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Abstract—Convolutional neural networks (CNNs) have

recently exhibited excellent performance in hyperspectral

image (HSI) classification tasks. However, the straightfor-

ward CNN-based network architecture still finds obstacles

when effectively exploiting the relationships between HSI

features in the spectral-spatial domain, which is a key

factor to deal with the high level of complexity present

in remotely sensed HSI data. Despite the fact that deeper

architectures try to mitigate these limitations, they also find

challenges with the convergence of the network parameters,

which eventually limit the classification performance under

highly demanding scenarios. In this paper, we propose a

new CNN architecture based on spectral-spatial capsule

networks in order to achieve highly accurate classification

of HSIs while significantly reducing the network design

complexity. Specifically, based on Hinton’s capsule net-

works, we develop a CNN model extension which re-defines

the concept of capsule units to become spectral-spatial units

specialized in classifying remotely sensed HSI data. The

proposed model is composed by several building blocks,

called spectral-spatial capsules, which are able to learn HSI

spectral-spatial features considering their corresponding

spatial positions in the scene, their associated spectral
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signatures, and also their possible transformations. Our

experiments, conducted using five well-known HSI datasets

and several state-of-the-art classification methods, reveal

that our HSI classification approach based on spectral-

spatial capsules is able to provide competitive advantages

in terms of both classification accuracy and computational

time.

Index Terms—Hyperspectral imaging (HSI), Convolu-

tional neural networks (CNN), Capsule networks.

I. INTRODUCTION

The constant development of spectral imaging acqui-

sition technologies, together with the increasing avail-

ability of remote sensing platforms, provide plenty of

opportunities to manage detailed spectral-spatial infor-

mation of the Earth’s surface [1]–[3]. As a result, the

classification of remotely sensed Hyperspectral images

(HSIs) has become one of the most active research

fields within the remote sensing community, because

it is able to provide highly relevant information for a

wide range of Earth monitoring applications such as

ecological science [4], [5], precision agriculture [6], [7]

and surveillance services [8], among others.

Many different classification paradigms have been

successfully adopted by the remote sensing community

in order to build effective HSI classifiers [9], [10].

In particular, some of the most noteworthy approaches
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rely on support vector machines (SVMs) [11], k-means

clustering [12], Gaussian process (GP) [13], random

forest (RF) [14], extreme learning machines (ELM) [15]

and deep neural network classifiers [16]. Despite all

the extensive research work conducted in the afore-

mentioned areas, the complex nature of HSI data still

makes the classification problem a very challenging one,

and also motivates the development of more powerful

and accurate classification schemes [17]. Basically, there

are two main aspects that HSI classification models

need to deal with: (i) high data complexity, and (ii)

limited amount of labeled data for training purposes.

On the one hand, the high spectral resolution of HSI

imaging sensors (typically with hundreds of spectral

bands) generates unavoidable signal perturbations as

well as spectral redundancies that eventually limit the

resulting classification performance. On the other hand,

the availability of labeled HSI data for training is usually

rather limited, because obtaining accurate ground-truth

information is expensive as well as time consuming.

This contrasts with the requirement of large amounts of

training sets in order to mitigate the so-called Hughes

effect [1].

Among all the different HSI classification method-

ologies presented in the literature, deep learning-based

strategies deserve special attention because they have

exhibited particularly relevant performance over HSI

data due to their potential to effectively characterize

spectral-spatial features [18], [19]. From regular stacked

auto-encoders (SAE) [20], through sparse auto-encoders

(SSA) [21], to deep belief networks (DBN) [22], several

kinds of deep learning models have been proposed and

successfully adopted to classify HSI data. However,

the two-dimensional nature of all these early models

typically generates an important spatial information loss,

which eventually leads to a limited classification perfor-

mance (especially under the most challenging scenarios)

[23]. Precisely, the most recent approaches try to relieve

this constraint by managing the HSI data as a whole

three-dimensional volume in order to capture features

representing the spectral-spatial domain. For instance,

this is the case of the spatial updated deep auto-encoder

(SDAE) presented in [24], which improves the regular

SAE approach by integrating contextual information.

Nonetheless, one of the most relevant improvements was

achieved when convolutional neural networks (CNNs)

were successfully adapted by Chen et al. to classify

remotely sensed HSI data [25], achieving the current

state-of-the-art performance.

Since Chen et al. adopted in [25] the CNN approach

for HSI classification purposes, different CNN-based

extensions have been also proposed in the literature to

learn enhanced spectral-spatial features. For instance,

Li et al. propose in [26] the use of pixel-pair features

under a CNN-based classification scheme in order to

increase the number of training samples and, hence,

the resulting classification performance. Zhao and Du

[27] also propose a classification approach which merges

CNN-based spatial features and the spectral information

uncovered by the balanced local discriminant embedding

algorithm. Other important works make use of several

independent CNN-based architectures to combine spec-

tral and spatial features, such as [28], [29]. Despite the

fact that all these methods have shown to obtain certain

performance benefits, they still struggle at facing the

two aforementioned issues when dealing with remotely

sensed HSI data, that is, the high data complexity and the

limited availability of training samples, mainly because

they fuse different data components using independent

CNN-based procedures. In this sense, the work presented

in [30] defines a novel CNN architecture which is able

to jointly uncover improved spectral-spatial features that

are useful to classify HSI data.

In general, CNNs have exhibited good performance in
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HSI classification due to the fact that convolutional filters

provide an excellent tool to detect relevant spectral-

spatial features present in the data. That is, initial con-

volutional layers are able to learn simple HSI features,

while deeper layers combine these low-level characteris-

tics to obtain higher-level data representations. However,

under this straightforward CNN-based scheme, the ca-

pability of exploiting the relationships between features

detected at different positions within the image is rather

limited. Although the insertion of pooling layers and

the gradual reduction of the filters’ spatial size allow

detecting higher order features in a larger region of the

HSI input image (by achieving translation invariance),

the internal data representation of a regular CNN does

not take into account the existing hierarchies between

simple and complex features. Note that the pooling

operation is based on downsampling the feature space

size to a manageable level and, logically, this introduces

an unavoidable loss of information; specifically, pool-

ing methods are unable to capture information about

the positional data, which may be a key factor when

classifying HSI data. As a result, CNNs may exhibit

poor performance if the input data presents rotations,

tilts or any other orientation changes, being incapable of

identifying the position of one object relative to another

in the scene because they cannot model properly and

accurately such spatial relationships. Several methods

have been implemented in order to encode the invari-

ances and symmetries that exist in the data, including the

transformation of the original input samples during the

training phase via data augmenting [25], [31]. However

this method fails to capture local equivariances in the

data, and does not ensure equivariance at every layer

within the CNN [32].

Another way to address this problem is to conduct

architecture improvements, e.g. by developing deeper

networks with a large number of filters. Even though

this practice can improve the resulting performance, it

requires a significant amount of data to obtain good

generalization coupling, which may become an impor-

tant limitation in some specific scenarios. The rationale

behind this effect is based on the vanishing gradient

problem [33], which can result in poor propagation of

activations and gradients in deep CNNs that ultimately

degrades the classification performance. In this sense, the

improvements brought to CNN filters (kernels) via the

development of residual connections [34], [35] (ResNet)

and dense skip connections [36] (DenseNet) open new

and interesting paths to uncover highly discriminative

spectral-spatial features present in HSI data. On the one

hand, the ResNet defines a CNN extension based on pro-

cessing blocks (residual units [37]), used as fundamental

structural entities to allow learning relevant spectral-

spatial HSI features from substantially deeper layers. On

the other hand, the DenseNet defines an architecture in

which each layer concatenates all feature maps coming

from the preceding layers as input. Another potential

way of encoding complex properties present in the HSI

data is defined in [38], where Sabour et al. introduced

the concept of capsule networks (CapsNets) to encode

the data relationships into an activity vector (rather than

a scalar) whose length and orientation represents the

estimated probability that the object is present and the

object’s pose parameters, respectively.

With the aforementioned ideas in mind, in this paper

we develop a new CNN architecture based on Hinton’s

CapsNets [38] that achieves highly accurate HSI classifi-

cation results while significantly reducing the complex-

ity of the network. Specifically, the HSI classification

model proposed in this paper is composed by several

building blocks, called spectral-spatial capsules, which

are able to learn HSI spectral-spatial features considering

their corresponding physical positions, their associated

spectral signatures, and also their possible transforma-
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tions. That is, each capsule estimates the probability

that a specific spectral-spatial feature is present within

the input HSI data and, besides, it provides a set of

instantiation parameters that model the transformations

suffered by the observed spectral-spatial feature with

respect to its corresponding canonical spectral and spa-

tial counterparts. As a result, the proposed network is

able to characterize the HSI input data at a higher

abstraction level, which eventually allows us to sub-

stantially reduce the number of convolutional layers and

the inherent model complexity. The proposed network

architecture has been accelerated with graphics pro-

cessing units (GPUs) to further optimize performance.

Our experimental results, obtained over five well-known

HSI datasets, reveal that the proposed approach exhibits

potential to extract highly discriminative spectral-spatial

features with a limited amount of training data, providing

competitive performance advantages over the spectral-

spatial CNN classifier and other relevant state-of-the-art

classification methods.

The remainder of the paper is organized as follows.

Section II discusses some advantages and limitations

of CNNs for HSI classification that motivate the de-

velopment of our new approach. Section III describes

the proposed method. Section IV validates the proposed

model by performing comparisons with other state-of-

the-art HSI classification approaches over five well-know

HSI datasets. Finally, section V concludes the paper with

some remarks and hints at plausible future research lines.

