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ABSTRACT

Interest in the role of organic nitrogen (N) to the N economy of forest ecosystems 

is gaining momentum as ecologists revise the traditional paradigm in N cycling to 

emphasize the importance of depolymerization of soil organic matter (SOM) in 

controlling the bioavailability of N in forest soils. Still, there has yet to be a coordinated 

effort aimed at developing general patterns for soil organic N cycling across ecosystems 

that vary in climate, SOM quality, plant taxa, or dominant mycorrhizal association: 

ectomycorrhizae (EM) vs. arbuscular mycorrhizae (AM). In this study, experimental 

additions of 13C15N-glycine and 15NH4
+ were traced in situ through fine root and soil N 

pools for six North American forest ecosystems in an effort to define patterns of plant 

and microbial N utilization among divergent forest types.

Recovery of 15N in extractable soil pools varied by N form, forest type, and 

sampling period. At all sites, immobilization by the soil microbial biomass represented 

the largest short-term (<24 h) biotic sink for NH4
+ and amino acid-N, but differences in 

microbial turnover of the two N forms were linked to cross-ecosystem differences in 

SOM quality, particularly the availability of labile carbon (C). At the conclusion of the 

experiment, microbial N turnover had transferred the majority of immobilized 15N to non-

extractable soil N pools. By comparison, fine root uptake of NH4
+ and glycine-N was low

(<10% total tracer recovery), but 15N enrichment of this pool was still increasing at the 

final sampling period. Since there was no significant loss of 15N tracer within the bulk soil

after 14 days for any forest type except sugar maple, it suggests plants have the capacity 
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to capitalize on multiple N turnover events and thus represent an important long-term 

sink for ecosystem N. 

Plants in all stands had some capacity to absorb glycine intact, but plant N 

preference again varied by forest type. Relative uptake of amino acid-N versus inorganic 

N was lowest in tulip poplar and highest in red pine and balsam poplar, while white oak, 

sugar maple, and white spruce stands were statistically near unity with respect to the two 

N forms. However, N uptake ratios were threefold higher in EM-dominated stands than 

in AM-dominated stands indicating mycorrhizal association in part mediated plant N 

preference. Thus, amino acids represent an important component of the N economies of a

broad spectrum of forest ecosystems, but their relevance to plant nutrition likely varies as

a function of microbial demand for C as well as N.
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design of the project as well as editing of the manuscripts.
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writing process. Terry Chapin took time out of his very busy schedule to spend time with 

me sampling in the field as well as review each manuscript prior to submission. Lola 

Oliver and Tim Quintal of the Forest Soils Laboratory provided invaluable technical 
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years. Amy Zacheis, Dana Thomas, and Julie McIntyre were all helpful in determining 

the appropriate statistical analyses for each data set.

 Field work in ecology often involves long hours under inclement conditions, 

particularly for experimental designs which require ‘round the clock’ sampling effort. 
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who cheerfully spent most of an uncomfortably hot summer crisscrossing Georgia and 

Michigan in a 1973 Dodge cargo van, without air conditioning, to collect samples from 

the temperate sites.

Finally, I thank my parents, Jeanne and Wes, for their unwavering support and 

encouragement during the many years it has taken me to complete this project. They have

stood by me since day one, and I am truly grateful for their persistence.
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GENERAL INTRODUCTION

It is generally agreed that nitrogen (N) is the nutrient most often limiting forest 

ecosystem production (Vitousek et al. 1991), and considerable effort over the last several 

decades has been directed towards elucidating factors regulating N availability to plants. 

A central process in the terrestrial N cycle, N mineralization, particularly the net 

accumulation of mineral N, has long been considered the key component of soil N 

cycling defining soil fertility with respect to plant growth (Vitousek and Howarth 1979). 

However, our improved understanding of the complexity of soil N cycling dynamics has 

generated a greater awareness of the limitations of this metric.

Net N mineralization is a useful indicator of N supply to plants in ecosystems 

where the cycling of soil N is rapid enough to minimize competition for N between plants

and soil microorganisms, but in marginal ecosystems, measures of net N mineralization 

can greatly underestimate the amount of N supplied to plants. For example, traditional 

approaches to summarizing ecosystem N budgets have failed to account for a large 

percentage of annual plant N increments in alpine (Labroue and Carles 1977), arctic 

(Shaver et al. 1991, Giblin et al. 1991), and taiga ecosystems (Ruess et al. 1996). The 

discrepancy between N supply and plant N demand is due in part to the fact that net 

accumulation of soluble NO3
- or NH4

+, or a lack thereof, is a poor predictor of overall N 

cycling since gross N mineralization rates can be masked by microbial immobilization 

(Stark and Hart 1997). Similarly, whole-soil processes are often misrepresented by 

microcosm studies of soil N cycling which treat the soil as a homogenous medium 

despite strong evidence of spatial and temporal variation in soil nutrient availability. 
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More importantly though, plant plasticity in N acquisition, principally the ability to 

utilize organic N forms, has forced a general reconsideration of factors controlling plant 

N nutrition in terrestrial ecosystems. 

Evidence for direct plant uptake of organic N dates back a century (Hutchison and

Miller 1911), but the ecological significance of this N assimilatory pathway over a range 

of plant species and geographical locations has only recently started to materialize. 

Organic N is the predominant form of soil N for most terrestrial ecosystems. By some 

estimates, 75% of soil organic N consists of proteinaceous material and heterocyclic N 

compounds (Schulten and Schnitzer, 1998). Studies covering a broad range of plant taxa 

from arctic, (Kielland 1994) boreal (Persson and Näsholm 2001), temperate (Finzi and 

Berthrong 2005), tropical (Endres and Mercier, 2003), and agricultural (Jämtgård et al. 

2008) ecosystems have demonstrated plant capacity to “short-circuit” the N 

mineralization loop by directly absorbing soil organic N, particularly free amino acids 

(FAA). In natural environments, plants likely utilize on other forms of organic N, e.g. 

nucleic acids (Clinton et al. 1995), but most studies of plant organic N uptake have 

focused on proteinaceous compounds given the relatively high abundance of amino acid 

N in soil (Senwo and Tabatabai 1998). Together these observations suggest that the N 

economy of plants can no longer be modeled solely on the availability of mineral N. This 

recognition has lead to a revision of the traditional view of terrestrial N cycling whereby 

the key process regulating bioavailable N has shifted from N mineralization to 

exoenzyme-mediated depolymerization of polymeric soil organic N (Chapin et al. 2002). 
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While ecologists are now beginning to appreciate the role of organic N in the N 

economies of plants in forested ecosystems, there are several caveats to the approaches 

used by many researchers studying the contribution of organic N to plant nutrition. First, 

much of the aforementioned work examining plant absorption of FAA has been 

conducted on either excised roots or plants grown in hydroponics. Even investigations of 

plant FAA uptake in soil are often highly controlled pot experiments where ecologically 

realistic plant-microbial interactions for N are unlikely. Second, simple organic N 

compounds, e.g. amino acids, are a source of labile carbon (C) as well as N. Therefore, 

studies of plant uptake of organic N should also consider the C status of the soil 

microbiota since differences in competition for various organic N sources may be driven 

as much by C limitation as by microbial demand for N. Third, plant and microbial use of 

N can be mutualistic as well as competitive, particularly in ecosystems where a 

significant portion of the microbial biomass (foremost mycorrhizal fungi) is actually part 

of the plant complex and thus not in direct competition with plants for N. Additionally, 

despite strong evidence that mycorrhizal fungi vary widely in their capacity to mobilize 

and assimilate nutrients for their host, linkages between plant N uptake and mycorrhizal 

type have never been explicitly tested across a broad spectrum of forest ecosystems. Such

oversights can detract from our understanding of plant nutrition as well as the underlying 

processes associated with soil N turnover.

The overall goal of my research was to address the relative importance of 

inorganic vs. organic N cycling across a broad latitudinal gradient of forest ecosystems 

that differ with respect to climate, overstory taxonomy (gymnosperm- vs. angiosperm-
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dominated forests), soil organic matter quality, and dominant mycorrhizal association: 

ectomycorrhizae (EM) vs. arbuscular mycorrhizae (AM). I initiated this study in 1998 to 

address four broad objectives. My first objective was to ascertain, in situ, whether plants 

within each forest type could directly absorb soil FAA. Secondly, I sought to estimate, at 

the stand level, the relative contribution of inorganic and organic N sources to the N 

economy of plants within each community. Thirdly, I assessed the compartmentalization 

of inorganic and organic N within soil pools and evaluated the partitioning of these N 

sources between plants and microorganisms. My final objective was to determine how 

differences in soil organic matter quality, particularly the availability of labile substrate 

influences the turnover dynamics of FAA along a latitudinal gradient of forest soils. 

These research objectives are aimed at testing hypotheses that not only develop a 

predictive framework for plant N usage, but that directly contribute to broader patterns 

for N cycling in terrestrial forest ecosystems. In accordance with the new paradigm in 

terrestrial N cycling, I hypothesized that direct plant uptake of amino acid N across this 

range of forest ecosystems is linked directly to soil organic matter turnover and inversely 

correlated with rates of inorganic N mineralization. In N-limited boreal forests where low

soil temperatures retard rates of N mineralization, I predicted that amino acids would 

assume a greater role in supplying the annual N requirements of vascular plants than in 

temperate stands where N mineralization rates are typically higher. Additionally, since 

EM-dominated soil communities generally exhibit more extensive hyphal networks and a

greater capacity to degrade complex organic substrates than AM communities (Smith and

Read 1997), I also hypothesized that mycorrhizal association mediates, to some degree, 
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the turnover of inorganic N vs. organic N and consequently the ratio of inorganic to 

organic N uptake by plants. Across plant taxa, I expected gymnosperms to exhibit a 

greater reliance on organic N than angiosperms due to the higher rates of fine root 

turnover, higher substrate quality, and thus higher rates of N mineralization typically 

associated with angiosperms. However, within a taxon I predicted that the relative 

importance of organic vs. inorganic N to plant nutrition should follow mycorrhizal 

differences (higher uptake of organic N in EM vs. AM). In response to differences in C 

availability, I anticipated turnover rates for FAA, would be lowest among temperate 

deciduous forests and highest among temperate and boreal evergreen forests where plant 

litter chemistry and reduced soil temperatures are believed to act as a constraint to C 

cycling. 
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CYCLING DYNAMICS OF NH4
+ AND AMINO ACID NITROGEN IN SOILS OF

A DECIDUOUS BOREAL FOREST ECOSYSTEM1

ABSTRACT

Conventional studies of nitrogen cycling in forest ecosystems have focused on 

inorganic N uptake as the primary source of N for plant metabolism. More recently, 

however, alternative sources of N for plant nutrition, such as free amino acids, have 

gained attention particularly in nutrient-limited systems. Using a multiple stable isotope 

(13C and 15N) design, that allowed us to assess simultaneously root uptake of ammonium 

(NH4
+) and glycine, we evaluated the contribution of organic N to the nitrogen economy 

of an interior Alaskan floodplain balsam poplar stand. Our design included multiple 

sampling periods extending from 45 minutes to 14 days, which permitted us to study the 

cycling of our C and N isotopes within root and soil pools over time.

 Microbial biomass N was the largest sink of both 15N-ammonium and glycine. 

Percent recovery of 15N for this pool was an order of magnitude larger than fine root 15N 

uptake for most sampling periods. Although recovery of 15N in fine root biomass was 

small, amino acid N and NH4
+ were assimilated at approximately the same rate 

irrespective of sampling period, and total recovery was still increasing two weeks after

1 McFarland JW, Ruess RW, Kielland K, Doyle AP. 2002. Cycling dynamics of NH4
+ and

amino acid nitrogen in soils of a deciduous boreal forest ecosystem. Ecosystems 5:775–

788.
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application. Recovery of 15N in bulk soil samples did not vary significantly over time for 

either treatment. However, bulk soil 13C declined steadily during the experiment, 

accounting for less than 30% recovery of added label after 14 days. We suspect that the 

majority of 13C lost from our soils was respired. Soil microorganisms strongly out 

competed plants in the short term for both NH4
+ and amino acid N. However, amino acid 

N appears to cycle through soil N pools at approximately the same rate as inorganic N 

forms. The similarity in uptake patterns for inorganic and organic N suggests that these 

stands are meeting part of their N requirements directly from amino acids

INTRODUCTION

Organic nitrogen (N) is the predominant form of N found in arctic and subarctic 

soils (Walker 1989; Kielland 1995), existing in a variety of forms from amino acids to 

heterocyclic N compounds such as purines and pyrimidines (Schulten and Schnitzer 

1998). Although fluxes of inorganic N in northern ecosystems have been studied in detail

(Giblin and others 1991; Van Cleve and others 1983), relatively little is understood about 

the role of organic N sources in the N economies of plants in these systems. Moreover, 

despite the fact that a broad range of plant species have demonstrated the capacity to use 

organic sources of N (Stribley and Read 1980; Finlay and others 1992; Chapin and others

1993; Kielland 1994; 1997; Schimel and Chapin 1996; Raab and others 1999; Näsholm 

and others 1998; 2000), most regional and global models predicting ecosystem response 

to changing climate or altered land-use patterns focus on inorganic N cycling in 
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calculations of net ecosystem carbon flux (Running and others 1993; Melillo and others 

1993).

In particular, studies in arctic and boreal ecosystems have shown that annual 

nitrogen mineralization is insufficient to account for the quantity of N annually absorbed 

by vegetation (Shaver and others 1991; Ruess and others 1996). This would suggest an 

incomplete understanding of the relationship between ecosystem production and soil N 

dynamics. Plants in arctic and boreal ecosystems are potentially sequestering organic N 

to supplement their nitrogen requirements and thus, this represents a major consideration 

for elucidating the function of N in controlling ecosystem production. 

Research over the past decade has begun to assess the relative importance of 

organic N to the nutritional requirements of plants in cold environments with low soil 

organic matter quality (Finlay and others 1992; Chapin and others 1993; Kielland 1994; 

1997; Michelsen and others 1996; 1998; Schimel and Chapin 1996). Low soil 

temperatures reduce the rate of organic matter decomposition thereby reducing rates of 

net N mineralization (Yin 1992). Still, the overall availability of N may actually be 

enhanced relative to the products of mineralization due to elevated amino acid production

associated with increased proteolytic activity in soils with a higher proportion of organic 

matter (Chapin and others 1988; Raab and others 1999). Concentrations and turnover of 

free amino acids in tundra and taiga environments can be up to an order of magnitude 

greater than that for ammonium (Kielland 1995; Jones and Kielland 2002). Moreover, the

energetics associated with the assimilation of amino acid versus inorganic N forms 

suggest that the former should be a preferable N source for plants. This argument could 
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also be extended to microorganisms, both free-living and symbiotic, since amino acids 

should provide a high quality source of metabolic carbon as well as nitrogen. Outside of 

laboratory manipulations (Jones 1999), however, there is little direct empirical evidence 

to support this statement.

Competition for N between plants and microorganisms exists to varying degrees 

in all terrestrial ecosystems and to discuss plant N uptake in isolation of microorganisms 

essentially excludes a major factor controlling N availability to plants. For instance, 

several pulse-chase experiments which have quantified recovery rates of added N label in

vegetation and soil pools have found that microbes are a stronger sink for this N source 

than plants (Jackson and others 1989; Zak and others 1990; Schimel and Chapin 1996; 

but see Lipson and Monson 1998). Yet other observations concerning the long-term fate 

of inorganic 15N applied to various grassland and forest ecosystems are less conclusive 

(Hart and others 1993). In some instances, plants and microbes demonstrated a similar 

capacity for sequestering the added label, while in others plants appeared to dominate 

over the microbial pool in accumulating 15N. Understanding the factors controlling 

nitrogen availability to plants therefore requires a more comprehensive approach in 

elucidating pathways for both inorganic and organic N cycling. In intact forest 

ecosystems, where multiple sinks and processes interact to transform and cycle N, it is 

difficult to establish patterns for these processes by studying only one form of the 

resource, i.e. NH4
+ or NO3

- within an isolated pool. There is a need for more integrated 

studies that focus on inter-pool transfers of other N forms, particularly in ecosystems 

where plants may have the capacity to utilize soluble forms of organic nitrogen. 
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Here we examine, concurrently, the cycling dynamics of NH4
+ and amino acid N 

in soils of a deciduous boreal forest ecosystem dominated by ectomycorrhizal trees and 

shrubs. We predict that in nutrient limited systems, such as taiga forests, where low soil 

temperatures can slow mineralization rates, organic N sources will assume a greater role 

than inorganic N sources (e.g., NH4
+) in supplying the annual N requirements of vascular 

plants. Our study had two objectives. The first was to provide in situ experimental 

evidence that vegetation in balsam poplar communities along floodplains in interior 

Alaska can directly absorb amino acids. Secondly, we evaluated the partitioning of 

inorganic and organic N between plants and soil microorganisms. We addressed these 

objectives using a multiple stable isotope design that allowed us to assess simultaneously 

root uptake of NH4
+ and glycine. 

MATERIALS AND METHODS

Study sites 

Our study area was the Bonanza Creek Long Term Ecological Research (LTER) 

site, 20 km SW of Fairbanks, Alaska (6451’N, 14743’W, elevation ~120 m). Glacially 

fed, the Tanana River winds along multiple channels through this landscape, creating a 

floodplain of alkaline soils supporting a mosaic of plant communities representing all 

stages of the primary-successional sequence. The successional development of these 

communities begins with sand bar colonization by horsetails (Equisetum spp.) and willow

(Salix spp.) and culminates in a mixture of slow growing black spruce forest (Picea 

mariana) and muskeg on older terraces (Viereck and others 1993). 
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In floodplain forests, balsam poplar (Populus balsamifera) is the dominant 

deciduous community type, transitional between thin-leaf alder thickets (Alnus tenuifolia)

and white spruce (Picea glauca) stages of the chronosequence. During the alder stage, 

rapid N2 fixation takes place concurrently with mineralization and nitrification. Most of 

the soil N for the entire chronosequence accumulates during this stage of development 

(Van Cleve and others 1993a). However as the alder community progresses to a closed 

canopy balsam poplar stand, both N2 fixation and net nitrification decline (Van Cleve and

others 1993b; Uliassi and Ruess 2002).

A combination of field and lab evidence suggests there are two mechanisms 

driving N limitation in balsam poplar stands. First, secondary chemicals (tannins) leached

from balsam poplar litter may suppress N2-fixation and gross N mineralization rates 

(Schimel and others 1996). Second, microbial N immobilization may be enhanced by the 

release of labile C compounds. Low molecular weight phenolics from balsam poplar litter

increased soil respiration in incubation studies, indicating that they are used as microbial 

substrates (Sugai and Schimel 1993; Schimel and others 1996). The overall effect of 

these two processes is a reduction in N availability, as a balsam poplar canopy becomes 

dominant.

Our experiment was conducted in three mature balsam poplar stands distributed 

along a 5 km stretch of the Tanana River (Table 1.1). Vegetation structure for these sites 

includes a closed canopy of balsam poplar with a dense thin-leaf alder understory. Basal 

area for stems > 5 cm averaged 36.7 m2ha-1 and 1.8 m2ha-1 for balsam poplar and alder, 

respectively, with densities for poplar ranging from 567 to 922 stems ha-1 among the three
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stands. Total litterfall averaged 279  13 gm-2yr-1 across the three stands during the 

1998-99 growing season. Rose (Rosa acicularis) and high-bush cranberry (Viburnum 

edule) are prominent within the shrub layer, filling understory canopy gaps previously 

occupied by decadent alder shrubs. 

Average daily soil temperatures measured at 7 cm depth during the 1998 growing 

season ranged from a minimum of 3.8C in May to a maximum of 11.4C in late July. 

The soil, classified as typic cryofluvent, consists of an alluvium of fine to medium sand 

grains overlain by a well developed organic profile extending to depths > 8 cm in some 

places. Soil C:N ratios average 19.0 for the organic layer and 16.0 for the mineral soil 

(McFarland unpublished). Soil pH was not measured in these stands; however, chemical 

analysis of mineral horizons in similar stands indicates that they are calcareous and 

therefore alkaline (Marion and others 1993). Values for the forest floor are actually 

mildly acidic ranging between 5.6 and 6.4 depending on depth (Van Cleve and others 

1983).

Field sampling

Our tracer experiment was conducted during August 1998 in previously 

established 30 x 30 m plots, one plot per stand. Within each plot, there were three 

subplots, each of which contained three injection grids, one for each of three treatments. 

The entire design was replicated across three stands. Injection grids measured 81 x 15 cm

and consisted of 6 identical templates with 37 holes each (222 total/grid). Each grid was 

injected with one of 3 treatment solutions in the upper 10 cm of soil. Treatment solutions 
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were (1) 15NH4
+ plus U-[13C2]-glycine (ammonium treatment), (2) NH4

+ plus U-[13C2]

[15N]-glycine (glycine treatment), or (3) distilled water (control). 

Using doubly-labeled glycine in the second treatment allowed us to evaluate root 

uptake of intact amino acids by comparing the ratio of 15N and 13C found within fine root 

tissue to the 2:1 ratio of 13C and 15N found in the tracer (Näsholm and others 1998). In 

theory, a ratio of less than 2:1 indicates that at least a portion of the 15N sequestered by 

fine roots receiving this treatment was mineralized from glycine prior to assimilation . 

Unlabeled ammonium was added to the second treatment to mirror any fertilization effect

brought about by the simultaneous addition of labeled ammonium and glycine in the first 

treatment. Injection volume was 2 ml, which applied approximately 0.39 g 13Cm-2and 

0.22 g 15Nm-2 for both labeled solutions. Total N additions for each treatment averaged 

10.51 g Ng-1dry soil (5.255 g as NH4
+-N and 5.255 g as glycine-N). Each 2 ml 

aliquot was delivered by inserting the needle to 10cm depth and emptying the repeating 

pipette as the needle was withdrawn. 

