
Continuous Delivery: Aplicação na Glintt

FRANCISCO JOSÉ DA FONSECA RAMALHO
Outubro de 2018

Continuous Delivery: Application at
Glintt

Francisco José da Fonseca Ramalho

A dissertation submitted in partial fulfillment of
the requirements for the degree of Master of Science,

Specialisation Area of Computer Systems

Supervisor: Dr. Alexandre Manuel Tavares Bragança
Co-Supervisor: Engenheiro Joel Campos

Evaluation Committee:
President:
Dr. , Professor, DEI/ISEP

Members:
Dr. , Professor, DEI/ISEP
Dr. , Professor, DEI/ISEP
Dr. , Professor, DEI/ISEP

Porto, October 14, 2018

iii

Dedicatory

To my parents, my brother, my grandma and my girlfriend that always believed in me, more
than myself.

v

Abstract

Nowadays, Continuous Integration and Continuous Delivery are practices that the organi-
zations that develop software implement to facilitate and improve their daily work. These
continuous practices allow organizations to perform more reliable and constant releases of
new features and products.

In this dissertation, it will be documented the application of continuous practices in a real
case, at Glintt Healthcare Solutions organization. A case study of methods, approaches and
technologies will be made to understand the better way to implement those practices and take
the most possible advantages of that process.

It is expected that this project decreases or completely solves the problems that originated it,
contributing to improve the quality of the products and increase the costumers’ trust in the
organization.

Keywords: Continuous, integration, delivery, automation, testing

vii

Resumo

Atualmente, os conceitos de Continuous Integration e Continuous Delivery estão relacionados
com práticas que qualquer organização que desenvolve software implementa de modo a mel-
horar o seu trabalho diário. Estas práticas permitem às organizações entregar novos produtos
e funcionalidades mais confiáveis e com maior frequência.

Nesta dissertação é documentada a aplicação dessas práticas num caso real, na organização
Glintt Healthcare Solutions. Irá ser realizado um caso de estudo de métodos, abordagens e
tecnologias relacionadas com essas práticas, tendo como objetivo perceber a melhor maneira
de implementá-las e tirar o melhor proveito da aplicação desses processos.

É esperado que a realização deste projeto consiga diminuir ou colmatar os problemas verifi-
cados na organização e que lhe deram origem. Assim, espera-se que o projeto contribua para
melhorar a qualidade dos produtos da organização e para melhorar a confiança dos clientes
na mesma.

ix

Acknowledgement

First, I’d like to thank Instituto Superior de Engenharia do Porto (ISEP) and all people who
taught me a lot in the last five years. A special thanks to my supervisor Dr. Alexandre
Bragança for the guidance given along the implementation of this solution and writing of this
dissertation.

To Glintt-HS, I thank the opportunity to design and implement a solution related to a subject
that I am very interested on. Special thanks to my supervisor Joel Campos for all the advices
and the time given to me for implementing this project. Also, thanks to my team’s colleagues
that contributed to the existence of this solution and discussed various points about the best
approaches and methods.

There is also so many people who went along with me at ISEP in the last years that it would
be hard to enumerate them all; I thank all of them for all the moments we spent together.
Special thanks to Paulo Pereira e Carlos Silvas, two of my best friends and colleagues at ISEP
and Glintt-HS. Without them, this Master of Science would be very much harder and working
in team wouldn’t be so easy.

Finally, special thanks to my family - my parents, my brother and my grandma - for all the
support and all the moral values and ideas given in my entire life. Also, a big thanks to my
girlfriend who always been there for me in the toughest times and always encouraged me to
keep fighting to overcome all the struggles.

xi

Contents

List of Figures xiii

List of Tables xv

List of Source Code xvii

List of Acronyms xix

1 Introduction 1
1.1 Context . 1
1.2 Problem . 2
1.3 Goals . 2
1.4 Value Analysis . 3
1.5 Preconized Approach . 3
1.6 Document Structure . 4

2 State of the Art 5
2.1 Theoretical Background . 5
2.2 Methods and Approaches . 8

2.2.1 Good Practices for a Testing Strategy and a Delivery Pipeline 8
2.2.2 Build a CI and CD Solution . 10

2.3 Technological Background . 10
2.3.1 CI Servers . 11

Jenkins . 12
TeamCity . 13
Team Foundation Server . 14

2.3.2 Testing Tools . 15
2.3.3 Unit tests . 16

MSTest, NUnit and xUnit.NET . 17
Jest, Mocha and Tape . 21

2.3.4 Integration tests . 25
2.3.5 Deployment tests . 26
2.3.6 Functional acceptance tests . 26

Selenium, Watir and Sahi . 27
2.3.7 Nonfunctional acceptance tests . 30

WebLoad and JMeter . 30
2.4 Value Analysis . 31

2.4.1 New Concept Development (NCD) Model 32
2.4.2 Benefits and Sacrifices . 34
2.4.3 Value Proposition . 34
2.4.4 FAST Diagram . 35

xii

3 Analysis 37
3.1 Project Atendimento . 37
3.2 Current State of CI and CD . 38
3.3 Solution Analysis . 39

3.3.1 Approaches to build a CI/CD solution 39

4 Design 41
4.1 Choice of Method and Technologies . 41
4.2 CD Pipeline . 43

5 Implementation 45
5.1 Overview . 45
5.2 Unit Tests . 46

5.2.1 JavaScript/TypeScript Unit Tests . 46
Issues developing JS/TS tests . 51

5.2.2 C# Unit Tests . 54
5.3 Integration Tests . 59
5.4 Functional Acceptance Tests . 63
5.5 Team Foundation Server Workflow . 67

5.5.1 Issues implementing the designed solution 69
5.6 Jenkins Workflow . 70

5.6.1 Issues implementing the pipeline . 75

6 Evaluation 77
6.1 User Satisfaction . 78

6.1.1 Question 1 . 79
6.1.2 Question 2 . 80
6.1.3 Question 3 . 81
6.1.4 Question 4 . 81
6.1.5 Question 5 . 82

6.2 Average Time for CI Approval . 82

7 Conclusions 87
7.1 Results . 87
7.2 Future Work . 87

Bibliography 89

A FAST Diagram 93

B Pipeline Diagram 95

C Atendimento Mocha Tests - Results in the Browser 97

D Atendimento Functional Acceptance Tests - CSV Report 99

E Atendimento Functional Acceptance Tests - HTML Report 101

F Evaluation - User Satisfaction Inquiry 103

xiii

List of Figures

2.1 Statistics comparing organizations that use Continuous Integration and Deliv-
ery with peers using traditional methods . 7

2.2 Study at Hewlett Packard using Continuous Integration and Delivery Method-
ologies . 8

2.3 Continuous Integration servers used (2014) 11
2.4 Jenkins User Interface (UI) . 13
2.5 TeamCity UI . 14
2.6 Team Foundation Server (TFS) Build UI . 15
2.7 Test Explorer in Visual Studio . 17
2.8 MSTest test structure . 18
2.9 NUnit test structure . 19
2.10 Jest test results . 22
2.11 Mocha test results . 23
2.12 Tape test results . 24
2.13 NCD Model . 32
2.14 Longitudinal perspective on Value for the customer (VC) 34

4.1 Activity Diagram - process overview . 43
4.2 Pipeline Diagram . 43

5.1 Atendimento Html Folder . 45
5.2 Atendimento Mocha Test . 47
5.3 Atendimento Mocha Tests - Project Folder 47
5.4 Atendimento Mocha Tests - Results in the Browser 51
5.5 Atendimento Mocha Tests - Results in the Command Line 54
5.6 Atendimento’s Glintths.ATD.SharedCore Structure 56
5.7 Atendimento’s Glintths.ATD.Services Structure 56
5.8 Atendimento’s Glintths.ATD.CoreDataAccess Structure 59
5.9 Atendimento’s Glintths.ATD.CoreDataAccess.IntegrationTests Structure . . . 59
5.10 Atendimento C# Integration Test - Test Explorer 62
5.11 Atendimento Web Service Checker . 63
5.12 Functional Acceptance Tests - Front Office Project 63
5.13 Functional Acceptance Tests - Common Tests Project 63
5.14 Atendimento Functional Acceptance Tests - CSV Report 66
5.15 Atendimento Functional Acceptance Tests - HTML Report 67
5.16 TFS Build Definition - Triggers Tab . 67
5.17 TFS Build Definition - Source Settings Tab 68
5.18 TFS Build Definition - Process Tab . 68

6.1 RStudio - Shapiro-Wilks test for question 1 79
6.2 RStudio - Wilcoxon test for question 1 . 80
6.3 TFS Backlog - query for developments approved in CI in April 83

xiv

6.4 RStudio - boxplot of the differences between the two matched-pairs 85
6.5 RStudio - paired t-test applied for Average Time for CI Approval 85

A.1 FAST Diagram . 94

B.1 Pipeline Diagram . 95

C.1 Atendimento Mocha Tests - Results in the Browser 98

D.1 Atendimento Functional Acceptance Tests - CSV Report 99

E.1 Atendimento Functional Acceptance Tests - HTML Report 102

F.1 User Satisfaction Inquiry . 103

xv

List of Tables

2.1 MSTest vs. NUnit vs. xUnit.NET. 20
2.2 Jest vs. Mocha vs. Tape . 25
2.3 Selenium vs. Watir vs. Sahi . 29
2.4 WebLoad vs. JMeter . 31
2.5 Value Analysis - Benefits vs. Sacrifices . 34

6.1 User satisfaction - number of answers by question. 78
6.2 Time (hours) for CI Approval in April and September. 83
6.3 Time (hours) for CI Approval in April and September (continuation). 84

xvii

List of Source Code

2.1 xUnit.NET test structure (. Foundation 2017b) 20
2.2 Jest test example (Facebook 2018) . 21
2.3 Mocha test example (MochaJS 2018) . 23
2.4 Tape test example (Halliday 2018) . 24
2.5 Selenium test example (Cohen 2012) . 27
2.6 Watir test example (Watir 2018) . 28
2.7 Sahi test example (Li 2011) . 29
5.1 Atendimento Mocha Tests - webpack.config.js 48
5.2 Atendimento Mocha Tests - webpack.test.js 49
5.3 Atendimento Mocha Tests - webpack.app.js 50
5.4 Atendimento Mocha Tests - webpack-config-mocha.test.js 52
5.5 Atendimento Mocha Tests - mockBrowser.js 53
5.6 Atendimento C# Unit Test - Glintths.ATD.Core.UnitTests 55
5.7 Atendimento C# Unit Test - Glintths.ATD.Services.BusinessEntities.UnitTests 57
5.8 Atendimento C# Unit Test - Glintths.ATD.Services.Reports.UnitTests 58
5.9 Atendimento C# Integration Test - GplatformManagement 60
5.10 Atendimento C# Integration Test - MulesoftManagement 61
5.11 Atendimento Functional Acceptance Test - Front Office Project 64
5.12 Atendimento Functional Acceptance Test - Common Tests Project 64
5.13 Atendimento Functional Acceptance Tests - Grid Creation 65
5.14 Atendimento Functional Acceptance Tests - Execution Batch File 66
5.15 Atendimento Jenkinsfile - agent options and environment 71
5.16 Atendimento Jenkinsfile - stage Unit Tests 72
5.17 Atendimento Jenkinsfile - stage Integration Tests 72
5.18 Atendimento Jenkinsfile - stage Deploy . 73
5.19 Atendimento Jenkinsfile - stage Smoke Test 74
5.20 Atendimento Jenkinsfile - stage Functional Acceptance Tests 74
5.21 Atendimento Jenkinsfile - post section . 75

xix

List of Acronyms

AMD Asynchronous Module Definition.

BDD Behavior-Driven Development.

CD Continuous Delivery.
CI Continuous Integration.
CLI Command-Line Interface.
CSS Cascading Style Sheets.
CSV Comma-Separated Values.

DLL Dynamic-Link Library.
DSRM Design Science Research Methodology.

FEI Front End of Innovation.
FFE Fuzzy Front End.

GUI Graphical User Interface.

HTML HyperText Markup Language.

IDE Integrated Development Environment.
IS Information systems.

JS JavaScript.
JSON JavaScript Object Notation.

NCD New Concept Development.

OS Operating System.

TAP Test Anything Protocol.
TDD Test-Driven Development.
TFS Team Foundation Server.
TS TypeScript.

UI User Interface.

VC Value for the customer.
VCS Version Control System.
VP Value Proposition.

xx

XML Extensible Markup Language.
XP Extreme Programming.

1

Chapter 1

Introduction

This dissertation focus on a pratical approach of Continuous Integration (CI) and Continuous
Delivery (CD), applied in a real organization. In this first chapter, it is described the problem,
the goals and the preconized approach, concluding with the current document structure.

1.1 Context
This document presents a solution implemented by Glintt Healthcare Solutions (Glintt-HS) 1,
a company that belongs to the Global Intelligent Technologies (Glintt) 2 group. This group
represents a Portuguese multinational, listed on the Lisbon stock exchange (Euronext Lisbon),
and its mission is to "contribute with technological innovation to improve the levels of health
and well-being in the global society in which we live." (Glintt – Global Intelligent Technologies
2018). Glintt-HS covers the Healthcare market, both the public and private sector, and
has more than 20 years of experience in that market. Nowadays, more than 200 hospitals
and clinics provide their services using Glintt solutions.These solutions are not only used in
Portugal, but also in the United Kingdom, in Angola and in Brasil.

In Glintt-HS there was a problem related to the release of a stable version of a product (i.e.,
the version that is posteriorly installed in the costumers’ environment). Regarding branch
control, there is only a development branch and the production branch (version 17 branch
for example) that is used to release a new product version to an internal production-like test
environment (similar to the costumer environment) and later effectively to the costumer. With
only the existence of that two branches, sometimes errors occurred when a new patch (version
of the application) was deployed to the internal test environment, destabilizing it. The errors
detected could take days to resolve and affect the release of that version to the costumer.
A team of testers manually perform acceptance tests in that environment and only when no
errors are detected, the patch is approved and closed and can be installed on the costumers’
environment.

Trying to solve those problems, an intermediate environment and branch at the organization’s
repository were created. This new environment (called CI environment) has the objective
to be the first environment where testers can approve new developments or bug corrections
made primarily in the development branch. Only when these developments or bug corrections
are approved in the new environment, their correspondents code changes can be merged to
the 17 branch and deployed to the production-like environment. This will allow to keep a
better control of the changes that go to the 17 branch and to maintain a more stable patch

1https://www.glintt.com/pt/o-que-fazemos/mercados/healthcare/Paginas/Home.aspx
2https://www.glintt.com/

2 Chapter 1. Introduction

environment. Also, only when a developer finishes its new development or bug fix can merge
the changes to the intermediate branch, contributing to a stable CI environment as well.

To automate the integration and release of the application to the new CI environment, pro-
cesses of Continuous Integration and Continuous Delivery were studied and implemented. This
dissertation’s project will focus on the CI/CD process of one specific project called Atendi-
mento. This project’s dimension and purpose is approached in chapter 3, more specifically in
section 3.1.

1.2 Problem
The current CI/CD process that exists is really premature and continues to have its issues. The
first issue is that the CI build is only triggered one time a day during the night; according to
the good principles of CI, the best practice is to trigger a build automatically after a developer
does a change to the source code central repository, to detect bugs of his code as soon as
possible. With the practice followed by Glintt-HS, many changes made during the day are
gathered in the same build executed during the night. If errors are detected, this means that
the developer will only review his changes in the next day, when he could have done it minutes
after his changes were made to the repository (if the build were triggered automatically with
its commit/check-in). Furthermore, the errors detected can be not very specific sometimes
and its harder to know who’s changes originated that error, as changes by many developers
are integrated in the same build.

Another big gap in the existing process is the lack of automated tests. In the current process,
after the compilation of the source code, the resulted binaries are deployed to the CI environ-
ment (site that contains the CI version of the application). Due to these premature processes,
sometimes the application has errors in runtime in that environment. The deployment with
errors could be avoided with the execution of some tests in the previous stages. Adding the
fact that this process doesn’t have a rollback process, solving these runtime errors can take
hours or even days to solve. As new changes made to CI environment are only merged to pro-
duction branch when they are approved in that environment by a testers team, the problems
referred can also influence the production version of the application by delaying scheduled
releases of new features and, consequently, decreasing costumers’ trust on the organization.

1.3 Goals
As mentioned above, the current process of CI at Glintt-HS is summarized in a daily integration
and deployment of the new changes integrated to the internal test CI environment. With this
new solution, it is intended that automated tests and a robust process of CD are implemented.
As there is a current process that it is pretended to be evolved to a new one, there are some
questions that can be used to evaluate the work here documented. Is this new solution a
viable way to overcome the current problems that exist at Glintt-HS? Does the final result
make up for the resources and effort spent on the design and implementation of this solution?
Does this new solution makes work easier to the people involved and make them more satisfied
with the process?

Considering the questions stated above, the following goals are established for this project:

• Plan, design and implement a robust architecture of CD at Glintt-HS to decrease or
solve the mentioned problems;

1.4. Value Analysis 3

• Better process than the current existing one, satisfying the principles and good practices
of Continuous Integration and Continuous Delivery;

• Implementation of a good testing strategy to solve many of the existing problems;

• Addition of test automation and rollback process to make the application more reliable.

The achievement of the points presented above lead to a more stable CI environment and also
increases the satisfaction of the interested parts (testers, developers and managers). Lastly,
it is expected that the solution documented indirectly improve the release of new production
versions. It is expected that a more trusty and stable CI environment will lead to a more
secure production environment and with features released to production faster.

1.4 Value Analysis
As stated before, CI and CD are composed by practices that help organizations to improve
their release processes. The solution here documented predicts the automation of processes
in Glintt-HS, contributing to have a more stable CI environment and, consequently, a more
secure merge of changes to the production-like environment. These new resulted conditions
will facilitate the work of people involved in these processes (testers, developers and managers),
by automating the integration of code, tests and the deployment of the application to the
CI environment. Furthermore, the new process will increase product quality and reliability,
adding value to Glinnt-HS proposition to its customers.

The value analysis of the concerned solution will be detailed in section 2.4 of chapter 2.

1.5 Preconized Approach
Every good solution to a problem, including in the area of Computer Systems, relies on a well
structured research process. Normally, two methodologies are used in that research process
to define the correct path to obtain knowledge about the issue concerned: behavioral science
and design science. The first one "(...) is usually associated with theories creation", while the
second "(...) is associated with the creation and evaluation of artifacts." (Al-Jallad 2012).

This dissertation presents a research focused on solving a real problem in the organizational
context of Glintt-HS, so it is possible to conclude that this work follows the design science
methodology. Design Science Research Methodology (DSRM) is a well known and accepted
framework to implement design science research in Information systems (IS) research. This
methodology will be used on the development of this dissertation’s work and is is composed
by six steps (Peffers et al. 2007):

1. Problem identification and motivation: definition of the problem and justification of
the value of a solution. This justification allows to accept the results and to know
researcher’s understanding of the problem. The problem concerned in this dissertation
is presented in this first chapter in section 1.2 and its value analysis and justification is
also presented in this chapter and detailed in chapter 2;

2. Define the objectives for a solution: definition of the objectives of the solution from
the problem concerned. These objectives can be quantitative or qualitative and re-
quire knowledge of the state of the problem and other solutions. The goals of this
dissertation’s solution are presented in section 1.3 of this chapter;

4 Chapter 1. Introduction

3. Design and development: involves the design of the artifact. This step includes the
identification of functionality and architecture, then it is developed the designed artifact.
The design of the solution is discussed in chapter 4 of this document. Its implementation
is described in chapter 5.

4. Demonstration: prove that the artifact can solve the problem or parts of it. This
demonstration is usually accomplished through experimentation, simulation, case study
or similar activities, that in this project were performed at Glintt-HS. In the solution
presented in this document, its value analysis can provide some clarifications on how it
can solve the problem concerned. Furthermore, the next point (evaluation) is important
to give more strength to that value analysis;

5. Evaluation: analyze the efficiency of the solution to solve the problem. The objectives
are compared to the observed results in the demonstration activity. After evaluation,
the researcher can choose to go back to a previous activity, if the results didn’t match
the stated objectives, or to advance to the next activity. The evaluation of the this
document’s solution is presented in chapter 6;

6. Communication: Communicate to other researchers and audiences the problem, the
artifact, its design and its results demonstrated. This phase will be composed by the
presentation of the work developed to an evaluation committee.

1.6 Document Structure
This document structure starts with the introduction chapter, where it is presented to the
reader the conceptualization of the subject, the problem that this project will try to solve and
the stated goals to achieve. A brief description of the value analysis and the approach to solve
the presented problem conclude this chapter.

In chapter 2, this document presents the State of the Art, where is more detailed this project’s
theme and related concepts. First, the theoretical concepts are detailed and then their corre-
spondent technological background is analyzed. In the same chapter, methods and approaches
to implement a CI and CD process are described, and the value analysis of the current project
is studied and detailed.

Chapter 3 shows an analysis of the solution, contextualizing with the current state of CI and
CD at Glintt-HS first and then realizing a comparison and evaluation of the methods and
approaches addressed in the previous chapter.

In chapter 4, the design of the documented solution is presented. The first section of the
chapter describes the methods, approaches and technologies chosen to implement the solution
and the next section presents its high-level diagrams.

The next chapter, chapter 5, contains all the information about the implementation process,
presenting all the strategies used to develop the necessary tests and explaining the Team
Foundation Server (TFS) and Jenkins workflows.

In chapter 6, it is presented the factors that will be used to evaluate this solution, including
test hypotheses, the evaluation methodologies and the statistic tests to evaluate each factor.
This chapter’s goal is to evaluate results of the solution and write some conclusions for each
factor analyzed.

The last chapter (chapter 7) presents the conclusions of all work developed in this project.

5

Chapter 2

State of the Art

In the chapter of the State of the Art is presented an overview of the project, being discussed
important concepts and technologies related to the problem in the Theoretical Background and
Technological Background, respectively. Also, it presents the known Methods and Approaches
to the main issue reported in this dissertation and the Value Analysis of the project.

2.1 Theoretical Background
Continuous Integration and Continuous Delivery are practices that nowadays every company
that develops software tries to implement because those practices facilitate the integration,
testing and publishing of the daily work. “Continuous Integration is a software development
practice where members of a team integrate their work frequently, usually each person inte-
grates at least daily - leading to multiple integrations per day” (Fowler 2006a). Every time a
developer makes changes to the application, in other words, pushes new code to the central
repository that contains the application, an automated build is triggered and tests are also
executed. This triggered process allows to detect integration problems and to verify if the new
code pushed breaks any part of the application. It also makes easier to detect the error when
a test fails and allows to build cohesive applications more quickly and with less integration
issues.

Continuous Delivery is an approach that allows to "(...) build software in such a way that
the software can be released to production at any time." (Fowler 2013). Continuous Delivery
depends directly on the implementation of the Continuous Integration process, by building
the applications and running tests to detect errors. Only when the application is built and
tested with success, it is possible to deploy the executables to production. Continuous Delivery
is sometimes assumed has having the same meaning as Continuous Deployment, but these
concepts are not the same. Continuous Deployment is a practice where every change made by
a developer goes through the building and testing process and it is automatically pushed into
production. With Continuous Delivery, the deployment to production is a choice dependent
on the preferences defined by the team’s members. In other words, with Continuous Delivery
not every changes to the code result in a release to production.

In the previous paragraphs, it is realized that Continuous Integration, Continuous Delivery
and Continuous Deployment are concepts related to each other. The focus of Continuous
Integration is on testing automation to detect if new changes don’t break the application and
its previous functionalities. Continuous Delivery is an extension of Continuous Integration,
complementing it with release automation that can be done daily, weekly, fortnightly, or
whenever is required. These releases are usually triggered by a click on a button. In Continuous
Deployment there is no human intervention, which means that if all tests end with success

6 Chapter 2. State of the Art

a new change is released to production. This process accelerates the feedback of customers
and take pressure off the team because there isn’t a scheduled day to release anymore (Pittet
2018).

To implement these practices usually a deployment pipeline is configured. This pipeline is also
known as build pipeline or staged build and it is composed by several stages that combine
the building and testing of the application and finishes with changes being committed to
production. So, the main goal of this pipeline is to enable the automated process of releasing
new changes to production. A typical pipeline includes three main stages: one responsible for
the build automation and continuous integration; another stage for the automated tests; and
the final one for the deployment automation (Phillips 2014). In the first stage, the application
is compiled in order to create the executables that will be used in the next stages. The new
functionalities developed are built, integrated with the rest of the application and even unit
testing is performed at this phase. In the test automation stage, more complex tests are
performed to realize if the application meets its requirements, whether they are functional,
security or performance requirements. This stage may take a long time to run, depending
on the application’s size and complexity of the tests. The final stage of deployment can also
be staged, with the new changes being monitored in a subset of the production environment
before being completely released. The automation of the deployment allows the delivery of
new functionality to users within minutes, and as the quality of the software is verified in the
previous stages, this one is a reliable and a low-risk phase.

Every change made to the repository of the application should trigger a build that must be
monitored by the developer that made that change. If it breaks the application, the developer
must fix the issues until every commits he has done pass the integration build. There are
two ways to trigger that build: using a manual build or using a continuous integration server
(Fowler 2006a). The first approach is similar to the build that the developer does on its
local machine before committing his changes to the repository. After committing, he uses
the integration machine to check out the head of the mainline. The head of the mainline
points to a specific commit in the branch that the developer is working, and realizing the
check out makes it point to the most recent commit. After that, he triggers manually the
integration build. In the second approach, the continuous integration server is waiting for
commits made to the repository. When a commit is made, the CI server automatically checks
out the head of the mainline, triggers a build and notifies the result of the build to the developer
who made the commit. This developer can only conclude his commit is done when the build
finishes successfully, either it is triggered manually or automatically. None of the approaches is
necessarily the best one. The better approach depends on the team’s and projects preferences
and requirements.

An important part of the CI process is to include automated tests to detect bugs as soon
as possible. Today, Test-Driven Development (TDD) and Extreme Programming (XP) have
contributed a lot to the implementation of self-testing code and many people implement and
appreciate it. Nevertheless, TDD and XP are not necessary to implement self-testing code.
Both approaches defend that it is supposed to write tests before writing the code, but this is
not mandatory for the purposes of CI. (Fowler 2006a).

Self-testing code is achieved with a group of automated tests that can check almost the
all code base for bugs and these tests are normally executed through a command and are
self-checking. A build is self-testing if the failure of any test causes the build failure.

2.1. Theoretical Background 7

As Martin Fowler refers, TDD allowed the rise of XUnit family of tools that are pretty good
for self-testing code (Fowler 2006a). This family provides a variety of testing frameworks and
it is a derivation of JUnit. These tools were started by Kent Beck that built a framework
to organize and run unit tests. It allowed developers to easily define their own tests and to
run them after every change made to the code (Fowler 2006b). The X in XUnit represents a
programming language. So, JUnit is a testing framework for Java, CUnit is for C, CppUnit is
for C++, NUnit is for .NET and there are many more.

XUnit tools are a good group of frameworks to implement self-testing code, but there are
other tools that focused more on end-to-end testing and can be also used, like Selenium,
Sahi, Watir and many more. These tools are used for Web Application testing, automating
browsers behavior. This allows to simulate user actions on applications and compare the results
of that actions with the expected results. If one comparison of results fail, is is expected that
the all suite of tests results in failure as the build that triggered them.

Testing tools are discussed again in the next section, relating the best tool with the type of
test to implement on the CI/CD process.

Statistically speaking, these methodologies have shown some great results when implemented
in various organizations. In Figure 2.1, it is shown the results of a study made by Thought-
Works and Puppet Labs in 2014, comparing high-performing organizations that implemented
Continuous Integration and Delivery methodologies with its peers that use traditional methods.

Figure 2.1: Statistics comparing organizations that use Continuous Integra-
tion and Delivery with peers using traditional methods (Gesso 2015)

In the results of the study, it can be concluded that the releases made to production suffered
a huge improvement for the organizations that implement CI and CD methodologies. The
code changes were released 30 times faster, the number of failed deployments was reduced in
50% and the service restoration was 12 times faster!

With similar outstanding results, Hewlett Packard made an internal study (A Practical Ap-
proach to Large-Scale Agile Development), as shown in Figure 2.2. This study proved that
the implementation of CI and CD methodologies resulted in 40% reduction in development
costs, 140% increase in programs under development, 78% reduction in development cost per
program and increased the time available for innovation (5x more time).

8 Chapter 2. State of the Art

Figure 2.2: Study at Hewlett Packard using Continuous Integration and
Delivery Methodologies (Gesso 2015)

2.2 Methods and Approaches
This section starts with the presentation of some good practices to implement a testing strat-
egy and a delivery pipeline, based on the words of Jez Humble and David Farley. Next, some
distinct processes of implementing the all process of CI and CD are discussed to understand
the best way to construct the solution.

2.2.1 Good Practices for a Testing Strategy and a Delivery Pipeline

In their book "Continuous Delivery: Reliable Software Releases through Build, Test, and
Deployment Automation", Jez Humble and David Farley write about how they think testing
should be implemented in real-life situations. They write about how a test strategy should be
implemented in "New projects", "Midprojects" and "Legacy systems". The project approached
in this dissertation is a Midproject because there is already a project with many features and
with people developing even more new changes to the code. Also, as this project doesn’t have
automated tests, it is also a Legacy System. Next it is presented the strategy to implement
tests in a project with these types.

In a midproject, "(...) the best way to introduce automated testing is to begin with the
most common, important, and high-value use cases of the application." (Jez Humble 2011).
To identify those use cases it is required to the costumer who will define the most value
functionalities to the business. To cover these high-value functionalities it is recommended
to automate happy path tests. "In general, for each story or requirement there is a single
canonical path through the application in terms of the actions that the user will perform.
This is known as the happy path." (Jez Humble 2011).

As the automation of the happy path is a priority, it will be necessary to perform more manual
testing to check if the system is working as it should. If a function is tested manually more than
a couple of times, and is not likely to change, the test should be automated. On the contrary, if
someone is spending a lot of time fixing specific tests, that means the functionality is changing
and it is required to talk to the costumer and the development team. If the functionality is
indeed changing it is possible to ignore it while it is not finished.

2.2. Methods and Approaches 9

Regarding Legacy Systems, "the first priority when dealing with such a system is to create an
automated build process if one doesn’t exist, and then create an automated functional test
scaffolding around it." (Jez Humble 2011). To create this set of automated tests it is easier if
documentation exists or if people who worked on the legacy system are available. Sometimes,
the managers of the project consider these automation of tests a low-value activity, so it is
necessary to identify the high-value actions of the system by talking to its users.

Talking to the system’s users will allow to a set of automated tests that cover its core func-
tionalities. This will protect the legacy functions and later more tests can be added to cover
new behavior. For the legacy system, these tests are usually composed by smoke tests.

As part of this dissertation work, it is important to know how to implement a Deployment
Pipeline. In their book, Jez Humble and David Farley present the following steps (Jez Humble
2011):

1. "Model your value stream and create a walking skeleton":

First, it is necessary to map the value stream that goes from check-in to release. If
the project is already running, this task is fast, it is just needed to talk to everyone
involved in the process. If the project is new, the value stream must be the most
appropriated. To define it, it is possible to check other project with similar characteristics
or define minimum steps: "(...) a commit stage to build your application and run basic
metrics and unit tests, a stage to run acceptance tests, and a third stage to deploy your
application to a production-like environment (...)" (Jez Humble 2011).

2. "Automate the build and deployment process";

In this step, the build process must start to compile the source code and produce
binaries. This process must be triggered every time someone commits a change to the
code. After that, the deployment is automated. For that, it is needed a machine that
will be production-like and it is where user acceptance tests are executed. This should
include the implementation of a deployment test to check if the application was correctly
deployed.

3. "Automate unit tests and code analysis";

This step is required to run unit tests, code analysis and ultimately a selection of
acceptance and integration tests. Unit tests are faster to run because they don’t connect
to the filesystem or database, so they should be executed after building the application.
With more complexity of the application, more unit and component tests are required.
If this commit stage gets over five minutes, it is recommended to split it into suites that
run in parallel. This parallelism can be achieved using a CI Server.

4. "Automate acceptance tests";

"The acceptance test phase of your pipeline can reuse the script you use to deploy to
your testing environment. The only difference is that after the smoke tests are run, the
acceptance test framework needs to be started up, and the reports it generates should
be collected at the end of the test run for analysis." (Jez Humble 2011). This stage is
composed by functional and nonfunctional tests.

5. "Automate releases".

The last goal in this process is to automate releases. Not all pipelines need to au-
tomatically deploy the application to production, as discussed before in the difference

10 Chapter 2. State of the Art

between Continuous Delivery and Continuous Deployment. This choice depends on the
environment of the project, its requirements and business needs.

2.2.2 Build a CI and CD Solution

A process of CI/CD does not have a general solution and neither all its theoretical steps are
required to be implemented. Therefore, each organization can mount its process in a different
way, having in mind its business requirements and some restrictions/limitations that can exist.

A simple CI process is expected to accomplish the basic aspects defined in section 2.1. It should
trigger an automated build each time a change is made to the source control repository and it
should compile the sources into binaries that can be used to deploy the application. In a basic
process, the next step could be the deployment of the application because, like stated, we
have the necessary binaries. This is in general the current process that exists in Glintt-HS, but
usually the build is not triggered automatically after a change, it is scheduled for some hour
of the day. After the publication of the application is done, a team of testers is responsible
for manually test it, trying to find bugs and communicate it to the development team. The
current process of Glintt-HS will be more detailed in the chapter 3.

This process described above is very premature, not having implemented automated tests that
would give more consistency to the process. The compilation of the sources of the code is
not enough to understand that all modules of the application are fulfilling their tasks. Many
times the application is published and errors emerge on runtime. Adding test steps to the
process, these would be executed between the compile of the sources and the deployment of
the application; considering that there are tests that need to be performed in a production-like
environment, a deployment can be done before the final one. The automated tests that can
be implemented and included in the CI process are mentioned in section 2.1.

After successfully integrating tests in the CI/CD process, there are not a lot alternatives
in play, except for the deployment part. As discussed in section 2.1, the CI process can
originate Continuous Delivery or Continuous Deployment. The main difference between the
two concepts is in the automation of the deployment. In the first concept approach, the
deployment is done according to a click triggered by a person, while in the second case, the
deployment is automatic. As stated before, none of this approaches is seen as the right one;
the use one or another depends on the organization’s choices and environment.

Having as example the case of Glintt-HS, the automation of tests does not mean that manual
tests should not be done by another team after the deployment of the application. Automated
tests may not cover parts of the application that a human eye can. Manual and automated
tests complete each other and allow to have more confidence in the application.

2.3 Technological Background
In this section, some tools that allow the implementation of CI and CD methodologies are
presented. First, it is presented some CI servers that can be used: it is discussed some trends
on those technologies, showing the top ones used on the last years and described in more
detail some tools important for this project and that are already in use in the organization,
and one or two alternatives to those tools. Then, it is presented some technologies used to
implement tests that can be executed in the CI process. These technologies are also important
for this project’s work.

2.3. Technological Background 11

2.3.1 CI Servers

In the last years, many Continuous Integration servers have emerged, including open source
tools. In 2014, as shown in Figure 2.3, Jenkins1 was clearly on top of the CI servers used
by developers and organizations. Amongst the respondents of the inquiry, more than half of
them used Jenkins as their CI server, approximately 70%. None of the other tools referred
by developers were used by more than 10% of them. Hudson2 which once was considered
a rival of Jenkins, appears in the third position with only 8% usage. Bamboo3 appeared as
the second most used tool (9%) and TeamCity4 as the fourth (7,5%). These two tools are
used by some developers probably because of the popularity of Atlassian’s and JetBrains’ tools
for developers. Travis CI5 and CruiseControl6 represent a smaller percentage of the market,
appearing as 2% and 1%, respectively. The rest of the respondents (2,5%) use other CI servers
(White 2014).

Figure 2.3: Continuous Integration servers used (2014) (White 2014)

Today, Jenkins continue to be one of the top CI Servers used by developers and organizations
and some of the other tools referred above continue to be on the top eight of CI Servers.
Considering a lot of sources in the Web about CI tools, here is the top 8 of Continuous
Integration (Pecanac 2016):

• Jenkins;

• TeamCity;
1https://jenkins.io/
2http://hudson-ci.org/
3https://www.atlassian.com/software/bamboo
4https://www.jetbrains.com/teamcity/
5https://travis-ci.org/
6http://cruisecontrol.sourceforge.net/

12 Chapter 2. State of the Art

• Travis CI;

• Go CD;

• Bamboo;

• GitLab CI;

• CircleCI;

• Codeship.

In the list presented, it can be observed that Jenkins, Bamboo, TeamCity and Travis CI remain
in the top of CI tools, as in the study of 2014 described above. Go CD is the old Cruise Control
that was referred in the study of 2014, being the new and fresh CI tool of the ThoughtWorks
company. Comparing this list with Figure 2.3, it is observed that Hudson is no longer on the
top of CI tools. Jenkins emerged as a fork of Hudson after a dispute with Oracle (that bought
the Sun Microsystems that developed Hudson). Hudson continued to be developed by Oracle
before being donated to the Eclipse Foundation, but never had the ability to compete with
Jenkins and lost the race against the other tools as well.

Next, it is described in more detail two tools of the list presented above that can be used in
the implementation of the solution to the problem discussed: Jenkins and TeamCity. Also,
there is a description of Microsoft TFS7. This tool is currently used in the organization to
keep its source code under control and in the premature CI process that exists. It will be an
important part of the CI process to obtain the project’s source code and some tests that will
exist as well, and it can also be used to improve that process.

Jenkins

"Jenkins is a self-contained, open source automation server which can be used to automate
all sorts of tasks related to building, testing, and delivering or deploying software." (Jenkins
2018) As "the leading open source automation server", Jenkins offer the following values and
advantages (Jenkins 2018):

• Continuous Integration and Continuous Delivery: Jenkins can be used as a simple CI
Server or used as a Continuous Delivery hub for any project;

• Easy installation: it is a Java-based program, making available packages for Windows,
Mac OS X and other Unix-like operating systems;

• Easy configuration: it is configured through its web interface that includes error checking
and built-in help;

• Plugins: provides hundreds of plugins that allow the integration with almost every tool
of CI and CD;

• Extensible: it can be extended through its plugin architecture;

• Distributed: it distributes work across various machines, allowing to implement builds,
tests and deployment in multiple machines faster.

Jenkins was created in 2004 by Kohsuke Kawaguchi while working at Sun Microsystems, at
that time the project was named Hudson. As stated before, due to disputes between Oracle
and project collaborators, Jenkins was forked from Hudson in 2011. The collaborators that

7https://www.visualstudio.com/tfs/

2.3. Technological Background 13

started Hudson (including Kawaguchi) moved to Jenkins and Oracle continued developing
Hudson, until Eclipse took over it. Today, Kohsuke Kawaguchi is the CTO at CloudBees and
this company is an important participant in the Jenkins project, having employees exclusively
working for this project. Hudson has been announced as obsolete by Eclipse in February 2017,
also referring that "Jenkins is the replacement for it." (Eclipse 2017)

This CI Server is commonly used for "building snapshot and release artifacts for your applica-
tion, deployment of the released artifact with custom scripts, Continuous integration pipeline
support for establishing software development life cycle work flow for your application and
support for scheduled builds and automation test execution" (Easy 2018). Furthermore, it
can be associated to a source control server, trigger builds by commit, polling and periodi-
cally, can run shell and bash scripts, ANT and Maven targets and can publish results, archive
artifacts and send email notifications.

In Figure 2.4 it is presented an overview of Jenkins’ interface.

Figure 2.4: Jenkins User Interface (UI) (CircleCI 2018)

TeamCity

"TeamCity is a user-friendly continuous integration (CI) server for developers and build engi-
neers free of charge with the Professional Server License and easy to set up!" (Alexandrova
2016). As Jenkins, it is a Java-based program, created by the JetBrains company. This tool
offers the following features (JetBrains 2018):

• Technology Awareness: TeamCity provides a real good support to many tools. For
example, in the case of Visual Studio projects it "provides automatic detection of tool
versions, testing frameworks support, code coverage, static code analysis, and more"
(JetBrains 2018), without the installation of any plugins;

• Key Integrations: it provides integration with key tools as the version/source control,
issue tracker, build tool and package repository;

• Cloud Integrations: TeamCity implements cloud computing, by having its build agents
running in Amazon EC2, Microsoft Azure, and VMware vSphere;

14 Chapter 2. State of the Art

• Continuous Integration: it allows to implement CI, providing many features to construct
build and test methodologies;

• Configuration: this tool allows to reuse settings and configurations, having in mind the
principle to avoid duplication of settings as developers avoid duplication of code;

• Build History: with TeamCity it is possible to maintain an history of builds, changes
and failures. That allows anyone to run history builds, see statistics and test history
reports and add builds to favorites;

• Build Infrastructure: Team City is like "a conveyor belt of changes from developers and
a bunch of testers taking the changes, verifying them and complementing these changes
with verification results." (JetBrains 2018). In this case, testers are replaced with Build
Agents;

• Code Quality Tracking: it helps developers and organizations achieving better code
quality, having tools of code analysis and inspection integrated. Code quality can be a
build failure condition;

• Version Control System (VCS) Interoperability: integration of version control systems
is very good. any project code source can fetched by TeamCity;

• Extensibility and Customization: with TeamCity anyone can customize interact and
extend their server. It is possible to interact via REST API, customize build scripts and
create plugins for TeamCity;

• System Maintenance: TeamCity helps developers to maintain their CI Server, reporting
about Disk Usage, Build Time, and Server Health;

• User Management: as TeamCity is used by many teams and organizations, it provides
user management that includes user roles, user groups, user authentication and logs
with all user actions.

Having in mind the features above, with TeamCity it is possible to "run parallel builds simul-
taneously on different platforms and environments, optimize the code integration cycle and
be sure you never get broken code in the repository, review on-the-fly test results reporting
with intelligent tests re-ordering, run code coverage and duplicates finder for Java and .NET
and customize statistics on build duration, success rate, code quality, and custom metrics"
(Alexandrova 2016).

In Figure 2.5 it is presented an overview of TeamCity’s Web UI.

Figure 2.5: TeamCity UI (Balliauw 2013)

Team Foundation Server

"Team Foundation Server provides a set of collaborative software development tools that
integrate with your existing IDE or editor thus enabling your cross-functional team to work

2.3. Technological Background 15

effectively on software projects of all sizes." (Microsoft 2018). It is a Microsoft product that
provides the following features (Microsoft 2018):

• Version control: TFS provide unlimited private repositories to store projects’ code. It
allows the administrators of the server to manage permissions and policies for those
repositories;

• Tools for Agile teams: it allows to manage the agile processes of teams and organi-
zations, using backlogs and Kanban boards. This makes easier the implementation of
agile methodologies as Scrum and Kanban. Work items from the backlogs or boards
can be linked to code and builds, making easier to follow the process;

• Continuous integration: TFS provides tools to construct CI builds to trace errors as soon
as possible, to automate and track deployments (release management), to maintain code
quality with its testing tools and to deliver software faster with code and module reuse
(package management);

• Java support: the developers can use any IDE of their choice - Eclipse, IntelliJ, Android
Studio, Visual Studio Code and more - and use any build tool - Ant, Maven and Gradle.
Also, they can implement CI and CD with TFS features or integrating with systems
like Jenkins. TFS allows to develop software for any platform and mobile languages,
including C++, PHP, Python, Go, Swift;

• Integration: it is possible any tool or third-party service with TFS, using REST API and
OAuth 2.0. It is also easy to integrate other services and tools from Microsoft.

With TFS and specially with Team Foundation Build process, it is possible to define a build
process (automated build to compile and test code), customize that build process (run scripts
before and after compilation, create personalized templates for the build process and use
environment variables), run, monitor, and manage your builds, and diagnose build problems
(checking logs created by the build).

