
Ambiente de Simulação para o Sistema de
Exploração Robótica Subaquática UNEXMIN

DENYS SYTNYK
novembro de 2018

Simulation Environment for the
UNEXMIN Underwater Robotic

Exploration System

Denys Sytnyk,
Nº 1121150

Master in Electrical and Computer Engineering
Branch of Autonomous Systems

November 15, 2018

Dissertation for partial satisfaction of the requirements of the Master

in Electrical and Computer Engineering

Candidate: Denys Sytnyk,

Nº 1121150

Supervisor: Alfredo Manuel Oliveira Martins

Master in Electrical and Computer Engineering

Branch of Autonomous Systems

This page was intentionally left blank.

Aos meus pais, irmã e todos os outros...

Abstract

Underwater mines exploration is a valued, complex, expensive and time-consuming

task. The unstable nature of the underwater environment with lack of visibility and

the existence of obstructions create the need for complex navigation software which

requires numerous missions and hardware/software validations. When testing and veri-

fying control algorithms for such an operation, a simulation environment can be a very

helpful tool. This also includes tools for the development of unmanned vehicle software,

algorithm benchmarking and system preliminary validation.

The objective in this thesis was to start the development of a simulation platform

that can be used when developing and testing control systems for AUV operations.

The simulator will include a dynamic model of an AUV in addition to complex world

and sensor models such as DVL, IMU, Multibeam, Mechanical Scanning Imaging Sonar

(MSIS), cameras, SLS and others. The simulated world includes water graphics, mine

meshes, underwater visibility, currents, and hydrodynamics. Control of the robot in

simulation is performed by keyboard or joystick over thrusters. The platform must be

universal, such that users can implement their own algorithms easily and get immediate

simulation results without needing to implement a complete control system. There

should also be an easy transition between testing the control system on the simulated

AUV and applying it to the real AUV.

Robot Operating System (ROS) and Gazebo were used in the development of the

platform. The platform with sensors and navigation was validated with real-world tests

comparison.

Keywords:

Underwater Simulation, exploration, simulation, Gazebo, mines, AUV, UNEXMIN,

ROS.

i

This page was intentionally left blank.

Resumo

A exploração de minas subaquáticas é uma tarefa valiosa, complexa, dispendiosa e

demorada. A natureza instável do ambiente subaquático, com falta de visibilidade e a

existência de obstruções, cria a necessidade de software de navegação complexo, qual

requer inúmeras missões e validações de hardware/software. Ao testar e verificar os

algoritmos de controle para tal operação, um ambiente de simulação pode ser uma ferra-

menta muito útil. Isto também inclui ferramentas para o desenvolvimento de software de

véıculos não tripulados, benchmarking de algoritmos e validação preliminar do sistema.

O objetivo desta tese foi iniciar o desenvolvimento de uma plataforma de simulação

que possa ser usada no desenvolvimento e teste de sistemas de controle para operações de

AUV. O simulador incluirá um modelo dinâmico de um AUV, além de modelos complexos

do mundo e sensores, como DVL, IMU, Multibeam, MSIS, câmeras, SLS e outros. O

mundo simulado inclui gráficos de água, malhas de minas, visibilidade subaquática,

correntes e hidrodinâmica. O controle do robô é realizado por teclado ou joystick sob

as dinâmicas de propulsão. O simulador deve ser universal, de modo que os usuários

possam implementar seus próprios algoritmos facilmente e obter resultados imediatos de

simulação sem a necessidade de implementar um sistema de controle completo. Também

deve haver uma transição fácil entre testar o sistema de controle no AUV simulado e

aplicá-lo ao AUV real.

ROS e Gazebo foram usados no desenvolvimento da plataforma. A plataforma com

sensores e navegação foi validada com comparação de testes reais.

Palavras-Chave:

Simulação Submarina, exploração, simulação, Gazebo, minas, AUV, UNEXMIN, ROS.

iii

This page was intentionally left blank.

Contents

Abstract i

Resumo iii

List of Figures ix

List of Tables xi

List of Acronyms xiv

1 Introduction 1

1.1 Background and motivation . 2

1.2 Objectives . 3

1.3 Dissertation Structure . 4

2 Problem formulation 5

2.1 UNEXMIN Project . 5

2.2 Environment . 6

2.3 Multi-Robotic platform . 7

2.4 Sensors . 9

2.5 Simulation requirements . 10

3 State of the Art 13

3.1 UWSim . 14

3.2 Gazebo . 15

3.3 MORSE . 17

3.4 Underwater Robotics Simulations . 17

v

vi CONTENTS

4 Simulation environment 19

4.1 ROS . 19

4.2 Gazebo . 22

4.3 Gazebo-ROS . 23

4.4 Plugins . 23

4.5 Environment description . 25

4.5.1 World Files . 25

4.5.2 Model Files . 25

4.5.3 Environment Variables . 25

4.5.4 Xacro . 26

4.5.5 URDF . 26

5 UNEXMIN Simulator 27

5.1 Simulation platform structure . 28

5.2 Simulation World . 30

5.3 UX Robot . 30

5.4 Sensors . 31

5.4.1 MSIS - Micron DST . 31

5.4.2 DVL . 36

5.4.3 IMU . 37

5.4.4 M3 . 38

5.4.5 SLS . 38

5.5 World . 40

5.5.1 Underwater visibility . 40

5.6 Hydrodynamics plugins . 42

5.7 Thrusters . 44

5.8 Pendulum . 45

5.9 Variable Ballast System . 45

5.10 Control . 45

5.10.1 UNEXMIN Keyboard Operative 46

5.10.2 Simulation Thruster Allocator . 46

5.10.3 Simulation ESC Driver . 47

5.11 Cross-workspace compatibility . 47

5.12 Vehicle Description and Initiation . 48

CONTENTS vii

5.12.1 Launch file . 48

5.13 Multirobots . 49

6 Results 51

6.1 Laboratory Tank tests . 51

6.1.1 Micron DST . 52

6.1.2 M3 multibeam . 55

6.2 SLS . 57

6.3 Mapping . 58

6.4 Performance . 60

6.5 Navigation . 61

7 Conclusion and Future Work 65

Bibliography 67

This page was intentionally left blank.

List of Figures

2.1 UX-1 left side description. 8

2.2 UX-1 right side description. 8

2.3 UX-1 front description. 8

2.4 UX-1 robot. 9

2.5 SLS sensor system. 10

2.6 Cameras system. 10

4.1 Gazebo-ROS architecture[1]. 24

5.1 General architecture between robot and simulator. 27

5.2 Software Architecture. 29

5.3 UX-1 Robot in simulation world. 31

5.4 3D to 2D pointcloud representation. 32

5.5 3D to 2D pointcloud representation. 33

5.6 Final 2D pointcloud representation. 35

5.7 Simulation image with high muddy water effect of (a) Front Camera, (b)

Right Camera and (c) GUI. 41

5.8 Simulation image with medium muddy water effect of (a) Front Camera,

(b) Right Camera and (c) GUI. 41

5.9 Simulation image with low muddy water effect of (a) Front Camera, (b)

Right Camera and (c) GUI. 41

5.10 Simulation image with no muddy water effect of (a) Front Camera, (b)

Right Camera and (c) GUI. 42

5.11 Thrusters axis. 44

5.12 ROS partial rqt grath. 50

ix

x LIST OF FIGURES

6.1 UX-1 robot in laboratory test tank. 52

6.2 Micron DST pointcloud with long range object, (a) Real and (b) Simulated. 53

6.3 Micron DST pointcloud with medium range object, (a) Real and (b) Sim-

ulated. 54

6.4 Micron DST pointcloud with close range object, (a) Real and (b) Simulated. 54

6.5 Simulated M3 multibeam pointcloud, (a) Real and (b) Simulated. 55

6.6 Simulated M3 multibeam pointcloud, (a) Real and (b) Simulated. 56

6.7 Real SLS laser image. 57

6.8 Simulated SLS laser image. 57

6.9 Real SLS laser image. 57

6.10 Simulated SLS laser image. 57

6.11 Simulated representation of 4 SLS lasers in Rviz. 58

6.12 Octomap of a section of a test mine. 59

6.13 Octomap inside of test mine. 59

6.14 Kaatiala mine in simulation world. 60

6.15 Octomap of a section of Kaatiala mine. 60

6.16 Robot trajectory in XY axis, (a) Real and (b) Simulated. 62

6.17 Robot trajectory in XZ axis, (a) Real and (b) Simulated. 62

6.18 Robot trajectory in YZ axis, (a) Real and (b) Simulated. 63

6.19 Robot yaw plot, (a) Real and (b) Simulated 63

List of Tables

3.1 Simulator Comparison . 14

5.1 Keyboard Operative inputs. 46

xi

This page was intentionally left blank.

List of Acronyms

AUV Autonomous Underwater Vehicle

API Application Programming Interface

Co3-AUVs Cooperative Cognitive Control for Autonomous Underwater Vehicles

DARPA Defense Advanced Research Projects Agency

DART Dynamic Animation and Robotics Toolkit

DOF Degrees of Freedom

DRC DARPA Robotics Challenge

DVL Doppler Velocity Log

ESC Electronic Speed Controller

FPS Frames Per Second

GNSS Global Navigation Satellite System

GPS Global Positioning System

ICRA International Conference on Robotics and Automation

IMU Inertial Measurement Unit

ISEP Instituto Superior de Engenharia do Porto

LSA Laboratório de Sistemas Autónomos

MORSE Modular OpenRobots Simulation Engine

xiii

xiv LIST OF ACRONYMS

MOOS Mission Oriented Operating Suite

MSIS Mechanical Scanning Imaging Sonar

NASA National Aeronautics and Space Administration

ODE Open Dynamics Engine

OSG OpenSceneGraph

OSRF Open Source Robotics Foundation

RAUVI Reconfigurable AUV for Intervention Missions

ROCK Robot Construction Kit

ROS Robot Operating System

ROV Remotely Operated Vehicle

SDF Simulation Description Format

SLS Structure Light Scanner

SRC Space Robotics Challenge

UHRI Underwater Human-Robot Interaction

URDF Unified Robot Description Format

USARSim Unified System for Automation and Robot Simulation

UUV Unmanned Underwater Vehicle

UWSim UnderWater Simulator

VBS Variable Ballast System

XML eXtensible Markup Language

YARP Yet Another Robot Platform

Chapter 1

Introduction

The development of underwater robotic systems poses a large set of challenging prob-

lems. These include the development of navigation, perception and autonomous control

systems.

In order to develop and validate advanced control algorithms there is a need for a

robust simulation environment to verify and test algorithms. In this master’s thesis, a

simulation platform for Autonomous Underwater Vehicle (AUV) systems was developed.

The simulation platform was developed based on the middleware ROS and Gazebo.

In real world missions, AUV’s may fail in the vehicle control or provide misleading

information about its sensors. Any of those situations may result in an unrecoverable

vehicle. Also, partial knowledge about the underwater scenario is required to perform

the real experiments. To avoid several frequent underwater robotics problems, in most

cases, the most promising course of action is the use of a simulation.

Simulators are a relevant tool for the development of autonomous vehicle software

and to process various experiments that may occur in real life. It is important for a

simulator, the inclusion of a proper dynamics simulation, visual realism, a large variety

of sensors and real-time sensor-based control. Simulations help programmers to test

various scenarios and situations, that may later, improve the performance of AUV, in

real life experiments.

This work was motivated by the develpment of the underwater robotic systems for

mine exploration at INESC-TEC.

In Europe exist various mines that were forgotten and are now flooded, inaccessible

to humans. To simulate their exploration and mapping, the developed simulator was

tested, in a scenario with similar conditions, a flooded underground mine (tunnels).

The first part of this work consists in the simulation of the various underwater sensors

1

1.1. Background and motivation Chapter 1

in the robotic simulator and in a comparative study between the outputs given by the

simulated sensor and by a real sensor under similar conditions. Then follow the inclusion

of proper dynamics, hydrodynamics, and environment for robot navigation.

Underwater navigation is a limited and complex activity due to a challenging envi-

ronment and to a limited type of sensors. Highly unstable environments demand the use

of all the information that can be gathered. With the simulation platform it is possible

to recreate various environmental scenarios and be more prepared for real missions.

INESC-TEC has been developing autonomous underwater robots for marine appli-

cations and more recently is involved in the development of specific robotic solutions

for exploration and exploration of inland flooded mines, under the European research

projects VAMOS[2] and UNEXMIN[3]. The first aims at the development of efficient

and sustainable robotic technologies for mining in flooded open pit mines and the second

on the development of autonomous robotic solutions for the mapping and exploration of

flooded underground mine caves and galleries.

Those scenarios (and the UNEXMIN one in particular) pose difficulties in system

test and development and also have some differences in relation to the typical undersea

scenarios. In the above-described projects, there exists the need to perform perception

and navigation algorithms in a simulation environment, thus leading the motivation for

this thesis.

1.1 Background and motivation

Programming an AUV to perform autonomous tasks can be a very time-consuming

process, and it is highly dependent on test missions and validations. Introducing the

possibility of realizing code validations without the need for new missions can save a

lot of time, and therefore also a lot of resources. A specific, independent and more

predictable operation can be accomplished through the use of a simulation platform.

The sensor outputs can be accurate enough for initial tests and give similar output

as real AUV in more controlled situations. A simulation tool can be very helpful in

the process of developing autonomous control systems. The control can be tested on a

simulation model, and therefore be more ready for real missions.

In order to develop a control system, a reliable perception and navigation system

have to be included. The perception of the environment is an important task and

provide the developers the crucial information for software development. The navigation

system is one of the most important systems of the robot. The environment and robot

information are crucial for navigation. A simulation tool can be very helpful and simulate

2

Chapter 1 1.2. Objectives

the information of the environment as well of the robot.

The environment of simulation can easily be changed, therefore improving the ro-

bustness of various systems/sensors in all situations. To model all forces and dynamics

accurately is, however, a very difficult task, and some assumptions must always be taken.

Thus leading the motivation of this dissertation.

1.2 Objectives

The platform can be used for testing software for AUV operations and missions

without performing real-life missions with AUV. The simulated sensor output will be

developed with the same messages as real AUV with the use of ROS. Therefore, the sim-

ulation platform must be able to simulated AUV motions based on thruster inputs and

hydrodynamics. This includes realistic estimations of the hydrodynamic forces acting on

the AUV, as well as a realistic estimation of the thrust forces for a given input of each

propeller. Such a simulation platform will give an opportunity for developers to test

their algorithms and get immediate results from the simulation. The typical user will

use the simulation to test algorithms with no need of complex installation/preparation

process. The platform will be developed such that the user easily can understand the

platform and how to implement new code without comprehensive knowledge of underly-

ing software and frameworks. When the development is done, the software will be tested

with the real AUV in the loop.

As referred above, the purpose of this study is to find the best solutions to reduce

the problems related with underwater experiments, through a realistic simulation, for

that, a simulator capable of replicate the rough conditions underwater, is necessary:

• Low visibility: Floating particles drastically reduce the visibility of underwater

experiments;

• Currents: The flows of water beneath the surface exert forces on the vehicle,

capable of throwing it out of its trajectory;

• Surface Reflections: Certain sensors provide incorrect data outputs due to reflec-

tions on the surface of the water;

• Position Determination: Unlike on aerial, terrestrial or surface applications, exact

position determination on underwater applications it’s one of the hardest tasks to

achieve due to the Global Positioning System (GPS) being inoperable underwater;

• Multiple specific sensors to underwater environments;

3

1.3. Dissertation Structure Chapter 1

1.3 Dissertation Structure

The dissertation structure follows.

In Chapter 2 the problem formulation for the simulator is present. A brief descrip-

tion of UNEXMIN project and simulation requirements are detailed.

In Chapter 3 state of the art is presented. This includes simulators comparison and

related works.

In Chapter 4 the simulation environment is described. The ROS middleware, the

simulation platform, and the interaction between them is illustrated in this chapter.

In Chapter 5 the UNEXMIN simulator is described. Simulation platform struc-

ture, architecture and all developed components of the simulation are presented in this

chapter.

In Chapter 6 the results are present. This include laboratory tank tests, real vs

simulated sensors data, navigation and mapping.

In Chapter 7 the conclusions and future work, with a brief discussion, are present.

4

Chapter 2

Problem formulation

2.1 UNEXMIN Project

Thousands of mines left from the previous mining and now inaccessible are present in

Europe, with many of those mines flooded and information of their layout is aged or

lost. Those mines may still have considerable amounts of essential raw materials. With

non-invasive methods, UNEXMIN[3] project will provide autonomous 3D mine mapping

for gathering valuable geological, mineralogical and spatial information. The project

is being supported by a science and technology merger of deep-sea robotics solutions

with user’s requirements from the mining industry. The main objective consists in the

development of the multi-robot platform, consisting in three robots, that will be capable

of operating without remote control.

The project started in 1 of February 2016 with the duration of 45 months.

Goals of UNEXMIN project are:

• Design and build of a multi-platform Robotic Explorer for autonomous 3D mapping

of flooded deep mines;

• Demonstration of the operations of the prototypes at numerous abandoned under-

water mining sites;

• Development of an open-access platform for technology transfer and further devel-

opment between stakeholders;

• Development of a research roadmap in support of further technology development;

• Development of commercial services for exploiting the technology.

5

2.2. Environment Chapter 2

The UNEXMIN project is very challenging as it consists of a multi-robotic platform that

must operate autonomously within flooded mines with a complex environment. The

important aspect of UNEXMIN project is the development of non-invasive surveying

technologies. This is possible with the use of imaging and other non-invasive sensors.

UNEXMIN can improve significant economic aspects, such as increasing Europe’s

mineral potential, reducing exploration costs for mining operations and help document

unique mining sites.

2.2 Environment

The complex underground layout, topology, and geometry of most underground mines

that take part of UNEXMIN project, make it impossible to do any surveying by conven-

tional or remotely controlled equipment. One of these examples is the usage of human

divers, which can prove unfruitful and even lethal in harsh deep mine conditions.

Underwater mine environment is rich, complex and composed of numerous materi-

als/obstructions. This includes dense mine walls, leftover obstructions, complex mine

layouts, collapsed walls, tight spaces and possibly aggressive water properties (such

as pH or temperature). Those extreme environment conditions imply the use of robot

onboard sensors and autonomous navigation. Communication with the robot would be

only possible near the deployment area.

The multi-robot platform and all its components were tested and built to suit these

conditions. Real-life experiments are being performed in four mine test sites to validate

all conditions.

The project defined mines that will be used as test sites are:

• Kaatiala Mine, Finland;

• Idrija Mine, Slovenia;

• Urgeiriça Mine, Portugal;

• Ecton Mine, UK.

Some of those mines nobody has explored for a long period of time.

6

Chapter 2 2.3. Multi-Robotic platform

2.3 Multi-Robotic platform

The multi-robotic platform will be formed by three robots, with a defined set of instru-

ments. Each robot will be capable of operating without any remote control.

The first UNEXMIN robot and the one this thesis is focused on is UX-1a spherical

robot, represented in figure 2.4. This robot complies the necessary equipment to obtain

geoscientific and spatial data, movement, control, 3D mapping, and perception. The

UX-1a robot will gather data that is very difficult to obtain through other means.

The main UX-1a robot characteristics are:

• Maxim operation depth: 500m;

• Diameter: 0.6m;

• Weight: 112kg;

• Power consumption: 150-300W;

• Maximum speed: 1-2km/h;

• Autonomy: up to 5 hours.

Physical robustness, multi-robot cooperation, and self-diagnosis are requirements for

UNEXMIN robots that could assure the performance in a complex environment with

reliability and safety. The robot needs to be able to fit into small mine openings, resist

high depths pressure, avoid being trapped, and avoid equipment damage. The mea-

surement, materials, and sensors are builds according to those conditions. In normal

conditions, the robot is neutrally buoyant for less power consumption and improved

control capabilities.

To improve the movement inside mine environment, buoyancy control and a pendu-

lum system will be included. Movement or each robot is based on changing the center

of mass, buoyancy, pendulum-based angle control and thrusters that will contribute to

the stable control of the robotic system in such environments.

7

2.3. Multi-Robotic platform Chapter 2

Figure 2.1: UX-1 left side description. Figure 2.2: UX-1 right side description.

Figure 2.3: UX-1 front description.

8

Chapter 2 2.4. Sensors

Figure 2.4: UX-1 robot.

2.4 Sensors

UX-1 robot merges multiple sets of sensors for navigation, perception, exploration and

scientific samplings. To travel securely and with precision, UX-1 will have positioning,

navigation, control and 3D mapping systems. The list of sensors include:

• Sub-bottom profiler;

• Water sampler;

• Conductivity and pH measuring;

• Magnetic field measuring unit;

• 4 LED and Laser projectors (SLS systems);

• Multispectral camera;

• Inertial Measuring Unit (KVH 1775[4]);

• Doppler Velocity Logger (Nortel 1000 DVL[5]);

• 8 Thrusters;

9

2.5. Simulation requirements Chapter 2

Figure 2.5: SLS sensor system. Figure 2.6: Cameras system.

• Multibeam sonar (Kongsberg M3[6]);

• Scanning sonar (Tritech Micron DST[7]);

• 5 Cameras.

A brief description of a UX-1 robot is represented in figures 2.1, 2.2, and 2.3. The

SLS system developed in INESC-TEC robotics laboratory, consisting in 4 projectors and

5 cameras is depicted in figures 2.5 and 2.6.

2.5 Simulation requirements

The simulation platform is necessary and very beneficial for UNEXMIN project. The

complex environments described above can be simulated and modified for every specific

and required test. Those can include narrow mine scenarios for maneuver and navi-

gation tests of the vehicle, different shaped mines and objects for sensors information

prepossessing and best position design on the robot, 3D mapping of the environment,

lighting, underwater visualization, perception, etc.

With the simulation help, it is possible to improve the vehicle capabilities and per-

ception of the environment. Starting from the initial design of the robot, it is possible

to test various sensors positions and/or thrusters configuration, to give optimal perfor-

mance, navigation capabilities, and environmental perception. With an already defined

robot design, it is possible to replicate an identical model of the robot inside of the simu-

lation platform. The dynamic model of the robot and hydrodynamics of the underwater

environment also contribute to a more realistic approach and reliable simulator. This

also allows for the development and test of control algorithms. Besides the robot, the

10

Chapter 2 2.5. Simulation requirements

environment can also be replicated with high definition inside the simulation, and with

the possibility of distinct material properties in the simulation, the final results of the

testing possibilities of the simulator are even more extended.

The simulation platform that combines realistic and detailed robot replica with the

detailed environment may be useful for software development. With the possibility of

integrating a simulated robot in every possible situation of a complex environment, the

developed software may be tested and easily improved without the need for real-life tests,

which are very expensive and time-consuming.

UNEXMIN robots are all completely autonomous, which implies the need of complex

and reliable software. The software always demands validation and numerous exper-

imental tests. For this purpose, the highly detailed simulation platform may be very

helpful and improve greatly the quality of the developed software for the real robots.

The hardware in loop simulations increases, even more, the reliability and compatibility

of the developed software for real robot. The compatibility between developed software

tested in simulation and in real robot is crucial, as it can reduce the time for development

and also improve simulated information. In order to perform all the abilities described

above, a versatile simulation platform must be developed.

The UNEXMIN project consists of unique environments, sensors, and robot. In order

to accomplish every requirement of the UNEXMIN project, the simulation platform must

posses next abilities:

• Open source: The simulator platform must be open source with capabilities of

integration of new modules;

• ROS: All UNEXMIN robots have ROS middleware. The simulation platform must

have compatibility with ROS and possibility of the software integration between

ROS and the simulator;

• Underwater sensors: UNEXMIN robot have many unique sensors for all pur-

poses. The simulator must include the simulation of all important sensors and

have similar output data;

• 3D mapping: For a software implementation, the 3D mapping capabilities of the

simulator are crucial and must be included;

• Underwater visualization: For perception and visual aspect of the simulator,

the underwater visualization parameter aggravates or improve the visibility of the

environment;

11

2.5. Simulation requirements Chapter 2

• Hydrodynamics and robot dynamics: The dynamic model of the robot and

environment are most essential for maneuvers and navigation models that will be

implemented in software for real robot.

• Hardware in Loop: Hardware in loop simulation is a desired function;

• Software development and compatibility: The simulator must be capable of

the development of the new software’s that can be transferred to the real robot

and have the same structure (names, data information, data processing, commu-

nication).

• Real time: It is desirable that simulation can be run at real time, thus replicate

the real operating conditions and allowing for the test of software (without the

additional modifications and hardware).

• Expansion possibilities: As UNEXMIN project have very unique requirements,

it would be helpful to have a simulation platform that allows the creation of new

modules for every requirement.

12

Chapter 3

State of the Art

Nowadays, in numerous simulators [8][9][10][11][12] proper dynamics, visual realism,

wide variety of sensors, interfaces, modeling tools and real-time sensor-based control

are major factors considered and included. Robotics simulators have been presented in

many projects and conferences, some of the most relevant are DARPA Robotics Chal-

lenge (DRC), International Conference on Robotics and Automation (ICRA), RoboCup

and more recently in Space Robotics Challenge (SRC), a NASA Centennial Challenge.

From 2D low fidelity simulators such as Player/Stage to 3D dynamic simulators such

Gazebo[12], Modular OpenRobots Simulation Engine (MORSE)[8] or Unified System for

Automation and Robot Simulation (USARSim)[13] these systems allow for simulation

of mobile robots and the interactions with the environments.

Simulators focused on marine robotics[14][15][16], have been developed either for spe-

cific simulation scenario requirements or as more or less generic tools under multiple Eu-

ropean research projects such as Cooperative Cognitive Control for Autonomous Under-

water Vehicles (Co3-AUVs)[17], Reconfigurable AUV for Intervention Missions (RAUVI)

or TRIDENT with UnderWater Simulator (UWSim)[18][19].

This research was focused on open source simulators compatible with ROS, with these

requirements, three most popular simulators were selected for further analysis: Gazebo,

UWSim, and MORSE. In order to obtain a better comparison between them, different

criteria were defined:

• Physical Fidelity: Capability for a correct interaction between the robot and the

environment/objects, simple actions such as pushing, picking or grasping objects

involve a complex calculation of simulated forces and collisions.

13

3.1. UWSim Chapter 3

Table 3.1: Simulator Comparison
Simulator

3D rendering
engine

Physics
engine

Programming
language

Middleware
support

Operating
System

Formats
support

Open
Source

Adequate
Documentation

Required
Knowledge

Visual
Fidelity

Gazebo ogre3D
ODE/Bullet/

Simbody/DART
C++

ROS/Player/
Sockets

Linux/MacOS X/Windows SDF/URDF Yes High Medium Low

UWSim OSG Bullet C++ ROS Linux URDF Yes Low Medium High

MORSE Blender Bullet Python
ROS/YARP/

Pocolibs/MOOS
Sockets

Linux/MacOS X URDF Yes Medium High High

• Sensor Modeling: Capability of the software in the simulation of multiple sensors.

• Required Knowledge/Experience: The amount of knowledge/experience required

to work with the simulator software in a proficient way.

• Visual Fidelity: Details such as water reflection, refraction and sediments flotation,

are taken into account;

• Documentation/Support: Inclusion of proper documentation and tutorials, with

proper customer support.

This and other criteria were taken into account on Table3.1.

3.1 UWSim

UWSim is a software tool developed in the scope of the TRIDENT project, for visu-

alization and simulation of underwater robotic missions. Its realistic images are ren-

dered through OpenSceneGraph (OSG), Bullet and osgOcean. OSG is an open source

3D graphics application, while the plugin osgOcean adds visual improvements such as

waves, water coloration, reflection/refraction, flotation of sediments, etc. The Bullet

physics engine adds the physical fidelity.

Vehicle control can be simulated through ROS nodes. Previously recorded data can

be also be reproduced in UWSim. UWSim requires some level of previous experience

using ROS. The UWSim wiki page contains articles on installing the software and on

the configuration and creation of simulation scenes. The major drawbacks in UWSim

are that is only a kinematic simulator and that there is no convenient way of extending

the software, any modifications, e. g. adding a new type of sensor must be written in

the core source code.

The physics engine is used only to handle contact forces and the implementation of

the vehicle dynamics, including the simulation of thruster forces. It is located in one

monolithic ROS node, but it could be modified to adhere to a more modular structure.

14

Chapter 3 3.2. Gazebo

UWSim possess also an interface to communicate with external software such as Matlab,

using ROS nodes.

In this simulator it is also possible to visualize different underwater virtual scenarios

that can be configured using standard 3D modeling software (ex: blender, 3D Studio

Max, etc). Controllable underwater vehicles, as well as simulated sensors can be added

to the scene and accessed externally through network interfaces. This allows to easily in-

tegrate the visualization tool with existing control architectures. The scenes in UWSim

are XML-formatted documents that describes the general scenario, and simulation pa-

rameters. On the other and, robots are described with an Unified Robot Description

Format (URDF) file. However, a scene eXtensible Markup Language (XML) file may

make a reference to an URDF file for including a robot into the scene. The UWSim

scene XML file is divided in blocks, which define the different aspects of the scene. The

available blocks are the oceanState block that allows configuring ocean parameters, sim-

Params block, that makes possible to modify the settings of the simulator, the camera

block for set the main camera parameters, the vehicle tag that is used to create and

configure underwater robots and the sensors available on them, the object block that

allows inclusion of other 3D models to interact with the robots and the ROS interfaces

block that allows the attachment of ROS interfaces to certain objects, robots or sensors,

specifying the communication possibilities.

There are twelve sensors available for vehicles in the current version of UWSim such

as camera, range sensor, pressure sensor, Doppler Velocity Log (DVL), Inertial Measure-

ment Unit (IMU), GPS, Multibeam, force sensor and structured light projector.

The supported 3D models formats are all that are supported by OSG, like .osg, .obj,

.ive, .stl, .3ds and others. So, it is possible to use a simple 3D modeling program such

as Blender that can be used to export a 3D model with one of the formats above.

UWSim requires some level of previous experience using ROS. The UWSim wiki

page contains articles on installing the software and on the configuration and creation

of simulation scenes.

3.2 Gazebo

Gazebo features multiple physics engines and handles well the dynamics, contact physics

and is very versatile through its plugin-based design, recent example of use is shown in

[20]. Simulated data can be exported through topics to third party applications.

It uses the Ogre3D rendering engine and supports multiple physics engines, being its

default physics engine the Open Dynamics Engine (ODE). The physical fidelity of this

15

3.2. Gazebo Chapter 3

simulator will be dependent on the physics engine chosen for the compilation.

A vast number of sensors are already available in Gazebo, there is also a provided

Application Programming Interface (API), for the creation of new sensors as plugins for

Gazebo. Gazebo include different types of plugins, each of them controls specific part

of simulation. Some examples are world plugin that control a specific world properties

such as physics engine, ambient lightning etc. Model plugin that control a specific

joint, links and state of a model. And sensor plugin that control sensor information and

properties. Each plugin type controls a specific parameters of the simulation. There may

be multiple plugins of the same type, controlling distinct components of the simulation.

The simulator also presents communication nodes, namely Gazebo topics, used to export

simulated data to third party applications.

For an inexperienced user, Gazebo can be fairly easy understood and used, with the

help of the large number of tutorials available in Gazebo’s web-page and a big community,

though it also requires some previous experience with ROS for a deeper understanding.

Gazebo is fully included in every ROS distribution with high interaction and com-

patibility. It is also possible to use different Gazebo versions with ROS distributions,

from the ones originally included.

Gazebo’s rendering system is not optimized for underwater scenario, where under-

water characteristics are not taken into account. However, Gazebo simulator gives the

user the possibility to extend the simulation with plugins. It can be extended for new

dynamics, rendering, sensors and world models. Graphical user interface is included to

visualize the scenario with extended capabilities.

Robot, sensor or world models are described in their respective Simulation Descrip-

tion Format (SDF) file, an XML format designed for Gazebo. The URDF file format

used by ROS is automatically converted to SDF format when used by Gazebo. Visual

geometries used by the rendering engine are provided in COLLADA format and the

collision geometries in STL format. In Gazebo 8, OBJ format was added as alternative

input option for COLLADA.

Gazebo has a regularly updated and well-defined road-map for new releases. The

integration with ROS, also developed by Open Source Robotics Foundation (OSRF), is

already guaranteed through Gazebo/ROS packages. Contributions from the Gazebo user

community allow it to be regularly improved with new features. One of the drawbacks

of Gazebo is the lack of tools to realistically represent underwater environments.

16

Chapter 3 3.3. MORSE

3.3 MORSE

MORSE uses the Blender Game Engine and the Bullet physics engine. Two configuration

are provided by MORSE for time handling: best effort, that tries to keep a real-time

simulation and fixed step that ensures accuracy of simulation.

Like UWSim and Gazebo, MORSE already has a vast number of sensors available

for general use.

MORSE has many advantages such as the use of Blender, where a high customization

and a high level of graphical detail can be achieved, being designed to allow simulations

of multiple robots systems, the ability to create new sensors and camera views and it has

multiple tutorials divided by levels of proficiency. However, it has a disadvantage from a

research standpoint, as it relies also on Blender, those who are unfamiliar with Blender

and its interface may find themselves with a learning curve that could be avoided by

choosing a different simulator.

3.4 Underwater Robotics Simulations

Unmanned Underwater Vehicle (UUV) Simulator[21] is an extension of the Gazebo sim-

ulator. UUV Simulator adds numerous new implemented plugins and underwater sce-

narios to the very deficient Gazebo underwater library. It extends the Gazebo simulation

platform to underwater environments. The simulation includes new and upgraded sensor

models, such as GPS, IMU, magnetometer, pressure sensor, sonar, camera, stereo cam-

era, and DVL. The simulation also include control modules, such as teleoperation and

robotic arm control, thruster and fins dynamics, underwater scenarios and environmental

loads, hydrodynamic and hydrostatic forces.

Another example is DexROV simulator[22] which uses Gazebo 7.0. The environment

produced by the robot is represented by voxels. The environment and vehicle used in

the simulation are modeled by real collected data. Include sensor data and network

simulation.

ROVsim[23] is an underwater simulator made for Remotely Operated Vehicle (ROV)

operations. The simulation includes a wide range of different ROV’s and operations.

It provides realistic visualization, accurate physics, realistic ocean environment, 5-7

Degrees of Freedom (DOF) manipulators, sonar and other sensors. The drawback of

this simulator is that it is a commercial product and more oriented for pilot training,

demonstrations, and scholar use.

DeMarco et al.[15] developed a simulator done for Underwater Human-Robot Inter-

17

3.4. Underwater Robotics Simulations Chapter 3

action (UHRI) based on MORSE and ROS. This work includes a dynamic model of

VideoRay Pro 4 ROV and diver, in addition to forward-looking sonar, and underwa-

ter visualization. This simulation also used ROS in combination with Mission Oriented

Operating Suite (MOOS) for autonomy architecture that allows for tracking contacts,

defining state machines, fusing autonomous behaviors, setting mission parameters, and

controlling and monitoring the robot during mission deployment.

18

Chapter 4

Simulation environment

After a detailed analysis, the Gazebo simulator was selected as the simulation plat-

form for UNEXMIN project.

The most important criteria of analysis were the compatibility with the Linux oper-

ating system and ROS middleware. The plugin model facilitates the implementation of

new modules necessary for the project and bypasses the lack of underwater details in

Gazebo simulator. Underwater sensor models are lacking in simulation, some of them

are complex and difficult to simulate in real time. With the help of plugins, it is possi-

ble to make new sensor models that would work in real time, due to Gazebo balanced

performance. The four different physics engines available in the simulator imply broader

dynamics development in the simulator.

Gazebo continues its development with the support of a diverse and active community

and new modules are being created for the underwater community as well. The pos-

sibility to improve the simulator, make detailed environments, sensor models, with the

robot dynamics makes the Gazebo simulator the best candidate for UNEXMIN project.

4.1 ROS

ROS is open-source, BSD licensed, middleware framework used in robotics. It provides

a consistent robotic software development environment, multiple inter process communi-

cation tools and robotic related software modules. One of the principles is the ability to

make software portable and being able to use/adapt with any robot. This way there can

be created and shared new functionalities in other robots which improves the evolution

progress of robotics overall. Instead of programming everything from scratch, reuse,

and/or expand existing code/packages. That was the major point of ROS: ease code

19

4.1. ROS Chapter 4

reuse between researchers/developers, so they waste less time reinventing the wheel. It’s

written mostly in C++/Python.

ROS is fully supported by Linux operation system, Ubuntu distribution. Meanwhile,

there are ways to use it with Windows, OSX, and even Android, operating systems that

are not currently fully supported.

ROS was developed in 2007 by the Stanford Artificial Intelligence Laboratory (SAIL)

in support of the Stanford AI Robot project. As of 2008, development continues primar-

ily at Willow Garage, a robotic company spin-off, with more than twenty institutions

collaborating within a federated development model.

ROS have a big and growing community in robotics. Devices used in robotics are also

being adapted to ROS. It provides the architecture for navigation, sensing, and robot

parts manipulation.

ROS is widely-used and offers easy startup for researchers to quickly equip robots

with basic software and focus on experimental work.

It is a middleware that provides:

• Publish/Subscribe anonymous message passing;

• Recording and playback of messages;

• Request/Response remote procedure calls. The ROS middleware provides this

capability using services;

• Distributed parameter system. This system allows the easy modification of task

settings, and also allows tasks to change the configuration of other tasks.

ROS provides common robot-specific libraries and tools and its workspace is described

by the following architecture:

• Packages: Packages are the main unit for organizing software in ROS that can be

built and shared. A package can contain ROS nodes, a ROS-dependent library,

datasets, configuration files, or anything else that is part of the project;

• Metapackages: Metapackages essentially contain numerous Packages that are part

of the same project. They are handier for packages organization;

• Package Manifests: Package Manifests (package.xml files) provide metadata about

a package, including its name, version, description, license information, dependen-

cies, and other meta information like exported packages;

20

Chapter 4 4.1. ROS

• Message types: Message descriptions, stored in package message specific folder,

define the data structures for messages sent in ROS;

• Service types: Service descriptions, stored in package service specific folder, define

the request and response data structures for services in ROS.

It is based on graph architecture with a centralized topology, where processing takes

place in nodes that may receive, post the sensor, control, state, planning, actuator, and so

on. The library is geared towards a Unix-like system. The concepts of the computational

graph in ROS are:

• Nodes: Nodes are processes that perform a computation. A robot in a ROS

system usually comprises many nodes that control/perform every aspect of the

robot, including, motors, sensors, navigation, etc.

• Master: The ROS Master provides name registration, lookup, and exchange of

information between processes to the rest of the Computation Graph elements. It

stores topics and services registration information for ROS nodes.

• Parameter Server: The Parameter Server is part of the Master and allows data to

be stored by key in a central location.

• Messages: Messages simply a data structure, comprising typed fields that are used

as a way to communicate between Nodes. Messages can also include arbitrarily

nested structures and arrays.

• Topics: Topics identify the content of the message. They are transport buses with

publish/subscribe semantics. A node sends out a message by publishing it on a

given topic. There may be multiple concurrent publishers and subscribers for a

single topic, and a single node may publish and/or subscribe to multiple topics.

With this methodology nodes communicate anonymously, unaware of each other

existence.

• Services: Services allow request/reply communication between nodes, which are

defined by a pair of message structures: one for the request and one for the reply.

A providing node offers a service under a name and a client uses the service by

sending the request message and awaiting the reply.

• Bags: Bags are a format for saving and playing back ROS message data (topics).

21

4.2. Gazebo Chapter 4

The most common protocol used in a ROS is called TCPROS, which uses standard

TCP/IP sockets.

ROS tools make easy to comprehend, monitor and debug issues as they occur. These

tools support introspecting, debugging, plotting, and visualizing the state of the system.

All tools are accessible with the command line, with similar or extended functionalities,

graphical interfaces are also included for better interpretation, like rviz and rqt.

Rqt is a Qt-based framework with already included rqt plugins like: rqt grapth,

rqt plot, rqt topic, rqt publisher, rqt reconfigure, rqt console and rqt bag. Rqt plugins

can also be extended and created with new functionalities.

Rviz package provides three-dimensional visualization of sensor data and any de-

scribed robot, including laser scans, point clouds, camera images, markers, pose and

rendering of the robot. All information is related to a frame of choice.

Tf is a ROS package that keeps track of 3D coordinate frames over time. Tf operates

in a distributed system and maintains the relationship between coordinates frames in a

tree structure. It also allows performing several operations regarding these coordinates.

4.2 Gazebo

Gazebo simulator uses a distributed architecture with separated libraries for physics

simulation, rendering, user interface, communication, and sensor generation. Simulation

is separated by two executable programs:

• gzserver: Simulates physics, rendering, and sensors. It parses a world description

file and then simulates the world using a physics and sensor engine;

• gzclient: Provides a GUI for visualization and interaction/modification of the

simulation.

A communication library is responsible for communication between processes and it

uses the open source Google Protobuf for the message serialization and boost::ASIO for

the transport mechanism. Similar to ROS, it supports publish/subscribe communication

paradigm.

Topic management and name lookup are performed by Gazebo Master. A single

master can handle multiple physics simulations, sensor generators, and GUIs.

The physics library provides fundamental simulation components, including rigid

bodies, collision shapes, and joints articulation constraints. Four open-source physics

22

Chapter 4 4.3. Gazebo-ROS

engines are integrated: Open Dynamics Engine (ODE); Bullet; