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Abstract 

Solar cells based on organic-inorganic halide perovskite are now leading the photovoltaic 

technologies due to their high power conversion efficiency. Recently, there have been debates 

on the microstructure related defects in metal halide perovskites (grain size, grain boundaries, 

etc.) and a widespread view is that large grains are a prerequisite to suppress non-radiative 

recombination, and improve photovoltaic performance although opinions against it also exist. 

Herein, we employ blends of methylammonium lead iodide perovskite with an insulating 

polymer (polyvinylpyrrolidone, PVP) that offer the possibility to tune the grain size in order to 

obtain a fundamental understanding of the photoresponse at the microscopic level. We 

provide, for the first time, spatially-resolved details of the microstructure in such blend 

systems via Raman mapping, light beam induced current (LBIC) imaging and conductive atomic 

force microscopy. Although the polymer blend systems systematically alter the morphology 

by creating small grains (more grain boundaries), they reduce non-radiative recombination 
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within the film and enhance its spatial homogeneity of radiative recombination. We attribute 

this to a reduction in the density of bulk trap states, as evidenced by an order of magnitude 

higher photoluminescence intensity and a significantly higher open-circuit voltage when the 

polymer is incorporated into the perovskite films. The solar cells employing blend systems also 

show nearly hysteresis-free power conversion efficiency ~17.8%, as well as a remarkable shelf-

life stability over 100 days. 

 

Introduction 

Organic-inorganic halide perovskite solar cells (PSCs) now demonstrate photovoltaic 

performance comparable to state-of-the art silicon and thin film solar cells. Their certified 

power conversion efficiency (PCE, 22.7%),1 achieved in merely six years since their first high 

efficiency solid-state cell report in 2012,2 together with their added functionality such as 

transparency, flexibility and low temperature compatible roll-to-roll processing put them at 

forefront of future photovoltaic technologies.3 After the initial efficiency driven research, the 

focus nowadays is to understand what makes these devices so well performing and the 

potential to further improve their photovoltaic (PV) performance. Interfacial engineering to 

manipulate recombination kinetics at the device interfaces,4-7 compositional engineering to 

extend the perovskite absorption region8 or to enhance its structural stability,9-10 as well as 

morphology tuning to obtain a pin-hole free layer or to control non-radiative recombination 

pathways11-13 are the key research areas that enabled the remarkable rise in device 

performance in PSCs.  

An important subject in PSCs are their point and structural defect properties that influence 

band alignment, charge transport/transfer and their stability. These defects – whether 

present within the bulk, at boundaries between two neighboring grains or at the device 
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interfaces – are influential to performance and their control is the key to further alleviate the 

PCE close to its thermodynamic limit.14 As perovskite films are typically solution-processed at 

low temperature, a significant density of defects cannot be avoided (~1016 cm-3).15-16 

Particularly interesting are the defects related to grain boundaries (GBs) as there are reports 

in favor and against their major role in creating deep trap states. A widespread understanding 

is that perovskite films comprising large grains (in the range of a few micrometer) are crucial 

to high performing devices as they contains lesser density of trap states thus leading to lesser 

non-radiative recombination, enhance light harvesting efficiency and improve charge 

transport properties.17-21 Herein, the GBs are considered as a recombination center prevailing 

non-radiative recombination losses that eventually influence the PV parameters, particularly, 

the open circuit voltage (VOC). This is well explained by Rau using a reciprocity relationship 

between luminescence properties of solar cells and the VOC, showing that VOC could reach its 

radiative limits (VOC
rad) if the recombination current at a given voltage is zero.22 

Recently, significant reduction in non-radiative losses in a mixed halide perovskite 

((Cs,MA,FA)Pb(I0.4Br0.6)3) based PSCs has been reported when the defects related to GBs are 

passivated via potassium halide layers.23 The defect passivation is reflected in the remarkable 

open circuit voltage (VOC) 1.23 V, ~110 mV higher than a reference device employing pristine 

perovskite without passivation. An enhancement in performance is also noted for metal halide 

perovskite based LEDs and optical amplifiers by the GBs passivation.24 

However, contrarily, high charge collection and high performance is also reported using small 

grains. For example, PCE above 20% is reported in hysteresis-free inverted planar PSCs made 

using small perovskite grains (100 – 200 nm).25 Vacuum-based processing of perovskite films 

results in uniform small crystals that can reach a PCE as high as 20%.26 Therefore, high-

performing PSCs may not always need large grains, and it is rather the nature of GBs that plays 
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a significant role. This is supported by the findings that the perovskite GBs are benign and only 

generate shallow in-gap defect states,27-28 or in some cases are reported to facilitate charge 

dissociation rather than acting as a recombination center.29 Chu et al.30 demonstrated via 

photoconductivity imaging a spatially homogeneous photoconductivity across the 

methylammonium lead triiodide films irrespective of the location of GBs, evidencing that the 

microstructure alone does not significantly influence the photoresponse. 

Herein, we employ methylammonium lead triiodide (MAPbI3) perovskite-polymer  

(Polyvinylpyrrolidone) blend films (hereafter termed as MAPbI3-PVP blend, a method to 

indirectly tune the morphology (grain size and GBs etc.) and investigate its contribution 

towards the various optoelectronic and device performance properties. We only employ a 

small amount of PVP into the MAPbI3 bulk to engineer the morphology and to avoid any 

significant effect on the conductivity. Such blend systems are reported in PSCs,31-32 and very 

recently, making breakthroughs in LEDs,33-34 however, details on the morphology of the blend 

systems are rather missing. In this article, we provide details on films morphology via scanning 

electron microscopy (SEM) and atomic force microscopy (AFM) together with Raman imaging.  

Light beam induced current (LBIC) and conductive atomic force microscopy (cAFM) imaging 

allows us to spatially map the microstructure. To the best of our understanding, this is the first 

report providing spatially resolved characterizations of such systems. We then detail the effect 

of polymer inclusion in the perovskite bulk by comparing its photoluminescence properties 

and current-voltage characteristics. Our results show that although polymer additives 

systematically alter the morphology of perovskite films by creating smaller grain sizes and a 

higher density of GBs, these blends surprisingly reduce non-radiative recombination within 

the film. 
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Experimental 

Perovskite synthesis and device fabrication 

The PSCs were made in glove box following a procedure reported before35 with some 

modifications. The precursor solution for the perovskite film consists of methylammonium 

iodide (MAI), lead iodide (PbI2) and lead chloride (PbCl2) with a molar ratio of 4:1.025:1 in 

DMF:DMSO (20:1 vol.) resulting in a concentration of 38.8 wt%. The solution was spun on pre-

cleaned ITO coated with a PEDOT:PSS layer at 3000 rpm for 20 s. The annealing process is 

divided into three separate steps. Immediately after spin-coating the films were placed under 

a vacuum bell and exposed to a pressure of around 2 mbar for 60 s at room temperature to 

quickly remove excess solvent, followed by a 10 min annealing at 90 °C (at a pressure of ~2 

mbar). Finally, the films are annealed at 80 °C for 20 min. 

The MAPbI3-PVP blend films are prepared with some modifications: For the precursor 

solutions, the mass of the MAI and PbI2 was partially substituted by the insulating polymer, 

PVP. The molecular weight of the used PVP was 55 kDa. Three different concentrations were 

produced: 0.3 mg∙ml-1, 0.6 mg∙ml-1 and 1 mg∙ml-1. A 15 nm thick C60 layer was evaporated to 

form an electron selective contact, followed by a 1 nm LiF buffer layer. Ag contacts (100 nm) 

are evaporated to complete the devices at a vacuum of ~5×10-6 mbar. 

For high efficiency devices and to enhance the stability of PSCs, 

oly(3,4-ethylenedioxythiophene) polystyrene (PEDOT:PSS) layer is replaced with a NiO rival. 

The NiO thin layer was prepared by spin coating Ni(II) acetylacetonate (C10H14NiO4) precursor 

solution in ethanol (0.5 M) at 5000 rpm and subsequently annealed at 300 – 350 C.  For the 

champion device [6,6]-phenyl-C61-butyric acid methyl ester (C60) and LiF layers are also 

replaced with PC60BM (6,6-Phenyl C61 butyric acid methyl ester, 99.5%) and Bathocuproine 

(BCP, 99.99%).  
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Morphological, structural and optical characterizations of the blend films 

The film morphology of the MAPbI3-PVP blend systems was studied by scanning electron 

microscope (Zeiss CrossBeam 1540XB FESEM) equipped with an in-lens detector. The working 

distance was 5 mm and the acceleration voltage 5 kV was used for imaging. The 

crystallography of the films was investigated using X-Ray diffraction (Bruker D8 Discover with 

Lynxeye XE detector, Cu Kα 0.15418 nm). A FluoTime 300 from PicoQuant was used for 

photoluminescence (PL) spectroscopy. Perovskite films were loaded into a cryostat (Oxford 

Instruments) and measured under vacuum (5×10-5 mbar). The samples were excited with a 

405 nm laser (pulse energy ~3 j∙cm-2). To get insights into the lifetime, time-resolved PL 

decays were recorded using time-correlated single photon counting (TCSPC) mode. 

The Raman analysis on MAPbI3-PVP samples was carried out by employing a Jobin-Yvon-Horiba 

micro-Raman system (LabRAM ARAMIS) in a backscattering geometry and by focusing the 

green laser beam (wavelength λ = 514.7 nm) on the perovskite surface. In order to avoid 

severe laser induced sample degradation occurring during the Raman measurements, we kept 

the laser power density lower than 26 W.cm-2. The spot size was ~1 μm2 while a 1800 lines/mm 

diffraction grating ensured a frequency resolution of about 0.2 cm-1. Generally, the Raman 

signal of the MAPbI3 system presents several limitations36 such as intrinsic low signal, strong 

background, complex broad patterns and strong overlapping of the modes with the possible 

secondary phases (most prominently PbI2). Thus, the acquired raw spectra underwent post-

acquisition processing, consisting in subtraction of the fluorescence background performed 

by a polynomial fitting, while spectral de-convolution was carried out by nonlinear least-

squares fitting of the Raman peaks with Gaussian lines shapes. 
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Characterization of solar cells and stability measurements  

The light beam induced current (LBIC)37 was measured by using a chopper that modulates the 

light at 133 Hz and via two lock-in amplifiers (to enable measurement of low currents limiting 

the impact of the noise). The light beam is moved across the sample to scan a 1 mm × 1 mm 

area of the cell. Spatially resolved photocurrent maps were measured by means of an inverted 

microscope (Leica DMI 5000) coupled with a monochromator (Cornerstone 130) illuminated 

by a 200 W Xenon Lamp. The wavelength was fixed to 530nm (±2 nm). A long working distance 

objective with 100x of magnification yielded a 50 µm × 50 µm spot area. The device area was 

scanned in steps of 25 µm by an x-y motorized stage. The short circuit photocurrents of the 

devices were measured by a phase sensitive detection system composed by an optical 

chopper (133 Hz of modulation) and two digital lock-in amplifiers (EG&G 7265). 

The current-voltage characteristics of our solar cells (see Figure S1 for the device schematic) 

were measured in a N2-filled glovebox with a Fraunhofer ISE certified Si reference diode and 

a KG5 filter, using a Keithley 2410 source meter. For a reliable measurement reporting, we 

employed a current voltage (J-V) measurement tracking algorithm to track the temporal 

maximum power point (MPP) under illumination as described by Zimmermann et al.38  

The shelf-life of the PSCs was measured for 100 days. The devices were stored at ambient 

(room temperature 22±5 C) and at relative humidity that varied between 50 – 70% during 

the measurement time. For each measurement, only the stabilized PCE value was noted after 

MPP tracking. 

 

Results and Discussions 

Figures 1 (a- d) show the morphology of the perovskite films with different polymer 

concentrations. A clear distinction between the grain size and the nature of GBs is visible 
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between pristine MAPbI3 film and the MAPbI3-PVP blended films (particularly, 0.6 and 1 

mg.ml-1 samples). The average grain size calculated from a statistical average (from over 200 

grains) is 416 nm for a MAPbI3 film (Figure 1e) whereas upon addition of PVP (0.3 mg∙ml-1) the 

average grain size decreases to ~230 nm. A further increase in PVP concentration to 0.6 mg∙ml-

1 leads to a further reduction in average grain size to 137 nm. For a PVP concentration of 1 

mg∙ml-1, the SEM image shows a blurry texture without distinguishable perovskite grains 

making it impossible to determine a grain size accurately. Nevertheless, a systematic drop in 

grain size is established via an increasing polymer concentration. We also note an increase in 

films thickness upon addition of PVP (Figure 1e & Figure S 2, cross-sectional SEM images), 

which is due to the higher viscosity of the solution due to the long chain polymer, as also 

reported in literature.32 Interestingly, we note a reduction in film roughness when the polymer 

is incorporated in the perovskite films (Figure 1f & SI 3). The root mean square roughness 

showed a slight drop (from 12.1 for pristine MAPbI3 film to 11.1 for 1 mg∙ml-1 sample) due to 

the small grains of the blend system. 

The crystal structure of the perovskite films on glass is investigated via XRD (Figure 1 g-j). The 

XRD patterns of all the samples are identical and all the reflexes could be attributed to 

tetragonal MAPbI3 perovskite.39 The prominent reflexes of the (110), (220) and (330) lattice 

planes were found at 14.13°, 28.45° and 43.22°. The broad feature between 15° and 32° is 

attributed to the amorphous glass substrate underneath the perovskite film. A comparison of 

pristine perovskite film with those employing polymer shows broadening of the (220) reflex 

when PVP is included, suggesting a slight reduction in crystallinity upon polymer incorporation 

which has already shown to reduce the grain sizes. We note an enhanced full width at half 

maxima of XRD peaks indicating a reduction in crystallite size (calculated using Scherrer 

equation, see Table S1) that is in good agreement with SEM micrographs. 
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Figure 1: SEM images of MAPbI3films with polymer concentrations of (a) 0 mg∙ml-1, (b) 0.3 mg∙ml-1, (c) 0.6 mg∙ml-

1 and (d) 1 mg∙ml-1. Scale bar 1 µm. Figures (e and f) show grain size, film thickness and roughness of all the 
samples. (g – j)  X-ray diffractograms of all the films. The solid lines in the background show XRD of the glass 
substrate. 

 

In order to probe the radiative/non-radiative recombination and charge extraction, we carried 

out steady-state photoluminescence (SSPL) measurements of the films deposited on a glass 

substrate. The emission spectra (Figure 2a) suggests that the PL intensities vary significantly 

for MAPbI3-PVP blend films; the PL intensity increases with increasing PVP concentration. One 
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must recall the increase in thickness of perovskite films for PVP based films which may result 

in a higher light absorption and a higher radiative emission thereby leading to higher PL 

counts; however, this does not justify the nearly an order of magnitude higher PL emission. 

We also compare the time-resolved PL (TRPL) decay transients of all perovskite films (Figure 

2b) that shows longer carrier lifetime, i.e., the time required for the photogenerated charges 

to diminish, when the very small amount of PVP in incorporated into the bulk of the MAPbI3 

film. The MAPbI3-PVP blend films with the lowest PVP concentration (0.3 mg∙ml-1) showed the 

shortest decay time, followed by the pristine MAPbI3 and 1 mg∙ml-1 leaving the longest decay 

time for 0.6 mg∙ml-1. A comparison of the two distinct regions in the PL decay transient, the 

initial fast (attributed to a trap-assisted non-radiative decay) and the slow (attributed to 

radiative recombination of the free charge carriers),40 suggests a lower trap density for the 

MAPbI3-PVP blend films, the lowest for 0.6 mg∙ml-1. The pristine MAPbI3 films show a fast 

initial decay followed by a slow long tail whereas the MAPbI3-PVP blend films (particularly with 

higher PVP concentration).  

We note the discrepancy between SSPL and TRPL for the 0.6 and 1 mg∙ml-1 samples. We 

emphasize that term carrier lifetime is rather poorly defined as suggested by Tress41 and it 

should be carefully interpreted when referring to a longer (shorter) lifetime. Tress explained 

that a shorter radiative lifetime is not detrimental and it rather the competition between 

radiative (RR) and non-radiative recombination (NRR) that matters (ideally the NRR should be 

as long as possible leading to high radiative yield). This is the case for most efficient perovskite 

based LEDs in literature. Another important consideration is that the SSPL only provides 

information on the total RR (at a given time only), whereas the TRPL depicts relaxation 

behavior of the initial photogenerated charge carrier density (which is a superimposition of 

both the RR and NRR).42 It should be noted that while the TRPL measures only the charges 
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recombining radiatively on a purely time-dependent scale, the shape of the transient is 

dominated by non-radiative recombination, the initial fast decay being assigned to charge 

trapping whereas the longer tail could be dominated by a slower charge relaxation (probably 

from the shallowly trapped charges being emitted, reabsorbed and re-emitted). The latter is 

particularly the case when the slower decay component of TRPL is non-linear and 

accompanied by a drop in PL intensity (evidencing a reduction in RR). However, when a slower 

