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Abstract 

In order t o  dwelop a better understanding of Ishe regional structural 

controls of the metallic mineral deposits of Alaska, a detailed examination 

w a s  made of the linear features and trends interpreted from Landsat image- 

ry. I n  addition, local  s t ruc tura l  features and a l te ra t ion  zones were 

examined by r a t i o  analysis  of selected Landsat images. The l inear  trend 

analysis  provided new regional s t ruc tura l  data for  previously proposed 

mineral deposit m o d e l s  and also provided new evidence for the extension of 

the  exist ing models. Preliminary evidence a l so  suggests l inear  inter-  

section control of some types of mineral occurrences and t ha t  trend 

analysis may result in the definition of areas favorable for future mineral 

exploration. Ratio image analysis  indicates t ha t  a l t e ra t ion  zones and 

local  s t ruc tura l  features can be ident i f ied by use of Landsat imagery. 

Ratio image analysis for the definition of alteration zones must be used 

with caution, however, s ince the  a l te ra t ion  associated w i t h  the  various 

mineral d e p s i t s  may not be differentiated by the technique. 

This research was supported by a grant from t h e  Mining and Mideral 

FWouces Research Institute, Office of Surface Mining, U.S. Department of 

Interior. 
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The objective of this investigation is t o  examine the  relat ionships 

&tween major ljnw trends and features interpreted from Landsat imagery 

and mappd structures and known major mineral occurrences. Although there 

have been several detai led examinations of Landsat imagery of specif ic  

areas of Alaska there has been no comprehensive examination of the entire 

state. Sweral detailed studies have been conducted of the relationships 

of linear trends and mineral occurrences i n  a particular mining dis t r ic t  

but no regional investigations of entire metallogenic provinces have been 

canpletd. 

There are over three hundred major and several thousand minor metallic 

mineral occurrences known i n  Alaska. The s t a t e  has been and is a major 

producer of gold and has produced significant quantities of copper, plati- 

num, silver, chromium, antimony, tin, and tungsten. Recent mineral explo- 

rat ion and development has demonstrated t h a t  the  mineral potential  of 

Alaska is large but the  costs  of exploitation a r e  a lso  great. Rapid and 

low cost  exploration techniques are requi red to  economically assess the  

exploration potential  of large  inaccessible areas of the  state.  Remote 

sensing techiques in  particular, Landsat imagery may be utilized t o  locate 

structures associated with major mineral occurrences thus reducing poten- 

t i a l t a r g e t  areas, decreasing exploration costs, and increasing mineral 

discoveries. 

The present investigation was conducted in  two parts, f i r s t  an inter- 

pretation of linear features for complete Landsat coverage of Alaska and 

second, r a t i o  image analysis  of specif ic  major mineral occurrences t o  

determine characteristic features of the alteration zones and local struc- 



tures. The data for part one include a linear interpretation of 95 Landsat 

frames. These interpretations a r e  included i n  Appendix I. These frames 

a r e  keyed t o  a 1:1,000,000 sca le  base map of Alaska (Plates I-VI1 ( in  

pocket). The base maps also include the major mappd faults of Alaska and 

the location of 356 major mineral occurrences. These occurrences a r e  

briefly described in  Table 2 of this repor+ 

Part two of the investigation, the rat io image analysis, was subcon- 

t racted t o  Geo Spectra Corp., Ann Arbor, Michigan, Seven Landsat frames 

were selected for seven major mineral occurrence areas. Ratio data were 

output a t  1:250,000 scale and the images were compared w i t h  a l l  available 

geologic data for the area. Interpretative maps for each of the selected 

mineral occurrence areas are included as figures in the text of the report. 

The localizat ion and s t ruc tura l  control of ore deposits and o i l  and 

gas f i e l d s  have been discussed i n  the geologic l i t e r a t u r e  a s  far back as 

the  ear ly  twentieth century. Early works include Hulin (1929, 19481, 

McKinstry (1941, 19551, Newhouse e t  al, (1942) and Wisser (1951, 19601. 

Systematic structural analysis of tectonic provinces as  an exploration tool 

were conducted by Billingsley and Locke (19411, Blanchet (19511, Kaufrnann 

(1951), May0 (19581, Weeks (19521, Klemrne (19581, H i l l s  (19471, Henson 

(19521, Wilson (1948, 1949) and Badgley (1959). 

With the development of plate tectonic theory (Wilson, 1965) a uniform 

framework for regionaL structural controls of ore deposits became possible. 

Summary works on the relationships between plate tectonics and mineral de- 

posi ts  include Russell (19681, Dmitriev e t  al. (19711, Pereira and Dixon 

(19711, Mitchell and Gar son (1972, 19761, Snwkins (1972, 19741, S i l l i t o e  



(1972, 1972a, 1974, 1974a1, Snel l ing (19721, ~ i v i n g s t o n e  (19731, Marsh 

(19731, Mitchel l  (1973, 1974, 19751, Mitchell  and  ell (19731, Tarling 

(19731, Watson (19731, Badham (19741, Cor l i ss  (19741 Harding (19741, 

Sangster (19741, Sato (19741 and BOMtti  (1975, 19781. 

With the advent of s a t e l l i t e  imagery, l a rge  s c a l e  l i n e a r  features,  

trends, and structures can be determined with a high degree of certainty. 

The use of Landsat imagery i n  mineral exploration has been discussed by: 

Saunders e t  al .  (19731 , Col l ins  e t  al .  (19741, Rowan e t  a l e  (19741, Sawatz- 

ky et al. (1975, 1975a1, Richards and Walraven (19751, Halbouty (1976, 

19801, Hodgson (19771, Kutina (19771, Ligget and Childs (19771, Lyon 

(19771, Salas  (19771, Sawatzky and Raines (19771, Schmidt and Bernstein 

(19771, Shurr (19771, Birn ie  and Dykstra (19781, Carter (19781, Green et  

al, (19781, Misra (19781, P r e l a t  e t  al. (19781, Punongbayan e t  al. (19781, 

Suwijanto (19781, Taranik et dl. (1978) and Vincent e t  al. (19781. 

S a t e l l i t e  imagery has been u t i l i z e d  i n  Alaska f o r  the  de f in i t ion  of 

major l inear features by Iathram (19721, Lathram and Raynolds (19771, and 

Maurin and Lathram (19771. Several 1:250,000 scale quadrangle studies of 

l i n e a r  f ea tu res  i n  mineral poten t i a l  areas have been made by Albert and 

S tee le  (1976a, 1976b1, Halbouty (1976, 19801, Albert (19781, Albert and 

Stee le  (19781, Albert e t  al.  (19781, S tee l  and Albert (1978a, 1978b1, 

S tee le  and Le Compte (19781 and Le  Compte (19791. The use of Landsat 

imagery for resource evaluation has been discussed by Anderson et al. 

(19731, Stringer et al. (19751 and Albert and Chavez (19771. 

Although none of these investigations attempted to examine the rela- 

tionship between major l inear and structural features and ore deposits on a 

regional scale, the studies did provide a framework for such an examina- 

ticm. 



Three hundred and f i f ty -s ix  major mineral occurrences were plotted on 

a 1:1,000,000 scale base map of Alaska. Ninety-five low sun angle band 5, 

6 and 7 Landsat images covering a l l  of Alaska were s e l e c t e d  and a l i n e a r  

in te rpr&at ion  was completed for each frame. The l i n e a r  d a t a  was then 

d i g i t i z e d ,  computer processed, and histograms were c rea t ed  wi th  class 

i n t e r v a l s  of one degree f o r  both t h e  to ta l  number of l i n e a r s  and l eng th  

weighted linears. The data were output i n  the form of a rose diagram along 

with plots of the individual linears for  each frame. The outplt  data a r e  

included i n  Appendix I. 

The Landsat frame boundaries were p l o t t e d  on t h e  1:1,000,000 scale 

base map and t h e  rose  diagrams were p l o t t e d  a t  t h e  cen te r  of each frame. 

In  addition t o  the rose diagrams and mineral occurrences, the major mappd 

f a u l t s  were p l o t t e d  on t h e  1:1,000,000 scale map. The map is i n  s i x  

sheets, Plates I-VI in pocket 

Since the mineral deposit density for each frame was less than ten, no 

a t t empt  was made t o  contour occurrence dens i t ies .  Albert  and S t e e l e  

(1976a) have demonstrated t h a t  t h e r e  are re l a t ionsh ips  between l i n e a r  

densi t ies  and mineral occurrences i n  highly mineralized areas, such as the  

McCarthy quadrangle, with approximately 100 mineral occurrences. Deposit 

d e n s i t i e s  would have t o  exceed 30 per  frame o r  100 per quadrangle on a 

regitmil basis to  be s t a t i s t i c a l l y  s ign i f i can t  

Low sun angle frames were ut i l ized for l inear  interpretation as the 

low angles of incidence tend t o  enhance l inear  definition. Law sun angle 

enhancement can be achieved a t  no add i t iona l  cos t ,  whereas computer en- 

hancement per  frame costs approximately 1500 dol la rs .  In  order  t o  test 



whether the  low sun angle enhancement was effective as computer ahance- 

ment, the length weighted histograms for  the McCarthy, Talkeetna, Ketchikan 

and Prince Rupert, Phi l ip  Smith Mountains and Chandalar areas were compared 

with the quadrangle interpretat ions of Albert  and Steele (1976a1, S t e e l e  

and Alber t  (1978a, 1978b1, Le Compte (1979) and Alber t  e t  al. (1978) re- 

spectively. Although the exact areas were not congruous due to  the neces- 

sity t o  u t i l i z e  differat images, without exception the major trends iden- 

t i f ied by t h e  previous workers were duplicated from t h e  low sun angle  

images, For the McCarthy quadrangle, Albert and Steele (1976a) noted major 

trends a t  N 45 W, N 70 W, N 10-15 E, N 45-55 E, N 8490 E while frame 70/17 

(see Appendix and P l a t e  11) i n d i c a t e s  t rends  of N 45-55 w, N 75-80 w, N O- 

