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In this paper, we propose a novel approach to produce integral images ready to be displayed onto an integral- 

imaging monitor. Our main contribution is the use of commercial plenoptic camera, which is arranged in a stereo 

configuration. Our proposed set-up is able to record the radiance, spatial and angular, information simultaneously 

in each different stereo position. We illustrate our contribution by composing the point cloud from a pair of 

captured plenoptic images, and generate an integral image from the properly registered 3D information. We have 

exploited the graphics processing unit (GPU) acceleration in order to enhance the integral-image computation 

speed and efficiency. We present our approach with imaging experiments that demonstrate the improved quality 

of integral image. After the projection of such integral image onto the proposed monitor, 3D scenes are displayed 

with full-parallax. 
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. Introduction 

During the last century, three-dimensional (3D) imaging techniques

ave been spotlighted due to their merit of recording and displaying 3D

cenes. Among them, integral imaging (InI) has been considered as one

f the most promising technologies. This concept was proposed first by

. Lippmann in 1908. He presented the possibility of capturing the 3D

nformation and reconstructing the 3D scene by using an array of spher-

cal diopters [1–3] . Nowadays, the pickup procedure is performed by

lacing an array of tiny lenses, which is called microlens array (MLA),

n front of the two-dimensional (2D) imaging sensor (e.g. CCD, CMOS).

 collection of microimages is obtained, which is referred to as integral

mage. Interestingly, every microimage contains the radiance (spatial

nd angular) information of the rays. This is because different pixels

f one microimage correspond to different incidence angles of the rays

assing through each paired microlens. Figs. 1 and 2 show the com-

arison between a conventional and an InI (also known as plenoptic of

ight-field) camera. Several companies announced their plenoptic cam-

ra, which is based on Lippmann’s integral photography theory [4–6] .

n the other hand, in the display stage the MLA is placed in front of a

creen, where is projected the integral image. The microlenses integrate

he rays proceeding from the pixels of the screen and thus, reconstruct

he 3D scene. Consequently, when the integral image is projected onto
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n InI display, observers can see the 3D scene with full-parallax and

uasi-continuous perspective view. 

In the meanwhile, many research groups are investigating how to

cquire the depth map from the plenoptic image [7–9] . Sabater et al.

7] modeled demultiplexing algorithm in order to compose a proper 4D

ight-Field (LF) image, and calculate the disparities from a restored sub-

mages array by using block-matching algorithm. Huang et al. [8] built

heir stereo-matching algorithm, and utilized it into their own frame-

ork named Robust Pseudo Random Field (RPRF) to estimate the depth

ap from the plenoptic image. Jeon et al. [9] calculated the depth

ap from an array of sub-aperture images by using the derived cost

olume, multi-label optimization propagates, and iterative refinement

rocedure. We mainly applied Jeon’s approach in our experiment. 

The main contribution of this paper is to utilize the stereo–plenoptic

amera system in order to get dense depth map from a pair of captured

lenoptic images and get rid of the constraints of monocular vision sys-

em. Normally, multiple views can enlarge the field of view and recover

he occluded information by complementing each other. For this rea-

on, we can restore the depthless areas of the scene. Another important

enefit from our proposal is to yield nicer quality of the integral image

sing a registered pair of point clouds. Besides, the use of the GPU ac-

eleration technique assists to enhance the integral image’s generation

peed. 
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Fig 1. Scheme of image capturing system: (a) is a conventional camera; and (b) is a plenoptic camera. The pixels of (a) integrate, and therefore discard, the angular 

information even if they have. On the contrary, (b) can pick up both spatial and angular information thanks to the insertion of the microlens array. 

Fig 2. Illustration of the projected pixels to the imaging sensor, which are shown 

in the plenoptic field. The projected pixel from the conventional camera system 

gathers into a single pixel. However, plenoptic camera system projects all differ- 

ent incident information in independent pixel’s position. This collected image 

becomes an integral image. 
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Fig 3. Proposed stereo–plenoptic camera system. 
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This paper is organized as follows. In Section 2 ., our previous re-

ated works are described. In Section 3. , our contribution to compose

nd manage the point cloud from a pair of captured plenoptic images is

llustrated. In Section 4. the methodology to generate an integral image

rom registered 3D information by using GPU acceleration technique

s explained. Finally, in Sections 5. and 6. the experimental results are

rovided and the conclusions are carried out, respectively. 

