
Manuscript Details

Manuscript number COBEHA_2017_239

Title Evolution of vertebrate survival circuits

Short title Survival circuits in vertebrates

Article type Review article

Abstract

Evolution selects those adaptive features that increase reproductive probabilities and facilitate survival. Analysing the
brain circuits mediating risk-avoidance (e.g. defense) and those allowing reward-seeking (motivated) behaviours in
different vertebrates leads to several main conclusions. First, circuits mediating risk-avoidance are similar in all studied
vertebrates, where they include amygdala homologues located in the posterior half of the cerebral hemispheres, in
close relationship with the chemosensory systems. Second, in all vertebrates, reward-seeking behaviours involve the
activity of tegmento-striatal dopaminergic pathways, plus other inputs to the ventral striatum, including amygdalo-
striatal glutamatergic projections. Third, output structures in these forebrain circuits for both risk-avoidance and
reward-seeking behaviours occupy the caudal and rostral poles of the ventral striato-pallidum, namely the central
amygdala and nucleus accumbens-olfactory tubercle respectively. This brain configuration was already present in at
least the ancestral amniote, likely also in anamniotes. Finally, social behaviours (sexual, agonistic-territorial, parental)
are fundamental for reproduction and survival. Consequently, the so-called socio-sexual brain network that governs
these conducts is closely related with brain centres mediating motivation (maybe also risk-avoidance). Central
nonapeptidergic circuits are apparently required for endowing social stimuli with rewarding (attractive) properties. More
studies in non-mammals are required to further test and expand these ideas.

Keywords comparative neurobiology; reproduction; reward; motivation; avoidance;
defense; neural circuitry; amygdala; ventral striatum

Corresponding Author Enrique Lanuza

Corresponding Author's
Institution

University of Valencia

Order of Authors Fernando Martinez-Garcia, Enrique Lanuza

Submission Files Included in this PDF

File Name [File Type]

Letter_to_the_editor.docx [Cover Letter]

Highlights.docx [Highlights]

Evolution of Vertebrate Survival Circuits_revised.docx [Manuscript File]

Figure 1.tif [Figure]

Figure Box 1.tif [Figure]

Table 1.pptx [Table]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE
Homepage, then click 'Download zip file'.



Highlights

 Similar neural circuits mediate appetitive and aversive responses in vertebrates
 Circuits mediating risk-avoidance include amygdala homologues
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 Accumbens and central amygdala are rostral and caudal poles of the ventral striatum
 Appetitive/aversive responses involve the accumbens/central amygdala, respectively
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Abstract

Evolution selects those adaptive features that increase reproductive probabilities and 
facilitate survival. Analysing the brain circuits mediating risk-avoidance (e.g. defense) and 
those allowing reward-seeking (motivated) behaviours in different vertebrates leads to 
several main conclusions. First, circuits mediating risk-avoidance are similar in all studied 
vertebrates, where they include amygdala homologues located in the posterior half of the 
cerebral hemispheres, in close relationship with the chemosensory systems. Second, in all 
vertebrates, reward-seeking behaviours involve the activity of tegmento-striatal 
dopaminergic pathways, plus other inputs to the ventral striatum, including amygdalo-
striatal glutamatergic projections. Third, output structures in these forebrain circuits for 
both risk-avoidance and reward-seeking behaviours occupy the caudal and rostral poles of 
the ventral striato-pallidum, namely the central amygdala and nucleus accumbens-
olfactory tubercle respectively. This brain configuration was already present in at least the 
ancestral amniote, likely also in anamniotes.   

Finally, social behaviours (sexual, agonistic-territorial, parental) are fundamental for 
reproduction and survival. Consequently, the so-called socio-sexual brain network that 
governs these conducts is closely related with brain centres mediating motivation (maybe 
also risk-avoidance). Central nonapeptidergic circuits are apparently required for 
endowing social stimuli with rewarding (attractive) properties. More studies in non-
mammals are required to further test and expand these ideas.

 



Introduction

In all vertebrates, survival behaviours include anti-predatory and reproductive, plus other 
homeostatic behaviours.  All of them are associated to two opposite states: appetitive 
(responses to attractive or rewarding stimuli) or aversive (responses to life-threatening 
situations). As discussed in the following sections, the neural circuits mediating these 
behaviours are evolutionarily conserved (at least in tetrapod vertebrates), and give rise to 
behavioural responses similar to those described in mammals. Thus, in amphibians, 
reptiles and birds, the responses observed either in the presence of threats or in the 
presence or rewarding stimuli share many of the motor, vegetative and endocrine 
components observed in mammals. Not surprisingly, then, the neural circuits involved the 
appetitive and aversive responses named above can be recognized in the cerebral 
hemispheres of vertebrates.

In humans, survival behaviours are often associated with the subjective states that we call 
emotions and feelings. Even if, as we will discuss, the neural circuits involved in the 
expression of these behaviours are, to some extent, similar in different vertebrate species, 
we cannot infer that survival behaviours include also emotions in animals. Therefore, 
following the conceptual framework proposed by LeDoux [1], we avoid focusing this 
review on the neural substrate of specific emotions (fear, happiness or anger) that we 
introspectively associate with concrete survival behaviours (e.g. risk-avoidance, 
reproduction or aggression). We will discuss, instead, the neural basis of those behaviours 
in mammals and non-mammalian species, to try to understand the evolutionary history of 
the survival circuits in the brain of vertebrates.. 

1. Circuits for reward/attraction 

Animals struggle for survival requires different kinds of appetitive responses related to: a) 
temperature maintenance, food intake balanced with energy expenditure and hydro-saline 
homeostasis (thirst and liquid intake balanced with diuresis and salt intake); b) mating 
and reproduction.  In most animals both kinds of appetitive behaviours, “homeostatic” and 
reproductive, are somewhat inter-related. For instance, in territorial animals, competition 
with conspecifics for good territories having food and water resources and privileged 
access to mates ultimately facilitates both kinds of appetitive behaviours. That’s why 
reward and appetitive behaviours are closely related to social behaviours, including 
agonistic confrontations for territory (which, if successful, grant all kind of resources 
ensuring homeostasis) and for mates, as well as sexual and reproductive behaviours, 
which are appetitive and rewarding themselves. 

Therefore, motivation circuits must be viewed as part of the “survival circuitry” of the 
brain. In the early 1950’s, Olds and Milner discovered that electrodes positioned in 
different locations of the brain induced electric auto-stimulation (EAS) [2], thus revealing 
the existence of specific circuits involved in reward and motivation. Maximum rates of EAS 
are observed when electrodes were placed in regions of the lateral hypothalamus that are 
crossed by catecholaminergic fibres. Moreover, anti- and pro-dopaminergic drugs 
influence EAS and other, naturalistic reward-seeking behaviours and dopamine agonists 
are among the most addictive drugs. These lines of evidence lead to the dopamine 
hypothesis of reward [3], according to which dopaminergic pathways, specifically 
tegmento-striatal (ventral tegmental area to ventral striatum) and meso-limbic (tegmental 
pathways to limbic prefrontal cortical areas) projections are activated by natural 
reinforcers, drugs and EAS, as well as by cues predicting them. Two-stage phasic release of 
dopamine to these target centres in response to salient stimuli (including reinforcers) 



constitute an utility prediction error signal [4] that would have a causal role in goal-
seeking, motivated behaviours. 

The evolutionary origins of these motivation circuits are very old. Midbrain dopaminergic 
cell groups are present in all vertebrate classes (including key groups such as agnathans 
or lungfishes [5][6]) and project to subpallial portions of the cerebral hemispheres 
equivalent to the striatum. In fact, in all the studied vertebrates this striatum homologue 
shows medium-sized GABAergic projection neurons with spiny dendrites and cholinergic 
interneurons providing a dense acetylcholinesterase-positive neuropile, plus other 
populations of interneurons [7,8]. 

In some non-mammals there is evidence indicating that these dopaminergic pathways are 
involved in reward-seeking, motivated behaviours. In anamniotes amphetamine (a 
blocker of dopamine reuptake) can induce conditioned place preference [9][10]. Even if 
the dopamine transporter is not expressed in reptiles and birds [11], D1 antagonists block 
conditioned place preference induced by cocaine in birds [12], suggesting a similar role of 
dopamine in reward in Sauropsida and mammals. Therefore, the ancestral vertebrate 
would likely had had ascending dopaminergic systems involved in reward induction by 
natural reinforcers ensuring survival and reproduction.