In Figure 2.6 there is an overview of TFS’s Web UI.

Figure 2.6: TFS Build UI

2.3.2 Testing Tools

One of the big problems in Glintt-HS and in its premature CI and CD process is the lack of
automated tests of any kind. In this section, it is discussed the types of tests that the project

16 Chapter 2. State of the Art

concerned needs and some tools and methods used to implement each of those tests. The
study of these methods are important to define the approach to follow on the implementation
of the solution to the problem presented in this dissertation. The approach to implement is
discussed in chapter 3.

Nowadays in Glintt-HS, the absence of tests sometimes result in deployments with errors that
are consequence of bad integration with other modules and services developed by other teams,
unexpected results of features developed or even corrupted binaries. So, in the automated
build process it is important to add and configure automated tests. There are some kind of
automated tests that can be considered:

• Unit tests;

• Integration tests;

• Deployment tests;

• Functional acceptance tests;

• Nonfunctional acceptance tests.

For these types of tests there are many tools available to implement them, and the best tool
depends on the type of project concerned and the requirements related to their application.
Furthermore, contextualizing with CI and CD processes, there are different approaches to
integrate these tests in the automated build process. Next, it is presented some tools and
approaches for each type of test. In the end of the chapter, it is presented some good practices
to a testing strategy and to start and maintain a Delivery Pipeline.

2.3.3 Unit tests

"A unit test is a way of testing a unit - the smallest piece of code that can be logically isolated
in a system. In most programming languages, that is a function, a subroutine, a method or
property. The isolated part of the definition is important. In his book "Working Effectively
with Legacy Code", author Michael Feathers states that such tests are not unit tests when
they rely on external systems: “If it talks to the database, it talks across the network, it
touches the file system, it requires system configuration, or it can’t be run at the same time
as any other test." (SmartBear 2018)".

The project that this dissertation focus on is a Web application implemented in C#, so
the next sections focus on tools to test .NET applications. Also, TypeScript (TS)8 is very
used, so it is presented some alternatives to test TS as well. In terms of tools to implement
unit testing there are some mature alternatives and that are used by many developers. For
example, MSTest9, NUnit10 and xUnit.NET11 for c# and Jest12, Mocha13 and Tape14 for
TS/JavaScript (JS)15 are a part of that list of tools and each one of them is approached next.
Tape was chosen to be discussed because it was a little bit tested in Glintt-HS too.

8https://www.typescriptlang.org/
9https://msdn.microsoft.com/en-us/library/ms182489.aspx

10http://nunit.org
11https://xunit.github.io/
12https://facebook.github.io/jest/
13https://mochajs.org/
14https://github.com/substack/tape
15https://www.javascript.com/

2.3. Technological Background 17

MSTest, NUnit and xUnit.NET

MSTest is a tool created by Microsoft to run unit tests for .NET applications. In practice,
it was created as a command line tool and nowadays it is also referred as the Visual Studio
Unit Testing Framework. Today, MSTest is integrated with Visual Studio, that means that
anyone that install Visual Studio has automatically access to the MSTest tool in its Integrated
Development Environment (IDE).

As MSTest comes integrated with Visual Studio, it is easy to create a new test project because
it is just needed to use the test project template. So, to develop tests for a project it is good
practice to create a test project, that in Visual Studio is possible with the "New project" option
and then finding the test project type. After writing tests it is possible to execute them and
its results appear in the IDE as shown in Figure 2.7. In Figure 2.8 is presented an example of
the structure of a MSTest test.

Figure 2.7: Test Explorer in Visual Studio (Sandstrom 2012)

18 Chapter 2. State of the Art

Figure 2.8: MSTest test structure (Sandstrom 2012)

"NUnit is a unit-testing framework for all .Net languages. Initially ported from JUnit, the
current production release, version 3, has been completely rewritten with many new features
and support for a wide range of .NET platforms." (Charlie Poole 2017). This framework is
an open source software, now released under the MIT license. This license allows the use of
NUnit without restrictions in free or paid applications.

Recently, NUnit joined the .NET Foundation that helps providing guidance and support to
the NUnit project. The last version of the tool was developed by Charlie Poole, Rob Prouse,
Simone Busoli, Neil Colvin and other community members that also helped in the previous
versions. NUnit can be integrated with Visual Studio, installing the correspondent Visual
Studio extension or the NUnit test adapter NuGet16 package. In Visual Studio the presentation
of test result is similar to Figure 2.7. The structure of the tests in NUnit is presented in Figure
2.9.

16https://www.nuget.org/

2.3. Technological Background 19

Figure 2.9: NUnit test structure (Oliveira 2012)

"xUnit.net is a free, open source, community-focused unit testing tool for the .NET Frame-
work. Written by the original inventor of NUnit v2, xUnit.net is the latest technology for unit
testing C#, F#, VB.NET and other .NET languages." (. Foundation 2017a). This tool is
part of the .NET Foundation and it is licensed under Apache 2.

This tool divides tests "into “facts” and “theories” to distinguish between “always true” and
“true for the right data”" (Dietrich 2017). Like NUnit, xUnit.Net can be integrated with Visual
Studio. Previously, it was possible to install a Visual Studio extension to use xUnit.NET in
that IDE. Today, the xUnit.NET Visual Studio Runner is only available via NuGet package.
The presentation of results in Visual Studio is equal to what is shown in Figure 2.7 and in
Listing 2.1 it is presented the structure of the tests in xUnit.NET.

20 Chapter 2. State of the Art

using Xunit;

namespace MyFirstUnitTests
{

public class Class1
{

[Fact]
public void PassingTest ()
{

Assert .Equal (4, Add (2, 2));
}

[Fact]
public void FailingTest ()
{

Assert .Equal (5, Add (2, 2));
}

int Add(int x, int y)
{

return x + y;
}

}
}

Listing 2.1: xUnit.NET test structure (. Foundation
2017b)

In Table 2.1 it is presented the pros and cons of the three tools referred, serving as a comparison
for those tools (Dietrich 2017).

Table 2.1: MSTest vs. NUnit vs. xUnit.NET.

MSTest NUnit xUnit.NET

Pros • Integrated in Visual
Studios installation,
easy access in the
IDE

• Easy to create a new
test project (File ->
New Project)

• Code coverage with-
out installing any
other tools

• Interoperability -
integrates with
non-Microsoft build
platforms and custom
test runners

• Fast testing running
• Test annotations - al-

lows specification of
multiple inputs to a
test

• Extremely intuitive
terminology

• Excellent extensibility
• Commitment, respon-

siveness, and evange-
lism (by the authors)

Cons • Performance
• Interoperability - inte-

grates with Microsoft-
/Visual Studio tools
only

• Harder integration
with Visual Studio
comparing to MSTest
- extra work, installing
various tools

• Few or insufficient
documentation

• Requires a different
way of thinking about
some things and more
learning (results in a
small core of users)

2.3. Technological Background 21

Jest, Mocha and Tape

"Jest is used by Facebook to test all JS code including React applications. One of Jest’s
philosophies is to provide an integrated "zero-configuration" experience. We observed that
when engineers are provided with ready-to-use tools, they end up writing more tests, which
in turn results in more stable and healthy code bases." (Facebook 2018).

This tool provides the following characteristics (Facebook 2018):

• Fast and sandboxed: with Jest, test runs are parallelized to achieve maximum perfor-
mance. In each test, sandboxed test files and global state are reseted, not allowing
conflicts between different tests;

• Built-in code coverage reports: without any other setup or libraries, it is possible to
generate code coverage reports using the option –coverage. Code coverage information
includes untested files;

• Zero configuration: when using React or React Native projects, Jest is configured au-
tomatically. Just create a "__tests__" folder or files with .spec.js or .test.js extension
and they will be executed by Jest;

• Powerful mocking library: Jest contains a powerful mocking library for modules and
functions;

• Works with TypeScript: it accepts compile-to-JavaScript languages and integrates with
Babel (JS compiler) and TS through ts-jest.

This JS test tool is used by many teams to test web applications, node.js services, mobile
apps, and APIs. For example, it is used by Facebook, Instagram, Twitter, Spotify, Oculus and
many others. In Listing 2.2 and in Figure 2.10, it is presented an example of a Jest test and
an example of test results output, respectively.

const add = require (’./ add ’);
describe (’add ’, () => {

it(’should add two numbers ’, () =>
{
expect (add (1, 2)).toBe (3);

});
});

Listing 2.2: Jest test
example (Facebook 2018)

22 Chapter 2. State of the Art

Figure 2.10: Jest test results (Facebook 2018)

"Mocha is a feature-rich JavaScript test framework running on Node.js and in the browser,
making asynchronous testing simple and fun. Mocha tests run serially, allowing for flexible and
accurate reporting, while mapping uncaught exceptions to the correct test cases." (MochaJS
2018).

The most important features of this tool are (MochaJS 2018):

• Browser support: Mocha runs in the browser, having functions that only work on it;

• Test coverage reporting: it provides real-time code coverage report trough the continu-
ous testing tool Wallaby.js;

• JS API for running tests;

• Use any assertion library you want: it is possible to use libraries as should.js, expect.js,
chai, better-assert and unexpected;

• Simple async support, including promises: test asynchronous code is very simple, it is
just needed to invoke a callback when the test is complete. By adding a callback, Mocha
will know that it should wait for this function to be called to complete the test;

• Highlights slow tests: in the test report it shows the slower, reasonable and faster tests.

In Listing 2.3 and in Figure 2.11, it is presented an example of a Mocha test and an example
of test results output, respectively.

2.3. Technological Background 23

var assert = require (’assert ’);
describe (’Array ’, function () {

describe (’# indexOf ()’, function () {
it(’should return -1 when the

value is not present ’, function ()
{

assert .equal ([1 ,2 ,3]. indexOf (4)
, -1);
});

});
});

Listing 2.3: Mocha test
example (MochaJS 2018)

Figure 2.11: Mocha test results (MochaJS 2018)

Tape is a "tap-producing test harness for node and browsers" (Halliday 2018) and it is released
under the MIT License. It is a simple Test Anything Protocol (TAP) library. TAP "is a simple
text-based interface between testing modules in a test harness" (TestAnything 2018), used to
present test results.

In its core, it contains the following features (Halliday 2018):

• Pretty reporters: the default TAP output is good, but it is possible to customize the
output with another npm17 modules alongside Tape;

• Uncaught exceptions: these exceptions by default are not intercepted and Tape will
crash. It is possible to change this, by using tape-catch to report exceptions as TAP
errors;

• CoffeeScript support: it is possible to write Tape tests in CoffeeScript;

• Promise support: using blue-tape npm package, it is possible to test promises. If a
promise is returned it will be checked for errors and if there are errors the test fails;

17https://www.npmjs.com/

24 Chapter 2. State of the Art

• ES6 support: it includes a package that allows to run test suites that include ESNex-
t/Harmony features, utilizing Babel.

In Listing 2.4 and in Figure 2.12, it is presented an example of a Mocha test and an example
of test results output, respectively.

var test = require (’tape ’);

test(’timing test ’, function (t) {
t.plan (2);

t.equal(typeof Date.now , ’
function ’);
var start = Date.now ();

setTimeout (function () {
t.equal(Date.now () - start ,

100);
}, 100);

});

Listing 2.4: Tape test
example (Halliday 2018)

Figure 2.12: Tape test results (Corgan 2016)

In Table 2.2 it is presented the pros and cons of Jest, Mocha and Tape (Harding 2017).

2.3. Technological Background 25

Table 2.2: Jest vs. Mocha vs. Tape

Jest Mocha Tape

Pros • Although it was pri-
marily used to test Re-
act apps, it can be
integrated with other
applications

• Snapshot testing:
good to check if
the application’s UI
doesn’t unexpect-
edly change between
releases

• It has a wide API (not
required to include
additional libraries)

• Extensibility
• Different ways of con-

figuration
• Flexibility in its asser-

tions, spies and mocks
• Test structure as

globals: not required
to include or require
it in every file

• Simple(gives every-
thing you need and
nothing more)

• Does not support
globals (does not
pollute the global
environment)

•
Typescript/CoffeeScript/ES6
support

Cons • Globals populating
environment

• Learn the assertion
library each person
chooses is required

• Plugins needed might
require to include
globals in every file
(inconsistency with
fourth advantage

• No setup/teardown
methods (like be-
foreEach() and
afterEach()): difficult
if developers want
to crate nested test
suites

• Not advisable to build
complex testing envi-
ronments

2.3.4 Integration tests

"Integration tests determine if independently developed units of software work correctly when
they are connected to each other." (Fowler 2018). So, in these tests many modules are
combined together into the the entire system or sub-systems. "Looking at it from a more 2010s
perspective, these conflated two different things: testing that separately developed modules
worked together properly; test that a system of multiple modules worked as expected."(Fowler
2018). These tests are normally slower than unit tests because they require more setup and
perform actions related to input/output, to connecting with databases, the filesystem or other
systems.

The project discussed in this dissertation needs integration tests implemented in C#. Usually,
the tools used for various programming languages to develop unit tests are also used to
implement integration tests. Therefore, the tools referred in section 2.3.3 can be used to
implement integration tests.

The tools that can be used to implement these tests are MSTest, NUnit and xUnit.NET as
referred in the section above. The pros and cons of these tools are equal if they are used for
unit tests or integration tests. So, there is enough information to see which tool is better to
develop integration tests too.

26 Chapter 2. State of the Art

2.3.5 Deployment tests

"The smoke test, or deployment test, is probably the most important test to write once you
have a unit test suite up and running—indeed, it’s arguably even more important. It gives you
the confidence that your application actually runs. If it doesn’t run, your smoke test should
be able to give you some basic diagnostics as to whether your application is down because
something it depends on is not working." (Jez Humble 2011). So, the objective of this test is
to check if the deployment worked correctly, by checking if the application is correctly installer,
configured, that it is responding and it is able to contact the services it requires.

To perform a smoke test, it is easier to haver a script that does it automatically. This test
"(...) could be as simple as launching the application and checking to make sure that the
main screen comes up with the expected content." (Jez Humble 2011). It "(...) should also
check that any services your application depends on are up and running—such as a database,
messaging bus, or external service." (Jez Humble 2011). Having the previous words in mind,
a smoke test can be composed by a limited number of functional acceptance tests to check
the core features of the application. This should not cover all the functional acceptance tests
created, making the smoke test faster and providing feedback to developers about the last
deployment as soon as possible. The functional acceptance tests and the tools to implement
them are discussed in the next section 2.3.6, and they can be used in the deployment tests
(at least the ones that cover main features).

To implement deployment tests, Stephen Haunts and other developers created a tool, the
Smoke Tester18, that helps developers to create a sequence of test steps to be executed. This
tool has a graphical interface to make that process easier, where it is also possible to execute
the tests. It also has integrated a command line test runner that allows to script the test
execution. This tool is extensible, so anyone can easily add their custom test types. With this
tools the following tests can be performed (Haunts 2014):

• Check environment variables are set;

• Check files exist;

• Check folders exist;

• Check HTTP connections return specified result codes;

• Check SQL Server connection strings;

• Check minimum disk space requirements.

2.3.6 Functional acceptance tests

Acceptance tests allow to check if the acceptance criteria for a story is fulfilled. These tests
check various characteristics of the system, like functionality, capacity, usability, security, avail-
ability, etc. The ones that test the functionality of the system are the functional acceptance
tests; the others are nonfunctional acceptance tests. These functional tests used to check if the
features of the system satisfy the acceptance criteria should be executed in a production-like
environment.

As mentioned before, the project this document is about is a Web Application. To implement
functional acceptance tests on that type of project there are a lot of tools available. Next, it
is discussed three of those tools: Selenium, Watir and Sahi.

18https://stephenhaunts.com/projects/post-deployment-smoke-tester/

2.3. Technological Background 27

Selenium, Watir and Sahi

"Selenium is an umbrella project encapsulating a variety of tools and libraries enabling web
browser automation. Selenium specifically provides infrastructure for the W3C WebDriver
specification — a platform and language-neutral coding interface compatible with all major
web browsers." (SeleniumHQ 2018a). This tool is open source and it is released under the
Apache 2.0 License.

It can be divided in two components: Selenium WebDriver and Selenium IDE. Selenium
WebDriver is used to (SeleniumHQ 2018b):

• "Create robust, browser-based regression automation suites and tests";

• "Scale and distribute scripts across many environments".

Selenium IDE is used to (SeleniumHQ 2018b):

• "Create quick bug reproduction scripts";

• "Create scripts to aid in automation-aided exploratory testing".

This tool uses a custom build system that is available on all platforms (Linux, Mac, Windows),
so it is easy to develop tests in any preferred environment.

In Listing 2.5 it is presented an example of a Selenium test.

package com. example .tests;

import com. thoughtworks . selenium .*;
import java.util.regex. Pattern ;

public class temp script extends
SeleneseTestCase {
public void setUp () throws Exception {

setUp("http :// localhost :8080/ ", "*
iexplore ");
}
public void testTemp script () throws

Exception {
selenium .open("/ BrewBizWeb /");
selenium .click("link=Start The BrewBiz

Example ");
selenium . waitForPageToLoad ("30000");
selenium .type("name=id", "bert");
selenium .type("name= Password ", "biz");
selenium .click("name= dologin ");
selenium . waitForPageToLoad ("30000");

}
}

Listing 2.5: Selenium test example
(Cohen 2012)

Watir is "(...) an open source Ruby library for automating tests. Watir interacts with a
browser the same way people do: clicking links, filling out forms and validating text." (Watir
2018). It is open source and it supports different browsers, like Internet Explorer, Firefox,
Chrome, Opera and Safari, and different platforms.

28 Chapter 2. State of the Art

The most recent version of the Watir API is based on Selenium. So, Watir API was developed
around the Selenium API. As Selenium, it provides infrastructure for the W3C WebDriver
specification.

In Listing 2.6 it is presented an example of a Watir test.

browser = Watir :: Browser .new : chrome

browser .goto ’google .com ’
browser . text_field (title: ’Search ’).

set ’Hello World!’
browser . button (type: ’submit ’).click

puts browser .title
=> ’Hello World! - Google Search ’
browser .quit

Listing 2.6: Watir test
example (Watir 2018)

"Sahi is a free, open source tool for automation of web application testing. Sahi is very tester
friendly and allows easy automation of even complex web 2.0 applications with lots of AJAX
content. With an excellent recorder, smart object identification, simple scripting, automatic
waits and inbuilt reports, Sahi gives the tester a powerful yet simple tool to accomplish
testing across various browser and OS combinations. Sahi works on Internet Explorer, Firefox,
Chrome, Safari, Opera etc. on Windows, Mac and Linux." (TytoSoftware 2018b).

Its paid version, Sahi Pro "(...) is a suite of mature, business-ready tools for automated
testing of Web, Windows Desktop and Java applications. For testing teams which need
rapid and reliable automation, Sahi Pro would be the best choice among automation tools."
(TytoSoftware 2018a).

Sahi (open source) includes the following features (TytoSoftware 2018b):

• "Record on all browsers";

• "Playback on all browsers";

• "HyperText Markup Language (HTML) playback reports";

• "JUnit Style playback reports";

• "Suites and batch run";

• "Parallel playback (multiple instances of a browser running tests simultaneously)";

Defining tests in Sahi can be done through its Graphical User Interface (GUI) but it also can
bw integrated with JUnit. Listing 2.7 is an example of a test script in JUnit.

2.3. Technological Background 29

public class test4demo extends BaseTestCase {

@Before
public void setUp () {

login ();
}

@After
public void tearDown () {

logout ();
}

@Test
public void testDemo1 () {

browser . textbox ("email"). setValue ("demo
for sahi");

browser . submit (" Submit ").click ();
assertTrue (browser . label ("error"). exists

());
}

@Test
public void testDemo2 () {

browser . textbox ("email"). setValue ("
demo@sahi .com");

browser . submit (" Submit ").click ();
assertTrue (browser . label ("ok"). exists ())

;
}

}

Listing 2.7: Sahi test example (Li 2011)

In Table 2.3 it is presented the pros and cons of Selenium, Watir and Sahi.

Table 2.3: Selenium vs. Watir vs. Sahi

Selenium Watir Sahi

Pros • Multi browser, Op-
erating System (OS)
and language support

• Has an IDE (develop-
ment is faster)

• Record and playback
tests

• Choice of program-
ming language

• Ruby library
• Multi browser and OS

support
• Rich API
• Watij and Watin

(Java and .NET)

• Multi browser support
• Has an IDE (develop-

ment is faster)
• Record and playback

tests

Cons • Learn a vendorscript
- Selenese (otherwise
use another program-
ming language)

• Learn Ruby (other-
wise use Watij or
Watin)

• Every browser re-
quires a different
library

• Interface is confusing
• Small community

(less developed)

30 Chapter 2. State of the Art

2.3.7 Nonfunctional acceptance tests

Until this section, the types of tests that were presented cover the behaviors of the appli-
cation, in another words, its functional requirements. Nonfunctional acceptance tests cover
nonfunctional requirements like capacity, availability, security, performance and others.

Nonfunctional acceptance tests may require special environments to be executed and specific
knowledge to be implemented. They usually run through a long time, so in an automated
environment they are executed less frequently than functional acceptance tests.

The concepts and testing tools discussed next will focus on two nonfunctional requirements:
performance and capacity. These two concepts are often confused, so lets first clarify them.
"(...) performance is a measure of the time taken to process a single transaction, and can
be measured either in isolation or under load. Throughput is the number of transactions a
system can process in a given timespan. It is always limited by some bottleneck in the system.
The maximum throughput a system can sustain, for a given workload, while maintaining an
acceptable response time for each individual request, is its capacity." (Jez Humble 2011).

With many tools available to implement nonfunctional tests, next it is presented two of those
tools: WebLoad19 and JMeter20.

WebLoad and JMeter

WebLoad is a tool that allows to perform load testing, performance testing and stress testing
on Web applications. Besides its best known paid version, it has a free edition which "includes
50 virtual users with access to all of WebLOAD features, except for Oracle Forms, Flex/AMF
and streaming/multimedia features." (RadView 2018).