. Related work 

The closest work which is related with a stereo-type capturing and

odification method has been published by our group recently. In

10] we exploited the stereo-hybrid 3D camera system composed of two

inect sensors (Kinect v1 and v2), to take profit of different features for

btaining a denser depth map. Furthermore, we illustrated the benefit

f binocular approach contrary to monocular one with some experimen-

al results. However, the main distinction from current proposal is that

10] utilized hybrid camera set-up and obligatorily considered the rem-

dy of the dissimilarities. Most of all, the working distance of the cam-

ras used is restricted because of the usage of an infrared (IR) sensing

echnique. In this paper, we exploit the commercial plenoptic camera,

amed Lytro Illum. The important thing is that plenoptic cameras are

assive devices in the sense that they do not need any additional light

mitter. It can record the scene from the ambient light source directly. It

eans that the working distance of this camera is related to the camera

enses’ optical properties. Furthermore, this plenoptic camera can decide

he reference plane of the scene thanks to the InI’s features [11,12] . 
173 
In the meantime, [13] illustrated our approach to generate an inte-

ral image from a point cloud, which is ready to be projected onto an InI

onitor. However, the bottleneck of this approach was that it required

 long computational time. To solve this critical defect, in current ap-

roach we exploit GPU acceleration technique to generate microimages

n parallel way, reducing the processing time. 

. Stereo–plenoptic image manipulation 

In order to implement the stereo system, it is convenient to use two

ameras of the same model. Accordingly, in our experimental system we

tilized the camera slider in order to capture the scene in each different

osition with a single plenoptic camera, and we placed a tripod eager

o configure the camera’s proper position. Fig. 3 shows the camera set-

p and Fig. 4 shows the overview of our experimental environment.

n Section 3.1 , we describe our approach to manipulate the plenoptic

mage and obtain the depth map from this handled image. In sequence,

n Section 3.2 , we explain the methodology for the arrangement and

egistration process of a pair of point clouds. 

.1. Plenoptic image manipulation 

Our proposal in this paper is the use of commercial plenoptic cam-

ra. Its software provides various functions: it helps to choose the proper

erspective view, changes the focused plane of the scene, and extracts

he calculated depth map (or disparity map), color image, and an en-

oded raw image format [5] . Fortunately, [14,15] help to decode the
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Fig 4. Overview of proposed experimental environment: (a) 

is capture for the main scene, and (b) is capture for the cali- 

bration process. 

Fig 5. (a) is a raw plenoptic image from plenoptic camera, (b) 

is a composed sub-aperture image array from plenoptic image. 

See text for further details. 
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Fig 6. Flow chart of our proposed depth estimation strategy. 
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aw plenoptic image and extract sub-images from this encrypted data.

nterestingly, this extracted raw data contains a grayscale image (see

ig. 5 (a)). The main reason is that there is a Bayer color filter array over

he camera’s sensor to capture the colors. Thus, it must be demosaiced

o get the color information back. It is noticeable that the color tones of

aptured images shown in Fig. 4 (a) and 5(b) are different. Note, how-

ver, that the first is the image extracted from Lytro software and the

ther is a sub-image extracted through [14,15] . The main reason of that

ifference is that they use different Bayer demosaicing algorithms. We

xtract the sub-aperture images array in order to follow [9] approach

see Fig. 5 (b)), which estimates the depth map by minimizing stereo-

atching costs between sub-images with sub-pixel accuracy, and cor-

ects the unexpected distortions. However, even after correcting the dis-

ortion problem via the referenced algorithm, the estimated depth map

till has some image distortion effect. Thus, we performed the plenoptic

amera calibration and rectification before the depth map calculation.

he diagram of Fig. 6 shows our approach well. 

Fig. 7 shows the comparison between our proposed depth map es-

imation strategy and the output from Lytro’s software (Lytro Destktop

.5.0.1). Fig. 7 (a, b) have more continuous depth levels and stable gra-

ation than Fig. 7 (c, d). On the contrary, the sharpness of the targets

nd the shape of the object’s surfaces in the former are worse than in

he latter. 