Experiments in mammals indicate that the amygdala is also a locus for EAS, independently 
of other (classical) centres supporting EAS [13]. Recently, the use of in vivo optogenetics 
has shown that mice nose-poke to self-stimulate glutamatergic cells in the basolateral 
amygdala, provided that D1 dopamine receptors in the nucleus accumbens are not 
blocked. In addition, optogenetically hyperpolarising basolateral amygdala neurons 
during a reward-seeking task (licking to a 20% sucrose-delivering port), reduces reward 
acquisition in response to a cue [14]. This demonstrates that activation of glutamatergic 
amygdaloid projections resulting in dopamine release in the nucleus accumbens is a key 
event to actively seeking and acquiring rewards in response to reward-predicting cues. It 
is interesting to note that similar optogenetic self-stimulation does not occur when light 
activates other inputs to the nucleus accumbens, namely the prefrontal cortex.  

Amygdalar pathways targeting the ventral striatum are therefore critical for reward-
seeking behaviours. In fact, amygdalo-striatal pathways are massive in mammals [15] and 
similar pathways have been described in non-mammals [7][16,17][18]. The region of the 
amygdala giving rise to the most massive pathways to the striatum (dorsal and ventral) is 
the basolateral nucleus in mammals, and equivalent regions in the brain of reptiles, birds 
and amphibians [19]. Among other defining features, this basolateral amygdala-equivalent 
region of the brain of non-mammals displays a prominent dopaminergic innervation, 
which was the basis for the proposal of it representing a prefrontal cortex in the brain of 
birds [20]. An alternative view, consistent with the pattern of expression of 
morphogenetic genes in different vertebrates, neurochemical and hodological data and 
easy to fit with similar data in other vertebrates (reptiles), would be that birds and 
Sauropsida in general, would have underwent an expansion of the basolateral amygdala 
[19]. In the absence of a neocortex in birds, this portion of the amygdala would have 
assumed the functions that the prefrontal cortex plays in mammals allowing birds to have 
cognition without a true isocortex [21] (but see [22]).

As a conclusion, dopaminergic ascending pathways plus amygdalo-striatal projections 
represent the basic circuitry for reward processing and reward-seeking motivated 
behaviours that is present in at least all tetrapods, where it may subserve acquisition of 
homeostatic reinforcers. However, these circuits must also include the specific neural 



machinery for the search and acquisition of social stimuli, thus ensuring social 
interactions and, ultimately, reproduction. 

2. Reward circuitry and the socio-sexual brain network

It is quite established that in all vertebrates social behaviours are controlled by the so-
called socio-sexual brain network (SBN) [23], a set of neural centres that are profusely 
interconnected, express receptors for steroid hormones (which, in this way, regulate all 
kind of social conducts) and are distributed in the basal telencephalon (including the 
extended amygdala), hypothalamus and midbrain periaqueductal grey. The nodes of the 
SBN control sexual interactions, agonistic encounters for territory and mates, and parental 
behaviours. In spite of the large variety of social behaviours displayed by different 
vertebrates, the structure of the SBN has been conserved during evolution [24] and 
encompasses centres belonging to the mesolimbic reward system [25] such as the medial 
(extended) amygdala, the lateral septum and portions of the ventral striato-pallidum [26]. 

In rodents, where chemosignals play a key role in social interactions, male pheromones 
detected by the vomeronasal organ of females seem to owe their rewarding properties 
[27,28] to direct amygdalo-ventral striatal pathways [15] [29] rather than to ascending 
tegmento-striatal dopaminergic projections [30][31]. Indeed, lesion or inactivation of the 
ventral striatal neural structures being targeted by projections from the vomeronasal 
amygdala in mice (the medial olfactory tubercle, islands of Calleja and adjoining ventral 
striatal bridges) [32] [33] suppresses preference of female mice for male chemosignals, 
whereas preference of other reinforcers (sucrose) remains intact. Non-chemosensory 
social stimuli, such as courtship vocalisations in songbirds, might be rewarding under 
appropriate physiological conditions [34] and this requires the confluence of hormonal 
inputs (occurring in the reproductive season) and conspecific vocalisations (courtship 
song, newborn chicks’ chirps). Both kinds of stimuli seem to converge into the nidopallium 
caudale, which, according to current view on the comparative neuroanatomy of the avian 
brain [19], is interpreted as part of the enlarged basolateral division of the avian amygdala 
and, as such, gives rise to abundant projections to the ventral (and dorsal) striatum 
[17,18]. 