This tool developed by RadView is composed by the following features (RadView 2018):

• WebLOAD’s IDE provides correlation, parameterization, response validation, messaging,
native JS and debugging;

• Load Generation Console: allows massive virtual user load, including "locally and on the
cloud, on Windows or Linux, via AWS or other cloud providers.";

• Analytics dashboards offer 80 different report templates;

• Integration with other tools - APM tools (Dynatrace, AppDynamics, New Relic), open
source software (Selenium, Jenkins), mobile testing (Perfecto Mobile);

• Supports Web, mobile, and enterprise protocols and technologies - HTTP/HTTPS,
WebSocket, PUSH, AJAX, SOAP, HTML5, WebDAV;

• Provides support to the user, by sending detailed documentation when the software is
installed and having a support team available for any questions.

"The Apache JMeter™ application is open source software, a 100% pure Java application
designed to load test functional behavior and measure performance. It was originally designed
for testing Web Applications but has since expanded to other test functions." (A. S. Foundation
2018)

This tool has the following features (A. S. Foundation 2018):
19https://www.radview.com/
20http://jmeter.apache.org/

2.4. Value Analysis 31

• Performs load and performance test to many different applications/server/protocol types
- Web, SOAP/REST, FTP, Database via JDBC, LDAP, Native commands or shell
scripts, Mail - SMTP(S), POP3(S) and IMAP(S), TCP;

• Test IDE that allows fast Test Plan recording, building and debugging;

• Dynamic HTML report;

• Ability to extract data from most popular response formats - HTML, JavaScript Object
Notation (JSON) , Extensible Markup Language (XML) or any textual format;

• Complete portability and 100% Java purity;

• Full multi-threading framework;

• Caching and offline analysis/replaying of test results;

• Highly Extensible core.

Table 2.4 presents the pros and cons of WebLoad and JMeter.

Table 2.4: WebLoad vs. JMeter

WebLoad JMeter

Pros • Native JS scripting
• UI wizards to enhance

the script
• Many technologies are

supported
• Good customer sup-

port

• Highly portable
• Supports all the Java

based applications
• Less scripting efforts

(user-friendly GUI)
• Simple charts and

graphs to analyze
statistics

• Supports integrated
real-time

Cons • Cannot support Citrix
• Cannot support SAP

GUI
• Cannot support RDP

and RTE

• Does not record
HTTPS communica-
tion

• Does not intercept
AJAX traffic

• Does not monitor Ap-
plication server re-
lated statistics

• Framework of reports
has limited features

2.4 Value Analysis
Value Analysis is an organized process of analysis and evaluation of a product or service. Its
goal is to minimize the cost of a product/service, at the same time increasing its value without
losing quality. It uses a specified group of techniques and functions to identify unnecessary
costs that to a product or service do not improve its quality, efficiency, appearance, use and

32 Chapter 2. State of the Art

costumer satisfaction. Value is a subjective concept that is interpreted in different ways by
costumers and also depends on the context. In general, value might be defined as a need,
interest or preference. The creation of value is difficult to understand in theory, but it can be
resumed as the balance between benefits and sacrifices in the costumers’ perspective. These
subjective benefits and sacrifices influence the value perceived by the costumer. Different
costumers have different perceived values of the same products or services. So, the perceived
value is the general evaluation that a costumer gives to a product/service utility, based on
perceptions of what he receives and what he gives. Concepts as quality, customization, respon-
siveness, reliability, image and trust are seen as benefit drivers, while price, time/effort/energy
and conflict are seen as sacrifice drivers. When these benefits and sacrifices are well combined
or there is an considerable amount of benefits, and the costumer percepts advantage on an
organization’s offer, there is Value for the customer (VC).

2.4.1 New Concept Development (NCD) Model

The New Concept Development (NCD) Model is a relationship model that provides a definition
of the key components of the Fuzzy Front End (FFE). It is composed by three key parts: the
five key elements related to the Front End of Innovation (FEI) (inner area); the Engine
that influences the five elements referred above and it is influenced by the leadership and
culture of the organization; the Influencing Factors compose external factors that influence
the organization, like distribution channels, costumers and competitors.

In Figure 2.13 there is presented the NCD Model with the key parts described above.

Figure 2.13: NCD Model (Koen et al. 2001)

The five key elements of the model are:

1. Opportunity Identification

In the Opportunity Identification, the organization identifies the opportunities that may
follow to achieve its goals. These opportunities can lead to a new business direction or
upgrade to existing products. For this identification can be used two types of tools and
techniques: formal and informal. Formal techniques include brainstorming, mind map-
ping, lateral thinking, causal analysis, fishbone diagrams, process mapping and theory

2.4. Value Analysis 33

of constraints. Informal techniques include ad hoc sessions, water cooler/cyberspace
discussions, individual insights and edicts from senior management.

The implementation of the solution documented in this dissertation emerged from the
problems identified in GLintt-HS related to errors detected in various test environments
and, consequently, in production. Also, it is an opportunity to implement automation
in different processes of the organization.

2. Opportunity Analysis

In this element, additional information is analyzed and studied to understand the spe-
cific business and technology opportunities, how they really relate to the organization’s
strategy and culture and if they are worth following. Techniques used in this element
include competitive intelligence and trend analyses.

The automation of processes in the organization, like automated tests, is not really in
its current culture. Despite that, this is a good opportunity to decrease bugs associated
to the applications and to even decrease the time to release new features to production.
This will increase the quality of products’ releases and improve the organization’s image.

3. Idea Genesis

Genesis takes the opportunity studied and transforms it in a new concrete idea. The
idea is not expected to be perfect at the time of its creation, it goes through many
iterations where it is improved to correspond to discussions and analyses made around
it. Activities in Idea Genesis include brainstorming sessions and idea banks.

In Glintt-HS, the idea of implementing a robust CI/CD process with a good testing
strategy emerged and was discussed several times by developers, testers and managers.
Along the way, other requirements were added to the idea to resolve secondary related
issues.

4. Idea Selection

In this phase, considering many ideas emerged, it is important to decide the ones to
pursue to achieve the most business value. Selection may include a simple individual
choice or more formalized, as a prescribed portfolio method.

To implement a CI/CD process with tests it is normal to exist different methods/ap-
proaches and technologies. It is important to analyze and compare these methods and
technologies and to decide which are more adequate to the organization.

5. Concept and Technology Development

In the final element, it is developed a business case based on the following factors:
market potential, customer needs, investment requirements, competitor assessments,
technology requirements and project risk. This phase may include a Technology Devel-
opment Process to overcome technical uncertainty.

After the selection of the correct methods and technologies to pursue, a business case
is defined in Glintt-HS, through meetings with managers and stakeholders, to define the
risks of the solution, costumer and market needs, investment and effort needed.

34 Chapter 2. State of the Art

2.4.2 Benefits and Sacrifices

Tony Woodall presents a longitudinal perspective on VC on his article "Conceptualising ’Value
for the Customer’: An Attributional, Structural and Dispositional Analysis", as shown in Figure
2.14. He divides VC into four value temporal positions.

Figure 2.14: Longitudinal perspective on VC (Woodall 2003)

The solution described in this dissertation sums up as the improvement of Glintt-HS’s Con-
tinuous Integration and Continuous Delivery processes. Table 2.5 presents the benefits and
sacrifices from pre-purchase phase to after use/experience phase for costumers, in this specific
case to Glintt-HS.

Table 2.5: Value Analysis - Benefits vs. Sacrifices

Benefits Sacrifices

Ex Ante VC • Operational Benefits
• Product Benefits

• Human Energy
• Time
• Effort

Transaction VC • Trust • Monetary Cost
• Time

Ex Post VC • Responsiveness
• Technical Compe-

tence

• Conflict (meetings
about the process)

• Time/Energy/Effort
(meetings as well)

Disposition VC • Service Quality
• Time Saving
• Product Quality (im-

proves Glintt-HS’s
product)

2.4.3 Value Proposition

Value Proposition (VP) is essential to alert new costumers to the value of an organization’s
products and services. As Alexander Osterwalder wrote, it "is an overall view of a company’s
bundle of products and services that are of value to the customer." (Osterwalder 2004).
VP should make clear what product/service you provide, the target costumers, the inherent
value provided and its unique value. The service documented in this dissertation has as its
target the organization Glintt-HS and at least one of its products. This service enriches the
organization’s CI and CD processes, including the implementation of a testing strategy. It
allows the organization and the products where it is implemented to deliver products to its

2.4. Value Analysis 35

costumers with more quality, because they are strictly tested and consequently more bugs are
prematurely detected and resolved. The planning and approach here documented is unique in
the organization and it is expected to have good feedback and to make other teams implement
a similar method. This solution can also be used by other organizations to implement similar
processes on their environment, with a couple of adjustments to their business rules and
specifications.

2.4.4 FAST Diagram

In Appendix A it is presented the FAST Diagram for the solution described in this document.
This representation presents the the functions that need to be performed by the product/ser-
vice into a How?/Why? relationship, in a logic and integrated way. It allows to analyze
the logical relationships that are established between the different functions. This diagram
provides a systemic vision of the service in analysis, being able to identify the critical path.
The critical path represents the more important functions of the process, in other words, the
functions that characterize the process. Besides showing the critical functions of the process,
this diagram also shows supporting functions that although they are not in the critical path,
their bad performance can harm the normal operation of the critical functions.

Having in mind those critical functions, for almost all of them there are tools that make their
implementation easier. The all solution’s process documented in this dissertation doesn’t have
a direct similar service, neither on the market or in the concerned organization. It is difficult
to compare the overall process with others implement by another organization or developer.
What it’s possible to discuss and compare is the tools and approaches that can be used in
each function of the process to achieve better results on the overall process. That is what is
presented in the previous sections 2.3 and 2.2. These sections already give the comparison
of tools to use in the CI/CD process and an idea of the best one for each function of the
process. The tools and methods chosen to resolve each step of the process will also influence
the value of the solution, so their analysis is very important to choose the most appropriated
one to increase the value of the service.

It is also possible to compare this solution with the current state of CI/CD process, having in
mind the benefits and sacrifices presented in Table 2.5. In the current state of the process,
the automatic build only compiles the solution and executes the deployment of the resulted
binaries. Many times this premature process leads to errors on the version of the application
published. As this application’s project interconnects with other organization’s projects, the
fix of those errors may take minutes or it may take days. The solution here documented will
not let such thing happen, ensuring that a functional version of the application is running
on the deployment machine. Besides the sacrifices to the organization presented above, as
human energy, time cost and some monetary cost, the overall benefits are more valuable and
the final result will clearly make up for the sacrifices. The solution analyzed will even increase
the value of the products made by Glintt-HS to its costumers, because it will increase their
quality, technical competence and responsiveness, and the trust of Glintt-HS’s costumers in
their products/services.

37

Chapter 3

Analysis

This chapter presents information about project Atendimento, the current state of CI/CD
process at Glintt-HS and then an analysis and evaluation of the methods and approaches
discussed in chapter 2, having as objective the conclusion of the best one to implement on
the solution here documented.

3.1 Project Atendimento
Atendimento is an application developed at Glintt-HS, used in hospitals/clinics to help on
the automation of the hospital management. This application facilitates the work done by
Front-Office administrative technicians, that are responsible for performing the physical and
telephonic attendance of patients. Also, with Atendimento they can create new patients’
records, perform check-in and check-out of patients, schedule appointments and exams, mon-
itor waiting times and respective lists, manage and print patient’s documents and deal with
the billing to each patient.

When the development of this application started, in 2013, its business concepts were not
entirely new at the company. Atendimento is a version of an older application of the company,
using more recent technologies. The older application, called GH, was implemented in Oracle
Forms, while Atendimento is a Web application developed using HTML, JavaScript, Cascading
Style Sheets (CSS)1 and C# for the Web services. More recently, a technological conversion
and the standardization of the Web pages’ style have been performed, and TypeScript, LESS2

and Gulp3 were introduced in the development process. Since the start of the project until
now, it is believed that at best 30% of the original application (GH) was converted to HTML.
This means that, although Atendimento is an application with many features already, there
is still a lot of work to be done and the project conclusion is not yet predictable.

As other projects of the company, Atendimento started during a time where managers at
Glintt-HS didn’t care at all about developers implementing tests to the code they were writing.
The only type of tests performed at that time, and that still are done, were executed by a
group of people on the application itself (functional acceptance tests). Nowadays, with other
managers and developers more concerned about that issue, the mentality of the company has
changed a little. It is still a subject ignored by some people, but it is now better and it is
believed that it will improve with time. The solution documented here is also a chance to
make Atendimento as an example to that change of mentality.

1https://www.w3schools.com/css/
2http://lesscss.org/
3https://gulpjs.com/

38 Chapter 3. Analysis

3.2 Current State of CI and CD
Nowadays, Glintt-HS has two branches for each application to manage the developments and
bug corrections, besides other branches that represent product versions (for example branch
17). The DEV branch is changed by the developers daily and anytime with new features
or corrections to existing ones. The CI branch is used to validate the integration of the
changes made to the project in the DEV branch. This branch (CI) is always in a more stable
state, because it is only changed in the end of each new development or in the end of any
bug correction. Each development or bug has a work item associated that is created in the
team’s Backlog in Team Foundation Server. When developing or fixing a bug, each developer
associates the specific work item to each check in he does to DEV branch. After the last
check in associated to that work item is made, a script is executed to catch all the check
ins associated to that work item and merged them to the CI branch. This script allows the
developers to not waste time on putting their changes manually in the CI branch, decreasing
the total development time of a feature or bug fix. Sometimes, the automatic merge executed
by the script can result in conflicts that, in that case, must be resolved manually by the
developer. Like in Visual Studio, a window is shown with the conflicts marked and the options
to resolved them.

After changes are made to the CI branch, their integration in the project are tested in a TFS
Build that is scheduled to run every day during the night. These TFS Builds are executed in a
specific machine, that was configured to execute them. That configuration involves enabling
the Build Configuration in the TFS Administration Console that was installed on that machine.
In the Build Configuration, a connection to the Team Project Collection, where the sources
of the projects of the organization are maintained, is made. Then, to execute builds on that
machine it is required to create a Build Controller. This Build Controller manages a set of
Build Agents that enable the execution of new builds. When creating a new build, through a
Build Definition, the controller created on the remote machine is selected and one of its agents
is assigned to that build. The same agent can be assign to more than one Build Definition,
but it can’t run more than one build at a time.

In that TFS Build, the first step is to get the latest version of the sources of the project from
the CI branch of the Team Foundation Server. After that, a pre-build script is optionally
executed. Normally, in that script dependencies from the project are installed, for example
through npm (package manager for Node JS packages) or NuGet (package manager for
Microsoft development platforms), and other builds from other projects can be run too. To
run other builds from projects that the current project has dependencies, it is usually used the
TFSBuild command line provided by the Team Foundation extensions and available from the
Visual Studio installation.

After dependencies are installed, the solutions defined in the Build definition are compiled
(clean and build) using the Microsoft Build Engine (MSBuild). In the Build definition, it can
be defined arguments that will be used by the MSBuild, like the MSBuild Tools version, the
Visual Studio version usually used to compile the project and the target .NET framework.

In the end of the build process, a post-build script is executed. In this script, the assemblies
resulted from the build process are gathered in a folder that will be used to deploy the
application. After the assemblies are ready to deploy, the content of this folder is deployed to
a specific machine where the CI version of the application is published.

Concluded the deployment of the application, a group of testers manually perform acceptance
tests to check if the developments and bug corrections satisfy their acceptance criteria. If an

3.3. Solution Analysis 39

error or deviation from the correct behavior is detected, the development team is informed
and must fix it. After correcting the error, the new changes are merged to the CI branch and
a new build is triggered to update the published version of the application. Only when the
testers team approves those changes in the CI version of the application, the developers can
merge them to the production branch (17 branch for example).

3.3 Solution Analysis
In this section, the methods/approaches discussed in the previous chapter (section 2.2) are
evaluated to conclude what is the best one for the current solution.

3.3.1 Approaches to build a CI/CD solution

The section 2.2.2 of the previous chapter presented different approaches to build a CI/CD
solution. The first approach presented is a very premature CI process that is similar to what
Glintt-HS has. The other two approaches are more robust, by including not only the integration
of new changes into the project, but also the automation of a complex and important testing
strategy. These two approaches only differ in the deployment phase (manual or automatic),
so the following evaluation is focused on comparing the first approach with the overall process
of the last two.

To evaluate these approaches the following metrics cans be considered:

• Time;

• Costumer satisfaction;

• Reliability.

The first metric is related to the all process of development, CI deployment and production
deployment, the time that takes for a new feature for example to be available on all considered
branches (DEV, CI and 17) and, consequently, to the costumer.

In the first approach considered to build a CI/CD solution, the time considered above can be
easily increased if in the test phase the new feature or correction doesn’t satisfy the acceptance
criteria one or more times. This implies a new cycle of the all process, where the developer
changes the code, push it to source control, merge it to CI branch and the build compiles
and deploys it to CI environment. This process takes time and the new corrections take a
while to be available at CI environment. Consequently, the time for the quality/testers team
to approve these changes to 17 branch will also be longer, and will be later available to
the costumer. The second approaches that include automated tests may increase the overall
automated build time, but with the automatic verification of units, integration of modules
and some acceptance criteria it is expected that the errors in CI environment will decrease.
This doesn’t mean that no problem will no longer be reported by the testers team, but it is
also expected the decrease of those reports. In the overall process, the tests included will give
more consistency to the versions deployed to CI environment and with less bugs detected it
will be faster to make changes available to the costumer.

The second metric considered, costumer satisfaction, is related to the first one. As stated
above, when an error is detected by the testers, it takes a while to correct it and make it again
available for testers, and takes more time for them to approve the new features. This will also
delay the deployment to production of the new changes, that influences costumer satisfaction

40 Chapter 3. Analysis

a lot. In Glintt-HS, sometimes the delay can cause the renegotiation of delivery deadlines to
the costumer, that decreases his satisfaction. The implementation of a new approach on the
CI/CD process will allow to decrease the delivery time, obey to the deadlines and increase the
product reliability. These factors will definitely increase the costumer satisfaction comparing
to the current situation.

To evaluate the last metric, reliability, it is also needed to think about the integration of
automated tests, defended in the two approaches different from the first used by Glintt-HS.
This tests will allow to identify errors that the current approach can’t detect in the phase
of compiling the project’s source code. The identification of errors through the automated
tests will prevent the application from being deployed to the CI environment. It will only be
deployed if all tests end successfully. This will increase the reliability of the application, by
publishing it only when the things are done right and maintaining a good accuracy on its
deployments.

Between the approach that does manual deployment and the other that does automatic
deployment, there are not many differences and depends on the organization’s preferences and
business needs. This matter will be discussed and decided trough meetings with managers of
the organization.

41

Chapter 4

Design

In this chapter, it is presented the design of the solution, being described in the following
sections the choices made about the more adequate method and technologies and the design
and description of the CD pipeline.

4.1 Choice of Method and Technologies
In this section, it is presented the decisions made about the method and technologies to use
on the solution, having in mind the ones presented and discussed in the previous chapters.

About the methods and approaches, it was presented two alternatives to implement. The two
processes were composed by a phase of compilation of source code, another for performing
tests and the phase of deployment. The difference was in the automatic or manual deployment.
To this solution it was decided, along with managers in Glintt-HS, that for now an approach
with manual deployment will be implemented. There are a lot of check-ins of code made
during one day of work and they simple don’t want that every single one of them triggers
a deployment. They prefer to join an acceptable number of changes and then deploy them
manually.

The solution of Glintt-HS’s problems will result in the development of a CD pipeline, that
will be discussed on the next section. Currently, the project concerned has a build defined in
TFS responsible for building the source code and deploying the application. In this solution,
that TFS build will be reused to the first phase of the CI/CD process: compile the sources
of the application. Only this process of compilation took a while to implement because of
dependency of packages (npm/NuGet) and other organization’s projects, so it would take a
while to implement it on another CI Server. To implement the desired pipeline, Jenkins was
chosen over TeamCity. The main reasons for choosing Jenkins are: the open source factor
and the incredibly opportunities that its plugin repository provides. Related to Jenkins, there
is another factor that makes the use of TFS, for the first phase of the process, important. The
TFS version used in the organization is from 2013, and with that version the integrity with
Jenkins has some limitations. A pipeline or any other type of build created in Jenkins that
uses a project (or various) that are maintained in a TFS 2013 repository cannot be triggered
at each check-in made to that repository. Jenkins does not have a plugin to detect a change
in TFS and automatically start a build, as it has for Git1. TFS 2015 already has a service
hook that allows to do a better integration with Jenkins and allows to triggers builds on
each check-in. This limitation in the connection between TFS and Jenkins is also why it was
decided to do the first phase of compilation of the source code in the TFS Build. In this build
it is possible to define to trigger it at each check-in, what is expected in the documented

1https://git-scm.com/

42 Chapter 4. Design

solution. After that build is triggered and the sources are compiled, it is easy to trigger the
Jenkins’ pipeline through Jenkins CLI. This is a command line interface that allows to access
Jenkins through a command line or shell script.

Regarding the test technologies, in chapter 2 some tools were presented for implementing
unit tests, integration tests, deployment tests and functional tests. For c# unit tests, the
three tools presented have his pros and cons (Table 2.1), none of them is really better than
the other one. As the project Atendimento doesn’t have any unit tests, the important part
here is to implement them; the tool to use is not a big deal right know, it is important to
start unit testing and the technology can be changed later. For know, it was decided that
the Visual Studio Unit Testing Framework (MSTest) will be used, it already comes integrated
in Visual Studio and it will be a easy start point. For TypeScript/JavaScript, comparing the
pros and cons presented in Table 2.2, Jest seems to be a better choice to implement unit
tests. It has less cons than the other tools, and the pros give it a good consistency. Also, Jest
configuration/setup is easy to start implementing tests as soon as possible. Although Jest is
seen as the better choice, it is detailed in chapter 5 the use of Mocha to implement unit tests
in TypeScript. In that chapter, it is also explained why Jest was not used.

About the integration tests, the tools discussed to implement them in C# were the same
approached for implementing unit tests. Therefore, Visual Studio Unit Testing Framework
(MSTest) will also be used to implement the integration tests needed.

