PROPERTY OF ALASKA STATE GEOLOGICAL SURVEY LURARY

MIRL Report No. 45

A SUMMARY OF GOLD FINENESS VALUES FROM ALASKA PLACER DEPOSITS

Paul A. Metz Mineral Industry Research Laboratory

and

D. B. Hawkins Geology/Geophysics

School of Mineral Industry University of Alaska Fairbanks, Alaska 99701

March, 1981

Y

. ,

.

TABLE OF CONTENTS

																						Page
Table of Content	s.		•	•				•				•			•		•		•			i
Figures				•		•		•		•	•	•	•	•	•	•		•			•	i
Tables and Plate	s.		•		•	•	•	•	•	-	•				•			•	•	•		iii
Abstract			•					•										•	•		•	ìv
Acknowledgements			•	•	•			•			•					•						vi
Introduction .							•		• .		•		•		•							l
Prevíous Investi Alaskan Placer D	gati epos	on	s S	on	. t	he.	F	'in	en •	es ·		of ,	• 6	lol •	.d	fr	01 •	ı				3
Discussion of th Mining District	e Fi	.ne	ne •	55	- C	of	Pl ·	.ac	er	G	ol	d	fr	on	ι Α •	lā ,		a.	ЪУ			3
Areal Distributi	on c	f	Fi	ne	ne	ss	V	'a1	ue	ŝ	in	t	he	F	ai	rt	ar	ıks	5			~
Mining District	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	·	•	8
Summary and Conc	lusi	on	S	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	•	11
Appendix I				•	•			•		•	•				•						•	54
References Cited					4						-											58
Bibliography .	• •		•	•												-	•		•			59

FIGURES

Page

Fig.	l.	Location of Alaskan placer mining districts 12
Fig.	2.	Gold fineness for Nizina district 24
Fig.	3.	Gold fineness for Kenai district 25
Fig.	Ц.	Gold fineness for Yentna district
Fig.	5.	Sold fineness for Bonnifield district 27
Fig.	6.	Sold fineness for Circle district
Fig.	7.	Sold fineness for Eagle district

FIGURES (cont.')

Fig.	8.	Gold	fineness	for	Fairbanks district	30
Fig.	9.	Gold	fineness	for	Fortymile district	31
Fig.	10.	Gold	fineness	for	Hot Springs district	32
Fig.	11.	Gold	fineness	for	Iditarod district	33
Fig.	12.	Gold	fineness	for	Innoko district	34
Fig.	13.	Gold	fineness	for	Kantishna district	35
Fig.	14.	Gold	fineness	for	Koyukuk district	36
Fig.	15.	Gold	fineness	for	Marshall district	37
Fig.	16.	Gold	fineness	for	Rampart district	38
Fig.	17.	Gold	fineness	for	Ruby district	39
Fig.	18.	Gold	fineness	for	Tolovana district	+0
Fig.	19.	Gold	fineness	for	Tuluksak-Aniak district	41
Fig.	20.	Gold	fineness	for	Council district	12
Fig.	21.	Gold	fineness	for	Fairhaven district	13
Fig.	22.	Gold	fineness	for	Kougarok district	44
Fig.	23.	Gold	fineness	for	Nome district	45
Fig.	24.	Gold	fineness	for	Port Clarence district	46
Fig.	25.	Gold	fineness	for	Solomon district	47
Fig.	26.	Gold	fineness	for	all districts	48
Fig.	27.	Means	s of all d	listr	ricts	49

TABLES AND PLATES

Page

TABLE	1.	Placer gold fineness for various Alaskan mining districts
TABLE	la.	Analysis of variance between and within mining districts
TABLE	2.	Mean, standard deviation and range of gold fine- ness values by mining district 50
TABLE	3.	Average gold fineness values for mining dis- tricts grouped according to geographic region 52
TABLE	4.	Host rocks for the mineralization in the Fair- banks mining district
PLATE	I.	Mineral resources of the Fairbanks North Star Borough showing gold fineness values for various creeks in the Fairbanks mining district (in pocket)

ABSTRACT

Gold fineness values for Alaskan placer deposits were calculated using mint return production records and the following formula for gold fineness:

Fineness = $(Au/(Au + Ag)) \times 1000$.

Past gold and silver production records from individuals and mining companies for the period 1900-1974 from 800 creeks in Alaska were examined and 550 creeks with production in excess of 100 troy ounces of gold were selected for data analysis. The data are summarized according to 41 mining districts and six regions.

The overall mean fineness for the 550 samples is 889, the standard deviation of the mean is 28.57, the 95% confidence interval for the mean is 880-898. The mean gold fineness values for the six regions studied are:

	Fineness	No. of Districts
Seward Península	908	9
Upper Yukon-Tanana	884	11
Chandalar-Koyukuk	898	2
Lower Yukon-Kuskokwi	.m 880	9
Copper-Susitna	886	8
Southeastern	893	3

iv

The values for individual placers range from 567-995. Oneway analysis of variance among the six regions and the 41 districts shows that the regions and districts can't be distinguished on the basis of gold fineness. The Kantishna district is anomalous and has the lowest mean value of 789, the lowest individual sample value of 567 and a coefficient of variation of 16 versus the average coefficient of variation of 4.33. The Rampart and Council districts have a mean fineness of 915, the highest mean values of the districts. Several districts, Kantishna in particular, have bimodal distributions of fineness, suggesting different sources of gold or different processes affecting deposition.

We were unable to relate the gold deposits to particular host rocks or to discern clearly the relationship of intrusive rocks to the placer deposits.

v

ACKNOWLEDGEMENTS

The report is the first in a series of publications by the Mineral Industry Research Laboratory and the Alaska Division of Geological and Geophysical Surveys under a special appropriation by the Alaska State Legislature to the School of Mineral Industry to conduct a "Mineral Appraisal of Interior Alaska Mining Districts". This program was initiated at the request of the Fairbanks North Star Borough. Funding for the report was supplimented by a grant under the Mining and Mineral Resources Research Institute, Office of Surface Mining, U.S. Department of Interior.

The photograph on the cover of the publication is from the Bunnel Collection, University Archives, Elmer E. Rasmuson Library, University of Alaska, Fairbanks.

Introduction

The expression of the relative quantities of gold and silver in a mineral deposit can be described by two methods; first as the simple ratio of gold to silver and second as the "true fineness" which is the ratio of gold to gold plus silver multiplied by 1000 (Boyle, 1979, p. 197). Note that "fineness" as generally defined is the parts gold per thousand parts alloy, which could include base metals. However, as used in this paper, "fineness" is the ratio of gold to gold plus silver times 1000.

Sample calculation of gold silver ratio and true fineness.

Au = gold Ag = silver

Gold to silver ratio = Au/Ag True fineness = (Au/(Au+Ag)) x 1000 EXAMPLE

Production record

Gold Creek

Au = 975 troy ounces

Ag = 105 troy ounces

Gold to silver ratio = Au/Ag = 975/105 = 9.29

True fineness = (Au/(Au+Ag)) x 1000 =

(975/(975+105)) x 1000 = 903

The advantage of using the fineness value rather than a simple ratio in statistical reduction of data has been reviewed by Koch and Link (1971). Although the use of fineness values is preferable in data reduction and analysis much of the literature deals with the simple Au/Ag ratio. In this discussion both

expressions will be utilized since much of the referenced literature deals with Au/Ag ratios.

Boyle (1979) has extensively reviewed the literature on the Au/Ag ratios of the various types of gold deposits and a summary of his conclusions are listed in Appendix I. The major conclusion bearing on this paper is that gold placers always have Au/Ag ratios greater than 1.

In this investigation production records from approximately 800 creeks in Alaska were reviewed. These production records were primarily mint returns reported by individuals and mining companies up through 1974. These records are not inclusive of all the production from Alaska nor do they include all of the production from a given creek. The records report the number of troy ounces of gold and silver produced and the last date of recorded production. Fineness values were calculated for each creek with a record of at least ten troy ounces of silver. By this method a sample size of about one hundred ounces was insured thus increasing the reliability of a given sample. Fineness values for 550 creeks were determined and are listed in this report. These fineness values represent past production records and should not be used as a basis for determining the fineness of current production on a given creek.

Previous Investigations on Fineness of Gold From Alaskan Placer Deposits

Smith (1941) discussed in detail the fineness of gold from Alaskan placer deposits. The data base included 1534 samples from 84 different creeks or areas in 41 separate mining districts. The analysis of the data only included a determination of the ranges in values and the percentage of values within selected ranges. The values range from a low of 565 to 970 fine. Twenty-three percent of the records had fineness above 900; forty-two percent were between 850 and 899; twenty-six percent were between 800 and 849; and nine percent were below 800 fine. Smith (1941) did not attempt to interpret the significance of the data nor did he attempt to present data from every creek in a given mining district.

We have calculated mean fineness values for each of the seven major regions that were defined by Smith (1941). The values are as follows: Southeastern, 898; Copper River, 888; Cook Inlet, 898; Yukon River, 882; Kuskokwin River, 892; Seward Peninsula, 907; and Kobuk River, 884.

Discussion of the Fineness of Placer Gold from Alaska by Mining District

The fineness values in Table 1 are tabulated by mining district (see Figure 1) in the same order as the gata presented by Smith (1941). The means and standard deviations of fineness values were calculated for each mining district. Histograms for each district with at least <u>eight samples</u> are displayed in Figures 2 through 25. Figure 26 is a histogram of all fineness

values listed in Table 1 and Figure 27 is a histogram of the means for all the mining districts. Both histograms in Figures 26 and 27 appear to be like that for a normal distribution. Note that the fineness scale (x axis) is <u>not</u> the same for all histograms. The means, standard deviations and ranges of fineness values for each mining district are listed in Table 2.

