</u>	Total
41676	1 2 3 4	28.64 32.71 _	33.13 31.24 46.42 56.39	25.62 24.16 35.91 43.61	12.61 11.89 17.67	6,679 6,298 9,359 11,368	39.36 37.12 55.16 67.00	6.08 6.37 4.03 4.89	0.56 0.53 0.79 0.96	40.80 43.54 21.52 26.15	0.02 0.03 0.04 0.04	0.59 0.56 0.83 1.00
41677	1 2 3 4	23.40 25.58 _	27.82 27.03 36.32 60.94	17.83 17.32 23.28 39.06	30.95 30.07 40.40 -	4,777 4,641 6,237 10,465	28.61 27.79 37.34 62.66	5.02 5.20 3.14 5.27	0.42 0.41 0.55 0.93	33.83 35.39 17.05 28.58	0.35 0.34 0.46 0.78	1.17 1.13 1.52 2.56
41678	1 2 3 4	27.77 30.20 _	37.11 35.87 51.38 57.45	27.49 26.56 38.06 42.55	7.63 7.37 10.56 –	7,419 7,170 10,272 11,484	43.18 41.73 59.78 66.84	6.50 6.66 4.70 5.26	0.43 0.42 0.60 0.67	41.33 42.93 23.07 25.80	0.04 0.03 0.05 0.06	0.93 0.90 1.29 1.44
41679	1 2 3 4	27.12 27.63 - -	25.94 25.76 35.60 60.04	17.27 17.14 23.68 39.96	29.67 29.47 40.72 -	4,702 4,669 6,452 10,883	28.23 28.03 38.74 65.34	5.32 5.36 3.14 5.30	0.35 0.35 0.49 0.82	35.83 36.20 16.10 27.18	0.05 0.05 0.07 0.12	0.59 0.59 0.81 1.37
41680	1 2 3 4	29.94 30.31 _	33.07 32.90 47.21 57.84	24.11 23.98 34.41 42.16	12.88 12.81 18.38	6,638 6,603 9,474 11,608	38.79 38.58 55.36 67.83	5.99 6.02 3.77 4.62	0.40 0.40 0.57 0.70	41.07 41.33 20.68 25.33	0.07 0.07 0.10 0.12	0.87 0.86 1.24 1.51
41681	1 2 3 4	31.34 32.53 -	35.24 34.63 51.33 56.57	27.06 26.59 39.41 43.43	6.36 6.25 9.26 ~	7,179 7,054 10,456 11,523	42.48 41.74 61.87 68.19	6.55 6.63 4.43 4.88	0.50 0.49 0.72 0.79	43.28 44.07 22.50 24.79	0.04 0.04 0.05 0.06	0.84 0.83 1.22 1.35

Table 2. Proximate and Ultimate Analyses of Raw Coals, Drill Hole No. 1

*Basis: 1 Equilibrium Moisture 2 As Received

3 Moisture Free

4 Moisture and Ash Free

Sample Number	Basis*	Moisture %	Volatile Matter %	Fixed Carbon %	Ash %	Heating Value Btu/lb	C.%	H_%	N %	0. %	Sulfı Pyritic	ır % <u>Total</u>
41682	1 2 3 4	29.32 30.35 _ _	34.48 33.97 48.78 57.57	25.40 25.04 35.94 42.43	10.80 10.64 15.28	6,896 6,796 9,757 11,516	40.28 39.70 56.99 67.27	6.28 6.35 4.24 5.01	0.46 0.45 0.65 0.77	41.03 41.73 21.21 25.03	0.09 0.09 0.13 0.15	1.15 1.13 1.63 1.92
41683	1 2 3 4	28.48 23.55 _	32.89 35.15 45.98 62.20	19.98 21.37 27.95 37.80	18.65 19.93 26.07	5,398 5,770 7,548 10,210	31.74 33.93 44.39 60.04	6.26 5.92 4.30 5.82	0.40 0.42 0.56 0.75	41.80 38.56 23.08 31.22	0.17 0.19 0.24 0.33	1.15 1.23 1.61 2.18
41684	1 2 3 4	29.14 32.03 _	31.58 30.29 44.56 57.57	23.27 22.33 32.85 42.43	16.01 15.35 22.59 -	6,290 6,033 8,877 11,467	36.56 35.07 51.60 66.65	6.23 6.43 4.19 5.41	0.47 0.45 0.66 0.86	39.48 41.49 19.20 24.80	0.16 0.15 0.22 0.29	1.25 1.20 1.76 2.28
41685	1 2 3 4	26.36 29.40 _	29.67 28.44 40.29 57.70	21.75 20.86 29.54 42.30	22.22 21.30 30.17	5,863 5,621 7,962 11,402	33.57 32.18 45.59 65.29	5.70 5.93 3.74 5.35	0.39 0.37 0.53 0.76	37.02 39.16 18.48 26.48	0.15 0.15 0.21 0.30	1.09 1.05 1.49 2.13
41686	1 2 3 4	31.18 32.91	32.79 31.97 47.65 57.38	24.36 23.74 35.39 42.62	11.67 11.38 16.96	6,675 6,507 9,699 11,680	39.31 38.33 57.13 68.79	6.34 6.46 4.14 4.99	0.48 0.47 0.70 0.84	40.99 42.19 19.33 23.27	0.07 0.07 0.10 0.12	1.20 1.17 1.75 2.10
41687	1 2 3 4	29.12 31.54	33.06 31.94 46.65 56.48	25.49 24.61 35.95 43.52	12.33 11.91 17.40	6,777 6,546 9,562 11,576	39.25 37.91 55.37 67.03	6.38 6.55 4.41 5.34	0.46 0.44 0.64 0.78	39.88 41.55 19.78 23.95	0.45 0.43 0.63 0.77	1.70 1.64 2.40 2.90

*Basis: 1 Equilibrium Moisture 2 As Received

3 Moisture Free 4 Moisture and Ash Free

Sample Number	Basis*	Moisture %	Volatile Matter %	Fixed Carbon_%	Ash %	Heating Value <u>Btu/Ib</u>	C %	H %	N %	0%	Sulfu Pyritic	ur % <u>Total</u>
41688	1 2 3 4	31.65 32.74 -	33.56 33.02 49.10 56.9.	25.39 24.99 37.14 43.07	9.40 9.25 13.76 -	6,804 6,695 9,955 11,543	40.59 39.95 59.39 68.86	6.43 6.51 4.23 4.90	0.50 0.50 0.74 0.85	42.00 42.74 20.31 23.56	0.09 0.09 0.14 0.16	1.07 1.06 1.57 1.82
41689	1 2 3 4	31.23 33.73 	33.52 32.30 48.75 55.17	27.25 26.26 39.61 44.83	8.00 7.71 11.64 -	6,995 6,740 10,171 11,510	41.59 40.08 60.48 68.45	6.56 6.73 4.45 5.04	0.49 0.47 0.71 0.80	42.62 43.30 21.64 24.49	0.03 0.03 0.05 0.06	0.74 0.71 1.07 1.21
41690	1 2 3 4	31.77 32.53 _ _	33.02 32.65 48.39 54.94	27.09 26.78 39.70 45.06	8.13 8.04 11.91 –	6,902 6,825 10,116 11,484	40.71 40.25 59.66 67.73	6.48 6.53 4.28 4.86	0.53 0.53 0.78 0.89	42.86 43.37 21.47 24.36	0.29 0.29 0.43 0.49	1.30 1.28 1.90 2.16
41691	1 2 3 4	30.44 33.03 _	34.67 33.38 49.84 56.34	26.86 25.86 38.61 43.66	8.03 7.73 11.55 -	7,245 6,976 10,416 11,776	42.22 40.65 60.70 68.63	6.57 6.74 4.55 5.14	0.42 0.40 0.60 0.68	41.91 43.65 21.38 24.17	0.20 0.19 0.29 0.33	0.85 0.82 1.22 1.38
41692	1 2 3 4	30.35 32.95 _ _	33.86 32.59 48.61 55.78	26.84 25.84 38.54 44.22	8.95 8.62 12.85 	7,050 6,787 10,122 11,615	41.62 40.06 59.75 68.56	6.39 6.57 4.30 4.94	0.49 0.47 0.71 0.81	41.35 43.13 20.68 23.72	0.06 0.06 0.09 0.10	1.20 1.15 1.72 1.97
41693	1 2 3 4	29.33 32.64 ~	34.42 32.81 48.70 56.44	26.56 25.32 37.59 43.56	9.69 9.23 13.71 -	7,197 6,860 10,184 11,802	41.87 39.90 59.24 68.65	6.38 6.61 4.39 5.08	0.52 0.50 1.74 0.86	40.33 42.60 20.20 23.41	0.10 0.09 0.14 0.16	1.22 1.16 1.72 1.99

*Basis: 1 Equilibrium Moisture 2 As Received 3 Moisture Free

4 Moisture and Ash Free

Sample <u>Number</u>	Basis*	Moisture %	Volatile Matter %	Fixed Carbon %	Ash %	Heating Value Btu/lb	С%	<u>H %</u>	N %	0%	Sulfi Pyritic	и% Тоtal
41694	1 2 3 4	31.80 32.47 _ _	31.28 30.97 45.87 54.90	25.70 25.45 37.68 45.10	11.22 11.11 16.45	6,475 6,412 9,495 11,364	38.66 38.28 56.69 67.85	6.40 6.45 4.16 4.98	0.50 0.49 0.73 0.87	42.04 42.50 20.24 24.22	0.11 0.11 0.16 0.19	1.18 1.17 1.73 2.07
41695	1 2 3 4	31.96 33.99 _	33.33 32.33 48.98 54.94	27.33 26.52 40.18 45.06	7,38 7.16 10.84 -	7,142 6,929 10,497 11,773	42.45 41.19 62.39 69.98	6.63 6.77 4.49 5.04	0.55 0.54 0.82 0.91	41.81 43.22 19.74 22.14	0.08 0.08 0.11 0.13	1.17 1.14 1.72 1.93
41696	1 2 3 4	30.78 33.56 _ ·	32.45 31.15 46.88 55.42	26.10 25.05 37.71 44.58	10.67 10.24 15.41	6,857 6,581 9,906 11,711	40.35 38.73 58.30 68.92	6.27 6.46 4.08 4.82	0.53 0.51 0.77 0.91	41.21 43.13 20.05 23.70	0.06 0.05 0.08 0.10	0.97 0.93 1.40 1.65
41697	1 2 3 4	32.40 33.14 -	32.59 32.24 48.21 54.89	26.79 26.49 39.63 45.11	8.22 8.13 12.16 -	6,903 6,827 10,211 11,624	40.40 39.95 59.76 68.03	6.47 6.52 4.20 4.78	0.50 0.50 0.74 0.85	42.93 43.43 20.94 23.83	0.29 0.28 0.43 0.48	1.49 1.47 2.21 2.51
41698	1 2 3 4	31.51 34.83 _	32.43 30.86 47.35 58.71	22.80 21.69 33.29 41.29	13.26 12.62 19.36	6,620 6,299 9,665 11,985	38.36 36.50 56.00 69.45	6.40 6.63 4.19 5.20	0.51 0.49 0.75 0.93	40.17 42.53 17.79 22.06	0.18 0.17 0.26 0.32	1.31 1.24 1.91 2.36
41699	1 2 3 4	31.84 34.27 _	30.28 29.20 44.43 56.19	23.61 22.77 34.64 43.81	14.27 13.76 20.93 ~	6,341 6,115 9,304 11,766	37.15 35.82 54.50 68.92	6.07 6.25 3.68 4.65	0.63 0.60 0.92 1.16	40.12 41.86 17.38 21.98	0.37 0.35 0.54 0.68	1.77 1.71 2.60 3.29

Sample Number	<u>Basis*</u>	Moisture %	Volatile Matter_%	Fixed Carbon %	Ash %	Heating Value Btu/lb	С%	Н%	N %	O.%	Sulfu Pyritic	r % Total
41700	1 2 3 4	28.36 30.85 -	28.27 27.29 39.47 55.28	22.88 22.08 31.93 44.72	20.49 19.78 28.60 -	5,861 5,657 8,181 11,459	34.59 33.39 48.29 67.63	5.59 5.78 3.37 4.72	0.59 0.57 0.82 1.15	37.32 39.11 16.94 23.73	0.38 0.37 0.54 0.75	1.42 1.37 1.98 2.77
41701	1 2 3 4	32.40 34.00 _	31.90 31.14 47.19 54.59	26.54 25.91 39.26 45.41	9.16 8.95 13.55 -	6,937 6,773 10,262 11,871	40.92 39.95 60.53 70.02	6.38 6.49 4.08 4.72	0.52 0.51 0.77 0.89	41.64 42.76 19.03 22.02	0.22 0.21 0.32 0.37	1.38 1.34 2.03 2.35
41702	1 2 3 4	29.64 31.26 _	30.56 29.85 43.43 56.77	23.27 22.74 33.07 43.23	16.53 16.15 23.50	6,384 6,237 9,073 11,859	37.25 36.39 52.94 69.20	6.09 6.20 3.94 5.15	0.54 0.53 0.77 1.00	38.13 39.29 16.77 21.93	0.37 0.36 0.52 0.68	1.46 1.43 2.08 2.72
41703	1 2 3 4	35.32 37.81 _	29.54 28.40 45.67 51.54	27.77 26.70 42.93 48.46	7.37 7.09 11.40 -	6,867 6,602 10,616 11,982	40.38 38.83 62.43 70.47	6.68 6.85 4.22 4.76	0.45 0.43 0.69 0.78	43.39 45.14 18.58 20.97	0.55 0.53 0.85 0.96	1.73 1.67 2.68 3.02
41704	1 2 3 4	36.12 36.82 	27.08 26.79 42.40 51.43	25.58 25.30 40.04 48.57	11.22 11.09 17.56	6,280 6,211 9,831 11,925	37.45 37.04 58.62 71.11	6.27 6.33 3.49 4.24	0.43 0.43 0.68 0.82	43.73 44.23 18.25 22.13	0.11 0.11 0.18 0.21	0.89 0.89 1.40 1.70
41705	1 2 3 4	35.83 37.81 	29.70 28.79 46.29 50.44	29.20 28.29 45.49 49.56	5.27 5.11 8.22 -	7,033 6,816 10,959 11,941	41.91 40.62 65.32 71.17	6.64 6.78 4.10 4.47	0.44 0.43 0.69 0.75	45.11 46.46 20.70 22.56	0.11 0.11 0.17 0.19	0.62 0.60 0.97 1.06

*Basis: 1 Equilibrium Moisture 2 As Received

3 Moisture Free

4 Moisture and Ash Free

Sample Number	Basis*	Moisture %	Volatile Matter %	Fixed Carbon %	Ash %	Heating Value Btu/lb	<u>C %</u>	H_%	N.%	0%	Sulfu Pyritic	ur % Total
41706	1 2 3 4	36.30 38.24 _	29.62 28.72 46.50 50.28	29.29 28.39 45.98 49.72	4.79 4.65 7.52 -	6,991 6,778 10,975 11,868	41.90 40.62 65.77 71.12	6.68 6.81 4.11 4.44	0.40 0.39 0.62 0.67	45.96 47.26 21.54 23.29	0.01 0.01 0.01 0.02	0.28 0.27 0.44 0.47
41707	1 2 3 4	35.59 37.66	29.77 28.82 46.22 50.43	29.27 28.32 45.44 49.57	5.37 5.20 8.34	6,970 6,746 10,822 11,807	42.10 40.74 65.35 71.30	6.54 6.69 3.97 4.33	0.44 0.43 0.68 0.75	44.96 46.37 20.75 22.62	0.08 0.08 0.12 0.13	0.59 0.57 0.91 0.99
41708	1 2 3 4	32.28 34.02 -	29.61 28.85 43.73 53.98	25.25 24.60 37.28 46.02	12.86 12.53 18.99	6,607 6,437 9,756 12,043	39.85 38.82 58.84 72.63	6.05 6.19 3.61 4.45	0.46 0.45 0.68 0.84	39.64 40.90 16.19 19.99	0.11 0.11 0.16 0.20	1.14 1.11 1.69 2.08

Sampie <u>Number</u>	Basis*	Moisture %	Volatile Matter %	Fixed Carbon %	Ash %	Heating Value Btu/Ib	C_%	Н%	<u>N %</u>	0%	Sulfı Pyritic	ur% <u>Total</u>
41709	1 2 3 4	20.15 30.26 _	22.82 19.93 28.58 32.53	47.35 41.35 59.29 67.47	9.68 8.46 12.13 -	8,110 7,083 10,157 11,558	54.43 47.54 68.17 77.58	3.84 4.77 1.99 2.26	0.91 0.79 1.14 1.29	30.58 37.95 15.87 18.08	0.10 0.09 0.13 0.15	0.56 0.49 0.70 0.79
41710	1 2 3 4	33.54 39.44 -	35.68 32.51 53.68 56.71	27.22 24.81 40.97 43.29	3.56 3.24 5.35	7,166 6,530 10,783 11,392	42.39 38.63 63.79 67.39	6.91 7.29 4.74 5.01	0.33 0.30 0.49 0.52	46.03 49.83 24.45 25.83	0.02 0.01 0.02 0.03	0.79 0.72 1.18 1.25
41711	1 2 3 4	33.05 39.67 _	34.96 31.50 52.22 56.04	27.43 24.72 40.97 43.96	4.56 4.11 6.81 -	7,201 6,489 10,756 11,542	42.79 38.56 63.92 68.59	6.74 7.18 4.54 4.87	0.50 0.45 0.74 0.80	44.51 48.89 22.64 24.30	0.01 0.01 0.01 0.01	0.90 0.81 1.34 1.44
41712	1 2 3 4	34.30 36.39 _	32.94 31.89 50.14 55.86	26.03 25.20 39.61 44.14	6.73 6.52 10.25	6,862 6,644 10,445 11,638	40.00 38.73 60.88 67.83	6.80 63.94 4.50 5.02	0.47 0.46 0.72 0.80	44.84 46.24 21.88 24.38	0.02 0.02 0.04 0.04	1.16 1.12 1.77 1.97
41713	1 2 3 4	35.10 36.40 _	33.11 32.44 51.01 54.48	27.66 27.11 42.62 45.52	4.13 4.05 6.37	7,104 6,961 10,946 11,690	42.15 41.31 64.95 69.37	6.84 6.92 4.48 4.79	0.49 0.48 0.75 0.81	45.43 46.30 21.97 23.47	<0.02 <0.02 <0.02 <0.02	0.95 0.93 1.47 1.57
41714	1 2 3 4	34.18 34.44 _ _	31.27 31.14 47.50 55.72	24.85 24.75 37.76 44.28	9.70 9.67 14.74	6,544 6,518 9,942 11,662	38.78 38.63 58.93 69.12	6.62 6.64 4.25 4.98	0.47 0.47 0.72 0.84	43.46 43.64 19.90 23.35	0.02 0.02 0.03 0.03	0.96 0.96 1.46 1.71

Table 3. Proximate and Ultimate Analyses of Raw Coals, Drill Hole No. 2

*Basis: 1 Equilibrium Moisture 2 As Received

3 Moisture Free

4 Moisture and Ash Free

Sample Number	Basis*	Moisture %	Volatile Matter %	Fixed Carbon %	Ash %	Heating Value Btu/lb	C %	H %	N %	0%	Sulfu Pyritic	ur % <u>Total</u>
41715	1 2 3 4	33.86 35.83 - -	34.07 33.05 51.51 56.16	26.59 25.81 40.21 43.84	5.48 5.31 8.28	7,189 6,975 10,870 11,851	42.21 40.95 63.81 69.57	6.79 6.92 4.54 4.95	0.53 0.52 0.81 0.88	44.09 45.43 21.20 23.11	<0.02 <0.02 <0.02 <0.02 <0.02	0.90 0.87 1.36 1.48
41716	1 2 3 4	34.12 35.95	33.59 32.66 50.99 55.49	26.95 26.20 40.90 44.51	5.34 5.19 8.11 -	7,175 6,976 10,892 11,853	42.05 40.88 63.83 69.46	6.82 6.94 4.56 4.96	0.57 0.56 0.87 0.94	44.59 45.81 21.68 23.59	0.01 0.01 0.01 0.01	0.63 0.61 0.95 1.04
41717	1 2 3 4	33.81 36.10	32.83 31.70 49.61 55.33	26.51 25.59 40.05 44.67	6.85 6.61 10.34 -	6,984 6,742 10,552 11,769	40.96 39.54 61.89 69.03	6.70 6.85 4.40 4.91	0.54 0.52 0.82 0.91	44.06 45.61 21.21 23.65	0.05 0.05 0.08 0.09	0.89 0.86 1.35 1.51
41718	1 2 3 4	30.78 33.85 	31.72 30.31 45.82 57.94	23.03 22.01 33.27 42.06	14.47 13.83 20.91 -	6,471 6,184 9,348 11,819	37.59 35.92 54.30 68.65	6.56 6.77 4.50 5.69	0.52 0.50 0.75 0.95	39.79 41.96 17.99 22.74	0.10 0.10 0.15 0.19	1.07 1.02 1.55 1.96
41719	1 2 3 4	32.16 33.37 -	28.04 27.54 41.33 58.08	20.24 19.88 29.84 41.92	19.56 19.21 28.83	5,670 5,569 8,359 11,744	33.48 32.89 49.36 69.35	6.25 6.34 3.91 5.50	0.51 0.50 0.75 1.05	39.38 40.26 15.94 22.40	0.04 0.04 0.06 0.08	0.82 0.81 1.22 1.71
41720	1 2 3 4	32.97 35.68 ~	30.20 28.98 45.05 56.62	23.13 22.20 34.52 43.38	13.70 13.14 20.43	6,285 6,031 9,376 11,784	37.07 35.57 55.30 69.50	6.43 6.63 4.09 5.15	0.56 0.53 0.83 1.04	41.37 43.29 18.04 22.67	0.06 0.05 0.09 0.11	0.88 0.84 1.31 1.64

Table 3. (continued)

*Basis: 1 Equilibrium Moisture 2 As Received

3 Moisture Free 4 Moisture and Ash Free

Sample Number	Basis*	Moisture %	Volatile <u>Matter %</u>	Fixed Carbon %	Ash %	Heating Value Btu/lb	C %	HÍ %	<u>N_%</u>	0_%	Salfu Pyritic	r % Total
41721	1 2 3 4	37.14 37.98 _	30.50 30.09 48.51 54.27	25.69 25.35 40.88 45.73	6.67 6.58 10.61 -	6,558 6,471 10,433 11,671	38.84 38.32 61.79 69.12	6.90 6.96 4.37 4.89	0.62 0.61 0.99 1.11	45.95 46.53 20.63 23.08	0.10 0.09 0.15 0.17	1.01 1.00 1.61 1.80
41722	1 2 3 4	34.56 36.66 _ _	31.54 30.53 48.20 55.09	25.72 24.89 39.30 44.91	8.18 7.92 12.50	6,777 6,560 10,356 11,835	39.68 38.41 60.64 69.30	6.81 6.95 4.50 5.14	0.54 0.53 0.83 0.95	43.38 44.84 19.39 22.16	0.26 0.25 0.39 0.45	1.40 1.36 2.15 2.45
41723	1 2 3 4	36.83 35.76 _ _	29.86 30.36 47.27 55.38	24.05 24.46 38.07 44.62	9.26 9.42 14.66 -	6,325 6,432 10,013 11,732	36.95 37.57 58.49 68.53	6.79 6.72 4.23 4.96	0.50 0.51 0.79 0.93	44.93 44.19 19.35 22.67	0.32 0.32 0.50 0.59	1.57 1.59 2.48 2.91
41724	1 2 3 4	36.24 36.71 _	31.09 30.86 48.76 54.39	26.07 25.88 40.89 45.61	6.60 6.55 10.35	6,750 6,700 10,586 11,808	39.16 38.87 61.42 68.50	6.87 6.91 4.42 4.93	0.53 0.53 0.83 0.93	45.19 45.50 21.34 22.76	0.31 0.31 0.48 0.54	1.65 1.64 2.58 2.88
41725	1 2 3 4	33.03 33.74 -	28.76 28.46 42.95 56.86	21.83 21.59 32.59 43.14	16.38 16.21 24.46 -	5,992 5,928 8,947 11,845	34.74 34.37 51.87 68.67	6.41 6.46 4.05 5.37	0.56 0.55 0.83 1.10	40.61 41.12 16.84 22.29	0.20 0.19 0.29 0.39	1.30 1.29 1.94 2.57
41726	1 2 3 4	37.17 39.79 - -	30.41 29.14 48.41 53.80	26.12 25.03 41.56 46.20	6.30 6.04 10.03	6,792 6,509 10,810 12,016	39.93 38.27 63.56 70.65	6.97 7.15 4.48 4.98	0.51 0.49 0.81 0.90	45.04 46.86 19.14 21.28	0.18 0.17 0.28 0.31	1.24 1.19 1.98 2.20

Sample Number	Basis*	Moisture %	Volatile Matter_%	Fixed Carbon %	Ash %	Heating Value Btu/lb	C. %	H. %	N %	0%	Sulfı Pyritic	ur % Total
41727	1 2 3 4	34.92 36.74 _	30.27 29.42 46.51 54.32	25.45 24.74 39.11 45.68	9.36 9.10 14.38	6,533 6,351 10,039 11,725	38.42 37.34 59.03 68.95	6.64 6.77 4.21 4.91	0.44 0.43 0.68 0.79	43.88 45.14 19.77 23.09	0.18 0.18 0.28 0.33	1.26 1.22 1.93 2.26
41728	1 2 3 4	32.34 33.38 	29.73 29.27 43.94 56.38	23.00 22.65 33.99 43.62	14.93 14.70 22.07	6,247 6,151 9,234 11,848	36.20 35.64 53.50 68.65	6.34 6.42 4.02 5.16	0.40 0.40 0.60 0.76	40.38 41.12 17.23 22.11	0.30 0.30 0.45 0.58	1.75 1.72 2.58 3.31
41729	1 2 3 4	29.08 31.37 _	27.72 26.82 39.08 57.41	20.56 19.90 29.00 42.59	22.64 21.91 31.92	5,731 5,546 8,082 11,871	33.21 32.14 46.83 68.79	5.82 5.99 3.62 5.32	0.45 0.43 0.63 0.93	36.26 37.95 14.71 21.61	0.47 0.45 0.66 0.96	1.62 1.57 2.29 3.36

Table 3. (continued)

-

Sample	The state	Moisture	Volatile	Fixed	Ash	Heating Value	~ ~		NT <i>A</i>⁴	~~~	Sulfu	и%
Manader	Basis	%	Matter %	Carbon %	%	<u>Btu/10</u>	<u>C %</u>	H_%	N %	<u>Q %</u>	Pyritic	Total
41730	1 2 3 4	32.85 37.66 -	34.74 32.25 51.74 58.84	24.30 22.57 36.19 41.16	8.11 7.52 12.07	6,640 6,164 9,888 11,245	39.22 36.41 58.41 66.43	6.84 7.15 4.71 5.36	0.43 0.39 0.63 0.72	44.87 48.02 23.38 26.59	0.03 0.03 0.04 0.05	0.54 0.50 0.80 0.91
41731	1 2 3 4	30.44 33.18 _	30.31 29.12 43.57 58.10	21,86 20,99 31,42 41,90	17.39 16.71 25.01 -	5,801 5,573 8,340 11,121	33.89 32.55 48.72 64.96	6.32 6.52 4.19 5.59	0.43 0.42 0.62 0.83	40.90 42.79 19.94 26.58	0.14 0.14 0.21 0.28	1.06 1.02 1.52 2.03
41732	1 2 3 4	30.48 33.26	31.95 30.68 45.96 58.73	22.46 21.56 32.31 41.27	15.11 14.50 21.73	6,059 5,817 8,716 11,136	35.15 33.74 50.56 64.60	6.56 6.74 4.52 5.78	0.32 0.31 0.46 0.58	41.82 43.70 21.22 27.10	0.10 0.09 0.14 0.18	1.05 1.01 1.51 1.93
41733	1 2 3 4	31.78 34.14 -	31.29 30.21 45.86 57.64	22.99 22.19 33.71 42.36	13.94 13.46 20.43	6,137 5,925 8,996 11,307	35.77 34.54 52.44 65.90	6.51 6.67 4.32 5.43	0.40 0.39 0.59 0.74	42.47 44.07 20.89 26.25	0.07 0.07 0.10 0.13	0.91 0.88 1.33 1.68
41734	1 2 3 4	33.92 37.82 _	34.48 32.45 52.18 56.10	26.99 25,39 40.84 43.90	4.61 4.34 6.98	7,053 6,637 10,673 11,474	41.35 38.91 62.57 67.26	7.05 7.30 4.93 5.30	0.41 0.39 0.62 0.67	45.57 48.12 23.37 25.13	0.02 0.02 0.03 0.04	1.01 0.95 1.53 1.64
41735	1 2 3 4	33.93 45.93 - -	34.10 27.91 51.61 56.65	26.09 21.35 39.50 43.35	5.88 4.81 8.89 ~	6,942 5,681 10,508 11,533	39.14 32.03 59.24 65.03	6.92 7.70 4.73 5.20	0.42 0.35 0.64 0.70	46.54 54.22 24.84 27.26	0.08 0.06 0.12 0.13	1.09 0.89 1.65 1.81