Although it is assumed that social stimuli such as vocalisations in anuran amphibians [35] 
or birds [36] are also rewarding to conspecifics, the neural basis of this effect is poorly 
understood. Similarly, visual displays or simple conspecific visual stimuli in primates 
(including humans) might constitute rewarding social stimuli (that we, humans, judge as 
beautiful) and it has been shown that they activate, among other structures, portions of 
the amygdala and ventral striatum [37]. Activation of amygdalo-striatal pathways is also 
likely to have a causal role in reward induced by other social stimuli in humans [38]. 

Anatomo-functional data on that point are very scarce and incomplete in non-mammalian 
vertebrates. In snakes (squamate reptiles) the vomeronasal cortex-like amygdaloid 
structure called nucleus sphericus projects to a part of the ventral striatum named as 
“olfactostriatum” [39]. Although the role of this pathway in reptiles is far from being 
understood, since vomeronasal stimuli were shown to be rewarding in snakes [40] it is 
likely that this noteworthy projection represents an “enlarged” amygdalo-striatal pathway 
[39] for chemosensory reward in a highly macrosmatic animal. 

One of the defining features of the SBN is that it includes the main central nonapeptidergic 
circuits, including oxitocinergic/isotocinergic and vasopressinergic/vasotocinergic cells 
and pathways [41]. Besides the magnocellular neurosecretory cell groups, 



nonapeptidergic cells are located in the preoptic region/medial extended amygdala, 
whereas nonapeptidergic fibres innervate the whole SBN [26,42]. This reflects the 
important role that these nonapeptides play in social interactions (pair bonding, social 
grouping behaviour and parental behaviours) in all vertebrates. This has been 
investigated using a comparative approach in closely related species of mammals 
(monogamous vs polygamous voles; [43][44]), birds (flocking vs territorial finches; 
[45][46]) and fish (grouping and non-grouping cichlids; [47]), differing in specific aspects 
of their social biology.  In most cases, differences in social behaviours are correlated with 
different density in the expression of nonapeptides or their receptors in the ventral 
striatum (oxytocin) and/or septum (vasopressin/vasotocin). 

At the level of the ventral striatum, oxytocin has been shown to play a key role in the 
rewarding properties of social stimuli (revealed by means of conditioned place preference 
induced by the presence of conspecifics). This function is due to oxytocinergic projections 
originating in the paraventricular nucleus of the hypothalamus to the nucleus accumbens, 
where oxytocin acts onto presynaptic receptors on serotonergic fibres from the dorsal 
raphe nucleus [48]. Other inputs might also be under the influence of nonapeptides as 
several afferents to the accumbens express oxytocin receptors, including different 
amygdaloid nuclei, as well as dopaminergic and glutamatergic cells in the ventral 
tegmental area [49]. In addition, recent work has shown a similar, social reward-
promoting effect of oxytocin mediated by the pathway from the paraventricular 
hypothalamic nucleus onto dopaminergic cells in the ventral tegmental area [50]. These 
observations might explain the devastating effects of knocking out the genes for oxytocin 
or its receptor on most social behaviours (see [51]). 

Functional data on the role of nonapeptides in social behaviours in nonmammals are 
scarce. Nonetheless, it has been shown that mesotocin (oxytocin homologue) and 
vasotocin (vasopressin homologue) promote sociability (proximity to large groups of 
same sex conspecifics) in finches [45], although the specific mechanisms and brain 
locations where this effect takes place are currently unknown. In lizards, indirect data 
show a correlation between activation of mesotocine-expressing cells in the 
paraventricular hypothalamus and accessory hypothalamic nuclei with the expression of 
courtship behaviour [52]. Again, though, whether this function of nonapeptides occurs in 
the ventral striatum or other centres of the mesolimbic reward system is currently 
unknown. Future research on the involvement of nonapeptides in reward induced by 
mates, pups or adult conspecifics in different vertebrates, will shed light on the 
evolutionary history of the interaction of the SBN with the reward brain circuitry. 