In Table 2 several statistics are calculated. These are the mean, standard deviation, standard normal variate and the coefficient of variation. The mean or arithmetic average measures the central tendency or most probable value, the standard deviation is a measure of the spread of the data about the mean. The standard normal variate $z = \frac{x_i - x_i}{s}$, where x_i is the value of the observation, \bar{x} is the mean, s is the standard deviation. z is measured in units of standard deviation and relates the observed values to the standard normal distribution from which probability statements can be made. The coefficient of variation is defined as

 $CV = (s/\tilde{x})$ 100 and relates the spread of the values to the mean,

The values of the standard normal variate can be used to estimate the probability of obtaining a sample mean a certain number of standard deviations from the grand mean. On the average, we expect 68% of the values to fall between +- 1 s, 95% between +- 2s, and 99% between +- 3s of the mean. The probability of obtaining a value -3.5 s from the mean as in the case of the Kantishna values is 1 in 5000. Clearly, the Kantishna district values are anomalous.

From the above figures and Table 2 the following observations can be made:

1. The Circle, Kantishna, Koyukuk and Rampart districts appear to have bimodal distributions of fineness values, in that these three districts have samples with fineness values less than 750. Other samples in these districts had to be around 900 fineness.

2. The Kantishna district has the lowest single fineness value, 567, the lowest mean fineness value, 789, the highest standard deviation, 126, and the highest coefficient of variation, 15.97.

3. The Council district has the highest single fineness value, 995.

4. Of the districts with 4 or more samples, Gold Hill has the highest mean fineness, 920.

5. Of the districts with 4 or more samples, McKinley has the lowest standard deviation, 10, lowest coefficient of variation, 1.11.

In order to determine whether the districts could be distinguished by their fineness values, an analysis of variance (ANOVA) was conducted on the data in Table 1 using the Statistical Package for the Social Sciences published by the University of Kansaş. The resulting F ratio is 4.314 and for 40 and 509 degrees of freedom (See Table 1a) at the 95 percent confidence level this value is significant. Under the Duncan procedure two subsets were determined. The first subset includes district numbers 2, 5, 6, 8, 11, 12, 13, 14, 17, 19, 21, 22, 24, 26, 31,

32 and 41 (see Table 2). The second subset included all the districts except district 22, the Kantishna district. Under the Tukey procedure the districts could not be divided into separate subsets. From the analysis of variance only the Kantishna district can be distinguished from the other districts by gold fineness value at the 95% significance level.

An analysis of variance (ANOVA) was also done on the means of the gold-fineness values from the different mining districts grouped according to geographic region. The data and groupings are shown in Table 3. The ANOVA was not significant at the 95% confidence level, meaning that the gold fineness values for the different regions are not significantly different.

The data in Table 3 show, however, that of the six regions examined, the Seward Peninsula districts have the highest mean fineness value of 905, and also tend to be the most uniform with a coefficient of variation of 1.02. The lower Yukon and Kuskokwin region, which includes the Kantishna district, has the lowest mean gold fineness of 880, and the greatest variability, as shown by a coefficient of variation of 4.14. The Southeastern region shows a greater variability but the samples making up the regional mean (3) and district mean (4), are so few that the variance is unusually high and is probably not representative of the region as a whole.

Without a detailed analysis of the regional geology of the individual mining districts, only a general hypothesis can be proposed to the account for the bimodal distributions and the dispersion of the data within individual districts. The dis-

tricts which demonstrate bimodal distributions generally contain both metamorphosed sedimentary and volcanic rocks and intrusive igneous rocks. The metamorphic rocks are often host to massive sulfide mineral occurrences which tend to be high in silver relative to gold. Quartz-vein deposits are usually associated with intrusive igneous rocks and the gold fineness in quartz vein deposits is usually high. Placer deposits formed from the erosion of massive sulfide deposits would probably result in lower fineness values while the placer deposits formed from weathering and erosion of gold-quartz veins would generally have higher fineness values.

The dispersion in fineness values may be a function of source rocks however it may also be a function of depth of formation of the lode source. Quartz veins in or near an intrusive body would form at higher temperatures than those veins formed at greater distance from the heat source. Erosion of veins in the epithermal (low temperature) zone would produce placer deposits with a lower fineness than erosion of veins formed in the mesothermal (medium temperature) and hypothermal (high temperature) zone.

Forbes (1980) carried out scanning-electron microscope/xray spectrometric analysis studies on gold nuggets and found silver depletion rinds up to several microns thick on natural nuggets but not on man-made nuggets. The loss of silver in natural nuggets could be accounted for by the greater solubility of silver under atmospheric environmental conditions during and after placer formation. As grain size decreases the overall

surface area increases, and relatively more silver will be leached. The theoretical result of such selective loss of silver is to increase the fineness of the placer gold. These observations are connected with those of Koshman and Yugay (1972) who showed that chemical or mechanical treatment of samples of placer gold increase the fineness of the gold by dissolving or releasing chemical or mineral impurities. Viljoen (1971) has noted the opposite effect in gold grains from the paleoplacer deposits of the Witwatersrand System. In this case, the theoretical fineness decreases with decreasing grain size. The opposite effect may be a function of differences in environmental conditions during and after deposition in the 2.7 billionyear old sediments. In either case, the fineness of the placer gold has been affected by the depositional environment. The effects of depositional environments must be considered in any hypothesis that attempts to explain the differences in the fineness of placer gold. In Alaska, high-organic contents in the alluvial deposits and permafrost conditions will affect the relative solubilities of gold and silver and will be major parameters affecting the environments of deposition of placer gold.

Areal Distribution of Placer Fineness Values in the Fairbanks Mining District

The rocks that crop out in the Fairbanks district are part of a sequence of metasedimentary and metaigneous rocks known as the Yukon-Tanana Uplands schist of Lower Paleozoic and or Precambrian age (Foster, et al 1973). The schist is both the host rock for the lode-gold deposits in the district as well as the

bedrock unit for the placer gold deposits. This unit is composed of a structurally complex sequence of quartz muscovite schist, quartz mica schist, feldspathic schist, chlorite schist, biotite garnet schist, carbonaceous schist, calcareous schist and crystalline limestone. Recent work has shown that the unit also contains a variety of gneisses, calc-magnesian schist, phyllite, amphibolite and eclogite. The metamorphic sequence is intruded by Mesozoic and Tertiary age rocks that range in composition from diorite to granite. Rocks of the Fairbanks district have been affected by at least two major deformational events. The first metamorphic event is associated with a complete recrystallization of the parent rock and with the development of metamorphic mineral assemblages indicative of the middle and upper greenschist facies. A later phase of metamorphism appears to have been less intense and associated with the development of retrograde metamorphic mineral assemblages. The early recrystallization is associated with west northwest-trending folds, while the later phase is associated with folding about northeasttrending axes. Fold styles associated with the early recrystallization appear to be isoclinal and overturned to the northeast. Some folds are arcuate and recumbant. The northwest-trending folds appear to be overturned and (or) recumbant, with axial planes usually dipping to the south. The degree and direction of overturning is variable and related to the superimposed northeast-trending structures.

Chapman and Foster (1969) described 188 lode mineral deposits in the Fairbanks district. These include: gold quartz veins

and fissure-zone replacement gold deposits, antimony, tungsten, lead and zinc mineralization parallel to the compositional layering and foliation of the Yukon Tanana Upland Schist and tungsten skarn mineralization in the schist adjacent to the Mesozoic and Tertiary intrusive rocks. With minor exceptions all the deposits contain at least trace amounts of gold and silver. Table 4 lists the host rocks for all the mineral occurrences in the district as well as those with only Hg-Sb-W-Au-Ag mineralization.

The placer deposits in the district are found along streams draining the Pedro Dome, Gilmore Dome and Ester Dome areas. Both Pedro Dome and Gilmore Dome are cored by complex intrusives, ranging in composition from granite to quartz diorite. Although no major outcrops of intrusive rocks have been mapped in the Ester Dome area numerous small irregular intrusive bodies and dikes have been mapped on the flanks of the dome. Since the placer and lode gold deposits in the district are restricted to these areas, earlier workers including Chapman and Foster (1969) thought that the intrusive rocks were the source of the gold. Whether the intrusives were the source of the gold or whether they simply provided the thermal energy to remobilize the precious metals in the Yukon Tanana Upland Schist, the intrusive center appears to have some spatial relationship to the placer deposits.

The role played by host rock and intrusive bodies in relation to the gold mineralization of the district is not clear. At pre-

sent, we are examining this important question and it is expected that ongoing studies may yield data bearing on this problem.

Summary and Conclusions

The expression of the relative quantities of gold and silver in a mineral deposit can be described by either a simple ratio of gold to silver or as a fineness value. The relative quantity of gold and silver in a given deposit is a function of the complex physiochemical conditions that existed during and after deposition. The determination of these complex conditions may be partial guides to the discovery of additional mineralization.

Reported fineness values from Alaskan placer gold deposits range from 567 to 995. Although the individual mining districts cannot be distinguished by fineness values alone, several generalizations can be drawn. The Kantishna district has the lowest mean fineness of 789 and the lowest fineness value of 567, and the highest standard deviation of 126. The Rampart and Council districts have a mean fineness of 915 which is the highest mean value for the districts with four or more samples. The Council district has the highest fineness value of 995. The Circle, Hot Springs, Richardson, Kantishna, Koyukuk, Marshall, Georgetown and Tolovana districts have large coefficients of variation, bimodal distributions, thus suggesting different sources for the placer gold. This is particularly true for Kantishna district.

Figure 1. Location of major placer mining districts in Alaska.