In the deployment tests phase, a limited number of functional acceptance tests will be exe-
cuted, covering only the core features of the application. This will allow to give a fast response
to people involved in the process about the success of the deployment. These tests that cover
the main features of the application will be chosen from the all set of acceptance tests that will
be implemented. The functional acceptance tests will be implemented using Selenium. This
tool has a more complete set of built-in features that give a lot of possibilities to create the
application’s acceptance tests. Currently, in Glintt-HS another team of testers are developing
functional acceptance tests using Selenium to cover for error in many applications, including
Atendimento. This set of tests will be integrated in the new CI/CD process, being necessary
to plan the best way to integrate them in discussions with the team that implemented them.

Considering the tools presented to perform nonfunctional acceptance tests, it was decided
that WebLoad will be used. Comparing the pros and cons of this tool and JMeter, WebLoad
seems to be the more adequate tool to use. Furthermore, it has a good integration with
Jenkins that will also be used.

An overview of the new CI/CD process is presented in an activity diagram in Figure 4.1.

4.2. CD Pipeline 43

Figure 4.1: Activity Diagram - process overview

The pipeline implemented in Jenkins workflow is detailed in the next section.

4.2 CD Pipeline
The Jenkins workflow is represented in the pipeline diagram in Figure 4.2.

Figure 4.2: Pipeline Diagram (also in Appendix B)

The pipeline presented above is composed by the following stages:

• Unit Tests: in this stage, the unit tests developed (in C# e JS/TS are executed. To
perform it, MSTest and Jest tools are used.

• Integration Tests: this stage executes the integration tests for c#, using also the MSTest
tools as in the previous stage.

44 Chapter 4. Design

• Deployment: the Deployment stage consists in the processes to publish the application
to the CI environment already mentioned in this document. This stage is composed by
two sub-tasks: deployment of the assemblies resulted from the compilation of the source
code - Dynamic-Link Library (DLL), JS and CSS files; deployment of configuration files
that allow to run the application.

• Smoke Test: after the deployment finishes, a smoke test composed by functional accep-
tance tests of the core features of the application is executed. This test doesn’t execute
every functional acceptance tests, giving a more quick feedback about the success of
the deployment. If this test fails, a rollback is performed; a deployment of the previous
version of the application is made, restoring the last stable version. After the rollback,
the workflow ends.

• Functional Acceptance Tests: in this stage, the acceptance tests developed using Sele-
nium are executed. This tests cover more features of the application. If these tests fail,
as the CI environment is supposed to be stable at any time, a rollback to the previous
version is also performed. As in the previous stage, after this rollback is performed, the
workflow ends.

• Nonfunctional Acceptance Tests: The final tests to be executed are the nonfunctional
tests; these tests will evaluate the performance and capacity of the application. It was
decided in the organization that for now the failure of these tests will not result in
a rollback to a previous version, giving more importance to the smoke test and the
functional acceptance tests. After this stage finishes, successfully or otherwise, the
workflow ends.

Each build triggered will have an user input associated to the stage Deployment, in another
words, the pipeline will stop before that stage starts and will wait for a user to choose if the
pipeline continues or not. As said in the previous section, this is the approach of Continuous
Delivery that for now will be implemented.

In every stage of the pipeline, as shown in the diagram, build reports are generated and can be
seen after the pipeline ends or even during the process in the logs sent to the console output
by Jenkins. If any of these stages fails, an email will be sent to the interested people, warning
that a specific stage failed; if the stage were it failed is Smoke Test or Functional Acceptance
Tests, it also informs that a rollback was performed. If the pipelines goes all the way to the
end without failing, an email is also sent confirming the success of the deployment.

As an alternative to the pipeline presented above, in this process there could be another
specific environment to run the functional acceptance tests. These tests would be made
before the deployment to the CI environment, and the success or fail of the tests in the new
intermediate environment would decide if the deployment to the last environment would be
done. Since the CI environment is already a test environment and an intermediate to the 17
version internal environment, it was decided that the tests will be done in the CI environment
as shown in Figure 4.2.

45

Chapter 5

Implementation

Considering the analysis of the best approaches and technologies presented earlier, and the
design of the solution to the current CI/CD problem at Glintt-HS, this chapter describes the
implementation of the designed solution. It is described some changes in the approaches/tech-
nologies used and the related reasons, and how they influence the final solution.

5.1 Overview
The implementation of the designed solution is divided in the following topics:

• Unit Tests;

• JavaScript/TypeScript Unit Tests;

• C# Unit Tests;

• Integration Tests;

• Functional Acceptance Tests;

• Team Foundation Server Workflow;

• Jenkins Workflow.

Before the above topics are presented, let’s take a look at more information about project
Atendimento. All the Web pages modules from the application are gathered in a single folder
called Html, whose structure is observed in Figure 5.1.

Figure 5.1: Atendimento Html Folder

46 Chapter 5. Implementation

The first three folders shown in that figure contain external assemblies used and common files
to configure the application, and the Glintths.ATD.Tests folder contains shared methods used
in tests. The other folders contain project solutions that represent a group of screens visible in
the application and related logic. The most important ones are Glintths.ATD.SharedCore and
Glintths.ATD, that are the base solutions of Atendimento. Glintths.ATD contains the base
screens that exist for the longest time in the source code. The SharedCore folder contains
screens, methods and models used in almost every other project of the Html folder. Also,
there is a SharedCore project responsible for receiving requests triggered in the UI and to call
the correct Web service. This project is approached again in the next sections of this chapter.
As mentioned earlier, there is a lot of new features being developed and many others to be
implemented yet. So, to the new developments, new folders in the Html folder have been
created as it can be seen in the previous figure, to prevent the excess of projects and Web
pages in a single solution like Glintths.ATD.

Besides those solutions referred above, Atendimento uses four different Web services compo-
nents: Glintths.ATD.Services, Glintths.API.Internal, Gplatform and MuleSoft1. ATD Services
are the oldest Web services used by Atendimento and their implementation started at the same
time. This services are detailed in the next sections of this chapter. The other components
are developed and maintained by other teams at Glintt-HS, being the API.Internal the oldest
of those three components. Gplatform represents a microservice API and the last component
provides different API’s developed using MuleSoft. The Gplatform endpoints are important
for the shared features of Glintt-HS applications like register of users, login and change of
password, and to Atendimento’s basic features as search of patients, list of appointments by
patient and patient admission. This component and its endpoints are many times the cause of
errors emerged in the CI environment, that’s why tests are developed to verify it, as presented
in the following sections.

5.2 Unit Tests
This section describes the development of the unit tests, subdivided in JavaScript/TypeScript
tests and C# tests.

5.2.1 JavaScript/TypeScript Unit Tests

As mentioned in chapter 4, the first technology that was chosen to develop these tests was
Jest, but eventually Mocha was the one used to implement unit tests. Although Jest has a
simpler setup and configuration, which was a great advantage to start developing tests more
quickly, there was a problem testing JS files used in project Atendimento. In all applications
of Glintt-HS, these files are generated from TS files, being compiled as Asynchronous Module
Definition (AMD)2 modules. The AMD API is supported by RequireJS3 and it is used for JS
modules. It allows to format the JS module in a way that it is not necessary to manually write
and order script tags with implicit dependencies. JS files compiled in AMD are not supported
by Jest. So, instead of changing the way JS files are generated or using a plugin to convert
those files to a definition known by Jest, it was decided that was better and simpler to change
the technology to use. That’s why Mocha was used.

1https://www.mulesoft.com/
2https://requirejs.org/docs/whyamd.html
3https://requirejs.org/

5.2. Unit Tests 47

As said earlier, Mocha is a test framework that runs on Node.js and in the browser. Therefore,
it was configured a Node.js application to run the necessary JS tests. With Mocha it is
possible to use any assertion library, and in this project is used Chai4. This is a Behavior-
Driven Development (BDD) / TDD assertion library that allows the developers to choose
the most comfortable style. The TDD style - assert - provides the classic assert-dot notation
and the BDD styles - should and expect - provide a readable style, being similar to a natural
language. In this project, the expect style was used, making possible to any person to read
and understand what is being tested. As observed in Figure 5.2, anyone can understand each
expect of the example test. Also, there is an optional parameter that represents a message
that is shown whenever the test fails, so it is easy to understand the behavior not expected.

Figure 5.2: Atendimento Mocha Test

Every Node application can be triggered by command line using a JS file. As can be seen in
Figure 5.3, that shows the source folder of the project implemented to execute JS tests, the
Node application can be run compiling the app.ts file to JS and executing in the command line
"node app.js". This file will use other files observed in that figure, like Launcher.ts, Server.ts,
an "index.html" file present in "web" folder, and the files from config folder, to trigger a Node
server that runs on a local url that can be accessed in a browser.

Figure 5.3: Atendimento Mocha Tests - Project Folder
4https://www.chaijs.com/

48 Chapter 5. Implementation

The files used to test the JS/TS files of project Atendimento were added to the folder "tests",
also observed in the previous figure. In the "web" folder, it was added a TS file to configure
Mocha in the node application and to import the files of the referred "tests" folder. As
the files to be tested depend on some global JS and CSS files developed in Glintt-HS, in the
"index.html" file it was added tags to inject some of those script files into the run environment.

One more tool was used to help running this node application: Webpack5. "At its core,
webpack is a static module bundler for modern JavaScript applications. When webpack
processes your application, it internally builds a dependency graph which maps every module
your project needs and generates one or more bundles." (Webpack 2018). With Webpack it
is easier to resolve the dependencies of the JS/TS files and all that modules are exposed in
one or more bundle files. In this project, two bundles are generated to facilitate the execution
of the unit tests. To use Webpack, a "webpack.config.js" file is created at the root of the
project, as can be observed in Figure 5.3.This file content is presented in Listing 5.1.

const appConfig = require ("./ tools/ webpack .
app");

const testConfig = require ("./ tools/ webpack
.test");

module . exports = [appConfig , testConfig];

Listing 5.1: Atendimento Mocha
Tests - webpack.config.js

In the previous figure, it can be seen that the only thing that the main file for the webpack
configuration does is exporting two other files - webpack.app.js and webpack.test.js. These
two files are responsible for generating the two bundles that are mentioned above. Next,
a snippet of the content of these two files is presented and explained. In Listing 5.2, it is
presented a snippet of webpack.test.js.

5https://webpack.js.org/

5.2. Unit Tests 49

const path = require ("path");
const entryPoint = "./ src/web/ webapp .ts";
const outputDir = path. resolve (__dirname , ’../ dist/

web ’);
const outputFile = " webapp . bundle .js";
const mode = " development ";

var testConfig = {

entry: entryPoint ,

output : {
filename : outputFile ,
path: outputDir

},
mode: mode ,
devtool : "source -map",
resolve : {

extensions : [".js", ".ts"],
modules : ["src", "../ node_modules "]

},
module : {

rules: [
{

test: /\. js$/,
exclude : / node_modules /,
loader : ’babel - loader ’

},
{

test: /\. ts$/,
loader : "ts - loader "

}
]

}
};
module . exports = testConfig ;

Listing 5.2: Atendimento Mocha Tests -
webpack.test.js

Looking at the previous code, the most important configurations are the entry point and
the output dir and file. In this case, Webpack is supposed to start processing dependencies
between modules from the "webapp.ts" file. This file sets up Mocha in the Node application
and imports the files created to test project Atendimento’s JS files (files from the tests folder,
as mentioned earlier). The result of the bundling executed by Webpack is the output file -
"webapp.bundle.js". Furthermore, the "webpack.test.js" contains configurations to compile
JS and TS files with specific packages, and all these configurations are exported at the end
of the file, so it can be imported in the main Webpack file (webpack.config.js).

Below, it is presented a snippet of the webpack.app.js file in Listing 5.3.

50 Chapter 5. Implementation

const path = require ("path");
const entryPoint = "app.ts";
const outputDir = path. resolve (__dirname , "../");
const outputFile = "index.js";
const mode = " development ";

var appConfig = {
entry: entryPoint ,
output : {

filename : outputFile ,
path: outputDir

},
mode: mode ,
resolve : {

extensions : [".js", ".ts"],
modules : ["src", " node_modules "]

},
target : "node",
module : {

rules: [

{
test: /\. ts$/,
exclude : / node_modules /,
loader : "ts - loader "

}
]

}
};
module . exports = appConfig ;

Listing 5.3: Atendimento Mocha Tests -
webpack.app.js

Like the previous snippet, the entry point and the output file are very important. In this
configuration, "app.ts" is the first file that Webpack analyses to compile and resolve depen-
dencies. This file, already mentioned in this section, is the start point of the Node application.
With this configuration, Webpack generates a bundle file, "index.js". As the previous snip-
pet, the "webpack.app.js" file specifies packages to compile JS and TS files and exports its
configurations to be imported in the "webpack.config.js" file.

As mentioned earlier, the file "app.ts" is the one who starts the launching of the Node ap-
plication, using the file "index.html" and other configuration files referred. Bundling all the
JS/TS with the configurations described above, using the command "webpack", two JS files
are created - index.js and webapp.bundle.js. To run the Node application, it is needed only
one JS file, so in the "index.html" file a script tag to load the "webapp.bundle.js" was added.
This way the generated file "index.js" contains all the information needed to create and run a
Node application and to execute the implemented tests. Running the script "node index.js" in
the command line launches the application in a local site, being used the default port 3000.
In Figure 5.4, there is presented a screen shot of the Mocha tests of project Atendimento,
executed in a browser.

5.2. Unit Tests 51

Figure 5.4: Atendimento Mocha Tests - Results in the Browser (also in
Appendix C)

In the previous figure, it is observed the results of the Mocha tests implemented, organized
by groups and subgroups that represent JS modules and submodules, respectively. In the top
right corner, it is presented the percentage of tests executed (100% in this example), the
number of tests passed (81), the number of failures (2) and total duration of execution of
tests. Also, if a test execution takes more time than the Mocha default patterns, that time
is presented next to the name of the test and it is highlighted with the color yellow or red,
being this last color marked in the tests that take the longest time. By now, these tests
cover some shared files that are used by most of Glintt-HS applications and two base files
of project Atendimento. The first files define front-end components that are used in various
company applications, like datepickers, combo boxes, input boxes and lists with data. The
files of Atendimento tested define general functions that are also used more than one time
in the project. This means that it was decided that first it is important to test the general
modules that are used all over the application and the ones which usually generate errors.

Issues developing JS/TS tests

While implementing the JS/TS unit tests, some difficulties emerged and that’s what is dis-
cussed next.

Webpack is a very useful tool to compile JavaScript modules and resolve the dependencies
between them. The use of this tool reduces the number of files needed to run the application
to one file only. This result facilitates the developer’s work, but it’s configuration is not that
easy. Webpack depends on specific configuration, forcing a developer to read and understand
its documentation. Although it takes some time, the documentation is an advantage, because
Webpack is well documented by its developers and other developers on the Web that have
experience with this tool. In the end of the configuration, Webpack is a very powerful tool, but
more recent JavaScript bundlers don’t need much configuration as Webpack. In this project,
this last tool is used because of its consistent documentation and support, and it was already
used in the company, giving opportunity of having more help in the internal environment.

After running the tests in a browser using Node.js, there were some difficulties to run those
same tests in the command line. As the solution described in this document plans the con-
struction of a pipeline to run these and other tests, it was very important to be able to execute

52 Chapter 5. Implementation

them in the command line. Running the tests via Node launches a site that after the execution
is finished keeps active and watching for changes in the test files. In the pipeline context, it
is necessary that the execution of the unit tests gives feedback when it is finished. Mocha
installation comes with a Command-Line Interface (CLI) that can be used to run tests in
a command line. Running the command "mocha ’tests/*.test.ts’" will execute every test.ts
files of the tests folder. As this tests project is prepared to use Webpack, it is possible to
use another tool: mocha-webpack6. This tool basically joins the functionalities of mocha
CLI and Webpack. Having has example a test file "test.js" and an output file "output.js",
mocha-webpack represents the command "webpack test.js output.js && mocha output.js",
but in a more optimized way.

As suggested in mocha-webpack documentation, a Webpack configuration file for this tool
must have some specific options that differ from the ones used when bundling files to run on
a Web browser (Zinser 2017b). Therefore, a new Webpack configuration file was added to
the tests project, named webpack-config-mocha.test.js. In Listing 5.4, there is presented a
snippet of that new file.

var nodeExternals = require (’webpack -node -
externals ’);

module . exports = {
target : ’node ’,
externals : [nodeExternals ()]

};

Listing 5.4: Atendimento Mocha
Tests - webpack-config-mocha.test.js

In addition to the options presented in the figure above, packages to compile JS and TS files
(ts-loader and babel-loader) are also specified, like in the other configuration files presented
earlier. About the new options added to the last file, "target" makes Webpack compile the
files for Node.js. If this option is not specified, the code is compiled for Web environment and
code-splitting7 doesn’t work. Code-splitting is a Webpack functionality that makes possible
to split code into various bundle files, like what was made in this project and explained earlier.
The other option "externals" uses a webpack-node-externals plugin, responsible for stopping
Webpack from bundling files inside node_modules (folder that contains npm packages). This
plugin is used because Webpack can’t compile node_modules as server only modules and it
also increases performance (Zinser 2017b).

After that configuration, another problem occurred running the mocha-webpack command. As
the modules tested and its related files depend on Web browser variables, as window and docu-
ment, the tests failed as soon as one of those variables appeared. To resolve this issue, as also
suggested in the mocha-webpack documentation, the jsdom-global plugin was used (Zinser
2017a). This plugin creates a Web testing environment, making available the variables needed
(as window and document). To import this plugin, the option "-r jsdom-global/register" is
added to the mocha-webpack command. Following this, another issue related to variables
exported to the window emerged. In the Node environment, its variables are changed and
accessed using the variable "global" (global.Inputmask for example). The Web environment
variables are mapped in the variable "window" (window.Inputmask for example). This means

6https://github.com/zinserjan/mocha-webpack
7https://webpack.js.org/guides/code-splitting/

5.2. Unit Tests 53

that if a file related to the tested modules tries to export a variable using "window" (win-
dow.Inputmask = ...), then the variable Inputmask is still undefined, unlike what happens in a
Web environment. In Node, for this variable to be defined, the variable "global" must be used.
To overcome these problems, a new JS file - mockBrowser.js - was created to be imported in
the mocha-webpack command. Listing 5.5 presents the content of that file.

var jq = require (" ../../ vendor / glintt / scripts /jquery
-2.0.0. min");

global . jQuery = jq;
global .$ = jq;

global . navigator = {
userAgent : ’node.js’

};
global . Option = window . Option ;

require (" ../../ vendor / glintt / scripts /jquery -ui/
jquery -ui -1.10.3. min");

_ = require (" ../../ vendor / glintt / scripts / lodash .min"
);

require (" ../../ vendor / glintt / scripts / infragistics .
core");

require (" ../../ vendor / glintt / scripts / infragistics .
lob");

Mustache = require (" ../../ vendor / glintt / scripts /
mustache ");

require (" ../../ vendor / glintt / scripts / bootstrap .min")
;

let container = document . createElement ("div");
container . className = " container ";

for (var i = 0; i < 4; i++) {
let row = document . createElement ("div")
row. className = "row";
let root = document . createElement ("div");
root. className = "col -md -12";
let rootBaseId = "root";
root.id = i > 0 ? (rootBaseId + i) : rootBaseId

;
row. appendChild (root);
container . appendChild (row);

}
document .body. appendChild (container);

window = global ;

Listing 5.5: Atendimento Mocha Tests -
mockBrowser.js

In the file presented above, some external needed modules are loaded, being some of them
exported as global variables (like jQuery). Also, HTML required by some tests is con-
structed and added to the document variable of the test environment. Variable global is
assigned to the variable window, meaning that any new variable exported using window
(window.some_variable = ...) will now be exported to the global scope. Finally, running
the command "mocha-webpack -r jsdom-global/register -r mockBrowser.js –webpack-config
webpack-config-mocha.test.js ’tests/*.test.ts’" gives the same results of the browser, as shown

54 Chapter 5. Implementation

in Figure 5.5.

Figure 5.5: Atendimento Mocha Tests - Results in the Command Line

5.2.2 C# Unit Tests

As mentioned in section 2.2 of chapter 2, Atendimento is considered a midproject and a legacy
system. At the current moment, this project has a lot of functionalities and being a conversion
of an old application, as described earlier, it still has a lot of changes and requirements to be
added. In the section referred, it is also explained that in a project of this type it is important
to start covering and testing the code that traduces the most common, important and high-
value features of the application. That said, like in the unit tests developed for JS, the goal
of the first unit tests implemented in C# is to find possible errors in most common functions
and in the ones that more often cause failures while running the application.

One of the main projects of Atendimento, called Glintths.ATD.SharedCore, contains a lot
of functions that are used by other projects of the application. Therefore, the implemen-
tation of the c# unit tests started in this project. SharedCore also contains common used
functions defined in JS that are tested using Mocha tests, as documented in the previous
section. The Listing 5.6 presents a snippet of a unit test implemented in the new project
Glintths.ATD.Core.UnitTests.

5.2. Unit Tests 55

/// <summary >
/// This class tests Infragistics Filter Helper .
/// </summary >
[TestClass]
public class IgFilterHelperUnitTest
{

/// <summary >
/// Test method GetContainsFilterValue with

igFilter " contains (Glintt)"
/// </summary >
[TestMethod]
public void GetContainsFilterValueTest_1 ()
{

var input = " contains (Glintt)";

try
{

var result = IgFilterHelper .
GetContainsFilterValue (input);

Assert . AreEqual (" Glintt ", result);
}
catch (Exception ex)
{

Assert .Fail(ex. Message);
}

}

/// <summary >
/// Test method GetContainsFilterValue with

igFilter " contains (Glintt)"
/// </summary >
[TestMethod]
public void GetContainsFilterValueTest_2 ()
{

var input = " contains (Glintt)";

try
{

var result = IgFilterHelper .
GetContainsFilterValue (input);

Assert . AreEqual (" Glintt ", result);
}
catch (Exception ex)
{

Assert .Fail(ex. Message);
}

}
}

Listing 5.6: Atendimento C# Unit Test -
Glintths.ATD.Core.UnitTests

The tests presented in the above Listing are testing an helper class created in Glintths.ATD.SharedCore
to get filters inserted by the user in form controls, like in a combo box. These controls, devel-
oped in Glintt-HS and approached in the previous section, are an interface to the Infragistics8

UI Controls. In the combo box case, normally the user can insert some text to filter the
datasource loaded. When that happens, a new request to the Web Service that returns the

8https://www.infragistics.com/

56 Chapter 5. Implementation

datasource is made with the text inserted as parameter. That text is passed through a con-
tains expression, as can be seen in the tests implemented. These tests basicly check if the
helper created is getting correctly the text inside the contains expression.