II. ADVANTAGES AND LIMITATIONS OF CNNS FOR

HSI CLASSIFICATION

Let us denote by X ∈ RH×W×C a HSI data cube,

where H is the height, W is the width and C is the

number of spectral bands. Each hyperspectral pixel in

X is a vector of C spectral measures, forming a unique

spectral signature for each land-cover material. In deep

learning methods, X can be represented as a vector of

H ·W elements, where each pixel is denoted as xt ∈ RC ,

or as a matrix of H ×W dimensions, where each pixel

is described as xi,j ∈ RC , being i = 1, 2, · · · , H ,

j = 1, 2, · · · ,W and k = 1, 2, · · · , H · W . The rela-

tionship between both representations can be expressed

as t = (i − 1) · W + j. This is an interesting point,

because traditional standard neural networks are pixel-

wise methods that understand the HSI data cube as a

list of spectral vectors, for which they define complex,

non-linear hypotheses of parameters W (weights) and

B (biases) by applying one or more layers of feature

detectors in order to produce the corresponding scalar

outputs that summarize the activities of these layers [39].

In this sense, these models assume that each xt con-

tains the pure spectral signature of the captured surface

material, disregarding the information from surrounding

pixels and computing the pixels in isolated fashion [30],

[40], [41]. This fact may limit the performance of the

classifiers, which becomes strongly dependent on the

number (Nlabeled) and quality of the available labeled

samples that compose the training dataset Dtrain =

{xt, yt}Nlabeled
t=1 , where yt is the corresponding category

of sample xt. However, hyperspectral pixels are often

highly mixed, introducing high intraclass variability and

interclass similarity into X that is very difficult to avoid,

and which often results in characteristic interferences in

the obtained classification results (see Fig. 1). Specifi-

cally, the CNN model can work as a traditional pixel-

wise method, taking each pixel xt as an input feature

and applying spectral processing (i.e., the so-called 1D-

CNN model [25], [30], [41]). However the 1D-CNN

cannot always manage the complexity of spectral fea-

tures, introducing “salt and pepper” noise in the obtained

classification (see the leftmost part of Fig. 1). In this

sense, it is desirable to incorporate spatial information,

i.e. by processing 2D-regions of X, usually centered on
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pixel xi,j , as input features (i.e., the 2D-CNN model,

which exploits the idea that adjacent pixels are intimately

related and often belonging to the same class). Com-

bining the information contained in such spatial patches

with the spectral signatures (i.e., the 3D-CNN model)

can reduce the intra-class variability and improve the

final performance. In fact, the potential of CNNs lies in

the model architecture, composed by several layers that

can be grouped in two well-separated categories: i) the

feature extractor net, composed by a stack of layers of

artificial neurons (i.e., a convolutional layer followed by

a non-linear function and, often, by a subsampling or

pooling layer), and ii) the classifier, which can be im-

plemented as a stack of fully connected layers, forming

a multilayer perceptron (MLP) or alternatively given by

some known technique such as an SVM or LR classifier.

The first one obtains high level representations (feature

maps), and the second one actually labels the data.

Fig. 1. Characteristic introduced in the classification results obtained

by CNN models. Here we show examples of “salt and pepper” noise

(1D-CNN, left), misclassified patches (2D-CNN, center) and mixed

regions (3D-CNN, right). The examples correspond to extcolorblackan

area of a HSI scene collected over the Salinas Valley in California,

that will be described in detail in our experimental results section.

Focusing on the feature extractor net, the convolu-

tional layer is the key block of the CNN. Instead of

feedforward neural networks (FNNs) such as the MLP,

where the group of neurons that compose the l-th layer

is fully connected with the neurons of the l − 1-th and

l+ 1-th layers, the l-th convolutional layer is composed

by a filter or kernel. The idea behind kernels is related

with the statistical properties of images, considered as

a stationary source of pixels, where data features are

equally distributed into X in relation to positions [42],

suggesting that learned features at one position of X can

be applied to others into X too, allowing to use the same

features at all locations of X. This fact is translated in a

convolutional layer by applying its kernel (also called

learned feature detector) anywhere in X in order to

obtain a different feature-activation scalar value at each

position in the data. In this sense, the l-th layer’s kernel

is connected and applied over small regions (whose

size is defined by the local receptive field) of the input

data, called input volume X(l) (which can be the output

volume of the previous layer, i.e. X(l) = O(l−1), or

the original input image, i.e. X(l) = X), via local

connections and tied weights. This allows reducing the

number of connections between layers and, hence, the

number of parameters that need to be learned and fine-

tuned in the entire CNN. Also, this architecture assumes

that elements (such as pixels in a HSI data cube) that are

spatially close often belong to the same class, and they

collaborate in the task of forming a specific feature of

interest, providing additional and valuable information to

the classification task and reducing the label uncertainty

and intra-class variability due to a better characterization

of contextual features. In essence, each kernel of the l-

th layer computes the dot product (·) between its own

weights W(l) and a predefined region of the provided

input volume to which it is connected as follows:

o
(l)z
i,j,t = (X(l) ∗W(l))i,j,t =

k−1∑
î=0

k−1∑
ĵ=0

q−1∑
t̂=0

x
(l)

(i·s+î),(j·s+ĵ),(t·s+t̂)
· w(l)

î,ĵ,t̂
+ b(l),

(1)

where o(l)zi,j,t corresponds to the (i, j, t) element of the z-

th feature map that composes the output volume O(l) of

the l-th convolutional layer, x(l)i,j,t is the (i, j, t) element
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of the input volume X(l), w(l)

î,ĵ,t̂
is the (̂i, ĵ, t̂) weight

of W(l), b(l) is the bias, and finally s and k × k × q

are the stride and the kernel size of layer l, respectively.

As a result, the obtained O(l) will be an array of scalar

values composed by K 1, 2 or 3-dimensional feature

maps, depending on the kernel’s dimension.

One mechanism to avoid the degradation that the

model can suffer because of the vanishing gradient

problem is based on adding a batch normalization layer

after the convolutional layer. This kind of layer reduces

the covariance shift by means of which the hidden

unit values shift around, allowing a more independent

learning process. It regularizes and speeds up the training

process, imposing a Gaussian distribution on each batch

of feature maps as follows:

BN(O(l)) =
O(l) −mean

[
O(l)

]√
Var
[
O(l)

]
+ ε

· γ + β, (2)

being γ and β learnable parameter vectors, and ε a

parameter for numerical stability.

As convolution layers define a linear operation of

element-wise matrix multiplication and addition, a detec-

tor stage [19] needs to be added after the convolutional

and batch normalization layers in order to learn nonlinear

representations, composed by a non-linear activation

function O(l) = f
(
O(l)

)
, where f(·) defines an element-

wise function such as the sigmoid, the tanh or the widely

used rectified linear unit (ReLU) [43]–[45]), which com-

putes f(O(l)) = max(0,O(l)), allowing the network to

train faster due to its computational efficiency, which

also helps to alleviate the vanishing gradient problem

without introducing significant differences in the accu-

racy as compared to other activation functions such as

the sigmoid. In this sense, the volume O(l) will host the

neural activations, which is usually interpreted as the

likelihood of detecting a certain feature. Those layers

closer to the input of the network commonly learn and

detect simple features, whereas those layers closer to the

output of the CNN combine the previous simple features

to learn and detect more complex ones, until combining

and learning highly abstract features to produce the final

classification.

Finally, following the non-linear activation layers,

a downsampling strategy is normally implemented in

order to reduce and summarize the dimensionality of

each feature map contained in the output volume O(l)

applying a max, average or sum operation (among other

recent methods, such as mixed pooling [46], stochastic

pooling [47] or wavelet pooling [48]) over a neigh-

borhood window [49]. Non-linear downsampling works

independently of the volume’s depth, resizing it spatially.

For instance, the well-known max pooling examines a

window of the output volume O(l), taking the max-

imum activation into the region. This working mode

reduces the number of parameters, which helps to control

overfitting, and provides the network with some kind of

invariance to small distortions and transformations that

are present in the training data (particularly translation

invariance).

Although pooling provides an efficient and simple

tool for detecting whether a certain feature is present

in any region of the volume O(l) (looking at the neural

activations values), it also implies a certain loss of spatial

information concerning the features, which can hamper

the classification performance. This effect may lead the

CNN model to disregard how different features in the

volume O(l) are related to each other, a piece of infor-

mation that can be very useful for the final classification

results. In such cases, it is common to observe in HSI

images that several wrongly classified patches appear

near to or even inside well-defined classes, as we can

observe in the center and rightmost parts of Fig. 1,

where patches belonging to an agricultural field (e.g. the

grapes-untrained class in yellow) are misclassified into

another class (e.g. the vineyard-untrained class in blue)
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and vice-versa. These misclassifications are observed in

both kinds of models, 2D-CNNs and 3D-CNNs, which

indicates that the incorporation of spatial information

cannot fully address these problems. This situation could

be solved by looking at the logical spatial relationship

between both land-cover materials: it seems obvious that,

in the case of crop fields, these are arranged in geometric

forms, defining clear frontiers between one crop and

another. In the case of urban environments, we can

also consider how the elements are spatially organized,

for example roads could be better defined by assuming

that parked cars, sidewalks, ornamental vegetation and

buildings will be normally be placed on both sides of

the road and not inside. Precisely, the exploitation of

this kind of high-level spatial information is one of our

main motivations to introduce a new CNN model for

HSI remote sensing data classification based on capsules

[38], which presents the potential to intelligently exploit

both spectral and spatial features from HSI data.

III. PROPOSED METHOD

The neural network architecture that we introduce in

this work is based on a new convolutional model inspired

by the working mode of capsules, with the objective of

efficiently preserving the spatial-spectral details of the

features present in HSI data cubes and taking advantage

from the information obtained at the neuron outputs,

which contain vectors of instantiation parameters instead

of the classical scalar outputs. Also, in order to provide

accurate classification results, our proposal exploits both

the spectral and the spatial information contained into

the datacube X, implementing a 3D model.

At this point, we emphasize that CNN models have

been traditionally employed for remote sensing scene

classification, in which the full image X represents a

target. This assumes that the CNN model is fed with

a full normalized image prior in order to perform data

classification. In our context, we focus on a HSI data

cube X ∈ RH×W×C , which can be understood as a

collection of H×W pixel vectors, and where each pixel

xi,j ∈ RC contains the spectral signature of a specific

land-cover class (usually highly mixed within the image).

That is, each xi,j represents a target. Our newly proposed

neural network model exploits spectral-spatial informa-

tion, extracting 3D neighboring blocks around each xi,j

(called patches and denoted by pi,j ∈ Rd×d×C), being

d × d the size of the spatial patch and C the number

of spectral channels. These patches are labeled with

the same category as the central pixel xi,j and sent to

the model as input data, following a border mirroring

strategy described in detail in [30].

The proposed architecture is shown in Fig. 2, where

two main parts are clearly differentiated. The HSI data

introduced into the model is first processed by an en-

coder network composed by three layers, which works

as a feature extractor and classifier. Then, the resulting

processed data is introduced into a decoder network,

which improves the classification by performing data

reconstruction. In the following, we provide the specific

details of both parts.

A. Encoder network

Let us first focus on the encoder network, which

is located at the beginning of the neural model. This

network aims at extracting those relevant features from

the HSI data that will help in the classification tasks,

providing the most accurate and useful information that

increases the reliability of the network. It is composed

by three kinds of layers.

1) First layer: The first layer, denoted as L(1), is

composed by a classical convolutional layer, which re-

ceives the patches pi,j ∈ Rd×d×C extracted from the

original HSI data cube as input features. Its goal is to

arrange the HSI data into features that are fed to the
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Fig. 2. Proposed neural network architecture. The neural model is composed by an encoder network (in blue) and a decoder network (in green).

subsequent capsule layers, applying a convolution filter

of size k(1)×k(1)×q(1) (being q(1) = C, i.e. it takes into

account all the pixel spectrum), followed by a batch nor-

malization step and using the ReLU activation function

to obtain an output volume O(1) ∈ RH(1)×W (1)×K(1)

,

composed by K(1) feature maps (or channels) of size

H(1)×W (1). This first layer of the encoder prepares the

data to obtain the activity vectors of highest capsule-

based layers.

2) Second layer: The second layer L(2) (called pri-

mary capsule layer) can be understood as a matryoshka

doll, where L(2) is composed by K(2) convolutional

capsules, which in turn are composed by Z(2) convolu-

tional neurons or units with kernel size k(2)×k(2)×q(2)

(being q(2) = K(1)). The working mode is similar

to CNN kernels; in fact the m-th capsule will apply

its Z(2) units over a region of the volume O(1), ob-

taining as a result the output vector u
(2)
m ∈ RZ(2)

=

[u
(2)
m,1, u

(2)
m,2, · · · , u

(2)

m,Z(2) ]. These output vectors provide

a data structure that is more versatile when storing addi-

tional details about the features, such as their orientation,

pose or size (in addition to their likelihood), allowing

to preserve more detailed information about the spatial

relationships observed in the HSI data than standard

CNN models. In fact, each element of u
(2)
m represents

different properties of the same entity [50]. Here, the

concept of entity can be understood as the target object or

the object’s part of interest (in the HSI domain, the land-

cover type) and its associated properties, expressed as the

instantiation parameters. In this sense, capsules can be

interpreted in the opposite way as rendering in computer

graphics, where given an object and its instantiation

parameters (such as the pose and the orientation), an

image X is obtained by applying rendering. In our

context, the scenario is opposite since, given the image

X, the capsule works as an “inverse rendering” unit

whose aim is to detect the object and extract the vector of

instantiation parameters, called activity vector (see Fig.

3).

In the end, the second layer is performing an inverse

rendering process, extracting the lowest level of multi-

dimensional entities presnt in the HSI data and grouping

them into a 4-D output composed by K(2) feature maps

of size W (2) ×H(2), where each element is the activity
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Fig. 3. Given an input image X with several objects, such as buildings

with different shapes, the output of each capsule will be an activity

vector whose length and orientation gives the likelihood of the object

and its instantiation parameters. In this sense, each capsule is in charge

of finding some specific object in X, instead of calculating a feature

map (as in the traditional CNN). In this example, focused on an urban

area in the University of Pavia scene that will be described later in

experiments, the network has 48 capsules, where the black ones try to

find buildings with circular shape and the red ones try to find buildings

with rectangular shapes.

vector obtained by each capsule of dimension Z(2). An

important aspect is that these groups of neurons allow

the m-th capsule not only to detect a feature, but also to

learn and detect its variants, providing the network with

equivariance properties. In that way, the orientation of

the m-th capsule’s activity vector u(l)
m in any layer L(l)

represents the instantiation parameters, while its length

represents the probability that the feature that the capsule

is looking for is indeed contained and exists in the input

data. In order to properly represent such properties, the

length of activity vectors is often scaled down via a non-

linear squashing function expressed by Eq. (3), that can

be understood as the non-linear activation function of the

network model instead of the classical ReLU or sigmoid,

for instance, until reaching a magnitude between 0 and

1, leaving their orientation unchanged:

ũ(l)
m =

‖ u(l)
m ‖2

1+ ‖ u(l)
m ‖2

· u
(l)
m

‖ u(l)
m ‖

. (3)

3) Third layer: After computing the outputs of

the primary capsule layer and applying the non-linear

squashing function of Eq. (3) over each u
(l)
m , the model

connects the K(2) capsules in layer L(2) to every capsule

in the third layer of the encoder, L(3), denoted as

dense capsule layer. In this case, L(3) is composed by

nclasses capsules, which groups Z(3) dense units each

one, being nclasses the number of different land-cover

categories present in the original HSI data cube. For

each class, we thus obtain its corresponding activity

vector, whose module will encode the probability of each

input patch of belonging to that class. In this sense,

a special mechanism has been implemented between

layers L(2) and L(3), known as routing-by-agreement

[38], which connects the current dense capsule layer

with the previous primary capsule layer. Its goal is to

design a better learning process in comparison with tradi-

tional pooling methods, not only routing the information

between capsules but also capturing part-whole data

relationships by reinforcing connections (also understood

as contributions) of those capsules allocated at different

layers that obtain a high grade of agreement or similarity,

while avoiding or deleting the weakest connections. In

the following, we provide the details of this mechanism.

The n-th capsule in current layer L(l) takes as input

data all the output vectors of the K(l−1) capsules lo-

cated at previous layer L(l−1), obtaining for each one

a prediction vector û
(l)
m , with m = 1, 2, · · · ,K(l−1),

calculated as the weighted multiplication between the

m-th capsule’s output ũ
(l−1)
m and the corresponding

weights W
(l)
m,n (understood as a transformation matrix)

that connect the m-th capsule in layer L(l−1) with the

n-th capsule in layer L(l), as Eq. (4) shows:

û
(l)
n|m = W(l)

m,nũ
(l−1)
m +B(l)

n , (4)

where B
(l)
n are the biases of capsule n. This equation

can be interpreted as a transformation where the output

volume from previous primary capsule layer is trans-

formed into K(l) vectors of Z(l) items by applying the

transformation matrix W
(l)
m,n between the m-th capsule

in layer L(l−1) and the n-th capsule in layer L(l).
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Fig. 4. Dynamic routing between capsules: the inferior-layer capsule

activity vector is the current input vector ũ
(l−1)
m of the higher-layer

capsule n. After a matrix-transformation given by Eq. (4), ũ(l−1)
m is

transformed into the prediction vector û
(l)
n|m. The weighted sum [see

Eq. (5)] of all the prediction vectors gives as a result the input capsule

data s
(l)
n which, after passing through the activation function given by

Eq. (6), gives the n-th capsule activity vector v(l)
n .

Moreover, the obtained prediction vectors can be inter-

preted as the vote of each capsule of L(l−1) in the output

of the n-th capsule of L(l), i.e. we can observe each

û
(l)
n|m as a prior prediction of capsule m about the output

activity vector of capsule n. This processing allows

that capsules at inferior levels can make predictions for

capsules at superior levels, increasing the abstraction of

the features at each layer. At the end, when multiple

predictions agree at different levels, connections between

them are strengthened, producing that one higher level

capsule will become active for a more complex and

abstract feature. This idea of “agreement” is reinforced

by introducing, for each prediction vector û
(l)
n|m, a dy-

namic routing element known as coupling coefficient

c
(l)
m,n, which relates capsules m and n by calculating

the final input s(l)n of capsule n as the weighted sum of

the previous extcolorblackoutputs of the K(l−1) convo-

lutional capsules in the L(l−1)-th layer:

s(l)n =

K(l−1)∑
m

c(l)m,nû
(l)
n|m, (5)

which must be squashed by Eq. (3) in order to obtain

the final activity vector v(l)
n , whose length represents the

probability that the feature target is contained into the

data and must be between 0 and 1:

v(l)
n =

‖ s(l)n ‖2

1+ ‖ s(l)n ‖2
· s

(l)
n

‖ s(l)n ‖
. (6)

Focusing again on coupling coefficients, c(l)m,n mea-

sures the probability that capsule m activates capsule n,

thus all the coupling coefficients of capsule m must sum

1. This parameter is initialized with equal probability

for all connections between capsule m in L(l−1) and the

K(l) capsules in L(l), and it is obtained by the routing

softmax expressed by the following equation:

c(l)m,n =
exp (bm,n)∑K(l)

i exp (bm,i)
with

K(l)∑
i

c
(l)
m,i = 1, (7)

where bm,n denotes the log prior probability that capsule

m will activate capsule n, that is, the degree of relation-

ship between both capsules, a measure that is initialized

to zero and then refined in each iteration of the network

model as follows:

(i)bm,n ←(i−1) bm,n +(i−1) am,n =

(i−1)bm,n +(i−1)
(
v(l)
n · û

(l)
n|m

)
=

(i−1)bm,n +(i−1)
(
|v(l)

n ||û
(l)
n|m| cos(θ)

)
,

(8)

where (i) and (i− 1) are the current and previous

iterations and (i−1)am,n is the degree of agreement

between the prior prediction or vote û
(l)
n|m and the

final output v
(l)
n , obtained at iteration (i− 1). When

û
(l)
n|m and v

(l)
n are in agreement, we can observe that

cos(θ) = cos(0) = 1, thus am,n = |v(l)
n ||û(l)

n|m| from

a geometrical viewpoint. During the training phase,

the network model learns not only the transformation

matrices W
(l)
m,n, encoding the part-hole relationships of

the data, but also the coupling coefficients c(l)m,n for each
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pair of capsules m and n in layers L(l−1) and L(l),

respectively. Conceptually, this means that capsules of

one layer can make predictions over capsules of the su-

perior layer, grouping those capsules with similar results

via dynamic routing in order to obtain clearer outputs,

i.e. reinforcing their connections, whereas connections

between capsules whose predictions are not related are

reduced. Fig. 4 provides a graphical illustration of the

dynamic routing process.

We highlight at this point that the main goal of

layer L(3), is to obtain as many activity vectors v
(l)
i

as the number of objects or land-cover classes present

in the image, in such a way that l = 3 and i =

1, 2, · · · , nclasses). In this sense, for each input data

set the proposed neural network obtains a collection of

nclasses activity vectors, where each v
(l)
i is the capsule

for class i, being ‖ v(l)
i ‖ the probability of belonging

to class i. The goodness of the network’s output with

regards to the desired output can be calculated by the

loss function:

Lmargin =

nclasses∑
i

(Ti max(0, α+ − ‖v(l)
i ‖)

2+

λ(1− Ti)max(0, ‖v(l)
i ‖ − α

−)2)

, (9)

where Ti is set to 1 if class i is present in the data

extcolorblackand 0 otherwise. We can observe two well-

differentiated parts (addends) in Eq. (9). The first one

is “activated” when the associated class i is present

in the scene (setting Ti = 1), while the second one

is “activated” in the opposite case, that is, when the

associated class i is not present (setting Ti = 0).

This expression can be extended in order to improve

the final classification accuracy by adding a typical

reconstruction loss Lrecon =‖ X − X′ ‖, where X is

the original-desired output data and X′ is the network’s

reconstructed-obtained output data. This reconstruction

is performed by the second part of the proposed network,

the decoder net, extcolorblackwith the aim of improving

the fine-tunning process of the parameters employed in

the proposed network.

B. Decoder network

The decoder network is composed by several fully-

connected layers that use the output activity vectors of

the dense capsule layer to reconstruct the input image,

encouraging the capsules to encode the most relevant

instantiation parameters of the input data. At the end,

the proposed model optimizes the loss function given

by Eq. (10) employing the Adam optimizer [51] with

learning rate equal to 0.001 and 100 training epochs:

Lfinal = Lmargin + θLrecon, (10)

where θ is a regularization factor to balance the weight

between both loss measures that has been fixed to

θ = 0.0005 ·C extcolorblackafter a grid search in order

to assign an appropriate weight to the reconstruction

loss. Also, extcolorblackparameters α+ and α− work

as boundaries, forcing the length of the activity vector

‖v(l)
i ‖ (i.e. the probability) in Eq. (9) to lie into a

small interval of values in order to avoid maximizing

or collapsing the loss. In particular, these boundaries

force v
(l)
i to have a length in the range [0.9, 1] if the

associated class is present (α+ = 0.9) and in the range

[0, 0.1] in the opposite case. Moreover, λ = 0.5 works as

a regularization parameter to stop the learning, shrinking

the impact of those activity vectors whose corresponding

classes are not present. Finally, Table I summarizes the

layers that compose the proposed model, indicating their

configuration parameters, which have been demonstrated

a good performance with tested HSI datasets.

IV. EXPERIMENTAL RESULTS

A. Hyperspectral Datasets

Five real hyperspectral datasets have been considered

in our experiments (see Table 5). These are the In-
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TABLE I

SUMMARY OF THE PARAMETERS IN EACH LAYER OF THE

TOPOLOGY OF THE PROPOSED NETWORK.

Input convolutional layer

Layer Kernel size
Stride

Batch Activation

ID K(i) × k(i) × k(i) × q(i) normalization function

L(1) 256× 3× 3× C 1 Yes ReLU

Primary capsule layer

Layer Kernel size
Stride Activation function

ID Z(i) ×K(i) × k(i) × k(i) × q(i)

L(2) 8× 256× 3× 3× 256 1 Squashing function (eq. 3)

Dense capsule layer

Layer Output size
Activation function

ID nclasses × Z(i)

L(3) nclasses × 16 Squashing function (eq. 6)

Fully-connected layers

Layer
Number of neurons Activation function

ID

L(4) 328 Sigmoid

L(5) 192 Sigmoid

L(6) d · d · C Linear

dian Pines (IP), Salinas Valley (SV), Kennedy Space

Center (KSC) extcolorblackand the full version of the

Indian Pines scene, referred hereinafter as the big Indian

Pines scene (BIP), all captured by the Airborne Visi-

ble/Infrared Imaging Spectrometer (AVIRIS) sensor [52],

and the University of Pavia (UP) image, acquired by the

Reflective Optics System Imaging Spectrometer (ROSIS)

sensor [53]. In the following, we provide a description

of the aforementioned datasets.

1) Indian Pines (IP): The IP dataset covers an area

comprising different agricultural fields in North-

western Indiana, USA, and it was gathered by

the AVIRIS sensor in 1992. This image contains

145 × 145 pixels with spatial resolution of 20

meters per pixel (mpp) and 224 spectral bands in

the wavelength range from 400 to 2500 nm. In our

experiments, 4 null bands and other 20 bands cor-

rupted by the atmospheric water absorption effect

have been removed. The IP dataset contains a total

of 16 mutually exclusive ground-truth classes.

2) Salinas Valley (SV): The SV image was captured

in 1998 by the AVIRIS sensor over the Salinas

Valley in California, USA. The data comprises

512 × 217 pixels with spatial resolution of 3.7

mpp. As for the IP dataset, the water absorption

bands, i.e. channels from 108th to 112th, from 154th

to 167th, together with the 224th band, have been

discarded. A total of 16 classes are included in the

SV ground-truth data.

3) Kennedy Space Center (KSC): The KSC image was

also collected by the AVIRIS instrument (1996)

over the Kennedy Space Center in Florida, USA.

After removing the noisy bands, the KSC scene

contains 176 bands (ranging from 400 to 2500 nm)

with 512× 614 pixels (20 mpp spatial resolution)

and 13 ground-truth classes.

4) University of Pavia (UP): The UP dataset was

gathered by the ROSIS sensor (in 2001) over the

University of Pavia, Northern Italy. This image

contains 103 spectral bands (from 0.43 to 0.86

µm) after several noise-corrupted bands have been

discarded, and it comprises 610× 340 pixels with

1.3 mpp spatial resolution. The available ground-

truth contains 9 different class labels.

5) Big Indian Pines scene (BIP): The BIP image

comprises the full flightline of the Indian Pines

dataset captured by the AVIRIS sensor in 1992.

This image contains 2678 × 614 pixels (20mpp)

and 220 spectral bands ranging from 400 to 2500

nm. The available ground-truth information con-

sists of 58 land-cover categories (some of them

spectrally very similar) according to the informa-

tion provided in Table 5. This dataset is one of

the most challenging scenes publicly available to

conduct HSI classification due to its considerable

size, the very high number of classes, and the im-

balanced nature of such classes with very different
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numbers of available samples. We emphasize that

some classes in the BIP scene have more than

104 pixels, but others only contain several tens

of samples which poses important challenges for

HSI classifiers. As a consequence of the memory

restrictions and the large size of this scene, we

have reduced the number of spectral bands after

applying principal component analysis (PCA) –

we retain the first 120 components after PCA–.

Although fewer PCA components can explain the

variance in the original scene, we have decided to

retain a large number of components to illustrate

the performance of methods in a challenging sce-

nario from a computational viewpoint.

B. Experimental Settings

A total of extcolorblackeight different classification

methods have been selected to conduct the experimental

validation in this work. Specifically, the SVM with

radial basis function kernel [54], the RF classifier, the

multi-layer perceptron (MLP) extcolorblackas well as

a deep MLP version with 4 layers (DEEPMLP), the

two-dimensional CNN (2D-CNN), the three-dimensional

CNN (3D-CNN) [25], the spectral-spatial residual net-

work (SSRN) [35], and the deep fast convolutional

neural network (DFCNN) [30] have been compared to

the proposed approach. Note that the SVM, RF and MLP

are spectral classifiers, while the 2D-CNN is a spatial-

based technique and the SSRN, DFCNN (together with

the proposed approach) are all spectral-spatial methods.

In the case of the 2D-CNN, PCA has been used to

reduce the number of HSI bands to a single principal

component. Additionally, all the hyper-parameters of the

considered methods have been optimally fixed for the

experiments.

Regarding the considered classification assessment

protocol, three widely used quantitative metrics have

been considered to evaluate the classification accuracy:

overall accuracy (OA), average accuracy (AA), and

Kappa coefficient. All the experiments have been con-

ducted in a hardware environment consisting of a 6th

Generation Intel R© CoreTMi7-6700K processor with 8M

of Cache and up to 4.20GHz (4 cores/8 way multi-task

processing), 40GB of DDR4 RAM with a serial speed

of 2400MHz, an NVIDIA GeForce GTX 1080 GPU

with 8GB GDDR5X of video memory and 10 Gbps

of memory frequency, a Toshiba DT01ACA HDD with

7200RPM and 2TB of capacity, and an ASUS Z170 pro-

gaming motherboard. Regarding our software environ-

ment, it is composed by Ubuntu 16.04.4 x64 as operating

system, CUDA 9 and cuDNN 7.0.5, PyTorch framework

[55] and Python 3.5.2 as programming language.

C. Experiments and Discussion

1) Experiment 1: Our first experiment pursues to

validate the performance of the proposed approach with

respect to some of the most well-known HSI classifi-

cation techniques available in the literature. Tables II-

V provide a quantitative classification assessment using

the IP, UP, SV and BIP datasets, considering the SVM,

RF, MLP, 2D-CNN and 3D-CNN classifiers together

with the proposed approach. In the tables, class results

and global metrics are arranged in rows whereas the

considered classifiers are presented in columns. In all

these experiments, 15% of the available labeled samples

have been used for training, and a spatial size of 11×11

pixels for the input patches was considered for 2D-CNN,

3D-CNN and the proposed method. It should be also

mentioned that each table contains the corresponding

average and standard deviation values after 5 Monte

Carlo runs.

From the results reported on Tables II-V, it is pos-

sible to observe that the proposed approach reaches

a consistent performance improvement with respect to
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TABLE II

CLASSIFICATION RESULTS FOR THE INDIAN PINES (IP) DATASET

USING 15% OF THE AVAILABLE LABELED DATA FOR TRAINING AND

11× 11 INPUT PATCH SIZE.

Class SVM RF MLP 2D-CNN 3D-CNN Proposed

1 68.04 ±6.95 33.04 ±7.45 62.39 ±13.96 65.87 ±10.34 89.13 ±7.28 96.96 ±2.95

2 83.55 ±1.31 66.68 ±1.67 83.84 ±2.46 81.04 ±3.28 98.33 ±0.71 99.15 ±0.08

3 73.82 ±1.44 56.20 ±2.41 76.37 ±5.03 79.07 ±6.75 98.05 ±1.40 99.16 ±0.88

4 71.98 ±3.86 41.10 ±2.50 68.35 ±6.12 82.70 ±8.34 98.23 ±0.62 99.92 ±0.17

5 94.29 ±0.97 87.12 ±1.73 90.87 ±2.09 69.25 ±10.58 97.56 ±2.84 99.75 ±0.20

6 97.32 ±0.97 95.32 ±1.79 96.95 ±1.10 88.29 ±5.51 98.93 ±1.14 99.86 ±0.17

7 88.21 ±5.06 32.86 ±12.66 78.21 ±10.28 67.86 ±25.65 83.57 ±19.51 98.57 ±2.86

8 98.16 ±0.75 98.49 ±0.81 98.08 ±0.90 96.26 ±1.60 99.41 ±0.61 100.00 ±0.00

9 52.00 ±8.43 13.00 ±3.32 72.00 ±8.12 67.00 ±27.68 65.00 ±21.68 100.00 ±0.00

10 79.49 ±2.76 69.95 ±4.31 82.17 ±5.41 68.82 ±9.80 97.22 ±0.31 98.85 ±0.69

11 86.83 ±1.05 90.66 ±1.18 83.66 ±2.85 86.55 ±3.14 98.12 ±2.16 99.69 ±0.12

12 83.41 ±2.26 55.43 ±4.80 75.89 ±3.33 73.41 ±6.07 93.09 ±5.85 98.45 ±0.65

13 97.41 ±2.99 93.32 ±2.04 98.68 ±0.54 94.54 ±4.80 99.80 ±0.39 100.00 ±0.00

14 96.14 ±0.97 96.45 ±0.76 96.17 ±1.02 96.24 ±2.33 99.43 ±0.33 99.70 ±0.37

15 67.31 ±3.05 50.44 ±2.44 67.80 ±3.56 85.39 ±7.71 96.58 ±2.81 99.64 ±0.21

16 92.47 ±4.14 85.27 ±3.37 88.71 ±2.77 92.90 ±3.97 93.12 ±3.82 98.78 ±0.43

OA (%) 86.24 ±0.38 78.55 ±0.68 85.27 ±0.47 83.59 ±0.88 97.81 ±0.56 99.45 ±0.13

AA (%) 83.15 ±1.10 66.58 ±0.93 82.51 ±1.04 80.95 ±1.55 94.10 ±2.00 99.34 ±0.40

Kappa 84.27 ±0.45 75.20 ±0.81 83.20 ±0.53 81.23 ±1.04 97.50 ±0.64 99.37 ±0.14

Time(s) 208.98 ±1.70 1,301.68 ±45.94 7.31 ±0.15 56.45 ±0.19 39.62 ±0.67 103.21 ±0.47

TABLE III

CLASSIFICATION RESULTS FOR THE UNIVERSITY OF PAVIA (UP)

DATASET USING 15% OF THE AVAILABLE LABELED DATA FOR

TRAINING AND 11× 11 INPUT PATCH SIZE.

Class SVM RF MLP 2D-CNN 3D-CNN Proposed

1 95.36±0.30 93.52±0.45 94.17±1.73 93.43±2.70 99.16±0.25 99.99±0.02

2 98.25±0.16 98.29±0.18 98.06±0.50 97.59±0.88 99.77±0.17 99.99±0.01

3 82.93±0.91 75.56±1.86 79.27±7.04 89.96±3.30 96.95±1.78 99.74±0.11

4 95.93±0.70 91.68±0.63 94.61±2.58 94.16±3.24 98.80±0.69 99.82±0.12

5 99.46±0.36 98.88±0.49 99.63±0.27 97.97±2.69 99.90±0.17 100.00±0.00

6 91.76±0.60 74.54±0.97 93.60±1.70 89.62±4.10 99.88±0.12 100.00±0.00

7 88.59±0.65 81.01±1.74 88.53±3.47 80.20±4.82 96.54±1.41 99.64±0.40

8 90.14±0.54 90.70±0.75 89.59±4.56 96.05±1.88 98.56±0.78 99.88±0.07

9 99.97±0.05 99.75±0.26 99.63±0.28 99.48±0.27 99.79±0.19 100.00±0.00

OA (%) 95.20±0.13 92.03±0.21 94.82±0.26 94.77±0.72 99.28±0.25 99.95±0.02

AA (%) 93.60±0.14 89.33±0.33 93.01±0.60 93.16±1.23 98.81±0.33 99.90±0.05

Kappa 93.63±0.17 89.30±0.28 93.13±0.34 93.05±0.97 99.04±0.32 99.93±0.03

Time (s) 6.084.92±55.64 6.188.75±35.16 29.10±0.92 172.29±0.71 140.09±1.63 471±0.00

SVM, RF, MLP, 2D-CNN and 3D-CNN classification

methods, in global sense and also for the individual

classes of the IP, UP, SV and BIP datasets. Among

all the competitors considered in this initial experiment,

the spectral-spatial classifier 3D-CNN obtains the second

best result. This is expected, as this method also involves

joint spectral-spatial features, which provide more useful

information to classify HSI data than the single spectral

or spatial features considered by SVM, RF, MLP and

2D-CNN classifiers. Nonetheless, the proposed approach

TABLE IV

CLASSIFICATION RESULTS FOR THE SALINAS VALLEY (SV)

DATASET USING 15% OF THE AVAILABLE LABELED DATA FOR

TRAINING AND 11× 11 INPUT PATCH SIZE.

Class SVM RF MLP 2D-CNN 3D-CNN Proposed

1 99.68±0.21 99.61±0.12 99.72±0.42 87.99±17.62 100.00±0.00 100.00±0.00

2 99.87±0.12 99.86±0.07 99.88±0.15 99.75±0.23 99.99±0.01 100.00±0.00

3 99.74±0.11 99.22±0.51 99.43±0.44 81.40±10.85 99.94±0.07 100.00±0.00

4 99.48±0.18 99.28±0.44 99.61±0.27 95.11±5.51 99.83±0.23 100.00±0.00

5 99.24±0.31 98.46±0.21 99.25±0.48 64.31±12.09 99.90±0.09 99.99±0.03

6 99.92±0.06 99.80±0.09 99.92±0.07 99.60±0.11 100.00±0.00 100.00±0.00

7 99.70±0.15 99.58±0.09 99.82±0.12 98.01±4.54 99.90±0.15 100.00±0.00

8 90.87±0.39 84.41±1.34 85.41±8.00 91.89±2.44 90.67±6.83 99.53±0.05

9 99.94±0.02 99.07±0.17 99.86±0.07 98.02±1.56 99.99±0.01 100.00±0.00

10 98.26±0.27 93.40±0.58 97.15±0.77 97.05±0.67 99.27±0.43 99.79±0.14

11 99.61±0.34 94.79±0.59 97.42±2.29 94.58±3.59 99.48±0.73 100.00±0.00

12 99.93±0.05 99.08±0.29 99.80±0.14 92.67±5.75 99.76±0.38 100.00±0.00

13 99.07±0.72 98.23±0.69 99.40±0.28 98.10±0.76 99.63±0.58 100.00±0.00

14 98.08±1.00 92.81±1.04 97.58±0.94 95.25±5.74 99.94±0.11 100.00±0.00

15 72.83±0.78 63.32±1.82 80.27±8.41 87.36±3.87 96.18±1.52 99.45±0.23

16 99.45±0.25 98.17±0.36 98.97±0.38 93.72±1.66 99.39±0.42 99.91±0.07

OA (%) 94.15±0.10 90.76±0.24 93.87±0.70 92.31±1.62 97.44±1.28 99.81±0.03

AA (%) 97.23±0.11 94.94±0.12 97.09±0.33 92.18±2.72 98.99±0.40 99.92±0.01

Kappa 93.48±0.11 89.70±0.26 93.18±0.77 91.43±1.81 97.15±1.42 99.79±0.03

Time (s) 3.110.30±29.20 4.694.29±158.39 36.42±0.11 296.62±3.52 260.41±6.09 1017.40±0.55

is able to consistently outperform the 3D-CNN, with

an average improvement of extcolorblack+1.93, +3.84

and +2.46 for OA, AA and Kappa metrics, respectively.

extcolorblackAmong all these quantitative results, the

experimental comparison conducted over the BIP scene

deserves special attention because of the complexity of

this dataset. As it can be observed in Table V, the

proposed approach obtains the best classification result in

all the BIP classes except for Grass/Pasture-mowed and

Orchard where it obtains the second best result despite

the reduced number of samples of these two classes.