(longer) lifetime accompanied by an increase in the PL intensity is an indication of the 

dominant RR. Since the TRPL spectrum is typically plotted on a normalized scale, the total PL 

intensity (as measured in SSPL) should not be anticipated as an indication of longer carrier 

diminishing time.43 Whereas, the initial fast decay in the TRPL spectra is dominated by trap-

assisted recombination, the slower long tail could also arise delayed PL from the shallowly 

trapped charges.44 Taking these considerations into account, we suggest that the difference 

between the slower decay for 0.6 and 1 mg∙ml-1 samples should be understood as the different 

trap density of the two films, being more dominant for the 0.6 mg samples, as also evident 

from the its lower PL intensity in SSPL (Figure 2a). 
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Figure 2: (a) PL emission spectra of MAPbI3 films with PVP concentrations of 0, 0.3, 0.6, and 1 mg∙ml-1 and (b) PL 
decay transients of the same measured at excitation wavelength 405 nm, and laser fluence 3.07 µJ∙cm-2. For 
both measurements, the MAPbI3 films (on glass) were excited from the perovskite side. 
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The remarkable increase in PL intensity for MAPbI3-PVP blends (despite the similar 

absorbance, see Figure S 4), particularly, the 0.6 and 1 mg∙ml-1 samples, suggests a significant 

reduction in non-radiative recombination pathways, possibly due to a reduction in structural 

defects and/or grain boundary passivation. The MAPbI3-PVP blend films show different 

morphology than a pristine rival, with larger number of small grains and more GBs. Important 

to note is the difference in the nature of the GBs between the two samples: Whereas the 

pristine MAPbI3 film shows large grains with deep GBs, the MAPbI3-PVP blend films show 

smaller inter-diffused grains, probably passivated by the PVP. This suggests that large grains 

may not necessarily guarantee a lower trap state density in the perovskite film and it is rather 

the nature of GBs (vertical/lateral, depth etc.) that also influences the defect properties. We 

also compared steady-state PL and PL decays of all the perovskite films excited through front 

(film side) and back side (glass side) of the films (Figure S 5), affirming the reduction of trap 

states density and longer carrier lifetime with increasing PVP concentration. In addition, a 

comparison of time dependant tracking of PL intensity of a MAPbI3 film and the highest PVP 

concentration under continuous laser exposure (a method used to demonstrate trap-filling in 

literature)45 further affirmed reduction in trap density in the blend system (Figure S 6).  

In order to investigate any structural changes in the MAPbI3-PVP blend systems, we performed 

a Raman analysis of the films. Prior to obtaining Raman maps, we record optical images of all 

the MAPbI3 films. Notable is the difference in the morphology of the films depending on the 

PVP concentration (Figure 3a & Figure S 7). The highest PVP concentration (1 mg∙ml-1) showed 

darker extended domains unlike a homogeneous film texture in a pristine MAPbI3 film. We, 

however, cannot rule out a contribution due to the height difference in the films that may 

leads to contrast in the images. In order to confirm whether the difference in the contrast 

arises from height difference or a different MAPbI3-PVP ratio, we recorded Raman spectra of 



13 
 

a pristine MAPbI3 film and compared it with the spectra taken at a dark and faded region of 

the 1 mg∙ml-1 sample (Figure 3 b). 

 

Figure 3: (left) Superimposition of scanned area optical image and 130 cm-1 Raman band intensity map of a 

MAPbI3-PVP blend sample (1 mg.ml-1) taken from 50X ultra long working distance objective, and (rights) Raman 

spectra acquired on MAPbI3 films without (curve A) and with PVP (1 mg.ml-1) at two different regions acquired 

by focusing the laser beam on faded and dark areas respectively, as indicated in the optical images (curve B and 

C, respectively). 

All the reported spectra showed the typical MAPbI3 vibrational modes, in agreement with 

recently published Raman investigation on perovskite layers.36 In particular, at lower 

wavenumbers, three main vibrational modes are evident (89, 105, and 130 cm−1) while the 

higher wavenumbers spectral region is dominated by the peak at 245 cm−1 and five less 

intense contributions (210, 290, 355, 380, and 446 cm−1). We cannot distinguish any PVP 

Raman band in all the MAPbI3-PVP blend films, probably due to the low polymer concentration 

used in the perovskite precursor solution. Theoretical calculations of the MAPI vibrational 

modes assigned the 89 and 105 cm-1 peaks to the vibrations of the Pb-I cage while the broadest 

band at 245 cm-1 to the MA cation torsional modes.46  Differently from the spectra reported 

in literature, we observed a prominent peak at  130 cm-1 that could be a superimposition 

between the two peaks usually observed at 122 cm-1 and at 138cm-1 ascribed to the Pb-I cage 

vibration47 and to the liberation of the organic cation respectively.36 Moreover, we can 

confidently exclude a laser induced film degradation since the typical peaks of PbI2 at 96 cm−1 



14 
 

and 113 cm−1 are not present in the acquired spectra. Notably, the relative intensity between 

the two adjacent peaks at 105 and 130 cm-1 changes when polymer is added to the perovskite 

precursor and increases in the dark area of perovskite film with 1 mg∙ml-1 PVP. The other 

Raman bands are not significantly affected by the presence of the polymer. As changes in the 

130 cm-1 peak correlate with the presence of the polymer in MAPbI3-PVP blend films, we 

decided to characterize spatial homogeneity/distribution of the PVP in the bulk of the 

perovskite. 

Figure 4 (a – d) displays the 130 cm-1 Raman band intensity maps of all the samples showing 

that the areas with higher intensity increases with the amount of PVP. In fact, the intensity 

distribution of the 130 cm-1 Raman band could be correlated with their morphology (Figure 

S7) by superimposing them on top of their optical images (Figure S8). As depicted in Figure S 

8, the darker area corresponds to the most intense Raman signal at 130 cm-1, thereby 

highlighting the role of PVP in creating domains with different Raman features. From these 

considerations, we are able to chemically map the film morphology by evaluating the domains 

size depending on the PVP concentration. We note that the domains are elongated in shape 

and larger in size when a higher PVP concentration is used, while in the case of 0.3 mg∙ml-1 are 

spotted shaped with an average diameter of about 5-10 μm. One should note that Raman 

mapping superimposed with optical images only provide details at the micrometer level and 

may not be correlated with SEM images with nanometer resolution.  
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Figure 4: Mapping of the intensity of 130 cm-1 Raman band all investigated perovskite film a) reference film 

without PVP, b) 0.3 mg.ml-1, c) 0.6 mg.ml-1 and d) 1 mg.ml-1. The scale bar is 2 m. 

In order to further investigate the spatial PVP distribution within the perovskite films, the 

lateral current distribution was studied using LBIC. Figure 5 (a – d) shows the local current 

mapping over an area of 1 × 1 mm2. The reference device (without PVP) shows a spatial 

homogeneous current in the range of 52 - 55 nA. Surprisingly, the addition of PVP led to a 

notable increment in the local current; the current raises to 62 - 67 nA for 0.3 mg∙ml-1 and 

0.6 mg∙ml-1 based devices, although few spots with reduced current (45 - 55 nA) are also 

visible. The low current spots are between 0.05 mm and 0.1 mm which could be attributed to 

intermixed MAPbI3-PVP phases. Those local patches of reduced current are even more 

pronounced at 1 mg∙ml-1 PVP concentration, stretching over several hundred microns. 

However, we note that PVP does not form agglomerates but is rather disperses in the MAPbI3 

films, as in the case of PVP agglomerates, completely insulating domains should have been 

formed contributing to regions with no current. LBIC measurements (Figure 5) suggest that 

the obtained spatial photocurrent is slightly higher when PVP is added to the perovskite. 
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Figure 5 (a – d): Light Beam Induced Current (LBIC) measurements of the perovskite solar cells with (a) 0, (b) 0.3 
(c) 0.6, and (d) 1 mg∙ml-1 PVP concentration. The dimensions are 1 × 1 mm2. 
 

To further investigate spatial conductivity of the films, we recorded cAFM maps of samples 

with much higher polymer concentrations. We intentionally prepared samples with a higher 

PVP concentration in order to trace the PVP in MAPbI3 films, and to see if it forms any 

insulating patches.  The images of samples with much higher PVP concentration (5 and 

10 mg.ml-1) further confirm that PVP does not form large insulating patches (Figure S 9) and 

the conductivity is homogeneously distributed across the film, even at a nanometre scale. This 

proves that no insulating areas are formed upon incorporation of polymer. 
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Figure 6: (a) Maximum power point (MPP) tracking of the PSCs made with different PVP concentrations 
(ITO/PEDOT:PSS/MAPBbI3/C60LiF/Ag) measured at 82 mW.cm-2. (b) A statistical analysis of PCE of at least 20 
devices, (c) and open circuit voltage (c) of all the PSCs. (d) The PCE of all the PSCs measured in N2 atmosphere 
under continuous light soaking (82 mW.cm-2).  