TABLE 1

·

FLACER GOLD FINENESS

FOR

VARIDUS ALASKAN MINING DISTRICTS

윩흱뤙멹줨쇞큟뿂큟쇘윩롺뺘톄튾랦끰벩춱门뵈붜붜뫲퇥탥쟑뮾믋렮븮흾렮꾒븮꾒렮꺌븮끹븮햜껆뷥슻븮끹끹븮끹끹븮끹븮끹븮끹븮끹븮븮렮챵쵅챓챓챓챓챓

N0+ î

DISTRICT

OREEN

QUADRANGLE

(AU/AU+AG)) × 1000

f

Ł F

4 4 9 9 0 9 9 0 0 0 9	09 09	69 67	090	0	807	07	07	0 0 7	7.0	07	07	20	90	0 0 0 0		о И	о И	ся С	0 Ci	о И	04	04	04	04	04	С Ы	50	Ň	01	
YENTNA YENTNA YENTNA YENTNA	YENTNA YENTNA YENTNA	YENTNA	YENTNA	YENTNA	SIRDWOOD	KENAI	X INNA I		KENAI	KENAI	KENAI	KENAI	NELCHINA	NIZINA	NIZINA	NIZINA	NIZINA	NIZINA	NIZINA	NIZINA	CHISTOCHINA	CHISTOCHINA	CHISTOCHINA	CHISTOCHINA	CHISTOCHINA	YAKATAGA	YAKATAGA	JUNEAU	PORCUPINE	
GOLD GOPHER GULCH LITTLE WILLOW MILLS	DOLLAR FALLS FIRST AND DUTCH	CHEECHAKO	CACHE	BIG BOULDER	CRON	RESURRECTION	QUARTZ	MILLS	GULCH	CODPER	CANYON	BEAR	ALBERT	SLOPE	REX	GOLCONDA	DAN	COPPER	CHITITU	BONANZA	SLATE	MILLER GULCH	MIDDLE FORK CHISTOCHINA	EAGLE	CHISANA	YAKATAGA BEACH	WHITE	SILVERBOW BASIN	PORCUPINE	
TALKEETNA TALKEETNA TALKEETNA TALKEETNA	TALKEETNA TALKEETNA TALKEETNA	TALKEETNA	TALKEETNA	TALKEETNA	SEWARD	SEWARD	SEUARD	SEWARD	SEWARD	SEWARD	SEWARD	SEWARD	TALKEETNA MTS	VALDEZ	MCCARTHY	BERING GLACIER	MCCARTHY	MCCARTHY	MCCARTHY	MCCARTHY	MT. HAYES	MT, HAYES	MT. HAYES	MT. HAYES	MT. HAYES	BERING GLACIER	BERING GLACIER	JUNEAU	SKAGWAY	
8898 5709 42179	917 956 881	916 916	1 - 0 C 1 - 0 C 1 - 0 C	878	900 909	9 1 9 1 9	668	909 106	901	006	901	901	847	0 0 13 1 0 0 0 0	916	906	ら 1 に	892	926	842	921	615	924	998	917	823	006	826	941	

·				<u> </u>
09	YENTNA	MILLS AND TWIN	TALKEETNA	863
09	YENTNA	NOTOFAC	TALKEETNA	902
09	YENTNA	NUGGET	TALKEETNA	904
09	YENTNA	PASS	TALKEETNA	897
09	YENTNA	POORMAN	TALKEETNA	896
09	YENTNA	FETERS	TALKEETNA	889
09	YENTNA	RUBY GULCH	TALKEETNA	900
09	YENTNA	SHORT	TALKEETNA	900
09	YENTNA	SLATE	TALKEETNA	902
09	YENTNA	THUNDER	TALKEETNA	854
09	YENTNA	WILLOW	ANCHORAGE	838
09	YENTNA	WILLOW	TALKEETNA	937
10	VALDEZ CREEK	LUCKY GULCH	HEALY	891
10	VALDEZ CREEK	VALDEZ	HEALY	951
10	VALDEZ CREEK	WHITE	HEALY	900
11	BONNIFIELD	DANIELS	FAIRBANKS	804
11	BONNIFIELD	DRY	HEALY	897
11	BONNIFIELD	EVA	FAIRPANKS	845
11	BONNIFIELD	GOLD KING	FAIRBANKS	862
11	BONNIFIELD	GRUBSTAKE	FAIRBANKS	870
11	BONNIFIELD	HOMESTAKE	FAIRBANKS	855
11	BONNIFIELD	LITTLE MOOSE	FAIRBANKS	878
11	BONNIFIELD	MARGUERITE	HEALY	926
11	BONNIFIELD	MDDSE	FAIRBANKS	830
11	BONNIFIELD	PLATTE	HEALY	901
11	BONNIFIELD	REX	FAIRBANKS	813
11	BONNIFIELD	TOTATLANIKA	FAIRBANKS	875
12	CHANDALAR	BIG	CHANDALAR	835
12	CHANDALAR	LITTLE SQUAW	CHANDALAR	958 -
12	CHANDALAR	ST, MARYS	CHANDALAR	900
12	CHANDALAR	SQUAW	CHANDALAR	867
12	CHANDALAR	TOBIN	CHANDALAR	847
13	CHISANA	BIG ELDORADO	NABESNA	835
13	CHISANA	CHISANA	NABESNA	836
13	CHISANA	GOLD RUN	NABESNA	861
13	CHISANA	LITTLE ELDORADO	NABESNA	805
13	CHISANA	SKOOKUM	NABESNA	906
14	CIRCLE	BIRCH	CIRCLE	874
14	CIRCLE	BONANZA	CIRCLE	984
14	CIRCLE	BOTTOM DOLLAR	CIRCLE	714
14	CIRCLE	BOULDER	CHARLEY RIVER	888
14	CIRCLE	BUTTE	CIRCLE	915
14	CIRCLE	COAL	CHARLEY RIVER	907
14	CIRCLE	CROOKED	CIRCLE	828
14	CIRCLE	DEADWOOD	CIRCLE	824
14	CIRCLE	DEEP	CIRCLE	902
14	CIRCLE	EAGLE	CIRCLE	879
14	CIRCLE	FAITH	CIRCLE	910
14	CIRCLE	HALF DOLLAR	CIRCLE	721
14	CIRCLE	HARRISON	CIRCLE	825
14	CIRCLE	INDEPENDENCE	CIRCLE	809
14	CIRCLE	KETCHEM	CIRCLE	769
14	CIRCLE	LOPER	CIRCLE	90 0
14	CIRCLE	MAMMOTH	CIRCLE	831

CREEK

NO. DISTRICT

NO.	DISTRICT	CREEK	QUADRANGLE	(AU7(AU+AG))
	an ميد بعد الله من	لله بوان من		
14	CIRCLE	MASTODON	CIRCLE	854
14	CIRCLE	MIDDLE FORK CHENA	CIRCLE	268
4 4		MILLER	CIRCLE	0080
17 4	CIRCLE	NORTH FORK HARRISON	CIRCLE	861
14	CIRCLE	PORTAGE	CIRCLE	908
·	CIRCLE	FORCUPINE	CIRCLE	803 803
4 A	CIRCLE	SHAMROCK		806 848
14.	CIRCLE	SQUAW	CIRCLE	891
.14	CINCLE	SWITCH	CIRCLE	928
44		VULCANU VULCANU	CINCLE CINCLE	E C 6
י +י ניו	EAGLE	ALDER	EAGLE	698
10	EAGLE	AMERICAN	EAGLE	920
•)→ ፤ ርብ	EAGLE	BARNEY	EAGLE	910
л с		BROKEN NEOK		94J
н СП (EAGLE	BULLION	EAGLE	864
ы СЛ	EAGLE	DOME	CHARLEY RIVER	606
ייייייייייייייייייייייייייייייייייייייי		FOURTH OF JULY	CHARLEY RIVER	878 900
н СЛ	EAGLE	NUGGET	CHARLEY RIVER	854
בן ג. 13 א 13 א	EAGLE	SEVEN IYMILE	LAULLANGOON	875 876
16	FAIRBANKS	BEDROCK	LIVENGOOD	829
16	FAIRBANKS	CHATANIKA	LIVENGOOD	894
16	FAIRBANKS	CHATHAM		0 2 C
160	FAIRBANKS	CRANE GULCH	LIVENGOOD	806
16	FAIRBANKS	CRIPPLE	FAIRBANKS	864
16	FAIRBANKS	DEEP	LIVENGOOD	988
16	FAIRBANKS			056
2 A 2 A 2 A	FAIRBANKS	ENGLNEEK		202 201
16	FAIRBANKS		FAIRBANKS	824 824
16	FAIRBANKS	FAIRBANNS	LIVENGOOD	968
* 12	FAIRBANKS	FIRST CHANGE	FAIRBANKS	915 000
16	FAIRBANKS		FATRBANKS	206
16	FAIRBANKS	FOX	FAIRBANKS	268
16	FAIRBANKS	GILMORE	FAIRBANKS	526
10	FAIRBANKS	GOLD MILL	FAIRBANNS	200
16	FAIRBANKS	HAPPY		974 1
16	FAIRBANKS		FAIRBANKS	931
16	FAIRBANKS	KOKOMO	LIVENGOD	879
6	FAIRBANKS	LITTLE ELDORADO	LIVENGOOD	891
- 1 - 1	FAIRBANKS	NUGGET	FAIRBANKS	228
100	FAIRBANKS	PEARL	FAIRBANKS	806
16	FAIRBANKS	PEDRO	FAIDBANKS	913
16	FAIRBANKS	READY BULLION	FAIRBANKS	871
16	FAIRBANKS	ROSE	FAIRBANKS	885

NO.