10 E, N 15-20 E, N 35-40 E, and N 70-75 E. For t h e  Talkeetna quadrangles, 

Steele and Albert (1978a) noted trends a t  N 0-10 W, N 30-35 W, N 40-45 W, N 

65 W, N 80 W, N 90 W, N 10 E, N 20 E, N 40-45 E, N 60-65 E and N 90 E while  

f rme 76/16 (see Fgpendix and Plate  11) indicates trends of N 15 W, N 35 W, 

M 45-55 W, N 60-65 W, N 80 W, N 90 W, N 1 0  El N 20 El N 30 El N 40-45 El N 

60 E and N 90 E. For t h e  Ketchikan and Pr ince  Rupert quadrangles, S t e e l e  

and Albert (1978b) found t r ends  a t  N 10 W, N 20-30 W, N 85 W, N 15 E, N 30 

E, N 40 E, N 60 E and N 75 E whi le  frame 58/21 (see Appendix and Plate 111) 

i n d i c a t e s  t r ends  a t  N 0-10 W, N 25-30 W, N 40 W, N 25-30 E, N 40 E, N 60 E 

and N 75 E o  For t h e  P h i l i p  Smith Mountains quadrangle, Le Compte (1979) 

found t r ends  a t  N 20 W, N 35 W, N 55 W, N 65-75 W, N 90 W, N 15-20 E, N 35- 

40 E, N 55-65 E, N 75 E and N 85 E o  Albert  e t  al, (1978) noted t rends  of N 

35 W, N 50 W, N 65-70 W, N 80 W, N 15  E, N 25 E, N 55 E, N 60 E, N 75 E and 

N 85-90 E for  the  Chandalar quadrangle while frame 79/12 (see m d i x  and 

P l a t e  I) i n d i c a t e s  trends of N 15 W, N 60 W, N 90 W, N 15 E, N 35 E, N 60 

E, N 75 E and N 85 E. The low sun angle  frames thus  produced the  same 



results a t  a cost savings of approximately 142,500 dollars i f  extrapolated 

for the entire area under investigation. 

Seven Landsat frames were selected for r a t i o  analysis  i n  order t o  

faci l i ta te  rocation of major fe r r id fe r rous  a l te ra t ion  su i t e s  associated 

with major mineral occurrences, Mineral occurrences a t  high latitude or 

elevation were selected to  minimize the effects of tundra or lichen cover. 

However, selection of the images was constrained by the  long periods of 

snow cover a t  high l a t i t ude  or elevation, The r a t i o  analysis  work was 

subcontracted t o  Geo Spectra Corporation, Ann Arbor, Michigan. 

f;ineat 0rientatfa-m and m c  Settings 

With the developtent of the plate tectonic hypothesis Wilson, 1965) a 

comprehensive m o d e l  of the w te r  layer of the earth w a s  formulated, The 

hypthesis states that the outer layer, or lithwphere, is divided into 12 

major and over 30 minor rigid plates between 80 and 100 km thick that move 

i n  respnse t o  force fields generated in  the earth's mantle. Seismiciw, 

volcanism, orogeny, post orogenic u p l i f t  and mineralization a r e  concen- 

trated a t  the boundarie~t of these plates, The boundaries can be classified 

into three groups: constructive, destructive and conservative. 

A t  constructive plate boundaries new lithosphere is created and con- 

sists of a layer of oceanic crust overlying upper mantle. The new litho- 

sphere is created along an oceanic spreading ridge system i n  which material 

moves outward a t  right angles from the ridge axis a t  rates up to  1 0  cm/yr. 

A t  destructive plate boundaries oceanic lithosphere is bent downward 

i n  a subduction or Beniof f zone beneath another plate. A t  t h i s  junction 



above the  Benioff zone a curved belt of active volcanoes is generated. 

W s  magmatic arc may be of the cordilleran type formed a t  the continental 

margin or it may be of the island arc type foam& on oceanic crust. 

A t  conservative p la te  boundaries two pla tes  s l i d e  past  each other 

along transform or s t r i k e s l i p  faults, Transform faults are generated a t  

r igh t  angles t o  spreading ridges, off s e t  the  spreading centers, and may 

extend on t o  the continents. 

The process of continental r i f t ing ,  breakup and col l is ion has been 

summarized by Burke and Wilson (19761, The sequence begins by doming of 

the continent over a mantle plume or hot spot, thinning of the lithosphere, 

deveLapnent of a three armed r i f t  pattern or triple junction and formation 

of new oceanic crust Generally two of the r i f t  arms remain active while 

the third arm fails. ~ p o n  closing of the ocean basin and completion of the 

cycle an island arc or Andean type magmatic be l t  is formed along t h e  

leading edge of the converging cant ina t  above the subduction zone. W i t h  

the f inal  closing of the ocean basin a folded mountain belt is formed and 

the  or iginal  c rus ta l  suture is preserved as a major: f a u l t  zone, often a 

s t r i k e s l i p  fault. 

The significance of plate bwndaries in the localization of ore deps- 

its has been discussed by Mitchell and Garscm (19761, Bonatti (1975, 1978) 

and others. Figure 1 (Frm Mitchell and Garm, 1976) is a schematic cross 

section through plate boundaries showing the tstonic settings and related 

mineral deposits, Figures 1A-1D cor respnd t o  constructive or tensional 

tectonic set t ings,  Figures 1E through 1J correspond t o  destruction or 

compr-ional tectmic settings, Figures IF and 1G cantain minor tensional 

tectonic settings, notably incipient r if t ing associated with inter-arc or 

marginal barsins. Conservative or transform fault  t e t m i c  settings are a t  
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Figure I, Schematic cross-section through plate boundary-re1 ated tectonic 
settings (From Mi tchell and Garson, 1976). 



right angles t o  the schematic sections. The schematic sections indicate 

the particular petrologic associations, elemental associations, and rela- 

t i v e  motions t h a t  define a par t icular  tectonic set t ing.  Table 1 gives 

examples of mineral deposits for each of the tectonic settings in  Figure 1. 

In addition t o  charac te r i s t i c  petrologic and elemental associations 

and plate dynamics, plate tectonic se t t ings  exhibit  d i s t inc t ive  f racture  

patterns. From theoretical rock mechanics and experimentation it is known 

that a b r i t t l e  material w i l l  develop a conjugate fracture pattern 45 de- 

grees from the principle stress direction under a compressive load. Eadg- 

ley (1959) has dernanstrated that due t o  internal friction most lithologic 

materials w i l l  f a i l  a t  30 degrees from the  principle s t r e s s  direction 

rather than a t  the theoretical 45 degree angle. under a tensional load the 

br i t t l e  material w i l l  f a i l  a t  right angles t o  the principle stress direc- 

tian, With the amlication of a shear load the material w i l l  f a i l  parallel 

to the shear load direction. 

Major f rac ture  patterns thus can be used to  addit ionally constrain 

m a s  of plate tectonic settings. Orthogonal or right angle intersections 

a r e  predominant i n  constructive or tensional tectonic set t ings;  acute 

intersections dominant in destructive or compressional settings; and frac- 

ture patterns parallel to  major transform faults in  conservative settings. 

The relat ionship of orthogonal f racture  patterns and r i f t  system 

related ore deposits was noted by Fuse11 (19681, Scott (1980) has demon- 

strated t ha t  Landsat imagery can be u t i l i zed  t o  define major orthogonal 

fracture patterns, and that the intersection of the major linears localize 



Table 1. P l a t e  t ec ton i c  s e t t i n g s  f o r  the format ion and emplacement of 
ore bodies (From M i  tchell and Garson, 19761. 
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the occurrence of the incipient r i f t  system related Kuroko type Zn-Cu-Pb-Ag 

d e p s i t s  . 
Table 2 includes a brief description of the major mineral occurrences 

in Alaska shown on Plates I through VI. mom the petrologic and elementaJ. 

associations and brthogonal l inear  features, r i f t  system related mineral 

occurrences can be inferred i n  the Brooks Range, southeastern Alaska, the 

north flank of the Alaska Range, east central Alaska, the lower Kuskokwim 

River area and the Seward Peninsula. The occurrences on the Seward Penin- 

sula  and east central Alaska may be as old as the  l a t e  Precambrian while 

the oldest occurrences, and a l so  the  best documented, a r e  those i n  t he  

Brooks Range. 'Ihese span the Devonian through the Carbniferous. 

Carboniferous active and aborted r i f t  systems or aulocogens have been 

inferred or documented in  the following areas of the circumarctic: 

The Selwyn Basin (Templeman-Kluit, 1979; Carne, 1979); the Sverdrup 

-in (Sweeney, 1977); Perry Land, northern Greenland and James Land, east 

Greenland (Haller, 1969); Spitzbergen (Sokolov e t  al., 1973); and eastern 

Siberia (Bazmrov, e t  al., 1976; Fujita, 1978). 

Evidence for  Carboniferous and Permian incipient  r i f t i n g  i n  the  

northern Brooks Range has been presented by Metz (1979) and Metz et al.  

(1979). The evidence includes sedimentary and igneous petrologic data, 

presence of high angle fault systems, gravity and magnetic data and mineral 

deposit associations. Ihe model can be outlined as follows: 

A. Regional doming of the  Precambrian basement of northeastern 

Alaska and northwestern Yukon Territory and emplacement of Sn-W- 

Ho-F-U-P bearing granites between 430 - 405 my. B.P. over an 

intracontinental hot spot; 



Table 2. Mineral occurrence descriptions keyed to Plates I, 11, 111, IV, V and VI 
* 

Pla te  
Occur, 

r m e n c e  l1 w t v  1) 
Host W k  2, Host Rock *) Landsat Linear Tectonic 

P ,&a -a 

1-1 Picnic Creek Cu, Zn Metamo@osed Devonian N25E, N65W F 
siliceous vol- 
d c s  

I 

2 Walker Lake a, Metamorphosed Devonian N25Er N65W F 
siliceous vol- 
c a n i c ~  

Sn, W granite & quartz Devonian N25E, N65W E 
monzmite 

Note: 1) Source of data primarily Hawley (19791 
2 )  Source of data, Beikman (1974) 

CI 
m 3) See Figure 2 and Table 1; A) intra-oo~ltinental hot spot, B) aborted r if t  zone, C) inter-continental r i f t  zone, 

Dl oceanic r i s e  and Hawaii type chain, El Andean type magmatic belt, F) is land arc and inter-arc basin, G) 
magmatic and outer arc w i t h  marginal basin, HI continental-continental co l l i s ion  be l t ,  I) post col l is ion 
volcanism, J1 corttinental collision w i t h  &lucked ophiolites, K) transform faul t  related. 