.2. Point cloud modification and registration 

The aim of this section is to explain how to compose the point cloud

rom the image, and to make registration from one point cloud to the

ther in order to arrange them in a proper position. In [13] , we com-

osed the point cloud from a pair of color and depth map images. We

ssigned six values to each point of the point cloud, namely its (x, y,

) coordinates and RGB color intensities. Each point of the RGB image
174 
orresponds to the point of the depth image having the same (x, y) co-

rdinates. So it is sufficient to assign the corresponding depth value to

ll the points of the RGB image. Finally, this modified 3D information is

rranged into the virtual 3D space. Afterward, we need to make registra-

ion between left and right point clouds. This is because the two scenes

re mutually shifted and it is necessary to arrange them in a proper way.

o solve this issue, we utilize Iterative-Closest-Point algorithm (ICP), as

n [10] . ICP calculates the movement and minimizes the distance be-
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Fig 7. The depth map comparison result: top row images (a, b) 

are the estimated depth map result from our approach, while 

bottom row images (c, d) are from the output of Lytro’s soft- 

ware. Right bar shows the depth intensity value from depth 

map image (0: closest area, 255: farthest area). 

t  

2  

r  

a  

s

4

a

 

g  

a  

h  

3  

p  

t  

a  

b  

b  

t  

p

 

i  

f  

i  

m  

t  

f{

𝜆

W  

D

 

a  

c  

p  

i  

s  

s  

(  

c  

c  

p  

u  

s  

g  

5

 

o  

t  

a  

S  

a  

6  

t  

u  

n  

T  

f  

r  

p  

f  

i

 

i  

s  

f  

u  

u  

c  

v  

a  

F  

r  

i  

b  

o  

l

 

t  

f  

w  
ween point clouds. As is well known, ICP is often used to reconstruct

D or 3D data captured from different positions. The output of ICP algo-

ithm is a rigid-body transformation matrix, which includes translation

nd rotation information [16–18] . This matrix permits to refer the po-

ition of one point cloud to the other in appropriate way. 

. Integral image generation from the point cloud with GPU 

cceleration 

Once aligned the pair of point clouds, the resulting one is ready to

enerate an integral image. As we mentioned in [13] , the production of

n integral image is processed in a virtual 3D space using a virtual pin-

ole array (VPA). We place the VPA in a proper position in the virtual

D scene, and all the points from the cloud are projected through all the

inholes by using back-projection technique, as in [19] . Interestingly,

he location of the VPA will represent the position of the displayed im-

ge’s reference plane. For instance, a point located behind the VPA will

e reconstructed behind the MLA, while a point in front of the VPA will

e reconstructed floating in front of it. Each point projected through

he pinholes forms the microimages’ pixels and finally, this entire back-

rojection mapping calculation produces the integral image. 

On the other hand, we also need to consider the scale factor between

nput image and integral image’s sizes. The main reason is that the scale

actor decides the nearest-neighbor interpolation’s index, as in [13] . This

nterpolation helps to fill the empty pixels during the back-projection

apping and as a result, proper interpolation index helps to improve

he quality of the integral image. Eq. 1 and 2 show how to derive scale

actors: 
 

𝐷𝑠 𝑡 𝑤 = 𝐼 𝐼 𝑤 

𝐷 𝑠 𝑡 ℎ = 

𝐼 𝐼 𝑤 

𝑂 𝑟 𝑔 𝑤 
× 𝑂𝑟 𝑔 ℎ 

(1) 

𝑢,𝑣 = 

𝐷𝑠 𝑡 𝑤,ℎ 

𝑂𝑟 𝑔 𝑤,ℎ 

(2) 

here II w is target integral image’s width size, Org w, h is input image,

st w, h is final integral image size, and 𝜆u, v is scale factor, respectively. 

However, these back-projection mapping and interpolation processes

re heavy work. In order to solve this drawback, we utilize the GPU ac-

eleration technique. The use of central processing units (CPUs) com-

utation has the limitation due to their general purpose of usage. Even

f CPUs have their own threads to compute, their performance is not

ufficient to boost the computation speed because of the way of CPU’s

equential implementation process and the limited number of CPU Cores

the number of threads depends on the capacity of CPU’s Cores). On the
175 
ontrary, GPU computation enables to execute thousands of threads to

ompute their mission in parallel [20,21] . It means that we can com-

ute the integral image in a parallel way and as a result, we can speed

p the computation time. Fig. 8 shows our approach and the comparison

cheme between CPU and GPU computation. After this process we can

et the integral image, which is ready to be displayed in an InI monitor.

. Experimental results 

In our experiment, we register the right point cloud into the space

f the left one. The main reason is that the right scene not only con-

ains the occluded information of the left scene, but also new objects

ppear. On the other hand, regarding the display part, we utilized the

amsung SM-T700 (14.1338px/mm) tablet as screen, and we mounted

 MLA which has focal length f = 3.3 mm and pitch p = 1.0 mm (Model

30 from Fresnel Technology). We utilized 152 ×113 microlenses from

his MLA because this is the maximum possible usage for the screen

sed (see Fig. 10 ’s InI monitor set-up). A noteworthy feature is that the

umber of pinholes of the VPA must match the number of microlenses.

he generated microimage is composed of 15 ×15 pixels, and thus, the

ull size of the integral image is 2280 ×1695 pixels. Finally, we need to

esize the integral image to take into account the real number of pixels

er microlens, so the image is finally resized to 2148 ×1597 (resizing

actor k = 14.1338px/15px). Fig. 9 shows the result of produced integral

mages. 