Coring grids consisted of 6 holes large enough to allow a soil corer with an inside 

diameter of 5.5 cm to pass through unobstructed (Figure 1.1). The center of each coring 

hole matched exactly the center of its respective injection template. Theoretically this 

permitted us to remove a soil core 12 cm in depth with a known amount of added label 

(600 g 15N and 1040 g 13C per core—see calculations below). Both injection grids and 

coring grids were constructed of 0.32 cm lexan sheets which were flexible enough to 

mould to the surface of the forest floor. Grids were held in position by four steel pins 
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buried to a depth of 20 cm, which made it easy to properly align the coring grids over the 

respective injection grids.

Within each stand, subplots were separated by a minimum of five meters. 

Injecting a complete subplot took approximately thirty minutes, after which we began 

harvesting the first in a series of cores for each treatment. Cores within each grid were 

harvested to 12 cm at 45 min, 2, 12, and 24 h, and 7 and 14 d; initial processing was 

conducted on site in a tent laboratory. Immediately following sampling, each core was 

split vertically into 2 equal halves. One half was used for sorting and freezing roots for 

13C and 15N analysis. The other half was used for 13C and 15N analysis of (1) total soil C 

and N, (2) extractable dissolved inorganic N (DIN) and dissolved organic N (DON), and 

(3) microbial N. No rocks were found in any of the cores collected, and thus soils were 

hand-mixed to minimize any disturbance associated with sieving. After initial processing,

all root and soil samples were frozen with liquid N2 in the field and stored on ice for 

transport to our laboratory facilities. 

Laboratory analyses

Root samples were thawed and floated briefly in distilled water to remove all 

remaining organic matter. We separated roots by size. Roots > 1 mm diameter were 

classified as coarse, while those ≤ 1 mm were classified as fine. Fine roots were freeze-

dried and ground using a Wiley mill (40 mesh), and subsequently powdered using a ball 

mill to ensure complete homogenization within each sample. Soil moisture content was 

determined by drying subsamples at 70C for 36 h. These subsamples were ground using 
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a ball mill. Both roots and soils were then analyzed for C, N, 13C, and 15N using a Europa 

Scientific continuous flow mass spectrometer (PDZ Europa, Inc.). 

Samples for determination of DIN were extracted in the field with 0.5M K2SO4 

containing 5 ppm phenyl mercuric acetate for 1 h, vacuum filtered through Whatman #1 

filter paper, and stored frozen until analysis. After thawing, these samples were analyzed 

for NH4
+ and NO3

- by flow injection colorimetry using a Lachat autoanalyzer (Keeney 

and Nelson 1982) and prepared for 15N analysis by a diffusion procedure. The procedure 

entails pipetting 20 ml of the sample into a 140 ml plastic specimen container. A 4 mm 

disk cut from Whatman GF/D glass fiber filters was suspended on a stainless steel wire 

above the solution in the plastic container. The disk was acidified with 10-15 l of 1.0M 

H2SO4. Five acid-washed glass beads were added to the container along with 0.2 g of 

Devarda’s alloy to reduce and collect nitrate-15N. To bring the sample N concentration up

to a detectable range, each container was spiked with a 50 l of a 100 ppm (14NH4)2SO4 

solution (0.366% 15N). Approximately 0.2 g of MgO was added to each container just 

prior to sealing, which was then placed on an orbital shaker table at 85 rev min-1 for 5 d. 

Standards with a known atom % 15N were analyzed along with the samples to evaluate 

diffusion efficiency.

Microbial biomass N (MBN) was determined using a fumigation-extraction 

technique (Brookes and others 1985). Soils were fumigated in the field with ethanol-free 

chloroform for 24 h in a modified pressure cooker, transported to our laboratory under 

vacuum, and extracted in 250 ml glass beakers with 0.5M K2SO4. Fumigated and DIN 

extracts were digested using a modified micro-Kjeldahl procedure (Bremner and 
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Mulvaney 1982) and analyzed colorimetrically with a Technicon continuous flow 

autoanalyzer (Whitledge and others 1981). DON was calculated as the difference 

between digested and undigested extracts. MBN was calculated as the difference between

fumigated N and DON. No correction factor (Kec) was used in these calculations. 

Fumigated and dissolved organic N extracts were diffused in a Mason jar unit 

described by Khan and others (1997). Approximately 10 ml of the Kjeldahl digest was 

pipetted into the Mason jar unit. Two quartz filter disks (Whatman QM-A) were placed 

on stainless steel holders attached to the lid off each Mason jar and acidified with 10 l of

0.5M H2SO4. Again five acid-washed glass beads were added to each jar along with 10 

ml of 10M NaOH. The jar was sealed and heated to 45C overnight. 

Calculations

All isotope values for DIN, DON, MBN, fine root N and C, and soil N and C are 

reported as percent (%) recovery of added label with the exception of the fine root C pool

which is also reported in delta notation. We used delta notation in this instance to 

observe, with greater resolution, the subtle enrichment of this pool against background. 

13C was calculated using the following formula:

13C = 1000 * (sample % 13C - PDB % 13C)/PDB % 13C 

The percent of added label recovered in a particular pool was determined by multiplying 

the 13C or 15N atom percent enrichment (APE) of the pool by the pool size (g N or C per 

gram dry soil), and dividing this value by the amount of label added to the core. APE was

determined by subtracting the atom % 13C or 15N of control cores from the atom % 13C or 
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15N of treated cores. Control values were averaged within a site prior to use in estimating 

enrichment. For each core the area injected with label was over twice as large as the area 

extracted for analysis. Therefore, we used the surface area ratio of the injection template 

to the coring template (Figure 1.1), to estimate the fraction of label (600 g 15N and 1040 

g 13C) that was injected into each treatment core.

Statistical analyses

All C and N pools were analyzed using ANOVA with subplots nested within 

stands. Response variables were either percent of added label (15N or 13C) recovered or 

pool size (g N or C). Factor effects tested in these analyses included stand, subplot 

(within stand), treatment and sampling period. Multiple comparisons for relevant factor 

effects were conducted using Tukey’s HSD tests. We assumed subplot, treatment, and 

sampling period to be fixed and subplot to be random. All inferences regarding pool 

dynamics are made at the stand level. 

Due to missing values from two of our stands we were faced with an unbalanced 

design in many of our analyses. Therefore we opted to use a mixed model analysis 

(PROC MIXED, SAS Systems version 6.12, 1996) to evaluate variance within all our 

extractable N pool data sets. We included a repeated measures component in our design 

to model variation within subplots across all sampling periods and chose autoregressive 

order one as our covariance structure within subjects. 

For root data from the 13C15N-glycine treatment we regressed excess 13C against 

excess 15N for each time period (Näsholm and others 1998) and compared the slopes for 
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each regression line to a slope of 2 (injection ratio of C:N for glycine) using a two sided 

t-test for comparing two slopes. 

RESULTS

Pool size and background 13C AND 15N 

Nitrogen pool size varied dramatically between the various soil components. 

MBN (mean  S.E.) averaged 155.7  7.9 g Ng-1 dry soil across all treatments and 

time periods. This represented  3.0% of total soil N and was substantially higher than 

soluble organic and inorganic-N pools. Although treated cores typically had a larger pool 

size (F2,55 = 3.74, P = 0.03), there was no significant shift in microbial N over time within

any treatment. No significant treatment or time effects were observed in analyses of the 

DIN or DON pools, which averaged 9.3  1.3 and 65.6  3.7 g Ng-1 dry soil 

respectively, across all treatments and sampling periods. Thus, the N additions associated

with each treatment enhanced the DIN pool by 56% and the DON pool by 8% on 

average. Total root biomass averaged 27.4 mgg-1 dry soil for all sites. Fine roots made 

up less than 15% of this mass and at 1-2% nitrogen, accounted for an average of 47 g 

Ng-1 dry soil. 

Altogether, 15N values for our control samples fell within reasonable ranges for 

ambient  values for all pools measured. Previous values reported from similar 

floodplain stands averaged –2.2‰ and –4.1‰ respectively for bulk soils and roots 

(Kielland unpublished data). Soil  15N values for our control cores (0-12 cm) averaged 

1.3  0.4‰. Fine root values were slightly depleted at –0.7  1.1‰ relative to the bulk 

soil pool. 13C abundance in the fine root pool averaged -28.14‰ ( 0.07), which is also 
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consistent with previous measurements taken for floodplain vegetation (Kielland 

unpublished data). Variation in 13C and 15N abundance of each pool was small for control 

cores across time, while  15N values for treated cores ranged 1-2 orders of magnitude 

higher than natural abundance for most pools and time periods. This suggests that our 

ability to detect treatment effects in each pool over time was strong despite any 

fractionation associated with inter-pool transfer of N.

Recovery of 15N and 13C in soil

Recoveries of 15N from labeled ammonium and glycine are summarized for each 

pool in Table 1.2. Total recovery of 15N was similar across sites (F2,88 = 2.13, P = 0.12) 

for bulk soil samples (soil from which only roots are removed). Mean recovery for bulk 

soil was not significantly different over time for either treatment. However, the total 

amount of 15N recovered from the NH4
+-amended (69.7  3.0 %) cores was on average 

9% higher across all time periods than soil from cores which received glycine (60.2  

3.1%; F1,88 = 4.86, P = 0.03). More importantly, however, the high rate of recovery for 

15N in the bulk soil pool after 14 d indicates that most of the labeled N applied to our soils

was retained over time. In contrast to 15N, recovery of 13C in bulk soil samples declined 

steadily over time (Figure 1.2), measuring less than 30% after 14 d. Initial recovery 

values for samples harvested at 45 min ranged between 45 and 50% of added label 

depending on the treatment combination. The rapid loss of 13C in the initial hours of the 

experiment suggests that glycine represents a good energy source for soil microorganisms

(although we can't differentiate root respiration from microbial respiration). Given the 
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high N retention and rapid carbon loss, it would appear that microbes are assimilating 

glycine to utilize the carbon skeleton for metabolism rather than for biosynthesis (See 

Discussion). 

Of the various components of bulk soil N, MBN represented the largest sink for 

15N, regardless of treatment. It is clear that glycine represents a relatively labile N source 

for microbial assimilation as recovery rates for glycine 15N were of the same magnitude 

as those for 15NH4
+. Enrichment within this pool was very rapid for both treatments, 

averaging 46% recovery for ammonium and 31% recovery for glycine, 45 min after 

injection. Percent recovery of 15N for this pool ranged from 10 to 64% depending on the 

treatment and sampling period. MBN in both 15N treatments varied more or less in 

concert over time as there was no significant time x treatment interaction (F5,34 = 1.00, P 

= 0.43); however, recovery rates appeared to be higher in the ammonium treatment than 

for glycine at some time periods (Figure 1.3). After 24 h, microbial immobilization of 

added 15N was almost 70% higher in the ammonium treatment than it was for glycine. We

observed no differences between the labeled treatments in the microbial pool after 

24 h.

The amount of label recovered as DIN was low. Initial recoveries of DIN-15N 

varied from 9% for glycine amended cores to 21% for those receiving ammonium. 

Microbial immobilization was rapid for the ammonium treatment, as most of the tracer 

disappeared from the DIN pool within 24 h after injection. 15N-enrichment within the 

DIN pool peaked again at 7 d for ammonium cores before falling below 5% recovery at 

14 d. Across all sampling periods, less than 10% of the label was recovered as DIN in 
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soils receiving glycine, indicating that this N form was either retained within the 

microbial pool or remained in the soil as organic N (DON). Still, recovery of 15N-DIN 

administered as glycine was highest in the first sampling period, suggesting that at least 

part of this substrate was rapidly mineralized and released as inorganic nitrogen. Within 

24 h the DIN pool accounted for less than 2% of the glycine label. Recovery peaked 

again at seven days, but not to the degree that we observed in the ammonium treatment. 

No significant treatment effect was detected in the DIN pool on the final sampling date. 

Though the distribution of label over time in the DON pool did not vary 

significantly with treatment application (F5,58 = 0.56, P = 0.73), we did observe distinct 

patterns of DON cycling when compared with the DIN and microbial pools. Label 

recovered as DON averaged 16% for the NH4
+ treatment and 25% for the glycine 

treatment at the first sampling period. These values declined slowly for both treatments, 

until the fourth sampling period (24 h) after which % recovery of 15N increased for both 

N sources. This re-enrichment of the DON pool after 24 h corresponds to a concomitant 

increase in microbial biomass 15N (Figure 1.3) and a decrease in extractable inorganic 

15N. 

Recovery of both 15N tracers in the microbial pool peaked at 2 h and again at 24 h 

even though percent recovery of 15N in bulk soil showed no significant change over time 

(F5,88 = 1.33, P = 0.26) for either ammonium or glycine amended soils. If labeled N were 

following a path of immobilization, mineralization and excretion as excess NH4
+ or NO3

-, 

we would expect to see a steady increase in microbial 15N corresponding to a steady 

decrease in DIN 15N and vice versa as N was released from the microbial pool. Percent 
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recovery of 15N in the microbial pool did not increase steadily over time, but oscillated 

significantly during the first four sampling periods, while recovery of 15N as DON 

increased for both treatments between 12 and 24 h. However, after two weeks, the 

amount of label recovered as DON had fallen to 6-7%, similar to the values observed for 

DIN. These observations suggest: 1) that some fraction of the microbial population might

be releasing extracellular enzymes (into the DON pool) for degradation of more complex 

organic substrates (see Discussion), and 2) that most of the 15N remaining in the soil after 

two weeks must be locked up in a recalcitrant (non-extractable) organic N form.

Root nitrogen  uptake 

Amino acid N and NH4
+ were taken up by fine root biomass at approximately the 

same rate (Figure 1.4); overall there was no treatment effect on percent recovery of 15N in

fine roots (F1,88 = 3.11, P = 0.08). Although total recovery of 15N in fine root biomass was

small, averaging 1.39 and 1.64% for glycine and NH4
+ respectively at 14 d, total recovery 

was still increasing after two weeks in both treatments. In contrast, fine root carbon 

showed a 2 ‰ enrichment of 13C over the first 24 h, but no significant change over the 

next 13 days (Figure 1.5). Enrichment of the fine root carbon pool stopped somewhere 

between 12 and 24 h, suggesting that any glycine 15N sequestered by fine roots after 12 h 

was not assimilated as an intact amino acid.

To evaluate this idea, we regressed molar excess 13C against molar excess 15N in 

fine roots for each sampling period (Näsholm and others 1998). This allowed us to 

determine how fine root 13C and 15N from each sampling period compared to the 2:1 C:N 
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injection ratio that was administered to soils receiving the doubly-labeled glycine 

treatment (Figure 1.6). Our data demonstrate an enrichment of 13C in excess of the 2:1 

ratio within fine root biomass for the first two hours of the experiment, after which, fine 

root 13C enrichment began to decline, indicating an excess of 15N relative to 13C in roots 

from subsequent time periods. Slopes for all time periods except 12 h are significantly 

different from a 2:1 ratio.

DISCUSSION

To date much of the research in these balsam poplar stands concerning soil N has 

focused on the conventional pathways of nutrient acquisition by plants, namely 

mineralization and nitrification (Klingensmith and Van Cleve 1993; Van Cleve and 

others 1993b). Yet we know that these traditional pathways cannot account for all the 

nitrogen absorbed by plants in floodplain balsam poplar stands. Using the sum of 

mineralization, fixation, and precipitation inputs of N to estimate apparent N uptake in 

balsam poplar, Ruess and others (1996) determined that apparent plant uptake values 

would have to be increased three-fold to account for fine root production in these stands. 

Herein we discuss the hypothesis that part of the unexplained nitrogen in balsam poplar 

biomass can be explained by direct uptake of organic N. 

In our experiment, microbial biomass accounted for the largest biologically active

fraction of labeled N. In the first 24 h of sampling, we recovered up to 65% of the 15N we 

injected as ammonium within the microbial N pool. Perhaps of equal interest though, was

that over 50% of the 15N administered as glycine was also recovered within this pool over
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the same time period. This is not surprising in light recent work examining amino acid N 

turnover rates in soils from taiga ecosystems (Jones and Kielland 2002). In a study of 10 

contrasting soil types, Jones (1999) used a cocktail of 15 different 14C-labeled amino 

acids in an incubation experiment designed to assess the effects of soil type, depth, and 

temperature on the decomposition rates of these N sources by soil microbial populations. 

Their results suggest that amino acid uptake and assimilation in soils is a very rapid 

process, with half-lives ranging from 1-12 h depending on the soil type and temperature. 

Other 15N tracer studies have reported rates and magnitudes of microbial N 

immobilization similar to our own (Jackson and others 1989; Schimel and Chapin 1996; 

Zogg and others 2000). Zak and others (1990) found that microbial immobilization of N 

in a northern hardwood forest in early spring was an order of magnitude higher than plant

uptake. They concluded that microbial N retention could actually reduce the potential for 

N losses from this system at a time when N export is at a maximum prior to overstory 

development.

The fluctuations of microbial N over the initial 24 h of the experiment could 

reflect microbial metabolism of absorbed amino acids. In the case of glycine, for 

example, microbes may be assimilating the amino acid, stripping nitrogen from the 

carbon skeleton and excreting excess nitrogen (Barraclough 1997). Some of the carbon 

could be used for microbial biosynthesis. However, during a companion experiment 

conducted in floodplain white spruce stands we measured a rapid pulse of 13CO2 prior to 

extracting cores treated with labeled glycine (McFarland unpublished). Most likely, a 

significant amount of the assimilated glycine in our balsam poplar soils is used as an 
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energy source. The fact that we observed a decrease in the recovery of 13C within the bulk

soil pool supports this hypothesis. Across all stands, %13C recovered in the bulk soil pool 

dropped from almost 50% to just over 20% two weeks after injection. Though our 

evidence is largely circumstantial, we suspect a large portion of the missing 13C was 

respired.

The idea that microbes are mining DON for carbon could explain the 15N results 

that we see in the glycine treatment. However since microbial 15N values vary more or 

less conjointly over time for both the ammonium and glycine treatments, it suggests that 

microbes are also utilizing N and could be both nitrogen- and carbon-limited. If microbial

growth were limited only by nitrogen this would help explain the rapid immobilization of

N observed in both treatments within the first two sampling periods. However, if 

organisms were also energy limited, the addition of N could stimulate microbial activity 

to a point where labile soil C is temporarily exhausted. Some of the immobilized 15N 

might be used in enzyme synthesis and then released as extracellular enzymes to 

decompose more recalcitrant organic substrates for carbon acquisition. This would 

account for the temporary decline in microbial biomass 15N recovery for both treatments 

after 12 h, since consistent recovery of 15N in the bulk soil pool at this sampling period 

confirms that the label is not leaving the soil matrix. The idea that our N additions 

stimulated microbial growth to the point of C limitation also suggests that our tracer 

additions were of sufficient quantity to induce a fertilization effect. We did witness 

significantly higher values for MBN in labeled cores versus control cores; however, when

calculated on a mass basis our N additions for each treatment represented no more than 
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8% of the MBN pool. If our N additions resulted in a significant fertilization effect on 

soil microorganisms, we would anticipate some fluctuation of MBN during the initial 

stages of the experiment as new generations of microbes adjusted to the altered C:N 

balance in the soil. Since we observed no significant change in MBN over time for any 

treatment, we believe our 15N results reflect more a natural cycling of nitrogen into and 

out of the pool than a fluctuation of pool size brought about by fertilization.

Regardless, we can say with certainty that the flux of glycine and ammonium-

derived N into and out of this pool is rapid. Yet, the ultimate fate of the label once it is 

released from the microbial pool is still unclear. Two observations indicate that most of 

the label lost from the microbial and soluble N pools is eventually incorporated into a 

more recalcitrant pool of soil N (Perakis and Hedin 2001). First, all three of our 

extractable N pools show a decline in 15N at the end of our sampling regime. Second, 

analysis of the 15N content of the bulk soil reveals no significant change over time for 

either treatment. Finally, others working in boreal forest ecosystems have found a similar 

relationship between the 15N content of soil biota and the amount of label retained within 

the soil’s organic profile (e.g., Näsholm and others 1998). 

Clearly, not all of the label was retained within the soil organic complex. A 

portion was taken up by roots, both directly and following release from the microbial 

pool. Overall plant 15N uptake during the course of the experiment was low (< 2% 

recovery) in comparison to microorganisms (12-64% recovery), but it was the only pool 

that was increasing in enrichment after 14 d. Moreover short-term uptake patterns show 

that plants can compete to a limited extent for amino acid N directly. Our results suggest 
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that 75% of the 13C acquired by fine roots occurred within the first 24 h. In our regression

analysis relating excess 13C to excess 15N, slopes from the first and second sampling 

periods are greater than two, marking an enrichment of 13C to 15N which exceeds the 

injection ratio. Slopes from subsequent sampling periods reflect a decrease in excess 13C 

concomitant with a rise in excess 15N. It seems that in the initial hours of the experiment 

fine roots competed directly for amino acid N, taking up the doubly labeled amino acid 

intact. After 12 h though, given the rapidity with which 15N was immobilized within the 

MBN pool, it is possible that our additions of glycine were exhausted. Since fine root 15N 

continued to increase throughout subsequent sampling periods, plants must have begun 

assimilating N released from microbial or mycorrhizal mineralization of glycine 

Our values for 13C and 15N content of roots are based on analysis of the solid 

fraction of fine root biomass (< 1 mm diameter) only. We did not measure the  13C or 

15N of materials that were transported out of fine roots to the rest of the plant. 