Table 4. Proximate and Ultimate Analyses of Raw Coals, Drill Hole No. 3

Sampie <u>Number</u>	Basis*	Moisture %	Volatile Matter %	Fixed Carbon_%	Ash %	Heating Value Btu/lb	C.%	_H_%	_ N %	0%	Sulfu Pyritic	ur % Total
41736	1 2 3 4	33.01 36.04 _ _	33.96 32.42 50.70 55.98	26.71 25.50 39.86 44.02	6.32 6.04 9,44 -	6,889 6,578 10,284 11,356	40.52 38.69 60.49 66.80	6.86 7.06 4.73 5.22	0.48 0.46 0.72 0.79	44.88 46.86 23.23 25.65	0.02 0.01 0.02 0.03	0.93 0.89 1.39 1.54
41737	1 2 3 4	33.12 35.62	33.29 32.04 49.77 55.75	26.42 25.43 39.50 44.25	7.17 6.91 10.73	6,893 6,636 10,307 11,545	39.84 38.35 59.58 66.73	6.81 6.98 4.65 5.20	0.41 0.39 0.61 0.68	44.35 46.01 22.33 25.01	0.24 0.23 0.36 0.40	1.41 1.36 2.11 2.36
41738	1 2 3 4	31.45 35.26 _ _	32.38 30.58 47.24 56.01	25.44 24.03 37.11 43.99	10.73 10.13 15.65	6,651 6,281 9,702 11,502	38.90 36.74 56.75 67.28	6.51 6.77 4.37 5.18	0.49 0.46 0.72 0.85	42.35 44.93 21.03 24.93	0.02 0.02 0.04 0.04	1.01 0.96 1.48 1.75
41739	1 2 3 4	32.98 36.74 _	34.83 32.88 51.98 56.55	26.77 25.25 39.93 43.45	5.42 5.12 8.09	7,184 6,781 10,720 11,663	41.97 39.61 62.62 68.13	7.16 7.39 5.18 5.64	0.46 0.44 0.69 0.75	44.20 46.70 22.25 24.21	0.01 0.01 0.01 0.01	0.78 0.74 1.17 1.27
41740	1 2 3 4	32.90 36.08 _	32.26 30.73 48.08 55.47	25.90 24.68 38.60 44.53	8.94 8.51 13.32	6,744 6,424 10,051 11,595	39.67 37.79 59.12 68.20	6.67 6.88 4.45 5.13	0.54 0.52 0.81 0.94	43.28 45.43 20.95 24.17	0.04 0.04 0.06 0.07	0.91 0.86 1.35 1.56
41741	1 2 3 4	31.76 38.05 _	35.34 32.09 51.79 55.94	27.84 25.27 40.79 44.06	5.06 4.59 7.42 -	7,369 6,690 10,799 11,664	43.30 39.31 63.45 68.53	6.79 7.19 4.73 5.11	0.52 0.47 0.76 0.82	43.41 47.59 22.28 24.06	0.07 0.07 0.11 0.11	0.93 0.84 1.36 1.47

Table 4. (continued)

*Basis: 1 Equilibrium Moisture 2 As Received 3 Moisture Free

4 Moisture and Ash Free

Sample		Moisture	Volatile	Fixed	Ash	Heating Value					Sulfi	IF %
Number	Basis*	%	Matter %	Carbon %	%	Btu/lb	C. %	H %	N %	0%	Pyritic .	_Total
41742	1 2 3 4	33.60 38.60 	34.18 31.61 51.48 55.37	27.55 25.47 41.48 44.63	4.67 4.32 7.04	7,234 6,689 10,894 11,718	42.14 38.97 63.47 68.27	7.04 7.35 4.94 5.32	0.50 0.46 0.75 0.81	44.52 47.85 22.11 23.78	0.04 0.04 0.07 0.07	1.13 1.04 1.70 1.82
41743	1 2 3 4	31.85 35.40 _	33.27 31.54 48.82 55.35	26.84 25.43 39.38 44.65	8.04 7.63 11.80 -	7,015 6,649 10,293 11,671	41.49 39.33 60.88 69.02	6.47 6.72 4.27 4.84	0.56 0.53 0.83 0.94	42.29 44.71 20.55 23.30	0.11 0.10 0.16 0.18	1.14 1.08 1.68 1.90
41744	1 2 3 4	31.88 35.79 _	31.41 29.61 46.11 55.81	24.87 23.44 36.51 44.19	11.84 11.16 17.38	6,548 6,172 9,613 11,635	38.55 36.34 56.60 68.50	6.45 6.72 4.23 5.12	0.53 0.50 0.78 0.95	41.46 44.18 19.30 23.36	0.07 0.07 0.11 0.13	1.16 1.10 1.71 2.07
41745	1 2 3 4	34.33 37.08 _	33.69 32.28 51.31 55.72	26.78 25.65 40.77 44.28	5.20 4.99 7.92 -	7,199 6,898 10,963 11,906	42.26 40.49 64.35 69.88	6.85 7.03 4.58 4.97	0.54 0.51 0.82 0.89	44.27 46.13 20.98 22.79	0.02 0.02 0.02 0.03	0.89 0.85 1.36 1.47
41746	1 2 3 4	34.33 36.17 -	32.02 31.12 48.75 54.24	27.01 26.25 41.14 45.76	6.64 6.46 10.11 -	6,953 6,758 10,588 11,779	40.84 39.70 62.19 69.19	6.65 6.77 4.27 4.75	0.53 0.52 0.81 0.90	44.33 45.57 21.07 23.45	0.02 0.02 0.02 0.03	1.01 0.98 1.54 1.71
41747	1 2 3 4	33.38 36.54 	32.83 31.27 49.27 54.64	27.24 25.95 40.90 45.36	6.55 6.24 9.83 -	7,145 6,806 10,726 11,895	42.07 40.07 63.14 70.03	6.67 6.88 4.40 4.88	0.52 0.49 0.78 0.86	43.20 45.36 20.35 22.56	0.07 0.06 0.10 0.11	1.00 0.95 1.50 1.67

*Basis: 1 Equilibrium Moisture 2 As Received 3 Moisture Free

4 Moisture and Ash Free
Sample Number	Basis*	Moisture %	Volatile Matter %	Fixed Carbon_%	Ash %	Heating Value Btu/lb	C_%	H %	N %	0%	Sulfa <u>Pyritic</u>	n % <u>Total</u>
41748	1 2 3 4	32.83 36.77 -	33.07 31.13 49.23 56.50	25.46 23.97 37.91 43.50	8.64 8.13 12.86 -	6,997 6,587 10,417 11,955	38.23 35.98 56.91 65.31	6.65 6.92 4.43 5.09	0.58 0.55 0.86 0.99	44.82 47.40 23.31 26.75	0.05 0.05 0.08 0.09	1.09 1.02 1.62 1.86
41749	1 2 3 4	34.19 38.94 _	33.73 31.29 51.25 56.06	26.44 24.53 40.17 43.94	5.64 5.24 8.58	7,216 6,695 10,965 11,994	42.36 39.30 64.36 70.40	6.83 7.15 4.57 5.00	0.66 0.61 1.00 1.10	43.78 47.03 20.38 22.29	0.03 0.03 0.05 0.05	0.73 0.68 1.11 1.22
41750	1 2 3 4	31.81 34.28 	31.39 30.26 46.04 55.70	24.97 24.06 36.62 44.30	11.83 11.40 17.34	6,671 6,430 9,784 11,836	38.87 37.46 57.00 68.96	6.58 6.74 4.42 5.35	0.59 0.57 0.86 1.04	41.11 42.84 18.86 22.82	0.09 0.09 0.14 0.16	1,03 0.99 1.51 1,83
41826	1 2 3 4	31.78 34.10 -	31.62 30.55 46.36 56.46	24.39 23.55 35.74 43.54	12.21 11.80 17.90	6,644 6,418 9,739 11,863	38.53 37.22 56.48 68.79	6.37 6.53 4.13 5.03	0.54 0.52 0.79 0.96	41.23 42.85 19.07 23.23	0.16 0.15 0.24 0.29	1.11 1.08 1.63 1.99
41827	1 2 3 4	33.49 35.60	29.42 28.49 44.24 54.95	24.12 23.35 36.26 45.05	12.97 12.56 19.50	6,274 6,075 9,433)1,718	36.67 35.51 55.14 68.49	6.49 6.64 4.13 5.13	0.67 0.65 1.00 1.25	41.66 43.16 17.92 22.26	0.58 0.57 0.88 1.09	1.54 1.49 2.31 2.87
41828	1 2 3 4	33.46 35.28 	31.01 30.16 46.61 54.37	26.03 25.32 39.11 45.63	9.50 9.24 14.28	6,917 6,728 10,396 12,127	40.24 39.14 60.47 70.54	6.71 6.83 4.45 5.19	0.59 0.57 0.88 1.03	41.12 42.42 17.14 19.99	0.58 0.56 0.87 1.02	1.85 1.80 2.78 3.24

Table 4. (continued)

*Basis: 1 Equilibrium Moisture 2 As Received 3 Moisture Free

Sample	Desist	Moisture	Volatile	Fixed	Ash	Heating Value	~ ~		NT 0	0 7	Sulfu	и%
Number	Basis*	20	Matter %	Carbon %	10	Btu/Ib	<u>C_%</u>	<u>H</u> .%	N %	0%	Pyritic	Total
41829	1 2 3 4	28.60 35.20	36.63 33.24 51.30 57.76	26.79 24.32 37.52 42.24	7.98 7.24 11.18 -	7,254 6,584 10,160 11,439	42.70 38.76 59.81 67.33	6.56 6.98 4.70 5.29	0.42 0.38 0.59 0.67	41.52 45.89 22.57 25.41	0.01 0.01 0.01 0.01	0.82 0.75 1.15 1.30
41830	1 2 3 4	34.08 38.14 -	34.96 32.81 53.04 57.68	25.66 24.08 38.92 42.32	5.30 4.97 8.04 -	6,929 6,502 10,511 11,430	40.34 37.85 61.19 66.54	6.94 7.20 4.74 5.15	0.40 0.37 0.60 0.65	46.34 48.96 24.38 26.52	0.01 0.01 0.02 0.02	0.69 0.64 1.04 1.13
41831	1 2 3 4	32.49 34.41 _ _	35.85 34.83 53.10 58.13	25.82 25.08 38.24 41.87	5.84 5.68 8.66 -	7,176 6,972 10,630 11,637	41.53 40.35 61.52 67.35	6.86 6.98 4.78 5.23	0.38 0.37 0.57 0.62	44,65 45.91 23,40 25,62	0.02 0.02 0.02 0.03	0.73 0.70 1.07 1.18
41832	1 2 3 4	26.57 31.99 -	32.50 30.10 44.25 56.36	25.16 23.30 34.27 43.64	15.77 14.61 21.48 -	6,561 6,077 8,935 11,379	38.57 35.72 52.53 66.89	5.94 6.32 4.03 5.14	0.45 0.42 0.62 0.78	38.01 41.76 19.64 25.00	0.25 0.23 0.34 0.44	1.26 1.16 1.71 2.18
41833	1 2 3 4	29.61 31.90	30.73 29.73 43.66 55.98	24.17 23.39 34.34 44.02	15.49 14.98 22.00 -	6,151 5,951 8,738 11,203	36.38 35.20 51.68 66.26	5.64 5.82 3.31 4.24	0.40 0.39 0.57 0.73	41.18 42.73 21.14 27.10	0.19 0.19 0.27 0.35	0.91 0.89 1.30 1.67
41834	1 2 3 4	32.90 36.64 _	36.00 33.99 53.65 57.03	27.12 25.61 40.41 42.97	3.98 3.76 5.94 -	7,437 7,023 11,084 11,784	43.24 40.83 64.44 68.51	6.97 7.20 4.90 5.20	0.45 0.42 0.67 0.71	44.84 47.29 23.27 24.74	0.01 0.01 0.01 0.01	0.53 0.50 0.78 0.83

 \sim

Table 5. Proximate and Ultimate Analyses of Raw Coals, Drill Hole No. 4

*Basis: 1 Equilibrium Moisture 2 As Received 3 Moisture Free

Sample <u>Number</u>	Basis*	Moisture %	Volatile Matter %	Fixed Carbon %	Ash %	Heating Value Btu/lb	<u>C %</u>	<u>H %</u>	N %	0.%	Sulfi Pyritic	ır % <u>Total</u>
41835	1 2 3 4	31.85 33.67 _ _	35.72 34.77 52.42 56.54	27.47 26.73 40.30 43.46	4.96 4.83 7.28	7,409 7,211 10,871 11,724	43.65 42.49 64.05 69.08	6.83 6.95 4.80 5.17	0.43 0.42 0.63 0.68	43.46 44.67 22.27 24.02	0.01 0.01 0.01 0.01	0.66 0.64 0.97 1.05
41836	1 2 3 4	33.57 37.10 _	34.04 32.23 51.24 55.03	27.82 26.35 41.89 44.97	4.57 4.32 6.87 –	7,190 6,807 10,823 11,622	42.13 39.89 63.42 68.10	7.03 7.25 4.93 5.30	0.45 0.42 0.67 0.72	45.20 47.52 23.17 24.88	0.03 0.03 0.04 0.05	0.62 0.59 0.93 1.00
41837	1 2 3 4	33.72 35.56 _ _	33.98 33.04 51.27 54.61	28.25 27.46 42.62 45.39	4.05 3.94 6.11 -	7,293 7,091 11,003 11,720	42.93 41.74 64.77 68.98	6.92 7.04 4.75 5.06	0.45 0.43 0.67 0.72	44.95 46.17 22.64 24.11	0.01 0.01 0.01 0.01	0.70 0.68 1.06 1.13
41838	1 2 3 4	34.08 37.44 -	33.95 32.22 51.50 54.41	28.45 27,00 43.16 45.59	3.52 3.34 5.34 -	7,283 6,912 11,048 11,671	42.76 40.58 64.86 68.52	6.99 7.20 4.82 5.09	0.49 0.47 0.75 0.79	45.76 47.95 23.50 24.83	0.01 0.01 0.01 0.01	0.48 0.46 0.73 0.78
41839	1 2 3 4	32.78 36.17 _	32.50 30.86 48.34 55.36	26.20 24.88 38.99 44.64	8.52 8.09 12.67 -	6,943 6,593 10,329 11,828	40.32 38.29 59.98 68.69	6.87 7.09 4.76 5.45	0.50 0.47 0.74 0.85	43.11 45.41 20.82 23.84	0.01 0.01 0.01 0.01	0.69 0.65 1.02 1.17
41840	1 2 3 4	34.56 37.57 	32.75 31.25 50.05 53.83	28.10 26.80 42.93 46.17	4.59 4.38 7.02 -	7,121 6,793 10,881 11,703	41.73 39.81 63.77 68.59	7.01 7.20 4.80 5.16	0.49 0.47 0.76 0.81	45.36 47.36 22.42 24.11	0.01 0.01 0.02 0.02	0.81 0.77 1.23 1.33

Table 5. (continued)

*Basis: 1 Equilibrium Moisture 2 As Received 3 Moisture Free 4 Moisture and Ash Free

Sample Number	Basis*	Moisture <u>%</u>	Volatile Matter_%	Fixed Carbon %	Ash %	Heating Value Btu/lb	<u>C</u> %	<u>H %</u>	N_%	0 %_	Sulfi Pyritic	ur % <u>Total</u>
41841	1 2 3 4	31.03 34.57 _	34.31 32.55 49.75 54.81	28.28 26.83 41.00 45.19	6.38 6.05 9.25 -	7,345 6,968 10,650 11,735	43.21 40.99 62.65 69.03	6.72 6.95 4.70 5.18	0.59 0.56 0.85 0.94	42.51 44.88 21.68 23.88	0.10 0.09 0.14 0.16	0.60 0.57 0.88 0.97
41842	1 2 3 4	33.02 35.17 	32.14 31.11 47.99 55.55	25.72 24.90 38.40 44.45	9.12 8.82 13.61	6,847 6,627 10,222 11,833	40.02 38.73 59.75 69.16	6.66 6.81 4.43 5.13	0.53 0.51 0.79 0.91	43.00 44.47 20.42 23.63	0.02 0.02 0.02 0.03	0.67 0.65 1.00 1.16
41843	1 2 3 4	34.04 36.47 _	33.65 32.41 51.01 54.39	28.21 27,17 42.77 45.61	4.10 3.95 6.22 -	7,496 7,219 11,364 12,117	43.66 42.05 66.19 70.58	6.98 7.13 4.81 5.13	0.50 0.48 0.75 0.80	44.02 45.67 20.90 22.29	0.01 0.01 0.01 0.01	0.74 0.72 1.13 1.20
41844	1 2 3 4	32.81 35.50 _	33.68 32.33 50.13 55.80	26.68 25.61 39.70 44.20	6.83 6.56 10.17	7,222 6,933 10,748 11,965	41.93 40.26 62.41 69.47	6.82 7.00 4.69 5.22	0.55 0.53 0.81 0.91	42.99 44.82 20.61 22.95	0.03 0.03 0.05 0.05	0.88 0.84 1.31 1.45
41845	1 2 3 4	30.55 31.26 _	32.52 32.19 46.82 55.07	26.53 26.26 38.21 44.93	10.40 10.29 14.97	7,057 6,984 10,161 11,950	41.44 41.01 59.67 70.17	6.52 6.56 4.46 5.24	0.52 0.51 0.75 0.88	40.14 40.64 18.73 22.03	0.03 0.03 0.05 0.06	0.99 0.98 1.43 1.68
41846	1 2 3 4	30.83 34.73	34.59 32.64 50.00 54.98	28.31 26.72 40.94 45.02	6.27 5.91 9.06	7,601 7,172 10,988 12,083	44.20 41.71 63.90 70.26	6.80 7.05 4.84 5.32	0.59 0.56 0.86 0.94	41.25 43.93 20.05 22.05	0.02 0.01 0.02 0.03	0.89 0.84 1.29 1.42

i.

Table 5. (continued)

*Basis: 1 Equilibrium Moisture 2 As Received 3 Moisture Free 4 Moisture and Ash Free

Sample <u>Number</u>	Basis*	Moisture %	Volatile Matter_%	Fixed Carbon %	Ash %	Heating Value Btu/lb	C %	Н%	N.%	0%	Sulfu Pyritic	ır % Total
41847	1 2 3 4	31.67 33.48 _	33.82 32.92 49.49 57.94	24.55 23.90 35.93 42.06	9.96 9.70 14.58	6,704 6,527 9,812 11,486	38.70 37.68 56.64 66.31	6.60 6.72 4.47 5.23	0.41 0.40 0.60 0.70	43.37 44.57 22.30 26.11	0.08 0.07 0.11 0.13	0.96 0.94 1.41 1.65
41848	1 2 3 4	32.61 33.21 _	34.53 34.22 51.23 58.05	24.95 24.73 37.03 41.95	7.91 7.84 11.74 -	6,648 6,589 9,865 11,178	38.81 38.47 57.59 65.25	6.63 6.67 4.42 5.01	0.40 0.40 0.60 0.68	45.05 45.44 23.88 27.05	0.20 0.20 0.30 0.34	1.19 1.18 1.77 2.01
41849	1 2 3 4	29.97 31.06 	31.32 30.83 44.72 58.29	22.41 22.06 32.00 41.71	16.30 16.05 23.28 -	5,928 5,836 8,466 11,034	34.75 34.21 49.62 64.67	6.20 6.28 4.07 5.30	0.42 0.42 0.60 0.79	41.42 42.15 21.13 27.55	0.09 0.09 0.13 0.17	0.91 0.90 1.30 1.69
41850	1 2 3 4	33.36 33.86 _	34.01 33.76 51.04 56.77	25.91 25.71 38.87 43.23	6.72 6.67 10.09	6,808 6,757 10,217 11,363	40.24 39.94 60.39 67.16	6.75 6.79 4.53 5.04	0.46 0.46 0.69 0.77	44.93 45.26 22.96 25.54	0.02 0.02 0.02 0.03	0.89 0.88 1.34 1.49
41851	1 2 3 4	34.33 34.88 ~	33.68 33.40 51.29 56.55	25.88 25.66 39.41 43.45	6.11 6.06 9.30 -	6,693 6,637 10,192 11,237	39.43 39.10 60.05 66.21	6.87 6.91 4.61 5.09	0.41 0.41 0.63 0.69	46.47 46.82 24.34 26.83	0.02 0.02 0.02 0.03	0.71 0.70 1.08 1.19
41852	1 2 3 4	32.12 33.63 _	34.59 33.82 50.96 57.18	25.90 25.32 38.15 42.82	7.39 7.23 10.89 ~	6,923 6,769 10,199 11,445	40.55 39.65 59.74 67.03	6.74 6.84 4.63 5.20	0.41 0.40 0.61 0.68	43.85 44.85 22.58 25.33	0.02 0.02 0.04 0.04	1.06 1.04 1.56 1.76

Table 6. Proximate and Ultimate Analyses of Raw Coals, Drill Hole No. 5

*Basis: 1 Equilibrium Moisture 2 As Received 3 Moisture Free

Sample <u>Number</u>	Basis*	Moisture %	Volatile Matter %	Fixed Carbon %	Asb %	Heating Value Btu/lb	С%	Н%	N.%	0%_	Sulfa Pyritic	u % Total
41853	1 2 3 4	28.16 27.27 _	27.62 27.96 38.45 59.87	18.51 18.74 25.77 40.13	25.71 26.03 35.78 -	4,992 5,054 6,948 10,821	29.68 30.05 41.32 64.35	5.71 5.64 3.56 5.54	0.36 0.36 0.50 0.78	37.59 36.95 17.51 27.26	0.11 0.11 0.15 0.23	0.96 0.97 1.33 2.07
41854	1 2 3 4	31.80 32.11 _	31.20 31.06 45.75 58.06	22.55 22.44 33.06 41.94	14.45 14.39 21.19 -	6,134 6,107 8,995 11,413	35.91 35.75 52.66 66.82	6.33 6.36 4.07 5.17	0.39 0.39 0.57 0.73	41.80 42.01 19.87 25.22	0.10 0.10 0.14 0.18	1.11 1.11 1.63 2.07
41855	1 2 3 4	32.94 33.47 _	32.73 32.47 48.80 56.40	25.30 25.10 37.73 43.60	9.03 8.96 13.47	6,676 6,623 9,955 11,504	38.87 38.56 57.96 66.98	6.73 6.77 4.54 5.25	0.48 0.48 0.72 0.83	43.38 43.74 21.07 24.34	0.40 0.39 0.59 0.69	1.51 1.49 2.25 2.60
41856	1 2 3 4	33.04 34.07 	33.35 32.84 49.81 56.04	26.17 25.76 39.07 43.96	7.44 7.33 11.12 -	6,920 6,814 10,335 11,627	40.35 39.73 60.27 67.80	6.75 6.81 4.55 5.12	0.45 0.44 0.67 0.75	43.67 44.37 21.40 24.08	0.38 0.38 0.57 0.64	1.34 1.32 2.00 2.25
41857	1 2 3 4	32.34 33.66 	32.57 31.94 48.14 55.60	26.01 25.50 38.44 44.40	9.08 8.90 13.42 -	6,836 6,703 10,104 11,670	39.86 39.08 58.91 68.04	6.55 6.64 4.34 5.01	0.52 0.51 0.77 0.89	42.61 43.51 20.52 23.70	0.11 0.11 0.16 0.19	1.38 1.36 2.04 2.36
41858	1 2 3 4	31.55 33.43 	33.72 32.79 49.26 54.27	28.40 27.63 41.50 45.73	6.33 6.15 9.24 -	7,169 6,972 10,473 11,539	41.91 40.76 61.23 67.46	6.68 6.80 4.60 5.06	0.46 0.44 0.67 0.74	43.24 44.49 22.23 24.50	0.17 0.17 0.25 0.28	1.39 1.36 2.04 2.24

Table 6. (continued)

*Basis: 1 Equilibrium Moisture 2 As Received 3 Moisture Free 4 Moisture and Ash Free

Table 6. (continued)

Sample Number	Basis*	Moisture %	Volatile Matter %	Fixed Carbon %	Ash %	Heating Value Btu/lb	C %	H %	N %	0%	Sulfu Pyritic	ir % _Total
41859	1 2 3 4	32.74 33.24 	30.87 30.64 45.89 55.98	24.27 24.09 36.09 44.02	12.12 12.03 18.02	6,396 6,349 9,509 11,600	37.50 37.22 55.75 68.01	6.56 6.60 4.31 5.26	0.43 0.42 0.63 0.77	42.09 42.44 17.92 23.61	0.19 0.19 0.28 0.35	1.30 1.29 1.93 2.35

*Basis: 1 Equilibrium Moisture 2 As Received 3 Moisture Free

Sample		Moisture	Volatile	Fixed	Ash	Heating Value					Sulfa	ur %
Number	Basis*	%	Matter %	Carbon %	%	Bin/lb	C %	<u>H %</u>	N %	0%	Pyritic	Total
41860	1 2 3 4	23.78 24.03 _	25.67 25.58 33.67 64.31	14.24 14.20 18.69 35.69	36.31 36.19 47.64	4,212 4,198 5,526 10,553	25.03 24.94 32.83 62.70	5.14 5.16 3.25 6.21	0.33 0.33 0.44 0.83	32.48 32.68 14.91 28.49	0.07 0.07 0.10 0.18	0.71 0.70 0.93 1.77
41861	1 2 3 4	27.98 29.94 _ _	37.95 36.92 52.69 58.99	26.38 25.66 36.68 41.01	7.69 7.48 10.68	7,380 7,179 10,247 11,472	43.00 41.83 59.70 66.84	6.74 6.86 5.02 5.61	0.45 0.44 0.62 0.70	41.16 42.45 22.64 25.36	0.11 0.11 0.16 0.17	0.96 0.94 1.34 1.49
41862	1 2 3 4	27.34 29.25 _	39.76 38.72 54.72 58.35	28.38 27.63 39.06 41.65	4.52 4.40 6.22 -	7,858 7,651 10,814 11,532	45.68 44.48 62.86 67.04	6.86 6.97 5.23 5.58	0.59 0.58 0.82 0.87	41.60 42.84 23.83 25.40	0.02 0.02 0.02 0.02	0.75 0.73 1.04 1.11
41863	1 2 3 4	28.94 31.36 _	34.39 33.22 48.40 59.85	23.07 22.29 32.47 40.15	13.60 13.13 19.13 -	6,529 6,307 9,188 11,362	37.65 36.37 52.98 65.52	6.47 6.63 4.54 5.62	0.51 0.49 0.71 0.88	40.16 41.82 20.37 25.17	0.40 0.39 0.56 0.70	1.61 1.56 2.27 2.81
41864	1 2 3 4	30.35 32.23 	29.47 28.68 42.32 60.21	19.48 18.95 27.96 39.79	20.70 20.14 29.72 -	5,362 5,218 7,699 10,954	31.34 30.49 45.00 64.02	5.74 5.88 3.36 4.78	0.34 0.33 0.49 0.69	40.50 41.82 19.45 27.69	0.46 0.45 0.66 0.94	1.38 1.34 1.98 2.82
41865	1 2 3 4	27.69 21.55 -	25.73 27.92 35.59 62.22	15.63 16.95 21.61 37.78	30.95 33.58 42.80 -	4,398 4,771 6,082 10,633	25.73 27.92 35.59 62.22	5.59 5.11 3.44 6.02	0.37 0.40 0.51 0.88	36.54 32.10 16.52 28.89	0.18 0.20 0.25 0.44	0.82 0.89 1.14 1.99