41 Source of data: see individual citations; placer production data, Robinson and Bmdtzen (1979). 





Table 2 (cuntinued) 
Plate 
Occur. 

unnamed 

Bonanza Creek 

unnamed 

Unnirmed 

Unnamed 

Hog River 

H o s t  Rock Host Rock Landsat Linear *tonic 
tv me on Settina m m t s  

granite & quartz Devonian MlOE, N35E, B 
m z m i  te MSSE, W5E, 

N6W, EW 

m, (=U granite & quartz Devonian NIOE, M5E, 
* 

B 
m z m i t e  N5SEf N75E, 

N65W, E-W 

quartz vein in m r -  MOE, m5E, G 
metasediment & Faleozoic N55E, W5E, 
metavolcanics N65W, E-W 

mafic volcanics Missis- N-S, MlOE, C 
sippian N25E, %0E, 

WOE, MOW, 
Ew 

Mo, W, S h , U  granitesquartz Devonian N-S, MIOEr A 
Pb, Zn monmi te N25Er N50Ef 

M7OE, NlOW, 
E-W 

granite b quartz PIemzoic N25Ef N60E, H 
m z o n i t e  KISE, N65W 

Pb, Zn granite & quartz Mesozoic N25E, N60Ef H 
monzanite N75E, M6nJ 

ultramafic Mesozoic N25Er N60E, I 
complex N75E, N65W 

granite & quartz Mesozoic N25E, N60E, I 
mnzoni te M5E, N65W 

Au a l l u v i a  placer N.A. Past production 
201,000 02 Au 



Table 2 (continued) 

P l a t e  
Occur. Host Rock Host Rock Landsat Linear Tectonic 

tv 

1-22 Utopia Creek Au alluvial placer 

23 Hot Springs D i s t .  Au, Sn alluvial pla- 
cers, green- 
schist facies 
metmn0,rphic 
bedrock 

24 m r t  D i s t .  Au 

CI 
wl 

25 Livengmd Dist. Au 

26 Unnamed 

alluvial pla- 
cers, green- 
schist facies 
metamorphic 
bedrock 

Alluvial pla- 
cers, green- 
schist facies 
metamorphic 
bedrock 

alluvial pla- 
cers, green- 
schist facies 
metamorphic 
bedrock 

N.A. 

N.A. 

N.A. 

N.A. 

N.A. 

carbonaceous Middle to N05E, N20E, C 
shale & chert Upper Pale- N40E, N75E 

ozoic N40W, E-W 

carbonaceous Middle to M05E, N20E, C 
shale & chert Upper Pale- N40E, N75E, 

ozoic N40W, E-W 

Past production in- 
cluded i n  Hog River 

Past production, 
447,900 oz Au 

Past production, 
86,800 oz Au 

Past production, 
375,000 oz Au 



Table 2 (continued) 

Plate 
Occur. Host Rock H o s t  Rock Landsat Linear Tectonic 

a W t s  

1-29 Cache Mt. U, Pb, Zn . 

29a Mt. Schwatka 

29b M t .  Prindle 

30 Unnamed 

granite & quartz Mesozoic NOSE, NZOE, H 
manzoni t e  N40Er W5E, 

M40Wr E+ 

% Z ~ I  Ag limestone & Middle t o  N05E, NZOE, C 
shale Upper Pale- N40E, M75Er 

O Z O ~ !  N4mI E-W 

M ~ S O Z O ~ C  N05E, N20EI H 
N40EI N75EI 
N40W, E-W 

f 

NOSE, N20E, 
N40Er N75E, 
MOW, E-W 

32 Circle District Au 

Sn, W, Au granite & quartz Mesozoic N05Er N20E, H 
monzmite N40E, K/5E, 

N40W, E-W 

33 Mame Creek area Au 

34 Woodchopper-Coal Au 
Creek area 

alluvial pla- 
cers, green 
schist facles 
metamorphic 
bedrock 

alluvial pla- 
cers, green- 
schist facies 
metamorphic 
bedrock 

alluvial placer 

N.A. 

N.A. 

Past production, 
730,000 oz Au 

Past production, 
included i n  Circle 

Past production, 
included in  Circle 



Table 2 (continued) ' 

Plate 
Occur. Host Rock Host Rock Landsat Linear 'Ikctonic 

Stuns m n t s  

Pb, Zn c a r ~ c e o u s  Precambrian N15E, N45E, C 
shale and N5OW 
limestone 

37 Three Castle Mt. AS 

38 Pleasant Creek % 

car b o n a c m  Precambrian N15E, N45E, C 
shale and N50W 
limestone 

carbonaceous P r m r i a n  M5E, N4SE, C 
shale and N50W 
limestone 

carbonaceous Precambrian M5E, N45E, C 
shale and N5OW 
limestme 

39 K M  Deer Creek mr A9 granitic rocks Mesozoic N15E, N45EI K 
undifferenti- N50W 
ated 

Zn, Pb, Cu Mfic marine Paleozoic M15E, N45E, B 
volcanics N50W 

Pb, Zn mafic marine Paleozoic N20E, N50E, B 
volcanics M45W, N65W, 

N85W 

42 Forty Mile Dist. Au 

43 Mt. Veta Oscar As Jurassic 

Past production, 
4000,000 oz Au 



Table 2 (continued) 

Plate 
occur. Host Rock Host Etock Landsat Linear -tonic 

Wt= 

45 M n  M t .  

46 Pedro Dane - 
Cleary Sumait - 
Gilmore Dane area 

Pb, Zn granitic rocks Jurassic N20EI N50E, B 
undifferenti- M5W, N6W, 
ated N85W 

granitic rocks Jurassic m0E8 NSOE, B 
undiff e r a t i -  N45W, N6SW, 
ated N85W 

alluvial 
placers 

N.A. Past production, 
7,464,200 oz Au 

47 Soo, Cleary H i l l  &I &I, %, quartz vein i n  Precambrian N05E, N20E8 H Past lode production, 
and Hi-Yu Mines Zn, Sbr W greenschist or Imer N40Er N75E, 250,000 02, Au aver- 

I-' 
03 

facies meta- Paleozoic N40W, EW age grade 1 oz per 
mrphics tun 

48 Bter Dane area Au a l lwia l  
placers 

N.A. H Past production, 
included in Pedro 

* Dome 

49 Ryan Lode and Au, quartz veins & Precambrian N05E, N20E, H Surface and under- 
Grant mine shear zone in or Imer N40E8 K15E, ground developnent 

gr eenschist Paleozoic N40W, E-W work 
facies meta- 
morphic~ 

50 Caribou Creek Au alluvial 
area placers 

51 Richardson D i s t .  Au allwial 
placers 

alluvial 
placers 

N.A. Fast production 
included i n  
Richardson 

Past production, 
95,000 oz Au 

Past production, 
45,000 oz Au 





Table 2 Icontinued) 

Plate  
Occur. 
l a m k L  

East Rock Host Rock Landsat Linear %tonic 
a 

metasedimentary Precambrian W S  , N55E, H 
& metavolcanics or Lower N85Er N45W 

Paleozoic 

Little Annie Ag, metasedimentary Precmbrian N-S, N55Er H 
& rnetav01cmics or Lower N85Er N45W 

Paleozoic 

Caribou Creek Au 

8 Sheep Creek 

mtasedhentary Precambrian WS, N55E, H 
& metavulcanics or IrxJer N85E, N45W 

Paleozoic 

alluvial 
placers 

naetasedhnentary Precambrian N-S, N55E, H 
& metavolcanics or Imer N85Er N45W 

Paleozoic 

ntetamorphosed Middle to Up WSr N55E, F 
siliceous vol- per Paleozoic E E ,  N4W 
canics & sedi- 
=taw 

w, mr Ba metamorphosed fiddle to Up N-S, M55E, F 
siliceous vol- per Paleozoic N85E, N45W 
canics & sedi- 
mentary a 

Zn, m, wr m e t a m o ~ s e d  Middle to Up N-S, N55Er F 
Au siliceous vol- per Paleozoic N8SE, N45W 

canics & sedi- 
mentary 



Table 2 (continued) 

Plate 
Occur. Host Rock . Host rtock Landsat Linear Tkxtonic 

Anderson Mt, 

Virginia Creek 

Dry Creek 

Rock Candy 

Mosquito 

Taurus 

Bluff 

Pushbush 

zn, W, A g r  m e t a m o ~ s e d  
Au siliceous vol- 

canic~ 5 sedi- 
mentary 

m, Pb, Ag, metamorpbsed 
Au siliceous vol- 

canic~ & sedi- 
=taw 

A h  Elgr Zn, metamorphosed 
Pb siliceous vol- 

canic~ 6t sedi- 
mentary 

Zn, Pb, Cu metamorphosed 
siliceous vol- 
canics & sedi- 
mentary 

granite or 
quartz m z o -  
nite 

granite or 
quartz mnzo- 
n i  te 

granite or 
quartz monzo- 

granite or 
quartz monzo- 
nite 

Middle to Zip 
per Paleozoic 

Middle to Up 
per Paleozoic 

Middle t0.W 
per Paleozoic 

Middle to Up 
per Paleozoic 

Mesozoic 

Mesozoic/ 
Tertiary 

Mesozoic/ 
Tertiary 

Hesozoic/ 
lkr tiary 



Table 2 (omtimedl 

Plate 
Occur. Host RDck Host Fbck Landsat Linear !kctonic 

Aae *t- m n t s  

11-17 Mt, Fairplay U 

18 Peternie 

19 B.C. 

21 Dry Tok 

syenite or Wrtiary N20E, I 
peralkaline N55W 
granite 

Mot granite t o  Mesozoic/ N20E, E-W E 
quartz m- Tertiary N55W 
zonite 

granodiori te Cretaceous N20E,  E-W, F 
to quartz N55W 
diorite 

granite to Eaesozoic N20E, PrW E 
quartz mon- N55W 
zmite  

Precambrian N15E, MOE, G 
sedimentary to Ixrwer H, N45W, 

Paleozoic M70W 

Zn, Pb, Cu, . metamorphosed Middle to Up N15E, N50E, F 
&I siliceous vol- per Paleozoic E-W, N45W, 

canics & sedi- WOW 
mtary 

23 Fmnble Creek zn, %, a, metamorphosed Middle t o  U p  M5E, N50E, F 
&I siliceous vol- per Paleozoic E-W, M45W 

canics & sedi- N70W 
-taw 
alluvial 
placer 

N.A. 