Nonetheless, the proposed method achieves a remarkable

precision improvement for other small classes, such as,

Grass-runway and BareSoil, while also maintaining an

important quantitative gain with respect to the other HSI

classifiers.

For illustrative purposes, Figs. 6-8 present some of

the classification maps corresponding to the experiments

reported on Tables II-IV. As it is possible to qualita-

tively observe in these figures, the classification results

obtained by the SVM, RF and MLP techniques tend

to be rather noisy, mainly because these methods only
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TABLE V

CLASSIFICATION RESULTS FOR THE BIG INDIAN PINES (BIP)

DATASET USING 15% OF THE AVAILABLE LABELED DATA FOR

TRAINING AND 11× 11 INPUT PATCH SIZE.

Class SVM RF MLP DEEPMLP 2D-CNN 3D-CNN Proposed

1 16.37±0.83 15.79±0.00 24.56±4.71 21.75±3.94 60.35±11.46 36.14±20.48 75.44±5.26

2 59.21±0.42 60.19±0.86 55.39±1.97 64.21±1.21 74.07±1.08 95.00±1.04 95.87±0.54

3 79.71±7.20 83.48±2.69 96.81±1.92 97.39±1.92 83.48±10.87 76.81±34.28 100.00±0.00

4 39.82±0.34 50.31±0.45 42.65±2.98 59.15±1.65 72.42±1.37 95.03±1.28 98.04±0.20

5 21.52±1.37 15.19±0.00 45.57±4.65 48.73±5.88 66.20±9.60 66.96±31.31 87.34±7.59

6 26.46±0.57 18.87±0.90 46.19±4.66 47.55±5.22 71.67±3.26 74.86±14.67 95.33±0.00

7 25.04±0.33 35.68±1.36 40.19±3.18 54.97±2.43 70.95±2.89 91.03±2.68 95.82±0.11

8 32.45±0.34 49.34±0.42 39.54±3.52 61.54±3.48 66.78±2.88 92.39±3.32 97.58±0.08

9 50.05±0.40 69.53±0.20 58.17±4.90 74.39±1.17 70.71±1.57 95.25±1.73 98.72±0.36

10 68.55±0.49 85.39±0.19 57.50±4.02 76.29±1.63 83.64±0.99 96.76±1.39 99.06±0.34

11 41.63±0.41 19.38±1.22 53.78±4.44 70.98±3.36 50.50±8.04 97.55±1.54 98.81±1.19

12 17.63±1.37 25.37±1.04 41.93±2.39 50.51±3.03 67.62±5.93 90.60±7.27 95.34±2.23

13 55.64±1.13 50.85±1.62 72.14±2.32 81.60±2.42 75.73±2.99 95.25±2.15 98.00±1.62

14 31.80±0.13 46.64±0.49 44.44±3.57 67.22±1.21 72.02±1.49 94.93±3.06 98.44±0.73

15 52.06±0.67 61.14±0.57 57.12±1.77 77.33±1.11 70.61±2.98 94.42±2.05 98.94±0.43

16 49.45±0.81 60.79±1.38 57.60±2.79 72.74±2.97 81.03±1.37 93.17±3.07 98.35±0.45

17 40.13±0.47 40.35±1.77 58.24±2.00 61.00±3.96 73.45±3.84 93.85±1.66 98.05±1.04

18 63.38±0.69 69.11±0.76 70.05±1.76 80.82±1.21 73.84±3.02 92.41±10.74 98.87±0.18

19 30.99±5.42 16.67±1.75 65.79±4.26 69.12±8.12 94.39±5.10 82.11±11.96 100.00±0.00

20 29.38±2.33 27.85±1.81 37.79±1.86 41.97±4.16 69.56±2.37 78.52±5.72 88.27±0.92

21 65.55±1.03 69.50±0.78 71.55±3.06 78.99±1.70 84.22±3.74 93.62±3.93 97.51±0.00

22 15.79±0.00 15.79±0.00 61.05±9.76 57.89±17.30 62.11±9.06 17.89±18.71 68.42±10.53

23 15.53±0.65 15.07±0.00 34.79±5.52 29.59±3.93 48.49±6.80 64.38±20.61 75.34±0.00

24 18.02±2.55 16.76±1.08 49.73±3.24 42.16±13.95 62.16±9.36 9.73±11.67 41.89±14.86

25 57.80±0.52 64.96±1.08 62.68±2.74 72.23±1.85 74.02±3.73 80.37±12.60 92.46±0.89

26 54.39±0.77 62.27±2.18 69.20±2.17 78.94±1.79 74.95±2.25 90.09±7.60 98.40±0.50

27 83.97±1.38 85.21±0.56 86.33±0.67 90.00±1.03 81.05±1.96 96.17±1.83 99.31±0.02

28 98.21±0.96 97.23±0.77 98.57±0.66 98.48±1.12 69.38±18.07 98.13±0.95 99.55±0.00

29 38.87±0.36 48.10±1.11 46.20±3.44 61.97±2.83 73.54±3.54 87.12±5.16 92.99±0.26

30 34.62±0.49 37.03±1.52 45.15±3.82 53.63±2.19 76.73±1.04 81.23±4.74 92.28±0.43

31 16.92±0.37 23.40±2.54 30.69±3.63 31.64±4.38 64.54±4.46 61.67±18.66 74.33±4.18

32 16.24±1.21 15.38±0.00 31.28±8.49 32.31±6.61 81.03±14.29 74.36±25.49 74.36±10.26

33 73.35±0.34 77.18±0.39 69.57±1.90 80.40±1.19 78.47±1.25 95.98±1.43 98.00±0.28

34 50.33±14.98 36.67±2.02 59.02±4.74 51.18±9.33 70.39±9.12 49.22±22.90 75.49±11.76

35 43.85±0.04 57.58±0.07 48.58±0.72 66.56±1.31 71.41±0.60 91.16±1.06 96.81±0.22

36 28.04±0.21 26.51±2.00 50.92±2.57 53.89±3.21 60.74±5.46 87.14±7.79 98.32±0.11

37 17.54±0.56 29.59±1.50 41.51±1.57 49.44±4.36 73.06±1.31 90.85±2.59 94.91±1.94

38 23.30±0.26 43.95±0.45 42.82±4.41 62.27±1.01 64.33±3.33 93.48±1.65 98.29±0.02

39 49.63±1.11 41.03±1.65 51.16±2.86 71.23±1.83 71.80±5.04 93.35±2.35 98.88±0.53

40 47.71±0.13 60.18±1.33 51.47±4.00 69.02±2.14 78.94±1.07 95.32±1.27 98.09±0.33

41 35.29±0.17 40.30±0.63 39.81±2.08 59.97±2.19 70.53±1.47 94.92±2.20 97.69±0.31

42 38.98±1.20 50.71±0.77 52.12±1.98 67.77±2.54 69.77±2.17 93.18±2.52 97.57±0.51

43 30.94±0.94 22.58±4.16 59.89±5.22 69.87±3.05 49.21±3.78 94.92±6.55 99.26±0.18

44 45.86±0.24 67.80±0.55 55.74±1.76 74.71±1.19 72.30±2.47 95.03±0.81 98.07±0.14

45 57.97±0.38 72.73±1.05 65.07±2.22 80.16±2.58 76.27±2.20 91.34±6.30 98.16±0.15

46 40.43±0.52 60.50±2.14 60.41±2.23 77.39±3.03 78.00±1.70 94.10±4.29 98.09±0.16

47 64.18±0.34 73.37±0.44 69.46±2.02 83.89±0.56 76.05±1.56 97.64±0.25 98.79±0.02

48 38.42±0.32 43.96±0.95 55.20±4.26 73.82±1.87 68.29±2.76 96.16±1.24 98.65±0.59

49 45.62±0.73 60.92±0.67 59.64±2.50 73.95±1.72 77.29±1.45 92.19±1.63 98.22±0.58

50 59.17±0.44 61.40±1.10 66.46±4.00 79.05±2.72 81.82±1.11 94.50±3.07 98.01±0.30

51 30.89±1.07 31.43±2.51 45.66±4.60 59.76±5.82 76.53±3.29 82.63±12.54 97.09±0.11

52 66.48±0.14 81.76±0.83 68.51±1.68 81.76±0.93 76.18±2.51 95.94±1.20 98.39±0.18

53 85.65±2.08 81.27±0.50 89.02±1.80 91.08±2.01 77.15±5.21 97.77±2.09 99.31±0.34

54 99.35±0.24 98.87±0.20 98.77±0.31 99.42±0.15 98.93±0.84 99.41±0.97 99.98±0.02

55 67.47±2.23 69.31±1.70 77.45±3.57 84.21±0.86 82.69±2.38 93.24±3.82 99.83±0.17

56 85.68±0.48 87.71±0.30 83.08±0.96 88.42±0.51 85.40±1.91 95.75±2.43 97.76±0.27

57 94.25±0.10 95.89±0.15 92.46±0.83 94.88±0.56 96.87±0.25 98.59±0.36 99.60±0.09

58 54.40±4.58 31.25±4.54 82.50±4.42 90.69±4.78 83.47±3.52 86.53±11.16 90.97±0.69

OA (%) 60.43±0.02 69.96±0.09 63.06±0.34 76.12±0.15 79.20±0.68 95.21±0.29 98.25±0.03

AA (%) 46.93±0.19 50.98±0.20 58.43±0.18 67.96±0.58 73.57±1.19 85.83±1.92 93.92±0.78

Kappa 56.89±0.03 67.17±0.10 60.10±0.35 74.14±0.16 77.45±0.75 94.83±0.32 98.11±0.03

Time (s) 476.09±7.20 1688.76±13.74 148.79±2.32 343.96±3.55 1887.70±1.06 1364.82±16.67 8430.54±48.10

consider the spectral information contained in the HSI

data. In addition, the 2D-CNN tends to introduce some

artifacts in class boundaries. This is due to the fact that

it only considers the spatial information to provide a

pixel prediction, which makes the method quite sensitive

to the spatial size of the input patches. Regarding the

classification maps produced by the spectral-spatial clas-

sifiers, we can observe that the 3D-CNN generates better

results than the SVM, RF, MLP and 2D-CNN in terms

of class consistency. However, the proposed approach

produces better results in terms of border delineation and

overall accuracy. For instance, looking at Fig. 7 we can

see that the classification map produced by the proposed

approach [see Fig. 7(h)] exhibits less misclassified pixels

than the corresponding map generated by the 3D-CNN

[see Fig. 7(g)]. Another important observation is related

to the generalization capability of the proposed approach.