Table 7. Proximate and Ultimate Analyses of Raw Coals, Drill Hole No. 6

*Basis: 1 Equilibrium Moisture 2 As Received

3 Moisture Free

Sample Number	Basis*	Moisture %	Volatile Matter %	Fixed Carbon %	Ash %	Heating Value Btu/lb	C %	H %	N %	0 %	Sulfu Pyritic	n % Total
41866	1 2 3 4	30.52 28.20 _	22.10 22.84 31.81 61.99	13.56 14.01 19.51 38.01	33.82 34.95 48.68	3,671 3,794 5,284 10,295	22.69 23.45 32.65 63.62	5.58 5.39 3.11 6.06	0.35 0.36 0.50 0.98	37.20 35.47 14.53 28.32	0.03 0.03 0.04 0.08	0.36 0.38 0.53 1.02
41867	1 2 3 4	27.82 23.00 -	32.04 34.18 44.39 59.10	22.18 23.66 30.73 40.90	17.96 19.16 24.88 -	5,990 6,390 8,299 11,048	35.09 37.43 48.61 64.71	6.12 5.78 4.16 5.54	0.46 0.49 0.64 0.85	39.32 36.02 20.25 26.96	0.19 0.20 0.26 0.34	1.05 1.12 1.46 1.94
41868	1 2 3 4	30.18 30.78	35.46 35.16 50.79 58.50	25.16 24.94 36.03 41.50	9.20 9.12 13.18	6,870 6,811 9,839 11,332	39.81 39.46 57.01 65.66	6.70 6.74 4.75 5.48	0.42 0.42 0.61 0.70	42.71 43.11 22.79 26.25	0.11 0.11 0.16 0.19	1.16 1.15 1.66 1.91
41869	1 2 3 4	29.80 31.31 _	33.12 32.40 47.17 57.91	24.07 23.56 34.29 42.09	13.01 12.73 18.54 -	6,410 6,272 9,131 11,209	36.50 35.71 51.99 63.83	6.51 6.61 4.52 5.55	0.46 0.45 0.65 0.80	42.57 43.57 22.95 28.16	0.03 0.03 0.04 0.05	0.95 0.93 1.35 1.66
41870	1 2 3 4	29.46 30.02 _	31.64 31.39 44.86 60.78	20.42 20.26 28.94 39.22	18.48 18.33 26.20 -	5,936 5,889 8,415 11,402	34.67 34.39 49.14 66.59	6.32 6.36 4.29 5.82	0.42 0.41 0.59 0.80	39.10 39.51 18.34 24.85	0.32 0.31 0.45 0.61	1.01 1.00 1.44 1.94
41871	1 2 3 4	30.91 31.48 _	33.94 33.66 49.12 56.69	25.93 25.71 37.53 43.31	9.22 9.15 13.35	6,741 6,685 9,757 11,260	39.81 39.48 57.61 66.49	6.78 6.82 4.81 5.56	0.43 0.42 0.62 0.71	42.90 43.27 22.36 25.80	0.04 0.04 0.05 0.06	0.86 0.86 1.25 1.44

Table 7. (commund)

Ŧ

*Basis: 1 Equilibrium Moisture 2 As Received 3 Moisture Free

Sample	D . 1 t	Moisture	Volatile	Fixed	Ash	Heating Value	~ ~				Sulfa	ur %
NUMBEL	Basis		Matter %	Carbon %	%	Btu/lb	<u>C</u> %	H %	N %	0%	Pyntic	Total
41872	1 2 3 4	29.92 31.43 _	34.62 33.87 49.40 56.03	25.04 24.50 35.73 41.97	10.42 10.20 14.87 -	6,777 6,631 9,670 11,359	39.45 38.60 56.30 66.13	6.67 6.77 4.74 5.57	0.53 0.52 0.75 0.89	42.11 43.10 22.16 26.03	0.02 0.02 0.03 0.04	0.82 0.81 1.18 1.38
41873	1 2 3 4	30.06 31.14 	34.76 34.22 49.70 58.81	24.34 23.97 34.80 41.19	10.84 10.67 15.50 -	6,852 6,747 9,798 11,594	39.72 39.11 56.79 67.21	6.68 6.75 4.74 5.61	0.48 0.47 0.69 0.82	41.18 41.92 20.71 24.50	0.17 0.16 0.24 0.28	1.10 1.08 1.57 1.86
41874	1 2 3 4	30.69 30.78 _ _	33.02 32.98 47.64 56.87	25.04 25.00 36.12 43.13	11.25 11.24 16.24 -	6,642 6,634 9,584 11,441	38.32 38.27 55.29 66.01	6.60 6.61 4.57 5.45	0.45 0.45 0.64 0.77	42.46 42.51 21.93 26.18	0.42 0.42 0.60 0.72	0.92 0.92 1.33 1.59
41875	1 2 3 4	27.15 29.32 -	32.10 31.15 44.07 58.82	22.48 21.80 30.85 41.18	18.27 17.73 25.08	6,192 6,008 8,500 11,345	36.08 35.00 49.52 66.10	6.14 6.29 4.26 5.68	0.50 0.49 0.69 0.92	37.35 38.88 18.17 24.26	0.02 0.02 0.03 0.04	1.66 1.61 2.28 3.04
41876	1 2 3 4	32.33 32.94 _	31.54 31.26 46.61 56.97	23.83 23.61 35.22 43.03	12.30 12.19 18.17 -	6,188 6,132 9,144 11,175	36.05 35.73 53.28 65.11	6.50 6.55 4.26 5.21	0.45 0.45 0.67 0.82	43.27 43.66 21.51 26.28	0.15 0.15 0.22 0.26	1.43 1.42 2.11 2.58
41877	1 2 3 4	31.87 30.09 ~	35.40 36.33 51.96 56.81	26.92 27.62 39.51 43.19	5.81 5.96 8.53 -	7,182 7,369 10,541 11,524	42.04 43.14 61.70 67.45	6.98 6.67 5.01 5.47	0.53 0.55 0.79 0.86	43.61 42.62 22.45 24.56	0.07 0.08 0.11 0.12	1.03 1.06 1.52 1.66

Table 7. (continued)

*Basis: 1 Equilibrium Moisture 2 As Received 3 Moisture Free

Sample <u>Number</u>	Basis*	Moistare %	Volatile Matter %	Fixed Carbon %	Ash %	Heating Value Btu/lb	C %	H %	N %	0%	Sulfu Pyritic	u % Totai
41878	1 2 3 4	32.47 29.64 -	34.17 35.60 50.60 55.55	27.35 28.49 40.49 44.45	6.01 6.27 8.91	7,105 7,402 10,521 11,549	42.01 43.77 62.21 68.29	6.89 6.71 4.83 5.30	0.51 0.53 0.75 0.86	43.81 41.92 22.16 24.33	0.01 0.01 0.01 0.01	0.77 0.80 1.14 1.25
41879	1 2 3 4	31.76 32.42 -	31.51 31.21 46.18 55.70	25.06 24.82 36.73 44.30	11.67 11.55 17.09	6,449 6,386 9,450 11,398	37.89 37.52 55.52 66.97	6.62 6.67 4.50 5.43	0.50 0.49 0.73 0.88	42.39 42.85 20.80 25.08	0.21 0.21 0.31 0.37	0.93 0.92 1.36 1.64
41880	1 2 3 4	31.60 32.84 -	35.40 34.76 51.75 56.65	27.09 26.60 39.61 43.35	5.91 5.80 8.64 -	7,326 7,194 10,711 11,724	42.54 41.77 62.20 68.08	6.97 7.05 5.02 5.49	0.54 0.53 0.79 0.86	43.03 43.86 21.88 23.96	0.07 0.07 0.10 0.11	1.01 0.99 1.47 1.61
41881	1 2 3 4	32.71 32.66 _	30.08 30.10 44.71 55.29	24.33 24.35 36.15 44.71	12.88 12.89 19.14 -	6,173 6,178 9,174 11,346	35.97 36.00 53.46 66.11	6.60 6.59 4.36 5.39	0.47 0.47 0.70 0.87	43.16 43.12 20.97 25.93	0.04 0.04 0.05 0.07	0.92 0.93 1.37 1.70
41882	1 2 3 4	32.92 33.10 _	33.04 32.95 49.26 54.97	27.07 27.00 40.35 45.03	6.97 6.95 10.39 -	6,916 6,896 10,310 11,506	40.19 40.08 59.91 66.86	6.81 6.82 4.66 5.20	0.50 0.50 0.75 0.84	44.18 44.30 22.28 24.85	0.16 0.15 0.23 0.26	1.35 1.35 2.01 2.25
41883	1 2 3 4	32.27 32.40 _	33.67 33.60 49.71 55.36	27.14 27.09 40.07 44.64	6.92 6.91 10.22	7,008 6,995 10,347 11,525	40.59 40.52 59.94 66.76	6.84 6.85 4.77 5.31	0.50 0.50 0.75 0.83	43.96 44.03 22.56 25.14	0.17 0.17 0.26 0.28	1.19 1.19 1.76 1.96

.

Table 7. (continued)

*Basis: 1 Equilibrium Moisture 2 As Received 3 Moisture Free 4 Moisture and Ash Free

Sample <u>Number</u>	Basis*	Moisture %	Volatile Matter %	Fixed Carbon %	Ash %	Heating Value Btu/lb	C %	Ĥ %	N %	0%	Sulfi Pyrit <u>ic</u>	ur % To <u>tal</u>
41884	1 2 3 4	34.36 33.41 _ _	31.36 31.82 47.78 54.12	26.59 26.97 40.51 45.88	7.69 7.80 11.71 -	6,624 6,720 10,092 11,431	38.67 39.23 58.91 66.72	6.83 6.77 4.54 5.15	0.50 0.51 0.77 0.87	45.00 44.36 22.07 25.00	0.12 0.12 0.18 0.21	1.31 1.33 2.00 2.26
41885	1 2 3 4	26.35 26.34 	29.68 29.69 40.30 57.72	21.74 21.74 29.52 42.28	22.23 22.23 30.18	5,772 5,772 7,836 11,224	33.39 33.39 45.33 64.93	5.82 5.82 3.90 5.58	0.50 0.50 0.68 0.98	36.72 36.72 18.09 25.91	0.31 0.31 0.43 0.61	1.34 1.34 1.82 2.60
41886	1 2 3 4	28.35 28.64 _	26.29 26.18 36.69 57.70	19.27 19.19 26.89 42.30	26.09 25.99 36.42 –	4,919 4,899 6,865 10,797	30.00 29.88 41.87 65.86	5.75 5.77 3.59 5.65	0.50 0.50 0.70 1.10	36.19 36.40 15.37 24.16	0.55 0.54 0.76 1.20	1.47 1.46 2.05 3.23
41887	1 2 3 4	32.53 33.80 _	33.16 32.48 49.14 53.86	28.40 27.93 42.10 46.14	5.91 5.79 8.76 –	7,194 7,048 10,663 11,687	42.13 41.28 62.44 68.44	6.83 6.92 4.73 5.18	0.62 0.61 0.92 1.01	43.47 44.38 21.60 23.68	0.07 0.07 0.10 0.11	1.04 1.02 1.55 1.69
41888	1 2 3 4	31.16 33.98	32.84 31.49 47.71 56.11	25.68 24.64 37.30 43.89	10.32 9.89 14.99	6,854 6,574 9,957 11,712	40.00 38.37 58.11 68.36	6.75 6.94 4.75 5.58	0.57 0.55 0.83 0.98	41.57 43.50 20.18 23.74	0.02 0.02 0.03 0.04	0.79 0.75 1.14 1.34
41889	1 2 3 4	32.23 32.87 	33.67 33.35 49.69 55.20	27.33 27.07 40.31 44.80	6.77 6.71 10.00	7,173 7,105 10,584 11,759	41.95 41.56 61.90 68.78	6.86 6.90 4.80 5.33	0.62 0.61 0.91 1.01	42.60 43.03 20.62 22.91	0.18 0.17 0.26 0.29	1.20 1.19 1.77 1.97

Table 7. (continued)

*Basis: 1 Equilibrium Moisture 2 As Received 3 Moisture Free

Sample Number	Basis*	Moisture %	Volatile Matter %	Fixed Carbon %	Ash %	Heating Value Btu/lb	<u>C.%</u>	<u>H_%</u>	N_%	0%_	Sulfu Pyritic	r % Total
41890	1 2 3 4	31.45 32.98 _ _	34.38 33.62 50.16 55.73	27.32 26.71 39.85 44.27	6.85 6.69 9.99 -	7,245 7,084 10,570 11,743	41.52 40.80 60.57 67.30	6.78 6.88 4.76 5.29	0.39 0.38 0.57 0.64	43.48 44.29 22.68 25.19	0.22 0.21 0.32 0.35	0.98 0.96 1.43 1.58
41891	1 2 3 4	31.08 32.19 -	32.97 32.44 47.84 57.21	24.66 24.26 35.78 42.79	11.29 11.11 16.38	6,831 6,721 9,911 11,853	39.36 38.73 57.11 68.30	6.72 6.79 4.70 5.62	0.63 0.62 0.92 1.10	40.61 41.38 18.87 22.56	0.07 0.07 0.11 0.13	1.39 1.37 2.02 2.42
41892	1 2 3 4	31.62 32.33 	32.71 32.37 47.84 55.02	26.74 26.47 39.11 44.98	8.93 8.83 13.05	6,927 6,855 10,130 11,651	39.76 39.35 58.15 66.88	6.75 6.79 4.69 5.39	0.57 0.56 0.83 0.96	43.10 43.59 21.98 25.27	0.03 0.03 0.04 0.05	0.89 0.88 1.30 1.50
41893	1 2 3 4	31.27 32.41 -	30.36 29.85 44.17 56.91	32.99 22.61 33.45 43.09	15.38 15.13 22.38 -	6,245 6,141 9,086 11,706	36.40 35.79 52.96 68.23	6.56 6.64 4.46 5.74	0.58 0.58 0.85 1.10	40.23 41.03 18.12 23.34	0.06 0.06 0.09 0.11	0.85 0.83 1.23 1.59
41894	1 2 3 4	33.24 34.66 _	34.06 33.33 51.02 55.50	27.31 26.73 40.90 44.50	5.39 5.28 8.08 -	7,248 7,093 10,858 11,810	42.44 41.54 63.58 69.16	6.99 7.08 4.90 5.33	0.72 0.70 1.07 1.17	43.72 44.68 21.27 23.14	0.02 0.02 0.03 0.04	0.74 0.72 1.10 1.20
41895	1 2 3 4	32.47 32.88 - -	33.32 33.12 49.35 55.77	26.43 26.27 39.13 44.23	7.78 7.73 11.52	6,952 6,910 10,295 11,635	40.74 40.50 60.33 68.18	6.78 6.81 4.66 5.26	0.67 0.66 0.99 1.12	43.20 43.48 21.27 24.05	0.02 0.02 0.03 0.04	0.83 0.82 1.23 1.39

Table 7. (continued)

*Basis: 1 Equilibrium Moisture 2 As Received

3 Moisture Free

Sample Number	Basis*	Moisture %	Volatile Matter %	Fixed Carbon_%	Ash %	Heating Value Btu/lb	С%)	H_%	N %	0%	Sulfu Pyritic	ur % Total
41896	1 2 3 4	30.78 31.42 	32.07 31.78 46.33 57.33	23.87 23.65 34.49 42.67	13.28 13.15 19.18 -	6,679 6,618 9,649 11,939	38.32 37.97 55.37 68.51	6.60 6.64 4.56 5.64	0.69 0.68 0.99 1.23	40.03 40.49 18.34 22.69	0.16 0.16 0.24 0.29	1.08 1.07 1.56 1.93
41897	1 2 3 4	32.44 33.16 _	31.27 30.94 46.29 55.76	24.81 24.54 36.72 44.24	11.48 11.36 16.99	6,577 6,506 9,734 11,727	37.87 37.47 56.06 67.53	6.59 6.64 4.39 5.29	0.71 0.70 1.05 1.26	41.86 42.36 19.31 23.27	0.52 0.51 0.77 0.92	1.49 1.47 2.20 2.65

Table 7. (continued)

*Basis: 1 Equilibrium Moisture 2 As Received 3 Moisture Free 4 Moisture and Ash Free

Tables 8-13 Overview

Tables 8-13 follow on pages 46 - 50. Hardgrove grindability index (HGI) data from Tables 8-13, are consistent with coal of subbituminous rank. Despite the range of HGI values observed, 23 to 71, approximately 90% of the values lie within an HGI range of 25-47. HGI averages within drill holes ranged from 30 to 38 with an overall average for all 147 samples of 35. These values indicate that raw coal from the Little Tonzona field would be relatively hard to grind i.e., require larger amounts of energy for pulverization.

Sample Number	H.G.I.	Moisture, %
41676	35	10.4
41677	68	5.7
41678	24	14.7
41679	58	8.0
41680	26	13.7
41681	23	16.7
41682	28	11.4
41683	39	14.4
41684	34	10.0
41685	46	11.6
41686	30	17.2
41687	28	13.2
41688	28	13.5
41689	28	12.9
41690	26	16.4
41691	26	14.0
41692	28	13.8
41693	27	14.4
41694	30	12.5
41695	27	1 6.1
41696	32	16.3
41697	26	15.5
41698	34	11.8
41699	39	9.2
41700	49	9.5
41701	31	12.9
41702	42	10.1
41703	31	14.1
41704	52	7.6
41705	36	11.1
41706	38	10.2
41707	40	8.5
41708	44	9.1

Table 8. Hardgrove Grindability Index of Raw Coals, Drill Hole No. 1

Sample Number	H.G.I.	Moisture, %
41709	55	11.1
41710	32	11.9
41711	36	12.0
41712	33	11.7
41713	32	15.2
41714	38	11.8
41715	34	15.1
41716	26	17.5
41717	28	16.8
41718	38	11.9
41719	56	9.7
41720	53	7.9
41721	32	14.3
41722	32	14.8
41723	36	13.4
41724	29	18.0
41725	42	9.6
41726	40	9.7
41727	43	11.0
41728	36	16.6
41729	54	8.43

Table 9. Hardgrove Grindability Index of Raw Coals, Drill Hole No. 2

Sample Number	H.G.I.	Moisture, %
41730	29	21.3
41731	35	16.9
41732	35	19.5
41733	37	10.2
41734	27	19.7
41735	24	17.2
41736	28	16.9
41737	29	13.4
41738	34	14.6
41739	28	16.3
41740	28	19.6
41741	29	15.7
41742	33	15.0
41743	28	17.9
41744	44	9.6
41745	31	17.9
41746	32	14.3
41747	31	16.8
41748	32	15.2
41749	29	18.3
41750	38	12.2
41826	31	17.8
41827	30	19.1
41828	27	19.9

Table 10. Hardgrove Grindability Index of Raw Coals, Drill Hole No. 3

Sample Number	H.G.I.	Moisture, %
41829	28	7.6
41830	30	8.0
41831	32	9.0
41832	46	4.3
41833	44	9.5
41834	33	9,7
41835	32	10.7
41836	32	4.9
41837	33	7.6
41838	37	8.4
41839	37	4.2
41840	32	12.2
41841	36	7.7
41842	38	8.7
41843	35	8.3
41844	31	13.5
41845	35	10.6
41846	36	8.2

Table 11. Hardgrove Grindability Index of Raw Coals, Drill Hole No. 4

_

Table 12. Hardgrove Grindability Index of Raw Coals, Drill Hole No. 5

Sample Number	H.G.I.	Moisture, %
41847	26	19.2
41848	26	9.6
41849	32	14.3
41850	24	16.0
41851	28	10.8
41852	24	19.6
41853	44	11.0
41854	31	17.9
41855	28	16.3
41856	26	13.7
41857	30	15.3
41858	29	12.3
41859	40	11.2

Sample Number	H.G.I.	Moisture, %
41860	60	5.2
41861	29	9.4
41862	25	9.3
41863	34	6.6
41864	28	9.9
41865	35	9,3
41866	61	6.9
41867	34	7.8
41868	27	15.5
41869	32	9.9
41870	39	13.8
41871	32	9.1
41872	29	12.8
41873	25	15.0
41874	30	14.8
41875	36	13.1
41876	38	13.9
41877	27	16.4
41878	35	7.0
41879	36	11.7
41880	31	10.0
41881	41	60
41882	32	13.0
41883	35	5.2
41884	35	7.6
41885	51	7.4
41886	71	7.5
41887	35	6.8
41888	37	6.1
41889	34	7.9
41890	34	6.2
41891	38	7.7
41892	35	9.0
41893	41	5.7
41894	35	7.9
41895	35	6.2
41896	48	9.1
41897	41	6.3

Table 13. Hardgrove Grindability Index of Raw Coals, Drill Hole No. 6

Tables 14-19 Overview

Tables 14-19 follows on pages 52 - 59. Tables 14-19 show the chemical composition of ash of the coal samples. Ash is the product of heating the inorganic constituents during coal combustion. Ash is prepared by heating coal to 750° C in a well ventilated furnace. The resulting residue is analyzed for eight major elements and three minor elements expressed as oxides. The major oxides are SiO₂, Al₂O₃, Fe₂O₃, MgO, CaO, Na₂O, K₂O, and SO₃. Minor oxides are TiO₂, MnO and P₂O₅.

The relationship of ash composition to its behavior during coal combustion operations has been correlated. Emperical equations are available to successfully predict ash behavior from its composition. The low sodium content of Little Tonzona coals indicates their low boiler fouling propensity.

The high calcium content would likely fix much of the sulfur in the ash and reduce sulfur emissions. High calcium levels would also reduce the boiler fowling propensity of the ash due to the coal's sulfur content. Calculations using emperical formulas show that the ash will have intermediate slagging characteristics. This can also be seen from the ash fusibility data (Tables 20-25).

Sample Number	Si02	A1203	Fe203	Mg0	Ca0	Na20	K20	Ti02	\$03	Mn0	P205
41676	44.5	18.0	4.1	2.6	14.5	0.1	1.2	1.0	8.7	0.18	1.5
41677	54.3	26.1	5.5	2.3	4.0	0.1	3.0	1.1	2.4	0.20	0.3
41678	28.9	20.7	5.0	3.4	20.1	0.1	1.0	0.7	15.4	0.16	0.2
41679	54.7	29.3	2.9	1.9	4.0	0.1	1.7	1.1	0.9	0.14	0.6
41680	49.7	19.7	4.2	2.6	12.4	0.1	1.2	0.9	8.7	0.18	0.3
41681	18.4	16.9	5.3	3.9	29.2	0.1	0.6	0.5	19.3	0.18	0.2
41682	35.0	23.2	4.7	2.5	15.1	0.1	0.8	0.8	12.1	0.18	0.3
41683	45.5	26.7	4.2	2,1	7.3	0.1	1.8	1.0	7.8	0.18	0.4
41684	40.3	27.7	5.1	2.6	9.7	0.1	1,8	1.0	7.6	0.20	0.4
41685	55.9	23.2	4.5	2.3	5.4	0.1	1.7	1.1	3.8	0.20	0.3
41686	32.3	24,8	5.4	3.1	13.9	0.1	1.1	1.0	10.2	0.15	2.5
41687	34.3	24.3	9.9	2.6	12.1	0.1	1.2	0.8	10.5	0.16	0.5
41688	35.3	17.0	6.7	3.2	17.7	0.1	1.2	0.7	15.0	0.24	0.1
41689	26.6	20.1	5.8	3.5	21.5	0.1	1.0	0.7	14.1	0.15	0.2
41690	24.1	13.4	10.3	3.0	19.0	0.1	0.5	0.6	22.1	0.12	1.4
41691	28.8	22.4	5.5	3.3	19.0	0.1	1.2	0.8	14.0	0.18	0.6
41692	26.3	20.1	5.9	3.2	19.8	0.1	1.0	0.9	15.3	0.14	2.4
41693	34.2	17.7	6.2	2.8	16.8	0.1	1.2	0.7	14.5	0.17	1.0
41694	38.8	21.8	5.9	2.8	13.0	0.1	1.3	0.8	10.5	0.18	0.8
41695	18.3	17.0	7.2	3.6	24.3	0.1	0.7	0.5	22.0	0.17	0.5
41696	34.1	22.7	5.2	3.0	15.6	0.1	1.1	0.8	10.6	0.15	0.3
41697	24.3	16.6	9.9	3.1	18.5	0.1	0.7	0.6	22.2	0.15	0.1
41698	39.8	23.8	6.9	2.6	11.7	0.1	1.1	0.8	9.8	0.16	0.2
41699	39.8	18.7	12.0	2.7	10.5	0.1	1.2	0.8	10.9	0.23	0.1
41700	52.1	12.5	7.9	3.0	5.9	0.1	1.9	1.0	6.0	0.23	0.1

Table 14. Concentration of Major Elements in Coal Ash, Percent, Drill Hole No. 1

.