NO.	DISTRICT		QUADRANGLE	(AU/(AU
<u>د مر</u> ۲۰۰۸	FAIRBANKS	ST. PATRICKS	FAIRBANKS	
 - 0	T A LABLANAS	CTEANCAR AT AT A	כככמצועד ב	
10	FAIRBAXKS	STEFLE STEFLE	FAIRBANKS	
16	FAIRBANKS	TREASURE	LIVENGOOD	
16	FAIRBANKS	TWIN	LIVENGOOD	
16	FAIRBANKS	VAULT	LIVENGOOD	
16	FAIRBANKS	WILDCAT	LIVENGOOD	
16	FAIRBANKS	WELLOW	LIVENGOOD	
16	FAIRBANKS	WOLF	LIVENGOOD	
17	FORTYMILE	ATWATER	EAGLE	
17	FORTYMILE	CAMP	EAGLE	
17	FORTYMILE	CANYON	EAGLE	
1/				
	FORTYMILE	DAVIS	EAGLE	
17	FORTYMILE	FORTYMILE		
17	FORTYMILE	FORTY-FIVE PUP	EAGLE	
17	FORTYMILE	FRANKLIN	EAGLE	
17	FORTYMILE	HALL	EAGLE	
тч Г Г	FORTYALLE			
17	TORTYMILE	LOST CHICKEN	EAGLE	
17	FORTYMILE	LOST CHICKEN HILL	EAGLE	
17	FORTYMILE	MONTANA	EAGLE	
17	FORTYMILE	MOSQUITO FORM		
4 H 7 V				
1 1 1	FORTYMILE	NORTH FORK FORTYMILE		
17	FORTYMILE	POKER	EAGLE	
17	FORTYMILE	SMITH	EAGLE	
17	FORTYMILE	SOUTH FORK FORTYMILE	EAGLE	
1 7	FORTYMILE	SRUAU		
エトン		TIRK TIRK		
17	FORTYMILE	THIN	EAGLE	
17	FORTYMILE	UHLER	EAGLE	
17	FORTYMILE	WADE	EAGLE	
17	FORTYMILE	WALKERS FORK	EAGLE	
17	FORTYMILE	STODMS	EAGLE	
	GOLD HILL		MELOZITNA	
	BOLD HILL	GOLDEN	TANANA	
ά	GULD HILL	GRANI		
	BOLD HILL		I ANANA MEL DZTTNA	
00	HULL NOD INC.		TANANA	
	HOT SPRINGS	ALEMEDA	TANANA	
19	HOT SPRINGS	BOOTHBY	TANANA	
19	HOT SPRINGS	BOULDER	TANANA	
9	HOT SPRINGS	CACHE	TANANA	
2 4	HUT SPRINGS	CHICABU	TANANA	
19	HOT SPRINGS	DRY	TANANA	
19	HOT SPRINGS	EUREKA	TANANA	

NO +	DISTRICT	CREEK	QUADRANGLE	(AU/(AU+AG)) x 1000
~ ~ ~	، مطاهد الله الله علم في عن عن من بي وي			~~~~~~~~
19	HOT SPRINGS	GLENN	TANANA	973
19	HOT SPRINGS	GLENN GULCH	TANANA	852
19	HOT SPRINGS	JACKSON	TANANA	844
19	HOT SPRINGS	MILLER	TANANA	868
19	HOT SPRINGS	NEVADA GULCH	TANANA	898
19	HOT SPRINGS	NEW YORK	TANANA	787
19	HOT SFRINGS	OMEGA	TANANA	788
19	HOT SPRINGS	PATTERSON	TANANA	871
19	HOT SFRINGS	PIONEER	TANANA	825
19	HOT SFRINGS	RHODE ISLAND	TANANA	792
19	HOT SPRINGS	ROSA	TANANA	924
19	HUT SPRINGS	SEATTLE	LANANA	/8∡ 007
19	HUT SPRINGS	SULLIVAN TUNKOSTUTIO	I ANANA TANANA	873
19	HUT SPRINGS	THANKSULVING		784
19	HUT SPRINGS		(ANANA TANANA	02V
19	HUT SPRINGS	WUUUUUHUPPER DLACK	TANANA	848
20	TUTTARUD	BLACK		720
20	IDIJAKUD			803
20				717
20	TUTTARUU		TRITADOD	7/2
20	IDITAROD		TRITAROD	902 004
20		GRANTIE		074
<u>~</u> 0	TDIIAKUU		IDITADOD	00/
20	TUTTAKUU		TDITABOD	744
20	TUTIAROD			888
20	IDITAROD	MALMADIE	TOTTAROD	000
20	IDITADOD	OTTER	TOTTADOD	885
20	TDITAGOD	PRINCE	THITARON	881
20		DIAPTZ	TDI (AROD	927
20	THITAROD	SLATE	TOTTAROD	855
20			TRITAROD	91 Q
20		TRATI	TOTTAROD	900
20	ΤΠΙΤΔΕΟΣ	UEGEADE	TOTTAROD	871
20	TOTTAROD		THITARON	gog
21		BEAD		901
21		BEAUER	OPUTO	. 901
21	TNNOKO	BENROCK	OPHIR	844
21	INNOKO	BOOB	DPHIR DPHIR	909
21	INNOKO	COLORADO	OPHIR	884
21	INNOKO	CRIFPLE	OPHIR	906
21	INNOKO	DODGE	OFHIR	911
21	INNOKO	ESPERONTO	OFHIR	864
21	INNOKO	ESTER	OPHIR	841
21	INNOKO	FOX GULCH	OPHIR	908
21	INNOKO	GANES	OFHIR	853
21	INNOKO	GOLD RUN	OPHIR	834
21	INNOKO	LITTLE	OPHIR	860
21	INNOKO	MACKIE	IDITAROD	946
21	INNOKO	MADISON	OPHIR	881
21	INNOKO	OPHIR	OPHIR	905
21	INNOKO	SPAULDING	IDITAROD	837
21	INNDKO	SPRUCE	OPHIR	873
21	INNOKO	VICTOR GULCH	OPHIR	890

NO.	DISTRICT	CREEK	QUADRANGLE	(AU/AU+AG))
01	TAIAIONO	VANGE		
21 100				900
20		CODEED	MI MUKINLEY	6//
22	KANTISHNA	ETTERKA		881
22	KANTISHNA	FRIDAY	MT. MCKINLEY	708
22	KANTISHNA	GLACIER	MT. MCKINLEY	773
22	KANTISHNA	GLEN	MT. MCKINLEY	876
22	KANTISHNA	LITTLE MOOSE	MT. MCKINLEY	584
22	KANTISHNA	MOOSE	MT. MCKINLEY	812
22	KANTISHNA	STAMPEDE	MT. MCKINLEY	567
22	KANTISHNA	TWENTY-TWO PUP	MT. MCKINLEY	875
22	KANTISHNA	YELLOW	MT. MCKINLEY	878
23	KOYUKUK	ARCHIBALD	WISEMAN	900
23	KOYUKUK	BIRCH	WISEMAN	889
23	KOYUKUK	CREVICE	WISEMAN	865
23	KOYUKUK	EIGHTMILE	CHANDALAR	891
23	KUYUKUK		WISEMAN	902
23	KUYUKUK	FAY BULCH	WISEMAN	908
دن. ۲۰۲۲				864
ごろ つて	KUYUKUK NUTUNUN			874 00A
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	KUYUKUK		MISENAN MISENAN	070
23	KOTUKUK	HAMMOND BILER	WISEMAN	701 905
23	KUYUKUK			950
23	KOYUKUK	TNDTAN	HIGHES	943
23	КЛУНКЦК		WISEMAN	926
23	KOYUKUK	JIM	CHANTIAL AR	973
23	КЛУНКНК	каункнк	CHANDAL AR	956
23	KOYUKUK	LAKE	CHANDALAR	964
23	KOYUKUK	LINDA	CHANDALAR	914
23	KOYUKUK	MASCOT	WISEMAN	961
23	KOYUKUK	MYRTLE	WISEMAN	917
23	KOYUKUK	NOLAN	WISEMAN	924
23	КОҮИКИК	PORCUPINE	WISEMAN	903
23	KOYUKUK	SHEEP	CHANDALAR	965
23	KOYUKUK	SLATE	CHANDALAR	920
23	KOYUKUK	SOUTH FORK KOYUKUK	BETTLES	914
23	KOYUKUK	SMITH	WISEMAN	942
23	KOYUKUK	SPRING	WISEMAN	961
23	KOYUKUK	SWITH	WISEMAN	962
23	KOYUKUK	THOMPSON PUP	WISEMAN	936
23	KOYUKUK	TWELVEMILE	WISEMAN	920
23	KOYUKUK	UTUPIA	MELUZITNA	849
23	KOYUKUK		WISEMAN	/34
23	KUYUKUK	VERMUNI	WISEMAN	921
23	KOYUKOK			723
23	KUYUKUK	W 1 L. L.	BEIILES DUCCIAN KICOIDN	901
24		RORIER	KUSSIAN MISSION	053 057
24		DICAPPOINTWENT	KUDDINK WICCIUN	000 770
24 7A		CI EBNYNI Mydhelothieni	CICCIVN WICCIVN VODDING NITODINU	000 0 A D
2-7 7) A			BUSCION MICCIUN	840
24	MARSHALL	KAKO	HOLY CROSS	819
24	MARSHALL	MONTEZUMA	RUSSIAN MISSION	950

.

