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Substantial progress has been made in the past decade in treating several primary immunodeficiency disor-
ders (PIDs) with gene therapy. Current approaches are based on ex-vivo transfer of therapeutic transgene via
viral vectors to patient-derived autologous hematopoietic stem cells (HSCs) followed by transplantation back
to the patient with or without conditioning. The overall outcome from all the clinical trials targeting different
PIDs has been extremely encouraging but not without caveats. Malignant outcomes from insertional muta-
genesis have featured prominently in the adverse events associated with these trials and have warranted in-
tense pre-clinical investigation into defining the tendencies of different viral vectors for genomic integration.
Coupled with issues pertaining to transgene expression, the therapeutic landscape has undergone a paradigm
shift in determining safety, stability and efficacy of gene therapy approaches. In this review, we aim to sum-
marize the progress made in the gene therapy trials targeting ADA-SCID, SCID-X1, CGD and WAS, review the
pitfalls, and outline the recent advancements which are expected to further enhance favourable risk benefit
ratios for gene therapeutic approaches in the future.

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Primary immunodeficiencies (PIDs) constitute a large (more than
300 gene mutations) and heterogeneous group of rare heritable disor-
ders resulting in an underdeveloped and/or functionally compromised
immune system. World-wide, the incidence of PIDs varies greatly
from 1 in 600 to 1 in 500,000 live new-borns, depending both upon
the specific disorder and the ethnicity of the population under study.
Patients with PIDs display phenotypes which can range from being
asymptomatic to manifestation of life-threatening conditions (e.g. vari-
ous forms of severe combined immunodeficiency, SCID). Additionally,
they might also suffer from auto-immune disorders and exhibit predis-
position towards lympho-reticularmalignancies (Kildebeck et al., 2012;
Rivat et al., 2012).

In the clinic, allogeneic hematopoietic stem cell transplant (HSCT)
from a human leukocyte antigen (HLA) matched donor confers signifi-
cant therapeutic benefit to the patient with a success rate of more than
90%. Unfortunately, scarcity of HLA-matched donors (available for only
one-third of patients) results in considerable reduction of successful en-
graftment with concomitant increases in morbidity and mortality. For
this significant number of patients without a suitable donor, autologous
transplantation of genetically corrected haematopoietic stem and pro-
genitor cells offers a life-saving alternative (Qasim et al., 2009).

Major therapeutic benefits via gene transfer to HSCs was first dem-
onstrated in SCID patients more than 10 years ago, and this type of pro-
tocol continues to exhibit promise with applications now including
other haematological (such as Wiskott–Aldrich syndrome (WAS) and
beta-thalassemia) andmetabolic disorders (for e.g. X-linked adrenoleu-
kodystrophy and metachromatic leukodystrophy). Most PIDs display
Mendelian inheritance and therefore the introduction of a wild-type
copy of the mutated gene into the stem cells of the patient should the-
oretically correct the disease phenotype. Further, it has been observed
that for some PIDs including those involving T-cell immunodeficiencies,
the gene-corrected HSC population exhibits a selective growth advan-
tage in repopulating the bone-marrow (Antoine et al., 2003). Long-
term data collected from clinical trials of PID patients treated with
gene therapy (the majority of these trials have employed conventional
γ-retroviral vectors) have shown clear signs of efficacy with more than
90% of the patients surviving without any serious adverse event (SAE).
Considering the scenario of HLA-mismatch, these results are impressive
when compared to the results from other alternative therapies (Booth
et al., 2011). It is worthwhile to note that insertional mutagenesis-
induced toxicity observed in approximately 10% of total patients shares
a common mechanistic pathway i.e. upregulation of proto-oncogene
expression stimulated by the proximity and presence of enhancer
sequences within the U3 region of the 5′ long terminal repeat (LTR) of
the γ-retroviral vectors used in these trials. To address this, the
γ-retroviral vectors are being increasingly replaced by self-inactivating
(SIN) retroviral vectors, which in pre-clinical studies have shown similar
efficacy in terms of sustainable transgene expression, but reduced ten-
dency for harmful mutagenesis (Seymour and Thrasher, 2012).

Based on the favourable risk benefit ratio observed in PID patients
receiving gene therapy, it can be strongly argued that gene therapy
has successfully graduated from the proof-of-principle stage and
promises to be incorporated into mainstreammedicine to prevent, al-
leviate, and provide long-term treatment for a wide variety of genetic
disorders in situations where conventional therapies have failed or
are unavailable. In this review, we aim to provide an overview of
the gene therapy clinical trials conducted so far targeting the PIDs
ADA-SCID, SCID-X1, CGD andWAS, discuss the advances in vector de-
sign and other gene targeting technologies in relation to the present
pitfalls as witnessed in these trials, and finally reflect on the future
of gene therapy in becoming a “game-changer” of 21st century med-
icine for rare or common, inherited or acquired genetic disorders.

2. Progress in PID gene therapy clinical trials

2.1. ADA-SCID

Under normal physiological circumstances, DNA and RNA are bro-
ken down inside the cell into toxic metabolites called deoxyadenosine
and adenosine respectively, which when acted upon by the enzyme
adenosine deaminase (ADA), are converted into the corresponding
less toxic deoxyinosine and inosine as an essential step of the purine
salvage pathway. ADA deficiency results in the accumulation of toxic
metabolites in the intracellular as well as extracellular compartments
causing impaired development of functional T, B and NK cells. This
typically results in severe combined immunodeficiency (SCID) charac-
terized by repeated and persistent infections from infancy which can
be lethal without early clinical intervention. Additionally, since ADA is
ubiquitously expressed in all tissues of the body, ADA-SCID patients
suffer from a host of other abnormalities affecting the skeleton, GI
tract, lung, liver and nervous system. Approximately 15% of the SCID
patients worldwide suffer from ADA-SCID.

Allogeneic HSCT typically constitutes the treatment of choice for
patients with a HLA-matched sibling or family donor (~88% success).
However, the rates of success fall sharply when employing a matched-
unrelated donor (~67%) or a haplo-identical sibling (~43%). Enzyme re-
placement therapy (ERT) in the form of weekly or bi-weekly intramus-
cular injection of polyethylene glycol-conjugated ADA (PEG-ADA) has
been found to be effective in rescuing the disease phenotype, but unfor-
tunately cannot be offered to all patients worldwide due to the high
costs involved. Besides, long-term administration of PEG-ADA has also
been found to have only partial efficacy (Gaspar et al., 2009; Montiel-
Equihua et al., 2012).

Historically, ADA deficiency was the first SCID condition for which a
genetic andmolecular cause was identified and eventually transplanta-
tion of ADA-SCID patients with γ-retrovirus mediated gene-corrected
autologous HSCs (from bone marrow or umbilical cord blood) in the
early 1990s constituted the first attempts of treating a PID with gene
therapy. However, the therapeutic benefits of these trials could not eas-
ily be determined as the patients continued ERT alongside gene therapy
thereby potentially nullifying the survival and growth advantage of
gene-corrected lymphocyte precursors and progenies. More recent
evidence from an animal model of ADA-deficiency on the contrary
would suggest that this is not an important effect, and that a lack of
pre-conditioning is a key factor (Carbonaro et al., 2012). Promisingly,
no toxicity was observed in these pilot trials, and gene-marked cells
were detected in peripheral blood circulation even ten years after treat-
ment, although significantly below the threshold levels required for
achieving therapeutic benefit (Aiuti et al., 2002; Blaese et al., 1995;
Bordignon et al., 1995).
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Taking cues from these earlier attempts, several modifications
were incorporated at various stages of the protocol for future clinical
trials for ADA-SCID gene therapy. Briefly, these are the following:

a. Ex-vivo culture of HSCs was stimulated with a cytokine cocktail
which promoted expansion without losing the ‘stemness’ of the
CD34+ population.

b. Higher transduction efficiency of HSCs with the retroviral vector
was achieved by employing fibronectin which enhances virus-cell
co-localization.

c. Engraftment of the infused corrected HSCswas enhanced by includ-
ing a mild-preconditioning regime.

The highlights of the recent clinical trials conducted in Italy, the
UK and the USA have been summarized in Table 1. Except for the
recent-most trial initiated in 2012, all the trials conducted so far
have employed γ-retroviral vectors driving expression of the ADA
gene from the 5′ viral LTR. Mild non-myeloablative conditioning reg-
imens have been used in all these trials to make sufficient space for
the transduced ADA-HSCs, and multi-lineage reconstitution following
persistent engraftment has been demonstrated to confer clinical ben-
efits i.e. adequate metabolic detoxification to a significant number of
patients. Notably, approximately 75% of patients treated with gene
therapy have been taken off ERT. Again, extended follow-up of the
clinical trials has revealed no SAE although intriguingly, integration
hotspots have been identified in some patients. However, clonal dom-
inance and expansion of potentially dangerous clones leading to ad-
verse physiological response have not been reported so far (Aiuti
and Roncarolo, 2009; Aiuti et al., 2007, 2009; Candotti et al., 2012;
Gaspar et al., 2011b).

To summarize (Table 1), the survival rate from ADA-SCID gene ther-
apy has been 100% with efficacy comparing favourably with HSCT with
fully matched donor and faring better than ERT in terms of costs in-
volved and long-term immune reconstitutionwhich includes correction
of T regulatory cell function and B cell tolerance defects. Additionally,
children's growth and bone age improved following treatment although
were not normalized in all patients (Cavazzana-Calvo et al., 2012).

2.2. SCID-X1

X-linked SCID, accounting for 40%–50% of SCID cases reported
world-wide, is caused by mutations in the IL2RG gene leading to defec-
tive expression of the commongamma chain (γc), a subunit shared by a
host of cytokine receptors including interleukin (IL)-2, 4, 7, 9, 15 and 21
receptor complexes which play a vital role in lymphocyte development
and function. SCID-X1 patients present profound immunological de-
fects caused by low numbers or complete absence of T and NK cells,
and presence of non-functional B cells (Fischer and Cavazzana-Calvo,
2008). Although allogeneic transplantation from HLA-identical donor
has a high success rate, persistent defects in humoral or cellular func-
tions have been reported for some patients resulting in partial immune
recovery, autoimmunity and/or retarded growth (Neven et al., 2009).

The observation that spontaneous reversion of γcmutationwas able
to restore immunological competence indicated that lymphocyte pro-
genitors with functional IL2RG gene possess selective advantage over
the deficient progenitors, making SCID-X1 a strong candidate for gene
therapy (Bousso et al., 2000). The first clinical gene therapy protocol
Table 1
Summary of recent clinical trials targeting ADA-SCID. BM, bone marrow; UCB, umbilical co

Trial centre Vector Target Conditioning

Italy γ-Retrovirus BM CD34+ Busulfan 4 mg/kg
UK γ-Retrovirus BM CD34+ Melphalan 140 mg/m2 or Busu
USA γ-Retrovirus UCB CD34+ Busulfan 4 mg/kg
UK, USA SIN lentivirus EF1α promoter Busulfan 4 mg/kg
conducted at Hôpital Necker (Paris, France) with nine patients was car-
ried out by ex vivo γc gene transfer into autologous CD34+ cells using a
conventional amphotropicmurine leukaemia virus (MLV)-based vector
in which IL2RG gene expression was driven by the viral LTR (Hacein-
Bey-Abina et al., 2002). An equivalent study was performed on ten
patients at Great Ormond Street Hospital (London, UK) with the excep-
tion of employing a gibbon ape leukaemia virus (GALV) envelope-
pseudotyped MLV-based vector (Gaspar et al., 2004). Both trials
omitted pre-conditioning of the patients before gene therapy. Taken to-
gether, 17 out of 19 patients who enrolled in these trials have demon-
strated positive clinical outcome in terms of T cell recovery. For
participants in both trials, long term follow-up studies have confirmed
active thymopoiesiswith a polyclonal and functional T cell receptor rep-
ertoire in the majority of patients. Restoration of humoral immunity
was found to be partial but sufficient to withdraw some patients from
immunoglobin replacement therapy. Interestingly, although cellular
immune reconstitution is comparable to that of HLA-matched HSCT,
molecular analysis has revealed a strong bias towards gene-marking
in T and NK cells comparable to B cells and cells of the myeloid lineage.
This proves that expression of γ chain confers a selective advantage to
the T and NK cell progenitors albeit to a lesser degree for the NK cells
in the absence of chemotherapy. Following on the success of Paris and
London trials, SCID-X1 gene therapy was attempted in 5 older patients
(age 10–20 years) but failed to show any significant clinical benefit
most likely due to age-related factors and/or history of chronic infection
and graft versus host disease (GVHD). This observation strengthens the
recommendation that gene therapy should be attempted at the earliest
opportunity after detection (Chinen et al., 2007; Thrasher et al., 2005).

Unfortunately, 4 patients from the French trial and 1 from the UK
study also developed acute T cell lymphoblastic leukaemia (T-ALL)
resulting from insertional transactivation of LMO2 proto-oncogene (4
out of 5 patients) and associated insertion/deletion/translocation/mu-
tation of other genes namely BMI1 (transcriptional control), CCDN2
(cell-cycle protein) and Notch-1 (T cell survival and proliferation).
Three of the patients from the French trial and one from the UK trial en-
tered remission following standard chemotherapy while one patient
from the French trial died due to refractory leukaemia (Gaspar et al.,
2011a; Hacein-Bey-Abina et al., 2003, 2008, 2010; Howe et al., 2008).

Preliminary results obtained from an on-going multi-centre
(Europe & USA) trial initiated in 2010 and involving a total of 8
patients indicates similar clinical benefits and no adverse events al-
though follow up is short. The vector used in this trial is based on a
SIN γ-retrovirus in which the IL2RG gene is driven from an internal
EF1α promoter (see Table 2 for summary).

2.3. CGD

Chronic granulomatous disorder (CGD) is a rare, inherited, autoso-
mal recessive or X-linked disorder predominantly affecting neutro-
phil function. The condition arises from mutations affecting any one
of the five genes encoding phagocytic oxidase (phox) proteins
which form the subunits of the NADPH oxidase enzyme complex. In
healthy subjects, phagocytic engulfment of microbes by neutrophils
in the peripheral blood triggers the assembly of NADPH oxidase com-
plex by translocation of cytosolic phox proteins (p47phox, p67phox and
p40phox) to the membrane bound flavocytochrome (gp91phox and
rd blood; ERT, enzyme replacement therapy; SAE, serious adverse event.

Patients Outcome SAE References

18 15/18 off ERT None Aiuti et al. (2009)
lfan 4 mg/kg 8 4/8 off ERT None Gaspar et al. (2011b)

14 10/14 off ERT None Candotti et al. (2012)
2 Follow-up less than a year Personal communication

Gaspar HB



Table 2
Summary of recent clinical trials targeting SCID-X1. T-ALL, T-cell acute lymphoblastic leukaemia bone marrow; LMO2, LIM domain only 2; SAE, serious adverse event.

Trial centre Vector Conditioning Patients Outcome SAE Insertion
site(s)

References

France γ-Retrovirus (amphotropic) None 9 Significant clinical benefit to most 4 developed T-ALL; 1 died LMO2
CCND2
BMI1

Hacein-Bey-Abina
et al. (2002)
Hacein-Bey-Abina
et al. (2003)
Hacein-Bey-Abina
et al. (2008)
Hacein-Bey-Abina
et al. (2010)

1 No clinical benefit (age related) Thrasher et al. (2005)
UK γ-Retrovirus (GALV) None 10 Significant clinical benefit to most 1 developed T-ALL LMO2 Gaspar et al. (2011a)

Howe et al. (2008)
1 No clinical benefit (age related) Thrasher et al. (2005)

USA γ-Retrovirus (GALV) None 3 Limited clinical benefit (age-related) None – Chinen et al. (2007)
France,
UK, USA

SIN γ-retrovirus
EF1α promoter

None 8 T-cell recovery observed (preliminary
results)

– – Personal communication
Thrasher AJ
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p22phox). Henceforth, the fully assembledNADPHoxidase complex catal-
yses the transfer of electrons fromNADPH tomolecular oxygen leading to
a cascade of events involving rapid generation of superoxide anions, pro-
ductionof reactive oxygen species (ROS), and activation and release of an-
timicrobial proteases resulting in the efficient elimination of invading
microbes. In contrast, CGD patients fail to generate this “respiratory
burst” anddisplay enhanced susceptibility to awide-spectrumof bacterial
and fungal infections,with the greatest threat of infection andmortality to
X-linked CGD patients (two-thirds of CGD cases, gp91phox-deficient)
(Jones et al., 2008; Segal, 2005; Segal et al., 2011;Winkelstein et al., 2000).

Other than life-long prophylactic treatment with antibiotics/
antimycotics and recombinant interferon (IFN)-γ treatment,
myeloablative allogeneic HSCT using a closely matched related or
unrelated donor constitutes a definitive treatment option for chil-
dren with CGD, although not without associated complications
(Seger, 2008).

Being a monogenic disorder, the rationale for gene therapy of CGD
patients lacking a HLA-matched donor is well-established on the fol-
lowing grounds—a) all the genes affecting NADPH oxidase subunits
have been cloned, and b) data from healthy X-CGD carriers have re-
vealed that significant functional correction of a minor fraction of neu-
trophils (approximately 10%) can benefit the patient considerably.
However, CGD remains one of themost difficult targets for gene therapy
for the following reasons:

a) Expression of the wild-type gene does not provide any survival
advantage to the transduced stem and progenitor cells thereby ne-
cessitating the use of myeloablative conditioning to complement
for this defect.

b) Unlike T cells, circulating neutrophils have a life-span of few days
which means a large number of long-term repopulating HSCs
need to be corrected for a positive clinical outcome.

c) An inflammatory environment in the bone marrow compartment
could exert a negative effect on the successful engraftment of
the transduced CD34+ cells (Aiuti et al., 2012; Grez et al., 2011).

The first two rounds of clinical trial conducted at NIH (USA) in 1995
and 1998 targeting autosomal recessive (p47phox deficiency) and
X-linked CGD (gp91phox deficiency) with γ-retroviral vectors were
performed on a total of ten patients without any pre-conditioning. In
both the trials, trace numbers of oxidase-normal neutrophils persisted
in the peripheral blood for a few months but failed to confer any
long-term clinical benefit. Despite major increases in transduction rate
(70% compared to 20%), number of cycles of gene therapy (4 compared
to 1), and total number of gene-corrected CD34+ cells that were
infused (10 × 106/kg compared to 0.5 × 106/kg), gene marking failed
to surpass 0.13% at any peak time in the second trial. It is however note-
worthy that individual gene-marked neutrophils in peripheral circulation
displayed ability to produce physiologically normal levels of ROS upon
stimulation (Goebel and Dinauer, 2003; Kang et al., 2010; Malech, 2000;
Malech et al., 1997).

Results from these two US trials, and corresponding data from the
SCID-X1 trials (where empty T cell compartment facilitates engraft-
ment of gene-corrected progenitors) encouraged researchers from
Germany and Switzerland to initiate ex-vivo gene therapy for
X-CGD (4 patients in total; 2 young adults treated in the Frankfurt,
and 2 children in Zurich) incorporating non-myeloablative condi-
tioning and employing a γ-retroviral vector with a spleen focus
forming virus (SFFV) derived LTR driving gp91phox expression. Over-
all, within the first 5 months of transplantation, both patients in the
Frankfurt trial demonstrated gene-marking in approximately 15% of
circulating neutrophils with significant levels of ROS activity. Con-
trary to previous experiences, gene-marked neutrophils continued
to increase to up to 50% of the total neutrophils in peripheral blood
indicating lone-term engraftment and the patients were able to
clear almost all pre-existing infections. However, the temporal in-
crease in gene-marked neutrophils was found to be oligoclonal in na-
ture caused by vector insertion into MDS/EVI1 oncogene loci and
their subsequent trans-activation by the SFFV LTR. Both patients de-
veloped myelodysplasia with monosomy 7 within the next 2–1/
2 years, with corresponding loss of oxidase function in the gene
marked cells, caused by methylation of the retroviral promoter. Un-
fortunately, one of the patients died from severe sepsis. Of the two
children treated in Zurich, one developed MDS while the other
displayed clonal expansion without MDS. Both patients have sur-
vived so far after HSCT (Bianchi et al., 2009, 2011; Ott et al., 2006;
Stein et al., 2010).

In London, patients treated with the same vector achieved less
than 10% gp91phox positive neutrophils in peripheral blood at day
21 post-infusion with weak respiratory burst activity (5–10% of con-
trols). By day 42, gene-marked cells became undetectable although
without any SAE reported so far.

In a separate study at Seoul conducted on two patients with X-CGD,
superoxide producing cells were detected in peripheral blood shortly
after transplantation of gene-corrected CD34+ cells (mobilized from
peripheral blood), but levels have dropped significantly (from a peak
of 14.5% to 0.1%) afterwards in agreement with observations in other
trials (Kang et al., 2011).

To summarize (Table 3), out of 13 X-CGD patients treated so far in
combination with partial myeloablation, 10 patients have displayed
only transient clinical benefit most likely due to low-level long term en-
graftment of transduced cells (Grez et al., 2011). Three patients displayed
long-termefficacy but in all these cases clonal expansionwas triggered by
insertional activation of oncogene leading to SAE. Transgene silencing due
to epigenetic modification was also witnessed in these patients.



Table 3
Summary of recent clinical trials targeting CGD. SAE, serious adverse event.

Trial centre Vector Conditioning Patients Outcome SAE Insertion
site(s)

References

US γ-Retroviral
(amphotropic)

None 5 No clinical benefit None – Malech et al. (1997)
Malech (2000)
Goebel and Dinauer (2003)
Kang et al. (2010)

None 5 No clinical benefit None –

Busulfan (10 mg/kg) 3 Transient clinical
benefit

None –

Germany γ-Retroviral (SFFV LTR) Busulfan (8.8 mg/kg) 2 Long term clinical
benefit

Both developed MDS
with monosomy 7; 1
died from sepsis

MDS
EVI1

Ott et al. (2006)
Stein et al. (2010)
Bianchi et al. (2009)
Bianchi et al. (2011)Switzerland 2 Transient clinical

benefit
1 patient developed
MDS

None

UK γ-Retroviral (MLV LTR) Melphalan (140 mg/m2) 1 Transient clinical
benefit

None – Personal communication
Thrasher AJ

γ-Retroviral (SFFV LTR) 3
Korea γ-Retroviral Busulfan (6.4 mg/kg) +

Fludarabine (120 mg/m2)
2 Transient clinical

benefit
None – Kang et al. (2011)

Switzerland,
Germany,
France, UK

SIN lentivector, myeloid
promoter

Busulfan (12–16 mg/kg) 1 Trial open – – –
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2.4. WAS

Wiskott–Aldrich syndrome is a rare and severe X-linked immunode-
ficiency caused by mutations in the WAS gene encoding WAS protein
(WASp), an actin cytoskeleton regulator expressed solely in cells of
haematopoietic lineage. Mutations inWAS gene hamper cell migration,
signalling and activation causing a host of defects leading to eczema,
micro-thrombocytopenia, recurrent infections, autoimmunity and in-
creased tendency to develop lymphomas. The overall incidence of clas-
sicalWAS resulting fromcomplete absence ofWASp is estimated to be 4
per million live male births over a wide geographical area and amongst
diverse ethnic groups. Severely reduced expression of WASp has been
implicated in a milder phenotypic variant of WAS known as hereditary
X-linked thrombocytopenia (XLT) or intermittent XLT. Intriguingly, a
third allelic variant known as X-linked neutropenia (XLN) has been
found to result from an extremely rare gain-of-function mutation. XLN
does not present with any of the symptoms associated with WAS/XLT
(Thrasher and Burns, 2010).

HSCT is recognized as a standard curative procedure for WAS al-
though the success rate is determined by availability of HLA-matched
donors and presence of a low clinical score at the time of treatment.
For patients without suitable donors or at high risks of complications,
WAS is an excellent candidate for gene therapy. Low levels ofWASp ex-
pression in XLT patients have been found to confer considerable immu-
nocompetence as well as survival advantage to mature lymphocytes.
Together, these observations provide a strong rationale for WAS gene
therapy since low level correction can be expected to provide consider-
able clinical benefit to the patient (Moratto et al., 2011).

Proof-of-concept studies in animal models have demonstrated both
efficacy and feasibility of gene therapeutic approaches for treating WAS
leading to the first clinical trial in which 10 patients were enrolled and
treated with a GALV-pseudotyped γ-retroviral vector following busulfan
conditioning. The initial reports for two patients, three years after gene
therapy showed restored expression of WASp in multiple lineages, with
increasing proportions of corrected lymphocytes over time confirming
Table 4
Summary of recent clinical trials targeting WAS. SAE, serious adverse event; T-ALL, T cell a

Trial centre Vector Conditioning Patients Ou

Germany γ-Retroviral (LTR driven,
GALV pseudotyped)

Busulfan (8 mg/kg) 10 Lo

UK, US,
France, Italy

SIN lentivector
(endogenous
WAS promoter,
VSV-G pseudotyped)

Busulfan + Fludarabine
+/− ATG/Rituximab

5 M
(p
expected selective advantage. Restored gene expression correlated with
improvements in platelet counts and corresponding resolution of bleed-
ing, eczema and auto-immunity. Although the immunoglobulin levels
did not rise to normal levels, both the patientswere successfully vaccinat-
ed against tetanus, diphtheria and haemophilus influenza. Unfortunately,
further reports confirmed the occurrence of leukaemia in 4 patients due
to insertional transactivation of proto-oncogenes MDS/EVI1 and LMO2
by strong enhancer elements present within the viral LTR (Boztug et al.,
2010).

A multi-centre trial has recently been initiated in the UK, the US,
France and Italy. These trials will employ a VSV-G pseudotyped SIN
lentivector driving expression of the WAS cDNA from an endogenous
1.6 kb long human WAS promoter. This international multicentre ap-
proach is expected to facilitate gathering of data (safety, multi-lineage
reconstitution, clinical efficacy) across the board by maintaining uni-
form parameters of pre-conditioning and vector quality (Avedillo et
al., 2011; Dupre et al., 2006; Galy et al., 2008; Scaramuzza et al., 2013)
(see Table 4 for summary).

3. Pitfalls: safety issues and challenges

Irrespective of their successes or setbacks, all gene therapy clinical
trials targeting the various forms of PIDs have imparted immensely
valuable lessons to researchers on the various aspects of gene thera-
py. While the positive clinical outcome of ADA-SCID patients treated
with gene therapy gave a major boost to the advancement of the
field, the serious adverse events observed in the SCID-X1 trials led
to the development of a nascent area of research (integration site
analysis) focussed on vector-mediated oncogenesis. This contributed
to improving safety standards for future gene therapy vectors.
Again, the transient clinical benefit seen in CGD patients underlined
the importance of pre-conditioning of the bone-marrow to maximise
engraftment potential for the gene-corrected HSCs in cases where
gene correction does not confer any selective advantage compared
to untransduced HSCs.
cute lymphoblastic leukaemia.

tcome SAE Insertion
site(s)

References

ng-term correction T-ALL in 4/10 patients LMO2
MDS/EVI1

Boztug et al. (2010)

ultilineage correction
reliminary results)

– –
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It is still unclear which definite factors contribute to the risk of in-
sertional mutagenesis associated with specific diseases and/or clinical
trials. There are several possible explanations which are summarized
in the following sections.

3.1. Nature of the target gene and disease compartment

ADA is a constitutively expressed metabolic enzyme while IL2RG is a
component of a signalling complex that induces cell proliferation and is
up-regulated upon T-cell activation. Therefore, it is conceivable (though
not proven) that inappropriate expression of vector-mediated IL2RG at
various stages of differentiation can be significantly detrimental.
Similarly, it is possible that upon insertional activation, the cellular
proto-oncogenes will interact with IL2RG expression in a synergistic
fashion to cause tumorigenesis. The predisposition to lymphoma has
been reported in two mouse models of SCID-X1 irrespective of γ-chain
related oncogenicity. Therefore, both the nature of the gene product
and the disease environment (cellular factors and replicative stress)
might play a crucial role in determining the background risks associated
with correcting the disease phenotype (Dave et al., 2009; Scobie et al.,
2009; Shou et al., 2006).

3.2. Vector design and integration profile

The observed toxicities in the gene therapy clinical trials for SCID-X1,
CGDandWAS share a commonmechanism, namely up-regulated expres-
sion of proto-oncogenes induced by powerful enhancer sequences
present in the LTRs of the early-generation γ-retroviral vectors (γ-RVs)
used in majority of the clinical trials conducted so far. Integration site
analysis of patient cells post gene therapy has revealed that these
γ-retroviral vectors have a semi-random (25% of integrants in common
insertion sites) yet enhanced tendency to target loci of actively transcrib-
ing genes during the time of transduction. Vectors have been found to in-
tegrate both within and near (promoter region) gene encoding proteins
with kinase or transferase activity, or involved in phosphorusmetabolism
indicating that the survival potential of gene-corrected cells might be
heavily dependent upon the site/s of integration. This in turn influences
the ability of the transduced cells to engraft, differentiate and expand.

Enhancer-mediated up-regulation of LMO2 proto-oncogene has
been directly implicated in the leukemic outcomes of several SCID-X1
patients although the development of full-blown T-ALL might have
been influenced by other genotoxic changes independent of retroviral
vector integration. Similar observations have been made for the four
WAS patients treated with gene therapy where T-cell leukaemia was
associated with integrations in the vicinity of LMO2 and other proto-
oncogenes. Likewise, insertional transactivation of myeloproliferative
genes like MDS1/EVI1, PRDM16 or SETBP1 has resulted in clonal domi-
nance and malignant expansion in some CGD patients. In addition to
pro-malignant tendencies, LTR-drivenγ-RVs are also susceptible to epi-
genetic silencing by promoter methylation as was observed in the case
of CGD patients (Cattoglio et al., 2010; Deichmann et al., 2011).

Intriguingly, although integration hotspots were identified in
transcriptionally active regions close to proto-oncogenes in some
ADA-SCID patients receiving gene therapy, clonal dysregulation has
not been reported so far. It is possible that intrinsic metabolic or pro-
liferative defects restrict leukemogenic potential in this case, as muta-
genesis has been described in all other primary immunodeficiencies
treated with LTR-based γ-RVs.

4. Advancements and prospects for PID gene therapy

4.1. Refining viral vector design

4.1.1. Self-inactivating (SIN) vectors
The crux of novel viral vector development centres on elimination of

endogenous enhancer elements responsible for insertional genotoxicity.
Self-inactivating (SIN) γ-RVs have been incorporated in trans-Atlantic
clinical studies in the recent past and the early results in SCID-X1patients
have been found to be encouraging. These vectors have been genetically
engineered to carry a significant deletionwithin theU3 region (including
CAAT and TATA boxes) of the viral LTRs of the integrated provirus there-
bymaking them less likely to initiate any transcriptional activity of adja-
cent proto-oncogenes.

4.1.2. Emergence of LVs
One paradigm shift in recent pre-clinical trials has been the employ-

ment of lentiviral vectors (LVs) over γ-RVs. Novel pre-clinical assays
have shown that LVs have a decreased propensity to integrate near
the regulatory elements of actively transcribed genes thereby signifi-
cantly reducing the probability of insertional mutagenesis. Also, unlike
γ-RVs, LVs are capable of transducing non-dividing cells thereby reduc-
ing the duration of ex-vivo culture of patient HSCs by eliminating the
need for their treatment with cell-division inducing cytokines prior to
transduction. Limited ex-vivo culture preserves the “stemness” of the
multi-potent HSCs which is critical for successful long-term engraft-
ment. Additionally LVs allow for inclusion of larger and more sophisti-
cated transgene expression cassettes.

4.1.3. Internal promoters, tissue-specificity and safety elements
SIN vectors typically express the gene-of-interest from an internal

heterologous promoter such as SFFV, PGK or EF1α. These ubiquitous-
ly expressing promoters are capable of driving a strong and sustained
expression of the transgene in various target cells but suffer from in-
herent disadvantages such as over-expression (above normal physio-
logical levels) and mistimed expression (in early progenitors and
precursors) on the one hand, and silencing of the promoter by meth-
ylation on the other (Kildebeck et al., 2012).

Incorporation of the ubiquitous chromatin opening element (UCOE)
in the vector backbone has shown efficacy in resisting methylation of
the heterologous promoters in pre-clinical animal/human xenograft
models (Zhang et al., 2007). Similarly, introduction of endogenous
(WAS gene promoter) and tissue-specific promoters (for example,
CD19 for B cells, CD4/Lck for T cells, and C-Fes/Cathepsin G chimeric pro-
moter for myeloid expression) is currently being investigated to restrict
transgene expression in specific cell types and in response to physiolog-
ical cues (Marodon et al., 2003; Moreau et al., 2004; Santilli et al., 2011).
Limiting expression of transgene at the transcriptional level has also
been achieved by incorporating microRNA (miR) target sequences in
the therapeutic vectorswhichwould ensure robust transgene expression
in cells where the corresponding miR is absent. As an example, miR-126
is expressed in HSCs but not in differentiated blood cells. Addition of
miR-126 target sequence in the vector backbone will therefore prevent
expression of the transgene in the stem cells but support robust expres-
sion in relevant mature hematopoietic cells (Gentner et al., 2010).

An additional level of vector safety against position effect can be
achieved by the introduction of chromatin insulator elements which
define domains of transcriptional autonomy. One of the best character-
ized insulator elements is the chicken hypersensitive site-4(cHS-4) ele-
ment of the beta-globin locus control region (β-LCR) which has both
enhancer blocking and chromatin barrier effects.

4.2. Gene targeting

4.2.1. Engineered endonucleases and homologous recombination
A promising alternative to gene-addition is in-situ replacement of

disease-causing gene mutation by homologous recombination (HR)
between the endogenous genomic sequence and an exogenous DNA
template harbouring desired sequence alterations to correct the ge-
netic defect. Correction of the diseased gene at its endogenous locus
is expected to achieve therapeutic benefit without the accompanying
complications of insertional oncogenesis, transgene silencing, and
lack of gene regulation. HR strategy for gene correction requires
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double-strand breaks (DSBs) at the precise location of mutation.
Engineered nucleases such as meganucleases (MNs), zinc-finger nucle-
ases (ZFNs) and transcription activator-like effector nucleases (TALENs)
have been designed to create such DSBs. In the context of PIDs, develop-
ment of a IL2RG-specific ZFN pair targeting exon 5 (hotspot for SCID-X1
mutations) has been found to affect targeted gene replacement in both
human cell lines and primary T cells with frequencies of 18% and 5% re-
spectively (Lombardo et al., 2007; Urnov et al., 2005;Wood et al., 2011).
Similar efficacy has been demonstrated in correcting gp91phox mutation
by ZFNs in human X-CGDpatient-derived induced pluripotent stem cells
(Zou et al., 2011). Unfortunately, both ZFNs and TALENs have been
associated with genotoxic “off-target effects” caused by non-specific
DSBs in the genome. Development and optimization of safe and effective
engineered endonucleases for PIDs are areas of intense current research.

4.2.2. Genomic safe harbours
Genomic safe harbours (GSHs) are regions of the human genome

where newly integrated transgenes can be expressed stablywithout ad-
verse effects on the host cell or organism (for example using various HR
strategies). Various GSHs are currently being investigated and validated
by laboratories around theworld and fewof the prime intragenic candi-
dates are the AAVS1 site in chromosome 19, and the CCR5 and ROSA26
loci in chromosome 3. It is important to note that a fully defined GSH
has not yet been identified (Sadelain et al., 2012).

5. Conclusions

The overall impressive efficacy of gene therapy for PIDs, when
compared to that obtained by transplantation with non-HLA-identical
HSCs, provides a strong argument in favour of continued exploration of
this therapeutic approach. The strong rationale for PID gene therapy
has been strengthened further by technological advancements in the de-
sign andmanufacture of clinical grade GMP-quality vectors coupledwith
enhanced transduction protocols and improved transplantation regi-
mens. SAEs constitute a prime concern in the clinical trials conducted
so far targeting SCID-X1, CGD and WAS. Although the exact mechanism
ofmalignant transformation observed in these trials remains unresolved,
it is possible that multiple factors contribute to oncogenesis. It is worth
mentioning here that allogeneic transplantation of HLA-mismatched
HSCs also suffers from occurrences of life-threatening graft-versus-
host-disease (GvHD). Encouraging results from the PID clinical trials
(as described above) have set the platform for addressing other mono-
genic disorders (both haematopoietic andmetabolic)with gene therapy,
especially for those in which the transgene-expressing cells have an an-
ticipated selective advantage over the cells harbouring the mutation.

In the past, pre-clinical study of various PIDs has been handicapped
by the severely restricted availability of primary patient samples owing
to their rare occurrence as well as the fact that many of the PIDs affect
infants and young children. However, a significant biomedical break-
through in the form of induced pluripotent stem cell (iPSC) technology
promises to be a potent weapon in allowing patient-specific disease
modelling for PIDs by overcoming the issue of limited availability of bi-
opsy samples. Proof-of-concept studies have already been carried out
both in humanized PID animal models and patient samples to confirm
the utility of this technology in serving as a platform for optimization
and in-depth study of gene correction (Pessach and Notarangelo,
2011; Pessach et al., 2011).

A key consideration in adopting gene therapy of PIDs as a viable
treatment option is to develop a robust business model to balance prof-
itability of gene therapy developers with affordability of treatments for
patients. Although the present costs of treating PID patients with gene
therapy remain substantially high (due to infrastructural requirements,
GMP-quality vector manufacture, long-term follow-ups), it can be
envisaged that for a large number of monogenic disorders, the one-
and-done treatment solution offered by gene therapy will effectively
counterbalance the chronic treatment costs incurred during the
life-time of patients. A paradigm shift in therapeutic landscape of PIDs
will also require coordination of resources and ideas between public
and private enterprises to clearly evaluate the potent health economics
argument in favour of gene therapy.
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