Consequently, plants may have absorbed more of the applied N tracers than is directly 

evident from our data. It is reasonable to assume that plants are translocating part of the 

nitrogen taken up by fine roots to aboveground tissues. If 15N were translocated and 13C 

remained in the root as part of a structural or metabolic C pool (i.e., ectomycorrhizae 

within the root), this would explain why we observed an excess enrichment of 13C in the 

fine root carbon pool for the first two sampling periods. It would also indicate that our 

original analyses underestimated plant N uptake. To test this idea, we estimated what 

cumulative uptake could have been had plant N uptake been relatively constant for the 

duration of the experiment regardless of N form, and translocation of N to other parts of 
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the plant were taking place. Multiplying an average uptake rate calculated from the first 

two sampling periods by 336 h yields total plant uptake for the entire experiment. For 

both treatments, plant recovery of 15N increases from just under 2% to just over 29%. 

These estimations are purely speculative; however, they do suggest an upper limit to the 

quantity of 15N that could have been transported aboveground.

Several processes could contribute to the low recovery of 15N in fine root tissue 

during the course of our experiment. Virtually all of the balsam poplar roots fine roots in 

each of our stands are colonized by some type of ectoycorrhizal fungus (Table 1.1; 

Lansing unpublished data). These fungi have demonstrated some capacity to hydrolyze 

proteins to sequester N (Abuzinadah and others 1986; Abuzinadah and Read 1986); 

however, proteolytic degradation is strongly influenced by soil pH. The optimum pH 

range for proteolytic activity for many of these fungi is between 3.0 and 4.5 (Read 1991, 

but see Dahne and others 1995). In an experiment where soil alkalinity was augmented 

through liming, researchers found that uptake of N by mycorrhizal plants was reduced 

with increasing soil pH regardless of whether the N source was lyophilized fungal tissue 

or ammonium (Andersson and others 1997). Due to the alkalinity of the soils along the 

Tanana floodplain (Van Cleve and others 1993a), it is possible that mycorrhizal fungi in 

these forests could be confronted with a suboptimal environment for proteolytic 

degradation and subsequent immobilization of organic N. In these N-limited soils, 

saprotrophic fungi and other soil microorganisms might be the superior competitors for 

nutrients.
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Given the ubiquitous nature of ectomycorrhizal hyphae in these stands, perhaps a 

more likely explanation for the low recovery of 15N in the fine root pool is N retention 

within the hyphal network (Aber and others 1998). Though it is widely accepted that the 

mutualistic association between host and mycobiont acts to facilitate the host’s ability to 

acquire nutrients, many of the details concerning the nutritional requirements of 

mycorrhizal fungi in natural ecosystems remain unknown. For example it has been 

demonstrated in Scots pine (Pinus sylvestris) seedlings that up to 32% of the nitrogen 

assimilated by the fungal symbiont is retained within the external mycelium despite the 

fact that this tissue represented less than 16% of total fungal biomass (Colpaert and others

1996). Labeled nitrogen diverted to extramatrical mycelial growth instead of being 

assimilated by the host plant would explain both the low accumulation of 15N in fine roots

and the high retention of 15N in bulk soil samples. Since we made no effort to retain 

extramatrical fungal biomass in our processing of roots, the only fungal tissue likely to 

remain prior to isotopic analysis of the fine root biomass would be a portion of the mantle

surrounding each root tip and that within the root. Thus external hyphal biomass could 

represent an ecologically important, yet unquantified sink for N in floodplain soils. 

CONCLUSION

In our study, we used a relatively simple tracer technique to follow the fate of 

ammonium and glycine labeled with 15N through soil and root pools in a floodplain 

balsam poplar stand. In the short term, plants (<12 h) directly competed for amino acid N 

as evidenced by the rapid enrichment of fine root 13C. It is impossible, however, to assess 
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long-term patterns for fine root uptake of amino acids using our experimental design, 

given the high turnover rates of amino acids within these floodplain soils (Jones and 

Kielland 2002). The label we introduced to both ammonium and glycine-amended soils 

appeared to be rapidly immobilized and transformed by microbes. Plants accounted for 

only a small fraction of the total 15N recovered, and the vast majority of applied N 

remained in the soil matrix at the end of the experiment. This implies that soil 

microorganisms play an important role in N cycling processes both as mediators of N 

availability to plants and as regulators for ecosystem N retention. 

Though plants were poor competitors with microbes in the short-term competition

for soil N, plants are long-lived compared to soil microorganisms and could capitalize on 

the continuous turnover of these substrates by sequestering some of the products of short-

term N turnover. The steady increase of 15N in our fine root biomass supports this idea. 

Moreover, because we were not able to detect any difference in fine root 15N values 

between the ammonium and glycine treatments at the outset of the experiment, we 

believe that intact amino acids could prove to be a significant fraction of fine root N 

uptake in these stands. Over the course of a growing season such a strategy could result 

in a significant portion of soil organic N being fixed in above- and belowground plant 

tissue.
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Table 1.1 Stand characteristics for each of the three floodplain balsam poplar study sites in the Bonanza Creek Experimental 
Forest. aAverage soil temperature measured at 7cm depth during August 1998. bStem density = stemsha-1, cBasal area = 
m2ha-1, and dTotal tree biomass = kgha-1 as measured in June 1998. eLitterfall = kgha-1yr-1 was collected from September 
1997 to September 1998. fMycorrhizal root tips are live ectomycorrhizal (ECM) root tips per meter balsam poplar fine root and
gpercent mycorrhizal infection is # healthy ECM tips per total tips counted. Dead tips or tips that were older or not easily 
distinguishable as ECM were not counted (Lansing unpublished data).

                                             Site

Parameter Stand 1 Stand 2 Stand 3
Soil temperature ( C)a 9.65 ± 0.18 9.69 ± 0.20 8.40 ± 0.14
Percent total soil carbon   

      Organic horizon

      Mineral horizon

32.3 ± 1.5 30.3 ± 4.1 26.3 ± 6.5
1.2 ± 0.2 1.3 ± 0.4 2.0 ± 0.6

Percent total soil nitrogen 

      Organic horizon

      Mineral horizon

1.8 ± 0.0 1.6 ± 0.1 1.4 ± 0.4
0.08 ± 0.01 0.08 ± 0.02 0.13 ± 0.03

Stem densityb 567 867 922

Basal areac 28.6 36.9 44.3

Total tree biomassd 1.27 x 105 1.68 x 105 1.99 x 105

Total Litterfalle 2460.0 2461.0 1828.9

Mycorrhizal root tipsf 41.3  5.6 61.8  6.6 30.8  3.1

Percent mycorrhizal infectiong 92 94 97
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Table 1.2 Mean percent recovery (SE) of added 15N within various plant and soil pools. Since stand was not a significant 
factor effect in any of the analyses (see Table 3), nine replicate cores, three from each stand, were pooled together for each 
nitrogen substrate at each time period. Note that not all pools contain complete replication.

Recovery of added 15N (%)

N form Pool 45 min 2 hr 12 hr 24 hr 168 hr 336 hr

NH4
+ DIN 20.90  3.55 20.96  3.84 10.95  2.93  1.96  0.15  8.41  1.48  4.71  1.07

DON 16.09  5.52 13.64  4.08 14.01  7.58 21.54  4.89  7.15  4.19  6.15  1.35
Microbial N 45.89  9.16 49.90  16.0 26.80  7.74 64.20  11.7 21.17  3.96 12.56  3.44
Fine Root N  0.07  0.01  0.17  0.03  0.52  0.10  0.63  0.17  1.39  0.28  1.64  0.22
Bulk soil N 58.93  5.89 71.14  6.98 68.44  6.06 79.30  11.9 67.04  6.28 73.37  6.94

Glycine DIN  9.16  3.69  7.73  2.74  7.03  0.93  1.55  0.39  4.80  0.48  3.10  0.38
DON 24.56  5.26 16.06  4.94 10.48  1.82 18.61  2.75  6.26  2.95  7.06  1.25
Microbial N 30.70  16.0 53.05  7.39 21.70  4.94 37.95  6.07 19.19  2.70 10.34  2.61
Fine Root N  0.08  0.02  0.24  0.04  0.31  0.08  0.52  0.07  0.94  0.18  1.39  0.28
Bulk soil N 58.41  6.29 60.56  7.29 57.85  3.62 69.19  9.89 50.04  6.56 65.00  10.7
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Table 1.3 The effect of treatment, sampling period, and stand on percent recovery of 
added tracer within soil extractable N and fine root and bulk soil C and N pools. MBN = 
Microbial biomass nitrogen. Data were analyzed using a mixed model ANOVA ( = 
0.05). * P  0.01; ** P  0.001

Pool Source Df

   

 F

    

P
DIN Stand 2, 58 0.43 0.66

Treatment 1, 58 22.21 **
Sampling period 5, 58 12.12 **
Treatment x Sampling period 5, 58 3.24 *

DON Stand 2, 58 2.05 0.14
Treatment 1, 58 0.10 0.75
Sampling period 5, 58 3.51 *
Treatment x Sampling period 5, 58 0.56 0.73

MBN Stand 2, 34 0.97 0.39
Treatment 1, 34 3.59 0.07
Sampling period 5, 34 7.40 **
Treatment x Sampling period 5, 34 1.00 0.43

Fine Root C Stand 2, 88 2.83 0.06
Treatment 1, 88 0.09 0.76
Sampling period 5, 88 7.82 **
Treatment x Sampling period 5, 88 0.71 0.61

Fine Root N Stand 2, 88 1.33 0.27
Treatment 1, 88 3.11 0.08
Sampling period 5, 88 26.76 **

Table 1.3 (cont.)
Treatment x Sampling period 5, 88 0.72 0.61

Bulk Soil C Stand 2, 88 1.82 0.17
Treatment 1, 88 2.10 0.15
Sampling period 5, 88 18.17 **
Treatment x Sampling period 5, 88 1.22 0.31

Bulk Soil N Stand 2, 88 2.13 0.12
Treatment 1, 88 4.86 0.03
Sampling period 5, 88 1.33 0.26
Treatment x Sampling period 5, 88 0.26 0.93
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FIGURE LEGENDS

Figure 1.1 Coring grid design for treatment application and sample extraction. 

Treatments are as follows: TRT A (labeled ammonium treatment) = [15NH4]2SO4 + U-

[13C2]-glycine; TRT B (doubly- labeled glycine treatment) = [NH4]2SO4
+ + U-[13C2][15N]-

glycine; TRT C (control) = deionized H2O. Cores within each grid were injected to 10 cm

and harvested to 12 cm at 45 min, 2, 12, and 24 h, and 7 (168 h) and 14 (336 h) d. 

Sampling periods were randomized within grids. Sampling Periods: 1=T45m, 2=T2h, 

3=T12h, 4=T24h, 5=T168h, 6=T336h. 

Figure 1.2 Percent recovery of added 13C and 15N in bulk soil carbon and nitrogen pools 

over time. Symbols are as follows:  labeled ammonium treatment (15NH4
+

 + 13C-

glycine); and  doubly-labeled glycine treatment (14NH4
+ + 13C15N-glycine). Open and 

solid symbols represent soil carbon and soil nitrogen, respectively. Values are averaged 

across cores (n = 9) and data are means  SE.

Figure 1.3 Percent recovery of added 15N as DIN, DON, or microbial N pools against 

time. Symbols are as follows:  microbial N pool;  DIN pool; and  DON pool. Open 

and solid symbols represent ammonium (15NH4
+

 + 13C-glycine); and doubly-labeled 

glycine (14NH4
+ + 13C15N-glycine) treatments respectively. Data are means  SE. 

Figure 1.4 Percent recovery of added 13C and 15N in fine root carbon and nitrogen pools 

over time. Symbols are as follows:  labeled ammonium treatment (15NH4
+

 + 13C-

glycine); and  doubly-labeled glycine treatment (14NH4
+ + 13C15N-glycine). Open and 

solid symbols represent root carbon and root nitrogen respectively. Data are means  SE.
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Figure 1.5 Change in  13C values of the fine root carbon pool over time. This figure is 

provided in order to observe treatment effects at a finer resolution. Symbols are as 

follows: labeled ammonium treatment (15NH4
+

 + 13C-glycine);  doubly-labeled 

glycine treatment (14NH4
+ + 13C15N-glycine); and  deionized water. Data are 

means  SE.

Figure 1.6 The relationship between excess 13C (Mol) and excess 15N (Mol) in fine 

roots at all sampling periods. Data are from the doubly-labeled glycine treatment only 

and units are per gram dry weight. Sampling periods are plotted above their respective 

regression lines. Slopes and adjusted R2 values for each regression are as follows:  45 

m (s = 3.44, R2
Adj = 62.4);  2 h (s = 3.13, R2

Adj =61.1);  12 h (s = 2.00, R2
Adj = 82.6); 

24 h (s = 1.54, R2
Adj = 62.6); 168 h (s = 1.30, R2

Adj = 88.3); and  336 h (s = 0.98, R2
Adj

= 82.5). The dotted line represents the 2:1 injection ratio of C:N administered with the 

doubly-labeled glycine treatment.
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Figure 1.1
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Figure 1.2
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Figure 1.3

100 101 1022 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5

Time (hours)

0

20

40

60

80

%
 15

N
 r

e
co

v
er

ed
 

49



Figure 1.4
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Figure 1.5
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Figure 1.6
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GLYCINE MINERALIZATION IN SITU CLOSELY CORRELATES WITH SOIL

CARBON AVAILABILITY ACROSS SIX NORTH AMERICAN FOREST

ECOSYSTEMS2

ABSTRACT

Free amino acids (FAA) constitute a significant fraction of dissolved organic 

nitrogen (N) in forest soils and play an important role in the N cycle of these ecosystems. 

However, relatively little attention has been given to their role as labile carbon (C) 

substrates that might influence the metabolic status of resident microbial populations. 

Heterotrophic growth in soil is often substrate-limited as the bulk of soil C consists of 

complex polymers that are resistant to decomposition. Still, in many soils, the microbial 

biomass maintains a high metabolic activity, driven by the need to rapidly capture 

discreet pulses of labile substrate that periodically become available through root 

exudation or lysis and/or microbial turnover. We hypothesized that the residence time of 

simple C substrates, such as FAA, are mechanistically linked to the turnover of 

endogenous soil C pools. We tested this hypothesis across a latitudinal gradient of 

forested ecosystems that differ sharply with regard to climate, overstory taxon, and 

edaphic properties. Using a combined laboratory and field approach, we compared the 

turnover of isotopically labeled glycine in situ to the turnover of mineralizable soil C 

2 Submitted to Soil Biology and Biochemistry as McFarland JW, Ruess RW, Kielland K, 

Hendrick R, Pregitzer K. In situ glycine mineralization closely correlates with soil carbon

availability across six North American forest ecosystems
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(Cmin) at each site. The turnover of glycine was rapid (residence times < 2 h) regardless of

soil type. However, across all ecosystems glycine turnover rates were strongly correlated 

with indices of soil organic matter quality. For example, C:N ratios for the upper soil 

horizons explained ~80% of the variability observed in glycine turnover, and there was a 

strong positive correlation between the turnover constants for glycine and Cmin. The 

turnover of glycine in situ was better explained by changes in soil C availability than 

cross-ecosystem variation in soil temperature or concentrations of dissolved inorganic N 

and FAA-N. This suggests the rapid consumption of these low-molecular-weight 

substrates by soil microorganisms may be more a response to the overall decomposability

of soil C than N limitation to microbial growth.

INTRODUCTION

Free amino acids (FAA) represent a labile pool of soil nitrogen (N) for plant and 

microbial uptake and play a key role in the N economy of terrestrial ecosystems (Atkin, 

1996; Kaye and Hart, 1997; Kielland, 2001; Lipson and Näsholm, 2001). This 

recognition has led to a number of studies focusing on the turnover dynamics of amino 

acids in soils spanning multiple continents (Kuzyakov and Demin, 1998; Jones and 

Shannon, 1999; Lipson et al., 1999; Vinolas et al., 2001ab; Jones and Kielland, 2002; 

Bardgett et al., 2003; Jones et al., 2004; Finzi and Berthrong 2005; Kielland et al., 2007). 

These studies have yielded insights into the factors regulating the turnover of FAA in 

soils. In most instances, the residence times of soil amino acids are less than a few hours; 

however, they may persist for longer periods by adsorption to humic and mineral 
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components of soil (Gonod et al., 2005), or chemical inclusion into humic substances 

(Kuzyakov and Galitsa, 1993). Plants in many ecosystems take up amino acids readily 

(Schimel and Chapin, 1996; Schmidt and Stewart 1999; Näsholm et al.,1998; Näsholm et 

al., 2000), but the majority of FAA turnover is the direct result of microbial uptake and 

assimilation (Jones, 1999; Nordin et al., 2004). Once assimilated by microorganisms, 

amino acids can be channeled into growth, cell maintenance, or energy production 

(Kuzyakov and Demin, 1998; Vinolas et al., 2001ab) or transferred to plants via  

symbiotic associations. 

The decomposition of FAA depends on several physical and biological processes. 

Microcosm experiments have found that amino acid turnover is regulated in part by soil 

temperature (Vinolas et al., 2001a). In addition, the molecular charge of the amino acid 

strongly influences the availability of amino acids for microbial uptake due to sorption to 

the solid phase of soil (Gonod et al., 2005). Positively charged species such as lysine are 

more likely to interact with cation exchange sites than net neutral (glycine) or negatively 

(glutamic acid) charged species. As well, the metabolic consumption of amino acids 

depends on microbial affinity for a particular substrate (Kielland, 1995; Lipson et 

al.,1999; Vinolas et al., 2001a) and the functional diversity of the microbial community 

(Degens, 1998), though direct evidence for the latter remains elusive (Jones et al., 2005). 

While past research on FAA mineralization has focused on these compounds in 

the context of soil-N cycling (Jones and Kielland, 2002; Berthrong and Finzi, 2006), the 

importance of FAA as a carbon (C) source for microorganisms remains poorly 

understood. For example, there is compelling evidence that heterotrophic growth in many
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soil environments is C-limited (Morita, 1988; Zak et al.,1994; De Nobili et al., 2001; 

Mondini et al., 2006). For most terrestrial ecosystems, the bulk of soil C consists of 

complex polymers that are resistant to decomposition. Despite the low bioavailability of a

large percentage of soil organic matter, the microbial biomass in many soils maintains a 

high level of endogenous energy with adenylate charge ratios approaching those of 

microorganisms grown in pure culture studies (Brookes et al.,1987). The likely reason for

sustaining such a high metabolic rate in an energy-poor environment stems from the need

to capitalize on pulses of labile substrate. The metabolism of soil microorganisms 

depends heavily on the availability of low-molecular-weight substrates such as mono- 

and di-saccharides, peptides, and free amino acids. A large proportion of this labile C 

pool derives from plant exudates and fine root turnover that serves to prime 

decomposition processes (Kuzyakov et al., 2000). Activation of the microbial community

by pulses of labile C can be nearly instantaneous (Jones and Murphy, 2007). However, 

evidence for this rapid response comes largely from laboratory incubation studies of 

processed soils where plant components are removed and microbial community structure 

is severely disrupted. Sample handling prior to laboratory measurements could affect 

biodegradation rates for FAA rendering those data inadequate for field simulations or 

modeling (Di et al., 1998). 

Here we present a study using a nondestructive method (McFarland et al., 2002; 

Kielland et al., 2007) to assess the cycling dynamics of a soil amino acid in situ across a 

wide gradient of North American forest ecosystems that differed with regard to climate, 

plant taxa, dominant mycorrhizal association, and edaphic properties. Numerous studies 
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have examined turnover dynamics of soil FAA (Kuzyakov and Galitsa, 1993; Kuzyakov 

and Demin, 1998; Jones and Kielland, 2002; Jones et al., 2005; Berthrong and Finzi, 

2006; Jones and Murphy, 2007, Kielland et al., 2007), but to our knowledge, this is the 

first attempt to use a common experimental approach to develop estimates of amino acid 

turnover in situ across multiple biomes. Our experimentation was designed to test the 

idea that turnover dynamics of FAA in forest soils is regulated more by C limitations than

N limitations to microbial growth (Jones and Murphy, 2007). We had two objectives. 

First, without mechanically disturbing the soil profile, we estimated the turnover rate of 

uniformly labeled 13C-glycine using 13CO2 release as a proxy for residence time. 

Secondly, we related the in situ turnover dynamics of glycine to several indices of C 

availability determined in the laboratory. We predicted that rate constants for glycine 

mineralization would vary inversely with the overall decomposability of soil C across 

forest types (Kielland et al., 2007). Due to a high microbial demand for labile substrate, 

we anticipated that forest types with high-quality litter containing low concentrations of 

lignin, tannins, and other recalcitrant compounds (temperate deciduous) would exhibit 

slower rates of consumption of added FAA than forest types where plant litter chemistry 

and reduced soil temperatures (boreal) act as a constraint to C cycling.

MATERIALS AND METHODS

Study sites

Study sites were located across three North American biomes: boreal, northern 

temperate and southern temperate. We chose these sites in order to encompass the wide 
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range of vegetation types and environmental conditions represented by forests of this 

continent. Study sites selected within each biome, including the dominant forest 

ecosystem types were: Bonanza Creek Long-Term Ecological Research (LTER) site, AK,

white spruce (Picea glauca) and balsam poplar (Populus balsamifera); Ford Forestry 

Center, MI, sugar maple (Acer saccharum); and Houghton, MI, red pine (Pinus resinosa);

Coweeta LTER, NC, tulip poplar (Liriodendron tulipifera); B.F. Grant Experimental 

Forest, GA, white oak (Quercus alba). At each site we chose stands that were at or near 

steady-state with respect to C storage for that forest type. Relevant features for forest 

types are discussed below while specific stand characteristics are presented in Table 2.1.

Balsam poplar and white spruce are mid- to late-successional stands, respectively,

in a primary successional sequence along the Tanana River floodplain in interior Alaska. 