3. The neural basis of risk avoidance in vertebrates

Escaping from predators and avoiding predator signals are essential behaviours for 
survival [52]. Thus, it is not surprising that the neural circuits controlling anti-predatory 
responses are evolutionary conserved. These responses include (but are not limited to) 
immobility to avoid being located (freezing), escaping to secure locations (flight), fighting 
against predators, and finally simulating death (tonic immobility). These behavioural 
responses are executed as a function of the proximity of the predator [54] or other factors 
such as the availability of a safe place [55][56]. The neural circuits underlying these 
responses have been well characterised in rodents [56], and a key structure in these 
circuits is the amygdaloid complex. The amygdala includes a sensory interface (the lateral 
nucleus [57]; together with the basolateral and basomedial nuclei), receiving multimodal 
sensory information from associative cortical areas and subcortical centres such as the 
thalamus, and a major output structure (the central nucleus) projecting to the 



hypothalamus, periaqueductal gray and brainstem centres. This output centre controls 
endocrine and autonomic responses [59]. Olfactory (and vomeronasal) stimuli have a 
privileged access to the amygdala, thanks to direct projections from the olfactory bulbs to 
several cortical amygdaloid nuclei, and to the medial amygdala, which constitutes another 
output structure projecting mainly to the hypothalamus [60]. 

Intricate interconnections between the amygdaloid centres receiving multimodal non-
chemosensory (visual, auditory and somatosensory) and chemosensory (vomeronasal and 
olfactory) inputs, ensure an integrated processing of the emotional responses to the 
different types of sensory information [60].

This scheme of olfactory-vomeronasal and multisensory circuits organized in parallel, 
with two main outputs through the central and medial amygdala, is very similar in all 
mammalian species studied. In fact these circuits are already present in the brain of 
reptiles and birds, and can be recognized in amphibians [19,61]. In all of these vertebrate 
groups, the chemosensory and multimodal amygdaloid centres share a pallial origin, 
whereas the output structures are mainly of subpallial origin (the medial amygdala has a 
mixed pallio-subpallial origin) [61].

An important addition to these circuits is the extended amygdala, which is composed of 
the bed nucleus of the stria terminalis plus portions of the substantia innominata and the 
interstitial nucleus of the posterior limb of the anterior commissure. The extended 
amygdala has two major components, the central and medial extended amygdala, 
associated (and connected) with the two output nuclei mentioned above, the central and 
medial amygdaloid nuclei [63], respectively. These two components of the extended 
amygdala are also present in the brain of amphibians, reptiles and birds. In the brain of 
non-mammals, these structures are anatomically adjacent to the central and medial 
amygdaloid nuclei[64]. In contrast, in mammals the stria terminalis has been displaced by 
the enormous development of the internal capsule, and thus the bed nucleus of the stria 
terminalis cannot be adjacent to the medial and central amygdaloid nuclei.  

In amphibians we find only three amygdaloid structures: the lateral amygdala, which 
includes the olfactory and multimodal sensory interfaces, the central amygdala, probably 
homologous to its mammalian homonymous, and the medial amygdala, also likely 
homologous to the mammalian medial amygdala [65] (Fig. 1). Therefore, the scheme 
found in amphibians is a simplified version with only one multimodal structure with 
pallial origin, and two major output structures, the medial and central amygdala, of mainly 
subpallial origin. 

In reptiles, the circuit is further elaborated with the differentiation within the sensory 
interface of a chemosensory cortical amygdala (located superficially and composed of 
several nuclei) and a multimodal complex of structures deeply located, all of them of 
pallial origin[19]. Within the chemosensory cortical amygdala, olfactory and vomeronasal 
nuclei can be recognised, and within the nonchemosensory amygdala, at least two 
structures can be distinguished: the posterior dorsal ventricular ridge and adjacent 
structures are likely homologous to the lateral amygdala of mammals, and the dorsolateral 
amygdaloid nucleus is probably homologous to the basolateral nucleus. The medial 
amygdala of reptiles is likely homologous to its amphibian and mammalian homonymous 
structures, and the central amygdala has been named here striato-amygdaloid transition 
area [64] (Fig. 1).



In birds, the reptilian pattern of organization is conserved, but the chemosensory 
amygdala is reduced because of the loss of the vomeronasal system and a relative 
reduction of the olfactory system (at least in a majority of species). In contrast, the 
multimodal amygdala is greatly enlarged [18], and includes part of the caudal nidopallium 
and the arcopallium (see Table 1). Medial and central amygdaloid structures are also 
recognized [66,67](Fig. 1).

In amphibians, reptiles and birds, functional evidence of the role of the amygdaloid 
complex in defensive or antipredatory behaviours is scarce. In lizards, lesions of the 
presumptive central amygdala leads to a decrease in tonic immobility response [68]. In 
birds, lesions of the anterior arcopallium caused a decrease in several defensive 
behaviours (including tonic immobility [69]), and lesions encompassing most of the 
arcopallium decreased anxiety in an open field test [70] and prevented the acquisition of 
passive avoidance learning [71]. Although, to our knowledge, there are no works 
investigating the role of the arcopallium and adjacent structures in Pavlovian aversive 
conditioning, recently, classical tone-shock conditioning has been shown to increase the 
mature form of BDNF in the amygdala of pigeons [72], and blocking NMDA transmission in 
the caudal nidopallium or parts of the arcopallium (multimodal amygdala, see Table 1) 
affects extinction in appetitive conditioning [73,74]. Therefore, further research is needed 
to confirm with functional data in non-mammalian vertebrates the anatomical, 
neurochemical and developmental evidence of the amygdaloid circuits reviewed above.

4. Two poles in the ventral striato-pallidum: reward vs risk avoidance

The data reviewed above indicate that, in all tetrapod vertebrates, reward-seeking 
responses require appropriate signalling from the multimodal amygdala to the rostral 
ventral striatum (nucleus accumbens and olfactory tubercle), whereas responses to 
threats require signalling from the multimodal amygdala to the central amygdaloid 
nucleus. The central amygdala can be seen as the caudal ventral striatum[19,61] (Box 1), 
and from this point of view both the amygdalo-striatal circuitry involved in 
attraction/reward and the multimodal-to-central intraamygdaloid circuitry involved in 
aversion/threat-responding can be considered as cortico-striatal circuits, originated in the 
cortical (pallial) amygdala and innervating respectively rostroventral and caudal striatal 
regions (Box 1).  In this evolutionarily conserved organizational scheme, the medial 
amygdala is an output structure specialised in responses to conspecifics, which can be 
either appetitive, such as those related to sexual behaviour, or aggressive/defensive, such 
as those found in agonistic encounters with competitors. In rodents, given the key role of 
chemical signals in sociosexual behaviour, the medial amygdala is directly innervated by 
the main and accessory olfactory bulbs [75]. Our hypothesis predicts that in species in 
which other sensory cues are critical in social and sexual responses, information about 
these particular types of cues should be relayed to the medial amygdala (e.g., auditory 
cues in songbirds, or visual cues in primates and birds with sexually dimorphic colourful 
feathers). This explains why the medial amygdala has not disappeared in microsmatic 
species, such as humans [76], or even in anosmic animals, such as dolphins [77]. 

Box 1. Two poles in the survival brain

Survival and reproduction are related to avoidance of risks and reward seeking through 
goal-directed behaviours. The neural basis of this dichotomic response (avoidance vs 
approach) can be found in the two-pole organisation of ventral striato-pallidum. The 



rostral pole of the ventral striato-pallidum, the nucleus accumbens-olfactory tubercle 
complex (Acb-Tu), is involved in goal-directed behaviours. The caudal edge of the ventral 
striato-pallidum constitutes the central extended amygdala, related to avoidance of 
threatening stimuli. Unconditioned avoidance responses are elicited by stimuli that reach 
directly the central extended amygdala from the brainstem-thalamus (unexpected strong 
stimuli, bitter taste, pain…) [78][79]. Part of this ascending pathway is rich in CGRP 
[80,81] and can be identified in non-mammalian vertebrates [82,83], where its 
termination defines the central extended amygdala. A part of the extended amygdala is 
also involved in aversive responses to chemosignals, such as predator kairomones [84] or, 
maybe, alarm pheromones (even in humans, [85]). Other risk-associated stimuli (e.g. 
alarm vocalisations; fear facial expressions) might have access to the extended amygdala 
through direct or indirect connections.

In contraposition, stimuli eliciting innately appetitive responses (sweet and salty food, 
comfort temperature) target the Acb-Tu through the ascending projection from the 
tegmental area that is rich in dopamine. This innervation is also a defining feature of the 
Acb-Tu of non-mammals (see text). Chemosensory inputs related to conspecifics can also 
be innately rewarding, sexual pheromones being a paradigmatic case [27,86,87]. Direct 
amygdalo-striatal pathways, found in every studied vertebrate, might be the neural 
substrate for such attractive responses to chemosensory cues. Other amygdalo-striatal 
pathways might convey rewarding, complex social stimuli such as visual displays or 
vocalisations. 

The basolateral division of the amygdala (BLA) also receives relatively minor (nonetheless 
important) afferents conveying these kinds of stimuli, which are revealed by CGRP and 
dopamine innervation of the BLA found in the studied tetrapods. Additional afferents to 
the amygdala from sensory and associative pallial areas allow convergence of innately 
aversive or attractive stimuli with neutral cues within the BLA. Synaptic plasticity at this 
level mediates pavlovian association leading to learned responses of attraction or aversion 
to sensory cues that predict innately attractive or aversive stimuli [88], and projections to 
the Acb and the central extended amygdala have been demonstrated to mediate positive 
or negative reinforcement, respectively [89]. This adaptive function of the BLA 
(anticipative responses ensuring survival and/or reproduction) has likely been a driving 
force in the evolution of the cerebral hemispheres in higher vertebrates.  

This explains the explosive increase in the size of sensory and associative pallial areas in 
mammals and birds. Both vertebrate classes share a huge development of the 
telencephalic pallium. Even if the areas enlarged in the brain of mammals and birds are 
different (isocortex in mammals, nidopallium and mesopallium in birds) they project 
directly and indirectly to the BLA (or its homologue; caudal nidopallium, dorsal 
arcopallium in birds), thus allowing sensory and cognitive processing of stimuli for their 
discrimination and subsequent associative tagging as potentially harmful/aversive or 
rewarding/attractive. This fine-tuned tagging constitutes an adaptive function as it 
mediates anticipative attraction/aversion responses to all kind of cues, what increases the 
probabilities of survival and reproduction.  
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FIGURE LEGEND

Figure 1. The amygdaloid complex in tetrapod vertebrates

Schematic representations of frontal sections of the brain of amphibians, reptiles, birds 
and mammals (rodents) through the caudal telencephalon, with indication of the 
components of their amygdalae. The different structures are color-coded as in Table 1. In 
amphibians (a male frog croaking), only a multimodal amygdala (LA) is recognized, which 
projects to the main subpallial output structures, the medial (MA) and central amygdala 
(CeA), as well as to the hypothalamus and the ventral striatum. This basic pattern of 
connectivity is also found in reptiles (a lizard in tonic immobility), birds (a rooster 
executing a courtship display) and mammals (a female mouse caring for pups). Major 
differences among groups are relative to the degree of development and differentiation of 
the different structures within the multimodal amygdala, as well as the relative 
enlargement or reduction of the chemosensory structures. The figure also summarises the 
main inputs and outputs of the amygdala, which allow basic physiological and behavioural 
reactivity for ensuring survival and reproduction. Artwork by Hugo Salais. For 
abbreviations, see Table 1.
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TABLE 1. Putative homologies of the amygdala and its divisions in tetrapod vertebrates

The color codes of the different structures are the same as in Fig. 1. For the amphibian 
amygdala, see mainly Moreno and Gonzalez, 2006 [64]; for the reptilian and avian 
amygdala, see mainly Martínez-García et al., 2007 [18], and Medina et al., 2017 [60].
Abbreviations:
Reptiles: DLA, dorsolateral amygdaloid nucleus; NS, nucleus sphericus; PDVR, posterior 
dorsal ventricular ridge; rLA, reptilian lateral amígdala; SAT, striatoamygdaloid 
transition área; VAA, ventral amygdaloid area
Birds: AA, anterior arcopallium; AD, arcopallium dorsale; AV, arcopallium ventrale; NCL, 
nidopallium caudolaterale; NCM, nidopallium caudomediale; pINP, peri-
intrapeduncular nucleus
Mammals: ACo, anterior cortical amygdaloid nucleus; AHi, amygdalo-hippocampal 
área; BL, basolateral amygdaloid nucleus; BM, basomedial amygdaloid nucleus; La, 
lateral amygdaloid nucleus; PLCo, posterolateral amygdaloid nucleus; PMCo, 
posteromedial amygdaloid nucleus.