Table 2 kcmtinued) 

Plate 
Occur, 

tg . 
11-25 Pass Creek Dendli Cu mafic marine Eaesozoic N15E, M5Ef G 

~ol~aniCS N60Er EMi 
N35w 

26 Tivmnany Channel - Au 
Valdez Creek 

27 Lichen 

alluvial 

mafic marine 
volcanics 

wwr 
Paleozoic 

a? b, m granodior ite Tertiary &Sf N55Er E 
to quartz NEE, N45W 
diori te 

29 Golden Zone a? JQ granite to Tertiary N-S, N55Ef F 
quartz mon- N85Ef N45W 
zollite 

30 Ohio Creek a? w, P89 granite to T e r t i q  NOSEr WOEf E 
quartz m- N40Ef M5Er 
mni ta EHJ, N4Wf 

M65W 

31 Ready Cash mt Mi mafic volcanics Permian/ NOSEr N20E, D 
Triassic M40EI N65E, 

E-Wr N45WI 
N65W 

32 Partin Creek mf cu mafic volcanics Permian/ N05Er NZOE, D 
Triassic N40E, N65E, 

HI W5Wr 
N6m 
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Table 2 (continued) 

Plate  
Occur. Host Rodr Host Rock Laxbat Linear Tectonic 

ts 

11-41 Indian Ag, granite to Mesozoic m 5 E ,  N50E, K 
quartz monzo- H, M45W, 
nite  N70W 

MD, Cu granite to Mesozoic Nl5E. NSOE, K 
quartz m z o -  a-w, NQmr 
nite K70W . 

43 Silver Creek Agr granite to Mesozoic MSE, N50E, K 
quartz m z o -  B41, N45W, 
nite WOW 

45 Monte Cristo Mo 
Creek 

46 White M t .  Hine Au 

47 Orange Hill a, Mo 

48 Bond Creek Mo 

49 East Bond Creek m, 

granite to  Mesozoic N15E, N50E, K 
quartz ~Mxmo- D-Wr N45W, 
nite WOW 

granodior ite Mesozoic N2OE, E+, K 
toquartz - , N55W 
diori te 

mafic marine - Mesozoic N20E, MJ, D 
volcanics N55W 

granodiorite Tertiary PaOE, E-W, K 
t o  quartz N55W 
diorite 

granodior ite Tertiary N20E, E M ,  K 
to quartz N55W 
dior ite 

granodiorite lkr tiary M20E, E-W, K 
to quartz N55W 
diorite 



Table 2 (continued) 

Plate 
Occur, Host Itock Host Rock Landsat Linear mtmic 

S e W a  CarmPnts 

11-50 Nabesna Glacier Zn, Cu mafic volcanics Triassic N2UE8 E-W? D 
N55W 

51 Chisana D i s t .  Au 

52 Carl Creek Cu 

55 Beaver Creek Cu 

alluvial 
placer 

granodiorite Cretaceous N20E, H, K 
to quartz N55W 
diorite 

granodiorite Cretaceous ~ 2 0 ~ ~  M, K 
to quartz M55W 
diorite 

granodior ite Cretaceous N20E, 0 i V ,  K 
to quartz N55W 
diorite 

granodiorite 
to quartz 
diorite 

56 Gold Cord TJI pb grandor i te 
to quartz 
diori te 

57 Independence mt Wr pbf granodiorite 
Zn to quartz 

diorite 

58 War Baby - A h  Wf m granodiorite 
Lucky Shot Zn to quartz 

diorite 

Tertiary N20E, E-W, K 
N55W 

Tertiary N25E, N45Er E 
WOE, M45W, 
M5W 

Mesozoic 3 N25E, N45E, E 
MOE, N4W, 
N75W 

M ~ ~ O Z O ~ C  N25Er N50EI G 
M5E, N85W 





Table 2 (continued) 

Plate  
Occur. 
HmkL 

Host Rock Host Rock Landsat Linear Tectonic 
ts 

Dan Creek m, Ag alluvial placer N. A. 

Chitita Au alluvial placer N.A. 

Midas 

Cliff 

Cut Ag mafic marine Tertiary N-S? N55E, D 
volcanics PW, N40W, 

N55W 

Pidalgo - Alaska a 

lhreeman Mining Cu 

Landlocked Bay Cu 
Copper 

Rua Cove 

quartz veins Cretaceous N-S, NSSE, G 
in greywacke H, NQOW, 
and argil l i te  N55W 

mafic marine Tertiary N-S, N55E, D 
volcanics a-W, MOW, 

N55W 

mafic marine Tkr tiary N-Sw N55E, D 
volcanics EW, N40W, 

Ns5W 

marine mafic Tertiary N-S, NS5Ew D 
volcanics H, N4m, 

N55W 

a, marine ntafic Tertiary N-S, m 5 E ,  D 
volcanics EW, M40Wf 

N55W 

zn marine mafic Tertiary N20Ef M5E, D 
volcanics S O E ,  N80E, 

N20Wf M60W 

Ratoucke - a, All? &I, marine mafic Tertiary WOE, N 3 5 E f  D 
Beatson Ni volcanics N60Er N80E, 

mow, sow 



Plate 
Occur. 
mnkL 

Host Rock H o s t  Rock Landsat Linear 
Aae - 

Horesb Bay at MI JW, marine mafic Tertiary WOE, N35E1 
Pb volcanics N60E, EJ80E, 

mow, Mow 

Granite quartz veins Cretaceous N25E, NSOE, 
in greywacke W5E, N8SW 
& argil l i te  

quartz veins Cretaceous N25E, N50E, 
in greyw~tcke N75E, N85W 
& argil l i te  

Resurrectim 
Creek 

quartz veins Cretaceous EJ25Et NSOE* 
in greywacke N75E, N85W 
& argil l i te  

Lucky Strike quartz veins Cretaceous N25E, N50E, 
in greywacke MSE, N85W 
& argil l i te  

All quartz veins Cretaceous N25E, EOE, 
in grqwacke MSE, N85W 
& argil l i te  

Au greywacke & Mesozoic N20E, N35Ef 
argil l i  te N65E, N2SW, . N6W 

G l a s s  greywacke & PIesozoic 
argil l i  te 

greywacke & Mesozoic 
argil l i  te 
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Table 2 Icuntinued) 
Plate 
amlr. 

r W c u ~  

10 W i l l i a m  Henry Bay 

11 rxlnaas Bay 

12 Brady Glacier 

13 Lituya Beaches 

14 Takanis 

M i ,  Cu, Co, 
Pt 

Ebst Rock Host Rock Landsat Linear 

mafic marine Mesuzoic & NOE, E-W, 
volcanics Paleozoic M5W, N40W, 

Mow 

mafic marine Mesozoic & E320Er PW, 
volcanics Paleozoic NlW, N4OW, 

Maw 

syenite and Mesozoic N20E, E-W, 
peralkaline N15W, N4OW 
grani te  MOW 

granodiorite & Cretaceous N20Er E H ,  
quartz d i o r i t e  NlW, N40W, 

N60W 

Mesozoic M20E, P W r  
N15W, N40W, 
N60W 

beach placer N.A. 

I Resources of several 
hundred million lbs 
of U3 08 in w r m r y  
type deposit. 

G In layer m a f i c -  
ultramafic intrusion; 
probable reserves of 
200 to 300 million 
tons of 0.5% Ni (in 
sulfides) & 0.3% Cu; 
one of top two nickel 
reserves i n  the U.S. 

H Takanis, Bohemia Ba- 
s i n  & Flapjack depos- 
its i n  layered mafic- 
ultramafic canplexes; 
i n  excess  of 20.7 
million tons of re- 
serves of 0.33-0.51% 
Ni, 0.21-0.27% Cu, & 
up to  0.04% Co. 



Table 2 (continued) 

Plate 
Occur. H o s t  Rock Host Rock Landsat Linear Tectonic 

ts 

111-15 Bohemia Basin N i ,  Cu, Co, sabbro 
m, m, Au 

16 Flapjack 

18 Punter Bay Ni, Cu 

19 Eagle River 

granite 

gabbro 

gr eywacke- 
argi l l i te-  
greenstone 

greywacke- 
a r g i l l i t e  
greenstone 

Tertiary mOE, E-W8 G 
M15W, N40W, 
N60W 

mOE, PW, G Substantial reserves 
Nl%, of Au mineralization 
MOW (reserves containing 

0.5 to  1 oz per ton 
Au part ial ly blocked 
out); past production 
10,000 to 15,000 oz 
Au; area contains 
significant Fg-Zn-Au 
sulfide occurrences. 

Cretaceous N20E, H, H Past production be- 
Kl5W, N4OW8 tween lO,OOO & 
M60W 50,000 oz Au. 

Mesozoic 

N-S, N15EI 3 In layered rraafic- 
N50Er N45w8 ultramafic intru- 
MSW sion; probable re- 

'serves of 8,000 
tons of 1.54% Ni & 
0.7% Cu & inferred 
reserves of several 
million tons of 
0.2% Ni & 0.1% Cu. 

N-S, N15E, G 
N50E, N45W, 
N75W 



Table 2 (continued) 

Plate 
Occur . Host Rock 

111-2l Alaskaduneau Au WWack* Mesozoic 
argilli te- 
greenstone 

greywacke- Mesozoic 
a r g i l l i t e  
greenstone 

23 Greens Creek mr m, Agr mafic marine Devonian 
Au volcanics ? 

24 Pyrola Zn, *, W tuf  faceous, 
siliceous 
shale .. 

25 Mirror Harbor Mi, CU, Co sabbro 

greywacke- 
argilli te- 
greenstone 

gr eywacke- 
argillite- 
greenstone 

Devonian 

Tertiary 

Mesozoic 

Mesozoic 

Landsat Linear 

N30E, N70E, 
&W, mow, 
N3!W, N50W 

Past production of 
3,832,000 oz Au fran 
88.5 million tons be- 
tween 1893 & 1944. 

G Past production of 
3,274,600 oz Au fran 
28.8 million tons be- 
tween 1885 & 1922. 

1 

F Major stratiform mas- 
sive sulfide w i t h  
high precious metal 
content; 20 million 
oz of recoverable Ag 
and 200,000 oz of &I 
in 2.5 million tons 
of ore. 