Sample Number	Si02	A1203	Fe203	Mg0	Ca0	Na ₂ 0	K20	Ti02	S03	Mn0	P205
41701	31.3	17.7	9.9	4.5	15.2	0.1	1.0	0.7	15.6	0.16	0.2
41702	43.9	21.8	7.8	3.2	7.5	0.1	1.5	1.0	10.2	0.15	0,1
41703	18.2	14.2	15.9	4.9	18.6	0.1	0.5	0.8	20.5	0.32	0.4
41704	45.2	18.0	6.2	4.2	10.9	0.1	1.7	0.8	10.7	0.34	0.1
41705	14.9	10.6	9.0	7.8	26.5	0.1	0.4	0.5	22.3	0.43	0.1
41706	9.8	13.0	7.8	9.2	34.5	0.1	0.2	0.3	11.1	0.43	1.3
41707	9.4	11.9	8.5	8.8	30.4	0.1	0.3	0.3	19.8	0.41	0.2
41708	40.7	14.1	5.9	4.3	13.9	0.1	0.5	0.5	14.0	0.24	1.0

,

Table 14. (continued)

2
2°
le
Ħ
E G
ñ
erce
4
Ash
al
ŭ
- H
nts
me
Ele
ğ
Ma
oť
5
Taki
ы Б
a
Ŭ
15.
ole
Tal

Sample Number	Si02	A1203	Fe203	MgO	CaO	Na20	K20	Ti02	S03	Mn0	P205
41709	18.7	19.2	16.1	1.9	19.4	0.1	1.1	0.7	14.4	1.90	0.6
41710	19.1	17.4	9.0	1.9	22.2	0.1	0.6	0.6	21.1	0.50	0.7
41711	11.4	20.0	2.0	2.4	27.9	0.1	0.5	0.7	21.0	0.55	4,6
41712	34.3	24.6	3.2	2,1	14.0	0.1	1.6	0.8	11.5	0.51	1.8
41713	8.0	12.9	8.2	3.3	28.5	0.1	0.3	0.4	29.2	0.57	1.7
41714	42.8	26.4	5.3	1.8	9.6	0.1	1.9	0.9	7.5	0.27	0.7
41715	22.0	19.6	8.7	1.6	20.9	0.1	0.7	0.5	19.7	0.40	1.9
41716	29.3	16.3	6.7	1.6	18.5	0.1	0.9	0.7	16.1	0.45	1.7
41717	29.7	20.8	7.8	1.5	16.1	0.1	0.8	0.9	12.7	0.35	3.6
41718	51.6	24.7	5.1	1.7	6.6	0.1	1.5	1.1	3.5	0.36	0.7
41719	59.4	18.8	6.8	1.7	5.3	0.1	1.4	0.9	3.8	0.70	0.3
41720	53.0	21.5	4.4	1.9	7.9	0.1	1.7	0.9	5.3	0.78	0.3
41721	32,4	20.3	7.6	2.5	15.7	0.1	1.1	0.7	14.6	0.89	0.2
41722	33.2	20.2	12.8	1.9	12.2	0.1	0.9	0.8	12.7	0.62	0.3
41723	42.3	20.3	10.8	2.1	10.2	0.1	1.2	0.8	8.5	0.43	0.2
41724	28.7	17.6	12.2	2.2	15.0	0.1	0.8	0.7	17.4	0.53	0.2
41725	52.5	24.0	5.0	2.0	5.9	0.1	2.0	1.0	4.6	0.29	0.1
41726	18.6	17.3	11.1	2.0	20.3	0.1	0.7	0.7	17.2	0.36	4.1
41727	36.4	21.2	7.5	2.1	12.0	0.1	1.7	0.8	11.5	0.27	3.0
41728	48.2	21.9	8.0	1.9	7.0	0.1	1.6	1.0	7.7	0.17	0.8
41729	55.9	22.0	6.9	2.0	5.1	0.1	1.9	1.0	3.2	0.20	0.2

Sample Number	Si02	A1203	Fe203	MgÛ	Ca0	Na20	K20	Ti02	\$0 3	Mn0	P205
41730	33.0	17.4	9.8	3.5	16.0	0.1	1.1	0.8	10.5	1.83	0.6
41731	46.1	23.5	8.0	2.2	6.1	0.1	1.9	1.1	4.2	0.60	1.0
41732	44.8	26.2	7.8	2.1	5.0	0.1	1.8	1.0	5.3	0.56	1.4
41733	43.7	27.1	8.0	2.2	6.0	0.1	1.7	1.0	3.6	0.57	1.7
41734	21.5	16.5	15.5	3.5	18.6	0.1	0.8	0.6	2.4	1.14	0.7
41735	24.0	20.1	14.9	3.3	16.1	0.1	0.9	0.7	13.9	0.94	0.8
41736	27.7	23,1	12.4	3.2	13.6	0.1	1.2	0.8	14.4	0.83	1.4
41737	31.6	20.0	14.6	2.8	12.0	0.1	0.9	1.0	8.3	0.70	2.8
41738	35.4	25.1	8.6	2.9	9.1	0.1	1.8	1.0	8.2	0.48	3.0
41739	25.4	17.4	12.7	3.6	16.5	0.1	1.0	0.7	13.9	0.70	1.1
41740	38.6	22.9	9.2	2.8	10.3	0.1	1.9	0.9	7.7	0.48	0.8
41741	22.9	17.0	12.2	3.1	18.1	0.1	0.9	0.8	17.5	0.70	1.9
41742	10.3	15.2	12.9	3.3	22.6	0.1	0.4	0.6	13.6	0.73	2.7
41743	33.4	22.0	10.7	3.1	12.1	0.1	1.6	0.8	10.3	0.46	1.0
41744	37.9	22.3	7.5	2.7	9.0	0.1	1.6	0.9	10.8	0.30	2.1
41745	15.2	14.7	13.5	5.1	22.6	0.1	0.7	0.5	21.0	0.53	0.6
41746	26.0	19.2	10.5	4.4	16.8	0.1	1.1	0.7	14.6	0.38	1.1
41747	24.9	17.6	12.0	4.9	17.3	0.1	1.0	0.6	15.9	0.42	0.5
41748	31.4	22.4	8.6	3.6	12.3	0.1	1.3	0.8	14.2	0.32	1.1
41749	24.5	16.8	10.8	4.3	19.7	0.1	0.8	0.7	14.1	0.38	2.8
41750	44.8	22.1	7.0	3.0	9.0	0:1	1.5	0.9	7.6	0.25	1.0
41826	47.3	21.0	6.9	2.7	7.8	0.1	1.5	0.9	8.0	0.23	0.6
41827	43.9	20.3	11.3	3.0	9.3	0.1	1.5	0.8	7.41	0.23	0.2
41828	33.8	18.0	13.0	3.3	13.3	0.1	1.0	0.8	7.3	0.20	0.2

Table 16. Concentration of Major Elements in Coal Ash, Percent, Drill Hole No. 3

Sample Number	Si02	A1203	Fe203	Mg0	Ca0	Na ₂ 0	K20	Ti02	\$0 3	МпО	P205
41829	32.8	19.0	13.7	2.7	11.1	0.1	1.1	0.8	12.7	1.63	0.6
41830	20.7	15.0	18.1	3.0	16.5	0.1	1,2	0.6	14.2	2.24	1.2
41831	30.2	18.7	16.6	2.4	11.9	0.1	1.8	0.8	9.9	1.58	0.8
41832	55.2	17.8	11.0	1.7	4.7	0.1	2.7	0.8	3.2	0.77	0.3
41833	50.6	4.77	9.3	1.7	3.9	0.1	2.9	0.9	4.8	0.62	0.5
41834	9.7	9.2	23.5	2.9	23.8	0.1	0.2	0.4	20.3	2.16	0.2
41835	21.1	15.0	18.1	2.5	17.2	0.1	1.0	0.6	15.7	1.52	0.3
41836	19.0	10.8	19.7	2.9	19.1	0.1	0.5	0.9	19.0	1.58	0.2
41837	15.2	11.6	19.2	2.9	19.7	0.1	0.9	0.4	19.3	1.48	0.3
41838	5.2	7.9	17.9	4.1	29.3	0.1	0.1	0.2	23.2	1.46	0.2
41839	41.9	17.9	8.4	2.6	9.8	0.1	2.1	0.8	10.8	0.57	0.2
41840	19.3	15.9	12.7	3.7	19.5	0.1	0.7	0.5	18.2	0.84	1.0
41841	31.0	16.9	10.6	3.3	15.1	0.1	1.1	0.7	13.6	0.67	1.4
41842	43.4	20.8	7.5	2.6	10.0	0.1	1.6	0.9	8.4	0.48	0.4
41843	16.1	11.6	12.5	4.5	24.4	0.1	0.4	0.4	21.4	0.83	0.2
41844	31.8	17.8	9.4	3.5	15.9	0.1	1.1	0.7	14.3	0.54	0.1
41845	41.6	20.3	6.5	2.6	11.4	0.1	1.1	0.9	10.5	0.38	0.2
41846	26.4	14.1	90	3.9	20.1	0.1	0.8	0.5	18.4	0.45	0.1

Table 17. Concentration of Major Elements in Coal Ash, Percent, Drill Hole No. 4

Sample Number	Si02	A1203	Fe203	Mg0	Ca0	Na20	K20	Ti02	S03	Mn0	P205
41847	38.5	19.9	8.6	3.6	10.5	0.1	1.5	1.1	11.3	0.41	1.4
41848	29.1	22.4	11.4	5.1	12.1	0.1	0.7	0.7	10.9	0.18	2.0
41849	44.1	27.7	7.1	3.3	5.3	0.1	1.3	1.0	5.1	0.23	0.8
41850	27.3	19.6	8.3	6.6	15.9	0.1	0.7	0.7	14.0	0.18	1.8
41851	27.8	21.8	7.8	7.0	15.6	0.1	1.1	0.7	11.9	0.19	2.7
41852	33.7	22.2	7.2	6.0	12.6	0.1	1.0	0.9	10.2	0.17	2.1
41853	50.4	28.3	4.4	2.8	2,8	0.1	2.0	1.1	2.5	0.18	0.5
41854	43.5	27.3	5.6	3.9	6.6	0.1	1.3	1.1	5.8	0.18	1.2
41855	34.9	22.0	12.3	5.3	10.2	0.1	1.2	0.8	9.0	0.21	0.4
41856	28.6	18.6	13.1	5.8	12.0	0.1	0.9	0.8	13.9	0.18	1.0
41857	34.9	22.2	7.2	5.6	11.8	0.1	1.2	1.1	10.9	0.16	0.9
41858	25.4	19.9	10.4	6.2	14.7	0.1	1.0	0.7	16.8	0.29	0.5
41859	46.8	21.4	6.4	3.5	7.0	0.1	2.0	0.9	8.1	0.31	0.3

Table 18. Concentration of Major Elements in Coal Ash, Percent, Drill Hole No. 5

.

Sample Number	Si02	A1203	Fe203	Mg0	Ca0	Na20	K 20	Ti02	S 03	Mn0	P205
41860	56.6	26.4	4.0	1.7	3.2	0.1	1.6	1.5	1.1	0.24	0.2
41861	21.8	16.3	6.6	3.5	22.0	٢,0	0.5	0.5	18.0	0.52	2.3
41862	4.2	6.0	2.11	6.2	38.4	0.1	0.1	0.2	25.4	0.70	0.2
41863	37.7	18.4	12.6	2.7	10.6	0.1	1.3	0.8	6.6	0.64	1.1
41864	49.8	22.9	8.2	2.4	4.1	0.1	2.2	1.0	5.3	0.31	0.4
41865	58.6	23.5	4.2	2.1	2.4	0.1	2.0	1.2	2.6	0.19	0.2
41866	55.7	23.6	5.6	2.1	2.3	0.1	2.7	1.0	1.6	0.31	0.2
41867	48.1	25.6	6.3	2.7	6.8	0.1	1.4	1.0	3.7	0.20	0.7
41868	32.5	23.9	5.1	4.4	13.6	0.1	0.9	0.8	80. 80. 80.	0.21	2.4
41869	38.6	28.8	8.4	3.2	8.6	0.1	1.2	1.0	6.5	0.37	0.9
41870	40.9	25.4	6.8	2.8	7.1	0.1	1.3	1,2	4.7	0.13	3.5
41871	42.4	17.9	6.5	4.1	11.7	0.1	1.1	0.8	9.5	0.23	0.8
41872	31.9	23.8	7.0	4.1	12.2	0.1	1.3	0.9	8.5	0.24	1.5
41873	35.8	23.1	6.9	4.0	10.7	0.1	1.4	1.0	11.3	0.23	1.2
41874	42.7	17.3	10.5	3.7	9.8	0.1	1.1	1,0	8.6	0.26	1.2
41875	44.7	30.0	5.0	3.1	6.6	0.1	1.5	1.1	1.8	0.18	1.0
41876	25.3	25.0	6.8	3.6	11.6	0.1	0.9	1.2	11.0	0.11	9.9
41877	18.3	17.1	10.8	6.2	20.5	0.1	0.7	0.6	20.2	0.30	0.8
41878	17.1	17.1	9.8	6.4	22.5	0.1	0.7	0-6	18.8	0.27	0.8
41879	42.1	16.1	7.3	3.3	6.9	0.1	1.1	0.9	11.9	0.16	2.8
41880	18.8	17.3	10.3	6.2	20.5	0.1	0.5	0.8	18.3	0.23	2.5
41881	39.5	28.0	5.4	3.7	8.2	0.1	1.8	1.1	5.6	0.17	1.9
41882	24.9	18.5	10.1	5.5	16.7	0.1	1.1	0.7	15.2	0.20	3.0
41883	32.3	16.3	10.7	4.8	14.0	0.1	1.2	0.7	13.6	0.24	0.8
41884	25.8	22.8	8.6	4.7	14.4	0.1	1.0	0.7	16.1	0.17	1.9

9
<u>o</u>
2
lo l
I H
Ē
Ω,
G
22
Δ,
٩ş
A L
<u>8</u>
e e
-B
Ę
Ĕ
щ
8
.e
Ž
0
ion
Tat
ž
2C
ပိ
<u>~</u>
10
ble
Та

Sample Number	Si02	A1203	Fe203	Mg0	Ca0	Na20	K20	Ti02	\$03	Mn0	P205
41885	52.5	21.6	7.1	2.7	4.6	0.1	2.0	1.0	3.7	0.44	0.7
41886	53.2	23.3	7.6	2.7	3.7	0.1	2.0	1.0	2.9	0.27	0.6
41887	19,0	16.4	9.9	6.5	20.7	0.1	0.8	0.5	20.7	0.26	1.0
41888	34.9	21.6	6.4	4.5	13.5	0.1	1.4	0.8	12.0	0.19	1.2
41889	20.9	16.1	11.3	5.8	19.0	0.1	0.7	0.5	22.6	0.20	0.7
41890	32.1	22.8	10.4	4.5	12.8	0.1	1.0	0.7	10.8	0.19	0.6
41891	40.6	20.8	6.7	3.7	9.7	0.1	1.1	0.8	8.2	0.18	0.6
41892	44.3	19.8	6.5	4.2	10.5	0.1	1.6	0.9	9.3	0.20	0.4
41893	51.2	22.4	5.1	3.6	6.9	0.1	1.6	1.0	4.8	0.19	0.8
41894	19.8	14.6	9.4	7.0	22.9	0.1	0.6	0.5	20.3	0.19	0.4
41895	34.8	18.8	6.6	5.2	14.9	0.1	1.1	0.8	12.7	0.16	0.5
41896	45.5	19.0	7.0	3.9	9.0	0.1	1.3	0.9	10.7	0.20	0.2
41897	37.4	20,2	11,4	4.3	10.6	0.1	1.3	0.8	9.0	0.18	0.3

•

Table 19.	(continued)
-----------	-------------

Tables 20-25 Overview

Tables 20-25 follow on pages 61 - 66. Fusibility of ash was determined by subjecting cones prepared with coal ash to increasing temperatures. Temperatures at which transformations occur in the cones are recorded. The temperature at which rounding of cones occur is reported as initial deformation temperature. As the ash cone is heated to higher temperatures it softens further and the temperature at which the cone height is equal to the cone base length is termed softening temperature. When the ash cone completely melts and spreads over the base, the fluid temperature is recorded.

Coals with softening temperature below 2000°F are termed slagging coals. Coals with ash softening temperatures above 2600°F are termed non slagging. All of the Little Tonzona samples tested had ash softening temperatures between 2200 and 2600°F and thus may or may not form slag depending on combustion process conditions. Combustion equipment could be designed to prevent ash from melting in cases where coal was burned in a stoker furnace. Alternatively, provisions could be made to melt the ash and keep it flowing, removing it as slag from cyclone type furnaces.

Sample Number	Initial Deformation Temperature	Softening Temperature	Fluid Temperature
41676	2260	2300	2418
41677	2450	2560	2654
41678	2266	2280	2370
41679	2690	2800+	2800+
41680	2300	2376	2500
41681	2570	2590	2720
41682	2470	2520	2590
41683	2400	2600	2660
41684	2440	2470	2580
41685	2380	2520	2640
41686	2430	2482	2570
41687	2460	2482	2570
41688	2274	2290	2430
41689	2283	2293	2322
41690	2230	2244	2270
41691	2290	2314	2434
41692	2220	2278	2365
41693	2271	2314	2460
41694	2392	2440	2540
41695	2520	2560	2625
41696	2390	2505	2600
41697	2271	2285	2315
41698	2430	2466	2530
41699	2325	2380	2435
41700	2290	2355	2444
41701	2290	2330	2417
41702	2260	2370	2423
41703	2340	2360	2425
41704	2240	2306	2404
41705	2380	2397	2440
41706	2397	2544	2634
41707	2397	2540	2770
41708	2195	2212	2270

Table 20. Fusibility of Ash, °F, Drill Hole No. 1

Sample Number	Initial Deformation Temperature	Softening Temperature	Fluid Temperature
41709	2380	2425	2505
41710	2375	2435	2520
41711	2550	2780+	2780+
41712	2415	2535	2590
41713	2525	2770	2780+
41714	2445	2470	2555
41715	2255	2315	2350
41716	2265	2295	2445
41717	2365	2515	2485
41718	2445	2545	2580
41719	2305	2470	2500
41720	2375	2450	2490
41721	2345	2425	2505
41 722	2435	2455	2530
41723	2375	2405	2440
41724	2335	2395	2440
41725	2390	2505	2580
41726	2320	2325	2475
41727	2375	2395	2490
41728	2350	2405	2470
41729	2375	2495	2560

.

Table 21. Fusibility of Ash, ºF, Drill Hole No. 2

Sample Number	Initial Deformation Temperature	Softening Temperature	Fluid Temperature
41730	2295	2314	2450
41731	2390	2471	2567
41732	2500	2640	2722
41733	2500	2598	2676
41734	2300	2353	2460
41735	2374	2398	2460
41736	2427	2455	2514
41737	2367	2401	2450
41738	2358	2373	2510
41739	2319	2349	2430
41740	2388	2415	2500
41741	2277	2299	2477
41742	2481	2510	2585
41743	2390	2427	2482
41744	2340	2375	2458
41 745	2490	2532	2582
41746	2250	2340	2420
41747	2280	2317	2420
41748	2410	2455	2530
41749	2270	2284	2390
41750	2330	2350	2450
41826	2315	2354	2470
41827	2331	2364	2444
41828	2270	2377	2451

Table 22. Fusibility of Ash, °F, Drill Hole No. 3

ı.

.

Sample Number	Initial Deformation Temperature	Softening Temperature	Fluid Temperature
41829	2397	2397	2437
41830	2294	2384	2442
41831	2340	2397	2442
41832	2333	2394	2520
41833	2260	2500	2527
41834	2419	2455	2481
41835	2299	2348	2450
41836	2285	2354	2398
41837	2377	2407	2461
41838	2445	2490	2750+
41839	2280	2355	2370
41840	2345	2375	2385
41841	2280	2315	2350
41842	2320	2375	2445
41843	2395	2475	2490
41844	2285	2325	2390
41845	2360	2405	2500
41846	2220	2250	2270

Table 23. Fusibility of Ash, °F, Drill Hole No. 4

Sample Number	Initial Deformation Temperature	Softening Temperature	Fluid Temperature
41847	2325	2395	2450
41848 41849	2405	2460	2505
41850	2315	2370	2435
41851	2315	2385	2490
41852	2370	2425	2480
41853	2630	2780	2780+
41855	2395	2430	2465
41856	2310	2425	2460
41857	2395	2435	2470
41858 41859	2310 2320	2375 2375	2440 2425

Table 24. Fusibility of Ash, °F, Drill Hole No. 5

Sample Number	Initial Deformation Temperature	Softening Temperature	Fluid Temperature
41860	2600	2770	2800
41861	2277	2296	2389
41862	2320	2467	2800
41863	2320	2360	2415
41864	2263	2570	2608
41865	2500	2720	2790
41866	2490	2660	2770
41867	2436	2560	2610
41868	2390	2455	2520
41869	2430	2480	2650
41870	2325	2440	2527
41871	2280	2317	2418
41872	2439	2463	2510
41873	2397	2418	2488
41874	2269	2308	2400
41875	2520	2641	2733
41876	2358	2377	2441
41877	2398	2413	2757
41878	2460	2476	2800+
41879	2200	2260	2367
41880	2322	2338	2690
41881	2390	2425	2618
41882	2270	2290	2580
41883	2285	2310	2419
41884	2380	2428	2640
41885	2300	2440	2547
41886	2440	2546	2633
41887	2395	2413	2560
41888	2343	2416	2480
41889	2290	2317	2500
41890	2420	2435	2514
41891	2347	2370	2485
41892	2300	2317	2433
41893	2300	2387	2470
41894	2458	2479	2704
41895	2287	2319	2450
41896	2260	2342	2460
41897	2343	2378	2 4 54

Table 25. Fusibility of Ash, °F, Drill Hole No. 6

`
Tables 26-31 Overview

Tables 26-31 follows on pages 68 - 117. They show washability data for all samples from the six drill holes. The tables show weight percent distribution, ash, heating value, pyritic sulfur, and total sulfur on a moisture free basis for the various gravimetric fractions as well as values for cumulated floats. The quality of the floats at any of the three densities can be read directly from the tables. The tables also show cumulative sink weight percent and ash content that may be expected at any of the three densities.

Reduction of sulfur due to washing was small, even for samples in which pyritic sulfur exceeded 0.5%. The pyrite in Little Tonzona coal is apparently still locked for the coal size range $(3/4" \times 100 \text{ mesh})$ tested. Good coal recoveries can be expected by washing the coal to 8 to 10% ash. This would yield a clean coal with an approximate heating value of 10,500 Btu/lb on a moisture free basis.

SPECIFIC FRAC	GRAVITY TIONS		IVIUNI	DUAL FR	ACTIONS			CUMU	LATIVE F	TOAT		CUMUI	ATIVE
Sink	Float	Wt %	Ash %	Bu/lb	Percent Pyritic	Sulfur Total	Wt %	Ash %	Bɯ/lb	Percent Pyritic	Sulfur Total	%1%	Ash %
					-	Sample N	ło. 41676			J			
7 1.30 1.40	1.30 1.40 1.60	38.69 36.62 10.06 14.63	6.01 10.23 31.53 67.02	11513 9522 7561 3424	0.01 0.03 0.08 0.07	0.82 0.86 0.92 0.45	38.69 75.31 85.37 100.00	6.01 8.06 10.83 19.05	11513 10545 10193 9203	0.01 0.03 0.03 0.03	0.82 0.84 0.85 0.79	100.00 61.31 24.69 14.63	19.05 27.28 52.56 67.02
Minus 100	Mesh	1.24	33.57	7860	0.17	0.85	*100.00	19.23	9186	0.03	0.79		
					-	Sample N	ło. 41677						
- 1.30 1.40	1.30 1.40 1.60 -	7.28 10.66 41.66 40.40	4.05 10.52 40.01 66.66	10177 9749 6400 3207	0.06 0.40 0.93 0.31	1.22 1.69 2.00 0.78	7.28 17.94 59.60 100.00	4.05 7.89 30.34 45.02	10177 9923 7460 5742	0.06 0.26 0.73 0.56	1.22 1.50 1.85 1.42	100.00 92.72 82.06 40.40	45.02 48.23 53.13 66.66
Minus 100	Mesh	2.80	58.35	3997	0.37	1.71	*100.00	45.38	5694	0.55	1.43		
					-	Sample N	ło. 41678						
- 1.30 1.60	1.30 1.40 1.60	52.04 37.69 8.34 1.93	5.44 12.26 33.49 25.80	10832 9826 7100 8232	0.02 0.10 0.08 0.50	1.17 1.41 1.07 1.84	52.04 89.73 98.07 100.00	5.44 8.30 10.45 10.74	10832 10409 10128 10091	0.02 0.05 0.06 0.06	1.17 1.27 1.25 1.25	100.00 47.96 10.27 1.93	10.74 16.50 32.04 25.80
Minus 100	Mesh	0.35	28.51	8125	0.50	2.50	*100.00	10.80	10085	0.07	1.27		
All results & *Cumulativ	are on a Mc	bisture Fre s minus 1(e Basis 30 mesh ma	aterial									

Table 26. Washability Analyses of 3/4 Inch x 100 Mesh Coals, Drill Hole No. 1

68

SPECIFIC	C GRAVII	Y	INDIVID	UAL FRAG	CTIONS	_		CUMU	LATIVE FL	OAT		CUMU SI	LATIVE NK
					Percent	Sulfur				Percent	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample N	No. 41679						
- 1.30 1.40 1.60	1.30 1.40 1.60	15.81 32.82 19.76 31.61	7.02 16.00 38.25 65.60	10730 9379 6629 3569	0.01 0.03 0.04 0.08	1.40 1.22 0.84 0.41	15.81 48.63 68.39 100.00	7.02 13.08 20.35 34.66	10730 9818 8897 7213	0.01 0.02 0.03 0.04	1.40 1.28 1.15 0.92	100.00 84.19 51.37 31.61	34.66 39.85 55.08 65.60
Minus 10	0 Mesh	1.36	50.10	5363	0.07	0.79	*100.00	34.86	7188	0.04	0.92		
						Sample	No. 41680						
- 1.30 1.40 1.60	1.30 1.40 1.60	63.07 26.75 4.23 5.95	6.97 12.72 31.35 62.90	10700 9986 7936 4052	0.02 0.35 0.12 0.08	1.31 1.63 1.05 0.49	63.07 89.82 94.05 100.00	6.97 8.68 9.70 12.87	10700 10487 10373 9997	0.02 0.12 0.12 0.12	1.31 1.41 1.39 1.34	100.00 36.93 10.18 5,95	12.87 22.94 49.79 62.90
Minus 10	0 Mesh	1.33	26.89	8720	0.25	1.42	*100.00	13.05	9980	0.12	1.34		
						Sample N	No. 41681						
- 1.30 1.40 1.60	1.30 1.40 1.60	72.32 25.60 1.49 0.59	7.31 12.28 24.47 24.14	10738 9977 8824 8657	0.01 0.04 0.13 1.03	1.22 1.27 1.16 2.40	72.32 97.92 99.41 100.00	7.31 8.61 8.85 8.94	10738 10539 10513 10502	0.01 0.02 0.02 0.03	1.22 1.23 1.23 1.24	100.00 27.68 2.08 0.59	8.94 13.19 24.38 24.14
Minus 10	0 Mesh	0.63	18.69	9600	0.25	2.09	*100.00	9.00	10497	0.03	1.24		

Table 26. (continued)

SPECIFIC FRAC	C GRAVITY CTIONS	ť	INDIVI	DUAL FR	ACTIONS			CUMU	LATIVE I	FLOAT		CUMU S	LATIVE IN <u>K</u>
					Percent	Sulfur				Percen	t Sulfur		
Sink	Float	Wt %	Ash %	Btn/Ib	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample I	No. 41682						
-	1.30	40.22	6.62	10924	0.06	1.59	40.22	6.62	10924	0.06	1.59	100.00	13.61
1.30	1.40	46.84	12.57	10035	0.16	1.72	87.06	9.82	10446	0.11	1.66	59.78	18.31
1.40	1.60	10.27	35.61	7184	0.17	1.26	97.33	12.54	10102	0.12	1.62	12,94	39.09
1.60	-	2.67	52.48	5175	0.18	0.96	100.00	13.61	99 70	0.12	1.60	2.67	52.48
Minus 10	0 Mesh	1.26	30.09	8372	0.21	1.95	*100.00	13.81	9950	0.12	1.60		
						Sample I	No. 41683						
_	1.30	19.39	6.59	10908	0.14	2.03	19.39	6.59	10908	0.14	2.03	100.00	29.48
1.30	1.40	32.74	15.27	9761	0.29	2.03	52.13	12.04	10188	0.23	2.03	80.61	34.99
1.40	1.60	26.89	39.53	6694	0.34	1.67	79.02	21.40	8999	0.27	1.91	47.87	48.48
1.60	-	20.98	59.95	4090	0.12	0.79	100.00	29.48	7969	0.24	1.67	20.98	59.95
Minus 10	0 Mesh	1.02	45.94	6003	0.21	1.55	*100.00	29.65	7949	0.24	1.67		
					;	Sample 1	No. 41684						
_	1.30	27.40	8.45	10811	0.27	2.12	27.40	8.45	10811	0.27	2.12	100.00	20.32
1.30	1.40	43.56	15.33	9702	0.36	2.10	70.96	12.67	10130	0.33	2.11	72.60	24.79
1.40	1.60	22.51	34.71	7147	0.12	1.39	93.47	17.98	9412	0.28	1.93	29.04	38.99
1.60	-	6.53	53.75	4896	0.17	1.01	100.00	20.32	9117	0.27	1.87	6.53	53.75
Minus 100	0 Mesh	1.77	34.84	7467	0.18	1.85	*100.00	20.57	9088	0.27	1.87		

Table 26. (continued)