The soils of this chronosequence are classified as Typic Cryofluvents (Viereck et al., 

1993) and are predominantly silt-textured. Soils along older terraces are overlain with a 

well-developed organic horizon extending to 10 cm or more in depth. The climate is 

strongly continental, and forests are exposed to sub-freezing conditions for much of the 

year. Though the region is classified as semi-arid, precipitation often exceeds 

evapotranspiration due to low temperatures and a restricted growing season. Rates of net 

N mineralization are low compared to temperate forest ecosystems, so putatively the 

availability of labile N for plant uptake is reduced. Lower N availability reduces plant 

litter quality as the vegetation advances through successional development. It has been 

suggested that the shift to plant detritus with higher C:N ultimately reduces the overall 

decomposability of soil organic matter in late successional communities, thus decreasing 
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C turnover. Consequently, soil microorganisms in these stands are believed to become 

increasingly C-limited (Flanagan and Van Cleve, 1983) during the transition from 

deciduous tree-dominated stands to conifers.

Sugar maple is a common deciduous species in the Great Lakes and Acadian 

forest regions. As a habitat generalist, it is often found in mixed stands; however, our 

study area is located in a relatively pure stand of sugar maple that was previously 

managed under a selective cutting regime. The entire area was cut over 100 years ago, 

and most of the large overstory trees are about 95 to 100 years old. A second harvest 

occurred about 25 years ago, at which time approximately 2/3 of the basal area was left 

intact. Understory vegetation is relatively sparse and consists primarily of perennial 

herbaceous plants and sugar maple seedlings and saplings. Soils in this stand are well 

drained Typic Haplorthods, consisting of cobbly, silt and sandy loams with 2-12% clay 

content. 

The red pine site is located at the William Payne La Croix plantation established 

in 1950 near Houghton, Michigan. This stand consists of evenly spaced (1.8 m x 1.8 m 

square) mature trees with no understory, so red pine accounts for 100% of the basal area. 

The overall terrain is relatively flat to gently sloping. Soils are sandy loams, classified as 

Entic Haplorthods, with a thin organic horizon at the surface consisting almost entirely of

pine litter in various states of decomposition.

The tulip poplar stand is situated in Watershed 3 of the Coweeta LTER research 

site near Franklin, North Carolina. The terrain of this deciduous hardwood cove is steep 

(>30% slope) with deep (~1 m) well drained Humic Hapludults derived from folded 
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schist and gneiss. Natural reforestation began ~ 50 years ago following agricultural 

abandonment. The oldest trees in this stand date from that period; however, there was 

some underplanting of tulip poplar seedlings in the 1970s in an effort to increase stand 

density. The understory is sparse with scattered dogwood (Cornus florida) and striped 

maple (Acer pennslyvanicum) trees. The forest floor is rarely thicker than 2-3 cm except 

immediately following leaf fall; there is no Oe or Oa horizon. The high quality litter (C:N

= 40; Lignin:N = 15) derived from this stand rapidly decomposes under the mesic 

conditions characteristic of this forest type.

Our oak site is located within the B.F. Grant Memorial Forest, a 5000 ha mixed-

use research forest managed by the Warnell School of Forestry and Natural Resources at 

the University of Georgia, Athens. There is a long history of disturbance at this site 

beginning with Native American encampments, followed by slash and burn agriculture, 

and eventually cotton production. Soils, classified as Typic-Rhodic Hapludults, are well-

drained, clayey, kaolinitic, and ranged in color from dark red to yellow-brown. The 

understory consists primarily of oak (Quercus spp.) and hickory (Carya spp.) with some 

maple (Acer spp.), beech (Fagus grandifolia), and dogwood (Cornus florida). The forest 

floor is relatively thick in places (12 cm) given the climate and consists primarily of an 

Oi layer with weakly developed Oe and Oa horizons. Overall the terrain for our study 

area is gently sloping with slopes of 2-6%. 
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Soil incubation experiment

To evaluate C availability, we performed gas flux measurements (net C 

mineralization) on soils from each of our research sites. In August 1998, we collected 

twelve 5.5 cm diameter soil cores from each of the six locations and randomly paired 

them to produce six laboratory replicates (Lancaster and Keller-McNulty 1998). The 

paired cores were stored frozen for three months, thawed and partitioned into upper (U) 

and lower (L) soil horizons. For the mull forest floor of red pine, sugar maple, white oak, 

and tulip poplar, U = 0-7 cm and L = 7-20 cm below the litter layer, while the mor forest 

floor of the boreal stands was separated into relatively pure organic and mineral horizons 

that approximated the sampling depths defined for the other stands. Subsequently, we 

homogenized each horizon by removing all obvious woody debris, roots, and rocks and 

hand-mixing the remaining soil to obtain a relatively uniform substrate. Two subsamples 

were taken from each homogenized core for soil moisture and other chemical 

measurements. Subsamples for C and N analysis were dried to a constant weight at 60°C 

and powdered in a modified roller mill. Soil organic C (Ctotal) and total N were 

determined for each horizon using combustion analysis on a LECO 2000 CNS 

autoanalyzer (LECO, St. Joseph, Michigan, USA). Due to the acidity (Table 2.2) of these 

soils, carbonate removal was not necessary prior to analysis.

In order to balance soil microbial activity against gaseous N loss, soil moisture 

content was adjusted to 55% water-holding capacity (Nunan et al., 2000) with distilled 

water after gravimetric determinations were made for each soil type. Approximately 100 

g fresh weight of soil was placed into 980 ml Mason jars whose caps were fitted with 
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butyl rubber septa. The jars were sealed and preincubated for three days in the dark 

before gas measurements were initiated. Incubation temperatures varied according to the 

region from which the soils were collected (for tulip poplar and white oak, 19.8°C; 

balsam poplar and white spruce, 9°C; sugar maple and red pine, 17.0°C). These 

temperatures were representative of daily average soil temperatures recorded at 7 cm 

depth for each site 10 days prior to and following core collection in July 1998. 

We sampled the headspace of each jar weekly for 16 weeks and determined the 

CO2 concentration within using gas chromatography on a Shimadzu GC-8A fitted with a 

200-cm Poropak column and a thermal conductivity detector (Shimadzu Corporation, 

Japan). In order to prevent inhibition of respiration due to excessive concentrations of 

CO2 in the headspace, jars were capped for only 24 hours prior to each measurement and 

then aerated before being returned to the incubation chamber. Between sampling periods, 

each jar was covered with 0.8-ml polyethylene sheeting secured with a rubber band to 

prevent excessive moisture loss while still permitting gas exchange (Gordon et al., 1987).

Following gas sampling, the water content of each jar was maintained at 55% WHC by 

adding deionized water to compensate for the measured weight loss. First order rate 

constants for microbial respiration were calculated using the following equation:

 kteCCt  1min

where Ct is the cumulative carbon mineralization up to time, t (days), Cmin is the 

potentially mineralizable pool of soil carbon, and k is the instantaneous rate constant 

describing the daily release of C from that pool (Kielland et al., 1997; Alvarez and 

Alvarez, 2000).
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In situ glycine C mineralization experiment

The field component for this experiment was conducted during July 1999 for 

white spruce, July 2005 for balsam poplar, and from June to July 2000 for the remaining 

forest types. Randomly, we established 2 soil injection grid locations within a 9 m2 plot. 

Each plot was replicated six times along a transect within each forest type. Injection grids

were constructed of 3.2 mm lexan sheets that were flexible enough to mould to the 

surface of the forest floor. Grids were held in position by four steel pins buried to a depth 

of 20 cm, which made it easy to return periodically and precisely align our gas sampling 

chamber over the head space above each injection core (McFarland et al., 2002). Within 

each injection grid, we administered either U-[13C2]-glycine (glycine treatment) or 

distilled water (control). As part of a companion experiment examining plant-microbial 

competition for N, we added (15NH4
+)2SO4 to the glycine treatment. The fate of this N 

addition is discussed elsewhere (McFarland et al., submitted). Other amino acids have 

demonstrated a higher rate of microbial turnover, indicating that glycine is not 

necessarily the preferred substrate for microbial uptake and decomposition; however, 

glycine is generally intermediate with regard to microbial uptake and assimilation 

efficiency (Vinolas et al., 2001a). Moreover, glycine is a neutral amino acid and thus has 

a higher tendency to remain in solution compared with other species such as lysine and 

arginine, so its bioavailability is not limited by sorption. Injection volume was 2 ml, 

which delivered 0.39 g 13Cm-2. 

We collected the 13CO2 efflux above each injection core using a capped segment 

of 10.2 cm ABS pipe fitted with a #10 rubber stopper. Inserted into each stopper was a 
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short segment of polyethylene tubing connected to a 30 ml syringe via an air-tight stop 

cock. We used high-pressure vacuum grease to establish an airtight seal for the luer 

fitting between the stopcock and syringe as well as the connection between the 

polyethylene tubing and stopcock. The litter layer above each injection point was 

removed to reveal the partially decomposed horizons below. While eliminating the 

portion of the microbial community associated with litter, removing the litter layer 

dramatically improved our ability to seal the sampling chambers against the forest floor. 

Sampling chambers were then pressed firmly to the soil surface for three minutes at 

which time a 15 ml sample was collected. The gas in each chamber was thoroughly 

mixed by slowly pumping the syringe 10 times prior to sample collection. Gas samples 

were transferred over-pressurized to 10 ml exetainers (Labco. Ltd., United Kingdom) 

evacuated in our laboratory facilities to 0.007 kPa. All soils, with the exception of balsam

poplar, were sampled at 6 periods (0.75, 2, 12, 24, 168, and 336 hours) following 

injection. Balsam poplar was sampled only at the first four sampling periods. We 

monitored soil temperature at a depth of 7 cm continuously throughout the experiment 

using HOBO temperature loggers (Onset Computer Corporation, Massachusetts, USA).

Gas samples were analyzed for 13C-CO2 using a Europa Scientific continuous flow

mass spectrometer (SPEC-PDZ Europa Inc., United Kingdom). We report the data as 

cumulative 13C atom percent excess (APE) of respired CO2. APE was determined by 

subtracting the atom % 13C of control samples from the atom % 13C of samples treated 

with labeled glycine. Control values were averaged within a site prior to use in estimating

enrichment. Data were fitted to the same single exponential model used for the soil 
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incubation study, except that all fitted curves were forced through the origin based on the 

assumption that 13C excess was zero prior to injection. 

Soil amino acid-N extraction and quantification

We randomly collected 15 soil cores along our transect using a 5.5 cm (I.D.) steel 

corer combusted at 450°C for 6 h prior to use. All cores were handled with nitrile gloves 

and stored in clean polyethylene bags on ice during transport to the laboratory. Within 4 

hours, each core was gently hand-mixed and sieved (2.5 mm mesh) to remove rocks, 

large roots and as many small roots as possible. We took two subsamples from each 

homogenized core. One subsample was dried at 70°C to determine gravimetric moisture 

content. The other subsample (15 g wet weight) was extracted with 75 ml distilled water 

(15 min at 150 rev min-1) and vacuum-filtered through a 0.2 μm cellulose acetate filter 

(Corning Inc, Corning, New York, U.S.A.). Soil extracts were stored frozen in 2 ml 

sterile polyethylene vials until analysis.

We analyzed soil extracts for total FAA using fluorometrics (Jones et al., 2002). 

Briefly, 20 μl of sample, standard, or blank was pipetted to a 96 well microplate. We used

a Precision 2000 automated pipetting system (Bio-Tek Instruments, Inc., Winooski, 

Vermont, USA) to add 100 μl of a working reagent consisting of a borate buffer, о-

phthaldialdehyde, and β-mercaptoethanol to each well. Following derivatization ( = 2 

min), the fluorescence in each well was measured using a Biotek FL600 Fluorescence 

and Absorbance Microplate Reader (Bio-Tek Instruments, Inc., Winooski, Vermont, 

USA) with excitation and emission wavelengths set to 340 and 450 nm, respectively. 
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Each sample was run in quadruplicate and the results are reported as μg amino acid-N per

g dry soil. 

Statistical analyses

We fitted the first order rate equation to CO2 production from the microcosm 

study (n = 6) as well as cumulative APE 13C from the glycine mineralization experiment 

(n = 6) for each forest type using PROC NLIN in SAS. Tukey’s multiple sample t tests 

were applied to all pairwise comparisons of kglycine, 13CAPEcum, and residence time for 

glycine in situ (1/kglycine); the rate constant kC; estimates for pool size, Cmin ; and all 

measured soil variables from our laboratory incubations, including soil organic C and 

total N. We tested the assumption of normality for all the aforementioned parameters 

using PROC UNIVARIATE in SAS prior to conducting one and two-way ANOVAs to 

test for significant differences among forest types. When necessary, variables were log-

transformed to meet the conditions for normality and constancy of variance. When log 

transformed values also failed to meet the assumptions for ANOVA we performed 

analyses on ranked values and compared those to analyses generated for unranked values.

Simple linear regression analyses were used to relate kglycine and 1/kglycine with soil 

temperature and CO2 production for the upper soil horizon. All inferences regarding pool 

dynamics are made at the stand level, and significance for all statistical analyses was 

accepted at α = 0.05, except kglycine, 13CAPEcum, and residence time for glycine in situ, which 

were accepted at α = 0.1.
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RESULTS

Soil C, N, and mineralizable C

Soil organic C and total N varied significantly between the boreal and temperate 

stands, particularly for the upper soil horizon. Soil organic C in the upper horizon 

averaged 169 and 233 g C·kg-1 for white spruce and balsam poplar, respectively, whereas 

values for the temperate stands fell within a narrower range, averaging between 26 and 

67 g C·kg-1 (Table 2.2). Carbon content in the lower horizon was more similar among all 

forest types, ranging from 45 g C·kg-1 in tulip poplar to 16 g C·kg-1 in red pine. Total soil 

N also differed significantly between the boreal and temperate forests with larger 

concentrations of N in the upper horizon for boreal than temperate stands. Average values

ranged from 1.6 g N·kg-1 in white oak to 12.4 g N·kg-1 in balsam poplar. Soil N 

concentrations in the lower horizon were less variable, with the highest values measured 

in tulip polar and sugar maple (2.9 g N·kg-1) and the lowest in red pine (0.8 g N·kg-1).

Total C respired in the upper soil horizon was highest in balsam poplar and white 

spruce soils, least in tulip poplar and white oak soils, and intermediate in sugar maple and

red pine soils (Figure 2.1a). Carbon dioxide accumulation curves constructed for each site

reveal that net mineralizable C (Cmin) ranged from 1.51 g C·kg soil-1 in white oak to 11.89 

g C·kg soil-1 in white spruce, and was positively correlated with total soil organic C (Ctotal)

across forest types (Cmin = 0.86 + 0.041*Ctotal; r2 = 0.86, P = 0.007; n = 6). Though Cmin 

increased with increasing latitude, this trend was no longer apparent when respired C was

adjusted for Ctotal (Figure 2.1b). Normalized for C content, Cmin ranged from 3.4% of Ctotal 

in the southern deciduous tulip poplar stand to 15.7% in the northern red pine plantation 
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(Table 3). Overall red pine soils had the highest C efflux per unit soil C in the upper 

horizon (P ≤ 0.05), indicating that a higher proportion of SOM in red pine was 

metabolizable to soil microbes. Alternatively, differences in Cmin could indicate that 

microbial C-use efficiency differed among forest types.

 In the lower soil horizon, Cmin also varied relative to Ctotal (Figure 2.2a). Stands 

with larger C stocks in the lower horizons generally had greater Cmin, with the exception 

of red pine which had significantly smaller Ctotal than tulip poplar (Table 2.2), but similar 

values for Cmin. When adjusted for Ctotal (Figure 2.2b), differences among forest types 

followed the same general pattern observed for the upper horizon, again suggesting 

differences in C-use efficiency among forest types or that a larger fraction of soil C in the

temperate deciduous stands was resistant to microbial degradation compared to red pine. 

Rate constants for C mineralization derived from our single exponential model 

varied significantly across ecosystems (F5,30 = 36.58, P < 0.0001). Since our intention was

to estimate net C mineralization rates under near-natural environmental conditions, we 

remind the reader that cores from different sites were incubated under different 

temperatures. Therefore, net C mineralization rates reflect differences in both temperature

and microbial C utilization. Highest respiration rates were observed in tulip poplar soils 

(0.0228 ± 0.0009 d-1) and lowest in white spruce (0.0061 ± 0.0012 d-1; Table 2.3). Though

rate constants appeared to increase along the north-south gradient, we observed two 

distinct groupings between the temperate deciduous stands and the coniferous stands plus

balsam poplar. These differences were reflected in the mean residence time (1/k) for Cmin, 

where pool turnover was, on average, twice as rapid for the temperate deciduous stands 
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compared with the coniferous stands plus balsam poplar. Within a stand, the residence 

time for Cmin was very similar between upper and lower soil horizons for all stands except

red pine (Table 2.3). Mean residence time for Cmin in red pine was 92.3 d in the lower soil

horizon vs. 184.0 d in the upper soil horizon. Similarly, average Cmin/Ctotal was almost 

twofold higher (P ≤ 0.05; n= 6) for the upper soil horizon suggesting that substrate 

quality could be more vertically stratified in red pine than in the other forest types.

Soil FAA-N and DIN concentrations

Soil FAA concentrations differed significantly among forest types (F5,84 = 15.2, P 

< 0.0001). Most of the observed variation was attributed to soils from Alaskan stands, 

which in some instances had over tenfold higher concentrations of FAA than soils from 

the southern deciduous stands (Figure 2.3). Average values ranged from just over 0.5 mg 

AA-N kg-1 soil in tulip poplar to just over 8 mg AA-N kg-1 in balsam poplar (Table 2.2). 

Values for white spruce and balsam poplar are within the range reported for floodplain 

forests in interior Alaska (Kielland et al., 2006; Werdin, 2006). Across our latitudinal 

gradient FAA-N appears to coincide with estimates reported for a number of ecosystem 

types (Bardgett et al., 2003; Finzi and Schlesinger, 2003; Weintraub and Schimel 2003); 

however, direct comparisons with other temperate deciduous forests are complicated by 

differences in methodology (Berthrong and Finzi, 2006). FAA-N in red pine soils (3.25 ±

0.69 mg N kg-1) were significantly greater than those of sugar maple (0.97 ± 0.14 mg N 

kg-1; P ≤ 0.05; n = 15) even though these forest types share a similar climate and other 

factors influencing soil development, e.g. topography and parent material. Conversely we
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observed little variation in dissolved inorganic N (DIN) across all sites with the exception

of red pine stands, which had significantly lower concentrations of inorganic N (P ≤ 0.05)

than any of the other forest types. 

In situ glycine C mineralization

In situ turnover rates for glycine were rapid regardless of soil type (Table 2.4); 

nevertheless, rate constants for glycine turnover (kgly) determined from our single 

exponential model were statistically different among forest types (F5,30 = 3.34, P = 0.02; 

Table 2.4). Mean residence times (1/kgly) did not vary systematically with latitude, but 

there was clustering among forest types that somewhat paralleled results from the 

laboratory incubation (Figure 2.4). Contrary to predictions, mean in situ turnover rates for

glycine were significantly faster in tulip poplar soils than in white spruce soils while 

turnover rates for the remaining forest types showed no statistical differences. However, 

it is worth noting that mean in situ glycine turnover rates were nearly identical for 

southern white oak and boreal balsam poplar (0.70 hr-1 and 0.69 hr-1, respectively), 

whereas northern sugar maple demonstrated non-significantly higher turnover rates for 

glycine (0.88 hr-1; Table 2.4), suggesting climatic effects alone cannot explain cross-

ecosystem variation in the turnover of soil FAA.

In situ glycine turnover was correlated with indices of substrate (labile C) 

availability. For example, soil C:N ratio explained over 80% of the variability observed 

in glycine turnover rate (kgly) among sites (Figure 2.5; r2 = 0.82, P = 0.01).  The highest 

values for kgly were observed in soils with the lowest C:N ratio and vice versa. In contrast 
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to our original predictions concerning substrate quality, a low C:N ratio may be indicative

of highly processed soil C that presents a relatively C poor substrate for microbial growth

(see discussion below). Additionally, we found a strong positive correlation between rate 

constants for in situ glycine turnover (kgly) and Cmin (kc) determined from laboratory 

incubations (Figure 2.6; r2 = 0.67, P < 0.05), suggesting ecosystems with higher net 

mineralization rates of soil C have a higher demand for pulses of labile C, e.g. glycine. 

However, there was no significant relationship between Cmin or FAA-N concentrations 

and kgly across all ecosystems. Similarly, we observed no significant correlation between 

kgly and soil temperature measured continuously at each site during the field experiment 

(r2 = 0.14, P = 0.47). Thus it appears that among forest types, substrate quality (Cmin/Ctotal)

had a more dramatic impact on the turnover of glycine than either temperature or soil 

FAA concentrations.

DISCUSSION

We found that in situ rates of glycine turnover were rapid across all biomes, and 

that there was strong support for our hypothesis that consumption of soluble amino acids 

on a continental scale is linked to the substrate quality of soil C pools. Glycine turnover 

rates increased significantly with decreasing pools of Cmin, suggesting a microbial 

response to C limitation. Although soil microorganisms in all forest types rapidly 

mineralized the glycine, neither the magnitude of response to our glycine addition nor the

size of the labile fraction of SOM varied predictably along our latitudinal gradient. We 
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discuss these results in the context of relevant studies exploring the factors regulating the 

turnover of soil FAA.

Recent studies indicate that low-molecular-weight organic compounds, including 

FAA, play an important role in sustaining the short-term energy balance of 

microorganisms involved in the decomposition of SOM (De Nobili et al., 2001; Mondini 

et al., 2006). The more recalcitrant the SOM, the less likely SOM alone provides 

sufficient substrate for the basal metabolism and growth of soil microorganisms. The 

rapidity with which our labeled substrate appeared in soil CO2 efflux provides further 

evidence that FAA represented a labile source of soil C that was rapidly metabolized by 

soil microbes. However, our initial ideas concerning the variability of soil C availability 

across forest types (increasing SOM quality and thus increasing C availability with 

decreasing latitude) were not supported.

Results from our laboratory incubations show that boreal forest soils yielded 

substantially larger pools of respired C than mid-latitude soils (Figure 2.1a) in the upper 

horizon, and soil C stocks explained most of the observed differences in mineralizable C 

(Cmin) among forest types. This was not surprising given that decomposition is 

constrained in part by temperature (Hart and Perry, 1999; Garten and Hanson, 2006); 

stands that had a lower mean annual temperature, also had significantly higher stocks of 

soil C and N and thus larger pools of Cmin. However, despite a strong correlation between 

latitude and total C respired, the proportion of soil C that was readily mineralizable at 

each site did not necessarily conform to predictions concerning soil temperature or litter 

quality (Figure 2.1b) particularly in the temperate regions, suggesting that neither soil 
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temperature nor litter quality provided an adequate explanation for FAA turnover and 

Cmin. 

Forests dominated by species producing high quality (low lignin; low C/N) 

aboveground (AG) litter, e.g. tulip polar and sugar maple, would be expected to have 

higher rates of litter decomposition and thus proportionately larger pools of labile C than 

forests dominated by species producing more recalcitrant litter, e.g. red pine (Moorehead 

et al., 1999). However, Cmin accounted for a larger proportion of total C in stands 

producing lower quality AG litter. For example, soil organic matter from both horizons in

red pine contained a larger proportion of labile C than either sugar maple or tulip poplar 

(Figures 2.1b & 2.2b), yet C turnover rates (kC) for red pine soils were slower than for 

either sugar maple or tulip poplar soils. This apparent discrepancy might reflect 

differences in early-stage vs. late-stage decomposition of these dissimilar litter types. 

Field studies of litter decomposition have demonstrated a limit value for mass loss 

beyond which decomposition either ceases or proceeds very slowly as the remaining 

mass becomes part of soil humus. This limit value is highly correlated with the initial N 

concentration of fresh litter inputs. The higher the N levels of a litter, the faster the initial 

rates of decomposition, but also the more recalcitrant mass remains during the late stages 

of decomposition (Berg and Ekbohm, 1991; Berg and Meentemeyer, 2002; but see 

Hobbie, 2000). Moreover, recalcitrant residues of initially high quality AG litter, e.g., 

tulip poplar, can accumulate over time (Berg, 2000) becoming a larger portion of total 

soil C, particularly in climates more conducive to decomposition processes such as those 

of our southern temperate stands. 
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 For example, we found that Cmin represented a larger fraction of Ctotal in oak than 

tulip poplar soils despite that oak AG litter generally has higher lignin concentration than 

tulip poplar (Hunter et al., 2003). Though both forest types share a similar climate, tulip 

poplar soils are on average cooler, so in the field temperature effects on decomposition 

should favor oak. Why then was the proportion of recalcitrant soil C lower in the oak 

stand? More importantly, why was the rate constant for glycine turnover ~30% lower in 

the oak soils compared to tulip poplar soils (Table 2.4)? The answer is likely multi-

faceted and includes factors such as legacies of disturbance, patterns of recovery, and 

differences in soil texture, and soil moisture at each site. 

Both forest types established on highly eroded soils following agricultural 

abandonment and thus likely sustained large losses of SOM during the agricultural 

period. Yet, soils at the tulip poplar site contain twofold more C than the oak soils despite

a 20 year offset (oak > tulip poplar) in stand initiation favoring the oak site (Table 2.2). 

Moreover, though the forest floor in both sites is dominated by an Oi layer, only the oak 

stand had subordinate organic horizons and the forest floor in oak was up to fourfold 

deeper than that in tulip poplar despite similar annual inputs of AG litter (Table 2.1). 

These observations suggest the turnover of litter and incorporation into SOM is more 

rapid at the tulip poplar site. Given the relatively short duration of our incubation 

experiment (16 weeks), our data primarily reflect the turnover dynamics of soil C pools 

that are less resistant to decay. Therefore, a larger fraction of SOM in our oak stand might

consist of ‘less processed’ C which hasn’t undergone the degree of chemical 

transformation as SOM in tulip poplar. 
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Assuming a C-limited soil environment and a high metabolic demand, it is easier 

to understand why soil microorganisms in tulip poplar and sugar maple might have 

responded to our glycine additions with faster turnover rates than observed in oak or red 

pine where Cmin/Ctotal is significantly higher. The rapid response to ‘food events’, e.g. 

pulses of FAA and other low molecular weight compounds, is likely an evolutionary 

mechanism for meeting the maintenance demand of C-starved cells (Mondini et al., 

2006). In many soils, the microbial biomass maintains a high state of metabolic readiness 

(Brookes et al., 1987), even though substrate availability is usually scarce. The rationale 

for sustaining such a high metabolic status in an energy-poor environment stems from the

need to compete effectively for temporally and spatially infrequent pulses of labile 

substrate. 

We recognize that processes affecting the biodegradation of glycine reflect a 

complex of interacting factors including temperature, sorption reactions, pool size, and 

microbial community composition and metabolic status. For instance the community 

structure of soil microorganisms can strongly influence decomposition of plant litter and 

rates of incorporation into SOM and thus the availability of labile C (Elliot et al., 1993; 

but see Kemmitt et al., 2008). The size of the microbial biomass is less important than the

activity of the community in predicting decomposition rates, and the metabolic activities 

of decomposers are often adapted to available substrates (Elliot et al.,1993; but see 

McClaugherty et al.,1985). Data from a companion study, (McFarland et al., submitted), 

indicate no correlation between microbial biomass N and glycine turnover rates, 

suggesting that patterns in glycine turnover are likely driven by differences in 
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heterotrophic consumption rather than the size of the microbial biomass per se. Similarly,

other factors, some of which we measured (soil temperature, FAA pool size) and some of

which we didn’t (sorption reactions, microbial C substrate preference) could also have 

influenced FAA use among forest types. However, regardless of their contribution to the 

cycling dynamics of FAA, these effects were not strong enough to disrupt the strong 

relationship between FAA turnover and Cmin.

CONCLUSION

Amino acids represent a significant fraction of dissolved organic N in forest soils 

and a number of experiments have elucidated factors controlling the production and/or 

turnover of these compounds. However, the primary motivation behind these research 

efforts has centered on issues pertaining to plant nutrition or the overall N economy of 

soils, not their role as a C substrate that influences the metabolic status of the soil 

microbial community. This study illustrates, 1) that FAA are an important substrate for 

soil microbial metabolism in many terrestrial forest communities, and 2) patterns of 

amino acid turnover in situ across ecosystems are closely linked to indices of SOM 

quality. We found that across large spatial scales, consumption of glycine by soil 

microorganisms is better explained by changes in soil C availability than cross-ecosystem

variation in soil temperature or standing pools of FAA. This suggests the overall 

decomposability of native C and patterns of heterotrophic consumption of soil C 

influence decomposition rates for low-molecular-weight organic substrates such as amino

acids. 
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Table 2.1  Select stand characteristics for each of the six forest ecosystems employed in 

the study. 

aAM = arbuscular mycorrhizae and EM = ectomycorrhizae.
bOverstory was determined as percentage basal area. 
cLitterfall was collected from September 1998 to September 1999 for balsam poplar and   
 white spruce; 1999-2000 for white oak, tulip poplar, sugar maple and red pine.
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 SITE

STAND PARAMETER Tulip poplar White oak Sugar maple Red pine Balsam poplar White spruce
Latitude 35° 4′ N 33° 25′ N 46° 39′ N 47° 6′ N 64° 40′ N 64° 41′ N
Dominant mycorrhizal 

associationa
AM

EM AM EM EM EM
Stand age (yr) 40 >60 95-100

overstory

50 80-100 150-250

Mean annual temperature ( C) 12.7 16.5 3.8 3.8 -3.3 -3.3
Mean annual precipitation (mm) 1816 1263 841 883 287 287
Percent overstoryb 85 68 92 100 70 98
Stem density (trees·ha-1) 2396 391 707 522 922 400
Basal area (m2·ha-1) 34 26 33 34 37 30
Total litterfallc (g·m-2·yr-1) 1468 1496 450 386 259 102
Soil classification Humic Hapludult Typic-Rhodic

Hapludult

Typic

Haplorthod

Entic

Haplorthod

Typic Cryofluvent Typic

Cryofluvent
Soil texture Sandy loam clay loam sandy loam sandy loam organic to alluvial

silt

organic to

alluvial silt
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Table 2.2 Select soil properties for each of the six forest ecosystems employed in the study. For soil C and N (n = 6),
FAA (n = 15), and DIN (n = 18), values are mean ± S.E. Letters denote significant differences (P ≤ 0.05) between 
forest types.

SITE
SOIL PARAMETER Tulip poplar White oak Sugar maple Red pine Balsam poplar White spruce
Soil organic carbon (gC•kg-

1)  

      Upper horizona

      Lower horizonb

57.4 ± 2.8cd 26.1 ± 3.1d 67.3 ± 5.3c 38.26 ± 2.8cd 232.8 ± 12.4a 168.9 ± 13.8b

44.8 ± 5.6a 18.5 ± 1.6b 37.3 ± 11.0a 15.5 ± 0.3b 19.4 ± 2.9b 35.1 ± 5.6ab

C:NUPPER 14.0 16.7 13.4 21.5 18.8 23.2
Total soil nitrogen (gN•kg-1)

      Upper horizona

      Lower horizonb

4.1 ± 0.2c 1.6 ± 0.1d 5.0 ± 0.3c 1.78 ± 0.02d 12.4 ± 0.6a 7.3 ± 0.5b

2.9 ± 0.4a 1.1 ± 0.1b 2.9 ± 0.8a 0.8 ± 0.0b 1.2 ± 0.2b 1.8 ± 0.3ab

C:NLOWER 15.3 16.7 13.0 20.0 16.6 19.3
Soil pH (0-20 cm) 5.7 5.2 4.4 4.5 6.0 5.5
TFAA (μg N·g-1 ) 0.57 ± 0.09c 1.30 ± 0.39c 0.97 ± 0.14c 3.25 ± 0.69bc 8.61 ± 1.49a 6.45 ± 1.20ab

DIN (μg N·g-1 ) 3.24 ± 0.21a 2.67 ± 0.36a 3.50 ± 0.29a 1.13 ± 0.11b 2.80 ± 0.23a 3.39 ± 0.50a

TFAA:DIN 0.18 0.49 0.27 2.88 3.08 2.08
 aUpper horizon = 0-7cm below the litter layer
 blower horizon = 7-20cm below the litter layer.
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   Table 2.3 Cmin turnover constants, residence time for Cmin, and Cmin as % of total soil C for each of the six soil types used in 
the laboratory incubation study. C turnover constants, expressed ‘per day’, and residence times (inverse of turnover constant)
were calculated from nonlinear single exponential models fitted to cumulative product curves generated. Mean  S.E. 
Letters denote significant differences (P ≤ 0.05) between forest types

UPPER SOIL HORIZON LOWER SOIL HORIZON

STAND
TYPE

k (d-1) Residence time
(d)

Cmin as % of
Ctotal

k (d-1)
Residence time

(d)
Cmin as % of

Ctotal

Tulip poplar 0.0228 ± 0.0009a 44.3 ± 1.8a
3.35 ± 0.20a 0.0224 ± 0.0007a 

45.0 ± 1.5a
2.93 ± 0.27c

White oak 0.0187 ± 0.0014a
55.0 ± 4.5ab

5.72 ± 0.65a
0.0208 ± 0.0010a

48.8 ± 2.7a 4.47 ± 0.33bc

Sugar maple 0.0140 ± 0.0005b 71.8 ± 2.6ab 4.92 ± 0.54a
0.0131 ± 0.0008b

77.8 ± 5.3ab 4.75 ± 0.88bc

Red pine 0.0066 ± 0.0014c
184.0 ± 39.0bc

15.67 ± 1.13b
0.0119 ± 0.0016b

92.3 ± 13.4b 7.98 ± 0.74a 

Balsam poplar 0.0088 ± 0.0011c
124.8 ± 21.2ac

4.26 ± 0.44a
0.0099 ± 0.0011bc

107.8 ± 11.9b 5.60 ± 0.72ab

White spruce 0.0061 ± 0.0012c 213.2 ± 59.2c 7.22 ± 1.26a
0.0060 ± 0.0005c

171.2 ± 12.0c 5.16 ± 0.51bc
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Table 2.4 Soil temperature and turnover parameters derived from nonlinear single exponential models fitted to cumulative
production of 13CO2 from cores treated withU-13C-glycine. Values are mean ± S.E. (n = 6). Letters denote significant
differences (P ≤ 0.1) between forest types. Soil temperatures represent a temporal (n = 24) and spatial (n = 6) average of 
hourly values for each site collected at 7cm depth for the duration of the glycine mineralization assay.

STAND TYPE
Soil

temperature
( C) k (hr-1)

Residence time
(hr)

APE 13Ccum

(24 hour)

Tulip poplar
17.0 1.03 ± 0.14a

1.05 ± 0.13a 1.08 ± 0.12a

White oak
21.5 0.70 ± 0.04ab

1.44 ± 0.08ab 1.00 ± 0.11a

Sugar maple
13.8 0.88 ± 0.15ab

1.27 ± 0.23ab 0.87 ± 0.07ab

Red pine
15.7 0.64 ± 0.10ab

1.71 ± 0.20ab 0.53 ± 0.05c

Balsam poplar
12.8 0.69 ± 0.06ab

1.50 ± 0.12ab 0.55 ± 0.07bc

White spruce
9.3 0.53 ± 0.04b

1.96 ± 0.19b 0.43 ± 0.04c
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FIGURE LEGENDS

Figure 2.1 Cumulative CO2 evolution expressed as (a) C·g-1 dry mass and (b) C·g-1 C, 

from upper soil horizons (0-7 cm depth; see methods) for six North American forest 

ecosystems. Values (mean ± S.E.) were fitted to a nonlinear single exponential model. 

Symbols are as follows:  Tulip poplar (Liriodendron tulipifera), White oak (Quercus

alba),  Sugar maple (Acer saccharum),  Red pine (Picea resinosa),  Balsam poplar

(Populus balsamifera), and  White spruce (Picea glauca).

Figure 2.2 Cumulative CO2 evolution expressed as (a) C·g-1 dry mass and (b) C·g-1 C, 

from lower soil horizons (7-20 cm depth; see methods) for six North American forest 

ecosystems. Values (mean ± S.E.) for A were fitted to a nonlinear single exponential 

model. Symbols are as follows:  Tulip poplar (Liriodendron tulipifera), White oak 

(Quercus alba),  Sugar maple (Acer saccharum),  Red pine (Picea resinosa),  

Balsam poplar (Populus balsamifera), and  White spruce (Picea glauca).

Figure 2.3 Concentration of soil free amino acid-N across a latitudinal gradient of six 

forest ecosystems. Data are means (n = 15)  S.E.

Figure 2.4 The time dependent mineralization of 13C-labelled glycine in situ across six 

North American forest ecosystems. Values are expressed as atom% enrichment of 13C-

CO2. CO2 efflux above each injection area was sampled at 45 min, 2, 12, and 24 h. 

Symbols are as follows:  Tulip poplar (Liriodendron tulipifera),  White oak 

(Quercus alba),  Sugar maple (Acer saccharum),  Red pine (Picea resinosa),  

Balsam poplar (Populus balsamifera), and  White spruce (Picea glauca). Data are means

(n = 6) ± S.E.
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Figure 2.5 Relationship between the rate constants for in situ glycine mineralization 

(kglycine) and the soil C:N (upper horizon; see methods). Mineralization constants are 

means (n = 6) calculated from nonlinear single exponential models fitted to cumulative 

product curves. The line is a linear regression fitted to the data [r2 = 0.82].

Figure 2.6 Relationship between the rate constants for in situ glycine mineralization 

(kglycine) and the decomposition potential for soil C (upper horizon; see methods) 

expressed per unit C (kC) among all forest types. Values are means (n = 6) calculated for 

each constant from nonlinear single exponential models fitted to cumulative product 

curves generated for each data set. The line is a linear regression fitted to the data [r2 = 

0.67]. 
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Figure 2.1a

91

91



0 20 40 60 80 100 120

Time (day)

0

20

40

60

80

C
u

m
u

la
ti

ve
 C

O
2 

ev
o

lu
ti

o
n

 (
m

g
 C

 g
-1

 C
)

Sugar maple = 49.4*(1-e(-0.0140*Day))

Tulip poplar = 33.5*(1-e(-0.0228*Day))

Balsam poplar = 42.6*(1-e(-0.0088*Day))

White spruce = 72.2*(1-e(-0.0061*Day))

Red pine = 158.5*(1-e(-0.0066*Day))

White oak = 57.2*(1-e(-0.0188*Day))

Figure 2.1b

92

92



0 20 40 60 80 100 120

Time (day)

0.0

0.4

0.8

1.2

C
u

m
u

la
ti

ve
 C

O
2 

ev
o

lu
ti

o
n

 (


g
 C

 g
-1

 d
ry

 s
o

il
) Balsam poplar = 977.1*(1-e-0.0103*Day)

Tulip poplar = 1255.9*(1-e-0.0227*Day)

Red pine = 1165.8*(1-e-0.012*Day)

Sugar maple = 1425.3*(1-e-0.0132*Day)

White oak = 821.8*(1-e-0.0193*Day)

White spruce = 1664.3*(1-e-0.0061*Day)

Figure 2.2a

93

93



0 20 40 60 80 100 120
Time (day)

0

20

40

60

C
u

m
u

la
ti

ve
 C

O
2 

ev
o

lu
ti

o
n

 (
m

g
 C

 g
-1

 C
)

White spruce = 51.6*(1-e-0.0060*Day)

Sugar maple = 47.5*(1-e-0.0131*Day)

White oak = 44.7*(1-e-0.0208*Day)

Balsam poplar = 56.0*(1-e-0.0099*Day)

Red pine = 79.4*(1-e-0.0119*Day)

Tulip poplar = 29.3*(1-e-0.0224*Day)

Figure 2.2b

94

94



Site

0

2

4

6

8

10

T
F

A
A

 c
o

n
ce

n
tr

at
io

n
 (

g
 A

A
-N

g
-1

 d
ry

 s
o

il
)

White spruce
Balsam poplar

Sugar maple
Red pine

Tulip poplar
White oak

ab

a

c
c

c

bc

Figure 2.3

95

95



0 5 10 15 20 25

Time (hrs)

0.0

0.4

0.8

1.2

White spruce = 0.43*(1-e-0.53*t)

Red pine = 0.53*(1-e-0.64*t)

Sugar maple = 0.87*(1-e-0.88*t)

Tulip poplar = 1.08*(1-e-1.03*t)

White oak  = 1.00*(1-e-0.70*t)

C
O

2 
ev

o
lu

ti
o

n
 (

A
P

E
cu

m
 1

3 C
)

Balsam poplar =0.55*(1-e-0.69*t)

Figure 2.4

96

96



12 14 16 18 20 22 24

C:N 

0.5

0.6

0.7

0.8

0.9

1.0

K
g

ly
c

in
e

Sugar maple

Tulip poplar

White Oak

White spruce

Red pine
Balsam poplar

Figure 2.5

97

97



0.005 0.010 0.015 0.020

KC 

0.5

0.6

0.7

0.8

0.9

1.0

K
g

ly
ci

n
e

Red pine

White oak

Tulip poplar

Balsam poplar

Sugar maple

White spruce

Figure 2.6

98

98



CROSS-ECOSYSTEM COMPARISONS OF IN SITU PLANT UPTAKE OF

AMINO ACID N AND NH4
+3

ABSTRACT

The failure of net nitrogen (N) mineralization estimates to account for a large proportion 

of annual plant N supply in a number of ecosystems has focused attention on the 

importance of plant and microbial capacity to directly absorb amino acids. However, 

plant and microbial use of N can be simultaneously mutualistic and competitive, 

particularly in ecosystems dominated by mycorrhizal fungi. The goal of our research was 

to quantify plant uptake of organic and inorganic-N across a broad latitudinal gradient of 

forest ecosystems that varied with respect to overstory taxon, edaphic characteristics, and 

dominant mycorrhizal association. Using a multiple-isotope (13C, 15N) tracer design we 

followed in situ the cycling dynamics of NH4
+ and glycine through various soil pools and 

fine roots over 14 days. Recovery of 15N as soil N varied with respect to N form, forest 

type, and sampling period; however, there were similarities in the cycling dynamics of 

glycine and NH4
+ among all forest types. 15N enrichment of soil dissolved inorganic N 

(DIN) and dissolved organic N (DON) declined sharply following injections for both 

NH4
+ and glycine-treated cores at all sites. Within 45 minutes we recovered ~60% of the 

NH4
+ label as DIN and ~38% of the glycine label as DON. These values declined to <5% 

3 Submitted to Ecosystems as McFarland JW, Ruess R, Kielland K, Pregitzer K, Hendrick

R, Allen M. Cross-ecosystem comparisons of in situ plant uptake of amino acid-N and 

NH4
+.
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for both pools in the subsequent two weeks. Microbial immobilization of 15N was 

immediately apparent for both treatments and represented the largest sink (~25%) for 15N 

among extractable soil N pools during the first 24h. In contrast, fine roots were a 

relatively small sink (<10%) for both N forms, but fine root 13C enrichment indicated that

plants in all forest types absorbed glycine intact, suggesting that plants and microbes 

effectively target the same labile soil N pools. Relative uptake of amino acid-N versus 

NH4
+ varied significantly among sites and approximately half of this variation was 

explained by mycorrhizal association. Estimates of plant uptake of amino acid-N relative 

to NH4
+ were 3x higher in EM-dominated stands (1.6 ± 0.2) than AM-dominated stands 

(0.5 ± 0.1). We conclude that free amino acids are an important component of the N 

economy in all stands studied; however, in these natural environments plant uptake of 

organic N relative to inorganic N is explained as much by mycorrhizal association as by 

the availability of N forms per se.

INTRODUCTION

The majority of soil N is closely associated with soil organic matter (SOM) 

(Schulten and Schnitzer 1998), and in many forested ecosystems the mean residence time

for SOM fractions may vary from several years to several thousand years (Stevenson and 

Cole 1999). The slow turnover of this N pool has been cited as a major constraint to plant

nitrogen (N) supply. However, the operational definition for organic N is broad, 

encompassing both labile and recalcitrant forms. Polymeric molecules are often too large 

to cross membranes, but monomeric forms of organic N, e.g. amino acids and amino 
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sugars, are readily absorbed by plants (Schobert and others 1988; Kielland 1994; Raab 

and others 1999; Weigelt and others 2003; Finzi and Berthrong 2005). Though these N 

forms often represent only a small proportion of total soil organic N, the turnover of these

substrates has important implications for plant-microbial competition for N, effectively 

functioning as an alternative pathway for plant N supply in some ecosystems (Chapin 

1995; Kaye and Hart 1997). 

For example, laboratory incubations of late successional black spruce soils from 

interior Alaska have demonstrated that gross rates of N flux throughout the soil free 

amino acid (FAA) pool are substantially greater than gross rates of N mineralization 

(Jones and Kielland 2002). Correspondingly, plants in black spruce ecosystems absorb 

amino acids to a much greater extent than ammonium, roughly in proportion to their 

availability in the soil (Kielland and others 2006). Measures of amino acid turnover in 

situ reveal that FAA cycling rates are rapid across a variety of forest ecosystems as well 

as across broad latitudinal gradients (Kielland and others 2007; McFarland and others, 

unpublished manuscript). Residence times for FAA in some temperate forest soils are 

less than two hours (McFarland and others, unpublished manuscript), further supporting 

the notion that the cycling dynamics other labile N forms may be as significant to the N 

economy of terrestrial plants as the turnover of soluble inorganic N. 

Our incomplete understanding of the mechanisms controlling turnover and 

subsequent plant uptake of soil organic N is a major obstacle in modeling the N cycling 

dynamics of terrestrial forest ecosystems. This recognition has led to a revision of the 

traditional view of soil N cycling which emphasized the importance of net N 
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mineralization in regulating plant N availability (Schimel and Bennett 2004). Under the 

‘new paradigm’ of N cycling, plant preference for N reflects the relative dominance of a 

particular N form, e.g. NO3
-, NH4

+, or FAA-N, which is in turn mediated by microbial 

activity. In extremely N-limited environments, plants and microorganisms alike rely 

largely on monomers of organic-N, e.g. amino acids, to satisfy their N requirements. 

Since soil microorganisms have higher substrate affinities and larger surface-to-volume 

ratios than roots, plant N uptake under these conditions is considered to be ‘opportunistic’

as soluble organic N diffuses past the fine root complex from N-rich to N-poor 

microsites. At the other end of the N availability gradient, high rates of N mineralization 

coupled with a relatively homogenous resource distribution, reduces microbial 

competition for N; nitrifiers flourish in the presence of excess NH4
+, and plants rely 

primarily on inorganic N forms.

Though conceptually simple, this model of terrestrial N cycling has not fully 

evolved to encompass the role of plant and associated symbionts in mediating N 

bioavailability. Plant-microbial interactions for N can be simultaneously mutualistic and 

competitive, particularly in forest ecosystems where the microbial community structure is

dominated by fungi. In some floodplain stands of interior Alaska, it is estimated that 85-

90% of soil microbial biomass is fungal (Flanagan and Van Cleve 1983) and over 60% of

fungal richness is represented by root-associated taxa (D.L. Taylor personal 

communication). How much fungal biomass is actually in symbiosis with plants remains 

uncertain for many forest ecosystems, but from at least one account we know that 

extramatrical mycelia of ectomycorrhizal (EM) fungi can contribute up to one third of the
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soil microbial biomass (Högberg and Högberg 2002). This has several important 

implications with regard to plant nutrition as there is some evidence that organic matter 

quality, mineral N turnover, the type of mycorrhizal association, and organic N uptake by

plants are intercorrelated across a broad range of tropical, temperate, and boreal forests 

(Allen and others 1995). 

Expanding on Moser’s (1967) global map of forest mycorrhizal types, Read 

(1983) proposed a geographical distribution of mycorrhizal associations based on their 

use of organic N forms. This hypothesis was based on observations that soils high in 

surface organic matter have ecto- and ericoid mycorrhizae, while environments with low 

accumulation of surface organic matter are dominated by arbuscular mycorrhizal (AM). 

Direct uptake of labile organic N has been demonstrated for many plant species across a 

range of biomes irrespective of mycorrhizal association (Chapin and others 1993; 

Kielland 1997; Näsholm and others 1998; Raab and others 1999; Schmidt and Stewart 

1999; Streeter and others 2000; Näsholm and others 2000; Henry and Jefferies 2003; 

Nordin and others 2004; Xu and others 2004; Finzi and Berthrong 2005). However, 

ericoid and some EM fungal associations are physiologically capable of directly 

hydrolyzing certain components of SOM and transferring the resultant N to the host plant

(Bajwa and Read 1985; Abuzinadah and others 1986; Finlay and others 1992). Work in 

stands of Pinus muricata in northern California suggests a coevolved strategy for N 

acquisition whereby exoenzyme production by EM symbionts facilitates host access to 

recalcitrant soil organic N derived from its own litter (Northrup and others 1995). In 

contrast, AM associations appear to have a more limited ability to decompose organic 
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matter (Read 1991; but see Hodge and others 2001). Still, AM fungi possess permeases 

for amino acid uptake (Cappellazzo and others 2008), and recent experiments of plant 

amino acid uptake indicate that both AM plants and some non-mycorrhizal plants absorb 

amino acids under conditions where soil concentrations of FAA are relatively high 

(Näsholm and others 1998; Raab and others 1999; Hawkins and others 2000). Whereas 

the importance of mycorrhizal associations in nutrient acquisition for vascular plants is 

well established (Allen 1991), the aforementioned studies pose several challenging 

questions regarding N cycling dynamics in terrestrial ecosystems. To what extent is plant 

potential for DON uptake realized in the field? Do mycorrhizal types differ in their 

capacity to sequester organic N for their host? If not, what are the principal factors 

controlling plant N source selectivity in terrestrial forests? These linkages between plant 

N uptake and mycorrhizal type have never been explicitly tested across ecosystems that 

vary in climate, soil organic matter quality, or dominant forest species. 

The objective of this project was to evaluate plant uptake of organic and 

inorganic-N in forest ecosystems across a broad latitudinal gradient of forest ecosystems. 

We hypothesized that plant preference for FAA across this range of forest ecosystems 

was inversely correlated with rates of inorganic N mineralization. Thus, in N-limited 

boreal ecosystems where low soil temperatures constrain N mineralization rates, we 

predicted that FAA would represent a greater proportion of the annual N requirements of 

vascular plants. Secondly, we hypothesized that mycorrhizal association plays a major 

role in determining the ratio of organic to inorganic N uptake among ecosystem types. 

Since EM-dominated soil communities generally exhibit more extensive hyphal networks
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and a greater capacity to degrade complex soil organic N than AM-dominated 

communities (Smith and Read 1997), we predicted that plant species from predominantly

EM colonized stands would have higher uptake of organic relative to inorganic N forms 

in the field. 

METHODS AND MATERIALS

Study sites

We chose a series of forest ecosystems that differed in climate, soil type, 

overstory taxon, and dominant mycorrhizal association (EM vs. AM), including stands 

from three regions in North America: southern temperate, northern temperate, and boreal.

In the southeastern United States, we sampled from two deciduous hardwood stands: 

AM-dominated tulip poplar (Liriodendron tulipifera) at the USDA Forest Service 

Coweeta Research Station in North Carolina and EM-dominated white oak (Quercus 

alba) at the B. F. Grant Experimental Forest in central Georgia. In northern Michigan we 

sampled in an AM-dominated sugar maple (Acer saccharum) stand near the Ford 

Forestry Center, as well as an EM-dominated red pine (Pinus resinosa) plantation just 

outside Houghton. Our boreal site was EM-dominated white spruce (Picea alba) stand 

located within the floodplain portion of the Bonanza Creek Experimental Forest near 

Fairbanks, AK. Two of these sites, Bonanza Creek and Coweeta belong to the Long-

Term Ecological Research (LTER) network while the B.F Grant and upper Michigan 

stands include areas where studies on C and N cycling dynamics have been conducted for

several decades. Select site and soil properties are presented in Table 3.1; specific 
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characteristics for these stands are described in detail elsewhere (Pregitzer and others 

2002; McFarland and others, unpublished manuscript). 

Field sampling 

Previous experiments in floodplain willow, balsam poplar, and black spruce 

communities along a primary successional gradient in interior Alaska, have demonstrated

the effectiveness of using a multiple isotope (13C, 15N) tracer approach (McFarland and 

others 2002; Kielland and others 2007), to quantify plant and microbial uptake of NH4
+ 

and amino acid-N in situ. The transient nature of inter-pool transfers of soil N as well as 

plant-microbial interactions during N acquisition makes it difficult to accurately evaluate 

any particular pool or flux in the laboratory, where plant and microbial uptake processes 

are often measured separately. Moreover, intact hyphal networks representative of the 

mycorrhizal community structure naturally occurring in forest ecosystems are nearly 

impossible to recreate under controlled environmental conditions. Therefore, we chose to 

conduct as much of our experimentation as possible in the field in order to directly 

observe linkages between plant N uptake and microbial turnover of soil N. 

The field component for our project was conducted in July 1999 for white spruce 

and from June to July 2000 for the remaining forest types. Our sampling protocol was 

similar to that of previous work conducted in floodplain balsam poplar stands of interior 

Alaska (McFarland and others 2002). Using a randomized complete block design, we 

established 3 replicate soil injection grids within a 9 m2 subplot. For the temperate forest 

stands, this design was replicated six times along a transect so that a minimum of 30 m 
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separated each subplot. In Alaska our experiment was conducted within three mature 

white spruce stands scattered along a 10 km stretch of the Tanana River. Within each 

stand, we established 3 subplots (n = 9) separated by a minimum of 20 m. For all forest 

types, the three grids in each subplot were injected with one of 2 treatment solutions or a 

control (distilled water). Treatment solutions were (1) (15NH4
+)2SO4 plus U-[13C]-glycine 

or (2) (NH4
+)2SO4 plus U-[13C][15N]-glycine. Unlabeled ammonium was added to the 

dually-labeled glycine treatment to mirror any fertilization effect brought about by the 

addition of glycine to the 15N-labeled ammonium treatment. Soils were injected to a depth

of 10 cm beginning at the L-F interface and cored to 12 cm in order to account for any 

vertical leaching of the label and to stay well within the zone for fine root development 

(Hendrick and Pregitzer 1996; Ruess and others 2006). We removed all leaf litter prior to 

injection, but added it back following treatment application to maintain moisture and 

temperature constancy in the soil environment around the injection area. Total injection 

volume was 37 ml (~1 ml·cm-2 for each injection area along our treatment grid), which 

delivered approximately 0.39 g 13C m-2 and 0.22 g 15N m-2 for both labeled solutions. 

Injecting a complete subplot with all treatments required approximately 20 min. Cores 

within each grid were harvested sequentially at 45 min, 2, 12, and 24 h, and 7 and 14 d.

Our coring grids consisted of 6 holes large enough to allow a soil corer with an 

inside diameter of 5.5 cm to pass through unobstructed (see McFarland and others 2002 

for grid design). Harvest periods were randomized within a grid. For each core the areal 

extent of our injections at 1 cm resolution was twice that of the area harvested. Since the 

center of each soil core removed matched exactly the center of its respective treatment 
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area, we were able to remove a soil core with a theoretically known amount of added 

label (600 g 15N and 1040 g 13C). 

To minimize the effect of microbial activity following harvest, initial processing 

for each soil core was conducted on site. Briefly, each core was split vertically into 2 

equal halves. One half was used for sorting and freezing roots for 13C and 15N analysis. 

The other half was used for 13C and 15N analysis of (1) total soil C and N, (2) extractable 

dissolved inorganic N (DIN) and dissolved organic N (DON), and (3) microbial biomass 

N (MBN). Soils were sieved in the field through a 2.36 mm (#8) screen. Samples for 

determination of DIN were extracted in the field with 0.5M K2SO4, gravity filtered 

through 0.7m glass fiber discs and treated with phenyl mercuric acetate (PMA) to 

inhibit microbial growth during storage. Samples for determining microbial biomass N 

were fumigated in the field with ethanol-free chloroform for 24 h in a modified pressure 

cooker, transported to a laboratory under vacuum, and then extracted in 250 ml glass 

beakers with 0.5M K2SO4 (Brookes and others 1985). All extractions were conducted on 

a shaker table at 80 rev min-1 for 1 hour. After initial processing, all root and soil samples 

were frozen with liquid N in the field, and transported on ice to laboratory facilities at the

University of Alaska, Fairbanks (white spruce stands) or stored at -80 C for several days 

(temperate stands) prior to overnight shipment to Fairbanks, AK. 

We collected additional cores (n = 15) within each forest type for determination 

of amino acid-N concentrations using fluorometrics (Jones and others 2002). Sampling 

and laboratory protocols for handling and analyzing these samples are discussed 

elsewhere (McFarland and others, unpublished manuscript).
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Laboratory analyses

Root samples were thawed and hand sorted to remove any residual organic 

matter. We separated roots into two size classes. Roots over 1 mm diameter were 

classified as coarse, while those 1 mm or less were classified as fine with the exception of

tulip poplar which had much thicker fine roots than the other forest types. The threshold 

for fine root classification in tulip poplar was set at 2 mm. Fine root samples were freeze-

dried and subsequently powdered using a modified roller mill to ensure complete 

homogenization. Soil moisture content was determined by drying subsamples at 60 C for

48 h, and subsamples were ground to a powder using the same roller mill design. Both 

roots and soils were analyzed for C, N, 13C, and 15N using a Europa Scientific continuous 

flow mass spectrometer (PDZ Europa, Inc.). All isotope values obtained for root and soil 

C and N were normalized using standards derived from NBS-19 or IAEA ammonium 

sulfate, respectively. 

Fumigated and nonfumigated soil extracts were digested using a modified micro-

Kjeldahl procedure (Bremner and Mulvaney 1982). All soil extracts were analyzed for 

either available NH4
+ or NO3

- (DIN) or total Kjeldahl N (TKN) by flow injection 

colorimetry using a Technicon autoanalyzer (Whitledge and others 1981). DON was 

calculated as the difference between TKN and DIN in unfumigated extracts, while MBN 

was calculated as the difference in TKN between fumigated and unfumigated digests. We

did not use a conversion factor to correct the extraction efficiency of N (KN) for microbial

biomass determinations. A conversion factor is highly dependent on edaphic 

109

109



characteristics within each forest type, including microbial composition, and thus likely 

to be quite variable among the stands used in this study. Moreover, a conversion factor 

could over-represent the amount of label sequestered within microbial biomass, as freshly

assimilated N is more chloroform labile than the more recalcitrant components of MBN.

Subsamples from all three soluble N pools (DIN, DON, and MBN) were diffused 

in sealed glass containers to determine 15N content as described by Khan and others 

(1997). For undigested soil extracts this procedure entailed pipetting 10ml of the sample 

into a one-pint (~500 ml) mason jar. Two quartz filter disks (Whatman QM-A) were 

placed on stainless steel holders attached to the lid of each Mason jar and acidified with 

10l of 0.5M H2SO4. Five acid-washed glass beads were added to the jar along with 0.2 g

of Devarda’s alloy to reduce and collect nitrate-15N. To bring the sample N concentration 

up to a detectable range, we spiked each container with 50l of a 100ppm (14NH4)2SO4 

solution (0.366% 15N). We added approximately 0.2 g of MgO to each container just prior

to sealing the unit and heating it to 45 C for 8 h. Adding MgO reduces the pH of the 

extraction solution causing all NH4
+ in solution to volatilize and collect on the acidified 

discs. The protocol for digested samples follows a similar procedure with the exception 

that 10 ml of 10M NaOH is used in lieu of MgO and the addition of Devarda’s alloy is 

not necessary. For all pools, standards with a known atom % 15N were analyzed along 

with the samples to evaluate diffusion efficiency.

Calculations and statistical analyses
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We report all isotope values for soil and root C and N pools as percent recovery of

added label. Recovery of isotopic labels was calculated for individual cores by 

multiplying pool size (µg C or N·g-1 dry root or soil) by the respective 13C or 15N atom % 

enrichment (APE) and dividing by the amount of label added. APE was determined by 

subtracting the atom % 13C or 15N of control cores from the atom % 13C or 15N of treated 

cores. Control values were averaged within stands prior to use in estimating isotopic 

enrichment. To economize our analyses we randomly selected one control core from each

subplot within a stand (n = 6). For each core the areal extent of our injections (59.7 cm2) 

was ~2.5x the areal extent of the core harvested (23.7 cm2; total core volume = 285 cm3); 

we used this ratio to estimate the amount of isotope (~600 µg 15N and 1040 µg 13C) 

applied to each core. 

 Temporal variation in % label recovery (13C and 15N) within soil and root, and C 

and N pools was determined with repeated measures analysis of variance (ANOVA) 

using the GLM procedure (SAS Systems version 9.1, 2003). For each response variable 

we included the interaction of treatment and field replicate with sampling period in the 

ANOVA model. Since a significant temporal effect could be due to differences at just 

one sampling period, we conducted univariate tests to determine at which sampling 

periods our response variable differed. Specific treatment effects were identified for each 

sampling period using Tukey’s HSD statistic for multiple comparisons of means (α = 

0.05). When necessary, all variables were log or square-root transformed prior to analysis

in order to meet assumptions of normality and homogeneity of variance. All inferences 

regarding pool dynamics were made at the stand level. 

111

111



RESULTS

Soil and root pools of N

We observed several quantitative and qualitative differences in soils along our 

latitudinal transect. For instance, though we did not measure soil bulk density, we did 

calculate the average mass of cores harvested at each site. White spruce cores averaged 

less than half the mass (90 g) of cores collected from the temperate biomes (200-300 g), 

reflecting the high organic matter content in the upper horizons. Values derived from 

control samples revealed that soluble N pools also differed significantly among sites; 

however, most of this variation was attributable to comparisons between boreal white 

spruce and the temperate forest types (Table 3.1). DIN concentrations were lowest in red 

pine (1.1 ± 0.1 µg·g-1) and highest in white spruce (5.5 ± 0.5 µg·g-1), although temperate 

forest soils generally had higher rates of net mineralization. DON was also lowest in red 

pine (13.6 ± 0.9 µg·g-1) and highest in white spruce (42.6 ± 4.0 µg·g-1), with the two 

southern temperate stands having average DON concentrations that were almost twice 

those observed in the northern temperate stands. Soil concentrations of FAA-N varied 

more predictably with latitude, increasing over tenfold from just over 0.5 µg AA-N g-1 in 

tulip poplar to 6.5 µg AA-N g-1 in white spruce. Together, these data indicate that the N 

additions associated with our treatment applications enhanced the DIN and DON 

concentrations differently at each site. Though white spruce soils had the highest 

concentrations of DIN, enhancement of DIN was lowest in sugar maple (68 %) due to 

substantially higher masses for the temperate soil cores. In contrast, we increased DIN 
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concentrations to the greatest degree in red pine (185%) due to relatively low standing 

stocks of NH4
+ and NO3

-. Augmentation of DON was comparatively even across forest 

types ranging from 10% in white oak to 17% in sugar maple; although, when considering 

only the FAA fraction of DON, our amino acid amendment represented a two to fivefold 

increase in FAA-N for the temperate deciduous stands, but less than a doubling of FAA-

N for either coniferous stand. 

Live fine root biomass differed significantly among forest types (F4,391 = 10.53, P 

< 0.001 ), though most values fell within a relatively narrow range (238.0-350.0 g·m-2 to 

12 cm depth) and did not appear to vary predictably with taxon, mycorrhizal association, 

or latitude. Anecdotally, we observed differences in specific root length among stands. In 

most instances average fine root diameter was considerably less than 1 mm regardless of 

forest type; tulip poplar was the notable exception in this instance with some fine roots > 

1mm. 

Partitioning of 15NH4
+ and 13C15N-glycine in soil pools

Total recoveries of the 15N-labeled tracers are summarized for all sampling 

periods and soil N pools in Table 3.2. In bulk soil samples (soil from which only roots are

removed), recovery of 15N varied significantly among forest types for both NH4
+ (F4,193 = 

16.07; P < 0.0001) and glycine-amended (F4,193 = 24.40; P < 0.0001) cores. Forty-five 

minutes following injections average recovery of label in bulk soil ranged from 63 ± 3% 

(sugar maple) to 108 ± 5% (tulip poplar) for the NH4
+ treatment, and from 60 ± 5% 

(white spruce) to 89 ± 6% (tulip poplar) for the glycine treatment (Figure 3.1). Mean 

recovery of 15N declined over the next two weeks, albeit slightly for some stands (Table 
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3.2); however, this trend was significant only for sugar maple. We observed no 

significant treatment effect on recovery at any site with the exception of the white spruce 

stands where total recovery of 15N in NH4
+-amended cores (73 ± 2%) cores was 

approximately 13% higher than cores receiving the glycine treatment (60 ± 2%; F5,40 = 

3.60; P = 0.001). Still, comparison of treatment differences at each sampling period 

indicate that treatment effects in white spruce were significant for only two sampling 

periods (12 and 24 h), largely due to anomalously high recoveries in cores receiving 

15NH4
+.

Recovery of 13C in bulk soil declined significantly at all sites throughout the 

experiment (P < 0.05; Figure 3.2). Initial recoveries in the temperate stands ranged from 

78 ± 7% in red pine to 90 ± 7% in sugar maple. After two weeks, overall recovery of 

labeled glycine dropped to ~50% for all stands. In boreal white spruce, temporal patterns 

of 13C recovery resembled those for the temperate stands, but the proportional recovery of

label at any sampling period was approximately half that of the temperate stands (Figure 

3.2). This discrepancy between temperate and boreal stands might be attributable to rapid

mineralization of glycine label to CO2 in white spruce soils by C-stressed 

microorganisms; however, the more likely explanation is a dilution of our label by high 

background levels of 13C in these organic matter-rich soils (Näsholm and others 1998). 

We have observed a similar response in floodplain stands of balsam poplar and black 

spruce where high SOM content and thus high background 13C can mask tracer additions 

of labeled-C (Kielland and others 2006; McFarland and others 2002). 
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Recovery of 15N in soluble soil N pools varied with respect to N form, forest type,

and sampling period (Figure 3.3; Table 3.2), yet we also observed similarities in the 

cycling dynamics of both N forms among forest types. Recovery of our 15NH4
+ label as 

DIN declined sharply during the initial hours of the experiment at all sites. Less than one 

hour following treatment application, we recovered ~60% (averaged across sites) of 

15NH4
+ label as DIN. This value declined to 20% at 24 h, and to 4% two weeks following 

injection. This pattern was mirrored by a significant enrichment of the DON pool at all 

sites, suggesting rapid assimilation and release of 15NH4
+ as organic N by the microbial 

biomass. Recovery of 15NH4
+ as DON-15N increased from 3% at 45 min to 14% at 24 h 

before declining to near background levels at the conclusion of the 14-d experiment. In 

glycine-treated cores, we found a similar decline in the recovery of label as DON 

throughout the experiment. Recovery of 15N-glycine as DON-15N averaged 38% across all

sites at the first sampling period, less than 10% at 24 h, and only 5% at the final sampling

period. Some of the glycine 15N label was quickly mineralized as we noticed a significant 

enrichment of the DIN pool at the first sampling period. Average recovery of glycine 

label in the DIN pool peaked between 12 and 24 h before declining to less than 6% of 

total 15N addition two weeks later.

Immobilization of 15N label by the microbial biomass was apparent for both 

treatments within the first sampling period and represented the largest sink for 15N among

extractable soil N pools (Table 3.2). In cores receiving 15NH4
+, recovery of 15N averaged 

14% across all stands at the first sampling period. Recovery peaked 1 d later when 

microbial immobilization accounted for 21% of the added 15NH4
+ before declining to 
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~11% at 14 d (Figure 3.3). The amount of 15N recovered in MBN for glycine-amended 

cores closely mirrored that of cores treated with NH4
+. Average recovery increased from 

15% at 45 min to 25% at 24 h before declining to 14% at 14 d. With the exception of 

sugar maple, we observed no significant time-dependent differences in MBN recovery 

between treatments for any stand type, indicating that both N forms represent a labile N 

source for microbial assimilation. Total recovery of 15N in the microbial N pool was 

significantly higher for glycine than NH4
+ in sugar maple soils (F5,25 = 10.34; P = 0.024). 

However this effect disappeared within 12 h of treatment application as 15N recoveries 

among cores receiving different treatments varied more or less in concert for subsequent 

sampling periods. 

 Plant N uptake in situ

Net accumulation of 15N in fine roots increased throughout the two week 

experiment for both treatments. After 14 d, average recovery in fine roots ranged from 

1.9 ± 0.3% (white spruce) to 8.2 ± 1.1% (tulip poplar) for the NH4
+ treatment, and from 

1.6 ± 0.1% (white spruce) to 5.1 ± 1.5% (tulip poplar) for the glycine treatment. For all 

stands and sampling periods, 15N recovery in fine roots was higher for cores receiving 

15NH4
+; however, the significance of this effect was dependent on stand type and 

sampling period. For example, 12hrs into the experiment, root uptake of 15NH4
+ was 

significantly higher than that of 15N-glycine for all temperate deciduous stands, but not 

for either of the conifers (Figure 3.4a). Two weeks later, we observed a treatment effect 

only in tulip poplar fine roots (Figure 3.4b). The fact that glycine-15N and 15NH4
+ were not
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taken up by fine roots at the same rate in some stands signifies differences either in plant 

physiological capacity for uptake, or availability the two N forms, or both (see 

Discussion).

We observed enrichment of fine root 13C above background levels for all forest 

types at the first sampling period suggesting that a portion of our glycine label was taken 

up intact. However, in contrast to fine root N, recovery of 13C in fine roots was in most 

instances less than 1% of additions and demonstrated no significant increase beyond the 

first few sampling periods. This suggests a substantial fraction of the glycine label was 

not absorbed intact, but rather much of the 15N sequestered by fine roots was derived 

from microbial turnover of glycine. To test this idea, we regressed molar excess 13C 

against molar excess 15N in fine roots from each core receiving the doubly-labeled 

glycine treatment. To expand our comparison, we included data from three balsam poplar

stands along the Tanana River in interior Alaska (McFarland and others 2002). Slopes 

generated from these regressions indicate a decrease in fine root 13C enrichment relative 

to 15N enrichment throughout the experimental period for all forest types (Figure 3.5), 

confirming our assumption that direct uptake of glycine by fine roots was limited to the 

initial 2 h following treatment application. 

DISCUSSION

Microbial mediation of soil N availability
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Soil microorganisms at all sites rapidly incorporated both forms of added N, with 

up to 36% and 47% of our 15N amendments recovered in MBN within 24 h of soil 

injections for ammonium and glycine-treated cores, respectively (Table 3.2). Microbial 

immobilization of 15N coincided with a rapid depletion of original labeled forms over the 

same time period (Figure 3.3). Redistribution patterns of added 15N into other soluble N 

pools and retention within bulk soil suggests that microbial N turnover was a function of 

soil C to N balance at each site. Generally, soils with narrow C:N ratios are thought to 

promote higher rates of N processing due to C limitation, while microbial function is 

generally considered more N-limited in soils with a wider C:N ratio. Amino acids differ 

from DIN in their dual function as a source of both metabolic C and N. Therefore, we 

predicted stands with narrow soil C:N ratios would transform a greater proportion of 

glycine-N to DIN, compared to N-limited ecosystems where soil microorganisms would 

retain amino acid-N and C. Data from this experiment are consistent with that prediction. 

For example, soil N availability was relatively high in sugar maple and tulip poplar, 

where average C:N ratios in the top 7 cm (13-14) were the lowest recorded among forest 

types and significantly lower than those of red pine (22) or white spruce (23). 

Corresponding to these differences, we found that initial recovery of 15N-glycine as DON 

was 41-56% lower than recovery of 15NH4
+ as DIN for the two AM-dominated forest 

types (Figures 3.3a,c). Moreover, microbial-15N immobilization in sugar maple was 

significantly higher during the first 12 h of sampling for cores receiving 15N-glycine. In 

contrast, we observed no significant difference in recovery between 15N-glycine and 
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15NH4
+ as DON and DIN, respectively, at the first sampling period for any of the EM-

dominated stands (Figure 3.3b,d,e). 

Greater immobilization of 15N derived from glycine than NH4
+ does not 

necessarily imply microbial preference for glycine-N since dilution effects arising from 

differences in soil concentrations of amino acid- and NH4
+-N at each site could mask total

microbial uptake for each N form. Similarly, the fact that we did not apply site-specific 

correction factors in calculating 15N-MBN complicates cross-site comparisons of 

microbial immobilization of our substrates. However, when considering, 1) the majority 

of the glycine label disappeared from soil DON within 45 min, and 2) mineralization of 

glycine-N to DIN was higher than the conversion of NH4
+ to DON under sugar maple and

tulip poplar, we believe soil microorganisms in the two AM-dominated stands were 

utilizing glycine primarily as a C source. Additional support for this hypothesis comes 

from a companion study that investigated linkages between in situ glycine turnover and 

the overall decomposability of soil C at these same sites (McFarland and others, 

unpublished manuscript). Data from that study indicate soils under sugar maple and tulip 

poplar differed sharply from the EM-dominated stands with respect to their C economy. 

We found the rate of 13C-labeled glycine turnover to be significantly higher and labile soil

C pools to be significantly lower for the two AM-dominated stands than for red pine or 

white spruce, indicating that rapid immobilization of glycine in tulip poplar and sugar 

maple may be more a response of C-limitation than N-limitation for microbial growth.

Ecosystem N retention
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With the exception of sugar maple, the majority of our NH4
+ and glycine label 

remained in the non-biomass fraction of soil N after cycling through the microbial 

biomass. After 14 d, retention of 15N in root-free bulk soil ranged from 41 ± 3% (sugar 

maple) to 83 ± 10% (tulip poplar) for the NH4
+ treatment, and from 47 ± 7% (sugar 

maple) to 90 ± 6% (tulip poplar) for the glycine treatment. We have no explanation for 

relatively poor recovery of both labels in sugar maple soils at the first sampling period, 

other than mass flow away from the injection site due to steady precipitation shortly 

following the onset of our treatment applications. Nevertheless, sugar maple was the only

site where we witnessed a significant decline in label over time (Figure 3.1). 

Sugar maple soils tend to have high rates of nitrification and leaching (Lovett and 

Mitchell 2004). Since NO3
- is not a preferred N source for sugar maple (Templer and 

Dawson 2004; but see Fahey and Yavitt 2005), soils under these trees tend to have lower 

plant-mediated N retention relative to co-occurring species, e.g., beech, yellow birch, or 

hemlock. Moreover, ecosystem N export is negatively correlated with C:N ratio of the 

forest floor in forest ecosystems of north-eastern North America (Lovett and others 

2002). Low N demand by a relatively C-stressed soil microbial community could explain 

in part why soil 15N retention was significantly lower in sugar maple than the other forest 

types, particularly red pine, since both northern temperate stands developed on well-

drained sandy soils. Our cores extended only 12 cm below the litter layer, which is a 

relatively small fraction of the total soil depth in the sugar maple forest. Similarly, we did

not measure nitrification rates, so we can not quantify how much of the unrecovered 15N 
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in sugar maple was either exported from the coring area or resided in lower, unsampled 

soil horizons. 

 Short-term redistribution of 15N described here follows patterns of incorporation 

reported in similar studies (Näsholm and others 1998; McFarland and others 2002; Kaye 

and others 2003; Clemmensen and others 2007). Microbes rapidly immobilized labile 15N

corresponding to a concomitant decline in availability of the 15N tracer within soluble N 

pools. Two weeks later, less than 25% of our label was recoverable as DIN, DON, or 

microbial N at any site, but total recovery of 15N in the bulk soil remained statistically 

unchanged regardless of the N form initially applied. Microbial assimilation is an 

important N retention pathway (Zak and others 1990; Zogg and others 2000), but despite 

uncertainty in the efficiency of chloroform-fumigated soil extractions, microbial 

immobilization at its peak accounted for less than 50% of total 15N recovery. This 

suggests that other, unmeasured, processes, e.g. fixation within clay minerals, chemical 

reactions with soil humus, or production of recalcitrant microbial residues from rapid 

microbial turnover also contributed to the accumulation of stable soil N. 

The relative importance of clay and organic matter in transforming our labile N 

additions to non-exchangeable forms likely varied with the edaphic characteristics of 

each site. For instance, the mineral fraction of white oak soils contained up to 40% clay, 

likely lowering plant and microbial uptake and creating strong 15N retention capacity. 

However, low clay content at the remaining sites may have abiotically mediated N 

stabilization via direct chemical inclusion into recalcitrant SOM. Viewed broadly, biotic 
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and abiotic N immobilization obviously has important implications for plant nutrition and

N acquisition strategies.

Plant N uptake

In short-term competition events for N, plants are generally considered to be poor 

competitors against soil microorganisms (Jackson and others 1989; Zak and others 1990).

In our study, fine root recovery of 15N within 24 h of treatment application was 

approximately an order of magnitude less than microbial immobilization. Though these 

results appear to conform to the paradigm of plant-microbial competition for N, it is 

noteworthy that most studies addressing plant-microbial competition for N, including our 

own, regard the soil microbiota as a black box. However, there are serious flaws inherent 

to this experimental approach. First, the chloroform-fumigation procedure used for 

extracting and quantifying microbial N is indiscriminate in that it lyses cells from all 

living organisms in the soil. This includes functional groups such as mycorrhizae which 

are part of the plant complex and may not be “competing” with the plant for N. Second, 

as demonstrated by Ruess and others (2006), a large fraction of fine root biomass in 

boreal forest ecosystems is extremely small (< 350 µm). These fine roots are nearly 

impossible  to separate from the soil matrix and are easily fragmented during soil 

manipulation. Yet, they are the most active in nutrient absorption, and have the highest N 

content of all root size classes (Pregitzer and others 2002). In many pulse-chase isotope 

experiments, including this one, it is very possible that a large portion the N attributed to 

microbial immobilization is actually plant N assimilated in very fine root tips. The 
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resulting analytical bias against plant uptake is proportional to the magnitude of this 

experimental error. 

Fine root N ranged from 7.6 to 16.5 mg·g-1 and was highest in the AM-dominated 

stands, tulip poplar and sugar maple, and lowest in the EM-dominated stands, white oak 

and white spruce. In comparison, Pregitzer and others (2002) recorded fine root N values 

from the same sites that ranged from 8.5 to 30 mg·g-1 depending on tree species and root 

order. Fine root N decreases with increasing root order and it is possible that the lower N 

concentrations among our fine root samples are attributable to loss of some first order 

roots (200-300 μm diameter) during the initial processing in our field laboratory. 

Similarly, N sequestered within extramatrical hyphae in symbiotic association with these 

fine roots would be even more difficult to isolate from free-living heterotrophic biomass 

N. Assuming a large part of the nutrients acquired by mycorrhizae fungi are eventually 

transported to the host, plants may be better ‘competitors’ for soil N than currently 

recognized. 

The fact that plant and microbial 15N sequestration initially (< 12 h) increased for 

both N forms, implies that both groups of organisms were effectively targeting the same 

N resources. Additionally, plants are long-lived relative to microbes and thus we 

expected fine root acquisition of 15N to increase over time as plants capitalized on tracer 

remobilized following microbial turnover. Sequential sampling over 14 days revealed 

that fine roots steadily accrued the 15N label while recovery of 15N in MBN declined. 

However, given our experimental design, we were unable to determine whether increased

plant recovery of our 15N label stems from microbial turnover or simply delayed transfer 
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of 15N absorbed by extramatrical hyphae of mycorrhizal fungi. Moreover, our estimates 

of plant uptake are likely conservative due to translocation of the 15N tracer to 

aboveground sinks. For example, glycine metabolism in plant roots can yield serine and 

other products that are preferentially transported out of the root system (Schmidt and 

Stewart 1999). Similarly, root assimilation of inorganic N, an energy-expensive process 

which involves affixing C skeletons to these N forms, can also result in a significant 

amount of N transport from the root system. However, unlike NO3
-, which can be 

accumulated in the root vacuolar compartment as well as reduced for assimilation, NH4
+ 

becomes toxic at high concentrations and thus must be assimilated rather quickly. 

Therefore, in stands where nitrification potential and perhaps root NO3
- uptake is high 

(e.g., tulip poplar), differences in plant assimilatory pathways for inorganic N may 

account for comparatively high accumulations of 15N, particularly in cores receiving 

15NH4
+.   

At all sites we established plant capacity to absorb glycine intact, which is not 

extraordinary in light of a myriad of solution culture studies which have demonstrated 

direct amino acid uptake for a broad spectrum of plant species (Bajwa and Read 1985; 

Kielland 1994; Persson and Näsholm 2001; Finzi and Berthrong 2005; Svennerstam and 

others 2007; Krab and others 2008). The dogma that plants rely solely on inorganic N for 

their nutrition has been challenged both in the laboratory and the field (Virtanen and 

Linkola 1946; Kielland 1994; Schmidt and Stewart 1999; Raab and others 1999; Persson 

and Näsholm 2001; Miller and Bowman 2003; Finzi and Berthrong 2005; Xu and others 

2006), but the usefulness of these studies in establishing plant capacity to utilize alternate
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N forms only becomes relevant to plant nutrition when examined in view of soil N 

availability as mediated by microbial, including mycorrhizal, competition for these N 

forms.

Uptake data of tracer 15N alone may be misleading in assessing the relevance of 

different N forms to plant nutrition due to differences in availability of endogenous N 

(sensu Kielland and others 2006). Therefore, we adjusted our estimates of fine root N 

uptake to account for differential isotope dilution between treatments based on soil 

concentrations of DIN and free amino acid-N at each site (Figure 3.6). In order to 

broaden the scope of our comparison, we included plant uptake data from EM-dominated 

balsam poplar stands growing in the same landscape as our white spruce stands 

(McFarland and others 2002). We found that relative uptake of amino acid-N versus DIN 

was significantly (P ≤ 0.05) lower than 1:1 in tulip poplar and significantly higher than 

1:1 in red pine and balsam poplar; however, white oak, sugar maple, and white spruce 

were statistically near unity with respect to the two N forms. Additionally, both EM-

dominated white oak and AM-dominated tulip poplar had higher uptake rates for DIN 

than amino acid-N. Though these observations appear to indicate lack of physiological 

preference for amino acids based on mycorrhizal association, pool adjusted uptake was 

significantly different among forest types (F5,34 = 6.02, P < 0.001), and a substantial 

fraction of this variation was explained by mycorrhizal association. Plant uptake of amino

acid-N vs. DIN was threefold higher in EM-dominated stands (1.6 ± 0.2) than AM-

dominated stands (0.5 ± 0.1). Thus, FAA appears be an important component of the N 

economy in all these stands. What remains unclear is whether plant uptake of N is 
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determined more by the availability of N forms or an evolved physiological preference 

for a particular N form linked to mycorrhizal association (AM vs. EM). This uncertainty 

stems largely from our ignorance of the true extent of the involvement of mycorrhizal 

association in determining the patterns in N uptake observed in this study. Regardless, 

our data suggest that the relative importance of inorganic and organic N forms to the N 

economy of plants could be connected in part to the distribution of these major 

mycorrhizal types. 

Several aspects of our experimental approach limit our interpretations of plant 

uptake of the 15N tracer. For one, we could not account for secondary consumption of 15N 

by plants, particularly in later sampling periods. Cores treated with 15NH4
+ yielded 

detectable quantities of 15N-labeled DON within 45 min of treatment application. We 

suspect at least some of this 15N released to the DON pool represents exoenzyme 

production for decomposition of SOM (Sinsabaugh and Moorehead 1994), but the 

specific chemistry of this pool remains unknown. Once incorporated into the chemical 

architecture of soil microorganisms, it is impossible to deduce what N forms become 

plant-available as the microbial pool turns over and the 15N tracer is remobilized. 

Consequently, over the long-term (>24 hours), treatment applications become irrelevant 

as we cannot discern whether plant 15N absorption reflects uptake of organic or inorganic 

compounds or from what source (microbial vs. bulk soil) that N is derived. 

We are equally cautious about our interpretations concerning plant access to both 

N treatments in the field. In theory, enhanced N availability associated with label 

additions could have temporarily overwhelmed microbial transporter systems, giving 
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plants access to N outside their usual resource niche for N nutrition (McKane and others 

2002). However, in this study we don’t feel our N additions were excessive. Km values 

for uptake kinetics of soil amino acids, for instance, suggest that microorganisms 

typically have low-affinity transport systems. In general, soil concentrations of FAA or 

NH4
+ required to saturate the potential for soil microbial uptake are in the millimolar 

range (Vinolas and others 2001) while our N additions were significantly less.

CONCLUSION

Quantitative relationships between production and the availability of limiting 

resources cannot be established until reliable and accurate estimates of organic N cycling 

and uptake by plants are obtained. Our research provides important insights into the 

cycling dynamics of labile N in forested ecosystems. To our knowledge this study is the 

first to use a common experimental approach to develop quantitative patterns of 

microbial utilization and plant uptake of inorganic and organic N across a broad 

geographic and taxonomic range of forest ecosystem species. We found that while plant 

N uptake was low in comparison to microbial immobilization. Accumulation of our 15N 

tracer in plant tissue over several weeks indicated that they are effective long term sinks. 

Plant apparent N preference is governed to a large extent by N availability as mediated by

patterns of microbial utilization, and immobilization within abiotic soil pools; however, 

we could not discount the influence of distinctive plant-fungal symbioses in regulating 

plant N nutrition. Our data suggest plant capacity to directly absorb amino acids is a 
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pervasive characteristic for a variety of forest types across a large latitudinal gradient, 

regardless of dominant mycorrhizal association. Moreover, the finding that the ratio of 

fine root amino acid uptake was threefold higher for stands dominated by EM fungi than 

AM fungi suggests that mycorrhizal type mediates plant uptake for different N forms. 

This discrimination of N form by mycorrhizal type is probably due to unique functional 

attributes of AM vs. EM fungi in adaptation to physiochemical properties of the soil 

environments in which they have evolved.
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Table 3.1. Select site and soil properties of forest ecosystems used in cross-ecosystem evaluation of plant uptake of 

amino acid-N vs. NH4
+-N. AM = arbuscular mycorrhizae; EM = ectomycorrhizae; DIN = dissolved inorganic N;

 DON = dissolved organic N; FAA-N = free amino acid N. aMycorrhizal root tips are live AM or EM root tips per 

meter fine root of dominant overstory taxa and bpercent mycorrhizal infection is the number of healthy AM or EM 

tips per total tips counted. Dead tips or tips that were older or not easily distinguishable as mycorrhizal were not 

counted (Lansing unpublished data). cSoil temperatures represent daily average calculated from hourly measurements collected

during the first 24 hours of the tracer experiment. Soil and fine root data are mean ± SE, n = 6-9. Letters 

denote significant differences (P ≤ 0.05) between sites. Fine root mass estimates are reported on an areal basis to a 

soil depth of 12 cm. 

                                                                SITE

Parameter   Tulip poplar   White oak  Sugar maple      Red pine  White spruce

Latitude 35° 4′ N 33° 25′ N 46° 39′ N 47° 6′ N 64° 41′ N

Dominant mycorrhizal association AM EM AM EM EM

Mycorrhizal root tipsa

Percent mycorrhizal infectionb 30 >90 42 >90 >90

Percent overstory 85 68 92 100 98

Mean annual temperature (°C) 12.7 16.5 3.8 3.8 -3.3

Mean annual precipitation (mm) 1816 1263 841 883 287

Soil classification Humic
Hapludult

Typic-Rhodic
Hapludult

Typic
Haplorthod

Entic
Haplorthod

Typic
Cryofluvent

Table 3.1 (cont.)
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Soil texture sandy loam clay loam sandy loam sandy loam organic to

alluvial silt
DIN (µgN·g-1) 3.24 ± 0.21a 2.67 ± 0.36a 3.50 ± 0.29a 1.13 ± 0.11b 3.39 ± 0.50a

DON (µGn·g-1)  23.8 ± 1.6 a  24.7 ± 1.2 a  14.0 ± 1.8 b  13.6 ± 0.9 b  42.6 ± 4.0 c

FAA-N (µgN·g-1) 0.57 ± 0.09c 1.30 ± 0.39c 0.97 ± 0.14c 3.25 ± 0.69bc 6.45 ± 1.20ab

Fine root mass (g·m-2)  237.8 ± 12.7c  323.9 ± 14.3b  323.3 ± 11.0b  275.0 ± 14.2bc  350.0 ± 14.9a

Fine root N (mgN·g-1)    16.5    7.6    12.3    11.4     8.7

Average core dry mass (g)  202 ± 4   230 ± 4   264 ± 5   285 ± 4   90 ± 2

Soil temperature (°C)c    17.0    21.5    13.8    15.7     9.3
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Table 3.2. Percent recovery of added 15N within plant and soil pools at each sampling period. TP = tulip poplar; WO = 

white oak; SM = sugar maple; RP = red pine; WS = white spruce; Gly = glycine. Mean ± SE, n = 6-9.

Recovery of added 15N (%)
Site N form Pool 45 min 2 hr 12 hr 24 hr 168 hr 336 hr

TP NH4
+ DIN 87.27 ± 13.76 48.21 ± 10.56 23.07 ± 5.45 24.18 ± 5.24 6.36 ± 1.96 5.59 ± 1.88

DON 1.12 ± 0.51 2.68 ± 0.9 7.62 ± 5.30 6.93 ± 3.13 1.67 ± 0.43 2.18 ± 0.54
Microbial N 20.21 ± 7.62 32.25 ± 5.83 35.49 ± 6.81 30.57 ± 8.70 32.17 ± 4.75 22.58 ± 5.15
Fine Root N 0.41 ± 0.05 0.43 ± 0.15 1.68 ± 0.53 2.21 ± 1.25 3.73 ± 0.54 8.18 ± 1.13
Bulk soil N 108.32 ± 5.29 96.97 ± 11.77 94.17 ± 4.57 101.83 ± 8.13 88.80 ± 10.33 82.58 ± 9.67 

Gly DIN 11.32 ± 2.68 16.86 ± 4.05 19.84 ± 7.53 12.79 ± 3.67 8.08 ± 1.52 5.85 ± 1.64
DON 31.26 ± 2.08 15.00 ± 3.34 6.19 ± 1.66 3.74 ± 0.83 3.10 ± 0.40 2.94 ± 0.90
Microbial N 28.66 ± 7.96 26.88 ± 4.35 28.48 ± 4.76 34.29 ± 3.32 35.17 ± 3.54 22.56 ± 5.08
Fine Root N 0.28 ± 0.07 0.25 ± 0.06 0.67 ± 0.24 0.45 ± 0.09 3.24 ± 0.72 5.06 ± 1.54
Bulk soil N 89.01 ± 10.18 104.25 ± 7.79 102.00 ± 10.43 95.64 ± 11.11 87.36 ± 14.31 89.94 ± 5.85

WO NH4
+ DIN 55.25 ± 7.52 34.26 ± 12.03 15.43 ± 3.65 12.15 ± 1.86 10.84 ± 2.02 9.53 ± 2.39

DON 3.02 ± 1.38 5.56 ± 2.68 4.98 ± 2.10 7.59 ± 2.40 8.61 ± 1.48 9.61 ± 3.55
Microbial N 8.70 ± 4.08 11.77 ± 3.45 27.92 ± 7.05 24.13 ± 5.60 25.24 ± 6.92 13.72 ± 4.96
Fine Root N 0.26 ± 0.04 0.33 ± 0.04 0.76 ± 0.13 0.86 ± 0.14 1.33 ± 0.37 3.42 ± 1.27
Bulk soil N 91.79 ± 7.99 85.80 ± 10.49 95.84 ± 9.65 80.95 ± 5.06 90.24 ± 10.33 88.63 ± 11.33

Gly DIN 7.80 ± 0.83 10.39 ± 3.78 10.12 ± 2.65 10.45 ± 2.16 6.05 ± 2.22 5.94 ± 1.47
DON 41.20 ± 7.39 41.24 ± 6.92 15.86 ± 1.37 12.47 ± 3.33 8.01 ± 1.86 12.00 ± 5.21
Microbial N 9.87 ± 4.51 11.60 ± 5.33 29.66 ± 8.65 21.11 ± 4.87 22.95 ± 4.04 16.99 ± 5.46
Fine Root N 0.36 ± 0.09 0.23 ± 0.05 0.35 ± 0.08 0.84 ± 0.17 1.17 ± 0.20 1.55 ± 0.40
Bulk soil N 85.86 ± 3.58 90.98 ± 11.55 89.49 ± 6.40 92.21 ± 6.32 92.02 ± 4.25 76.80 ± 9.68

SM NH4
+ DIN 66.75 ± 7.99 80.11 ± 6.91 49.00 ± 5.48 36.70 ± 6.81 8.52 ± 3.04 3.04 ± 0.94

DON 2.95 ± 2.05 2.17 ± 1.43 3.88 ± 1.95 16.05 ± 7.58 2.96 ± 1.03 4.10 ± 1.73
Microbial N 10.76 ± 1.59 13.96 ± 5.30 17.70 ± 7.81 9.24 ± 1.91 13.07 ± 2.50 13.93 ± 2.28

Table 3.2 (cont.)
Fine Root N 0.44 ± 0.04 0.80 ± 0.20 1.53 ± 0.21 2.59 ± 0.29 6.08 ± 0.74 7.27 ± 1.59
Bulk soil N 63.63 ± 2.58 65.35 ± 4.81 70.09 ± 6.94 66.92 ± 7.44 50.96 ± 5.10 40.90 ± 3.38

Gly DIN 6.30 + 1.55 8.49 ± 1.67 16.15 ± 4.11 25.52 ± 4.28 6.88 ± 1.78 6.10 ± 0.81
DON 25.79 ± 3.29 23.51 ± 4.01 15.62 ± 4.20 4.45 ± 1.85 2.19 ± 0.91 5.94 ± 1.77
Microbial N 23.51 ± 3.63 28.79 ± 2.45 34.54 ± 6.28 19.52 ± 3.64 18.51 ± 5.56 15.14 ± 5.57
Fine Root N 0.59 ± 0.07 0.64 ± 0.10 0.82 ± 0.08 1.39 ± 0.18 4.21 ± 0.20 4.93 ±0.81
Bulk soil N 63.13 ± 7.02 67.23 ± 11.45 64.16 ± 8.82 71.27 ± 6.74 41.18 ± 6.61 46.71 ± 6.90

RP NH4
+ DIN 72.48 ± 6.65 70.69 ± 2.91 28.80 ± 6.10 18.64 ± 4.03 3.39 ± 0.71 1.36 ± 0.78

DON 5.36 ± 1.19 9.53 ± 2.71 24.46 ± 9.22 23.59 ± 3.96 5.44 ± 2.51 6.74 ± 2.12
Microbial N 23.06 ± 5.72 18.37 ± 3.97 20.60 ± 3.81 35.84 ± 9.84 28.51 ± 16.43 5.98 ± 1.94
Fine Root N 0.76 ± 0.17 0.61 ± 0.13 1.64 ± 0.52 2.08 ± 0.57 6.68 ± 2.57 5.50 ± 0.91

139



Bulk soil N 100.49 ± 14.26 90.55 ± 9.79 63.04 ± 6.56 69.74 ± 8.18 67.95 ± 15.17 68.55 ± 8.11

Gly DIN 4.82 ± 1.31 5.74 ± 0.71 11.88 ± 2.11 11.41 ± 2.29 4.91 ± 1.62 2.57 ± 0.40
DON 59.04 ± 16.20 43.68 ± 9.57 20.95 ± 4.93 15.24 ± 3.02 5.76 ± 2.17 3.01 ± 0.69
Microbial N 12.64 ± 1.95 31.28 ± 5.54 39.61 ± 4.84 46.91 ± 7.62 28.44 ± 9.51 16.97 ± 3.31
Fine Root N 0.42 ± 0.11 0.64 ± 0.13 0.98 ± 0.14 1.36 ± 0.25 2.28 ± 0.65 4.54 ± 0.88
Bulk soil N 78.20 ± 12.20 70.24 ± 8.50 76.94 ± 10.54 63.27 ± 10.40 56.36 ± 9.77 55.02 ± 12.22

WS NH4
+ DIN 33.39 ± 3.73 19.52 ± 3.56 10.77 ± 2.17 13.99 ± 2.69 2.98 ± 1.01 2.15 ± 0.61

DON 2.74 ± 1.15 6.65 ± 2.79 8.17 ± 3.09 16.94 ± 6.23 2.88 ± 0.77 2.38 ± 0.61
Microbial N 9.17 ± 3.54 11.24 ± 2.82 15.77 ± 4.58 11.13 ± 5.08 8.56 ± 2.90 4.60 ± 1.81
Fine Root N 0.55 ± 0.12 0.60 ± 0.11 1.25 ± 0.23 1.22 ± 0.17 2.08 ± 0.34 1.89 ± 0.28
Bulk soil N 80.13 ± 6.25 73.16 ± 6.52 68.06 ± 3.04 86.02 ± 3.58 67.41 ± 6.84 64.46 ± 5.71

Gly DIN 20.25 ± 2.58 12.66 ± 2.69 12.79 ± 1.75 11.63 ± 1.95 2.61 ± 0.51 3.09 ± 0.79
DON 34.12 ± 3.98 14.23 ± 2.54 5.01 ± 1.58 2.70 ± 0.94 1.73 ± 0.32 1.35 ± 0.45
Microbial N 4.94 ± 2.53 8.05 ± 4.01 13.13 ± 2.50 11.29 ± 2.54 6.51 ± 2.48 4.31 ± 2.43
Fine Root N 0.26 ± 0.05 0.43 ± 0.07 0.71 ± 0.11 0.85 ± 0.11 2.02 ± 0.38 1.63 ± 0.12
Bulk soil N 60.43 ± 5.04 63.11 ± 4.91 55.62 ± 2.46 66.68 ± 4.44 63.18 ± 6.78 53.70 ± 4.52
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FIGURE LEGENDS

Figure 3.1 Percent recovery of added 15N in bulk soil N for cores receiving NH4
+ (white

bar) and glycine (black bar) treatments at a) 45min and b) 14d following injection.

Letters above the bars indicate differences (P ≤ 0.05) among sites within NH4
+ (normal

text) and glycine (italic) treated cores. Symbols (*) denote differences (P ≤ 0.05) in

recovery between sampling periods within treatment and forest type. Bars are mean ± SE,

n = 6-9.

Figure 3.2 Time dependent recovery of added 13C in bulk soil pooled across treatments

within a forest type. Symbols:  tulip poplar;  white oak;  sugar maple;  red pine;

and  white spruce. Mean ± SE, n = 12-18. 

Figure 3.3 Percent recovery of added 15N within DIN, DON, or microbial N pools over

time for a) tulip poplar; b) white oak; c) sugar maple; d) red pine; and e) white spruce.

Symbols are as follows:  microbial N pool;  DIN pool; and  DON pool. Open and

solid symbols represent ammonium and doubly-labeled glycine treatments respectively.

Data are means  SE. 

Figure 3.4 Recovery of 15N in fine roots receiving NH4
+ (white bar) and glycine (black

bar) treatments at a) 12hrs and b) 14d following injection. Symbols (*) denote

significant differences (P ≤ 0.05) between treatments. Note differences in Y-axis scales

between the two graphs. Bars are mean ± SE, n = 6-9.

Figure 3.5 Time dependent plot of slopes generated from linear regression of molar

excess 13C:excess 15N in fine roots of all forest types from the glycine treatment.

Horizontal line represents the 2:1 injection ratio of C:N administered with the doubly
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labeled glycine treatment.

Figure 3.6 Relative uptake of free amino acid-N vs. DIN for all forest types. Horizontal

stippled line represents the 1:1 uptake ratio between amino acid-N and DIN. Mean ± SE,

n = 6–9. Calculations for plant N uptake are based on total fine root 15N accumulation at

the second sampling period, two hours following treatment application. Letters above the

bars indicate differences (P ≤ 0.05) among sites. Symbols (*) indicate ratios for which

95% C.I. were not found to include 1:1.
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GENERAL CONCLUSIONS

Conventional studies of terrestrial N cycling have focused almost exclusively on 

inorganic N uptake as the primary source of N for plant metabolism. This 

characterization has become universal to most regional and global models predicting 

forest ecosystem response to changing climate or altered land-use patterns (Bonan 1990, 

Running et al. 1993, Melillo et al. 1993) despite evidence that direct uptake of organic N 

by plants or the indirect access to various forms of organic N via mycorrhizal connections

may constitute a large proportion of total plant N uptake in some ecosystems. The 

research presented in this dissertation was designed to quantify rates of organic vs. 

inorganic N cycling and uptake by vegetation across a range of temperate and boreal 

forest ecosystems. There were two central hypotheses at the inception of this research. 

First, plant preference for soil organic N is linked directly to soil organic matter quality 

and inversely correlated with rates of inorganic N mineralization. Second, mycorrhizal 

type plays an important role in determining the relative importance of organic vs. 

inorganic N turnover to plant N nutrition. These hypotheses were developed under the 

assumption that net mineral N availability generally increases with increasing rates of 

SOM turnover. The results and conclusions generated from this cross-site 

characterization of soil amino acid cycling and plant N uptake are summarized below. 

In the first study, 13C15N-glycine and 15NH4
+ were directly injected into the soil 

environment of 3 floodplain balsam poplar stands in interior Alaska to track microbial 

and plant utilization of labile organic and inorganic N in situ. Short term patterns (<24 h) 

of recovered 15N indicated that soil microorganisms represented the largest biotic sink for 
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both N forms. Immobilization of the 15N tracers within microbial biomass N (MBN) 

pools ranged from 12 to 64% of experimental additions depending on treatment and 

sampling period. Subsequent sampling at 7 and 14 days following injection revealed that 

microbial N turnover had transferred the majority of immobilized 15N to non-extractable 

soil pools. In contrast, total recovery of 15N in fine root biomass was small, averaging < 

2% after 14 days for both glycine and NH4
+. Additionally, regression analysis of fine root

excess 13C vs. 15N demonstrated that plants were taking up glycine intact, though direct 

uptake was limited to the early hours of the experiment. Consecutive sampling revealed 

decreasing 13C:15N ratios in fine roots, pointing to increased consumption of mineralized 

15N by plants in later periods. However, the fact that plants in this boreal forest ecosystem

initially (0-12 h) absorbed glycine and NH4
+ at approximately the same rate suggested 

that, 1) plants are targeting the same N resources as the soil microbiota, and 2) amino 

acids represent an important component of the N economy in boreal balsam poplar 

forests as predicted. 

Based on these results, the study was expanded to include boreal white spruce 

stands (EM), as well as temperate ecosystems with both AM- and EM-dominated forest 

types (tulip poplar, AM; white oak, EM; sugar maple, AM; red pine, EM). In general, 

patterns of plant and microbial utilization of NH4
+ and amino acid-N were similar to those

observed for balsam poplar forests. First, microbial immobilization again represented the 

largest short-term biotic sink for both N forms. Second, long-term measurements of MBN

turnover indicated that the majority of the 15N tracers were ultimately transferred to 

stabile soil N pools. Third, plant uptake of 15N, though small, increased throughout the 
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experimental period for both N forms and all forest types demonstrated some capacity to 

directly absorb amino acids based on linear regressions of excess fine root 13C:15N. 

However, there were deviations in the cycling patterns for glycine and NH4
+ for some 

forests types that warrant further consideration. For example, in sugar maple and tulip 

poplar, microbial immobilization was 41-56% higher for glycine than NH4
+ at the first 

sampling period. In contrast, immobilization was similar for the two N forms for the 

other forest types. Similarly, the transformation (presumably microbial) of glycine-N to 

dissolved inorganic N (DIN) was higher than the conversion of NH4
+ to dissolved organic

N (DON) under sugar maple and tulip poplar. Combined these results indicated that soil 

microorganisms in the two AM-dominated stands were utilizing glycine primarily as a C 

source. 

Recovery of 13C in bulk soil declined significantly at all sites throughout the 

experiment concomitant with a measurable release of 13CO2 to the atmosphere above each

injection area, signifying that the soil heterotrophic complex was using glycine-C for 

metabolism. In situ turnover rates for glycine were estimated for each forest type by 

fitting rate equations to the 13CO2 efflux data. The most rapid rates were noted in the two 

AM stands, tulip poplar and sugar maple while the slowest rates were noted in the EM-

dominated coniferous stands. Moreover, rate constants for glycine in situ correlated 

inversely with soil C:N ratios, or in other words, forests with higher soil C:N had longer 

residence times for glycine. These results suggested that the cycling dynamics of amino 

acids was linked to soil substrate quality, but patterns of amino acid turnover did not fit 
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predictions that cycling rates would be higher in forests presumed to have lower SOM 

quality (white spruce, red pine, or white oak). 

Results from a laboratory soil incubation study helped resolve the disparity 

between predictions concerning amino acid turnover and perceptions of SOM quality 

among sites. Mineralizable C pools were highest for the Alaskan sites and decreased with

latitude, largely due to differences in SOM quantity between boreal and temperate stands.

However, when mineralizable C was adjusted for soil C content, pools of labile C were 

high for stands producing relatively low quality (high lignin, high C:N) litter. In 

opposition to expectations, the decomposability of soil C was higher for coniferous red 

pine than, for example, deciduous tulip poplar. Moreover, rates constants for glycine 

mineralization in situ and net C mineralization in vitro were linearly correlated across 

forest types, but measures of microbial biomass were not. These results suggest that 

cross-site variation soil amino acid turnover is driven by differences in heterotrophic 

consumption. 

This has important implications with respect to plant N nutrition in terrestrial 

forest ecosystems. If microbial consumption of amino acids for some ecosystems is 

regulated more by C availability than N-limitation to microbial growth, then competition 

for labile organic N would presumably be higher in forests where labile C availability is 

low. Consequently the N economies of plants in those forests should rely more upon net 

N mineralization to sustain primary production. Data from this study fit that presumption.

When plant 15N uptake was adjusted for cross-site availability of DIN and soil FAA, 

forest type explained a significant proportion of the variation in plant preference for 
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inorganic vs. organic N. More importantly, sites dominated by EM fungi (white spruce, 

balsam poplar, red pine and white oak) demonstrated a three fold higher rate of amino 

acid:DIN uptake than sites dominated by AM fungi (sugar maple and tulip poplar). 

Assuming that amino acid utilization is higher for EM- than AM-dominated forest 

ecosystems, what is the mechanism underlying this characteristic?

There is emerging evidence that mycorrhizae and ecosystem function are tightly 

correlated. For example, mycorrhizal fungi can influence belowground litter quality by 

regulating the availability and turnover of soil C (Langley and Hungate 2003). Both EM 

and AM hyphae can comprise a substantial portion of soil microbial biomass, but their 

respective effect on rhizosphere processes differ substantially. EM fungal associations 

have the potential to reduce both the size and activity of bacterial biomass in the 

mycorrhizosphere by channeling plant C into recalcitrant EM structures rather than labile 

exudates (Olsson et al. 1996a). In contrast AM roots are known to promote both the 

composition and activity of rhizobacteria through root or fungal exudation into 

mycorrhizospheric soil (Olsson et al. 1996b, Andrade et al. 1997). Carbon-use efficiency 

is reportedly higher for fungi than bacteria (Hodge et al. 2000, Six et al. 2006). Therefore,

if AM associations tend to enrich bacterial flora while EM associations render the 

rhizosphere and surrounding soil less hospitable to bacterial growth, the predominance of

one mycorrhizal type over the other, among the forest types used in this study, could 

partially explain differences in turnover dynamics for soil free amino acids among these 

stands as well as plant preference for inorganic vs. organic N. 
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In terrestrial ecosystems soil microorganisms play a critical role in structuring N 

cycling dynamics, both as mediators of plant N availability as well as processes 

regulating ecosystem N retention. The research presented in this dissertation supports that

role of microbes in ecosystem function; however, the notion that mycorrhizal plants also 

exert an influence on N pools and fluxes cannot be discounted. Feedback effects of plant 

litter inputs to decomposition and nutrient cycling have been recognized for some time 

(Melin 1930), but only recently have ecologists started to appreciate belowground 

controls that the plant-complex can exert on N cycling. While the results discussed here 

do not demonstrate the direct effect of mycorrhizal type on N cycling and plant N uptake 

in terrestrial forest ecosystems, they do suggest that plants and associate fungal 

symbionts probably have greater dominion over their N nutrition than previously thought.
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