Figure 5.6 presents the new structure of the Glintths.ATD.SharedCore solution.

Figure 5.6: Atendimento’s Glintths.ATD.SharedCore Structure

As can be seen in the previous figure, the new project Glintths.ATD.Core.UnitTests was added
to the intended solution, having the name of the project it is testing (Glintths.ATD.Core) as
its partial name. Besides that, in the figure presented it is also possible to observe another
project of the solution: Glintths.ATD.CoreDataAccess. This project basically consists on a
bridge between the requests made by Atendimento’s projects controllers and the different ser-
vices that the application depends on. Any request to a Web Service will first pass through
CoreDataAccess and then move on to the correspondent service. That said, most of the
code implemented in this project gets and changes information from the database. That’s
why in this case, a project of integration tests was created, as observed in Figure 5.6. Glint-
ths.ATD.CoreDataAccess.IntegrationTests is approached next, in section 5.3.

Besides Glintths.ATD.SharedCore, there is one more solution where some tests were imple-
mented: Glintths.ATD.Services. This solution represents the first Web Services ever used
in project Atendimento. It contains very important projects with business entities and rules,
template reports to present to the user in the application and two different Web Services
projects. Figure 5.7 shows the structure of Glintths.ATD.Services solution.

Figure 5.7: Atendimento’s Glintths.ATD.Services Structure

5.2. Unit Tests 57

The new tests implemented are part of the projects Glintths.ATD.Services.BusinessEntities.UnitTests,
Glintths.ATD.Services.Reports.Common.UnitTest and Glintths.ATD.Services.Reports.UnitTests.
The other two projects (Glintths.ATD.Services.Tests and Glintths.ATD.Services.UnitTests)
represent some old test implementations that were not maintained by the developers. The
two projects basically contain integration tests, although one of them has UnitTests in its
name.

The first added project, Glintths.ATD.Services.BusinessEntities.UnitTests, contains tests that
check constructors of business entities that receive as parameter an IDataReader object that
has data obtained from the database. To mock this object, an excel file is used containing
columns with the names of attributes to be read and values to fill the business entity’s
properties. Listing 5.7 shows one of the tests made in that project.

[TestMethod]
public void

TestMethodReader_GetDoctorAppointmentByPatient ()
{

var fileName = Path. Combine (AppDomain .
CurrentDomain . BaseDirectory ,

" DoctorAppointment ",
" BusinessEntities ",
" Inputs ",
" HPA_GetDoctorAppointmentByPatient .xlsx");

var dt = ConvertExcelToDataTable (fileName);
var reader = dt. CreateDataReader ();
reader .Read ();
var result = new DoctorAppointmentEpisode (

reader , " DEMOPQR ");

Assert . IsNotNull (result);
Assert . IsNotNull (result . MedicalAct);
Assert . IsNotNull (result . AppointmentHour);
Assert . IsNotNull (result . DoctorAppointEpisDate);
Assert . IsNotNull (result . AppointmentDateState);

}

Listing 5.7: Atendimento C# Unit Test -
Glintths.ATD.Services.BusinessEntities.UnitTests

Glintths.ATD.Services.Reports.Common.UnitTest has for now one test that checks the gen-
eration of a specific url prepared to be sent to a Glintt-HS program that sends the reports
to a printer. Although the method tested is used almost every time in generation of re-
ports, as it is defined in the Common project, a single test project was created. In Glint-
ths.ATD.Services.Reports.UnitTests project, the generation of report urls that represent PDF
files are tested. To perform these tests, data is mocked and passed to the respective methods
that create the reports. In Listing 5.8, it is presented a test implemented in the last referred
project.

58 Chapter 5. Implementation

[TestMethod , TestCategory (" New_Implementation ")]
public void TestMethod_NewImplementation_CSA ()
{

// Assert value of key ’
ATD_USE_SMALL_PATIENT_TICKET ’

OperationContext operationContext =
getOperationContext ();

var value = getReportType (operationContext);
Assert . AreEqual (value , "CSA", "The value of the

key ’ATD_USE_SMALL_PATIENT_TICKET ’ does not match the
test case.");

getPatientTicketAndAssertTest (operationContext)
;

}

private void getPatientTicketAndAssertTest (
OperationContext operationContext)

{
string episodeId = "1282";
string episodeType = " Consultas ";
string patientType = "HS";
string patientId = "22";
int copies = 1;

string urlResult = string .Empty;
try
{

var devEx = new ReportsDevEx ();
urlResult = devEx.

GetPatientTicketReportPdfUrl (operationContext , episodeId
, episodeType , patientType , patientId , copies);

Assert . IsFalse (string . IsNullOrEmpty (
urlResult));

Assert . IsTrue (Uri. IsWellFormedUriString (
urlResult , UriKind . Absolute), " Invalid Uri");

openOrSavePdf (urlResult);
}
catch (Exception ex)
{

Assert .Fail(ex. Message);
}

}

Listing 5.8: Atendimento C# Unit Test -
Glintths.ATD.Services.Reports.UnitTests

The test presented above verifies the creation of a patient ticket to a specific context (CSA).
As other contexts are tested, a general method to test patient ticket was created - getPa-
tientTicketAndAssertTest. In this method the url generated is checked and using the method
openOrSavePdf, that opens the url or saves the file it contains locally, validates its existence
and that it has content.

5.3. Integration Tests 59

5.3 Integration Tests
In section 4.1 of chapter 4 the technology to use in the implementation of integration tests
is approached. As in the C# unit tests presented above, these tests were implemented using
the Visual Studio Unit Testing Framework (MSTest).

In the previous section, it is presented the Glintths.ATD.SharedCore solution structure in Fig-
ure 5.6. As mentioned in that section, a new integration tests project was added to that
solution - Glintths.ATD.CoreDataAccess.IntegrationTests - to test the code implemented in
project Glintths.ATD.CoreDataAccess. Figures 5.8 and 5.9 present the internal structure of the
projects Glintths.ATD.CoreDataAccess and Glintths.ATD.CoreDataAccess.IntegrationTests, re-
spectively.

Figure 5.8: Atendimento’s Glintths.ATD.CoreDataAccess Structure

Figure 5.9: Atendimento’s Glintths.ATD.CoreDataAccess.IntegrationTests
Structure

The structure of the two mentioned projects is very similar, as the figures show. The fold-
ers that have "Management" as its partial name exist in the two projects containing files

60 Chapter 5. Implementation

with methods to access differente Web Services. The files from the DataManagement folder
connects to the older services of Atendimento, Glintths.ATD.Services; the GPlatformManage-
ment and MulesoftManagement files call more recent Web Services, that are represented by
a microservice API (GPlatform) and various API’s implemented using MuleSoft. Particularly,
in the integration tests project, the folder Service References has one reference to an older
entities management service, developed and maintained by other teams of the company. In
the folder WS, it is tested methods from the services contained in this last referred folder.

Listings 5.9 and 5.10 present, respectively, tests to a GplatformManagement method and to
a MulesoftManagement file.

[TestClass]
public class GplatformTokenHelperIntegrationTests
{

private HttpSessionStateBase sessionBase ;
private GplatformTokenHelper gplatformTokenHelper ;
[TestInitialize]
public void Initialize ()
{

Dictionary <string , object > customsessionData =
new Dictionary <string , object >();

customsessionData .Add(StoreManagerKeys . Username
. ToString (), "ADMIN");

customsessionData .Add(StoreManagerKeys .
SecurityApplicationId . ToString (), "0");

customsessionData .Add(" USERID ", "14");
customsessionData .Add(" tenant_id ", null);
sessionBase = SessionHelper . GetSessionStateBase

(SessionEnvironmentsEnum .DEMOQPR , customsessionData);
gplatformTokenHelper = new GplatformTokenHelper

();
}

[TestMethod]
public void InitializeGPTokenTest ()
{

try
{

string token = gplatformTokenHelper .
InitializeGPToken (sessionBase);

Assert . IsNotNull (token);
}
catch (Exception ex)
{

Assert .Fail(ex. Message);
}

}
}

Listing 5.9: Atendimento C# Integration Test -
GplatformManagement

5.3. Integration Tests 61

[TestClass]
public class PatientManagementIntegrationTests
{

[TestMethod]
public async Task GetPatientTutorsAsyncTest_E ()
{

try
{

string patientType = "HS";
string patientId = " 00000044711 ";
string powerType = "E";
DateTime ? startDate = null;
DateTime ? endDate = null;
int skip = 0;
int take = 1;

var result = await patientManagement .
GetPatientTutorsAsync (patientType , patientId , powerType ,

startDate , endDate , skip , take);

Assert . IsNotNull (result);
Assert . AreEqual (1, result .Count);
Assert . AreEqual (powerType , result [0].

PowerType);
}
catch (Exception ex)
{

Assert .Fail(ex. Message);
}

}
}

Listing 5.10: Atendimento C# Integration Test -
MulesoftManagement

The first Listing contains a test of the generation of a new token to access the GPlatform
API. Before the test is executed, an initialization of session data to be used in the generation
token method is done. This session data includes the specific environment where the Web
Services to test are running. In this case, the environment used is DEMOQPR, that represents
the CI environment that should be tested. The other environments available test DEV and 17
versions. The second Listing has a test that checks the results of calling a MuleSoft service
to obtain a list of tutors of a specific patient. It has a similar initialization to the previous
test, therefore it was omitted this time.

In the next figure, Figure 5.10, it is presented the Test Explorer with the results of executing
the integration tests using the DEMOQPR session environment.

62 Chapter 5. Implementation

Figure 5.10: Atendimento C# Integration Test - Test Explorer

Beyond the project created and described above, as the application correct behavior depends
on Web Services developed by other teams and that are accessed through its endpoints, a
test Web page was developed to check the endpoints that the application relies on. Currently,
this Web page tests if the endpoints are running and responding correctly (status code 200)
and checks if in the configuration file of the application (Web.config) there are duplicated
endpoints. If the endpoints are not responding correctly, they are listed in the Web page with
the respective HTTP error code. This Web page and the tests it runs are very important,
because one of the most common issues that occur in the CI environment is when the Web
Services are down or not working correctly. This does not mean that their malfunction were
caused by a deployment of Atendimento’s files, but it is important for detecting service errors
as soon as possible and to inform more quickly back-end developers to check the errors.

These Web Service check tests are not yet integrated in the CI pipeline, because it is still being
planned what is the best way to get page results automatically. Besides that, the referred
Web page is already used by developers as one more resource to detect CI problems. Figure
5.11 presents an example of results generated by the created Web page.

5.4. Functional Acceptance Tests 63

Figure 5.11: Atendimento Web Service Checker

5.4 Functional Acceptance Tests
As mentioned earlier in section 4.1, Selenium was the chosen tool to develop functional accep-
tance tests to cover the Atendimento application. So, a new test project was created referring
Selenium NuGet packages, as shown in Figure 5.12. Also, as some of the Atendimento’s
screens are used by other applications at Gllintt-HS, a common tests project was created as
it can be seen in Figure 5.13.

Figure 5.12: Functional Acceptance Tests - Front Office Project

Figure 5.13: Functional Acceptance Tests - Common Tests Project

Atendimento is an application used by administrative technicians in an hospital/clinic, so it is
also referred as Front Office like in the project presented in the first Figure. The common tests
are referred in the front office project in their respective screen tests, to be executed side-by-
side with the front office tests. These tests implemented using Selenium can be categorized,

64 Chapter 5. Implementation

which is important to characterize them as Common, only Front Office or even Parametrized
tests. Also, it is easier to differ Smoke tests from normal Functional ones. In Listings 5.11
and 5.12 there is presented a functional acceptance test developed to the Atendimento’s main
page, where patients can be searched.

[Test , Description (" Search for a patient (s) by his
birthday date")]

[Retry(nRetries)]
[Category (" Functional ")]
[Category (" Common ")]
public void SearchByBirthdayDate ()
{

if (! this. setupSuccessful)
{

throw new InconclusiveException ("Test setup
ended unsuccessfully .");

}
utils. CheckTestRetryCounter (this.lastTest , this

. retryCounter , out this.lastTest , out this. retryCounter)
;

utils. SetWindowTitle (driver , TestContext .
CurrentContext .Test.Name);

try
{

this. searchPatientsTestsCommon .
SearchByBirthdayDate ();

}
catch (Exception e)
{

Assert .That(false , e. Message + " Failed test
, retrying ");

}
}

Listing 5.11: Atendimento Functional Acceptance Test
- Front Office Project

public void SearchByBirthdayDate ()
{

Assert .That(this. searchPatientsActionsCommon .
SearchByBirthday (searchPatientsPageCommon .
SearchPatientInput , searchPatientsActionsCommon .
CORRECT_BIRTHDAY_TO_TEST), " Search for a patient (s) by
his birthday date");

}

Listing 5.12: Atendimento Functional Acceptance Test
- Common Tests Project

As the Search Patients screen is a screen used in other applications, the Front Office project
calls a method from the Common Tests. This common method calls a searchPatientsAction-
sCommon method that writes in the search input the CORRECT_BIRTHDAY_TO_TEST,
and then checks if all the patients loaded in the screen have that birthday date.

5.4. Functional Acceptance Tests 65

To run the functional acceptance tests, a Selenium-Grid9 can be created. This grid allows to
run the tests in parallel in different machines, operating systems and browsers. With the grid,
it is also possible to run the tests against multiple versions of a browser and it reduces the
completion of a test pass. Listing 5.13 presents the script used to start the Selenium-Grid.
To start it, it is only needed the selenium-server-standalone jar file, the chrome driver and the
internet explorer driver, all available online freely.

start grid
$HUB = start -FilePath java -ArgumentList "-jar","E:\ DOTNET

-CI\ATD\Tests\ functionalAcceptanceTests \ Configuration \
selenium -server -standalone -3.14.0. jar","-role","hub","-
maxSession ","8" -PassThru

$HUBID = $HUB.ID

$CHROME = Start - Process -FilePath java -ArgumentList "-
Dwebdriver . server . session . timeout =180","-Dwebdriver .
chrome . driver =D:\ ChromeDriver \ chromedriver .exe","-jar","
E:\ DOTNET -CI\ATD\Tests\ functionalAcceptanceTests \
Configuration \selenium -server -standalone -3.14.0. jar","-
role","node","-browser "," browserName =chrome , maxInstances
=6","-hub","http :// localhost :4444/ grid/ register ","-port"
,"5556","-maxSession ","6" -PassThru

$CHROMEID = $CHROME .ID

$IE = Start - Process -FilePath java -ArgumentList "-
Dwebdriver . server . session . timeout =180","-Dwebdriver .ie.
driver =D:\ IEDriverServer \ IEDriverServer .exe","-jar","E:\
DOTNET -CI\ATD\Tests\ functionalAcceptanceTests \
Configuration \selenium -server -standalone -3.14.0. jar","-
role","node","-browser "," browserName =‘" internet explorer
‘",version =11, maxInstances =6","-hub","http :// localhost
:4444/ grid/ register ","-port","5557","-maxSession ","6" -
PassThru

$IEID = $IE.ID

Listing 5.13: Atendimento Functional Acceptance Tests
- Grid Creation

After starting the grid, it is possible to run the functional acceptance tests using the NUnit
Console Command Line10. In Listing 5.14 it is possible to see some content of the batch file
used to run the functional acceptance tests.

9https://www.seleniumhq.org/docs/07_selenium_grid.jsp
10https://github.com/nunit/docs/wiki/Console-Command-Line

66 Chapter 5. Implementation

nunit3 - console ./ FrontOffice17 .dll --workers =4 --where "cat
== "Smoke" && cat != Parameterized " --labels =All --

params = ENVIRONMENT = DEMOQPR ;
PARAMETERSCONNECTIONSTRING_SERVER =10.250.39.126;
PARAMETERSCONNECTIONSTRING_DATABASE = Parameters ;
PARAMETERSCONNECTIONSTRING_UID = adminqa ;
PARAMETERSCONNECTIONSTRING_PWD = adminqa ;
PARAMETERSCONNECTIONSTRING_SSLMODE =none

set exitcode =% errorlevel %

ren TestResult .xml TestResult % datetime %. xml
ParseTestResult TestResult % datetime %. xml
ReportUnit TestResult % datetime %. xml

move /Y Test*.* TestResults \% date %\% time %\
move /Y *.jpg TestResults \% date %\% time %\

Listing 5.14: Atendimento Functional Acceptance Tests
- Execution Batch File

The example shown in the Listing above runs only smoke tests, the functional acceptance
tests categorized as "Smoke", and the ones not Parameterized. Removing this "Smoke" filter,
it runs all the functional acceptance tests not Parameterized. So, this filter is the difference
in the scripts to run a smoke test and all functional acceptance tests in the Jenkins pipeline.
After executing the tests, the XML file with the test results is used to create reports. The
ParseTestResult is an utility created in Glintt-HS that creates a Comma-Separated Values
(CSV) file containing information of the test results. It lists the test classes executed, its
result and duration, its test cases and number of passed, failures and inconclusive. The
other tool used, ReportUnit11, generates an HTML report containing information of each test
classes executed, filters by suites results, by tests results and by features (Smoke or Common
for example). In Figures 5.14 and 5.15, it is presented an example of a ParseTestResult XML
file and a ReportUnit HTML report, respectively.

Figure 5.14: Atendimento Functional Acceptance Tests - CSV Report (also
in Appendix D)

11http://reportunit.relevantcodes.com/

5.5. Team Foundation Server Workflow 67

Figure 5.15: Atendimento Functional Acceptance Tests - HTML Report
(also in Appendix E)

5.5 Team Foundation Server Workflow
The previous chapters of this dissertation mention that a CI premature process was already
in progress at Glintt-HS. As mentioned in section 3.2 of chapter 3, a TFS build was created
to automatically build the Atendimento project every night in a specific machine, only used
to this purpose. The creation of a new build definition is possible in Visual Studio, in every
user machine with enough TFS permissions to do it. After creating a new build definition, a
new wizard is presented in Visual Studio. This wizard contains six different tabs to configure
the build process. In the first tab (General), it is only defined the name of the build definition
and its state (Enabled, Paused or Disabled). In the "Trigger" tab, it is decided how the build
should be triggered, having the options shown in Figure 5.16.

Figure 5.16: TFS Build Definition - Triggers Tab

The TFS build, as can be seen in the previous figure, allows to choose five different options
to trigger a new build. This build can be triggered manually, on each check-in (Continuous
Integration), after accumulating check-ins, only accepting changes when they build successfully
and on chosen days in a specific hour. Until this build was changed, it was scheduled to build
every weekday at 03:00 AM. Now, looking to have a more quick feedback of changes made to
the CI sources, check-ins are accumulated during one hour and after that time stamp a new

68 Chapter 5. Implementation

build is triggered if changes were made. In the Source Settings tab of the build configuration
wizard, it is defined the source control folders of the project and the respective folders of the
remote machine to where they are downloaded. As presented in Figure 5.17, the different
folders needed to build project Atendimento are shown in the Source Control Folder column,
and the folder where they are maintain in the build machine are referred in the Build Agent
Folder column.

Figure 5.17: TFS Build Definition - Source Settings Tab

After defining the source settings, in the Build Defaults tab the Build Controller to run the
current build definition is chosen from a list of options. This list of options contains all
controllers that at least were configured to run builds of the Glintt-HS TFS collection. As
referred in section 3.2, to run builds in a remote machine, it is necessary to create a Build
Controller through the TFS Administration Console. At this point, the basic configuration
is concluded and the machine to execute the builds is chosen and configured. Next, it is
necessary to decide what happens in the build process itself, that is made in the Process tab
presented in Figure 5.18.

Figure 5.18: TFS Build Definition - Process Tab

The only required option to be filled in the Process tab is Projects. In here, only files with the
extension .sln (Visual Studio Solution File) or .csproj (Visual C# Project File) are allowed, and
they will be used to compile the respective solutions/projects in the build process. The first
option seen, Clean workspace, it is recommended to be defined as False. This will configure
the process to not clean the workspace and only replace the files that were changed since the
last build. Also, although all paths configured in Source Settings tab consist in several folders
created in the machine drive, the activation of the clean workspace flag can remove more files
than expected, even files from other projects referred in other build definitions. Another rule
presented in the previous figure, MSBuild arguments, is important to define specific options to
be used by MSBuild to compile the solutions and projects mentioned earlier in this paragraph.
In these arguments, it can be introduced the version of the MSBuild that should be used (14.0

5.5. Team Foundation Server Workflow 69

for example) and the Visual Studio Version to consider (also 14.0 in the figure above). Also
in the Build option of the current tab, there is the possibility of referring scripts (batch or
powershell) saved in the source control that will be execute before and after the compilation
of the projects. As referred in section 3.2, these scripts allow to install or update dependencies
of projects before they are built and to gather the assembly files resulted from the compilation
to immediately execute a deploy (in the old CI process) or various tests (in the improved CI
process).

In the last tab, Retention Policy, it is defined the number of builds that should be maintained
for each result status possible - Stopped, Failed, Partially Succeeded, Succeeded. For example,
the default options are to retain the 10 latest builds that Failed, Partially Succeeded and
Succeeded and the latest only that Stopped.

Comparing to the old CI process, in the TFS build it is possible to indicate some changes: the
trigger of the build changed from schedule to rolling builds, as seen above; the source files of
the various tests implemented were added to the source settings; the post-build script does
not deploy the assemblies to the remote machine anymore, it triggers the Jenkins pipeline
that is approached in the next section. The trigger of the pipeline is realized using the Jenkins
CLI, that allows to run any job through the command line.