SPECIFI FRAC	C GRAVIT	Ϋ́	INDIVID	UAL FRAG	CTIONS			CUMU	LATIVE FL	OAT		CUMU	LATIVE NK
		_			Percent	Sulfur				Percent	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample I	No. 41685						
 1.30 1.40 1.60	1.30 1.40 1.60	49.27 18.23 8.54 23.96	6.89 14.46 38.30 69.85	10875 9805 6902 3010	0.14 0.18 0.26 0.15	1.89 1.89 1.41 0.57	49,27 67.50 76.04 100.00	6.89 8.93 12.23 26.04	10875 10586 10172 8456	0.14 0.15 0.16 0.16	1.89 1.89 1.84 1.53	100.00 50.73 32.50 23.96	26.04 44.63 61.56 69.85
Minus 10	0 Mesh	1.74	50.79	5593	0.17	1.18	*100.00	26.46	8407	0.16	1.53		
						Sample I	No. 41686						
- 1.30 1.40 1.60	1.30 1.40 1.60	40.04 41.06 14.01 4.89	7.80 14.72 32.84 59.30	10710 9714 7244 3932	0.10 0.08 0.09 0.12	1.94 1.72 1.41 0.92	40.04 81.10 95.11 100.00	7.80 11.30 14.48 16.67	10710 10206 9769 9484	0.10 0.09 0.09 0.09	1.94 1.83 1.77 1.73	100.00 59.96 18.90 4.89	16.67 22.59 39.69 59.30
Minus 10	0 Mesh	1.47	31.72	7835	0.15	1.95	*100.00	16.89	9460	0.09	1.73		
						Sample I	No. 41687						
1.30 1.40 1.60	1.30 1.40 1.60 -	13.79 61.04 23.62 1.55	5.62 15.09 35.91 29.89	11011 9741 7569 7325	0.11 0.71 0.62 2.19	2.08 2.53 1.78 3.60	13.79 74.83 98.45 100.00	5.62 13.34 18.76 18.93	11011 9975 9398 9366	0.11 0.60 0.60 0.63	2.08 2.45 2.29 2.31	100.00 86.21 25.17 1.55	18.93 21.06 35.54 29.89
Minus 10	0 Mesh	1.86	33.58	7662	0.89	2.85	*100.00	19.20	9335	0.63	2.32		

Table 26. (continued)

SPECIFIC FRA	C GRAVITY	ζ	INDIVI	DUAL FR	ACTIONS			CUMI	ILATIVE I	FLOAT		CUMU SI	LATIVE
					Percent	Sulfur				Percent	Selfur		
Sink	Float	Wt %	Ash %	Btu/Ib	Pyritic	Total	₩t %	Ash %	Bm/lb	Pyritic	Total	Wt %	Ash %
						Sample I	No. 41688						
	1.30	65 68	741	10888	0.03	1.62	65.68	7.41	10888	0.03	1.62	100.00	12.02
1 30	1 40	27.02	12.46	10038	0.00	1 76	92 70	8.88	10640	0.08	1.66	34.32	20.85
1 40	1.60	3 00	34 50	7281	017	1 27	95 70	9.69	10535	0.09	1.65	7.30	51.90
1.60	-	4.30	64.04	4078	0.15	0.75	100.00	12.02	10257	0.09	1.61	4.30	64.04
Minus 10	0 Mesh	1.23	24.59	8254	0.12	1.59	*100.00	12.18	10233	0.09	1.61		
						Sample 1	No. 41689						
_	1.30	52.33	6.49	10798	0.03	1.04	52.33	6.49	10798	0.03	1.04	100.00	9.99
1.30	1.40	42.33	10.93	10133	0.07	1.16	94.66	8.48	10501	0.05	1.09	47.67	13.84
1.40	1.60	4.81	36.65	7145	0.08	1.13	99.47	9.84	10338	0.05	1.10	5.34	36.91
1.60	-	0.53	39.23	6839	1.25	3.66	100.00	9.99	10320	0.06	1.11	0.53	39.23
Minus 10	0 Mesh	0.85	23.45	8233	0.24	2.51	*100.00	10.11	10302	0.06	1.12		
						Sample I	No. 41690						
_	1.30	49.10	6.38	10869	0.07	1.49	49.10	6.38	10869	0.07	1.49	100.00	13.71
1.30	1.40	43.40	12.83	10180	0.64	2.18	92.50	9.41	10546	0.34	1.81	50.90	20.79
1.40	1.60	1.86	28.96	8046	1.03	2.47	94.36	9.79	10496	0.35	1.83	7.50	66.85
1.60	-	5.64	79.35	1773	0.23	0.52	100.00	13.71	10004	0.34	1.75	5.64	79.35
Minus 10	0 Mesh	0.82	50.20	5290	0.83	2.89	*100.00	14.01	9966	0.35	1.76		

Table 26. (continued)

SPECIFI FRAC	C GRAVIT	Ϋ́Υ	INDIVID	UAL FRAG	TIONS			CUMUI	LATIVE FL	ΟΑΤ		CUMU	LATIVE NK
					Percent	Sulfur				Percent	Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/ib	Pyritic	Total	Wt %	Ash %
						Sample 1	No. 41691						
	1.30 1.40 1.60	61.86 29.13 7.53 1.48	6.74 16.48 33.59 44.83	11007 9662 7367 6099	0.02 0.27 0.04 0.29	1.19 1.28 1.12 1.39	61.86 90.99 98.52 100.00	6.74 9.86 11.67 12.16	11007 10576 10331 10268	0.02 0.10 0.10 0.10	1.19 1.22 1.21 1.21	100.00 38.14 9.01 1.48	12,16 20.96 35.44 44.83
Minus 10	0 Mesh	1.36	26.65	8705	0.16	1.67	*100.00	12.36	10247	0.10	1,22		
						Sample N	No. 41692						
- 1.30 1.40 1.60	1.30 1.40 1.60	32.07 61.17 5.81 0.95	7.69 13.17 34.05 42.17	10666 10046 7412 6532	0.08 0.08 0.08 0.20	1.72 1.60 1.30 1.19	32.07 93.24 99.05 100.00	7.69 11.29 12.62 12.90	10666 10259 10092 10058	0.08 0.08 0.08 0.08	1.72 1.64 1.62 1.62	100.00 67.93 6.76 0.95	12.90 15.36 35.19 42.17
Minus 10	0 Mesh	1.51	19.10	9473	0.13	1.72	*100.00	12.99	10050	0.08	1.62		
						Sample N	No. 41693						
- 1.30 1.40 1.60	1.30 1.40 1.60	64.22 29.60 4.12 2.06	7.25 12.61 32.62 48.19	11005 10126 7547 5836	0.12 0.22 0.17 0.26	1.79 1.89 1.41 1.39	64.22 93.82 97.94 100.00	7.25 8.94 9.94 10.73	11005 10728 10594 10496	0.12 0.15 0.15 0.15	1.79 1.82 1.80 1.80	100.00 35.78 6.18 2.06	10.73 16.96 37.81 48.19
Minus 100	0 Mesh	0.90	22.89	9197	0.15	1.70	*100.00	10.83	10484	0.15	1.79		

Table 26. (continued)

SPECIFIC FRA	C GRAVITY CTIONS	Y	INDIVI	DUAL FR	ACTIONS			CUMU	LATIVE 1	FLOAT		CUMU S	LATIVE INK
					Percent	Sulfur				Percent	t Sulfur		
Sink	Float	Wt %	Ash %	Bm/ib	Pyritic	Totai	Wt %	Ash %	Btu/Ib	Pyritic	Total	Wt %	Ash %
						Sample 1	No. 41694						
-	1.30	33.98	7.73	10691	0.01	1.70	33.98	7.73	10691	0.01	1.70	100.00	18.01
1.30	1.40	49.91	14.81	9751	0.23	1.79	83.89	11.94	10132	0.14	1.75	66.02	23.29
1.40	1.60	10.31	35.64	7329	0.15	1.20	94.20	14.54	9825	0.14	1.69	16.11	49.58
1.60	_	5.80	74.35	2168	0.19	0.50	100.00	18.01	9381	0.14	1.62	5.80	74.35
Minus 10	0 Mesh	0.91	37.74	7116	0.32	1.88	*100.00	18.18	9360	0.15	1.63		
						Sample 1	No. 41695						
~	1.30	65.10	8.51	10815	0.07	1.66	65.10	8.51	10815	0.07	1.66	100.00	11.03
1.30	1.40	29.90	13.01	10047	0.13	1.56	95.00	9,93	10573	0.09	1.63	34.90	15.73
1.40	1.60	4.42	32.68	7544	0.09	1.24	99.42	10.94	10439	0.09	1.61	5.00	31.98
1.60	-	0.58	26.65	8317	0.71	2.42	100.00	11.03	10426	0.09	1.62	0.58	26.65
Minus 10	0 Mesh	0.86	21.94	9379	0.33	2.57	*100.00	11.12	10417	0.09	1.62		
						Sample N	No. 41696						
	1.30	47.60	8.35	10846	0.07	1.14	47,60	8.35	10846	0.07	1.14	100.00	17.23
1.30	1.40	30.83	17.25	9525	0.13	1.46	78.43	11.85	10327	0.09	1.27	52.40	25.29
1.40	1.60	20.70	36.85	7312	0.07	1.12	99.13	17.07	9697	0.09	1.24	21.57	36.79
1.60	_	0.87	35.38	7091	0.73	2.40	100.00	17.23	9675	0.09	1.25	0.87	35.38
Minus 10	0 Mesh	0.47	25.72	8647	0.40	1.86	*100.00	17.27	9670	0.10	1.25		

Table 26. (continued)

SPECIFI	C GRAVIT	Y Y	INDIVID	UAL FRA	TIONS		_	CUMU	ATIVE FL	OAT		CUMU SI	LATIVE
					Percent	Sulfur				Percent	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/Ib	Pyritic	Total	W1 %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample 1	No. 41697						
_	1.30	10.49	6.99	11030	0.37	2.37	10.49	6.99	11030	0.37	2.37	100.00	11.95
1.30	1.40	82.66	10.41	10396	0.56	2.20	93.15	10.02	10467	0.54	2.22	89.51	12.53
1.40	1.60	5.21	37.15	7474	0.19	1.17	98.36	11.46	10309	0.52	2.16	6.85	38.09
1.60	-	1.64	41.09	6528	0.88	2.20	100.00	11.95	10247	0.53	2.16	1.64	41.09
Minus 10	0 Mesh	1.08	26.73	8466	0.98	3.82	*100.00	12.11	10228	0.53	2.18		
						Sample 1	No. 41698						
_	1.30	36.08	7.68	11159	0.17	1.81	36.08	7.68	11159	0.17	1.81	100.00	15.24
1.30	1.40	56.36	16.16	10030	0.45	2.03	92.44	12.85	10471	0.34	1.94	63.92	19.51
1.40	1.60	4.82	38.58	6815	0.39	1.48	97.26	14.13	10289	0.34	1.92	7.56	44,51
1.60	-	2.74	54.95	5091	0.51	1.21	100.00	15.24	10147	0.35	1.90	2.74	54.95
Minus 10	0 Mesh	1.15	27.05	8748	0.93	2.83	*100.00	15.38	10131	0.35	1.91		
						Sample 1	No. 41699						
-	1.30	26.74	8.39	10920	0.23	1.62	26.74	8.39	10920	0.23	1.62	100.00	28.65
1.30	1.40	41.53	16.45	9759	0.97	2.64	68.27	13.29	10214	0.68	2.24	73.26	36.05
1.40	1.60	11.13	35.92	7311	2.28	3.67	79.40	16.46	9807	0.90	2.44	31.73	61.69
1.60	-	20.60	75.62	2078	0.56	1.08	100.00	28.65	8215	0.83	2.16	20.60	75.62
Minus 10	0 Mesh	0.88	49.09	5468	1.79	4.10	*100.00	28.83	8191	0.84	2.18		

Table 26. (continued)

SPECIFIC FRA	C GRAVITY CTIONS		INDIVI	DUAL FR	ACTIONS			CUMU	LATIVE	FLOAT		CUMU SI	LATIVE INK
					Percent	Sulfur				Percent	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample	No. 41700						
~	1.30	26.56	7.18	11156	0.19	1.53	26.56	7.18	11156	0.19	1.53	100.00	32.31
1.30	1.40	36.37	16.02	9829	0.65	2.24	62.93	12.29	10389	0.46	1.94	73.44	41.40
1.40	1.60	9.36	34.04	7225	0.70	1.95	72.29	15.11	9979	0.49	1.94	37.07	66.29
1.60	-	27.71	77.19	1678	0.35	0.67	100.00	32.31	7679	0.45	1.59	27.71	77.19
Minus 10	0 Mesh	2.62	61.45	3938	0.51	1.69	*100.00	33.05	7584	0.45	1.59		
						Sample	No. 41701						
_	1.30	43.35	6.83	11181	0.11	1.61	43,35	6.83	11181	0.11	1.61	100.00	17.53
1.30	1.40	41.67	13.59	10100	0.64	2.50	85.02	10.14	10651	0.37	2.05	56.65	25.72
1.40	1.60	4.66	35.48	7105	0.67	1.85	89.68	11.46	10467	0.39	2.04	14.98	59.47
1.60	_	10.32	70.30	3026	0.21	0.71	100.00	17.53	9699	0.37	1.90	10.32	70.30
Minus 10	0 Mesh	1.62	39.33	6955	0.71	2.64	*100.00	17.88	9655	0.37	1.91		
						Sample I	No. 41702						
_	1.30	19.23	6.91	11063	0.21	1.78	19.23	6.91	11063	0.21	1.78	100.00	26.18
1.30	1.40	45.96	14.50	10099	0.41	2.12	65.19	12.26	10383	0.35	2.02	80.77	30,77
1.40	1.60	16.66	39.02	6868	0.57	1.74	81.85	17.71	9668	0.40	1.96	34,81	52.24
1.60	-	18.15	64.38	3607	0.64	1.34	100.00	26.18	8568	0.44	1.85	18.15	64.38
Minus 10	0 Mesh	0.83	42.81	6426	1.19	2.93	*100.00	26.32	8550	0.45	1.86		

Table 26. (continued)

SPECIFI FRAC	C GRAVII	Ϋ́Υ	INDIVID	UAL FRAG	CTIONS			CUMU	LATIVE FU	OAT		CUMU SI	LATIVE NK
					Percent	Sulfur				Percen	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Asb %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample N	No. 41703						
1.30 1.40 1.60	1.30 1.40 1.60	85.20 10.40 3.16 1.24	7.93 13.79 32.88 43.56	10902 10047 7372 5968	0.46 1.45 1.93 1.32	1.98 1.14 3.31 8.07	85.20 95.60 98.76 100.00	7.93 8.57 9.35 9.77	10902 10809 10699 10640	0.46 0.57 0.61 0.62	1.98 1.89 1.93 2.01	100.00 14.80 4.40 1.24	9.77 20.36 35.89 43.56
Minus 10	0 Mesh	1.23	24.92	8692	1.61	4,22	*100.00	9.95	10617	0.63	2.04		
						Sample 1	No. 41704						
1.30 1.40 1.60	1.30 1.40 1.60	66.78 8.43 3.24 21.55	8.51 19.53 39.96 86.67	10844 9135 6660 862	0.17 0.56 0.47 0.22	1.55 1.93 1.46 0.58	66.78 75.21 78.45 100.00	8.51 9.75 10.99 27.30	10844 10652 10488 8413	0.17 0.21 0.22 0.22	1.55 1.59 1.59 1.37	100.00 33.22 24.79 21.55	27.30 65.08 80.57 86.67
Minus 10	0 Mesh	0.89	45.49	6306	0.44	1.77	*100.00	27.46	8395	0.23	1.37		
						Sample 1	No. 41705						
1.30 1.40 1.60	1.30 1.40 1.60	89.84 6.48 1.77 1.91	6.41 17.28 31.10 67.48	10929 9731 7878 3042	0.06 0.77 2.60 2.60	0.86 1.91 5.47 4.90	89.84 96.32 98.09 100.00	6.41 7.14 7.57 8.72	10929 10848 10795 10647	0.06 0.11 0.15 0.20	0.86 0.93 1.01 1.09	100.00 10.16 3.68 1.91	8.72 29.12 49.98 67.48
Minus 10) Mesh	0.92	25.75	8885	1.25	2.45	*100.00	8.87	10631	0.21	1.10		

Table 26. (continued)

.

SPECIFIC FRA	C GRAVIT	Y	INDIVI	DUAL FR	ACTIONS			CUMI	LATIVE	FLOAT		CUMU SI	LATIVE NK
					Percent	Sulfur				Percent	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample	No. 41706						
-	1.30	92.89	6.84	10919	<.01	0.42	92.89	6.84	10919	<.01	0.42	100.00	7.35
1.30	1.40	6.66	14.15	9902	<.01	0.38	99.55	7.33	10851	<.01	0.42	7.11	13.94
1.40	1.60	0.26	9.50	10403	0.06	0.54	99.81	7.33	10850	<.01	0.42	0.45	10.88
1.60	_	0.19	12.78	10101	0.11	0.61	100.00	7.35	10848	<.01	0.42	0.19	12.78
Minus 10	0 Mesh	0.88	9.57	11353	0.06	0.48	*100.00	7.36	10853	<.01	0.42		
						Sample	No. 41707						
-	1.30	94.65	8.09	10846	0.11	0.97	94.65	8.09	10846	0.11	0.97	100.00	8.85
1.30	1.40	3.81	15.14	9880	0.27	1.09	98.46	8.36	10809	0.12	0.97	5.35	22.30
1.40	1.60	0.73	34.08	7196	0.73	1.49	99.19	8.55	10782	0.12	0.98	1,54	40.02
1.60	-	0.81	45.37	5676	1.33	2.04	100.00	8.85	10741	0.13	0.99	0.81	45.37
Minus 10	0 Mesh	0.80	16,58	11184	0.61	1.49	*100.00	8.91	10744	0.13	0.99		
						Sample I	No. 41708						
_	1.30	43.62	11.33	10396	0.35	1.63	43.62	11.33	10396	0.35	1.63	100.00	18.62
1.30	1.40	45.29	19.10	9636	0.33	1.61	88.91	15.29	10009	0.34	1.62	56.38	24.26
1.40	1.60	9.09	39.60	7053	0.12	0.83	98.00	17.54	9735	0.32	1.55	11.09	45.31
1.60	-	2.00	71.25	3139	0.63	0.95	100.00	18.62	9603	0.33	1.53	2.00	71,25
Minus 100) Mesh	1.32	31.72	8854	0.67	1.78	*100.00	18.79	9593	0.33	1.54		

.

Table 26. (continued)

SPECIFI FRAC	C GRAVI	TY	INDIVID	UALFRAG	CTIONS			CUMU	LATIVEFL	OAT		CUMU SI	LATIVE NK
					Percent	Sulfur				Percen	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Рутіціс	Total	Wt %	Ash %
						Sample 1	No. 41709						
_	1.30	TRACE											
1.30	1.40	98.00	10.88	10331	0.11	0.67	98.00	10.88	10331	0.11	0.67	100.00	11.00
1.40	1.60	0.56	16.61	10061	0.08	0.46	98.56	10.91	10329	0.11	0.67	2.00	16.96
1.60	-	1.44	17.10	9612	0.08	0.71	100.00	11.00	10319	0.11	0.67	1.44	17.10
Minus 10	0 Mesh	1.60	30.43	7630	0.12	0.47	*100.00	11.31	10277	0.11	0.67		
						Sample 1	No. 41710						
-	1.30	76.68	4.67	10877	0.01	1.18	76.68	4.67	10877	0.01	1.18	100.00	7.60
1.30	1.40	17.30	8.83	9834	0.01	1.00	93.98	5.44	10685	0.01	1.15	23.32	17.24
1.40	1.60	3.30	26.00	7207	0.12	0.80	97.28	6.13	10567	0.01	1.14	6.02	41.41
1.60	-	2.72	60.11	3391	0.10	0.51	100.00	7.60	10372	0.02	1,12	2.72	60.11
Minus 10	0 Mesh	1.06	19.72	9065	0.09	0.93	*100.00	7.73	10358	0.02	1.12		
						Sample N	No. 41711						
-	1.30	89.14	6.20	11001	0.01	1.36	89.14	6.20	11001	0.01	1.36	100.00	6.77
1.30	1.40	9.61	10.36	9719	0.01	1.44	98.75	6.60	10876	0.01	1 37	10.86	13.47
1.40	1.60	0.95	17.88	8575	0.05	1 30	99.70	6.71	10854	10.0	1.37	1.25	20.00
1.60	-	0.30	26.73	7719	0.05	2.30	100.00	6.77	10845	0.01	1.37	0.30	26.73
Minus 10	0 Mesh	1.87	10.61	10593	0.05	1.31	*100.00	6.84	10840	0.01	1.37		

Table 27. Washability Analyses of 3/4 Inch x 100 Mesh Coals, Drill Hole No. 2

.

SPECIFIC	C GRAVITY	Y	INDIVI	DUAL FR	ACTIONS			CUMU	LATIVE I	FLOAT		CUMU	LATIVE NK
					Percent	Salfur				Percent	Sulfur		
Sînk	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
					:	Sample I	vo. 41712						
-	1.30	70.72	6.65	11026	0.03	1.88	70.72	6.65	11026	0.03	1.88	100.00	11.39
1.30	1.40	19.96	15.29	9769	0.06	1.76	90.68	8.55	10749	0.04	1.85	29.28	22.83
1.40	1.60	8.08	36.67	7106	0.11	1.30	98.76	10.85	10451	0.04	1.81	9.32	38.99
1.60	-	1.24	54.08	4867	0.18	1.18	100.00	11.39	10382	0.04	1.80	1.24	54.08
Minus 10	0 Mesh	1.62	18.08	9491	0.09	1.55	*100.00	11.49	10368	0.05	1.80		
					:	Sample N	No. 41713						
-	1.30	96.22	6.69	11073	0.02	1.53	96.22	6.69	11073	0.02	1.53	100.00	6.93
1.30	1.40	3.18	12.61	9852	0.04	1.55	99.40	6.88	11034	0.02	1.53	3.78	12.95
1.40	1.60	0.42	12.45	9706	0.01	1.57	99.82	6.90	11028	0.02	1.53	0.60	14.76
1.60	-	0.18	20.16	8904	0.02	1.73	100.00	6.93	11025	0.02	1.53	0.18	20.16
Minus 10) Mesh	0.42	13.95	11080	0.03	1.54	*100.00	6.96	11025	0.02	1.53		
					;	Sample N	lo. 41714						
_	1.30	70.29	7.08	11049	0.01	1.54	70.29	7.08	11049	0.01	1.54	100.00	15.89
1.30	1.40	10.18	20.13	9279	0.02	1.42	80.47	8.73	10825	0.01	1.52	29.71	36.73
1.40	1.60	14,49	41.73	6305	0.05	1.07	94.96	13.77	10135	0.02	1.46	19.53	45.39
1.60	-	5.04	55.90	4320	0.06	0.77	100.00	15.89	9842	0.02	1.42	5.04	55.90
Minus 100) Mesh	1.34	24.88	8840	0.03	1.31	*100.00	16.01	9829	0.02	1,42		

.

Table 27. (continued)

SPECIFIC FRACE	C GRAVIT	Y	INDIVID	UAL FRAG	CTIONS			CUMU	ATIVEFL	OAT		CUMU SI	LATIVE NK
					Percent	Sulfur				Percent	Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
				_		Sample 1	No. 41715						
1.30 1.40 1.60	1.30 1.40 1.60	89.18 8.01 2.57 0.24	8.40 24.03 32.13 26.12	11119 8948 7781 8462	0.01 0.03 0.02 0.02	1.42 1.65 1.32 1.40	89.18 97.19 99.76 100.00	8.40 9.69 10.27 10.30	11119 10940 10859 10853	0.01 0.01 0.01 0.01	1.42 1.44 1.44 1.44	100.00 10.82 2.81 0.24	10.30 26.00 31.62 26.12
Minus 10	0 Mesh	1.62	14.80	11042	0.06	1.39	*100.00	10.38	10856	0.01	1.44		
						Sample M	No. 41716						
- 1.30 1.40 1.60	1.30 1.40 1.60	86.75 7.38 3.29 2.58	6.03 17.75 36.63 64.64	11461 9783 7172 3346	0.01 0.01 0.03 0.03	0.97 0.77 0.53 0.35	86.75 94.13 97.42 100.00	6.03 6.95 7.95 9.41	11461 11329 11189 10987	0.01 0.01 0.01 0.01	0.97 0.95 0.94 0.92	100.00 13.25 5.87 2.58	9.41 31.57 48.94 64.64
Minus 10	0 Mesh	1.45	20.11	10253	0.01	0.95	*100.00	9.57	10976	0.01	0.93		
						Sample M	to. 41717						
- 1.30 1.40 1.60	1.30 1.40 1.60	80.76 13.22 3.74 2.28	6.11 20.16 36.95 58.59	11202 9364 7081 4246	0.01 0.09 0.11 0.11	1,23 1,31 1.06 0.76	80.76 93.98 97.72 100.00	6.11 8.09 9.19 10.32	11202 10943 10796 10646	0.01 0.02 0.02 0.03	1.23 1.24 1.23 1.22	100.00 19.24 6.02 2.28	10.32 27.98 45.15 58.59
Minus 10	0 Mesh	1.21	21.02	9898	0.16	1.58	*100.00	10.45	10637	0.03	1.23		

Table 27. (continued)

SPECIFIC FRAC	PECIFIC GRAVITY FRACTIONS		INDIVI	DUAL FR	ACTIONS			CUMI	ILATIVE	FLOAT		CUMU SI	LATIVE INK
					Percent	Sulfur				Percen	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample 1	No. 41718						
_	1.30	52.51	9.49	10679	0.10	1.71	52.51	9.49	10679	0.10	1.71	100.00	16.51
1.30	1.40	35.79	18 00	8583	0.17	1.48	88.30	12.94	9829	0.13	1.62	47.49	24.28
1.40	1.60	8.47	38.20	6832	0.15	1.24	96.77	15.15	9567	0.13	1.58	11.70	43.49
1.60	-	3.23	57.35	4280	0.12	0.78	100.00	16.51	9396	0.13	1.56	3.23	57.35
Minus 10	0 Mesh	1,15	25.82	8855	0.17	1.65	*100.00	16.62	9390	0.13	1,56		
						Sample]	No. 41719						
_	1.30	67.85	9.28	10981	0.04	1.55	67.85	9.28	10981	0.04	1.55	100.00	21.81
1.30	1.40	13.05	18.19	9412	0.15	1.58	80.90	10.72	10728	0.06	1.55	32.15	48.25
1.40	1.60	4.19	33.80	7252	0.16	1.28	85.09	11.85	10557	0.06	1.54	19.10	68.79
1.60	-	14.91	78.62	1707	0.09	0.31	100.00	21.81	9237	0.07	1.36	14.91	78.62
Minus 10	0 Mesh	1.29	40.03	7318	0.10	1.09	*100.00	22.04	9213	0.07	1.35		
						Sample 1	No. 41720						
_	1.30	61.54	8.80	11081	0.04	1.33	61.54	8.80	11081	0.04	1.33	100.00	25.04
1.30	1.40	9.63	22.04	9022	0.15	1.46	71.17	10.59	10802	0.05	1.35	38,46	51.02
1.40	1.60	9.74	42.85	6379	0.22	1.18	80.91	14.47	10270	0.07	1.33	28.83	60.70
1.60	_	19.09	69.81	3013	0.33	0.66	100.00	25.04	8885	0.12	1.20	19.09	69.81
Minus 10	0 Mesh	1.05	36.47	7952	0.07	1.09	*100.00	25.16	8875	0.12	1.20		

Table 27. (continued)