Specifically, if we look at the unlabeled image areas

(i.e., those that are not covered by the ground-truth),

the proposed method appears to provide more consistent

classification results (with less potential outliers and ar-

tifacts) in those areas than the other considered methods.

2) Experiment 2: In a second experiment, we conduct

a specific comparison between the proposed approach

and two recent state-of-the-art spectral-spatial HSI clas-

sification networks, i.e. SSRN [35] and DFCNN [30].

Table VI compares the proposed approach with the

SSRN when considering multiple spatial sizes for the

input patches, i.e. 5× 5, 7× 7, 9× 9 and 11× 11, using

the IP, KSC and UP datasets. Note that the tested spatial

sizes are presented in rows and the considered datasets

are arranged in columns to show the average OA result

and also the corresponding standard deviation in brackets

(after 5 Monte Carlo runs). In this experiment, we have

selected 20% of the available labeled data for the IP and

KSC scenes, and 10% of the available labeled data for

the UP scene.

As shown in the results reported on Table VI, the pro-

posed network architecture consistently outperforms the

SSRN for most tested configurations. More specifically,

the average overall accuracy improvements achieved by

the proposed approach are +2.12, +0.51, +0.39 and

+0.45 for 5× 5, 7× 7, 9× 9 and 11× 11 input spatial

sizes, and +2.12, +0.25, +0.23 for the IP, KSC and
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TABLE VI

OVERALL ACCURACY (%) ACHIEVED BY THE SSRN METHOD [35]

AND THE PROPOSED APPROACH WHEN CONSIDERING DIFFERENT

SPATIAL SIZES FOR THE INPUT PATCHES.

Indian Pines (IP) Kennedy Space Center (KSC) University of Pavia (UP)

Spatial Size SSRN [35] Proposed SSRN [35] Proposed SSRN [35] Proposed

5× 5 92.83 (0.66) 97.79 (0.40) 96.99 (0.55) 97.98 (0.21) 98.72 (0.17) 99.13 (0.08)

7× 7 97.81 (0.34) 99.30 (0.11) 99.01 (0.31) 98.85 (0.27) 99.54 (0.11) 99.75 (0.03)

9× 9 98.68 (0.29) 99.67 (0.06) 99.51 (0.25) 99.52 (0.16) 99.73 (0.15) 99.89 (0.02)

11× 11 98.70 (0.21) 99.74 (0.09) 99.57 (0.54) 99.73 (0.10) 99.79 (0.08) 99.93 (0.02)

UP datasets, respectively. In addition, it is also possible

to observe that the standard deviation in the experiments

with the proposed method is substantially lower than that

in the experiments with the SSRN. This fact, together

with the higher OA results, indicates that the proposed

architecture is able to effectively reduce the uncertainty

when classifying HSI data. The proposed architecture

aims at learning spectral-spatial features considering

their spatial locations, their spectral signatures and also

their possible transformations in a more efficiently way

in comparison with SSRN. Precisely, this is the fact

that enhances the generalization ability of the network,

because the corresponding spectral-spatial features are

complemented with important information about char-

acteristic data transformations as a set of instantiation

parameters, which eventually allows characterizing the

HSI data at a higher abstraction level.

Additionally, Tables VII-VIII give an experimental

comparison among the 3D-CNN [25], DFCNN [30] and

the proposed approach, using the IP and UP datasets

and considering multiple input spatial sizes. In particular,

the first column shows the class labels, the second row

indicates the number of training samples, and the last

three rows provide the OA results for 3D-CNN, DFCNN

and the proposed approach, respectively, with different

spatial sizes.

Some important observations can be made from Ta-

TABLE VII

QUANTITATIVE COMPARISON OF THE 3D-CNN [25], DFCNN [30]

AND THE PROPOSED APPROACH WITH THE INDIAN PINES (IP)

DATASET USING DIFFERENT SPATIAL SIZES FOR THE INPUT

PATCHES.

Class Samples
3D-CNN [25] DFCNN [30] PROPOSED

27× 27 9× 9 19× 19 29× 29 9× 9 15× 15

Alfatfa 30 100.00 100.00 100.00 100.00 100.00 100.00

Com-notill 150 96.34 90.57 94.06 97.17 96.80 97.11

Com-min 150 99.49 97.69 96.43 98.17 99.60 99.48

Corn 100 100.00 99.92 100.00 100.00 100.00 100.00

Grass/Pasture 150 99.91 98.10 98.72 98.76 100.00 99.86

Grass/Trees 150 99.75 99.34 99.67 100.00 100.00 99.86

Grasslpasture-mowed 20 100.00 100.00 100.00 100.00 100.00 100.00

Hay-windmwed 150 100.00 99.58 99.92 100.00 100.00 100.00

Oats 15 100.00 100.00 100.00 100.00 100.00 100.00

Soybeans-notill 150 98.72 94.28 97.63 99.14 99.31 99.45

Soybeans-min 150 95.52 87.75 92.93 94.59 97.31 97.24

Soybean-clean 150 99.47 94.81 97.17 99.06 99.60 99.55

Wheat 150 100.00 100.00 100.00 100.00 100.00 100.00

Woods 150 99.55 98.09 97.88 99.76 99.45 99.82

Bldg-Grass-Tree-Drives 50 99.54 89.79 95.80 98.39 99.05 98.62

Stone-steel towers 50 99.34 100.00 99.57 98.92 100.00 99.64

Overall Accuracy (OA) 97.56 93.94 96.29 97.87 98.69 98.72

Average Accuracy (AA) 99.23 96.87 98.11 99.00 99.45 99.41

Kappa 97.02 93.12 95.78 97.57 98.50 98.54

TABLE VIII

QUANTITATIVE COMPARISON OF THE 3D-CNN [25], DFCNN [30]

AND THE PROPOSED APPROACH WITH THE UNIVERSITY OF PAVIA

(UP) DATASET USING DIFFERENT SPATIAL SIZES FOR THE INPUT

PATCHES.

Class Samples
3D-CNN [25] DFCNN [30] PROPOSED

27× 27 15× 15 21× 21 27× 27 9× 9 15× 15

Asphalt 548 99.36 97.53 98.80 98.59 99.79 99.98

Meadows 540 99.36 98.98 99.46 99.60 99.95 99.98

Gravel 392 99.69 98.96 99.59 99.45 98.84 99.90

Trees 542 99.63 99.75 99.68 99.57 99.89 99.97

Painted metal sheets 256 99.95 99.93 99.78 99.61 100.00 100.00

Bare Soil 532 99.96 99.42 99.93 99.84 99.99 100.00

Bitumen 375 100.00 98.71 99.88 100.00 99.97 100.00

Self-Blocking Bricks 514 99.65 98.58 99.53 99.67 99.85 99.87

Shadows 231 99.38 99.87 99.79 99.83 99.96 100.00

Overall Accuracy (OA) 99.54 98.87 99.47 99.48 99.86 99.97

Average Accuracy (AA) 99.66 99.08 99.60 99.57 99.81 99.97

Kappa 99.41 98.51 99.30 99.32 99.82 99.96

bles VII-VIII. In general, in these tables it is possible

to see that larger spatial sizes for the input patches

generally result in higher accuracy values (the larger the

input size, the more spatial information is considered to

complement the spectral data). However, it can be also

observed that the proposed approach requires substan-

tially smaller input patches to generate similar or even

better accuracy results than the other methods. Precisely,

this point reinforces the aforementioned observations
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concerning the higher generalization capability of the

proposed approach. In the case of the IP dataset, 3D-

CNN and DFCNN obtain an OA of 97.56 and 97.87

using 27× 27 and 29× 29 input spatial patches, respec-

tively. In turn, the proposed network is able to achieve a

remarkable performance improvement, reaching a 98.69

value, using only a 9× 9 input spatial patch. A similar

trend can be also observed in the experiments with the

the UP dataset. This suggests that the proposed approach

is able to uncover more descriptive features than the 3D-

CNN and DFCNN techniques.

For illustrative purposes, Fig. 9 shows the classi-

fication maps obtained by the DFCNN [30] and the

proposed approach for the UP dataset. A visual compar-

ison of both maps indicates that the proposed method

provides better class delineation and definition of urban

features. Specifically, class boundaries are noticeably

more precise and defined. This is particularly the case

for classes representing typically urban features, such

as self-blocking bricks (in blue), which appears better

delineated in the classification map provided by the pro-

posed approach. In addition, the bitumen class (in dark

green) contains circular and rectangular urban features

that appear better delineated in the map produced by

the proposed approach than in the one produced by

the DFCNN. Also, the classification results obtained by

the proposed approach over unlabeled image areas ap-

pears more visually consistent and with better delineated

features, which also suggests the higher generalization

ability of the proposed network.