To show our experimental result, we composed the set-up as shown

n Fig. 10 . Originally, our main target are binocular observers, who can

ee the 3D nature of displayed scene. Unfortunately, the full-parallax ef-

ect cannot be directly demonstrated in a manuscript or even in a monoc-

lar video. In order to demonstrate this 3D effect, we replaced the binoc-

lar observer with a monocular digital camera, as recording device. A

ollection of pictures is obtained displacing the camera in horizontal and

ertical direction. Media 1 and 2 show the result obtained with each left

nd right scenes, and Media 3 shows the result of the proposed method.

ig. 11 shows this experimental result with more details. Our proposed

esult has better quality than each, left and right, captured scenes. For

nstance, left and right scenes have black areas (depthless areas) caused

y occlusions. On the other hand, our proposed method restores these

ccluded areas thanks to the registration and complementation between

eft and right captured scenes. 

Meanwhile, we exploit the parallelism in integral image computa-

ion via NVIDIA CUDA programming model, which is a software plat-

orm for solving non-graphics problems in a parallel way [21] . Our hard-

are specification is the following: Intel i7 4cores in CPU, and NVIDIA
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Fig 8. The comparison scheme how to compose an integral image in CPU and GPU computation. Each thread picks single 3D point from the point cloud and computes 

the proper pixels of an integral image using VPA projection. From the third step, GPU is able to assign thousands of points in a same time contrary to CPU. 

Fig 9. Composed integral image: (a) is from left scene, (b) is from right scene, and (c) image is registered scene between left and right scenes. 

Fig 10. Overview of experimental system. 

G  

t  

T  
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Table 1 

More detail of comparison result between CPU and GPU computation 

time. 

List CPU(Sec.) GPU(Sec.) 

Kind of the scene Left, right Registered Left, right Registered 

0 interpolation 109.71 224.59 29.59 60.57 

1 interpolation 302.39 629.87 30.47 63.46 

2 interpolations 699.40 1432.56 32.68 66.94 

3 interpolations 1281.99 2610.55 53.77 109.48 

t  

i

6

 

p  

q  

t  

d  

t  

c  

i  
eForce GTX 870 M in GPU. We tested the algorithm with various in-

erpolation indices to compare the computation speeds (see Fig 12 and

able 1 ). We have found that the GPU implementation is much faster

han CPU, especially when we increase the interpolation index. In fact,
176 
he interpolation index does not affect the computation time in the GPU

mplementation. 

. Summary and conclusion 

In this paper we utilized the stereo–plenoptic camera system to dis-

lay the captured plenoptic image into an InI monitor and enhance the

uality of the displayed 3D image. We did a plenoptic camera calibra-

ion and rectification to solve the tilted and distorted plenoptic image’s

efect. Furthermore, we extracted the sub-aperture images array from

he calibrated plenoptic image in order to estimate the depth map. This

alculated depth map is used to compose the 3D point cloud, which

s arranged into the virtual 3D space. Then we performed a registra-
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Fig 11. Comparison result between displayed integral images: 

first row is from left scene, second row is from right scene, and 

third row is our proposed result. All the images are excerpted 

from recorded video (Media 1, 2, and 3), and we clipped-out a 

specific part at the scene in order to emphasize the comparison 

result clearly. 

Fig 12. The integral image generation time comparison between CPU and GPU. 

The triangle represents the left and right scene’s result, and the rectangle repre- 

sents the registered scene’s result. 
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ion between left and right scene’s point clouds to arrange them in a

roper position. This fused point cloud has denser 3D data and man-

ges to recover the depthless areas properly. Finally, we generated the

ntegral image via VPA through the back-projection method. To boost

he computation time, we adopted GPU acceleration technique in this

rocedure. This generated integral image is displayed in our proposed

ntegral imaging monitor and it displays an immersive scene with full

arallax to the binocular observers. 

In the future work, the main focus will be on the real-time implemen-

ation of the system using different and/or newer types of 3D cameras:

tereo-vision camera [22,23] , or even higher quality of plenoptic camera

4,6] . Another goal is to enhance the accuracy of 3D data registration

sing non-rigid objects mapping [24–26] . 
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