SPECIFI FRAC	C GRAVIT	ſΥ	INDIVID	UAL FRA	CTIONS			CUMU	LATIVE FL	 OAT		CUMU	LATIVE NK
					Percent	Sulfur				Percen	1 Sulfur		
Sink	Float	Wt %	Ash %	Вш/ІЪ	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Ŵt %	Ash %
						Sample l	No. 41721				-		
- 1.30 1.40 1.60	1.30 1.40 1.60	67.63 18.16 11.15 3.06	7.80 19.67 41.95 56.93	10842 9243 6762 4511	0.15 0.42 0.20 0.29	1.68 1.91 1.11 1.10	67.63 85.79 96.94 100.00	7.80 10.31 13.95 15.27	10842 10504 10073 9903	0.15 0.21 0.21 0.21	1.68 1.73 1.66 1.64	100.00 32.37 14.21 3.06	15.27 30.87 45.18 56.93
Minus 10	0 Mesh	1.31	28.06	8779	0.44	2.07	*100.00	15.43	9888	0.21	1.65		
						Sample I	No. 41722						
- 1.30 1.40 1.60	1.30 1.40 1.60	68.18 26.45 2.56 2.81	8.69 20.89 33.00 64.54	10752 9482 7442 3550	0.28 0.51 0.94 0.31	2.11 2.19 2.10 0.75	68.18 94.63 97.19 100.00	8.69 12.10 12.65 14.11	10752 10397 10319 10129	0.28 0.34 0.36 0.36	2.11 2.13 2.13 2.09	100.00 31.82 5.37 2.81	14.11 25.72 49.50 64.54
Minus 10	0 Mesh	1.31	28.37	8710	0.72	2.75	*100.00	14.29	10111	0.36	2.10		
						Sample M	No. 41723						
- 1.30 1.40 1.60	1.30 1.40 1.60	68.28 17.70 9.39 4.63	8.84 16.90 38.16 61_32	10807 9552 6922 3965	0.29 0.66 0.69 0.54	2.36 2.61 2.20 1.39	68.28 85.98 95.37 100.00	8.84 10.50 13.22 15.45	10807 10549 10192 9903	0.29 0.37 0.40 0.40	2.36 2.41 2.39 2.34	100.00 31.72 14.02 4.63	15.45 29.68 45.81 61.32
Minus 10) Mesh	0.81	26.66	8841	0.89	3.29	*100.00	15.54	9895	0.41	2.35		

Table 27. (continued)

SPECIFIC FRA	C GRAVITY		INDIVI	DUAL FR	ACTIONS			CUMI	LATIVE]	FLOAT		CUMU	LATIVE
					Percent	Sulfur				Percent	t Sulfur		
Sink	Float	W1 %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample 1	No. 41724						
_	1.30	87.04	7.83	10911	0.18	2.29	87.04	7.83	10911	0.18	2.29	100.00	10.09
1.30	1.40	9.97	15.87	9739	0.89	2.88	97.01	8.66	10791	0.25	2.35	12.96	25.23
1.40	1.60	0.93	33.62	7541	0.61	1.95	97.94	8.89	10760	0.26	2.35	2.99	56.45
1.60	-	2.06	66.76	3264	0.19	0.82	100.00	10.09	10605	0.25	2.32	2.06	66.76
Minus 10	0 Mesh	1.54	22.28	9579	0.52	2.78	*100.00	10.27	10590	0.26	2.32		
						Sample 1	No. 41725						
_	1.30	64.26	9.37	10846	0.32	2.45	64.26	9.37	10846	0.32	2.45	100.00	19.30
1,30	1.40	18.16	20.94	9255	0.43	2.11	82.42	11.92	10495	0.34	2.38	35.74	37.16
1.40	1.60	8.10	42.04	6685	0.10	1.14	90.52	14.61	10154	0.32	2.26	17.58	53.91
1.60	_	9.48	64.06	4032	0.06	0.64	100.00	19.30	9574	0.30	2.11	9.48	64.06
Minus 10	0 Mesh	1.36	31.90	8745	0.26	2,13	*100.00	19.47	9563	0.30	2.11		
						Sample I	No. 41726						
_	1.30	86.78	8.23	10909	0.11	1.84	86.78	8.23	10909	0.11	1.84	100.00	10.31
1.30	1.40	11.16	21.69	9254	1.30	2.90	97.94	9.76	10720	0.25	1.96	13.22	23.97
1.40	1.60	1.84	36.33	7183	1.00	2.31	99.78	10.25	10655	0.26	1.97	2.06	36.35
1.60	_	0.22	36.55	6872	2.25	3.64	100.00	10.31	10647	0.26	1.97	0.22	36.55
Minus 10	0 Mesh	1.18	19.93	10180	0.32	2.59	*100.00	10.42	10641	0.26	1.98		

Table 27. (continued)

SPECIFIC GRAVITY FRACTIONS INDIVIDUAL FRACTIONS Percent Sulf								CUMU	LATIVEFL	ΟΑΤ		CUMU SI	LATIVE NK
					Percent	Sulfur				Percent	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample I	No. 41727						
- 1.30 1.40 1.60	1.30 1.40 1.60	71.86 14.62 6.76 6.76	9.58 20.21 38.52 66.65	10708 9241 7032 3438	0.32 0.58 0.34 0.16	2.04 2.25 1.51 0.73	71.86 86.48 93.24 100.00	9.58 11.38 13.34 16.95	10708 10460 10211 9754	0.32 0.36 0.36 0.35	2.04 2.08 2.03 1.95	100.00 28.14 13.52 6.76	16.95 35.76 52.58 66.65
Minus 10	0 Mesh	0.48	36.43	7830	0.20	2.15	*100.00	17.04	9744	0.35	1.95		
						Sample 1	No. 41728						
- 1.30 1.40 1.60	1.30 1.40 1.60	59.12 18.32 12.08 10.48	9.14 20.01 43.55 63.45	10971 9418 6692 4154	0.51 1.45 0.38 0.23	2.69 3.60 1.57 0.90	59.12 77.44 89.52 100.00	9.14 11.71 16.01 20.98	10971 10604 10076 9455	0.51 0.73 0.68 0.64	2.69 2.91 2.73 2.53	100.00 40.88 22.56 10.48	20.98 38.10 52.79 63.45
Minus 10	0 Mesh	0.99	39.35	7251	0.58	2.89	*100.00	21.16	9 434	0.64	2.54		
						Sample N	No. 41729						
- 1.30 1.40 1.60	1.30 1.40 1.60	49.91 20.40 15.52 14.17	9.28 19.83 40.10 69.73	10730 9352 6931 3167	0.21 0.96 1.00 0.31	2,22 2.84 2.33 0.85	49.91 70.31 85.83 100.00	9.28 12.34 17.36 24.78	10730 10330 9716 8788	0.21 0.43 0.53 0.50	2.22 2.40 2.39 2.17	100.00 50.09 29.69 14.17	24.78 40.23 54.24 69.73
Minus 10	0 Mesh	1.86	41.25	6846	0.46	2.07	*100.00	25.08	8752	0.50	2.17		

Table 27. (continued)

SPECIFIC FRA	C GRAVITY	<	INDIVI	DUAL FR	ACTIONS			CUMU	LATIVE	FLOAT		CUMU	LATIVE
					Percent	Sulfur				Percen	t Sulfur		
Sink	Float	₩t %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Bm/lb	Pyritic	Total	WL %	Ash %
						Sample I	No. 41730				-		
_	1.30	74,17	7.27	10537	0.02	0.75	74.17	7.27	10537	0.02	0.75	100.00	12.27
1.30	1.40	16.36	16.40	9253	0.10	0.97	90.53	8.92	10305	0.03	0.79	25.83	26.61
1.40	1.60	7.38	42.72	6428	0.10	0.62	97.91	11.47	10013	0.04	0.78	9.47	44.25
1.60	-	2.09	49.65	5355	0.13	0.69	100.00	12.27	9915	0.04	0.78	2.09	49.65
Minus 10	0 Mesh	0.61	17.74	9040	0.13	0.85	*100.00	12.30	9910	0.04	0.78		
						Sample I	No. 41731						
_	1,30	24.12	8.08	10466	0.15	1.72	24.12	8.08	10466	0.15	1.72	100.00	26.73
1.30	1.40	32.35	15.76	9219	0.25	1.63	56.47	12.48	9752	0.21	1.67	75.88	32.66
1.40	1.60	33.42	40.74	6434	0.30	1.32	89.89	22.99	8518	0.24	1.54	43.53	45.22
1.60	-	10.11	60.04	4284	0.21	0.73	100.00	26.73	8090	0.24	1.46	10.11	60.04
Minus 10	0 Mesh	1,11	34.78	7980	0.34	1.49	*100.00	26.82	8089	0.24	1.46		
						Sample 1	No. 41732						
~	1.30	40.42	6.96	10956	0.12	1.73	40.42	6.96	10956	0.12	1 73	100.00	16.95
1.30	1.40	26.00	8.61	10898	0.11	1.56	66.42	7.61	10933	0.12	1.66	59.58	23.73
1.40	1.60	25.04	27.12	5948	0.10	0.96	91.46	12.95	9568	0.11	1.47	33 58	35.43
1,60	-	8.54	59.81	4069	0.16	0.69	100.00	16.95	9099	0.12	1.40	8.54	59.81
Minus 10	0 Mesh	0.55	26.87	7130	0.20	1.32	*100.00	17.00	9088	0.12	1.40		

-

Table 28. Washability Analyses of 3/4 Inch x 100 Mesh Coal, Drill Hole No. 3

SPECIFI FRAC	C GRAVIT	Ϋ́	INDIVID	UALFRA	CTIONS			CUMU	LATIVE FL	OAT		CUMU	LATIVE
					Percent	Sulfur				Percent	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
		_				Sample 1	No. 41733						
1.30 1.40 1.60	1.30 1.40 1.60	44.84 24.49 29.32 1.35	7.89 20.00 43.71 45.41	10607 8993 5937 5898	0.07 0.33 0.09 0.21	1.34 1.80 0.96 0.99	44.84 69.33 98.65 100.00	7.89 12.17 21.54 21.86	10607 10037 8818 8779	0.07 0.16 0.14 0.14	1.34 1.50 1.34 1.34	100.00 55.16 30.67 1.35	21.86 33.22 43.78 45.41
Minus 10	0 Mesh	0.78	23.64	7542	0.30	1.45	*100.00	21.88	8769	0.14	1.34		
						Sample I	No. 41734						
- 1.30 1.40 1.60	1.30 1.40 1.60	94.32 3.83 1.04 0.81	6.15 14.60 36.47 8.55	10885 9520 6768 8211	0.02 0.09 0.09 0.18	1.47 1.47 1.02 1.23	94.32 98.15 99.19 100.00	6.15 6.48 6.79 6.81	10885 10832 10789 10768	0.02 0.02 0.02 0.02	1.47 1.47 1.47 1.46	100.00 5.68 1.85 0.81	6.81 17.74 24.25 8.55
Minus 10	0 Mesh	0.35	9.60	9867	0.12	1.49	*100.00	6.82	10765	0.03	1.46		
						Sample N	No. 41735						
1.30 1.40 1.60	1.30 1.40 1.60	86.94 11.29 1.14 0.63	6.35 16.64 24.24 25.38	10793 9183 8320 8269	0.03 0.28 0.86 0.36	1.48 1.73 1.94 1.52	86.94 98.23 99.37 100.00	6.35 7.53 7.72 7.84	10793 10608 10582 10567	0.03 0.06 0.07 0.07	1.48 1.51 1.51 1.51	100.00 13.06 1.77 0.63	7.84 17.73 24.65 25.38
Minus 10	0 Mesh	0.63	10 .49	9878	0.26	1.66	*100.00	7.85	10563	0.07	1.51		

Table 28. (continued)

SPECIFI FRA	C GRAVIT CTIONS	Y	INDIVI	DUAL FR	ACTIONS			CUML	LATIVE	FLOAT		CUMU SI	LATIVE INK
					Percent	Sulfur				Percent	Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/Ib	Pyritic	Total	Wt %	Ash %
						Sample	No. 41736						
_	1.30	73.38	6.96	11025	0.01	1.41	73.38	6.96	11025	0.01	1.41	100.00	10.95
1.30	1.40	21.26	20.41	9094	0.03	1.32	94.64	9.98	10591	0.01	1.39	26.62	21.95
I.40	1.60	4.34	26.45	7524	0.04	0.99	98.98	10.70	10457	0.02	1.37	5.36	28.08
1.60	_	1.02	35.00	7159	0.13	1.05	100.00	10.95	10423	0.02	1.37	1.02	35.00
Minus 10	0 Mesh	0.87	13.18	9216	0.04	1.22	*100.00	10.97	10413	0.02	1.37		
						Sample 1	No. 41737						
_	1.30	74.26	7.31	11013	0.23	2.06	74.26	7.31	11013	0.23	2.06	100.00	10.28
1.30	1.40	22.09	15.84	9574	0.70	2.44	96.35	9.27	10683	0.34	2.15	25.74	18.86
1.40	1.60	2.59	34.42	6995	0.48	1.71	98.94	9.92	10587	0.34	2.14	3.65	37.17
1.60	-	1.06	43.89	6013	0.25	1.21	100.00	10.28	10538	0.34	2.13	1.06	43.89
Minus 10	0 Mesh	1.94	12.06	9502	0.39	2.00	*100.00	10.32	10518	0.34	2,12		
						Sample 1	No. 41738						
	1.30	54.87	9.35	10499	0.13	1.55	54.87	9.35	10499	0.13	1.55	100.00	16.84
1.30	1.40	32.05	19.22	9359	0.14	1.35	86.92	12.99	10079	0.13	1.48	45.13	25.96
1.40	1.60	8.72	37.79	6602	0.09	1.13	95.64	15.25	9762	0.13	1,44	13.08	42.46
1.60	-	4.36	51.80	4884	0.13	0.84	100.00	16.84	9549	0.13	1.42	4.36	51.80
Minus 10	0 Mesh	1.73	16.97	8708	0.04	1.21	*100.00	16.85	9535	0.13	1.41		

Table 28. (continued)

SPECIFIC	C GRAVIT	Y	INDIVID	UALFRA	CTIONS			CUMU	LATIVE FL	OAT		CUMU	LATIVE NK
			_		Percent	Sulfur				Percen	l Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample 1	No. 41739						
- 1.30 1.40 1.60	1.30 1.40 1.60	89.20 9.52 1.04 0.24	6.62 19.44 35.14 28.90	10903 9358 7195 8075	0.01 0.03 0.03 0.08	1,25 1.01 0.88 0.99	89.20 98.72 99.76 100.00	6.62 7.86 8.14 8.19	10903 10754 10717 10711	0.01 0.01 0.01 0.01	1.25 1.23 1.22 1.22	100.00 10.80 1.28 0.24	8.19 21.16 33.97 28.90
Minus 10	0 Mesh	0.94	10.81	9881	0.02	0.99	*100.00	8.21	10703	0.01	1.22		
						Sample I	No. 41740						
- 1.30 1.40 1.60	1.30 1.40 1.60	69.34 17.73 10.69 2.24	6.48 22.74 34.66 51.76	10864 8787 7154 5092	0.03 0.12 0.08 0.22	1.34 1.29 1.02 0.85	69.34 87.07 97.76 100.00	6.48 9.79 12.51 13.39	10864 10441 10082 9970	0.03 0.05 0.05 0.06	1.34 1.33 1.30 1.29	100.00 30.66 12.93 2.24	13.39 29.02 37.62 51.76
Minus 10	0 Mesh	1.63	17.79	8531	0.49	1.68	*100.00	13.46	9947	0.06	1.29		
						Sample 1	No. 41741						
- 1.30 1.40 1.60	1.30 1.40 1.60	95.59 3.39 0.59 0.43	5.87 20.02 28.78 22.03	10550 9214 8634 8860	0.07 0.17 0.21 0.63	1.23 1.32 1.28 1.73	95.59 98.98 99.57 100.00	5.87 6.35 6.49 6.55	10550 10504 10493 10486	0.07 0.07 0.07 0.08	1.23 1.23 1.23 1.24	100.00 4.41 1.02 0.43	6.55 21.39 25.93 22.03
Minus 10) Mesh	0.51	11.36	10038	0.68	1.86	*100.00	6.58	10484	0.08	1.24		

Table 28. (continued)

SPECIFIC FRA	C GRAVITY	<u></u>	INDIVI	DUAL FR	ACTIONS			CUML	JLATIVE I	FLOAT		CUMU	LATIVE INK
					Percent	Sulfur				Percent	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	W1 %	Ash %
						Sample 1	No. 41742						
_	1.30	95.06	6.92	11126	0.04	1.56	95.06	6.92	11126	0.04	1.56	100.00	7,79
1.30	1.40	2.62	15.52	9810	0.10	1.49	97.68	7.15	11091	0.04	1.56	4.94	24.45
1.40	1.60	1.34	21.92	7993	0.08	1.23	99.02	7.35	11049	0.04	1.55	2.32	34.53
1.60	_	0.98	51.78	4895	0.21	0.86	100.00	7.79	10988	0.04	1.55	0.98	51.78
Minus 10	0 Mesh	0.77	12.96	11814	0.33	2.08	*100.00	7,83	10995	0.05	1.55		
						Sample 1	No. 41743						
~	1.30	74.17	6.99	1 0949	0.10	1.70	74.17	6.99	10949	0.10	1.70	100.00	12.84
1.30	1.40	14.33	17.75	9392	0.23	1.75	88.50	8.73	10697	0.12	1.71	25.83	29.62
1.40	1.60	7.74	37.01	7267	0.25	1.35	96.24	11.01	10421	0.13	1.68	11.50	44,42
1.60	-	3.76	59.66	4125	0.31	0.86	100.00	12.84	10184	0.14	1.65	3.76	59.66
Minus 10	0 Mesh	2.01	24.36	8263	0.39	1.86	*100.00	13.06	10146	0.14	1.65		
					1	Sample N	No. 41744						
_	1.30	54.28	10.02	10535	0.12	1.91	54.28	10.02	10535	0.12	1.91	100.00	19.97
1.30	1.40	25.06	22.99	9226	0.12	1.60	79.34	14,12	10122	0.12	1.81	45.72	31.78
1.40	1.60	18.84	40.97	6423	0.06	1.14	98.18	19.27	9412	0.11	1.68	20.66	42.44
1.60	-	1.82	57.63	6475	0.11	1.06	100.00	19.97	9358	0.11	1.67	1.82	57.63
Minus 100	0 Mesh	1.28	21.84	7998	0.11	1.36	*100.00	19.99	9341	0.11	1.67		

Table 28. ((continued)
-------------	-------------

SPECIFI	C GRAVIT	Ϋ́	INDIVID	UAL FRAG	CTIONS			CUMU	ATIVE FL	OAT		CUMU	LATIVE NK
					Percent	Sulfur				Percent	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Bta/lb	Pyritic	Total	W1 %	Ash %
				·		Sample N	No. 41745			_			
1.30 1.40 1.60	1.30 1.40 1.60	94.49 3.60 0.90 1.01	7.10 16.60 26.22 36.90	11113 9923 8498 7111	0.03 0.09 0.11 0.20	1.32 1.41 1.20 1.06	94.49 98.09 98.99 100.00	7.10 7.45 7.62 7.92	11113 11069 11046 11006	0.03 0.03 0.03 0.03	1.32 1.32 1.32 1.32	100.00 5.51 1.91 1.01	7.92 21.89 31.87 36.90
Minus 10	0 Mesh	0.50	9.74	10159	0.40	1.52	*100.00	7.92	11002	0.04	1.32		
						Sample N	No. 41746						
1.30 1.40 1.60	1.30 1.40 1.60 -	91.39 6.68 0.89 1.04	7.83 16.83 22.14 40.86	10959 9919 9094 7013	0.01 0.02 0.03 0.06	1.53 1.56 1.26 0.94	91.39 98.07 98.96 100.00	7.83 8.44 8.57 8.90	10959 10888 10872 10832	0.01 0.01 0.01 0.01	1.53 1.53 1.53 1.52	100.00 8.61 1.93 1.04	8.90 20.28 32.23 40.86
Minus 10	0 Mesh	0.59	8.81	10093	0.02	1.21	*100.00	8.90	10828	0.01	1.52		
						Sample M	No. 41747						
1.30 1.40 1.60	1.30 1.40 1.60	80.00 10.61 3.16 6.23	6.57 19.46 54.24 42.01	11110 9388 4826 7408	0.10 0.28 0.38 0.21	1.39 1.96 1.13 1.42	80.00 90.61 93.77 100.00	6.57 8.08 9.63 11.65	11110 10908 10703 10498	0.10 0.12 0.13 0.13	1.39 1.46 1.45 1.44	100.00 20.00 9.39 6.23	11.65 31.98 46.13 42.01
Minus 100) Mesh	0.81	14.31	9323	0.09	1.17	*100.00	11.67	10489	0.13	1.44		

Table 28. (continued)

SPECIFIC	C GRAVIT	ř –	INDIVI	DUAL FR	ACTIONS			CUMU	LATIVE	FLOAT		CUMU	LATIVE
					Percent	Suifar				Percent	Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Ругіцс	Total	Wt %	Ash %	Baı/ìb	Pyritic	Total	Wt %	Ash %
						Sample 1	No. 41748						
_	1.30	75.70	7.98	11056	0.10	1.48	75.70	7.98	11056	0.10	1.48	100.00	13.62
1.30	1.40	13.76	23.53	8916	0.08	1.59	89.46	10.37	10727	0.10	1.50	24.30	31.19
1.40	1.60	9.94	41.74	6326	0.10	1.14	99.40	13.51	10287	0.10	1.46	10.54	41.20
1.60	-	0.60	32.24	7740	0.19	1.38	100.00	13.62	10271	0.10	1.46	0.60	32.24
Minus 10	0 Mesh	0.72	16.21	9315	0.25	1.52	*100.00	13.64	10265	0.10	1.46		
						Sample 1	No. 41749						
	1.30	91.30	6.72	11305	0.09	1.07	91.30	6.72	11305	0.09	1.07	100.00	10.52
1.30	1.40	2.40	23.70	8838	0.17	1.13	93.70	7.15	11242	0.09	1.07	8.70	50.42
1.40	1.60	5.16	58.94	4321	0.20	0.84	98.86	9.86	10881	0.10	1.06	6.30	60.60
1.60	-	1.14	68.09	3308	0.11	0.39	100.00	10.52	10 794	0.10	1.05	1.14	68.09
Minus 10	0 Mesh	1.28	22.23	8486	0.41	1.62	*100.00	10.67	10765	0.10	1.06		
						Sample 1	No. 41750						
_	1.30	67.95	8.50	11082	0.14	1.67	67.95	8.50	11082	0.14	1.67	100.00	15.40
1.30	1.40	19.52	23.02	9064	0.39	1.85	87.47	11.74	10632	0.20	1.71	32.05	30.01
1.40	1.60	11.56	40.81	6777	0.32	1.37	99.03	15.13	10182	0.21	1.67	12.53	40.91
1.60	-	0.97	42.12	6584	0.10	0.82	100.00	15.40	10147	0.21	1.66	0.97	42.12
Minus 10	0 Mesh	0.26	21.71	9084	0.45	1.97	*100.00	15,41	10144	0.21	1.66		

Table 28. (continued)

SPECIFI FRAC	C GRAVIT	TY	INDIVID	UAL FRAG	TIONS			CUMUI	LATIVE FL	DAT		CUMU	LATIVE NK
					Percent	Sulfur				Percent	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample I	No. 41826						<u></u>
- 1.30 1.40 1.60	1.30 1.40 1.60	73.61 16.28 5.66 4.45	8.25 19.36 36.54 64.90	10632 9480 7284 3692	0.22 1.21 1.25 0.61	2.40 3.29 2.89 1.12	73.61 89.89 95.55 100.00	8.25 10.26 11.82 14.18	10632 10423 10237 9946	0.22 0.40 0.45 0.46	2.40 2.56 2.58 2.52	100.00 26.39 10.11 4.45	14.18 30.72 49.02 64.90
Minus 10	0 Mesh	0.98	32.06	7064	1.00	2.58	*100.00	14.35	9918	0.46	2.52		
						Sample I	No. 41827						
	1.30 1.40 1.60	72.08 18.08 7.38 2.46	10.20 21.02 27.99 56.38	10721 9318 8153 4691	0.26 1.55 1.62 0.47	1.78 3.25 3.02 1.36	72.08 90.16 97.54 100.00	10.20 12.37 13.55 14.61	10721 10440 10267 10129	0.26 0.52 0.60 0.60	1.78 2.07 2.15 2.13	100.00 27.92 9.84 2.46	14.61 25.98 35.09 56.38
Minus 10	0 Mesh	1.33	25.12	8066	1.65	3.01	*100.00	14.74	10102	0.61	2.14		
						Sample N	No. 41828						
- 1.30 1.40 1.60	1.30 1.40 1.60	65.67 22.00 9.36 2.97	8.34 21.84 38.54 50.70	11085 9127 7024 5661	0.16 0.38 0.26 0.20	1.61 1.85 1.22 0.89	65.67 87.67 97.03 100.00	8.34 11.73 14.31 15.39	11085 10594 10249 10113	0.16 0.22 0.22 0.22	1.61 1.67 1.63 1.60	100.00 34.33 12.33 2.97	15.39 28.89 41.47 50.70
Minus 100) Mesh	0.75	29.53	7215	1.00	2.63	*100.00	15.50	10091	0.22	1.61		

Table 28. (continued)

.