3) Experiment 3: In a final experiment we evaluate

the convergence of the proposed network architecture.

In this context, it is important to note that the proposed

network architecture makes use of several innovative

building blocks that are able to estimate the probability

that a specific spectral-spatial feature occurs in the input

HSI data and also its corresponding instantiation parame-

ters, that is, the potential transformations suffered by the

corresponding constituent feature on the observable input

data. As a result, the HSI features can be intrinsically

managed at a higher abstraction level throughout the

network because traditional convolutional features are

decomposed into canonical spectral-spatial features and

their possible transformations, which eventually leads

to a significant reduction of the architecture complexity

and, therefore, to a good model convergence. To illustrate

this point, Fig. 10 displays the evolution of the proposed

approach test accuracy per epoch (left side) and compu-

tational time in seconds (right side). As it can be seen in

Fig. 10, the proposed network only requires a reduced

number of epochs and a very short time to reach almost

optimal performance, which highlights the remarkably

fast convergence of the proposed architecture.

In summary, the experiments reported in this section

suggest that the proposed approach provides quantitative

and qualitative advantages over traditional HSI classi-

fiers (see Tables II-IV and Figs. 6-8) and also over

some of the most relevant state-of-the-art spectral-spatial

classification techniques, i.e. 3D-CNN [25], SSRN [35]

and DFCNN [30] (see Tables VI-VIII and Figs. 9-

10). The proposed method is able to achieve the best

global performance in all the considered experimental

scenarios, exhibiting relevant performance improvements

when considering reduced input patch spatial sizes. The

proposed approach seems to provide the most robust

behavior with different input patch spatial sizes, which

suggests that it is able to generalize more discriminative

features to effectively classify HSI data. Unlike other

established deep learning models such as 3D-CNN,

SSRN and DFCNN, the constituent units of the proposed

architecture (capsules) are designed to uncover canonical

spectral-spatial features and their corresponding instan-

tiation parameters, which allow characterizing the HSI

data at a higher abstraction level while reducing the
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over-fitting phenomenon inherent to complex and deep

networks.

V. CONCLUSIONS AND FUTURE LINES

In this paper, a new deep learning architecture based

on the concept of capsules is presented to effectively

classify remotely sensed HSI data. Specifically, the pro-

posed network is composed by a set of spectral-spatial

capsule units which characterize the input data at a

higher abstraction level by expressing the HSI features

as a collection of canonical spectral-spatial patterns and

their corresponding instantiation parameters. In this way,

the features uncovered by the network become more

informative, which eventually leads to a reduction of the

architecture complexity and, therefore, to a more accu-

rate model convergence. The experimental comparisons

conducted in this work, which consider five well-known

HSI datasets and extcolorblackeight established methods,

reveal that the proposed approach exhibits competitive

advantages with respect to state-of-the-art classification

methods.

An important characteristic of the proposed approach

is its potential to deal with the inherent complexity of

HSI datasets generated by their high spectral resolution.

In general, experimental results have shown that the

proposed model is able to extract a more relevant and

complete information about HSI data cubes by managing

spectral-spatial features at a higher abstraction level.

Specifically, the spectral-spatial capsule units model the

different transformations present in the HSI domain by

means of a neuron hierarchy which disentangle the

spectral-spatial canonical features from the data transfor-

mation parameters. Therefore, the activation of higher-

level spectral-spatial features can be conducted by agree-

ment between lower-level features in order to intrinsi-

cally model complex connections to better characterize

the HSI data, obtaining consistently high classification

performance with a limited amount of training data.
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Fig. 5. Number of Available Samples in the Indian Pines (IP), University of Pavia (UP) and Salinas Valley (SV) HSI datasets.

INDIAN PINES (IP) UNIVERSITY OF PAVIA (UP) SALINAS VALLEY (SV) KENNEDY SPACE CENTER (KSC)

Color Land-cover type Samples Color Land-cover type Samples Color Land-cover type Samples Color Land-cover type Samples

Background 10776 Background 164624 Background 56975 Background 309157

Alfalfa 46 Asphalt 6631 Brocoli-green-weeds-1 2009 Scrub 761

Corn-notill 1428 Meadows 18649 Brocoli-green-weeds-2 3726 Willow-swamp 243

Corn-min 830 Gravel 2099 Fallow 1976 CP-hammock 256

Corn 237 Trees 3064 Fallow-rough-plow 1394 Slash-pine 252

Grass/Pasture 483 Painted metal sheets 1345 Fallow-smooth 2678 Oak/Broadleaf 161

Grass/Trees 730 Bare Soil 5029 Stubble 3959 Hardwood 229

Grass/pasture-mowed 28 Bitumen 1330 Celery 3579 Swap 105

Hay-windrowed 478 Self-Blocking Bricks 3682 Grapes-untrained 11271 Graminoid-marsh 431

Oats 20 Shadows 947 Soil-vinyard-develop 6203 Spartina-marsh 520

Soybeans-notill 972 Corn-senesced-green-weeds 3278 Cattail-marsh 404

Soybeans-min 2455 Lettuce-romaine-4wk 1068 Salt-marsh 419

Soybean-clean 593 Lettuce-romaine-5wk 1927 Mud-flats 503

Wheat 205 Lettuce-romaine-6wk 916 Water 927

Woods 1265 Lettuce-romaine-7wk 1070

Bldg-Grass-Tree-Drives 386 Vinyard-untrained 7268

Stone-steel towers 93 Vinyard-vertical-trellis 1807

Total samples 21025 Total samples 207400 Total samples 111104 Total samples 314368

BIG INDIAN PINES SCENE (BIP)

Color Land cover type Samples Color Land cover type Samples

Background 1310047 BareSoil 57

Buildings 17195 Concrete/Asphalt 69

Corn 17783 Corn? 158

Corn-EW 514 Corn-NS 2356

Corn-CleanTill 12404 Corn-CleanTill-EW 26486

Corn-CleanTill-NS 39678 Corn-CleanTill-NS-Irrigated 800

Corn-CleanTilled-NS? 1728 Corn-MinTill 1049

Corn-MinTill-EW 5629 Corn-MinTill-NS 8862

Corn-NoTill 4381 Corn-NoTill-EW 1206

Corn-NoTill-NS 5685 Fescue 114

Grass 1147 Grass/Trees 2331

Grass/Pasture-mowed 19 Grass/Pasture 73

Grass-runway 37 Hay 1128

Hay? 2185 Hay-Alfalfa 2258

Lake 224 NotCropped 1940

Oats 1742 Oats? 335

Orchard 39 Pasture 10386

pond 102 Soybeans 9391

Soybeans? 894 Soybeans-NS 1110

Soybeans-CleanTill 5074 Soybeans-CleanTill? 2726

Soybeans-CleanTill-EW 11802 Soybeans-CleanTill-NS 10387

Soybeans-CleanTill-Drilled 2242 Soybeans-CleanTill-Weedy 543

Soybeans-Drilled 15118 Soybeans-MinTill 2667

Soybeans-MinTill-EW 1832 Soybeans-MinTill-Drilled 8098

Soybeans-MinTill-NS 4953 Soybeans-NoTill 2157

Soybeans-NoTill-EW 2533 Soybeans-NoTill-NS 929

Soybeans-NoTill-Drilled 8731 Swampy Area 583

River 3110 Trees? 580

Wheat 4979 Woods 63562

Woods? 144

Total samples 1644292
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a) RGB b) GT c) SVM (86.24%) d) RF (78.55%) e) MLP (85.27%) f ) 2D-CNN (83.59%) g) 3D-CNN (97.81%) h) Proposed (99.45%)

Fig. 6. Classification maps for the Indian Pines (IP) dataset. The first image (a) represents a simulated RGB composition of the scene. The

second one (b) contains the ground-truth classification map. Finally, images from (c) to (h) provide the classification maps corresponding to

Table II. Note that the overall classification accuracies are shown in brackets and the best result is highlighted in bold font.

a) RGB b) GT c) SVM (95.20%) d) RF (92.03%) e) MLP (94.82%) f ) 2D-CNN (94.77%) g) 3D-CNN (98.54%) h) Proposed (99.95%)

Fig. 7. Classification maps for the University of Pavia (UP) dataset. The first image (a) represents a simulated RGB composition of the scene.

The second one (b) contains the ground-truth classification map. Finally, images from (c) to (h) provide the classification maps corresponding

to Table III. Note that the overall classification accuracies are shown in brackets and the best result is highlighted in bold font.

a) RGB b) GT c) SVM (94.15%) d) RF (90.76%) e) MLP (93.87%) f ) 2D-CNN (92.31%) g) 3D-CNN (97.44%) h) Proposed (99.81%)

Fig. 8. Classification maps for the Salinas Valley (SV) dataset. The first image (a) represents a simulated RGB composition of the scene. The

second one (b) contains the ground-truth classification map. Finally, images from (c) to (h) provide the classification maps corresponding to

Table IV. Note that the overall classification accuracies are shown in brackets and the best result is highlighted in bold font.
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Fig. 9. Classification maps obtained by the DFCNN [30] (left) and the

proposed approach (right) for the University of Pavia dataset. A visual

comparison of both maps indicates that the proposed method provides

better class delineation and definition of urban features, for instance

in classes such as self-blocking bricks (blue) or bitumen (dark green),

containing both circular and rectangular urban features.

Fig. 10. Evolution of the test accuracy (in %) of the proposed approach

(y-axis) versus epochs (left) and computational time in seconds (right)

for the experiments with the IP, UP and SV datasets.
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