5.5.1 Issues implementing the designed solution

To configure a TFS Build environment in a remote machine, supposedly it is not needed to
install Visual Studio IDE. As Microsoft suggests, if this IDE is not installed in any machine,
Microsoft Build Tools provides enough tools to build managed applications (Microsoft 2015).
In this perfect scenario, it wouldn’t be necessary to install Visual Studio in the build machine.
After installing the Build Tools and starting the compilation of the projects, errors appear on
the first project built. Looking at the error messages, it seemed that .NET dependencies were
missing in the MSBuild environment, and all the needed .NET framework version were also
installed. After a long search and read of the build tools documentation and many forums
with posts related to this problem, no clear solution was found. The only quick and known
solution was to install Visual Studio IDE in the remote machine, allowing to have access to
dependencies that only come with this installation.

As mentioned before in this dissertation, the improvement of the CI process here documented
was expected to accomplish some basic theory aspects. In the premature process, the build
was scheduled to run every week day during the night, and in this newer process it should be
triggered on each check-in. Above it is shown in Figure 5.16 that the current build definition
is not configured to trigger each check-in, but using rolling builds. This is justified by the
fact that the merge of code from the DEV branch to the CI branch is made using a script,
that on each changeset merged checks in the changes to the source control. This means
that when working with work items as referred in section 3.2, merging a specific work item to
the CI branch will (in most cases) consist on more than one changeset made to that branch.
Therefore, each one of these changesets would trigger a new build if the designed type of
trigger was used, and it will in most cases overload the remote machine with various builds in
queue. The solution to this problem was debated and it consisted on only doing the check-in
to the CI branch when all the changesets of the current work item where merged. At this
point, as there are backlog work items that sometimes are dependent to others and the merge
script allows to use more than one work item at a time, considering all the changesets of that
work items ordered by date, there were some distrust on the team and managers to perform
only one check-in for each time the merge script is executed. The lack of trust to make this

70 Chapter 5. Implementation

change is understandable and has in mind keeping the CI environment in the best possible
state. In the near future, it is expected that some simple tests are made to ensure that one
check-in for merge won’t result in lost of code and stability of the CI branch, and posteriorly it
is expected that this policy of one check-in for merge is used across the development process
and the TFS build is triggered on each check-in.

5.6 Jenkins Workflow
To implement the designed pipeline, Jenkins supports two different syntaxes: declarative and
scripted. Groovy12 was the language used to create the foundation of Jenkins Pipeline and
both syntaxes have that language and the same Pipeline sub-system underneath. The main
difference between the two syntaxes is the limits defined to the code that is implemented.
Script pipeline doesn’t define almost any specific limits, being the most code only limited by
Groovy itself. On the contrary, declarative has a more strict and pre-defined code structure.
Also, declarative has a simpler syntax and scripted allows to have a very free and subjective
code structure, which can lead to newer and various problems that can have no feedback and
pre-designed solution yet. With declarative, it is more certain to achieve what is required
without having many issues and too different code alternatives. For those cons and pros, it
was decided to implement a declarative pipeline. As it will be presented next in the Jenkinsfile
code, other reason to use declarative pipeline is the existence of the post section to handle
failures and errors, instead of the try-catch-finally structure used in scripted.

In Listing 5.15, it is presented a first snippet of the Jenkinsfile created, file that contains the
code used in the pipeline and that is saved in source control.

12http://groovy-lang.org/

5.6. Jenkins Workflow 71

def currentStage = ’’
def bodyEmail = ’Build successfully !!! \n\ nDeployed at:

http :// demoapliis . glinttocm .com :6002/ ATENDIMENTO_WEB /
Glintths .Shell/Atd_Base ’

def smokeTestStage = ’Smoke Test ’
def stagesToRollback = [smokeTestStage]

pipeline {
agent {

label {
label ’’
customWorkspace ’E:\\ DOTNET -CI\\ATD ’

}
}
options {
skipDefaultCheckout ()
disableConcurrentBuilds ()

}
environment {

ATD_CI_DIR = ’E:\\ DOTNET -CI\\ ATD \\’
ATD_CI_BUILD_CONFIGS_DIR = ’E:\\ DOTNET -CI\\ ATD \\

Modules \\ Html \\ Glintths .ATD \\ BuildConfigs ’
CC_EMAILS = ’jcampos@glintt .com , tfaria@glintt .com ,

andre.d. santos@glintt .com , joao.c. ferreira@glintt .com ,
pedro. monteiro_ext@glintt .com , fabio. carneiro_ext@glintt
.com ’
EMAIL = ’franciscoramalho@glintt .com ’

SUBJECT_EMAIL = ’ATD_CI Pipeline Result ’
}

Listing 5.15: Atendimento Jenkinsfile - agent options
and environment

In the snippet above, it can be seen that the code begins with a pipeline block, indicating
that the declarative syntax is used. Before that block, there is defined some variables that will
be read and changed in the pipeline. The declarative syntax does not allow to define these
variables inside its blocks and directives, that’s why they are written before the initial block.
Inside the pipeline block, the agent environment where the job will be executed is configured,
being set the custom workspace of the remote machine. In the options directive, it is defined
that checking out code from source control should skipped, because in the TFS build all the
source code needed is obtained. Also, it disables concurrent builds to prevent simultaneous
access to the assemblies generated by the TFS build. The environment directive specifies
read-only environment variables to be used all over the pipeline.

72 Chapter 5. Implementation

stages {
stage (’Unit Tests ’) {

failFast true
parallel {

stage (’JS/TS Unit Tests ’){
steps {

script {
currentStage = ’Unit Tests ’

}
//JS/TS unit tests
dir ("${ ATD_CI_BUILD_CONFIGS_DIR }") {

powershell ’.\\ JsTests .ps1 ’
}

}
}
stage (’C# Unit Tests ’){

steps {
// CSHARP unit tests
dir ("${ ATD_CI_BUILD_CONFIGS_DIR }") {

powershell ’.\\ CSharpUnitTests .ps1 ’
}

}
}

}
}

Listing 5.16: Atendimento Jenkinsfile - stage Unit Tests

The Listing 5.16 presents the beginning of the stages section and stage Unit Tests. In this
stage, two child stages are executed in parallel, the JS/TS Unit Tests and the C# Unit Tests.
The failFast option above the parallel expression forces the two stages to be aborted when
one of them fails. Both child stages run a powershell script; the first runs a script that invokes
mocha-webpack to execute the JS unit tests as explained before; the second uses MSBuild to
compile the test projects and MSTest to execute them, as also described in section 5.2. In
the source code above, it is also possible to see the use the script step. This step represents a
scripted pipeline block executed in the declarative pipeline, and it provides a "escape hatch"
as the definition and reassign of variables (like currentStage in the code). The next source
code presented, in Listing 5.17, shows the code of the stage Integration Tests.

stage (’ Integration Tests ’) {
steps {

script {
currentStage = ’Integration Tests ’

}
// Integration tests
dir ("${ ATD_CI_BUILD_CONFIGS_DIR }") {

powershell ’.\\ IntegrationTests .ps1 ’
}

}
}

Listing 5.17: Atendimento Jenkinsfile - stage
Integration Tests

The Integration Tests stage runs a powershell script that compiles all test project using MS-
Build, and executes all tests through the MSTest tool.

5.6. Jenkins Workflow 73

stage (’Deploy ’) {
steps{

script {
currentStage = ’Deploy ’

}
mail bcc: ’’, body: "Build number ${env.

BUILD_NUMBER } ready for deployment .\ nAccess http :// devci
:8080/ job/ ATD_CI / to confirm deployment or to stop the
build. \nPut your mouse on top of the stage that is
waiting for input and choose YES! to deploy or Abort to
stop it. \n\ nWARNING : there may be other builds in
progress . Make sure you deploy or stop the right one
!!!" , cc: "${ CC_EMAILS }", from: ’gituser@glintt .com ’,
replyTo : ’’, subject : ’Deploy build ’, to: "${EMAIL }"

input message : " Deploy build number ${env.
BUILD_NUMBER }?", ok: ’Yes!’

// Archive all artifacts for needed rollbacks
archiveArtifacts artifacts : ’Modules /Html/ Glintths .

Shell/**/*.*’, excludes : ’**/*. config **/*.pdb ’
archiveArtifacts artifacts : ’Services / Glintths .ATD.

Services / Glintths .ATD. Services . WCFServices /**/*.*’,
excludes : ’**/*. config **/*.pdb ’

archiveArtifacts artifacts : ’Services / Glintths .ATD.
Services / Glintths .ATD. Services . WCFServices . CallPanel /**/
.’, excludes : ’**/*. config **/*.pdb ’

archiveArtifacts artifacts : ’Modules /Html/ Glintths .
EidAgent / Glintths . EidAgent . WebServices /**/*.*’, excludes
: ’**/*. config **/*.pdb ’

archiveArtifacts ’Modules /Html/ Glintths .ATD/ Configs
/ DeployConfigs / GIIS_CI /**/*.*’

// deploy new version to CI
powershell ’’’$drive = (get - location).Drive

.Name
$deployMachine ="\\\\ demoapliis . glinttocm .

com"
$user =" install "
$pass ="*******"
$deployMachineProjectFolder =" GIIS \\CI"

$projectFolder =" $env: JENKINS_HOME \\ jobs \\ $env:
JOB_NAME \\ builds \\ $env: BUILD_NUMBER \\ archive "

$projectConfigsFolder =" $env: JENKINS_HOME \\ jobs \\
$env: JOB_NAME \\ builds \\ $env: BUILD_NUMBER \\ archive \\
Modules \\ Html \\ Glintths .ATD \\ Configs \\ DeployConfigs \\
GIIS_CI "

Deploy dll and services to GIIS \\CI
& "$($drive):\\ DOTNET -CI\\ ATD \\ Modules \\

Html \\ Glintths .ATD \\ BuildConfigs \\ DeployAssemblies .ps1"
-deployMachine $deployMachine -user $user -pass $pass -
deployMachineProjectFolder $deployMachineProjectFolder -
projectFolder $projectFolder

Deploy configs to GIIS \\CI
& "$($drive):\\ DOTNET -CI\\ ATD \\ Modules \\

Html \\ Glintths .ATD \\ BuildConfigs \\ DeployConfigs .ps1" -
deployMachine $deployMachine -user $user -pass $pass -
deployMachineProjectFolder $deployMachineProjectFolder -
projectConfigsFolder $projectConfigsFolder ’’’

}
}

Listing 5.18: Atendimento Jenkinsfile - stage Deploy

74 Chapter 5. Implementation

The Deploy stage, presented in Listing 5.18, begins with an email being sent to the Atendi-
mento’s members informing that a new version is ready to be deployed to the CI environment.
As designed, the deploy will not be executed automatically, therefore an input directive is used
and the pipeline waits for a response to continue to the deployment or to abort the current
job. If the user responds positively, the build continues and the current version artifacts are
archived, in other words they are saved in the current build folder in the remote machine.
These saved artifacts will be used to rollback new versions to this one, if it is necessary. Af-
ter the archive, a powershell is executed to deploy the assemblies and config files to the CI
publication folder.

stage (’Smoke Test ’) {
steps {

script {
currentStage = smokeTestStage

}
dir ("${ ATD_CI_BUILD_CONFIGS_DIR }") {

powershell ’.\\ SmokeTest .ps1 ’
}

}
}

Listing 5.19: Atendimento Jenkinsfile - stage Smoke
Test

Listing 5.19 presents stage Smoke Test that also executes a powershell saved in source control.
This script creates the Selenium-Grid explained in section 5.4 and runs the tests using NUnit
console. In the end of the tests, the grid created is stopped and destroyed, so that it can be
restored in the next stage of the pipeline and to release resources of the remote machine. The
nest stage, Functional Acceptance Tests, presented in Listing 5.20 runs another powershell
script that revives the Selenium-Grid and executes a larger set of Selenium tests.

stage (’ Functional Acceptance Tests ’) {
steps {

script {
currentStage = ’Functional Acceptance

Tests ’
}
// Functional Acceptance tests
dir ("${ ATD_CI_BUILD_CONFIGS_DIR }") {

powershell ’.\\
FunctionalAcceptanceTests .ps1 ’

}
}

}

Listing 5.20: Atendimento Jenkinsfile - stage
Functional Acceptance Tests

The final snippet of the Jenkinsfile, presented in Listing 5.21, shows the final section of
the pipeline, already outside the stages section. The post sections configures additional and
optional steps that are executed after the conclusion of the pipeline or one of its stages. To
execute this post steps, a specific condition must be verified. In the snippet presented, if the
pipeline or any stage finishes with "failed" status, an email is sent to Atendimento’s team
members informing the stage that failed and the console log of the failed build. Also, if the
failure of the current stage should result in a rollback to the previous successful version, a

5.6. Jenkins Workflow 75

powershell script is executed to deploy the artifacts of the last successful build. When the
pipeline ends successfully, an email is also sent to the members of Atendimento, informing
the result of the build and the link to the CI environment where they can see the more recent
version of the application.

post {
failure {

script {
bodyEmail = "The build failed on stage (${

currentStage }). \n" +
"\ nReport at: http :// devci

:8080/ job/ ATD_CI /${env. BUILD_NUMBER }/ console "
if(stagesToRollback . contains (currentStage)){

// rollback
powershell ’’’$drive = (get - location).

Drive.Name
$jenkinsHome =" $env: JENKINS_HOME "
$jenkinsJobName =" $env: JOB_NAME "

& "$($drive):\\ DOTNET -CI\\ ATD \\
Modules \\ Html \\ Glintths .ATD \\ BuildConfigs \\ Rollback .ps1"

-jenkinsHome $jenkinsHome -jenkinsJobName
$jenkinsJobName ’’’

bodyEmail += "\n\ nRollback to the previous
successfull version executed !"

}
mail bcc: ’’, body: bodyEmail , cc: "${

CC_EMAILS }", from: ’gituser@glintt .com ’, replyTo : ’’,
subject : "${ SUBJECT_EMAIL }", to: "${EMAIL }"

}
}
success {

mail bcc: ’’, body: bodyEmail , cc: "${ CC_EMAILS
}", from: ’gituser@glintt .com ’, replyTo : ’’, subject : "$
{ SUBJECT_EMAIL }", to: "${EMAIL }"

}
}

Listing 5.21: Atendimento Jenkinsfile - post section

,

5.6.1 Issues implementing the pipeline

While implementing the pipeline in the Jenkins workflow, there were some issues that re-
quired online search to resolve them. One of the first problems that emerged was the diffi-
culty to access environment variables, both the specific variables of Jenkins and the variables
initialized in the environment section. As mentioned in Jenkins documentation, to access
environment variables $env.VARIABLE_NAME or just $VARIABLE_NAME - for example
$env.BUILD_NUMBER or $BUILD_NUMBER. Using the pipeline syntax, to do a simple
log of one of those variables is just needed a command "echo ’$env.BUILD_NUMBER’ ".
With this command, the pipeline doesn’t really prints the value of the environment vari-
able. The problem is related to the use of single quotes (’) instead of double quotes ("). If
the command is changed to "echo "$env.BUILD_NUMBER" ", it will then print the desired
value. Besides that issue, in the powershell step the referred variables are not accessed us-
ing the same notation. In the powershell context, the variable environments are read through

76 Chapter 5. Implementation

$env:VARIABLE_NAME, which can result in confusions to when to use one of the expressions
mentioned.

In the Deploy stage, there is an input step to check if the deployment of the artifacts of
the current build is approved. As this stage runs two different scripts, one that deploys the
assemblies and other that deploys configuration files of the application, these scripts could
be run in parallel. At this point, it was not possible yet to configure two parallel stages with
an input step.As mentioned in Jenkins documentation, a stage must have only one of the
following sections: steps, stages or parallel. In the future maintenance of the pipeline, it is
expected that this issue is resolved and the pipeline time execution to be improved.

77

Chapter 6

Evaluation

Considering the importance of the preconized solution and people interested in its good im-
plementation, some methods can be used to evaluate it.

The factors that will be used to evaluate the solution are:

• User Satisfaction (people involved in the process);

• Average Time for CI Approval.

User Satisfaction will evaluate the use of the new solution to the CI/CD process by the people
involved: developers, testers, managers. This group of people is in the first line to deal with
the process and is the one that can give a more important and reliable feedback. To test
this factor, an inquiry will be created and provided to each person of that group to give his
opinion about the new process implemented. Having in mind that the group of respondents
have different functions on the organization and not all of them have technical knowledge
about each stage of the CI/CD process, it is expected that the inquiry will have more general
questions and at the same time will contribute to a reliable evaluation. This inquiry is expected
to be organized with only level answers (0 to 5 for example) to allow a more objective analysis
of the factor in question. The results of the inquiry will be analyzed and will contribute to
understand the feedback of the parts interested in the process.

The hypotheses to test User Satisfaction include the hypothesis of the involved people in
the process being more satisfied and confident with the new implemented process. The
null hypothesis to consider is the acceptable average score for each question of the inquiries
made, and that average number was discussed and defined with this project’s supervisor and
interested managers. Regarding statistic tests, the appropriate test to use is approached in the
next sections, in this case in section 6.1. The answers to the inquiry, organized by levels (0 to
5 for example), are analyzed and the average for each question is compared to the acceptable
average score defined. This comparison allows to conclude if people involved in the process
are happier with its new implementation.

Regarding Average Time for CI Approval, it will evaluate the time that takes the testers
team to approve a development published in the CI environment. It will compare the average
time in the previous CI/CD state and in the new one. To do that comparison, it will be
considered a specific number of sprints occurred in the previous state of CI/CD process and
the same number of sprints occurred in the new state of the process. In each sprint, it will be
calculated the average time from the moment that the developer deploys his development to
CI environment until testers approve it. It is easy to calculate that time for each development
in a sprint because in project Atendimento we use the product backlog available in the TFS.
When a developer deploys his development to the CI environment, he creates a new task in

78 Chapter 6. Evaluation

the backlog item associated to his development called Testes Qualidade CI (Quality Tests
CI), with the "To Do" state. When a task with this description is created, the testers team
automatically receive a notification saying that they can test the related development. When
a tester starts validating, he/she changes the task state to ”In Progress” and when he/she
approves that development, the task state is changed to "Done". So, to verify the time it
took to approve that development it is just needed to calculate the time since the task state
was changed to ”In Progress” until it was changed to "Done".

The hypotheses to test this factor include the hypothesis of the new process to have less
average time for CI approval than the old organization’s process. Since this time for each
development can take hours and sometimes days, this is a quantitative analysis, that will
be traduced in hours. To evaluate this factor, the appropriate test is also explained in an
upcoming section, section 6.2.

6.1 User Satisfaction
To evaluate user satisfaction, an inquiry was created to be answered by the people involved in
the process (developers, testers, managers). This inquiry is presented in Appendix F. Of the
group of people considered, 10 elements answered to all the five required questions. Table 6.1
presents the results of the inquiry made, being shown the number of people that answered
with each option for each question.

Table 6.1: User satisfaction - number of answers by question.

Questions Answers

1 2 3 4 5

1 - - 1 1 8
2 5 4 1 - -
3 1 - 1 5 3
4 - - 1 7 2
5 - - 1 4 5

By adding the numbers on each row, it can be confirmed that 10 persons answered the
inquiry. The hyphen (-) in some of the table cells indicates that nobody chose the related
answer option. For each question observed in Appendix F and enumerated in table 6.1, it is
possible to compare the obtained results with the expected ones.

Before starting the statistical analysis of any metric, it is necessary to say that a tool was used
to perform the appropriated tests: RStudio 1. It is an IDE that allows to use the programming
language R2 to create graphics and perform statistical calculations.

In the next subsections, the answers to each question of the inquiry are evaluated.
1https://www.rstudio.com/
2https://www.r-project.org/

6.1. User Satisfaction 79

6.1.1 Question 1

Analyzing the results of the first question of the inquiry - ”What do you think about the use
of automated tests besides the ones performed by QA team”? -, it is observed that the most
of the respondents (80%) believe that the addition of automated tests to the ones performed
by the QA team is very good. The remaining 20% is divided between option 3 and 4, so one
person in ten is still not sure about the use of automated tests.

As mentioned earlier, for each question of the inquiry it is calculated the mean of the answers
and it is compared to a value defined as expected. Regarding statistic tests, t-test is a
hypothesis test that allows to compare means. To guarantee that the t-test is the adequate
test to perform, some assumptions must confirmed. The first assumption defines that the
data being analyzed must be continuous (not discrete), and this point is verified in the answer
options (0-5). Another assumption mentions that the sample considered is a simple random
sample, which means that each item in the population has the same probability of being
selected. Last but not least, the data analyzed must follow the normal probability distribution.
Normally, when analyzing a sample with 30 or more observations, the sampling distribution
is assumed to be normal. In this particular case, the sample has 10 observations, so it is not
possible to make that assumption. To assume the normality, a test must be made; a very
known and powerful test is the Shapiro-Wilks test. This test consists in two hypotheses:

H0: Population follows a normal distribution

H1: Population does not follow a normal distribution

To perform the referred test, RStudio was used, as it can be seen in Figure 6.1.

Figure 6.1: RStudio - Shapiro-Wilks test for question 1

Considering a confidence interval of 95%, which means the significance level (α) is 0.05, the
p-value presented in the above figure is less than α. Therefore, the normal distribution of
the data considered is rejected and the t-test cannot be used. An alternative to the t-test
in this case can be the Wilcoxon test, that is a non-parametric hypothesis test. To evaluate
the results of the first question of the inquiry, it is defined that the average should be greater
than 4.25. Therefore, the hypotheses to the current test are:

H0: m ≤ 4.25

H1: m > 4.25

where m represents the mean of the sample

80 Chapter 6. Evaluation

Figure 6.2: RStudio - Wilcoxon test for question 1

Figure 6.2 presents the result of the Wilcoxon test in RStudio. As the p-value observed in the
previous figure is less than α (0.05), the null hypothesis is rejected, which means that with
95% of confidence the mean evaluated overpasses the value chosen. Therefore, the addition
of automated tests to the Atendimento’s CI process seems to be approved by the majority of
people involved.