H Proven reserves 8,000 
tolls of 2% Ni, in- 
ferred reserves 1 
million tons 0.3% Ni 
& 0.08% Co, 



Plate 
I 

Occur. H o s t  Rock Host Rock L a n d s a t  Linear Tectonic 
on SPttincr - m t s  

111-28 SweetheartRidge Au,Cu,Zn mafic marine Mesozoic & mOEI WOEf F 
volcanics Paleozoic E-W, N20Wr 

N3nJ, N5OW 

29 Tracy A m  m, a, mafic marine Mesozoic st N30Er WOE, F 
volcanics Paleozoic w, mow, 

N35W, N5OW 

Cur m, mafic marine Mesozoic Q N30Er WOE, F 
volcanics Paleozoic E-Wt ~ W I  

MSW, NSBW 

31 Point Astley Zn, *, &I mafic marine Mesozoic St N30E, N70EI F 
volcanics Paleozoic 

W 
H, mm, 

rP 
mw, N50W 

32 Warm Springs Bay Cur Mo g r a n d  or ite lkrtiary N30E, N7UE, E 
and quartz H, N2mr 
dior ite N3WI N50W 

33 Red Bluff Bay Cr ultraraafic Eaesozoic N30Ef WOE, G High grade; 570 tons 
canplex H, mow? of more than 40% 

N35Wf N5UW chrcnne, 29,000 tons 
of 18-35% chrane. 

34 Snipe Say Ni, Cu sabbro Tertiary MOE, E370E, G 
HI mw? 
m5w, mow 

35 Taylor Creek Pb, Zn tuffaceous, Devonian N-S, N45Er C 
siliceous ? N60E, NlOW 
shale 

36 Ground Hog Basin Zn, Pb maf ic marine Mesozoic & N50E, NlOW, C Values up to  8% Zn, 
volcanics Paleozoic N30W 8% Pb, 29 oz Ag & 0.5 

oz Au per ton. 



, Plate 
Occur. - 
111-37 Whistle Pig 

38 Glacier Basin 

39 North Bradfield 
River 

i 
! 40 Pitcher Island 

I 
41 Blashke Island 

W 
U1 

42 Hecla 

43 m t u  

44 Riverside 

45 Borroughs Bay 

46 Quartz Hill 

Table 2 (continued) 

Host RL3Ck LandSat Linear Tectonic 
S e W a  Qmgnts 

Zssr a mafic ' k i n e  Mesozoic & E150E, NlOW, B 
volcanics Paleozoic N30W 

mr mafic marine Mesozoic & N50E, MOWr B 
volcanics Paleozoic N3OW 

granitic Cretaceous M50Ef NIOWr H 
N3 OW 

Cr, Ni, Co, ultramfic Cretaceous N50E, NlOW, G 
Pt 0anp1ex N3 OW 

CU, pb, Zn, mafic marine Mesozoic PS, N20E, F 1 

A4 volcanics NSOE, WOEr 
E M ,  N35W 

Mot cur Ag granodiorite Tkrtiary WS, N20Ef G 
quartz diorite mOE, N70Er 

EM, m5W 

W, Pb, Zn, Ag granodiorite Tertiary N-S, N20E, G Past production 3000 
quartz diorite N50E, WOE, stu WO (between 

EM, N35W 1941-1346) . 
granodiorite Tertiary N-S N20Er G 
quartz diorite N50E, MOE, 

H, N35w 

granodior ite Tertiary N-Sf N20E, G 1 .5b i l l i on  tonsat 
quartz diorite NSOE, WOEr 0 .I368 M& including 

E-W, N35W 200 million tons at 
0.20% M0S2. 



Table 2 (continued) 

Plate 
Occur. Host Rock Host Rock Landsat Linear Tectonic 

ts 

111-47 Moth Bay m, a mafic marine Mesozoic & N-S, N20Er F 
volcanics Paleozoic N50E, WOE, 

H, N35W 

49 Rich H i l l  Cu 

Cretaceous & N50E, MOW E * granodiorite 
quartz diorite Jurassic N3 OW 

granodior ite Cretaceous & MOE, MOW, E 
quartz diorite Jurassic N3 OW 

50 Salt Chuck pt, a, sabbro Paleozoic NSOE, NLOW, G Past production 
N3 OW 16,000 oz W & minor 

Pt 1918-1921,1924-26, 

W 
1935-41. Inferred r e  

01 serves 11,895 oz Pd. 

51 Rush and Brawn Cu granodiorite Cretaceous N50E, MOW, E 
quartz diorite N30W 

52 Pin Peak m, Mo granodior ite Cretaceous N50E, MlOW,  E 
quartz diorite N30W 

53 Flagstaff Au granodiorite Cretaceous EOE, M1OW, E 
quartz diorite N30W 

granodiorite Cretaceous N50E, MOW, E 
quartz diorite M O W  

55 Noyes Island Mo granodiorite Cretaceous N50Er NlOW, E 
quartz diorite MOW 

56 Coronation Island Pb, Zn, Cu limestone Silurian N50E, NlOW, C 
N3 OW 

57 Baker Island E$o granodiorite Tertiary NSOE, NlOW, E 
quartz diorite NjOW 



Table 2 (continued) 

Plate 
Occur. 
m 
111-58 San Juan Bautista 

59 B i g  Harbor 

63 Bdtan M t .  

65 Red River 

66 Forrester Island 

H o s t  Rock Host Rock Landsat Linear Tkctmic 
ts 

granodior i te Tertiary NSOE, EJIOWf E 
quartz diorite N30W 

granodiorite Tertiary NSOE, NlOW, E 
quartz diorite . MOW 

mafic marine ~awer JSOE, NlOW, B 8%m, 0.25ozAuti 
volcanics Paleozoic MOW 2.25 oz Ag per tan. 

m f i c  marine ~awer  N50Er NlOW, B 
volcanics Paleozoic mow 
mafic marine m e r  N50Ef MOW, B Pa~tproduction1.4 
volcanics Paleozoic N3 OW million pounds Cu 

1,100 oz Au,. 15,000 
02 Ag. 

mite & Jurassic N35E, N E E ,  H Past production wer 
peralkaline MOW 1 million pounds 
granite "3 O8 

granodiori te Mesozoic N50Er NlOW, E 
quartz diorite MOW 

granodiorite Tertiaq & N-Sr N 2 0 E f  
I 

E 
quartz diorite Mesozoic N50E, WOEr 

Ekw, N35W 

granodior ite Mesozoic N35E, N75E, E 
quartz diorite N40W 

granodior i t e  Cretaceous N50E, NlOW, E 
quartz diorite N3 OW 



Plate 
Occur. H o s t  Rock H o s t  Rock 

m, m, Agr carhaaceow Missis- 
Ba shale, bibmi- s imian 

nous limestone 
and chert 

2 Southeast Lik m, pb, Ag, carbonaceous fissis- 
Ba shale, bitmi-  simian 

nous limestone 
and chert 

mt m, Pagr carbonaceous Missis- 
Ba shale, bitumi- sippian 

nous limestme 
and chert 

4 South Red Doq m % Ag, carbonaceous Hissis- 
Ba shale, b i tmi -  simian 

nous limestone 

6 Misheguk Mt. Cr 

mafic-ultrama- Jurassic 
fic c a q l e x  

mafic-ultrina- Jurassic 
fic canplex 

7 Ginny Creek Zn, m, Rg carbonaceous Devonian- 
shale, bitumi- Missis- 
nous limestone sippian 
and chert 

Landsat Linear Tkctonic 
Settjna Cslnaprlts 

WS, N25EI C Inferred reserves in 
m5E, N55E excess of 15 million * 

tons of 15-208 Zn + 
+ l?b & 3 oz per ton 
Ag (Tailleur, 1970; 
Metz and Robinson, 
1979). 

N-S, N25Ef C 
N35Ei NSSE 

NlOE, N25E, J (Anderson, 1947) 
NS5E, W5E, 
E-W 

MOE, N25E, J (USBM, 1979) 
NS5Er W5E, 
Ew 

M1OE, N25E, C (Mayfield e t  al . ,  
N55Ef N75E, 19791 
E-w 



I 

Table 2 (continued) 

Plate 
Occur. Eb§t Rock - Host Rmk 

L 
Landsat Linear Tectonic 

IF8 Nimuiktuk River Ba carbanaceous 
shale, bitmi- 
nous limestone 
and chert 

Devonian- 
Missis- 
sippian 

mafic-ultrama- 
fic ccraplex 

Jurassic 

mafic-ultrarma- 
fic ccmplex 

Jurassic 

11 Drenchwater zn, Pb, Agt 
W 
U, 

Ba 
carbonaceous 
shale, bi  tumi- 
nous limestone 
and chert 

Missis- 
simian 

NlOE, N25E, C 60 x 150 f t  exposure 
N55E, KISE, averages 3% W, 17% 
E+W Zn and 3.3 oz per ton 

Ihg (Nokleberg & 
Winkler , 1978) . 

12 Story Mt. m, pbr Ag c a r h c e o ~  
shale, bitmi- 
nous limestone 
and chert 

13 Kivliktok Mt. m, a* &? carbonaceous 
shale, b i t d -  
nous limestone 
and chert 

Missis- 
sippian 

alluvial placer Missis- 
simian 

N.A. 

* 
cut Ag argillaceous Devonian N-S, N25E, F (USBM, 1979) 

limestone NSOE, N05W, 
N30W 



Table 2 (continued) 

Plate 
Occur. * Host Rock Lanasat Linear 

IV-16 Shiskakshinovi k 
Pass 

a: argillaceous 
lirraestone 

Devonian F (Shith, 1913; 
Anderson, 1947; 
USBFI, 19791 

argillaceous 
limestone 

Devonian 

18 Horse Creek siliceous vol- 
canic~ and 
sediments 

F (Sickeman et al., 
1976). 

1 19 Cliff 

IP 
0 

20 Sucker 

siliceous vol- 
canics and 
sediments 

N20E, N35E, 
MOE, N40Wr 
N6W, E-W 

siliceous vol- 
canic~ and 
sediments 

Devonian 

1 
21 Sunshine Creek Zn, a siliceous vol- 

canic~ and 
sediments 

Devonian N20E, N35E, 
N60E, N40W, 
N65W, E-W 

22 Dead Creek siliceous vol- 
canic~ and 
sediments 

F (Sickerrnan et al., 
1976) , 

23 Arctic Camp siliceous vol- 
canic~ and 
sediments 

Devonian F Reserves 35-45 m i l -  
lions tons; 5.5% Zn 
4.5% Cu, 1% W 
(Wiltse, 1975; 
Sickerman et al., 



P l a t e  
Occur. - 

25 Pardner H i l l  

26 K o b u k  District 

27 Copper Creek 

29 Frost 

30 Klery Creek 

31 Cape M t .  Sn 

32 Cape Creek Sn 

33 Potato Mountain Sn 

mle 2 (continued) 

Host Rock Landsat Linear -0nic 
0- S P u g  m t s  

marine volcani- Devonian N20Er N35E C ( S i c k e m  et al., 
c las t ics  and MOE, N40Wr 1976). 
sediments N65W, E-W 

marine volcani- Devonian mOE, M5E1 C (Sickerman et al, 
clastics and N60Ef N40W, 1976). 
sedimRnts N6W, J3-W 

alluvial placers N.A. Past production 
22,000 02 Au* 

si l iceous vol- Devonian N25Er N60E, F (USBM, 1979). 
canics and MW 
sediments 

argillaceous Devonian N25E, N60Er F (USBM, 1979). 
limestone & M5W 
dolani te  

argillaceous Devonian N25Ef S O E ,  F (USlW,1979). 
limestone & MW 
dolani te 

alluvial placer 

granite 

granite 

granite 

Mesozoic 

Mesozoic 

Mesozoic 

N.A. Past production: 
32,000 oz Au (Robin- 
son & Bundtzen, 791. 

MOE, NZOE, H Mulligan (1966). 
mow, E-W 
NlOE, N20E, H Mulligan (19661. 
N5m, E-W 





Table 2 (continued) 

Plate 
(kcur. IIost Rock Host Rock Landsat Linear Tktonic 

ty 0- Stf isa 

IF45 Quartz Creek Pt>, Zn mafic marine Paleozoic N25Et N45Et B 
volcanics M5E, N65W 

46 Anzac Creek U syenite and EIesozoic -M25Ef N45Ef I 
peralkaline N65E, N65W 
granite 

syenite and Mesozoic N25E, N45Ef I 
peralkaline M5Et N65W 
granite 

48 Placer River mr U syenite and Mesozoic N25Ef USEf 
peralkaline N65Ef N65W 
granite 

8 
49 llilnarrsed MQt u syenite and ~ s o z o i c  N25Ef N45Ef 

peralkaline S5Et N65W 
granite 

53 Purcell M t .  

54 Dakli 

syenite and Mesozoic N25Ef N60Er I 
peralkaline N35W 
granite 

syenite and Mesozoic N25Ef N60Ef I 
per alkaline N35W 
granite 

syenite and Mesozoic N25Ef N45E, I 
peralkaline %5Ef N65W 
granite 

quartz monzo- Mesozoic N25Er N45Ef I (Miller and 
n i t e  N65E, N65W Ferrians, 1968) . 

MI Ag granodiori t e  Mesozoic N25E, N45E, E (Miller and 
quartz diorite N65Ef N6SW Ferrians, 1968). 







Table 2 (continued) 

Plate 
Occur. Host Rock H a t  Rock Landsat Linear Wctonic 

r O c c  Age Sews -nts 

V-1 mlstoi-Innoleo Au alluvial placer N.A, 

2 C r i ~ p l e  Creek Mts. Au alluvial placer N.A, 

3 @her area Au alluvial placer U.A. 

4 Nixon Fork fines h, A% m, granitic rocks Wr tiary/ M5E, N55E, G 
Bi undifferentiated C r e t a m  WOW 

5 Slate Creek Sb mtam0rphoSea Paleozoic/ N20EI N40E, G 
siliceous vol- Precambrian NIOW, N8SW 
canic rocks & 
sediments 

6 Greebck Cur P l f  Zn granodiorite & Wrtiary WOE, WOE, K 
quartz diorite MOW, N85W 

granite & T??rtiary NOSE, N20Ef K 
quartz monzonite N35E, NSSE, 

NSOW, N65W 

Ag, U, %, W granite & quartz Tertiary NOSE, N20E, K 
m z o n i  te N35Ef N55Ef 

N50Wf N65W 

granodiorite & Tertiary N05E, N20E, G 
quartz diorite M5E, N55E, 

N5OWp N65W 

granodiorite & Tertiary N05E, N20E, G 
quartz diorite N35Er NSSEf 

N5OWp N65W 



0 4 P I  
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Table 2 Imtinued) 

Plate 
~ccur. Host Rock Host Rock Landsat Linear =tonic 

r Occwxence Name on 

V-23 Jinatly Lilke Mf a, m, granite & Tertiary l+S N30Er G 
Bi quartz monzonite NSSE~ mow8 

mow 
24 Chill Rgt mr * granite & Tertiary N-St #0E, G 

quartz monzonite N55E, MOW, 
N50W 

25 Pass Lake Mo granite & Tertiary N-St N30E, G 
quartz monzonite N55Er N30Wf 

M50W 

granite 6r Wr tiary E S ,  N30E8 G 
quartz m m i t e  S 5 E ,  N3W, 

mow 
27 Hayes Glacier grandor i te 

quartz diorite 

28 fi. Estelle a, A% F+3 granodiorite 
quartz diorite 

29 Trimble Glacier Mo granodiorite 
quartz diorite 

marine rrsafic 
volcanics 

a, granodiorite 
quartz diorite 

Mesozoic N-S, M30Et G 
N55Ef  mow, 
mow 

Mesozoic N05E, mOE, G 
N45Er M80Er 
N25W, N4OW 

Jurassic N05E, N20Er K 
N45Er N80E8 
N2W, N40W 

Tkr tiary N05E, WOE, E 
M45E, N80E8 
N25W, N4W 



I Table 2 (continued) 

Plate 
Occur. Host Rock Aost h x k  Landsat Linear !kctonic 

granodior i te Tertiary N05E, N20E, E 
quartz diorite N45d E380E8 

M2nJ, N4OW 

granodiorite Tkrtiary N05Et N20E, E 
quartz diorite N45Et NWE1 

N25WI N40W 

mr Zn, A% marine mafic Jurassic N15Er N35E, K 
Ba volcanics N55E, N30W, 

N50Wf E W  

35 rJmamd granitic rocks !krtiary/ NISEf N35E E 
undifferentiated Cretaceous N55Et MOW, 

IP w N50Wr %W 

I 37 Kana Creek Cu 

39 Otter Lake 02 

granitic rocks W r  tiaryl NlSE, N3SE, E 
undifferentiated Cretaceous N55E, BOW, 

N50WI E-W 

granitic rocks Tertiary M5Er N35Er E 
undifferentiated NS5El N30W, 

mow, E-W 

granitic rocks Tertiary NlSE, N35E, E 
undifferentiated N55E, mOW, 

N5W, E-W 

mafic marine Jurassic N15E, N35El K 
volcanics N55Er MOW, 

mow, Ew 
40 Kijik Mt. C u r  Au, Mo mafic marine 

volcanics 
Jurassic m 5 E f  N35Ef K 

N55Er 
N50WI H 





Wle 2 (continued) 

P la te  
Occur. Host Iiock Host Rock Landsat Linear Wctonic 

57 Paint River 

58 Bat t l e  Lake 

mafic marine Jurassic N15Er N35EI D 
volcanics N55Er W30W, 

mowr Ew 
ntafic marine Jurassic N15E, N35EI D 
volcanics NS5E, N3(IWr 

N50WI MJ 

Agr mafic marine Jurassic Nl5E, N35E, D 
volcanics N55Er N30Wr 

N50W, I3-W 

59 Unnamed c u r  

60 Unnamed tb 

61 Rex f i r  Mo 

62 Mike FIo 

grmitic  rocks Tertiary/ 
undifferentiated Cretaceous 

mfic marine Jurassic 
volcanics 

mafic marine Jurassic 
volcanics 

granodiorite Tertiary/ 
quartz d i o r i t e  Cretaceous 

mafic marine Jurassic 
volcanics 

granodiorite !kr tiary/ 
quartz diorite Cretaceous 

N05EI N40E F 
N65Er N5W 
mow 

NOSEr N40EI D 
N65Er N55W, 
mow 

N-S, NlSE, F 
M5Er  N50W, 
N65W 





Plate  
Occur, H o s t  Iiock H o s t  Rock Landsat Linear Tectonic 

Aue on 

Old Harbor 

Barling Bay 

Bear 

Cornelius Creek 

Balmmn6r 
Strickler 

Claim Point 

Red Mountain 

granodiorite 
quartz diorite 

graywacke 
argil l i te  
greenstone 

graywacke 
argil l i  te 
greenstone 

graywacte 
argil l i te  
greenstme 

granodiori te 
quartz diorite 

graywacke 
argil l i te  
gr eenstone 

Tertiary 

Cretaceam 

Cretaceous 

Cretaceous 

Brtiary 

Cretaceous 

Jurassic/ 
Cretaceous 

Jurassic/ 
Cretaceous 



Table 2 (continued) 

Plate 
Occur. Host Rock Host Rock Landsat Linear Tectonic 

S3ttil-m -ts 

- 1  IbOVookpuk Mt. cut m, %I granite Mesozoic MOE, N20E, 
N45E, MOE, 
N30W 

2 Cape Mk. Sn 

3 Cape Creek Sn 

granite Mesozoic NlOE, PF20E, 
N50W, E-W 

granite Mesozoic NlOE, N20E, 
M50W, E-W 

granite Eaesozoic MOE, N20Er 
mow, E+w 

5 Imt River at F granite Mesozoic PllOE, mOEI 
ul 
& 

sow, E-w 

6 Ear Mountain Sn 

7 Kougarok - Taylor Au 
Creek area 

granite Mesozoic NlOE, N20E, 
am, E3J 

alluvial placer N.A. 

* 
8 Boulder Creek area Au alluvial placer N. A, 

9 Dahl-Coffee Au 
Creek area 

alluvial placer N.A. 

10 HannmLode Wr Ag argil l i te  & Paleozoic ? N25Ef N45Ef 
greenstone N65Er N65W 

11 Hannm Creek m, zn argillite & Paleozoic N25E, N45E, 
greenstone N65E, N65W 

12 Imchuk River a? &I argillite & Paleozoic N25Er N45E, 
greenstone . N65E, N65W 

H (Watts, Griffis & 
MWt, 1972 )  . 

Past production 150, 
400 oz Au (Robinson 
& Wmdtzen, 1979). 





Table 2 (continued) 

Plate 
Occur. Host Rock Host W k  Landsat Linear ~ o n i c  

Age Setwa 

beach placer N.A. ,Bast pr-ction, 
3,6068000 oz AU 
reserves: I mill ion 
oz Au IRobinson br 
Bundtzen, 1979) 

25 Aurora Creek mr m, altered schist Paleozoic/ mOE8 N65E8 B (Herreid, 1968) 
and dolauite Precambrian N40W 

26 Waterfall Creek mt a? Au altered schist Paleozoic/ 

i *r Ag Precambrian 
i 
! 27 Bluestone River Ru al luv ia l  placer N.A. 



B. Developnent of tensictmd structures, local basins, extrusion of 

bas ic  volcanics and deposition of Zn-Pb-Ba mineral izat ion i n  

eastern Selwyn Basin, during the Upper Devonian and Lower Missis- 

sippian ; 

C, Deposition of continental clast ics  in Alaska from the northerly 

and easterly highland during the Upper Devonian and Lower Missis- 

sippian; 

D, Transgression onto the  cont inenta l  margin from the  south and 

formation of a s t a b l e  continental  shelf  i n  Alaska during the  

Mississippian; 

E. Graben formation and evaporate deposition i n  Alaska and i n  t h e  

Sverdrup Basin during the Late Mississippian; 

F. Basic and felsic volcanism and deposition of Zn-Pb-Ba-rich muds 

and cherts in Alaska during the Late Mississippian; 

G o  Continued deposition oe barium-rich sediments i n  t h e  Permo- 

T r i a s s i c  and phosphates and uranium r i c h  sediments i n  Alaska 

during the Triassic; 

H. Clastic depositian i n  the grabens and broad down warping i n  the 

continental margins from the Permian through the Cretaceous in 

the arctic r i m ,  and the formation of the Colville geosyncline i n  

Alaska; 

I. Closing of the r i f t  arms i n  Alaska and Yukon Terr i tory  and 

r i f t i n g  of t h e  Novosibirsk p l a t e  away from the  Canadian Arctic 

Islands during the Jurassic; 

J. Continent-to-continent c o l l i s i o n  i n  Alaska and Yukon Territory 

during the Cretaceous and formation of t h e  Brooks Range i n  

Alaska. 



Linear data from the  current investigation generally supports the  

above model. Examination of Landsat frames 74/12, 75/13. and 76/12 (see 

Plate I) generally indicates a radical fracture pattern over northeastern 

Alaska. 

Inspection of L a n h t  frames Bull and 83/11 confirm the preaence of 

an unnamed l inear  feature  previously ident i f ied by Albert (1978). This 

major l inear  feature  trends N 65 E and extends for  over 300 km from the  

confluence of the mlaranagavik and Colville Rivers to  Mikkelsen Bay. This 

trend is para l le l  t o  the  gravity and magnetic anomaly evidence for  the  

above model, as well as parallel t o  the spreading axis of the proposed r i f t  

system. The above l inear  feature  is here designatedtheColvilleLinea- 

m t  . 
Orthogonal t o  the  Colvi l le  Lineament is a l inear  trend N 25 W. This 

major trend is apparently controlling the large tributaries t o  the Colville 

River and may be controll ing t he  orientat ion of the lakes on the  north 

slope of Alaska., mutin (1977) noted the northeast tectonic trend but did 

not note the northwest trend parallel to  the mean lake orientation. 

Albert (1978) noted t h a t  the  Umiat, East Umiat and Gubik gas f i e l d s  

and the Prudhoe Bay o i l  f ield were located along this northeast structure, 

however, the existence of the northwest trend was not noted. The intersec- 

tian of these major trends, and not simply the Colville Lineament, may be a 

prtial control for the oil and gas resources of northern Alaska. 

The metal l ic  mineral resources of northern Alaska may also  be con- 

trolled by the intersection of the northeast and northwest trends.  ands sat 

frame 79/12 shows two areas of intense northeast linears. One area is 

located jus t  below the  center of the  frame and another i n  t h e  northwest 



corner of t h e  frame. An intense northwest trend forms a diagonal a t  t h e  

center  of t h e  frame. On frame 79/12/1, eleven Cu-Pb-Zn-Ag-Au mineral 

occurrences (see a l s o  P l a t e  I) have been plotted as w e l l  as one Mo-Sn-W 

mineral occurrence. Generally, these  occurrences a r e  located along t h e  

southerly northeast trend but within the l i m i t s  of the intense northwest 

trends. If the intersection of t h e  t rends is loca l i z ing  mineralization, 

then addi t ional  mineral occurrences would be expected t o  occur a t  t h e  

intersection of the northerly northeast trend with the intense northwest 

trend. 

Geochemical eampling on a one m i l e  g r i d  over a thousand square m i l e  

area on the northerly northeast trend (Metz and Robinson, unpublished USBM 

contract report) resulted i n  the definition of 14 anomalous areas. These 

areas are shown on 79/12/2. Those anomalies are all within the intersec- 

tion of the northerly northeast trend with the intense northwesterly trend. 

Other areas with orthogonal l inear features and w i t h  mineralogical or 

petrologic associations that indicate tensional tectonic environments in- 

clude: Kotzebue Sound-Northern Seward Peninsula; Eastern Seward Minsula-  

Nulato; Lower Kuskokwin River-Tikchik Lakes; Cook Inlet; Nenana-Wood River; 

Coal Creek-Ehgle; Elaines-Skagway; and Kupreanof -Admiral t y  Islands. Evi- 

dences i n  these areas are less w e l l  defined than those for the Brooks Range 

went and can not be discussed i n  detail. 

The Kotzebue Sumd-Northern Seward Peninsula area may represent reac- 

tivation of the Brooks Range aulocogen during the Cretaceous and Tertiary. 

Radial fracture patterns in  the Selawik  Basin, the presence of Cretaceous, 

Tertiary and Recent alkaline volcanics, and numerous uranium occurrences 

within t h e  basin suggest reac t iva t ion  of tensional tectonics or possibly 

t h e  formation of a new t r i p l e  junction. The northwest l i n e a r  t rend is 

59 



parallel with the axis of the Hope Basin described by Grantz e t  al. (19751, 

while the  northeast trend is pa ra l l e l  with the  Colvil le  Lineament. The 

th i rd  trend t o  the  south is para l le l  t o  the  Chiroskey Fault. The Eastern 

Seward Peninsula-NuLato trend is associated with major Cretaceous and 

Tertiary siliceous volcanics (see frames 08/23, 84/14, 84/15). 

The Lower KuskokwinJrikchik Lakes area show6 a strong northerly and a 

marked east-west trend (see frames 80/18 and 80/19). The age of this event 

is i n  question, but  Devonian and Mississippian age limestones i n  the  

McGratkLime H i l l s  area are mconformably overlain by pillow basalts and 

c h a t s  tha t  would indicate formation of new oceanic crust on stable plat- 

form sediments (Wyatt Gilbert, Alaska Division of Geological and 

Geopkysical Surveys, personal. communication). Recent whole rock analyses 

of plutonic rocks from the area indicate the presence of peralkaline gra- 

nites (Thomas Bmdtzen, AIXX;S, personal communication), 

The Cook Inlet  petroleum province is a w e l l  documented Tertiary graben 

structure that formed EIB an inter-arc basin abwe a northwesterly dipping 

subduction zone. Orthogonal trends ate very apparent in frames 75/19 and 

75/20. 

Relatively small Tert iary basins occur along the Tintina and Dendli 

strike-slip f a a t  systems. Strike-slip motions often result in  secondary 

tensional features and t h e  Nenana-Wood River area, frame 76/15, and t he  

Coal Creek-Eagle area, frame 72/14, may k good examples of such a mechan- 

ism in Alaska. 

In the Haines-Skagway area and in  the Petersburg area of southeastern 

Alaska, Kuroko type Zn-PbAg-Ba deposits occur in Paleozoic marine volcanic 



rocks. Linear trends a r e  exceedingly complex but orthogonal s e t s  axe 

present (see frame 64-18). 

On Kupreanof and Admiralty Islands a small Tert iary basin contains 

both felsic and mafic volcanic rocks. The linear pattern again is complex 

but a major l inear  trend is pa ra l l e l  t o  t h e  long axis of the basin and a 

lees well developed bend i s  orthogonal t o  the f i r s t  (see frame 60/21 and 

62/20). 

Oblique f rac ture  p t t e r n s  and l inear  featurea would be expected i n  

areas of the  earth's crust that have experienced compressional tectonic 

events. The most recent example of compressianal -tonics is the Aleutian 

Island Arc, while the Alaska-Aleutian Range Batholith, the  East Alaska 

Range Batholith and the Coast Ranges Batholith represent Mesozoic compres- 

sional events. 

The two m a t  important types of mineral occurrences associated with 

compressional plate boundaries are porphyry copper, copper-mo1yMenum de- 

 pit^ and oMucted maficliltramafic complexes containing chromite, plati- 

num, nickel, cobalt  and copper. From Table 2 and Plates  I1 and V it is 

apparent that most of t h e  porphyry deposits i n  Alaska are Cretaceous or 

Tertiary i n  age and axe associated with either the Aleutian Arc, the Alas- 

ka-ALeutian Range Batholith, the East  Alaska Range Batholith the Wrangell 

Mountains, or the Coast Range Batholith, The major obducted ophiolites are 

Mesozoic in  age and are widespread i n  Alaska; however most of the Ni-Cu-Co 

sulfide complexes are i n  southeastern Alaska. 

Examination of the linear features of the Aleutian Arc and the Alaska 

Aleutian Range Batholith (see frames 78/18, 78/19, 78/21) indicate trends 



t h a t  axe considerbly d i f fe ren t  from those of the  Cook I n l e t  area (see 

frames 75/19, 75/20) t o  the east and the Lower Kuskokwim area (see frames 

80/18, 80/19) to  the west.  There is a marked change in  linear orientation 

across the milchatna Fault, Frames 78/18, 78/19, and 80/21 show no or* 

gonal trends. Frame 78/18 has trends a t  N 60 E and N 40 W. Bisecting the  

acute angel would indicate a principle stress direction of N 80 W. Simi- 

l a r l y  N 85 W and N 70 W principle stress directions can be inferred from 

frames 78/19 and 80/2l respectively. These stress directions are campara- 

ble with Pacific plate motims proposed by Atwater (19701, 

The determination of relationships between linear trend intersections 

and mineral occurrenc!es could not be accomplished directly; however radial 

fracture patterns were noted for most of the active volcanoes in  the Aleu- 

tian Arc and many of the porphyry deposits exhibited similar patterns. 

The Chugach Mountains which are composed of Cretaceous age rocks that 

were probably accreted t o  the  continental margin i n  the  Tert iary have 

oblique fracture patterns that could be used t o  estimate plate motion in  

the Tertiary. A s  with the  estimates for the  Aleutian Arc, the  solutions 

are not unique. Similar calculations were made for frames 60/22, 62/20 and 

64/19 in southeastern Alaska, Principle stress directions from N 40-60 E 

were determined for franks 60/22, 62/20 and 64/19. 

Transform faults define conservative plate boundaries. The shear 

stress f ield of the transform -tan would be expected t o  produce a major 

linear trend parallel t o  the transform. Exmination of the major strike- 

s l i p  f a u l t s  i n  Alaska (see Plates I-VI) and the  corresponding Landsat 

image confirms this hypothesis. 
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Porphyry copper and copper molybdenum deposits, diamond bearing 

kimberlite pipes, rare earth carbonati tes,  copper-nickel su l f ide  bearing 

mafic-ultramaf i c  complexes and Kuroko type massive sulfide deps i t s  are 

often associated with transform f a u l t  systems. With the exception of 

kimbexlite gipes and major carbonatite complexes a l l  of these types of 

mineral occurraces have been reported in  Alaska and have been discussed 

previously. 

AU. of the ma& strike-slip faults  in  Alaska were readily visible on 

the  low sun angle imagery; however l inear  intersection control of major 

mineral occurrences along the  f a u l t s  could not be ver i f ied with the low 

level of  deposit density. 

g f i f i  

The development of a tectonic model for  northern Alaska has been 

discussed previously. The m d e l  extended in  time from the Devonian through 

Triassic. The l inear  data reviewed t o  date  generally support t h e  model, 

however the m o d e l  can not easily be extended to  southern and southeastern 

Alaska due t o  the  complexities of continental accretion and the  lack of 

regional geologic and mineral deposit data, 

The previously stated m o d e l  w i l l  be restated and extended t o  include 

generalizations on southern Alaska: 

A. Regional doming of the  Precambrian basement of northeastern 

Alaska and northwestexn Won Territory and emplacement of Sn-W- 

Mo-F-U-P-bearing granites between 430 - 405 m.y. B.P. over an 

intracantinental hot spot; 

B. Development of tensional structures, local basins, extrusion of 

basic volcanics and deposition of Zn-Pb-Ba mineralization i n  



eastern Selwyn Basin, during the Upper Devonian 'and Lower 

Mississippian; 

Deposition of continental clastics in Alaska from the northerly 

and easterly highland during the Upper Devonian and Lower Missis- 

sippian; 

Transgression onto the continental maxgin from the south and 

formation of a s table  continental shelf in Alaska during the 

Graben formation and evaporate deposition in Alaska and in the 

Sverdrup Basin during the Late Mississippian; 

Basic and Eelsic volcanism and d e p ~ i t i o n  of Zn-Pb-Ba-rich muds 

and cherts in Alaska during the late Mississippian; 

Continued deposition of barium-rich sediments in the Permo- 

Triassic and phosphates and uranium rich sediments in Alaska 

during the Triassic; 

Clastic depositian in the grabens and brad down warping in the 

continental margins from the Permian through the Cretaceous in 

the arctic rim, and the formation of the Colville geosyncline in 

Alaska; 

Closing of the rift arms in Alaska and Yukon Territory and 

rifting of the Novosibirsk plate away from the Canadian Arctic 

Islands during the Jurassic; 

Continent-to-continent collision in Alaska and Yukon Territory 

during the Cretaceous and formation of the Brooks Range in 

Alaska. 

During the Mesozoic the rifted continental margin including the 

Yukon-Thmm Upland Schist Terxane in Ataska, which is bounded on 



the  north by the  Tintina Fault and on the  south by the  Denali 

Fault, and the Yukon Crystalline Terrane in  the Yukon Territory, 

converged on the  North American plate, By the l a t e  Cretaceous 

t h i s  co l l i s iona l  event was complete and c l a s t i c  wedges were 

forming on the north and' south flanks of the Brooks Wge; 

L. During the Mesozoic, island arcs began to  develop outboard of the 

continental margin and during the Tertiary accreted t o  the mar- 

gin, The Coast, Alaska and Aleutian Ranges Batholiths were 

implaced during the Crelaceou and Tkrtiary; 

M. St r ikes l ip  motion along the Denali and Thtina Faults during the 

middle Tert iary resulted i n  small graben s t ructures  that were 

f i led  with cantinental elastics; 

N. West by northwest motion and subduction of the  proto-Pacific 

p l a t e  resulted i n  the  formation of a marginal basin, the Cook 

Inlet graben; 

0. Major up;lifts of the Alaska Range began in the Pliocene; 

P. Continued w e s t  by northwest mwement and subduction of the Paci- 

f i c  plate has resulted i n  recent volcanism in the Wrangell Mom- 

tain~l and Aleutian arc, 

The various tectonic se t t ings  are shown schematically on Figure 3. 

Ratio image a n a l y ~ e a  were conducted by Geo Spectra Corp., Ann Arbor 

Michigan. A band 5/7 black and white r a t i o  image, scale 1:250,000 was 

selected for coverage of four major mineral occurrence areas in  t h  Detollg 

Mountains of the  western Brooks Range. The occurrences include Red Dog 





Creek, Ginny Creek, Nimiuktuk River and Drenchwater Creek. The mineral 

occurKences are shown on Plate IV and are l i s t ed  i n  Table 2 as IF3, IV-7, 

IV-8 and fv-U respectively. !h Red Dog Creek Zn-Pb-Ag-Ba mineral occur- 

rence is hosted i n  a black c h e r t  and sha le  u n i t  of t h e  Tupik Formation of 

the  Lisburne Group (Metz and Robinson, 1979). The Ginny Creek Zn-Pb-Ag 

mineral occurrence is i n  a carbonaceous shale and sandstone of the Lower 

Mississippian o r  Upper Devonian Noatak Sandstone. The Nimiuktuk River 

b a r i t e m i n e r a l  occurrence is associated with upper Mississippian black 

chert and shale, and Uppr Mississippian l a t i t e a  or andesites (Mayfield et 

al., 19791. The Drenchwater Creek Zn-PlrAg-Ba mineral occurrence is in  a 

chert, aKbana~e0Us shale, and tuffaceous mi t  of Upper Mississippian age 

(Nokleberg and Winkler, 1978). A t  all four occurrences the re  a r e  major 

color anomalies associated with limonitic alteration. 

Ratio analysis of fiandsat data from these four areas was completed to  

determine if color anomalies associated with the mineral occurrences could 

be detected and i f  W e  anomalies contained a characteristic reflectance 

pattern. Figures 3, 4, 5 and 6 are m a p  of the four areas, three of which 

indicate major limonitic alteration. However, the alteration is not as;* 

c i a t e d  wi th  the Zn-Pb-Ag-Ba occurrences but with large mafic-ultramafic 

complexes. Two of these complexes, Misheguk Mountain and Siniktinneyak 

Mountain, cmtain major chromite mineralization. Che minor color anomaly 

is associated with the Nimiuktuk River barite occurrence. 

figures 3 through 6 indicate tha t  major ferric/ferrous oxide altera- 

t i o n  zones can be detected. The a l t e r a t i o n  zones associated with t h e  

mafic-ultramafic complexes are hundreds of square miles i n  extent. The 

color anmalies  associated w i t h  the Zn-PbAg-Ba occurrences are  only a few 











square miles i n  area; thus a t  a 1:250,000 scale  the  anomalies w i l l  be 

d i f f i c u l t  t o  detect. The ~ imiuktuk  River bar i t e  occurrence contains a 

minor a l te ra t ion  zone t h a t  appears ident ical  on the  r a t i o  image t o  the  

a l te ra t ion  zones of the  major maf ic-ultramaff c complexes. From these 

l imi ted data it appears t h a t  both types of m i n e & ,  occurrences contain 

color anomalies t h a t  have ident ical  response i n  the  range of the  r a t i o  

analysis and thus can be identified but may not be differentiated by this 

technique. This factor should be carefully assessed in  the utilizatian of 

the technique in  mineral exploration. 

The conclusians t o  the investigation can be outlined as follows: 

A. Low sun angle enhanced Landsat imagery can be a low cost  and 

e f fec t ive  method of analysis  of major geologic features and 

trends i n  Alaska; 

B. Linear trends can assist in  the dwelopnmt of large scale struc- 

tural models for the genesis and control of major mineralization; 

C. Preliminary evidence indicates t h a t  the  intersection of major 

trends of linear features  a r e  s ignif icant  i n  the  location of 

petroleum, gas and some types of metallic miner& resources; 

D. Ratio image analysis  can be an effect ive  method of defining 

alteration zones associated with major mineral occurrences, how- 

eve]: no distinction between a l te ra t ion  zones for  d i f ferent  de- 

psit types can be made. 



-tiam for Plttxlre llmskigatiaw 

Future areas of investigation should include but must not be limited 

to the following: 

1. Compilation and location of a l l  known mineral occurrences in 

Alaska, contouring the density of the mineral occurrences, and 

contouring the dasitry of linear intersections; 

2. Statistical testing of oriented data to determine the significant 

deviations from uniformity in each of the rose diagrams produced 

to date; 

3. Petermination of significant deviations in linear trends across 

major mapped faults such as the Tintina, Denali, Kaltag, Mulchat- 

na, Farewell, Iditarod-Nixon Fork, Border Ranges, Lake Clark, 

Castle Mountain, Fairweather, Peril Strait and Chatham Strait, to 

d m c e  determination of the faults as major plate boundaries and 

borders of metallogenic terranes. 
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