 

In order to accurately compare the photovoltaic performance of PSCs made using different 

concentration of polymer, we carried out a MPP tracking protocol as suggested by 

Zimmermann et al.38 Figure 6a displays the PCE of the champion device using PEDOT:PSS as a 

hole transport layer while 6b shows the average PCE made from at least 20 selected solar cells. 

The PCE showed little increase in the beginning but it stabilizes quickly and remained stable 

during the rest of the tracked time. We note that the average PCE of the lower concentrations 

of PVP (0.3 and 0.6 mg∙ml-1) remains almost similar to a reference cell employing pristine 

MAPbI3 film (10 – 12%), whereas, for the highest PVP concentration, the PCE shows a 

significant drop. The J-V curves of the champion devices and a statistical analysis of J-V 
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parameters of all the devices are shown in Figure S 10. We also note a slight increase in 

hysteresis index for higher polymer concentrations (Figure S 11).   

Noteworthy is the improvement in the open circuit voltage (VOC) of the PSCs upon PVP 

inclusion. Figure 6c depicts an average VOC of at least 20 PSCs of each type. The mean VOC 

increases from 0.78 V for the reference cell (0 mg∙ml-1) to 0.82 V, 0.85 V, 0.9 V for 0.3, 0.6 and 

1 mg∙ml-1 PVP concentration sample, respectively. The increase of VOC is in good agreement 

with the decrease of non-radiative recombination observed by PL measurements, see Figure 

2. The change in the VOC suggests a variation in the competition between radiative and non-

radiative recombination arising from improvement in the bulk defects (morphological, 

structural and point defects) upon polymer incorporation. 

In order to compare the stability of the various devices, we carried out light soaking of the 

PSCs in glove box under continuous solar irradiation (82 mW.cm-2) for >15 h. The MPP of the 

devices were tracked and a J-V measurement was taken periodically every 10 minutes (Figure 

6d). Whereas the reference cell dropped by 70% of its initial PCE after 15 h, the devices with 

higher concentration of PVP (0.6 and 1 mg.ml-1) showed a smaller drop (26% and 21%, 

respectively) in the initial PCE. The 0.3 mg.ml-1 sample showed a faster initial degradation, 

however, after 5 h the degradation was slower than for the reference device. The effect of 

light soaking on other PV parameters such as JSC, VOC, and the fill factor (FF) is shown in Figure 

S 12. 

While PEDOT:PSS is a standardized material convenient for the preparation of benchmark 

samples, PSCs based on PEDOT:PSS typically yield a lower PV performance for inverted 

perovskite solar cells, and also have a poor stability due to its corrosive nature to ITO.4 For a 

further optimization, we replaced it with a solution-processed NiO compact layer. To compare 

with a reference NiO device (employing pristine MAPbI3), we only highlight 0.6 mg.ml-1 PVP 
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concentration as it showed a compromise over PCE and stability and recorded its PV 

performance and stability. The stabilized J-V curves of all the PSCs (measured at 1 sun) are 

shown in Figure 7a. Whereas the PEDOT:PSS based devices showed a PCE 12.03 % (forward 

scan 11.97%, reverse scan 12.09%), the reference device employing NiO layer showed a 

remarkable improvement in PV parameters. A remarkable improvement in the VOC and JSC 

yielded PCE 17.48% (forward scan 17.02%, reverse scan 17.48%). Interestingly, the 0.6 mg.ml-

1 PVP based PSCs showed slightly higher PCE (17.78%), primarily due to the higher VOC ~1.11 

V (forward scan 17.70%, reverse scan 17.87%) that is in good agreement with the trend 

observed for PEDOT:PSS. We note that these values employing NiO as HTL are amongst the 

highest reported so far. Notably, the PVP based devices showed slightly higher hysteresis 

index and slight drop in fill factor compared to the reference NiO based PSC (see details of J-

V parameters in Table S2). The higher VOC in the PSCs made using the blend system affirms a 

reduction in bulk defects, which act as a recombination center. This high performance in PSCs 

employing blend systems, despite larger number of GBs is remarkable. It confirms that the 

number of GBs alone may not contribute to defects density (and non-radiative recombination) 

but the nature of GBs is more crucial. In the case of pristine MAPbI3 films (with no polymer 

inside), although large grains are visible (SEM images, Figure 1), a clear deep grain boundary 

between neighboring grains is distinguishable. Whereas in the case of the blend system, a 

highly homogeneous microstructure is observed.  
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Figure 7: (a) Stabilized current-voltage curves of PSCs labelled as PEDOT (PEDOT:PSS/MAPbI3/PC60BM/BCP/Au), 
NiO (NiO/MAPbI3/PC60BM/BCP/Au) and NiO-PVP 0.6 mg (NiO /MAPbI3-PVP/PC60BM/BCP/Au), measured in 
ambient at 1 sun. (b) Shelf-life performance of representative devices of each type, stored at ambient and at 
relative humidity between 50 – 70%.  

 

Finally, in order to compare the shelf-life of the various PSCs, we carried out their shelf-life 

stability testing. The cells were stored in dark in ambient and measured at room temperature 

at a relative humidity between 50 – 70%. The PSCs employing PEDOT:PSS layer showed a ~ 

80% drop in the initial PCE in merely 20 days, whereas the PCE of a reference cell made using 

NiO (without PVP) dropped only by 25% after 100 days. These results highlight the importance 

of choosing selective contacts towards long-term stability of the performance.4 Interestingly, 

the PSCs made using blend system retained >92% of the initial PCE at similar experimental 

conditions. Despite the smaller grain size in these devices, their stable performance compared 

to a NiO reference rival (with large perovskite grains) is remarkable.  

Our results suggest high performance can also be obtained using small MAPbI3 grains. The 

pursuit of large grains is because of the understanding that the grain boundary is a 

recombination center where dangling bonds form deep levels within the band gap resulting 

in charge traps. However, an efficient passivation can reduce the deleterious effect24. At the 

same time such passivation can also effect positively the device lifetime. Therefore grain 

boundaries need to be reconsidered, as it was recently even shown that GBs are not always 
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undesirable.29-30 For example, Yun et al. demonstrated that GBs are in fact beneficial for 

charge separation and collection.48 Similarly, recently shown highest performance (>20%) in 

planar PSCs employ perovskite films made of small grains.25 Our results further confirm these 

latest trends in PSCs. 

 

Conclusions 

In conclusion, we provide a systematic investigation of the role of the grain size and grain 

boundary towards recombination, photovoltaic performance and stability of perovskite solar 

cells by employing MAPbI3-PVP blend systems. Interestingly we note that the MAPbI3-PVP 

blend films featuring small sized grains show reduced non-radiative recombination compared 

to their pristine MAPbI3 rivals. The light beam induced current (LBIC) mapping of the devices 

measuring photoresponse down to microscopic level shows a higher local current in films 

employing small grains, corroborating the trends of the photoluminescence transient decay 

curves. This is in accordance with few recent reports in literature that grain boundaries in 

halide perovskite are in fact benign and favor charge dissociation and that high efficiency 

devices do not necessarily require large grains.  

In addition, we also, for the first time, provide spatially resolved insights into the morphology 

of such blend systems via Raman mapping, LBIC and conducting atomic force microscopy. 

These spatially resolved techniques lead us to conclude that the polymer disperses in the bulk 

of the MAPbI3 film and also that it does not form agglomerates nor does it remain on the 

surface (which would otherwise hinder charge collection). Interestingly, we note that although 

the addition of low concentrations of an insulating polymer creates small grains (more GBs), 

it also reduces non-radiative recombination within the film which we attribute to the 

reduction in the density of bulk by the polymer passivation. We further support our arguments 
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of the reduction of the trap states by an order of magnitude higher photoluminescence yield 

and a remarkable open-circuit voltage (1.11 V) in the MAPbI3-PVP blend films, ~80 mV higher 

than a device employing pristine MAPbI3 film. Finally, we also show that the solar cells 

employing MAPbI3-PVP blend films demonstrate a stabilized nearly hysteresis-free power 

conversion efficiency of ~17.8% and significantly enhance the long term stability. Our results 

pave the way for further enhancement of stability without affecting the solar cell 

performance. 
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