6.1.2 Question 2

The second question - Consider this scenario: Manel is pressured to resolve issues at the CI
environment and estimates that they will be resolved in 3 hours. He takes more time than
he thought to resolve the problem and decides to make the correction available in the CI
environment without implementing the needed tests. Do you agree with Manel’s behavior?
- answers are not so unanimous as the first one. In this question, 50% of the respondents
answered ”Totally disagree” (option 1) and four of them (40%) chose option 2. Once again,
one person chose option 3, which can have many reasons: did not understood the question;
really doesn’t have any thought on the issue; did not only thought about the decision only
taken by Manel, but also in other situations where, for example, Manel’s boss orders him
to publish corrections without testing them. This last reason is as viable as the others; this
question can be a little bit subjective and dependent of the specific situation, but it was
intended to focus on the correct behavior in general situations.

As in the previous question analysis, a Shapiro-Wilks test must be realized to verify if the
population follows a normal distribution. The two hypothesis are equal to the previous Shapiro-
Wilks test. Running the test in RStudio, the p-value obtained is 0.008489. Once again, the
p-value is less than α, the normal distribution is rejected and the t-test cannot be used.
Therefore, it is used again the Wilcoxon test. The reference value defined here is a mean
smaller than 2.5, and the hypotheses to this test are:

H0: m ≥ 2.5

H1: m < 2.5

where m represents the mean of the sample

To run this test in RStudio, comparing to the one presented in Figure 6.2, it is passed the
answers to the second question, the mu option changes to 2.5 and the alternative to ”less”.
The p-value obtained is 0.005995 and less than α. Again the null hypothesis is rejected and,
with 95% confidence, the average answer is in the range of the value defined as reference. In
this case, the majority of people involved in the process answered as expected, affirming that
Manel’s behavior is incorrect.

6.1. User Satisfaction 81

6.1.3 Question 3

Question number 3 - How confident do you feel about the correct behavior of a new bug/de-
velopment published in CI environment? - is the one that has more different answers. Eight
persons answered positively, 50% of all the respondents being confident and 30% very con-
fident about the correct behavior of a new bug fix/development deployed to CI. One person
answered with the middle option, not showing nor confidence nor mistrust. Another person,
chose option 1, not being confident at all about the new process deployment of a developmen-
t/bug fix. This shows that a majority of people have a good feeling about the new process,
but 10% may still show some reservations as the process was implemented recently.

To perform the planned statistical tests, the first one to realize is the Shapiro-Wilks test. The
hypotheses of this test are already known from the previous sections. Using the RStudio, this
test results in a p-value of 0.007736. This value is less than α for a level of confidence of
95%, meaning that the normal distribution of data is rejected and t-test cannot be used. The
reference value defined to this question is 3.5, and the hypotheses to the Wilcoxon test are:

H0: m ≤ 3.5

H1: m > 3.5

where m represents the mean of the sample

The p-value resulted from executing the test is 0.07893. As this value is greater than α, the
null hypothesis is not rejected and with 95% of confidence the average answer is not superior
to 3.5 as expected. At this phase of the project, it was expected that the people involved
were more confident, but the required level of confidence is yet to be achieved.

6.1.4 Question 4

In the fourth question of the inquiry - How is the CI environment stability/behavior with
the recent changes to the process? - the majority of the respondents answered with option
4 (70%). Two individuals answered with the most positive option, option 5, which means
that 90% of the respondents have been satisfied about the recent stability/behavior of the
CI environment. The remaining person doesn’t classify it as bad or good, choosing the
intermediate option.

Continuing with the statistical tests, the Shapiro-Wilks test is the starting point. The p-value
obtained from this test is 0.003737 and as it is less than α, the normal distribution of data
is rejected with 95% of confidence and the process will advance to the Wilcoxon test. The
reference value discussed to use here is 4.3 and the average score of the answers to the inquiry
should be greater than this value. This test consists on the following hypotheses:

H0: m ≤ 4.3

H1: m > 4.3

where m represents the mean of the sample

In this test, it is obtained a p-value = 0.878, a value inferior to the value of α. Therefore, with
a confidence of 95%, the average answer to the stability/behavior of CI does not meat the
reference value. As in the previous question, at this point the stability of the CI environment
as not yet reach the desired level.

82 Chapter 6. Evaluation

6.1.5 Question 5

The result of the final question of the inquiry, question 5 - These recent changes to CI process
improve and accelerate the release of developments/bug fixes to version 17? -, shows that
90% of the respondents agree that the new CI process improves and accelerates the release to
version 17, being that 5 respondents totally agree with that idea. One person is sill in doubt
about the results of the changes made to the CI process and chose option 3.

Statistically analyzing the answers to this question, the Shapiro-Wilks test is made to evaluate
the normality distribution of data. The p-value printed in RStudio when running this test is
0.008489. As this value is less than the α, the normal distribution of data is rejected and t-test
cannot be executed. In this scenario, the average reference value decided to be exceeded is
3.75.

H0: m ≤ 3.75

H1: m > 3.75

where m represents the mean of the sample

Using RStudio once more to perform this test, the resulted p-value is equal to 0.01108.
This value is less than the used α=0.05, so the null hypothesis is rejected. With 95% of
confidence, the average value of the answers obtained exceeds the reference value.Thus, the
expected minimum of persons already agree that the new CI process improves and accelerates
the releases of developments/bug fixes to version 17.

6.2 Average Time for CI Approval
As mentioned in the beginning of this chapter, this metric evaluates the time the testers
team take to approve a development/bug fix published in the CI environment. It is compared
the times registered in the old process and in the new one. To make that comparison, two
samples of data were obtained from the TFS backlog of project Atendimento using queries.
First, two months are chosen to be used in the evaluation of this metric; as in April of this
year the solution documented in this dissertation was not being implemented yet, data from
this month is chosen to represent the sample from the old CI process; in the last months the
solution was implemented, so to guarantee more reliable feedback, data from September is
selected to the second sample.

To obtain the data referred above, various queries were created in the backlog. As observed
in Figure 6.3, in the query it is simply defined that the top level work items (general backlog
items) must be from iteration and area Atendimento and the linked work items (general
backlog items child tasks) must be from the same iteration and area, contain Testes Qualidade
CI as title and state ”Done”, and their closed date (date they passed to ”Done” state) must
meet the interval specified. In the example query presented, it is searching for developments
approved during April. To search for developments approved in September, it is only needed
to change the interval of Closed Date filter to 9/1/2018 and 9/30/2018. The area path
filter only obtains developments approved because the backlog is divided in two areas: the
Atendimento area contains only new developments and one of its child areas, called Suporte
(Support), contains bugs/issues reported internally in Glintt-HS or by its clients. Therefore,
to retrieve bugs whose corrections were approved in CI environment in the chosen months, it
is necessary in the TFS query to change the area path filter to Atendimento\Suporte. The

6.2. Average Time for CI Approval 83

rest of the query stays the same as shown in Figure 6.3, only changing the Closed Date to
the pretended month.

Figure 6.3: TFS Backlog - query for developments approved in CI in April

Running each query referred, it is presented for the month specified a list of the backlog items
or bugs with their respective Testes Qualidade CI task indicated as ”Done”. Opening the
information about this task, it is possible to observe its history, where it can be seen the date
and time that the task state changed to ”In Progress” and to ”Done”. This way, it is easier
to obtain the time needed in hours to approve the respective development/bug fix. Observing
the tasks for areas Atendimento and Atendimento\Suporte during each month defined, the
obtained results are presented in Tables 6.2 and 6.3.

Table 6.2: Time (hours) for CI Approval in April and September.

April
Old CI Process

September
New CI Process

27.30 99.28
15.83 32.72
13.07 21.42
38.72 11.20
11.37 94.53
47.53 104.55
184 72.35

174.78 87.87
138.78 4.12
2.73 3.2

84 Chapter 6. Evaluation

Table 6.3: Time (hours) for CI Approval in April and September (part 2).

April
Old CI Process

September
New CI Process

12.35 15.62
3.22 22.43
3.05 0.33
50.22 5.05
32.52 6.63
17.72 5.23
93.35 30.68
10.22 1.18
55.87 89.63
80.23 1.65
32.25 7.63
10.23 4.07

To evaluate this two samples, a paired t-test can be used. This type of test is used to evaluate
differences between paired observations, being ideal to compare "before" and "after" samples.
As this metric compares the results of the old and new process of CI and CD at Glintt-HS,
the paired t-test seems to be the best choice of test to apply. As in the user satisfaction
metric, to perform a t-test some assumptions must be verified. The first two assumptions
referred earlier are also checked in this case. To perform a paired t-test, the differences for
the matched-pairs must follow a normal probability distribution. Therefore, a Shapiro-Wilks
test is executed, using the following hypotheses:

H0: The differences for the matched-pairs follow a normal distribution

H1: The differences for the matched-pairs do not follow a normal distribution

Once again, RStudio is used to calculate the differences between the matched-pairs and to
run the Shapiro-Wilks test. The p-value obtained 0.7648 is greater than α=0.05, so the
normal distribution of the differences for the matched-pairs is not rejected. Also, another
assumption, not needed to verify in the user satisfaction tests, is the fact that there should
not be no significant outliers in the differences of the matched-pairs. To check if outliers exist,
a boxplot is drawn using RStudio. Figure 6.4 presents the boxplot of the differences between
the two related groups.

6.2. Average Time for CI Approval 85

Figure 6.4: RStudio - boxplot of the differences between the two matched-
pairs

In the previous figure, it is possible to observe that no outlier was drawn. Thus, the t-test
can be used. As this test should evaluate if the average time for the new process is less than
in the old, the test hypotheses are:

H0: mo ≤ mn

H1: mo > mn

where mo represents the mean of the old process and mn the mean of the new process

Figure 6.5: RStudio - paired t-test applied for Average Time for CI Approval

Figure 6.5 presents the results of the paired t-test executed in RStudio. As the p-value is
greater than α (0.05), the null hypothesis is not rejected. Therefore, with 95% of confidence,
it is not possible to affirm that the average time for CI approval in the new process is less
than the average time in the old one.

87

Chapter 7

Conclusions

This chapter describes the conclusion of the solution presented in this dissertation, including a
summary of the results obtained and an explanation of future work to improve the implemented
process.

7.1 Results
The solution documented in this dissertation was implemented successfully and keeps on
being improved every day. The goals enumerated in the beginning of this document were all
achieved with the implementation of a new CD architecture. The integration of automated
tests combined with a rollback process that didn’t exist results in a more improved and reliable
process. Taking a look at the evaluation of the solution presented in the previous chapter,
the feedback obtained by the people involved in the process is positive; the majority of the
questions already have an average of answers that confirms the success of the new CI/CD
process. There is an ongoing change of mentality on the company and most people agree with
the use of automated tests, understand the importance of implementing tests when working
on new developments or bug fixes and agrees that the improvements made help to release new
versions of the application faster and with more reliability. Despite this, the confidence that
changes deployed in the CI environment work correctly and the stability of this environment
as not yet achieved the average levels proposed. Still, these two factors already have a very
positive feedback that also reinforces the consistency of the outcome. About the factor of
time for CI approval also evaluated, the tests performed indicate that it is not yet possible
to confirm its improvement. Nevertheless, it can be seen in Figure 6.5 that the mean of
the differences between the two analyzed groups of data is approximately 15.18. This means
that subtracting the mean of the data registered in April with the mean of the records from
September, the result is positive; therefore, the mean in September is less than in April. In
practice, the time to approve changes published in the CI environment has decreased, but
as the two related samples have relatively few records the statistical test made cannot yet
confirm with 95% confidence that the process has improved.

7.2 Future Work
Every solution needs continuous evolution and maintenance, and the Atendimento’s CI/CD
process at Glintt-HS is not different. In the previous chapters there were mentioned some
designed steps that were not implemented. The first one that stands out is the lack of
nonfunctional acceptance tests; these tests were approached in the technological background
and in the design of the Jenkins pipeline, but during the implementation of the various groups
of tests, the focus of the implementation turned to the more important and needed tests and

88 Chapter 7. Conclusions

nonfunctional tests were left behind. In the near future, it is planned the beginning of the
development of these tests.

Other change to the designed solution that was explained in the implementation chapter
was the trigger of the automated build. Contrary to what was thought, the build could not
be triggered on each check-in, but with rolling builds. With the planned improvement of the
merge process to the CI branch, this will be changed and it will allow to have a faster feedback
obtained from the continuous integration of code.

Besides the future work presented before, it is planned the total migration of the Jenkins
pipeline to the declarative syntax. As seen in the implementation chapter, the current pipeline
code has some scripted blocks to define and reassign values to dynamic variables. With Jenkins
is now possible to use Shared Libraries, a feature that allows to define variables and functions
that can be imported and used along the declarative pipeline. Also, the deployment phase
of the pipeline takes a long time to be completed and the deployment of assemblies and
configuration files should be made in parallel. As this phase is dependent on an input step,
there is some hope that in the future it will be possible to integrate an input step with parallel
stages.

89

Bibliography

Alexandrova, Julia (Mar. 2016). Continuous Integration with TeamCity. url: https : / /
confluence . jetbrains . com / display / TCD9 / Continuous + Integration + with +
TeamCity.

Balliauw, Maarten (Mar. 2013). TeamCity plugin for Visual Studio. url: https://blog.
jetbrains.com/dotnet/2013/03/12/teamcity-plugin-for-visual-studio/.

Charlie Poole, Rob Prouse (2017). What Is NUnit? url: http://nunit.org/.
CircleCI (2018). Migrating from Jenkins to CircleCI. url: https://circleci.com/docs/

1.0/migrating-from-jenkins/.
Cohen, Frank (2012). Write Your First Functional Selenium Test. url: http : / / www .

pushtotest.com/selenium-tutorial-for-beginners-tutorial-1.
Corgan, Scott (2016). tap-dot. url: https://www.npmjs.com/package/tap-dot.
Dietrich, Erik (Feb. 2017). Unit Test Frameworks for C#: The Pros and Cons of the Top 3.

url: https://stackify.com/unit-test-frameworks-csharp/.
Easy, Selenium (2018). What is Jenkins and Use of it? url: http://www.seleniumeasy.

com / jenkins - tutorials / what - is - jenkins - and - advantages - of - jenkins -
continuous-integration-tool.

Eclipse (Feb. 2017). About Jenkins. url: https://wiki.eclipse.org/index.php?title=
Jenkins%5C&oldid=414064.

Facebook (2018). Jest. url: https://facebook.github.io/jest/.
Foundation, .NET (2017a). About xUnit.net. url: https://xunit.github.io/.
– (2017b). Getting Started with xUnit.net (desktop). url: http://xunit.github.io/

docs/getting-started-desktop.html.
Foundation, Apache Software (2018). Twitter github Apache JMeter™. url: http : / /

jmeter.apache.org/.
Fowler, Martin (May 2006a). Continuous Integration. url: http://www.dccia.ua.es/

dccia / inf / asignaturas / MADS / 2013 - 14 / lecturas / 10 _ Fowler _ Continuous _
Integration.pdf.

– (Jan. 2006b). Xunit. url: https://www.martinfowler.com/bliki/Xunit.html.
– (May 2013). Continuous Delivery. url: https://martinfowler.com/bliki/ContinuousDelivery.

html.
– (Jan. 2018). IntegrationTest. url: https://martinfowler.com/bliki/IntegrationTest.

html.
Gesso, Justin (Apr. 2015). Continuous Integration Best Practices for Software Engineering.

url: https://betsol.com/2015/04/continuous-integration-best-practices-
for-software-engineering/.

Glintt – Global Intelligent Technologies, S.A. (Apr. 2018). RELATÓRIO E CONTAS 2017.
url: https://www.glintt.com/es/Inversores/Cuentas/Resultados%20Financeiros/
Glintt_RelatorioContas2017_H.PDF.

Halliday, James (Jan. 2018). tape. url: https://github.com/substack/tape.
Harding, Ben (May 2017). Comparing Jasmine, Mocha, AVA, Tape, and Jest. url: https:

//dzone.com/articles/comparing-jasmine-mocha-ava-tape-and-jest.

90 Bibliography

Haunts, Stephen (June 2014). Post Deployment Smoke Testing Open Source Project. url:
https://stephenhaunts.com/projects/post-deployment-smoke-tester/.

Al-Jallad, Mohannad M. (2012). “REA Business Modeling Language: Toward a REA based
Domain Specific Visual Language”. PhD thesis. KTH Royal Institute of Technology.

Jenkins (2018). Jenkins. url: https://jenkins.io/.
JetBrains (2018). Features. url: https://www.jetbrains.com/teamcity/features/.
Jez Humble, David Farley (2011). Continuous Delivery: Reliable Software Releases through

Build, Test, and Deployment Automation. Addison-Wesley Professional.
Koen, Peter et al. (2001). “Providing Clarity and A Common Language to the “Fuzzy Front

End””. In: Research-Technology Management 44.2, pp. 46–55. doi: 10.1080/08956308.
2001.11671418.

Li, Gang (June 2011). Automate web application testing with Sahi. url: https://www.ibm.
com/developerworks/library/wa-sahi/.

Microsoft (2015). Microsoft Build Tools 2015. url: https://www.microsoft.com/en-
us/download/details.aspx?id=48159.

– (2018). Team Foundation Server. url: https://www.visualstudio.com/tfs/.
MochaJS (Feb. 2018). Mocha. url: https://mochajs.org/.
Oliveira, Jason de (Oct. 2012). [Tutorial] Test Driven Development with Visual Studio 2012

Part4: Full cycle of TDD using Visual Studio 2012. url: http://www.jasondeoliveira.
com/2012/10/tutorial-test-driven-development-with_25.html.

Osterwalder, Alexander (2004). The Business Model Ontology: A proposition in a Design
Science Approach. url: http://www.hec.unil.ch/aosterwa/PhD/Osterwalder_PhD_
BM_Ontology.pdf.

Pecanac, Vladimir (Feb. 2016). TOP 8 CONTINUOUS INTEGRATION TOOLS. url: https:
//code-maze.com/top-8-continuous-integration-tools/.

Peffers, Ken et al. (2007). “A Design Science Research Methodology for Information Systems
Research”. In: Journal of Management Information Systems 24.3, pp. 45–78.

Phillips, Andrew (July 2014). The Continuous Delivery Pipeline - What it is and Why it’s so
Important in Developing Software. url: https://devops.com/continuous-delivery-
pipeline/.

Pittet, Sten (2018). Continuous integration vs. continuous delivery vs. continuous deployment.
url: https://www.atlassian.com/continuous-delivery/ci-vs-ci-vs-cd.

RadView (2018). WebLOAD Free Edition. url: https://www.radview.com/webload-
download/.

Sandstrom, Terje (Nov. 2012). How to manage unit tests in Visual Studio 2012 Update 1 :
Part 1–Using Traits in the Unit Test Explorer. url: https://blogs.msdn.microsoft.
com/devops/2012/11/09/how-to-manage-unit-tests-in-visual-studio-2012-
update-1-part-1using-traits-in-the-unit-test-explorer/.

SeleniumHQ (2018a). Selenium. url: https://github.com/SeleniumHQ/selenium.
– (2018b). What is Selenium? url: http://www.seleniumhq.org/.
SmartBear (2018).What Is Unit Testing? url: https://smartbear.com/learn/automated-

testing/what-is-unit-testing/.
TestAnything (2018). Test Anything Protocol. url: https://testanything.org/.
TytoSoftware (2018a). Introduction - Sahi Pro. url: http://sahipro.com/docs/introduction/

index.html.
– (2018b). Sahi Open Source Automation Testing Tool For Web Applications. url: http:

//sahipro.com/sahi-open-source/.
Watir (2018). Watir is... url: http://watir.com/.
Webpack (2018). Concepts. url: https://webpack.js.org/concepts/.

Bibliography 91

White, Oliver (May 2014). Java Tools and Technologies Landscape for 2014. url: https:
//zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-
for-2014/12/.

Woodall, Tony (2003). “Conceptualising ’Value for the Customer’: An Attributional, Structural
and Dispositional Analysis”. In: Academy of Marketing Science Review 2003.12.

Zinser, Jan-André (2017a). Using mocha-webpack with jsdom. url: https://zinserjan.
github.io/mocha-webpack/docs/guides/jsdom.html.

– (2017b).Webpack configuration. url: https://zinserjan.github.io/mocha-webpack/
docs/installation/webpack-configuration.html.

93

94 Appendix A. FAST Diagram

A
pp

en
di
x
A

FA
ST

D
ia
gr
am

F
ig

ur
e

A
.1

:
FA

ST
Di
ag
ra
m

95

A
pp

en
di
x
B

P
ip
el
in
e
D
ia
gr
am

F
ig

ur
e

B
.1

:
Pi
pe
lin
e
Di
ag
ra
m

97

98 Appendix C. Atendimento Mocha Tests - Results in the Browser

A
pp

en
di
x
C

A
te

nd
im

en
to

M
oc
ha

Te
st
s
-
R
es
ul
ts

in
th
e
B
ro
w
se
r

F
ig

ur
e

C
.1

:
At
en
di
m
en
to

M
oc
ha

Te
st
s-

Re
su
lts

in
th
e
Br

ow
se
r

99

A
pp

en
di
x
D

A
te

nd
im

en
to

Fu
nc
tio

na
lA

cc
ep
ta
nc
e
Te

st
s
-
C
SV

R
ep

or
t

F
ig

ur
e

D
.1

:
At
en
di
m
en
to

Fu
nc
tio

na
lA

cc
ep
ta
nc
e
Te

st
s-

CS
V
Re

po
rt

101

102 Appendix E. Atendimento Functional Acceptance Tests - HTML Report

A
pp

en
di
x
E

A
te

nd
im

en
to

Fu
nc
tio

na
lA

cc
ep
ta
nc
e
Te

st
s
-
H
T
M
L
R
ep

or
t

F
ig

ur
e

E
.1

:
At
en
di
m
en
to

Fu
nc
tio

na
lA

cc
ep
ta
nc
e
Te

st
s-

HT
M
L
Re

po
rt

103

Appendix F

Evaluation - User Satisfaction Inquiry

Figure F.1: User Satisfaction Inquiry