ND.	DISTRICT	CREEK	QUADRANGLE	(AU/(AU+AG)) x 1000
24	MARSHALL	WEST FORK WILLOW	HOLY CROSS	899
24	MARSHALL	WILLOW	RUSSIAN MISSION	873
24	MARSHALL	WILSON	RUSSIAN MISSION	953
25	RAMPART	BIGMINOOK	TANANA	901
25	RAMPART	DAWSON	LIVENGOOD	883
25	RAMPART	FLORIDA	TANANA	908
25	RAMPART	GUNNISON	LIVENGOOD	883
25	RAMPART	HOOSIER	TANANA	967
25	RAMPART	HUNTER	TANANA	921
25	RAMPART	LIŢĮLE MINOOK	TANANA	941
25	RAMPART	NEVADA GULCH	TANANA	898
25	RAMPART	QUAIL	LIVENGOOL	894
25	RAMPART	RUBY	TANANA	917
25	RAMPART	SLATE	TANANA	915
25	RAMPART	SOUTH FORK QUAIL	TANANA	953
26	RICHARDSON	BANNER	BIG DELTA	737
2.6	RICHARDSON	BUCKEYE	BIG DELTA	693
26	RICHARDSON	CARIBOU	BIG DELTA	896
26	RICHARDSON	DEMOCRAT	RIG DELTA	928
26	RICHARDSON	NO GRUB	BIG DELTA	899
26	RICHARDSON	FYNE	BIG DELTA	911
26	RICHARDSON	TENDERFOOT	BIG DELTA	901
27	RUBY	BEAR FUP	RUBY	889
27	RUBY	BIRCH	RUBY	890
27	RUBY	CAMP	NULATO	840
27	RUBY	DUNCAN	RUBY	954
27	RUBY	FLAT	RUBY	872
27	RUBY	FOURTH OF JULY	RUBY	879
27	RUBY	GLEN GULCH	RUBY	900
27	RUBY	GRANITE	RUBY	929
27	RUBY	GREENSTORE	RUBY	891
27	RUBY	LONG	RUBY	913
27	RUBY	MIDNIGHT	RUBY	871
27	RUBY	MONUMENT	RUBY	908
27	RUBY	MOOSE	RUBY	928
27	RUBY	MEKETCHUM	RUBY	901
27	RUBY	OFHIR	RURY	831
27	RUBY	POORMAN	RUBY	918
27	RUBY	RUBY	RUBY	907
27	RUBY	SHORT	RUBY	901
2/	RUBY	SOLOMUN	RUBY	988
27	RUBY	SPRUCE	RUBY	883
2/	RUBY	STRAIGHT	RUBY	901
2/	KUBY	SWIFT	RUBY	908
27	RUHT	LAMARAUN	RUBY	8/2
2/	RUBT	TENDERFUUI	RUBY	899
27	RUBT		RUBY	814
∠:/ ว⊐			RUBY	/98
2/		<u>∀₩</u> ₩Ţ₩Ů₩	KUBY	872
20			LIVENGUUU	918
28 20		GERTRUDE	LIVENGOOD	920
28	TULUVANA	LILLIAN	LIVENGOOD	926
∠ช ວົ	TULUVANA	LIVENGOUD	LIVENGOOD	934
78	IULUVANA	LUCKY	LIVENGOOD	911

_----

NO.	. DISTRICT CREEK		QUADRANGLE	(AU/AU+AG)) x 1000
90		AVOTI F		077
20				933
∡0 ~o			LIVENOODD	907
20 20				866
20	MORINIEY	81000 81000	LIVENGUUD MEDEDA	818
29	MCKINEY	CANTI F	MCGRATH	917
29	MCKINLEY	CRIPPLE	DPHTR	902
29	MCKINLEY	EAGLE	MCGRATH	900
29	MCKINLEY	HIDDEN	MEDFRA	900
29	MCKINLEY	HOLMES	MEDFRA	900
29	MCKINLEY	MOORE	IDITAROD	883
30	GEORGETOWN	CROOKED	IDITAROD	919
30	GEORGETOWN	DONLIN	IDITAROD	972
30	GEORGETOWN	JULIAN	IDITAROD	857
31	TULUKSAK-ANIAK	BEAR	RUSSIAN MISSION	931
31	TULUKSAK-ANIAK	BONANZA	RUSSIAN MISSION	893
31	TULUKSAK-ANIAK	CANYON	BETHEL	896
31	TULUKSAK-ANIAK	CRIPPLE	BETHEL	875
31	TULUKSAK-ANIAK	DOME	BETHEL	853
31	TULUKSAK-ANIAK	FOURTY-SEVEN	SLEETMUTE	814
31	TULUKSAK-ANIAK	GRANITE	BETHEL	920
31	TULUKSAK-ANIAK	MARVEL	BETHEL	888
31	TULUKSAK-ANIAK	MARY LUU GULCH	BETHEL TAVI OD NTO	901
31	TULUKSAK-ANIAK		HATLUK MIS DUCCIAN ATCOIDN	830
			KUSSIAN MISSIUN	703
31		TULUNJAN DUTTE	COODNELLE DAY	724
32	GOODNELLE DAY		COODUCUS BAT	070
32	COUDNEWS PAT	FUX BULLE	COODNENC DAY	6/6
24	CODDNELLC DAY		COODNEWS BAI	700
22	COODNEUS DAY		COODNEWS BAT	004 077
32	COUDINELLE BAY		COUDINELIG BAY	9/1
77	DICEE			897
77	5-0FF 51 1155	DANTELE	SOLUTION	971
77	BLIEF	SUEDE	SOLOMON	899
34	COUNCI	AGGIE	SOLOMON	969
34	COUNCIL	ALBION	BENDELEBEN	916
34	COUNCIL	CROOKED	BENDELEBEN	900
34	COUNCIL	DUTCH	SOLOMON	902
34	COUNCIL	ELKHORN	SOLOMON	908
34	COUNCIL	GOLD BOTTOM	SOLOMON	899
34	COUNCIL	MELSING	SOLOMON	932
34	COUNCIL	MISTERY	SOLOMON	937
34	COUNCIL	MYSTERY	SOLOMON	966
34	COUNCIL	NIUKLUK	SOLOHON	838
34	COUNCIL	OPHIR	SOLOMON	995
34	COUNCIL	OTTER	BENDELEBEN	920
34	COUNCIL	SWEETCAKE	SOLOMON	842
34	COUNCIL	WARM	SOLOMON	908
34	COUNCIL	WILLOW	SOLOMON	889
35	FAIRHAVEN	BEAR	CANDLE	905
35	FAIRHAVEN	CANDLE	CANDLE	885
35	FAIRHAVEN	CUNNINGHAM	BENDELEBEN	895
35	FAIRHAVEN	DISCOVERY OULCH	BENDELEBEN	900

_____

NO.	. DISTRICT CREEK		QUADRANGLE	(AU/(AU+AG)) x 1000	
				00F	
35	FAIRHAVEN		BENDELEBEN	883	
35	FAIRHAVEN	GOLU KUN		885	
33	FAIRHAVEN	HANNUM	BENDELEBEN	701 005	
35	FAIRHAVEN		BENDELEBEN	905	
30	FAIRHAVEN			802	
33		LASI CHARCE Konduk		717	
3J 75		KUGRUK RIUER	DENDELEDEN	71.7	
33	FAIRNAVEN	KUUKUK KIVEK		722	
30			DENNEL EDEN	007 000	
30 74		BATTERSON		200	
ישני דרי	LUTURVOUK LUTURNAUK	ATLAC	DENNELEDEN	900	
30	KOUGAROK	M I LHO Vensenn		007	
74	KOUGAROK		DELENER DENTIFI FORN	900 900	
74	KUNBARUK			801	
36	KAUGAROK		BENDELEDEN	899	
36	KÖUGAROK	COFFEE	BENDELEBEN	857	
36	KOUGAROK	DAHI	BENDELEBEN	899	
36	KOUGAROK	DICK	BENDEL EBEN	903	
36	KOUGAROK		RENDELEBEN	893	
36	KOUGAROK	GARETELD	BENDELEBEN	901	
36	KOUGAROK	GROUSE	BENDELEBEN	934	
36	KAUGARAK	WARRIS	BENTIFI EBEN	965	
36	KOUGAROK		BENDELEBEN	850	
74	KOUGAROK	των	RENDELEREN	901	
34	KOUGAROK	TRON		907	
74	KOUGAROR	KOUGAROK	RENDEL FREN	908	
34	KOUGAROK		RENDELEDEN RENDELEDEN	965	
30	KOUGAROR		BENDELEBEN	914	
36	KOUGAROK	NORTH FORK KOUGAROK	BENTIELEBEN	903	
36	KOUGAROK	NOXAPAGA	BENDELEREN	909	
36	KOURAROK	014677	BENDELEBEN	899	
36	KOUGAROK	TAYLOR	BENDELEBEN	920	
36	KOUGARDK	TRINITY	BENDELEBEN	938	
36	KOUGAROK	LINDY	BENDELEBEN	909	
36	KOUGAROK	WONDER GULCH	BENDELEBEN	951	
37	KOYUK	BEAR	CANDLE	910	
37	KOYUK	BONANZA	NORTON BAY	901	
37	KOYUK	DIME	CANDLE	962	
37	KOYUK	SWEEPSTAKE	CANDLE	855	
37	KOYUK	UNGALIK	NORTON BAY	932	
38	NOME	ANVIL	NOME	924	
38	NOME	ARCTIC	NOME	899	
38	NOME	BANGOR	NOME	900	
38	NOME	BANNER	NOME	887	
38	NOME	BASIN	NOME	918	
38	NOME	BEACH	NOME	918	
38	NOME	BOULDER	NOME	920	
38	NOME	BOURBON AND WONDER	NOME	983	
38	NOME	BUSTER	NOME	908	
38	NOME	CENTER	NOME	910	
38	NOME	CHRISTIAN	NOME	830	
38	NOME	CLARA	NOME	917	
38	NOME	COOPER GULCH	NOME	910	

- ----

_

NO.	DISTRICT	CREEK	QUADRANGLE	(AU/AU+AG x 1000
				fan hen sen ske van som som sen oft sen Tau-Tau-Tabl ska
38	NOME	DARLING	NOME	872
38	NOME	DERBY	NOME	910
38	NOME	DEXTER	NOME	921
38	NOME	DOROTHY -	NOME	869
38	NOME	DRY	NOME	924
38	NOME	FLAT	NOME	954
38	NOME	GLACIER	NDME	<b>900</b>
38	NOME	GRASS GULCH	NOME	921
38	NOME	GRUB GULCH	NOME	907
38	NOME	HASTINGS	NOME	882
38	NOME	HOBSON	NOME	910
38	NOME	HOLYOKE	NOME	946
38	NOME	HUNGRY	NOME	896
38	NOME	IRENE	NOME	900
38	NDME	JESS	NOME	890
38	NOME	LAST CHANCE	NOME	908
39	NOME	LAURADA	NOME	885
38	NOME	LITTLE	NOME	967
38	NOME	MANILA	NOME	907
38	NOME	MONUMENT	NOME	904
38	NOME	NEKALA GULCH	NOME	904
38	NOME	NEWTON	NOME	923
38	NOME	NOME BEACH (2)	NOME	930
38	NOME	NOME BEACH (3)	NOME	910
38	NOME	NOME RIVER	NOME	912
38	NOME	NUGGET	NOME	938
38	NOME	OREGON	NOME	906
38	NOME	PELUK	NOME	878
38	NOME	FIONEER	NOME	917
38	NOME	FROSPECT	NOME	902
38	NOME	ROCK	NOME	910
38	NOME	ROCKY MT	NOME	810
38	NOME	ST MICHAELS	NOME	848
38	NOME	SAUNDERS	NOME	900
38	NOME	SHEPHERD	NOME	837
38	NOME	SNAKE	NOME	916
38	NOME	SPECIMEN GULCH	NOME	923
38	NOME	SUBMARINE BEACH	NOME	901
38	NOME	SUNSET	NOME	919
38	NOME	TWIN MT.	NOME	921
38	NOME	WASHINGTON	NOME	891
38	NOME	WONDER	NOME	955
39	PORT CLARENCE	ALDER	TELLER	875
39	PORT CLARENCE	BLUESTONE	TELLER	899
39	PORT CLARENCE	BUCK	TELLER	934
39	PORT CLARENCE	BUDD	TELLER	887
70	PORT CLARENCE	COYOTE	TELLER	900
70	PORT CLARENCE	nese	TELLER	075
37	DODT CLARCICE	DICK	TELLEN TELLED	7/3
37	BODT OLADENCE		16667 T2((50	71/
37	FORT CLARENCE			873
37	FURI CLARENCE	1000	TELLER	87/
37	PURI CLAKENCE	MILLIUN		911 ~~~~
37	PURT LLARENCE	SUNSEI		873
۷۵	FURI CLARENCE	SWANSUN	ILLLER	912

NO.	DISTRICT	CREEK	QUADRANGLE	(AU/(AU+AG)) x 1000
39	PORT CLARENCE	<b>WINDY</b>	TELLER	901
40	SOLOMON	AMERICAN	SOLOMON	900
40	SOLOMON	BEAVER	SOLOMON	901
40	SOLOMON	BIG HURRAH	SOLOMON	955
40	SOLOMON	BUTTE	SOLOMON	906
40	SOLOMON	CASADEPAGA	SOLOMÜN	901
40	SOLOMON	GOOSE	SOLOMON	912
40	SOLOMON	KASSON	SOLOMON	877
40	SOLOMON	LITTLE HURRAH	SOLOMON	908
40	SOLOMON	LOWER WILLOW	SOLOMON	872
40	SOLOMON	MOONLIGHT	SOLOMON	900
40	SOLOMON	PAJARA	SOLOMON	<b>909</b>
40	SOLOMON	FENELOPE	SOLOMON	947
40	SOLOMON	PENNY	SOLOMON	902
4Ö	SOLOMON	SHOVEL	SOLOMON	954
40	SOLOMON	SOLOMON	SOLOMON	924
40	SOLOMON	SPRUCE	SOLOMON	901
40	SOLOMON	WEST	SOLOMON	865
40	SULOMON	WILLOW	SOLOMON	889
41	KOBUK	CALIFORNIA	SHUNGNAK	871
41	KOBUK	CANYON	BAIRD MTS	901
41	ковик	DAHL	SHUNGNAK	833
41	KOBUK	KLERY	BAIRD MTS	918
41	KOBUK	SHUNGNAK	AMBLER RIVER	899

_

TABLE	1a.	Analysis	of	variance	between	and	within	mining
		districts	5 -					

Source	D.F.	Sum of Squares	Mean Squares	F Ratio
Between Groups	40 509	0.2969	0.0074	4.314
TOTAL	549	1.1728	- 0,0017	



XDX000 OF NGXFTMN

















XDEMME OF NEXT'MN

















ΖΟΣΩΜΑ ΟΓ ΟΔΣΓΙΠΟ







ΧΟΣΦΜΑ ΟΓ ΝΦΣΓΙΠΝ











SURGER OF NGEFTIN











XOXMUM OF CHOPAHOPO

			Standard Score				
District		No. of	for Deviation from		Standard	Coefficient	
Number	District	Samples	Grand Mean	Mean	Deviation	Variation	Range
							-
01	Porcupine	1	1.820	941	~_		
02	Juneau	1	-2.205	826			
03	Yakataga	2	0.805	912	16	1.75	900-923
04	Chistochina	5	0.700	909	24	2,64	866-924
05	Nizina	8	-0.280	881	43	4.88	820-926
06	Nelchina	1	-1.470	847	~-		
07	Kenai	9	0.630	907	20	2.21	899-959
08	Girdwood	1	-0.070	887			~~
09	Yentna	24	0.105	892	26	2.91	838-956
10	Valdez Creek	3	0.875	914	32	3.50	891-951
11	Bonnifield	12	-0.910	863	36	4.17	804-926
12	Chandalar	5	-0.280	881	49	5.56	835-958
13	Chisana	5	-1.400	849	38	4.48	805-906
14	Círcle	30	-0.910	863	62	7.18	714-984
15	Eagle	11	0.245	896	28	3.13	854-945
16	Fairbanks	40	0.175	894	28	3.13	824-961
17	Fortymile	29	-0.770	867	32	3.69	791-927
18	Gold Hill	5	1.085	920	26	2.83	892-952
19	Hot Springs	24	-0.770	867	59	6.81	782-984
20	Iditarod	19	0.280	897	31	3.46	855-972
21	Innoko	20	-0.210	883	31	3.51	834-946
* 22	Kantishna	11	-3.500	789	126	15.97	567-906
23	Koyukuk	35	0.875	914	44	4.81	734-973
24	Marshall	10	-0.665	870	48	5.52	819-953
25	Rampart	12	0.910	915	27	2.95	883-967
26	Richardson	7	-1.295	852	95	11.15	693-928
27	Ruby	27	0.070	891	40	4.49	798-988
28	Tolovana	9	0.525	904	38	4.20	818-934
29	McKinley	7	0.420	901	10	1.11	883-917
30	Georgetown	3	0.945	916	58	6.33	857-972

# Table 2. Mean, standard deviation and range of gold fineness values by mining district.

_

____

31	Tuluksak Aniak	12	-0.105	886	37	4.18	814-931
32	Goodnews Bay	6	-0.210	883	15	1.70	861-900
33	Bluff	3	0.595	906	13	1.43	897-921
34	Council	15	0.910	915	43	4.70	838-995
35	Fairhaven	15	0.280	897	19	2.12	852-922
36	Kougaruk	25	0,665	908	27	2.97	850-965
37	Koyuk	5	0.805	912	40	4.39	855-962
38	Nome	55	0.630	907	30	3.31	810-983
39	Port Clarence	13	0,630	907	25	2.76	875-975
40	Solomon	18	0.665	908	24	2.64	865-955
41	Kobuk	5	-0.175	884	33	3.73	833-918

Grand Mean = 889.

$$S_{\bar{x}} = 28.57$$

95% Confidence Interval for Mean = 880.2 - 897.7 = 880 - 898

Region	Districts*	No. of Samples in Districts	Ave. Gold Fineness	Coefficient Variation	Standard Deviation of Average Value	No. of Regions
Seward Península	33,34,35,36, 37,38,39,40, 41	(154)	905	1.02	9.23	σ
Yukon-Tanana	11,12,14,15, 16,17,18,19, 25,26,28	(184)	884	2.62	23.2	11
Chandalar-Koyukuk	12,23	(07)	898	2.58	23.2	2
Lower Yukon-Kuskokwin	20, 21, 22, 24, 27, 29, 30, 31, 32	(115)	880	4.14	36.4	6
Copper-Susitna	4,5,6,7,8,9, 10,13	(56)	886	2.92	25.9	α
Southeastern	1,2,3	(4)	893	6.70	59.8	Э

Table 3. Average Gold Fineness Values for Mining Districts Grouped According to Geographic Region.

	Table 4.	Host rocks mining dis 1969).	s for the mi strict (data	neralization in t source: Chapman	he Fairbanks & Foster,
				All mineral Occurrences	Hg/Sb/W Occurrences
l.	Silicified undifferen	schist an tiated	nd schist	121	49
2.	Quartzite	and graph:	ite schist	9	7
3.	Muscovîte feldspar s	schist and chist	d muscovite	32	25
4.	Biotite an schist	d biotite	garnet	3	2
5.	Calc-schis	t		2	1
6.	Marble			2	l
7.	Greenstone	and amph:	ibolite	2	l
8.	Intrusive	rocks and	skarns	۲ د ۲	0
	undtiteren	litated	TOTAL	188	95

# APPENDIX I

Summary of Boyles' (1979) Conclusions Regarding Au/Ag Ratios for Various Deposits:

- "1. Only three types of hypogene deposits have Au/Ag ratio consistantly greater than 1. These are the auriferous quartz pebble conglomerate deposits, certain skarntype deposits and most, but not all, gold-quartz veins in Precambrian, Paleozoic, and Mesozoic rocks. Tertiary deposits in certain belts also have ratios greater than 1, but they are relatively uncommon. All Gold placers always have ratios greater than 1.
  - 2. The Au/Ag ratios in disseminated deposits in shales and sandstones (Kupferschiefer and red bed types) are generally low, indicating a relatively high degree of mobility and concentration of silver during the formation of these particular deposits.
- 3. In the auriferous quartz-pebble conglomerate deposits the range of the Au/Ag ratios is generally narrow, but there are some significant differences in some deposits such as the Witwatersrand, ....(Range 5.8-15.6).
- 4. There are few data on the gold content of the "Mississippi Valley type" lead-zinc deposits, and hence a precise knowledge of the Au/Ag ratios is not obtainable.
- 5. The Au/Ag ratios in skarn deposits are exceedingly variable and related to the mineralogy and hence the chemistry of these deposits.

- 6. Massive nickel-copper sulphides of the Sudbury type, generally associated with basic igneous rocks, seem to have a narrow range of Au/Ag ratios from about 0.03 to 0.07, ....
- 7. The porphyry copper deposits tend to have a relatively low Au/Ag ratio judging from the few good data available.
- 8. The massive polymetallic sulphide deposits (flin flon-Noranda-Bathurst type) nearly all have relatively low Au/Ag ratios, which average about 0.025.
- 9. The polymetallic veins and the native silver-cobaltnickel arsenide veins have the lowest ratios of all the various types of auriferous hypogene deposits, indicating an extreme mobility for silver and practically no mobility for gold during their formation.
- 10. Gold-quartz veins in Precambrian, Paleozoic and Mesozoic rocks generally have Au/Ag ratios greater than 2, and these average about 4.2 (range 1.37 to 12.5).
- 11. Gold-quartz veins, lodes, and stockworks in Tertiary andesite, dacite, rhyolite, and other associated volcanic rocks generally have ratios less than 1 ....
- 12. Siliceous sinters precipitated from present-day hot springs generally have Au/Ag ratios less than 1.
- Gold placers always have Au/Ag ratios greater than 1 regardless of age of the source deposits.

- 14. Deposits in older geological formations are frequently richer in gold than those in younger formations.
- 15. The evidence that the Au/Ag ratio is an index of temperature of formation or recrystallization of deposits is conflicting. ... On a statistical basis, however, there is some evidence to support the contention that deep-seated (high temperature?) deposits have a higher Au/Ag ratio than those formed at intermediate depths or near the surface, presumably under conditions of lower temperatures.
- 16. There is considerable evidence to show that the Au/Ag ratio increases in primary haloes with proximity to ore shoots in most types of epigenetic gold deposits.
- 17. Shcherbina's (1956a) view that gold is predominant in telluride ores whereas silver is dominant in selenide ores appears to be true.
- 18. Gold and silica (quartz) show a marked association whereas silver tends to be concentrated in an environment where carbonates are abundant.
- 19. Evidence from many auriferous belts throughout the world indicates that there is a wall rock effect on the Au/Ag ratio, the ratio being higher where the wall rocks are basic than where acidic rocks are the hosts.
- 20. The Au/Ag ratio in deposits seems to depend on regional metallogenic peculiarities in a crude way, if only certain types of deposits are considered."

# REFERENCES CITED

- Boyle, R.W., 1979, The geochemistry of gold and its deposits, Geological Survey of Canada Bull. 280, 584 p.
- Chapman, R.M., and Foster, R.L., 1969, Lode mines and prospects in the Fairbanks district, Alaska, U.S. Geol. Survey Prof. Paper 625-D, p. D1-D25.
- Forbes, R.B., 1980, Chemical zonation in gold nuggets: Second Annual Conference on Alaskan Placer Mining - Focus on Gold, April 7-8, 1980, University of Alaska, Fairbanks, Alaska.
- Koch, G.S., and Link, R.F., 1971, Statistical analysis of geological data, John Wiley and Sons, Inc., New York, 427 p.
- Koshman, P.N. and Yugay, T.A., 1972, The causes of variation in fineness levels of gold placers; Geochemistry Intn'1., 1972, p. 481-484 (Translated from GEOKHIMIYA <u>6</u>, 750-753, 1972).
- Shcherbina, V.V., 1956, Geochemical significance of quantitative Ag-Au ratios, Geokhim. no. 3, p. 65-73.
- Smith, P.S., 1941, Fineness of gold from Alaska placers, U.S. Geol. Survey Bull. 910-C, p. 147-272.
- Víljoen, E.A., 1971, An electron-microprobe analysis of gold in the Witwatersrand blanket and in ores from the Barberton Mountain Land, National Inst. Metal., S. Afr., Rept. no. 1361, 7 p.

## BIBLIOGRAPHY

- Addie, G., 1964: Silver-gold ratios in some Witwatersrand conglomerates; Econ. Geol., v. 59, p. 325.
- Badalov, S.T. and Badalova, R.P., 1967: Some regularities of distribution of gold and silver in the principal ore minerals of hypogene deposits of Karamazar and western Kazakhstan; Geochem. Int., v. 4, no. 4, p. 660-668.
- Badalova, R.P and Badalov, S.T., 1967: The standard of gold from hypogene ore deposits and occurrences of Uzbekistan; Akad. Nauk SSSR, Dokl., v. 173, no. 4, p. 914-916. (Acad. Sci. USSR, Dokl., Earth Sci. Sec., v. 173, nos. 1-6, p. 194-197.)
- Badalova, R.P. and Palei, L.Z., 1965: Main features of the metallogeny of gold in western Uzbekistan; Geol. Rud. Mestorozhd., v. 7, no. 5, p. 38-46. (Engl. Rev. <u>in</u> Econ. Geol., v. 63, p. 852.)
- Berg, H.C. and Cobb, E.H., 1967: Metalliferous lode deposits of Alaska; U.S. Geol. Surv., Bull. 1246, 254 p.
- Berman, Yu. S. and Gorelyshev, A.V., 1974: Gold-silver ratios exemplified by a gold-silver deposit of the northeastern part of the U.S.S.R.; Geokhim., no. 11, p. 1613-1621. (Chem. Abstr., v. 82, 142826r.)
- Blomfield, A.L., Rood, H.S., Crocker, B.S. and Williamson, C.L., 1936: Milling-investigations into the ore as occurring at the Lake Shore mine; Can. Inst. Min. Metall., Trans., v. 39, p. 279-434.
- Boyle, R.W., 1961a: The geology, geochemistry, and origin of the gold deposits of the Yellowknife district; Geol. Surv. Can., Mem. 310, 193 p.
- Boyle, R.W., 1966: Origin of gold and silver in the gold deposits of the Meguma Series, Nova Scotia; (abstr.) Progr. Geol. Assoc. Can. and Mineral Assoc. Can. Annu. Meet., Halifax, N.S.
- Boyle, R.W., 1969b: Elemental associations in mineral deposits and indicator elements of interest in geochemical prospecting; Geol. Surv. Can., Pap. 68-58, 45 p.
- Boyle, R.W., 1969c: Hydrothermal transport and deposition of gold; Econ. Geol., v. 64, p. 112-115.
- Boyle, R.W., 1974a: Elemental associations in mineral deposits and indicator elements of interest in geochemical prospecting (re-vised); Geol. Surv. Can., Pap. 74-45, 40 p.

- Boyle, R.W., 1974b: The use of major elemental ratios in detailed geochemical prospecting utilizing primary halos; J. Geochem. Explor., v. 3, p. 345-369.
- Boyle, R.W., 1979, The geochemistry of gold and its deposits, Geological Survey of Canada Bull. 280, 584 p.
- Boyle, R.W., Alexander, W.M. and Aslin, G.E.M., 1975: Some observations on the solubility of gold; Geol. Surv. Can., Pap. 75-24, 6 p.
- Boyle, R.W. and Dass, A.S., 1971a: The geochemistry of the supergene processes in the native silver veins of the Cobalt-South Lorrain area, Ontario; Can. Mineral., v. 11, pt. 1, p. 358-390.
- Boyle, R.W. and Dass, A.S., 1971b: The origin of the native silver veins at Cobalt, Ontario; Can. Mineral., v. 11, pt. 1, p. 414-417.
- Boyle, R.W., Wanless, R.K. and Lowdon, J.A., 1963b: The origin of the gold-quartz deposits, Yellowknife, N.W.T.--Discussion; Econ. Geol., v. 58, p. 804-807.
- Brammall, A., 1926: Gold and silver in the Dartmoor granite; Mineral. Mag., v. 21, no. 112, p. 14-20.
- Brammall, A. and Dowie, D.L., 1936: The distribution of gold and silver in the crystalline rocks of the Malvern Hills; Mineral. Mag., v. 24, no. 152, p. 260-264.
- Desborough, G.A., 1970: Silver depletion indicated by microanalysis of gold from placer occurrences, western United States; Econ. Geol., v. 65, p. 304-311.
- Desborough, G.A., Heidel, R.H., Raymond, W.H. and Tripp, J., 1971: Primary distribution of silver and copper in native gold from six deposits in the western United States; Miner. Deposita (Berl.), v. 6, p. 321-334.
- Desborough, G.A., Raymond, W.H. and Iagmin, P.J., 1970: Distribution of silver and copper in placer gold derived from the northeastern part of the Colorado mineral belt; Econ. Geol., v. 65, p. 935-944.
- Eales, H.V., 1961: Fineness of gold in some southern Rhodesian gold mines; Inst. Min. Metall., Trans., v. 71, no. 660, p. 49-73.
- Eales, H.V., 1962: The occurrence of aurostibite in the Gwanda District, southern Rhodesia; Geol. Soc. S. Afr., Trans., v. 65, pt. 2, p. 79-83.

- Eales, H.V., 1968: Determining fineness variation characteristics in gold ores by reflectometry; Econ. Geol., v. 63, p. 688-691. Discussion by E.F. Stumpfl, Econ. Geol., v. 64, p. 341-342.
- Eales, H.V. and Viljoen, E.A., 1973: Determination of silver content of natural gold alloys by reflected-light microscopy; Inst. Min. Metall., Trans., Sec. B, v. 82, p. 47-50.
- Fisher, N.H., 1945: The fineness of gold with special reference to the Morobe goldfield; New Guinea; Econ. Geol., v. 40, p. 449-495, 537-563.
- Fisher, N.H., 1950: Application of gold fineness to the search for ore; Australas. Inst. Min. Metall., Proc., nos. 156-157, p. 185-190.
- Fitzgerald, A.C., Graham, R.J., Gross, W.H. and Rucklidge, J.C., 1967a: The application fo gold-silver ratios to a fault displacement problem, Bourlamaque, Quebec; Can. Inst. Min. Metall. Prog., Ottawa, p. 11 (abstr.).
- Fitzgerald, A.C., Graham, R.J., Gross, W.H. and Rucklidge, J.C. 1967b: The application and significance of gold-silver ratios at Val D'Or, Quebec; Econ. Geol., v. 62, p. 502-516.
- Forbes, R.B., 1980, Chemical zonation in gold nuggets: Second Annual Conference on Alaskan Placer Mining - Focus on Gold, April 7-8, 1980, University of Alaska, Fairbanks, Alaska.
- Forsythe, D.L., 1971: Vertical zoning of gold-silver tellurides in the Emperor gold mine, Fiji; Australas Inst. Min. Metall., Proc., no. 240, p. 25-31.
- Hargraves, R.B, 1961: Silver content of gold in Witwatersrand conglomerates; Univ. Witwatersrand, Econ. Geol. Res. Unit, Inform., Circ., no. 3, 25 p.
- Hargraves, R.B., 1963: Silver-gold ratios in some Witwatersrand conglomerates; Econ. Geol., v. 58, p. 952-970.
- Helgeson, H.C. and Garrels, R.M., 1968: Hydrothermal transport and deposition of gold; Econ. Geol., v. 63, p. 622-635.
- Hutchinson, R.W., 1975: Lode gold deposits; the case for volcanogenic derivation; in Proc. 5th Gold and Money Session and Gold Technical Session, Pacific Northwest Metals and Minerals Conference, Portland, Oregon, Oreg. Dep. Geol. Miner. Ind. publ., p. 64-105.
- Kesler, S.E., 1972: Crustal environment and silver-gold-molybdenum abundances in magmatic-hydrothermal ore deposits; 24th Int. Geol. Congr., Montreal, Abstr., p. 131-132.

- Kesler, S.E., 1973: Copper, molybdenum and gold abundances in porphyry copper deposits; Econ. geol., v. 68, p. 106-112.
- Konstantinov, M.M., 1977: Geochemical types of gold mineralization in the volcanic regions, Akad. Sci. USSR, Dokl., v. 234, p. 180-183.
- Koshman, P.N. and T.A. Yugay 1972: The causes of variation in fineness levels of gold placers: Geochemistry Int'l. 1972 p. 481-434 (Trans. from GEOKHIMIYA, 6 p. 750-753, 1972).
- MacKay, R.A.C., 1944: Purity of native gold as a criterion for secondary enrichment; Econ. Geol., v. 39, p. 56-68.
- Marakushev, A.A., 1977: Geochemical properties of gold and conditions of its endogenic concentration; Miner. Deposita (Berl.), v. 12, p. 123-141.
- Mertie, J.B., 1940: Placer gold in Alaska; J. Wash. Acad. Sci., v. 30, p. 93-124.
- Mills, J.W., 1954: Vertical zoning at the O'Brien gold mine, Kewagama, Quebec; Econ. Geol., v. 49, p. 423-430.
- Novgorodova, M.I., 1976: Platinum, palladium and gold in chalcopyrite ores of the southern Urals; Akad. Nauk SSSR, Dokl., v. 226, p. 942-944.
- Novgorodova, M.I. and Tsepin, A.J., 1976: On the phase composition of copper gold; Akad. Nauk SSSR, Dokl., v. 227, p. 184-187.
- Obolenskii, A.A. and Obolenskaya, R.V., 1972: Gold-antimony and mercury ore formations in Yakutia; in Geol. Genezis Endogennykh Rud. Form. Sib., V.A. Kuznetsov, ed., "Nauka", Moscow, p. 53-64. (Chem. Abstr., v. 78, 18855c.)
- Obrazbekov, G.T., 1972: Coefficients of correlation between gold and associated elements in the primary haloes of the Zhanalyk deposit (northern Kazakhstan); Akad. Nauk Kaz. SSR, Izb., Ser. Geol., v. 29, no. 2, p. 77-80. (Chem. Abstr., v. 77, 22875f.)
- Ol'shevskiy, V.M., 1975: Dependence of the relationship Ag/Au in near-surface gold-silver deposits on the composition of oreenclosing rocks; Akad. Nauk SSSR, Dokl., v. 224, no. 4, p. 925-928. (Chem. Abstr., v. 84, 76815z.)
- Petrovskaya, N.V., ed., 1974: Mineralogy and geochemistry of gold; Tezizy Dok. Simp. Mineral. Geokhim Zolota, vols. 1 and 2, Akad. Nauk SSSR Dal'Nevost Nauch. Tsent., Vladivostok, U.S.S.R.

- Petrovskaya, N.V., Konstantinov, R.M. and Sirotinskaya, S.V., 1971b: Quantitative study of similarity in mineral composition of gold deposits; Sov. Geol., v. 14, no. 4, p. 1-22. (Chem. Abstr., v. 75, 23810b.)
- Petrovskaya, N.V., Lyuttsau, V.G., Frolova, K.E., Laputina, I.P. and Vasil'eva, G.V., 1971c: Heterogeneity in native gold; Vop. Odnorodnosti Neodnorodnosti Miner., F.V. Chukhrov, ed., "Nauka", Moscow, U.S.S.R., p. 44-62. (Chem. Abst., v. 77, 91087n.)
- Petrovskaya, N.V., Novgorodova, M.I., Frolova, K.E. and Gorshkov, A.I., 1976: New data on the composition of phases in heterogeneous segregations of native gold; Izv. Akad. Nauk SSSR, Ser. Geol. no. 3, p. 67-73. (Chem. Abstr., v. 85, 49355p.)
- Petrovskaya, N.V., Timofeevskii, D.A. and Borodaevskii, N.I., 1974: Endogenic zoning of gold ore fields and deposits; Zon. Gidroterm. Rud. Mestorozhd. (Zoning of hydrothermal ore deposits), v. 2, G.A. Sokolov, ed., "Nauka", Moscow, W.S.S.R., p. 86-122.
- Randall, J.A., 1973: Silver-gold ratios related to copper mineralization at the Anglo-Rouyn mine, Saskatchewan; Program and Abstracts, Geol. Assoc. Can.--Can. Soc. Pet. Geol. and Mineral Assoc. Can., Annu. Meet.--Arctic Symp.--Cretaceous Colloq., May 23-26, Univ. Sask., Saskatoon, p. 89 (abstr.).
- Saager, R., 1968: Newly observed ore minerals from the Basal Reef in the Orange Free State Goldfield in South Africa; Econ. Geol., v. 63, p. 116-123.
- Saager, R. and Bianconi, F., 1971: The Mount Nansen gold-silver deposit, Yukon Territory, Canada; Miner. Deposita (Berl.), v. 6, p. 209-224.
- Sakharova, M.S., 1969a: Study of the composition of gold by X-ray spectral microanalysis; Akad. Nauk SSSR, Dokl., v. 186, no. 2, p. 430-433.
- Sakharova, M.S. and Demidov, V.G., 1972: Gold to silver ratio in the Darasun deposit; Tr. Mineral. Muz., Akad. Nauk SSSR, no. 21, p. 127-132. (Chem. Abstr., v. 77, 154986c.)
- Shcherbina, V.V., 1956a: Geochemical significance of quantitative Ag-Au ratios; Geokhim., no. 3, p. 65-73. <u>Also</u> Geochemistry, no. 3, p. 301-311.
- Shilo, N.A., 1963: Some features of the composition of alluvial placers in the Yana-Kolyma belt; Tr. Sev. Vost. Kompleks. Nauch. Issled. Inst. no. 3, p. 87-105. (Chem. Abstr., v. 61, 9304c.)

- Shilo, N.A., 1968: Certain problems of auriferous lodes and placers; Int. Geol. Rev., v. 10, no. 11, p. 1241-1246.
- Shilo, N.A., 1971: The problems of geology of gold; Earth-Sci. Rev., v. 7, p. 215-225.
- Shilo, N.A., 1973: Metal content of placers of the northwestern Pacific area; Aust., Bur. Min. Resour., Geol. Geophys. Bull., no. 141, p. 221-222.
- Shilo, N.A., 1974: Gold and gold-silver mineralization in the Okhotsk-Chukotka volcanic belt and some problems of ore formation; Zap. Leningrad. Gorn. Inst., v. 67, no. 2, p. 20-34. (Chem. Abstr., v. 83, 82774f.)
- Smith, P.S., 1941, Fineness of gold from Alaska placers, U.S. Geol. Survey Bull. 910-C, p. 147-272.
- Stephenson, J.F. and Ehmann, W.D., 1971: Neutron activation analysis of gold in Archean igneous and metamorphic rocks of the Rice Lake-Beresford Lake area, southeastern Manitoba; Econ. Geol., v. 66, p. 933-939.
- Stumpfl, E.F., 1969: Determining fineness variation characteristics in gold ores by reflectometry; Econ. Geol., v. 64, p. 341-342.
- Stumpfl, E.F. and Clark. A.M., 1965: Electron-probe microanalysis of gold-platinoid concentrates from southeast Borneo; Inst. Min. Metall., Trans., v. 74, p. 933-946.
- Viljoen, E.A., 1971: An electron-microprobe analysis of gold in the Witwatersrand blanket and in ores from the Barberton Mountain Land; Natl. Inst. Metal., S. Afr., Rep., no. 1361, 7 p.
- Von Rahden, H.V.R., 1965: Apparent fineness values of gold from two Witwatersrand gold mines; Econ. Geol., v. 60, p. 980-997.
- Yugai, T.A., 1971: Change in ore gold standards dependent on depth; Akad. Nauk SSSR, Dokl., v. 200, no. 2, p. 446-448. (Chem. Abstr., v. 75, 131642g.)