SPECIFIC FRA	C GRAVIT CTIONS	Y	INDIVI	DUAL FR	ACTIONS		_	CUMU	ILATIVE	FLOAT		CUMU SI	LATIVE NK
					Percent	Sulfur				Percen	t Sulfur		
Siak	Float	₩t %	Ash %	Btu/lb	Рутіtіс	Total	Wt %	Ash %	Btn/lb	Pyritic	Total	Wt %	Ash %
						Sample 1	No. 41829						
_ 1.30	1.30 1.40	66.04 31.85	7.26 18 17	10571	0.01	1.09 1.01	66.04 97.89	7.26 10.81	10571 10180	0.01 0.01	1.09 1.06	100.00	11.20 18.86
1.40 1.60	1.60	1.51 0.60	30.53 25.94	7641 8300	0.06 0.06	0.92 0.91	99.40 100.00	11.11 11.20	10142 10131	0.01 0.01	1.06 1.06	2.11 0.60	29.22 25.94
Minus 10	0 Mesh	0.67	19.52	10560	0.05	1.06	*100.00	11.25	10133	0.01	1.06		
						Sample 1	No. 41830						
_ 1.30	1.30 1.40	83.55 9.37	6.39 22.22	10985 8613	0.01	1.05	83.55 92.92	6.39 7.99	10985 10746	0.01	1.05	100.00	10.29 30.13
1.40 1.60	1.60	5.83 1.25	37.54 54.83	6900 4734	0.10 0.13	0.92 0.72	98.75 100.00	9.73 10.29	10519 10446	0.03 0.03	1.06 1.06	7.08 1.25	40.59 54.83
Minus 10	0 Mesh	0.59	23.50	9664	0.10	1.08	*100.00	10.37	10442	0.03	1.06		
						Sample 1	No. 41831						
- 1.30 1.40 1.60	1.30 1.40 1.60	89.80 7.71 1.81	6.81 16.39 32.83 27.17	10819 9322 7453 7101	0.03 0.05 0.13	1.07 1.16 0.76	89.80 97.51 99.32	6.81 7.57 8.03	10819 10701 10641	0.03 0.03 0.03	1.07 1.08 1.07	100.00 10.20 2.49	8.23 20.69 34.02
Minus 10	- 0 Mesh	0.45	16.02	10444	0.06	0.99	*100.00	8.26	10617	0.03	1.07	0.08	31,11

Table 29. Washability Analyses of 3/4 Inch x 100 Mesh Coal, Drill Hole No. 4

SPECIFI FRAC	C GRAVII	Υ 	INDIVID	UAL FRAG	CTIONS			CUMU	LATIVE FL	OAT		CUMU SI	LATIVE NK
					Percent	Sulfur				Percen	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
-						Sample 1	No. 41832						
1.30 1.40 1.60	1.30 1.40 1.60	43.26 26.42 20.57 9.75	6.37 19.69 36.71 57.46	10741 8998 7040 4570	0.12 0.45 0.34 0.16	1.62 1.77 1.36 0.80	43.26 69.68 90.25 100.00	6.37 11.42 17.18 21.11	10741 10080 9387 8918	0.12 0.25 0.27 0.26	1.62 1.68 1.60 1.53	100.00 56.74 30.32 9.75	21.11 32.35 43.38 57.46
Minus 10	0 Mesh	1.31	44.04	6843	0.28	1.29	*100.00	21.41	8891	0.26	1.52		
						Sample 1	No. 41833						
- 1.30 1.40 1.60	1.30 1.40 1.60	36.57 26.92 17.33 19.18	6.54 15.97 41.57 63.35	10889 9359 6333 3582	0.08 0.68 0.26 0.20	1.19 1.74 0.98 0.59	36.57 63.49 80.82 100.00	6.54 10.54 17.19 26.05	10889 10240 9402 8286	0.08 0.33 0.32 0.30	1.19 1.42 1.33 1.19	100.00 63.43 36.51 19.18	26.05 37.29 53.01 63.35
Minus 10	0 Mesh	0.82	41.52	6880	0.30	1.07	*100.00	26.17	8275	0.30	1.19		
						Sample 1	No. 41834						
- 1.30 1.40 1.60	1.30 1.40 1.60	99.33 0.47 0.10 0.10	5.39 8.85 11.51 12.27	11223 10371 10093 9998	0.05 0.04 0.15 0.20	0.77 0.79 0.84 0.87	99.33 99.80 99.90 100.00	5.39 5.41 5.41 5.42	11223 11219 11218 11217	0.05 0.05 0.05 0.05	0.77 0.77 0.77 0.77	100.00 0.67 0.20 1.10	5.42 9.76 11.89 12.27
Minus 10	0 Mesh	0.41	12.20	11879	0.13	0.80	*100.00	5.45	11219	0.05	0.77		

Table 29. (continued)

SPECIFIC FRA	C GRAVITY		INDIVI	DUAL FR.	ACTIONS	_		CUMU	LATIVE 1	FLOAT		CUMU SI	LATIVE
					Percent	Sulfur				Percent	t Sulfur		
Sink	Float	Wt %	Astı %	Btu/Ib	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample 1	No. 41835						
_	1.30	91.01	6.44	10994	0.04	0.90	91.01	6.44	10994	0.04	0.90	100.00	7.46
1.30	1.40	8.39	17.24	9809	0.08	1 1 1	99.40	7 35	10894	0.04	0.92	8.99	17.78
1.40	1.60	0.41	23.15	8692	0.06	1.07	99.81	7.42	10885	0.04	0.92	0.60	25.35
1.60	_	0.19	30.09	9182	0.24	1.62	100.00	7.46	10882	0.04	0.92	0.19	30.09
Minus 10	0 Mesh	0.32	14.17	11490	0.13	1.07	*100.00	7.48	10884	0.04	0.92		
						Sample 1	No. 41836						
_	1.30	93.64	5.55	10977	0.05	0.84	93.64	5.55	10977	0.05	0.84	100.00	6.44
1.30	1.40	5.07	16.41	9625	0.38	1.49	98.71	6.11	10908	0.07	0.87	6.36	19.62
1.40	1.60	1.13	33.38	7476	0.06	0.80	99.84	6.42	10869	0.07	0.87	1.29	32.23
1.60	-	0.16	24.14	8685	0.15	0.88	100.00	6.44	10865	0.07	0.87	0.16	24.14
Minus 10	0 Mesh	0.32	12.22	11599	0.12	0.92	*100.00	6.46	10868	0.07	0.87		
						Sample I	No. 41837						
_	1.30	95.10	5.68	11047	0.06	1.03	95.10	5.68	11047	0.06	1.03	100.00	6.88
1.30	1.40	2.48	17.06	9603	0.04	0.98	97.58	5.97	11010	0.06	1.03	4.90	30.19
1.40	1.60	1.53	35.10	7697	0.04	0.74	99.11	6,42	10959	0.06	1.02	2,42	43.64
1.60	_	0.89	58.33	4616	0.05	0.43	100.00	6.88	10903	0.06	1.02	0.89	58.33
Minus 10	0 Mesh	1.65	12.63	11231	0.05	0.93	*100.00	6.97	10908	0.06	1.02		

Table 29. (continued)

SPECIFI FRAC	C GRAVIT	TY	INDIVID	UALFRA	CTIONS			CUMU	LATIVE FL	OAT		CUMU SI	LATIVE NK
					Percent	Sulfur				Percent	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	WI %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample 1	No. 41838						
- 1.30 1.40 1.60	1.30 1.40 1.60	98.26 1.34 0.15 0.25	5.33 7.37 8.89 29.19	10820 10448 10320 8244	0.01 0.04 0.05 0.07	0.66 0.70 0.76 0.81	98.26 99.60 99.75 100.00	5.33 5.36 5.36 5.42	10820 10815 10814 10808	0.01 0.01 0.01 0.01	0.66 0.66 0.66 0.66	100.00 1.74 0.40 0.25	5.42 10.64 21.58 29.19
Minus 10	0 Mesh	0.25	9.95	11856	0.04	0.74	*100.00	5.43	10810	0.01	0.66		
						Sample 1	No. 41839						
- 1.30 1.40 1.60	1.30 1.40 1.60	70.75 21.23 7.25 0.77	6.11 20,13 36.98 50.37	11041 9315 7193 5688	0.01 0.04 0.03 0.04	1.02 0.99 0.74 0.56	70.75 91.98 99.23 100.00	6.11 9.35 11.36 11.67	11041 10643 10391 10354	0.01 0.02 0.02 0.02	1.02 1.01 0.99 0.99	100.00 29.25 8.02 0.77	11.67 25.10 38.27 50.37
Minus 10	0 Mesh	0.42	22.06	10593	0.03	0.94	*100.00	11.71	10355	0.02	0.99		
						Sample N	∛o. 41840						
- 1.30 1.40 1.60	1.30 1.40 1.60	93.03 5.82 0.91 0.24	6.55 17.95 34.33 47.32	11060 9340 7248 6030	0.02 0.03 0.03 0.06	1.23 1.21 0.92 0.73	93.03 98.85 99.76 100.00	6.55 7.22 7.47 7.56	11060 10959 10925 10913	0.02 0.02 0.02 0.02	1.23 1.23 1.23 1.22	100.00 6.97 1.15 0.24	7.56 21.10 37.04 47.32
Minus 10	0 Mesh	0.42	13.64	11365	0.04	1.22	*100.00	7.59	10915	0.02	1.22		

Table 29. (continued)

SPECIFI FRA	C GRAVITY CTIONS	ť	INDIVI	DUAL FR	ACTIONS			CUMU	LATIVE I	FLOAT		CUMU SI	LATIVE NK
					Percent	Sulfur				Percent	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	W1 %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample l	No. 41841						
-	1.30	93.02	5.81	11146	0.02	0.85	93.02	5.81	11146	0.02	0.85	100.00	7,38
1.30	1.40	4.14	16.21	9580	0.03	0.89	97.16	6.25	11079	0.02	0.85	6.98	28.35
1.40	1.60	1.63	36.31	7333	0.02	0.56	98.79	6.75	11017	0.02	0.85	2.84	46.04
1.60	~	1.21	59.14	4451	0.03	0.32	100.00	7.38	10938	0.02	0.84	1.21	59.14
Minus 10	0 Mesh	0.85	16.39	10189	0.04	0.73	*100.00	7.46	10932	0.02	0.84		
						Sample I	No. 41842						
	1.30	70.84	7.53	11050	0.02	1.02	70.84	7.53	11050	0.02	1.02	100.00	13.90
1.30	1.40	16.10	21.26	9223	0.02	0.81	86.94	10.07	10712	0.02	0.98	29.16	29.38
1.40	1.60	12.24	39.21	6879	0.06	0.67	99.18	13.67	10239	0.02	0.94	13.06	39.38
1.60	-	0.82	41.95	6415	0.08	0.64	100.00	13.90	10207	0.03	0.94	0.82	41.95
Minus 10	0 Mesh	0.81	26.70	9 442	0.04	0.88	*100.00	14.00	10201	0.03	0.94		
						Sample I	No. 41843						
_	1.30	95.76	6.17	11102	0.04	1.02	95.76	6.17	11102	0.04	1.02	100.00	6.77
1.30	1.40	3.11	15.38	9935	0.02	0.97	98.87	6.46	11065	0.04	1.02	4.24	20.26
1.40	1.60	0.95	31.74	7711	0.02	0.62	99.82	6.70	11033	0.04	1.01	1.13	33.71
1.60	_	0.18	44.08	6390	0.07	0.52	100.00	6.77	11025	0.04	1.01	0.18	44.08
Minus 10	0 Mesh	0.89	12.76	11115	0.01	0.96	*100.00	6.82	11026	0.04	1.01		

Table 29. (continued)

SPECIFI FRAC	C GRAVII	TY	- INDIVID	UALFRA	CTIONS			CUMU	LATIVE FL	0AT			LATIVE
					Percent	Sulfur				Percent	Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample 1							
- 1.30 1.40 1.60	1.30 1.40 1.60	89.40 7.96 2.03 0.61	7.29 17.60 36.49 62.20	11170 9858 7219 3921	0.04 0.10 0.03 0.05	1.28 1.34 0.95 0.49	89.40 97.36 99.39 100.00	7.29 8.13 8.71 9.04	11170 11063 10984 10941	0.04 0.04 0.04 0.04	1.28 1.28 1.28 1.27	100.00 10.60 2.64 0.61	9.04 23.78 42.43 62.20
Minus 10	0 Mesh	0.29	16.60	11265	0.05	1.21	*100.00	9.06	10 94 2	0.04	1.27		
						Sample I	No. 41845						
- 1.30 1.40 1.60	1.30 1.40 1.60	65.90 26.79 3.47 3.84	8.27 15.57 33.45 60.35	11033 10258 7595 4399	0.01 0.06 0.09 0.11	1.29 1.41 1.08 0.62	65.90 92.69 96.16 100.00	8.27 10.38 11.21 13.10	11033 10809 10693 10451	0.01 0.02 0.03 0.03	1.29 1.32 1.32 1.29	100.00 34.10 7.31 3.84	13.10 22.43 47.58 60.35
Minus 10	0 Mesh	1.34	30.72	8426	0.04	1.04	*100.00	13.33	10425	0.03	1.29		
						Sample M	No. 41846						
- 1.30 1.40 1.60	1.30 1.40 1.60	70.03 25.01 4.50 0.46	6.96 12.08 34.25 49.20	11150 10672 7825 5724	0.03 0.05 0.02 0.03	1.32 1.23 0.65 0.56	70.03 95.04 99.54 100.00	6.96 8.31 9.48 9.66	11150 11024 10880 10856	0.03 0.04 0.03 0.03	1.32 1.30 1.27 1.26	100.00 29.97 4.96 0.46	9.66 15.98 35.64 49.20
Minus 10	0 Mesh	0.90	30.38	8923	0.02	0.87	*100.00	9.85	10839	0.03	1.26		

Table 29. (continued)

SPECIFI FRA	C GRAVIT	Y	INDIVI	DUAL FR	ACTIONS			CUMU	LATIVE	FLOAT		CUMU SI	LATIVE
					Percent	Sulfur				Percen	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/Ib	Рупітіс	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample 1	No. 41847						
_	1.30	47.41	6.67	10605	0.06	1.44	47.41	6.67	10605	0.06	1.44	100.00	17.13
1.30	1.40	36.13	17.27	9287	0.14	1.73	83.54	11.25	10035	0.09	1.57	52.59	26.55
1.40	1.60	9.54	32.88	7275	0.16	1.37	93.08	13.47	9752	0.10	1.55	16.46	46.92
1.60	~	6.92	66.28	3726	0.07	0.56	100.00	17.13	9335	0.10	1.48	6.92	66.28
Minus 10	0 Mesh	0.65	30.03	8674	0.20	1.47	*100.00	17.21	9331	0.10	1.48		
						Sample 1	No. 41848						
_	1.30	58.01	6.50	10728	0.09	1.72	58.01	6.50	10728	0.09	1,72	100.00	18.02
1.30	1.40	17.25	14.09	9574	0.64	2.28	75.26	8.24	10463	0.22	1.85	41.99	33.94
1.40	1.60	11.69	37.18	6583	0.30	1.38	86.95	12.13	9942	0.23	1.79	24.74	47.78
1.60	-	13.05	57.27	4073	0.14	0.71	100.00	18.02	9176	0.22	1.65	13.05	57.27
Minus 10	0 Mesh	1.34	33.10	7566	0.29	1.53	*100.00	18.22	9155	0.22	1.64		
						Sample 1	No. 41849						
_	1.30	3(11)	5.76	10614	0.11	1.61	30.11	5.76	10614	0.11	1.61	100.00	21.02
1.30	1.40	39.35	16.90	9367	0.14	1.47	69.46	12.07	9908	0.13	1.53	69.89	27.60
1.40	1.60	24.32	38.15	6651	0.16	1.17	93.78	18.83	9063	0.14	1.44	30.54	41.38
1.60	_	6.22	53.99	4640	0.17	0.81	100.00	21.02	8788	0.14	1.40	6.22	53.99
Minas 10	0 Mesh	1.60	33.95	7474	0.14	1.23	*100.00	21.22	8767	0.14	1.40		

Table 30. Washability Analyses of 3/4 Inch x 100 Mesh Coal, Drill Hole No. 5

SPECIFI FRAC	C GRAVII	Υ Υ	INDIVID	UAL FRAG	CTIONS			CUMU	LATIVE FL	OAT		CUMU SI	LATIVE
	,				Percent	Sulfur				Percen	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample 1	No. 41850						
- 1.30 1.40 1.60	1.30 1.40 1.60	83.55 12.56 3.35 0.54	7.40 17.55 30.90 37.46	10755 9442 7585 6703	0.02 0.05 0.05 0.07	1.32 1.21 1.09 0.99	83.55 96.11 99.46 100.00	7.40 8.73 9.47 9.62	10755 10583 10482 10462	0.02 0.02 0.02 0.03	1.32 1.31 1.30 1.30	100.00 16.45 3.89 0.54	9.62 20.92 31.81 37.46
Minus 10	0 Mesh	0.95	18.51	10060	0.07	1,15	*100.00	9.71	10458	0.03	1.30		
						Sample P	No. 41851						
- 1.30 1.40 1.60	1.30 1.40 1.60	64.94 23.55 5.37 6.14	6.22 19.10 38.22 61.46	10825 8904 6551 3570	0.01 0.06 0.08 0.08	1.20 0.98 0.84 0.57	64.94 88.49 93.86 100.00	6.22 9.65 11.28 14.36	10825 10314 10098 9698	0.01 0.02 0.03 0.03	1.20 1.14 1.12 1.09	100.00 35.06 11.51 6.14	14.36 29.45 50.62 61.46
Minus 10	0 Mesh	0.53	22.54	9292	0.17	1.19	*100.00	14.41	. 9695	0.03	1.09		
						Sample N	No. 41852						
1.30 1.40 1.60	1.30 1.40 1.60	69.85 18.99 6.00 5.16	6.28 13.73 37.49 60.44	10985 10007 7215 3973	0.04 0.05 0.04 0.09	1.56 1.52 0.95 0.53	69.85 88.84 94.84 100.00	6.28 7.87 9.75 12.36	10985 10776 10551 10211	0.04 0.04 0.04 0.04	1.56 1.55 1.51 1.46	100.00 30.15 11.16 5.16	12.36 26.45 48.10 60.44
Minus 10) Mesh	1.36	21.05	9520	0.21	1.41	*100.00	12.48	10202	0.05	1.46		

Table 30. (continued)

SPECIFIC	C GRAVITY CTIONS		INDIVI	DUAL FR.	ACTIONS			CUML	LATIVE)	FLOAT		CUMU	LATIVE
					Percent	Sulfur				Percent	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/ib	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample	No. 41853						
-	1.30	37.30	6.37	11141	0.12	1.78	37.30	6.37	11141	0.12	1.78	100.00	26.59
1.30	1.40	22.47	15.13	9707	0.21	2.00	59.77	9.66	10602	0.15	1.86	62.70	38.61
1.40	1.60	19.44	37.45	6980	0.12	1.36	79.21	16.48	9713	0.15	1.74	40.23	51.73
1.60	-	20.79	65.08	3342	0.12	0.66	100.00	26.59	8388	0.14	1.51	20.79	65.08
Minus 10	0 Mesh	1.51	41.38	6253	0.24	1.38	*100.00	26.81	8357	0.14	1.51		
						Sample	No. 41854						
-	1.30	46.98	7.33	10876	0.11	2.01	46.98	7.33	10876	0.11	2.01	100.00	21.95
1.30	1.40	25.36	17.65	9469	0.13	1.87	72.34	10.95	10383	0.12	1.96	53.02	34.90
1.40	1.60	15.40	37.54	7061	0.06	1,12	87.74	15.62	9800	0.11	1.81	27.66	50.72
1.60	-	12.26	67.27	3252	0.09	0.48	100.00	21. 95	8997	0.10	1.65	12.26	67.27
Minus 10	0 Mesh	1.28	30.49	7826	0.11	1.41	*100.00	22.06	8982	0.10	1.65		
						Sample I	No. 41855						
-	1.30	57.92	7.82	10851	0.35	1.97	57.92	7.82	10851	0.35	1.97	100.00	13.47
1.30	1.40	33.85	15.91	9747	0.67	2.45	91.77	10.80	10444	0.47	2.15	42.08	21.25
1.40	1.60	4.91	34.38	7290	0.74	1.94	96.68	12.00	10284	0.48	2.14	8.23	43.20
1.60	-	3.32	56.24	4331	0.21	0.96	100.00	13.47	10086	0.47	2.10	3.32	56.24
Minus 10	0 Mesh	0.54	23.72	9086	0.73	2.36	*100.00	13.53	10081	0.47	2.10		

Table 30. (continued)

.
SPECIFI FRAG	C GRAVIT	Ϋ́Υ	INDIVID	UAL FRA	CTIONS			CUMU	LATIVE FL	OAT			LATIVE
	_				Percent	Sulfur				Percen	t Sulfur	•	
Sink	Float	Wt %	Ash %	Btu/Ib	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample 1	No. 41856						
- 1.30 1.40 1.60	1.30 1.40 1.60	67.75 25.78 5.53 0.94	6.30 17.63 31.20 55.59	10945 9502 7452 4510	0.16 0.99 1.95 0.31	1,63 2,66 3,22 0,98	67.75 93.53 99.06 100.00	6.30 9.42 10.64 11.06	10945 10547 10374 10319	0.16 0.39 0.48 0.47	1.63 1.91 1.99 1.98	100.00 32.25 6.47 0.94	11.06 21.06 34.74 55.59
Minus 10	0 Mesh	0.74	26.63	8853	1,12	2.72	*100.00	11.18	10309	0.48	1.98		
						Sample N	No. 41857						
- 1.30 1.40 1.60	1.30 1.40 1.60	50.68 37.93 9.43 1.96	8.22 17.16 35.77 54.71	107 56 9598 7260 4876	0.21 0.22 0.09 0.10	2.33 2.15 1.43 0.97	50.68 88.61 98.04 100.00	8.22 12.05 14.33 15.12	10756 10260 9972 9872	0.21 0.21 0.20 0.20	2.33 2.25 2.17 2.15	100.00 49.32 11.39 1.96	15.12 22.21 39.03 54.71
Minus 10	0 Mesh	0.33	23.51	8 94 0	0.40	2,18	*100.00	15.15	9869	0.20	2.15		
						Sample M	No. 41858						
- 1.30 1.40 1.60	1.30 1.40 1.60	47.06 49.45 2.99 0.50	6.74 10.85 30.20 24.78	10869 10085 7931 8246	0.25 0.26 0.20 0.30	2.16 2.00 1.47 1.68	47.06 96.51 99.50 100.00	6.74 8.85 9.49 9.56	10869 10467 10391 10380	0.25 0.26 0.25 0.25	2.16 2.08 2.06 2.06	100.00 52.94 3.49 0.50	9.56 12.07 29.42 24.78
Minus 10	0 Mesh	1.37	18.16	9447	0.40	2.10	*100.00	9.68	10368	0.26	2.06		

Table 30. (continued)

_

Table 30. (contin	med)
-------------------	------

SPECIFIC FRAC	GRAVITY		INDIVI	DUAL FR	ACTIONS			CUML	LATIVE)	FLOAT		CUMU SI	LATIVE NK
					Percent	Sulfur				Percent	Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	l Wi%	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample I	No. 41859						
-	1.30	55.98	5.80	11145	0.18	2.06	55.98	5.80	11145	0.18	2.06	100.00	16.85
1.30	1.40	25.53	15.00	9871	0.66	2.57	81.51	8.68	10746	0.33	2.22	44.02	30.91
1.40	1.60	7.29	32.46	7447	0.73	2.13	88.80	10.63	10475	0.36	2.21	18.49	52.88
1.60	-	11.20	66.17	3219	0.17	0.69	100.00	16.85	9662	0.34	2.04	11.20	66.17
Minus 100) Mesh	1.50	44.28	6346	0.51	2.09	*100.00	17,26	9613	0.34	2.04		

104

.

SPECIFI FRAC	C GRAVIT	Υ	INDIVID	UAL FRA	CTIONS		-	CUMU	LATIVE FL	ΟΑΤ		CUMU	LATIVE
					Percent	Sulfur				Percent	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	W1 %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
-						Sample I	No. 41860						
_	1.30	0.20	3.48	10830	0.06	1.44	0.20	3.48	10830	0.06	1.44	100.00	51.35
1.30	1.40	15.96	19.41	9378	0.16	1.58	16.16	19.21	9396	0.16	1.58	99.80	51.45
1.40	1.60	23.68	39.56	6646	0.12	0.88	39.84	31.31	7761	0.14	1.16	83.84	57.55
1.60	-	60.16	64.63	3897	0.07	0.54	100.00	51.35	5437	0.10	0.79	60.16	64.63
Minus 10	0 Mesh	3.74	57.16	5668	0.10	0.77	*100.00	51.56	5445	0.10	0.79		
					,	Sample N	No. 41861						
-	1.30	19.45	7.24	10672	0.03	1.11	19.45	7.24	10672	0.03	1.11	100.00	10.28
1.30	1.40	76.10	10.33	10309	0.12	1.32	95.55	9.70	10383	0.10	1.28	80.55	11.02
1.40	1.60	3.82	21.66	9021	1.15	2.45	99.37	10.16	10331	0.14	1.32	4,45	22.75
1.60	-	0.63	29.33	7908	0.58	1.82	100.00	10.28	10315	0.14	1.33	0.63	29.33
Minus 100) Mesh	0.73	19.37	9572	0.47	1.75	*100.00	10.35	10310	0.15	1.33		
					;	Sample N	No. 41862						
-	1.30	31.13	5.74	11256	0.02	1.03	31.13	5.74	11256	0.02	1.03	100.00	6.50
1.30	1.40	67.58	6.80	10608	0.04	1.06	98.71	6.47	10812	0.03	1.05	68.87	6.85
1.40	1.60	0.59	8.48	10320	1.22	1.16	99.30	6.48	10809	0.04	1.05	1.29	9.44
1.60	-	0.70	10.24	9803	0.56	1.22	100.00	6.50	10802	0.04	1.05	0.70	10.24
Minus 100) Mesh	2.50	9.18	10958	0.09	1.25	*100.00	6.57	10806	0.05	1.06		

Table 31. Washability Analyses of 3/4 Inch x 100 Mesh Coal, Drill Hole No. 6

SPECIFIC FRA	C GRAVIT CTIO <u>NS</u>	Y	INDIVI	DUAL FR	ACTIONS			CUMU	LATIVE	FLOAT		CUMU S	LATIVE INK
					Percent	Sulfur				Percen	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Рутіціс	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample I	No. 41863						
_	1.30	5.27	2.61	11076	0.14	1.77	5.27	2.61	11076	0.14	1.77	100.00	19.18
1.30	1.40	81.28	17.03	9617	0.68	2.24	86.55	16.15	9706	0.65	2.21	94.73	20.10
1.40	1.60	9.72	30.73	7871	0.42	1.59	96.27	17.62	9521	0.62	2.15	13.45	38.67
1.60	-	3.73	59.35	4821	0.18	0.85	100.00	19.18	9345	0.61	2.10	3.73	59.35
Minus 10	0 Mesh	0.40	28.36	8488	0.70	1.81	*100.00	19.22	9342	0.61	2.10		
						Sample I	No. 41864						
_	1.30	30.44	6.64	10745	0.14	1.58	30.44	6.64	10745	0.14	1.58	100.00	31.34
1.30	1.40	28.65	17.16	9212	0.93	2.37	59.09	11.74	10002	0.52	1.96	69.56	42.15
1.40	1.60	10.29	36.37	6776	1.09	2.15	69.38	15.39	9523	0.61	1.99	40.91	59.65
1.60	~	30.62	67.47	3238	1.13	1,71	100.00	31.34	7599	0.77	1.90	30.62	67.47
Minus 10	0 Mesh	2.45	49.55	5394	1.08	2.40	*100.00	31.77	7546	0.77	1.92		
						Sample 1	No. 41865						
-	1.30	28.40	4,48	10556	0.08	1.54	28.40	4.48	10556	0.08	1.54	100.00	32.75
1.30	1.40	19.08	16.19	9279	0.60	1.89	47.48	9,19	10043	0.29	1.68	71.60	43.96
1.40	1.60	29.29	40.91	6264	0.61	1.51	76.77	21.29	8601	0.41	1.62	52.52	54.05
1.60	-	23.23	70.61	3046	0.13	0.41	100.00	32.75	7311	0.35	1.34	23.23	70.61
Minus 10	0 Mesh	48.40	58.47	4214	0.34	1. 12	*100.00	41.14	6301	0.34	1.27		

Table 31. (continued)

SPECIFI FRAG	C GRAVIT	Y	INDIVID	UAL FRAG	CTIONS			CUMUI	- LATIVE FL	 ОАТ		CUMU	LATIVE
					Percent	Sulfur				Percen	t Sulfur		
Sink	Float	W1 %	Ash %	Bta/lb	Pyritic	Total	Wt %	Ash %	Bta/lb	Pyritic	Total	Wt %	Ash %
						Sample I	No. 41866						
- 1.30 1.40 1.60	1.30 1.40 1.60	28.49 18.48 13.36 39.67	5.59 16.70 37.52 78.87	10686 9238 6822 1646	0.02 0.04 0.06 0.10	0.93 0.85 0.70 0.18	28.49 46.97 60.33 100.00	5.59 9.96 16.06 40.98	10686 10116 9387 6316	0.02 0.03 0.03 0.06	0.93 0.90 0.85 0.59	100.00 71.51 53.03 39.67	40.98 55.08 68.45 78.87
Minus 10	0 Mesh	1.29	54.82	4702	0.10	0.48	*100.00	41.16	6295	0.06	0.59		
						Sample 1	No. 41867						
- 1.30 1.40 1.60	1.30 1.40 1.60	1.48 60.95 31.79 5.78	3.15 17.27 33.46 62.37	10855 9610 7192 3990	0.06 0.18 0.38 0.18	1.64 1.83 1.49 0.74	1.48 62.43 94.22 100.00	3.15 16.94 22.51 24.81	10855 9640 8814 8535	0.06 0.18 0.25 0.24	1.64 1.83 1.71 1.66	100.00 98.52 37.57 5.78	24.81 25.14 37.91 62.37
Minus 10	0 Mesh	2.09	34.45	7493	0.38	1.43	*100.00	25.01	8514	0.24	1.65		
						Sample N	ňo. 41868						
- 1.30 1.40 1.60	1.30 1.40 1.60	36.51 57.27 5.53 0.69	4.80 9.81 35.84 41.48	10973 10176 6958 5950	0.02 0.16 0.08 0.12	1.59 1.69 1.03 0.62	36.51 93.78 99.31 100.00	4.80 7.86 9.42 9.64	10973 10486 10290 10260	0.02 0.11 0.10 0.10	1.59 1.65 1.62 1.61	100.00 63.49 6.22 0.69	9.64 12.42 36.47 41.48
Minus 10	0 Mesh	0.68	19.40	9940	0.17	1.71	*100.00	9.70	10258	0.10	1.61		

Table 31. (continued)

SPECIFIC	C GRAVITY		INDIVI	DUAL FRA	CTIONS			CUMU	LATIVE I	LOAT		CUMUI	ATTVE
Sínk	Float	Wt %	Ash %	Btu/Ib	Percent Pyritic	Sulfur Total	Wt %	Ash %	Btu/lb	Percent Pyritic	t Sulfur Total	Wt %	Ash %
						Sample N	lo. 41869						
1.30	1.30	14.49 64.78	5.32 15.43	10780 9316	0.04	1.44	14.49 79.27	5.32	10780 9584	0.06	1,44	100.00 85.51	17.30
1.40	-	18.80	30.88	0057 6926	0.11 0.29	1.26	98.13 100.00	16.91 17.30	9183 9141	0.07	1.35 1.35	20.73 1.87	31.53 38.11
Minus 100) Mesh	1.61	27.40	7929	0.42	1.67	*100.00	17,46	9122	0.08	1.36		
					- *	Sample N	0. 41870						
1.30 1.40 1.60	1.30 1.60	9.40 48.79 34.67 7.14	7.86 15.36 39.39 55.52	10780 9559 6858 4836	0.04 0.33 0.72 0.33	1.38 1.55 1.43 0.90	9.40 58.19 92.86	7.86 14.15 23.57 25.85	10780 9756 8674 8400	0.04 0.28 0.45 0.45	1.38 1.52 1.49	100.00 90.60 41.81 7.14	25.85 27.72 42.14 55 52
Minus 100) Mesh	1.45	36.02	7184	0.71	1.66	+100.00	26.00	8383	0.44	1.45		
						Sample N	0. 41871						
- 1.30 1.40	1.30 1.40 -	67.63 26.90 1.91 3.56	5.75 8.83 26.84 63.32	10275 10299 8383 4214	0.05 0.09 0.06 0.07	1.16 1.40 1.03 0.41	67.63 94.53 96.44 100.00	5.75 6.63 7.03 9.03	10275 10282 10284 10230	0.05 0.06 0.06	1.16 1.23 1.22 1.20	100.00 32.37 5.47 3.56	9.03 15.89 50.58 63.32
Minus 100	Mesh	1.22	17.29	10030	0.10	1.25	*100.00	9.13	10030	0.06	1.20		
All results *Cumulati	are on a Moi ve float plus	sture Free minus 10	e Basis 0 mesh ma	terial									

(continued)	
Table 31.	

SPECIFI FRAC	C GRAVIT	Ŷ	INDIVID	UAL FRA	TIONS		_	CUMU	LATIVE FL	OAT		CUMU	LATIVE
					Percent	Sulfur				Percen	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample I	No. 41872						
- 1.30 1.40 1.60	1.30 1.40 1.60	54.82 30.57 7.81 6.80	7.06 13.80 34.96 56.99	10766 9749 7265 4221	0.03 0.07 0.12 0.08	1.22 1.31 1.07 0.63	54.82 85.39 93.20 100.00	7.06 9.47 11.61 14.69	10766 10402 10139 9737	0.03 0.04 0.05 0.05	1.22 1.25 1.24 1.20	100.00 45.18 14.61 6.80	14.69 23.96 45.21 56.99
Minus 10	0 Mesh	1.68	28.00	7992	0.04	1.08	*100.00	14.91	9708	0.05	1.19		
						Sample 1	No. 41873						
- 1.30 1.40 1.60	1.30 1.40 1.60	59.86 34.54 4.21 1.39	5.81 12.15 35.18 45.49	10806 9834 7203 5890	0.05 0.17 0.18 0.14	1.58 1.79 1.20 1.00	59.86 94.40 98.61 100.00	5.81 8.13 9.28 9.79	10806 10450 10312 10250	0.05 0.09 0.10 0.10	1.58 1.66 1.64 1.63	100.00 40.14 5.60 1.39	9.79 15.72 37.74 45.49
Minus 10	0 Mesh	0.84	19.47	9716	0.21	1.64	*100.00	9.87	10246	0.10	1.63		
						Sample N	No. 41874						
- 1.30 1.40 1.60	1.30 1.40 1.60	35.18 56.61 1.41 6.80	7.22 12.61 27.96 81.65	10450 9992 8420 1899	0.46 0.70 0.32 0.10	2,23 2,53 1,31 0,40	35.18 91.79 93.20 100.00	7.22 10.54 10.81 15.62	10450 10168 10141 9581	0.46 0.61 0.60 0.57	2.23 2.42 2.40 2.26	100.00 64.82 8.21 6.80	15.62 20.19 72.43 81.65
Minus 10) Mesh	1.32	43.05	6779	0.42	1.55	*100.00	15.98	9544	0.57	2.25		

Table 31. (continued)

SPECIFIC FRAC	C GRAVITY	Y	INDIVI	DUAL FR	ACTIONS			CUMI	JLATIVE)	FLOAT		CUMU	
					Percent	Sulfur				Percen	t Sulfur		
Sink	Float	W1 %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample I	No. 41875						
-	1.30	10.27	8.95	10814	0.04	1.77	10.27	8.95	10814	0.04	1.77	100.00	21.91
1.30	1.40	45.28	15.79	9601	0.04	1.70	55.55	14.53	9825	0.04	1.71	89.73	23.39
1.40	1.60	42.61	30.40	7681	0.07	1.24	98.16	21.42	8894	0.05	1.51	44,45	31.13
1.60	-	1.84	48.06	5623	0.23	1,14	100.00	21.91	8834	0.06	1.50	1.84	48.06
Minus 10	0 Mesh	1.54	28.46	5229	0.18	1.16	*100.00	22.01	8780	0.06	1.50		
						Sample 1	No. 41876						
_	1.30	50.89	6.68	10694	0.15	2.17	50.89	6.68	10694	0.15	2.17	100.00	18.13
1.30	1.40	27.24	14.53	9694	0.58	2.66	78.13	9.42	10345	0.30	2.34	49.11	30.00
1.40	1.60	10.93	32.95	7308	0.19	1.74	89.06	12,31	9973	0.29	2.27	21.87	49.27
1. 60	-	10.94	65,58	2797	0.10	0.67	100.00	18.13	9188	0.27	2.09	10.94	65.58
Minus 10	0 Mesh	1.45	36.56	5639	0.26	1.76	*100.00	18.40	9137	0.27	2.09		
						Sample I	No. 41877						
_	1.30	61.32	6.44	11000	0.08	1.40	61.32	6.44	11000	0.08	1.40	100.00	8.69
1.30	1.40	36.57	11.54	10197	0.19	1.74	97.89	8.35	10700	0.12	1.53	38.68	12.26
1.40	1.60	1.63	26.04	8312	0.16	1.44	99.52	8.64	10661	0.12	1.53	2.11	24.80
1.60		0.48	20,60	9142	0.17	1.42	100.00	8.69	10654	0.12	1.53	0.48	20.60
Minus 10	0 Mesh	0.83	15.42	10109	0.11	1.51	*100.00	8.75	10649	0.12	1.52		

Table 31. (continued)

SPECIFI FRAC	C GRAVIT	Ϋ́	INDIVID	UAL FRA	TIONS			CUMU	ATIVE FL	OAT		CUMU SI	LATIVE
					Percent	Sulfur				Percent	t Sulfur		
Sink	Float	W1 %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample I	No. 41878						
 1.30 1.40 1.60	1.30 1.40 1.60	26.30 73.10 0.38 0.22	6.92 14.84 13.17 14.49	10925 9914 9901 9772	0.02 0.02 0.05 0.05	1.00 1.49 1.19 1.19	26.30 99.40 99.78 100.00	6.92 12.74 12.75 12.75	10925 10181 10180 10180	0.02 0.02 0.02 0.02	1.00 1.36 1.36 1.36	100.00 73.70 0.60 0.22	12.75 14.83 13.65 14.49
Minus 10	0 Mesh	0.99	11.38	10638	0.03	1.12	*100.00	12.74	10184	0.02	1.36		
						Sample N	No. 41879						
1.30 1.40 1.60	1.30 1.40 1.60 -	51.37 42.16 4,75 1,72	6.72 12.92 29.76 63.00	10869 10437 8233 4076	0.05 0.36 0.91 0.47	1.21 1.59 1.81 0.88	51.37 93.53 98.28 100.00	6.72 9.51 10.49 11.40	10869 10674 10556 10445	0.05 0.19 0.22 0.23	1.21 1.38 1.40 1.39	100.00 48.63 6.47 1.72	11.40 16.34 38.60 63.00
Minus 10	0 Mesh	0.65	21.21	9831	0.36	1.44	*100.00	11.46	10441	0.23	1.39		
						Sample N	No. 41880						
1.30 1.40 1.60	1.30 1.40 1.60	78.67 19.20 0.68 1.45	6.50 10.03 29.67 58.37	11077 10265 8100 5005	0.07 0.25 0.13 0.05	1.53 1.68 1.12 0.68	78.67 97.87 98.55 100.00	6.50 7.19 7.35 8.09	11077 10918 10898 10813	0.07 0.11 0.11 0.10	1.53 1.56 1.56 1.54	100.00 21.33 2.13 1.45	8.09 13.94 49.21 58.37
Minus 10	0 Mesh	0.97	12.87	10711	0.13	1.48	*100.00	8.13	10812	0.10	1.54		

-

Table 31. (continued)

SPECIFIC FRA	C GRAVITY	·	INDIVI	DUAL FR	ACTIONS			CUMU	LATIVE 1	FLOAT		CUMU	LATIVE NK
					Percent	Sulfur				Percent	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample]	No. 41881						
-	1.30	25,79	6.60	11482	0.04	1.42	25.79	6.60	11482	0.04	1,42	100.00	21.62
1.30	1.40	51.41	20.10	9197	0.11	1.53	77.20	15.59	9960	0.09	1.49	74.21	26.84
1.40	1.60	21.94	41.96	6259	0.10	1.01	99.14	21.43	9141	0.09	1.39	22,80	42.03
1.60	~	0.86	43.80	6065	0.15	1.30	100.00	21.62	9115	0.09	1.39	0.86	43.80
Minus 10	0 Mesh	0.16	26.97		0.16	1.63	*100.00	21.63		0.09	1.39		
						Sample I	No. 41882						
_	1.30	44.52	7.64	10861	0.16	1.97	44.52	7.64	10861	0.16	1.97	100.00	14.07
1.30	1.40	46.58	14.70	9957	0.37	2.26	91.10	11.25	10399	0.27	2.12	55.48	19.23
1.40	1.60	5.62	34.00	7505	0.37	1.52	96.72	12.57	10231	0.27	2.08	8.90	42.93
1.60	_	3.28	58.23	4582	0.21	1.01	100.00	14.07	10045	0.27	2.05	3.28	58.23
Minus 10	0 Mesh	0.21	21.85	10517	0.07	2.48	*100.00	14.09	10046	0.27	2.05		
					1	Sample I	No. 41883						
	1.30	83.92	6.19	10953	0.18	1.73	83.92	6.19	10953	0.18	1.73	100.00	10.07
1.30	1.40	9.69	13.71	9921	0.55	2.32	93.61	6.97	10846	0.22	1.79	16.08	30.32
1.40	1.60	1.42	31.80	7728	0.78	1.72	95.03	7.34	10800	0.23	1.79	6.39	55.51
1.60	~	4.97	62.29	4058	0.10	0.61	100.00	10.07	10465	0.22	1.73	4.97	62.29
Minus 100) Mesh	0.80	26.54	8938	0.40	1.69	*100.00	10.20	10452	0.22	1.73		

Table 31. (continued)

SPECIFI FRA	C GRAVIT	Γ Y	INDIVID	UAL FRA	CTIONS			CUMU	LATIVE FL	OAT		CUMU	LATIVE	
					Percent	Sulfur				Percen	t Sulfur			
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	W1 %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	
						Sample l	No. 41884							
_ 1.30	1.30 1.40	67.75 30.20	9.94 16.09	10488 9627	0.13	1.89 2.07	67.75	9.94 11 84	10488	0.13	1.89	100.00	12.11	
1.40	1.60	1.61	26.26	8074	0.20	1.64	99.56	12.07	10188	0.18	1.94	2.05	25.37	
1.60	-	0.44	22.12	8779	0.61	2.40	100.00	12.11	10182	0.18	1.94	0.44	22.12	
Minus 10	0 Mesh	0.34	19.49		1.18		*100.00	12.14			1.94			
						Sample ?	No. 41885							
-	1.30	8.80	8.73	11082	0.20	1.87	8.80	8.73	11082	0.20	1.87	100.00	28.37	
1.30	1.40	58.54	15.18	9961	0.26	2.38	67.34	14.34	10107	0.25	2.31	91.20	30.27	
1.40	1.60	13.14	35.92	7297	0.23	1.53	80.48	17.86	9649	0.25	2.19	32.66	57.31	
1.60	-	19.52	71.71	2700	0.09	0.51	100.00	28.37	8292	0.22	1.86	19.52	71.71	
Minus 10	0 Mesh	0.63	43.64	6499	0.38	1.58	*100.00	28.47	8281	0.22	1.86			
						Sample N	No. 41886							
_	1.30	11.70	8.39	10679	0.63	2.50	11.70	8.39	10679	0.63	2.50	100.00	36.10	
1.30	1.40	43.08	15.58	9691	1.10	2.94	54.78	14.04	9902	1.00	2.85	88.30	39.77	
1.40	1.60	16.22	36.36	6952	0.80	2.17	71.00	19.14	9228	0.95	2.69	45.22	62.81	
1.60	~	29.00	77.60	2143	0.16	0.48	100.00	36.10	7173	0.72	2.05	29.00	77.60	
Minus 10	0 Mesh	0.75	43.36	6334	0.88	2,41	*100.00	36.15	7167	0.72	2.05			

Table 31. (continued)

.

SPECIFIC	C GRAVIT	Y	INDIVI	DUAL FR	ACTIONS			CUMU	LATIVE	CUMU SI	LATIVE NK		
			-		Percent	Sulfur				Percent	Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample I	No. 41887						
-	1.30	84.74	7.80	10880	0.07	1.53	84.74	7.80	10880	0.07	1.53	100.00	9.61
1.30	1.40	12.36	16.00	9771	0.13	1.60	97.10	8.84	10739	0.08	1.54	15.26	19.68
1.40	1.60	1.86	31.42	7346	0.48	1.72	98.96	9.27	10675	0.09	1.54	2.90	35.35
1.60	-	1.04	42.37	6712	0.46	1.62	100.00	9.61	10634	0.09	1.54	1.04	42.37
Minus 100 Mesh		0.05				2.94	*100.00						
						Sample 1	No. 41888						
-	1.30	69.29	7.61	11193	0.04	1.03	69.29	7.61	11193	0.04	1.03	100.00	11.69
1.30	1.40	26.59	19.37	8936	0.10	1.49	95.88	10.87	10567	0.06	1,16	30.71	20.89
1.40	1.60	3.67	29.74	7950	0.04	1.12	99.55	11.57	10471	0.06	1.16	4.12	30.72
1.60	-	0.45	38.71	6791	0.17	1.43	100.00	11.69	10454	0.06	1.16	0.45	38.71
Minus 10	0 Mesh	0.01	18.71			2.25	*100.00	11.69			1.16		
						Sample 1	No. 41889						
_	1.30	81.18	7.50	10928	0.16	1.70	81.18	7.50	10928	0.16	1.70	100,00	9.20
1.30	1.40	16.38	15.23	10024	0.73	2.29	97.56	8.80	10776	0.26	1.80	18.82	16.55
1.40	1.60	1.93	26.32	8497	0.24	1.40	99.49	9.14	10732	0.26	1.79	2.44	25.37
1.60	-	0.51	21.79	6992	0.24	1.20	100.00	9.20	10713	0.26	1.79	0.51	21.79
Minus 100 Mesh		0.94	18.43	9984	0.43	1.91	*100.00	9.29	10706	0.26	1.79		

Table 31. (continued)

SPECIFI FRAC	C GRAVIT	ſΥ	INDIVID	UAL FRA	CTIONS			CUMU	CUMULATIV SINK				
		Percent Sulfur											
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample I	No. 41890						
- 1.30 1.40 1.60	1.30 1.40 1.60	65.30 18.39 15.92 0.39	10.84 19.36 33.05 28.01	10944 9203 7457 7940	0.27 0.38 0.15 1.23	1.55 1.61 1.04 2.71	65.30 83.69 99.61 100.00	10.84 12.71 15.96 16.01	10944 10561 10065 10057	0.27 0.36 0.33 0.33	1.55 1.56 1.48 1.48	100.00 34.70 16.31 0.39	16.01 25.74 32.93 28.01
Minus 10	0 Mesh	1.00	23.18	8531	0.86	1.54	*100.00	16.08	10042	0.34	1.48		
						Sample I	No. 41891						
- 1.30 1.40 1.60	1.30 1.40 1.60 -	63.89 15.02 17.61 3.48	8.35 19.07 37.46 59.80	10836 9384 6814 4326	0.10 0.25 0.09 0.08	2.08 2.41 1.34 0.62	63.89 78.91 96.52 100.00	8.35 10.39 15.33 16.88	10836 10560 9876 9683	0.10 0.13 0.12 0.12	2.08 2.14 2.00 1.95	100.00 36.11 21.09 3.48	16.88 31.96 41.15 59.80
Minus 10	0 Mesh	0.40	29.45	8618	0.24	2.36	*100.00	16.93	9679	0.12	1.95		
						Sample I	No. 41892						
	1.30 1.40 1.60	79.94 11.95 2.42 5.69	7.12 16.23 35.03 67.65	10726 9906 6658 3136	0.06 0.87 0.08 0.05	1.42 1.30 1.00 0.42	79.94 91.89 94.31 100.00	7.12 8.30 8.99 12.33	10726 10619 10518 10098	0.06 0.17 0.16 0.16	1.42 1.40 1.39 1.34	100.00 20.06 8.11 5.69	12.33 33.08 57.92 67.65
Minus 100 Mesh		0.42	27.84	9442	0.08	1.23	*100.00	12.39	10095	0.16	1.34		

Table 31. (continued)

SPECIFIC GRAVITY FRACTIONS		¥	INDIVI	DUAL FR.	ACTIONS			CUML	CUMULATIVE SINK				
					Percent Sulfur					Percent Sulfur			
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
-						Sample N	No. 41893						
_	130	54 28	8 68	10734	011	1 57	54.28	8 68	10734	0.11	1 57	100.00	19.92
1 30	1 40	26.20	17 83	0107	0.17	136	80.48	11.66	10234	013	1.50	45.72	33.26
1 40	1.50	11 18	37.67	7354	0.10	1.00	01.66	14.83	9882	0.13	1 44	19.52	53.97
1.60	_	8.34	75.82	2292	0.05	0.31	100.00	19.92	9249	0.12	1.35	8.34	75.82
Minus 100 Mesh		0.50	32.79	8860	0.19	1.34	*100.00	19.98	9247	0.12	1.35		
						Sample N	No. 41894						
_	1.30	85.75	7.37	10758	0.07	1.21	85.75	7.37	10758	0.07	1.21	100.00	10.26
1.30	1.40	9.08	21.11	8300	0.14	1.30	94.83	8.69	10523	0.08	1.22	14.25	27.64
1.40	1.60	4.54	38.15	6755	0.08	0.96	99.37	10.03	10351	0.08	1.21	5.17	39.10
1.60		0.63	45.91	6170	0.07	0.79	100.00	10.26	10324	0.08	1.20	0.63	45.91
Minus 10	0 Mesh	0.09	16.59	7022	0.13	1.30	*100.00	10.26	10321	0.08	1.20		
					,	Sample N	No. 41895						
_	1.30	72.45	8.30	10927	0.05	1.35	72.45	8.30	10927	0.05	1.35	100.00	16.67
1.30	1.40	13.58	23.30	8962	0.06	1.06	86.03	10.67	10617	0.05	1.30	27.55	38.67
1.40	1.60	8.23	39.88	7095	0.03	0.70	94.26	13.22	10309	0.05	1.25	13.97	53.62
1.60	_	5.74	73.32	2770	0.04	0.35	100.00	16.67	9877	0.05	1.20	5.74	73.32
Minus 100 Mesh		1.03	32.07	8133	0.07	1.00	*100.00	16.83	9859	0.05	1.20		

Table 31. (continued)

`

SPECIFI FRAG	C GRAVIT	TY	INDIVID	UAL FRA	CTIONS			CUMU	CUMULATIVE				
						Sulfur				Percen	t Sulfur		
Sink	Float	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %	Btu/lb	Pyritic	Total	Wt %	Ash %
						Sample l	No. 41896						
-	1.30	60.87	8.33	10979	0.17	1.70	60.87	8.33	10979	0.17	1,70	100.00	19.00
1.30	1.40	19.92	20.74	9448	0.43	1.93	80.79	11.39	10602	0.23	1.76	39.13	35.60
1.40	1.60	11.66	36.95	7596	0.15	1,13	92.45	14.61	10222	0.22	1.68	19.21	51.01
1.60	-	7.55	72.73	2457	0.19	0.56	100.00	19.00	9636	0.22	1.59	7.55	72.73
Minus 10	0 Mesh	1.03	41.54	7793	0.45	1.70	*100.00	19.23	9617	0.22	1.59		
						Sample I	No. 41897						
_	1.30	57.77	9.79	10595	0.50	2.04	57.77	9.79	10595	0.50	2.04	100.00	16.84
1.30	1.40	25.86	18.50	9604	0.84	2.48	83.63	12.48	10289	0.61	2.18	42.23	26,49
1.40	1.60	13.77	37.44	7130	0.94	2.23	97.40	16.01	9842	0.65	2.18	16.37	39.11
1.60	.	2.60	47.98	5684	0.43	1.29	100.00	16.84	9734	0.65	2.16	2.60	47.98
Minus 10	Minus 100 Mesh		42.43	8593	0.86	2.44	*100.00	16.96	9728	0.65	2.16		

.

Table 31. (continued)

Tables 32-33 Overview

Tables 32-33 follow on pages 119 - 120. They present petrologic data for samples from drill hole no. 1. Table 32 gives ulminite reflectance rank distribution data and Table 33 presents coal maceral distribution for the coal samples.

Reflectance of ulminite is an indication of the rank of coal. The mean value of 0.22 percent indicates that the Little Tonzona coal ranks in the subbituminous 'C' and lignite range. The narrow (three or less) reflectance class distribution for ulminite is indicative that this seam was not thermally influenced by any intrusive activity.

Maceral analysis of the samples is shown in Table 33. Various macerals are indicative of their source material and environment of deposition. The macerals ulminite, gelinite, phlobaphinite and pseudo phlobaphinite originate from woody portions of plants and are highly reactive. The liptinite macerals are waxy substances from various parts of plants; sporinite (spores), resinite (resins), alginite (algal remains), exudatinite (forming resin) cutinite (leaf cuticles), and suberinite (a wax coating of root tissues). Liptinite macerals yield a higher percentage of gas during gasification. The inertinite macerals fusinite, semifusinite and macrinite form from woody portions of the plant. These macerals are partly inert to liquefaction and burn with less ease than other macerals. The Little Tonzona coal samples generally contain over 90% reactive macerals. This is in line with other Alaskan subbituminous coals.

Sample			Reflec	tance Clas	Mean Maximum Reflectance		
Number	V 1	V2	V3	V4	V5	V6	in oil
41676	91	9					.17
41678	67	33					.19
41679	75	25					.17
41681	31	66	3				.23
41682		88	12				.25
41683		73	27				.18
41684		71	29				.18
41685		78	22				.18
41686	31	63	6				.22
41688	44	56					_21
41689	32	68					.23
41690	41	59					.20
41692	13	78	9				.23
41693	42	58					.21
41694	93	7					.18
41695	31	65	4				.27
41696	22	63	15				.25
41697	5	88	7				.24
41698	3	97					.23
41699	4	96					.23
41700		92	8				.25
41701		72	28				.27
41702		99	1				.25
41703		83	17				.27
417 04	30	66	4				.22
41705	<u>32</u>	<u>68</u>					.21
Average	27	66	7				.22

Table 32. Reflectance Rank Distribution of Ulminite, Drill Hole No. 1

.

-

																2				
Sample Number	Ulminite	Gelinite	Phlobsphinite	Pseudo phiobsphinita	Sporinite	Resinite	Cutinite	Alginite	Exsudatinite	Thick Cuinite	Suberinite	Other Liptinites	Fusinite	Semifusinte	Macrínite	Globular Macrinit	Inertoderinite	Scierotinite		
41676	79.9	1.1	4.9	1.1	1.7	1,2	-	-	.2	-	.2	-	.6	3.9	1.2	2.2	1.3	.5		
41678	77.6	-	6.3	-	5.8	1.8	-	-	5	-	5	-	.9	3.5	1.4	.5	1.0	.7		
41679	81.4	-	1.9	.5	1.7	.9	-	-	1.2	-	1.2	-	.4	5.6	.9	1.7	2.6	.4		
41681	80.1	5	3.2	1.7	2.6	.4	9	-	1.3	-	1.3		-	63	1.7	1.3	-	-		
41682	83.9	-	6.5	1.4	2.6	.5	-	-	1.0	-	1.0	-	.4	1.8	.5	.9	5	-		
41683	74.0	1.0	3.4	.9	2.3	:4	,4	-	-	-	.8	-	-	6.6	5.2	2.7	1.9	.4		
41684	83.7	~	3.1	.4	3.0	1.0	-	-	-	-		-	-	4.8	.9	2.3	1.3	-		
41685	81.2	0.5	3.7	.5	3.1	1.8	-	-	-	-	.4	-	-	6.6	.9	.4	.9	-		
41686	75.4	-	4.8	.9	3.5	13	.4	-	.8	-	.4	-	-	8.1	2.6	.9	.9	-		
41688	79.2	-	4.8	.8	4.6	2.2	,1	-	-	-	1.7	-	-	3.0	1.4	1.4	.8	-		
41689	75.2	-	3.9	1.8	3.3	2 .1	.3	-	-	-	2.1	.7	-	6.0	1.4	2.7	.5	-		
41690	82.1	.5	1.4	2.3	1.9	1.3	.5	-	-	-	.4	-	-	7.4	1.8	1.4	-	-		
41692	73.0	-	7.0	2.3	5.5	1.4	.3	-	-	-	.5	.2	-	6.6	1.3	1.8	.1	-		
41693	75.1	-	4.5	2.7	6.1	2.5	.6	-	-	-	1.1	-	-	2.2	1.3	2.9	.5	.5		
41694	75.8	5	2.6	2.2	3.1	1.5	-	-	-	-	5	-	-	6.3	2.4	4.7	.4	-		
41695	78.1	-	3.6	1.4	1.7	2.7	-	-	-	-	.4	-	.4	6.4	1.4	2.6	1.3	-		
41696	70.9	-	4.4	2.6	5.7	5.7	-	٠	-	-	1.3	-	-	4.2	2.6	2,2	.4	-		
41697	77.6	-	3.1	.4	3.1	1.8	.3	-	-	-	.2	.6	•	7.0	2.1	3.0	-	-		
41698	74.1	-	1.8	1.2	7.3	1.4	-	-	•	-	-	-	-	73	3.2	2.0	1.6	.1		
41699	78.1	.4	3.9	4.3	1.8	1.3	.9	-	.4	-	.5	-	-	4.0	2.2	2.2	-	-		
41700	87.0	-	2.6	2.1	.8	.9	-	-	-	-	-	-	-	3.0	1.8	1.3	-	-		
41701	84.9	-	3.3	2.2	3.6	2.3	-	-	-	-	.5	-	-	.9	1.4	.5	.4	-		
41702	88.6	.4	4.0	1.0	.5	2.3	-	-	-	· -	-	-	-	1.0	.8	1.4	-	-		
41703	85.9	-	3.2	.9	1.0	1.8	-	-	-	-	-	-	-	2.6	1.3	.9	.4	-		
41704	76.0		5.4	4.2	.8	.8	-	~	-	-	.8	-	.4	5.8	1.4	4.4	-	-		
41705	81.2	.5	2.6	2.4	2.2	1.4	-	-	-	-	.5	-	-	2.0	1.8	5.4	-	-		

Table 33. Distribution of Macerals, Drill Hole No. 1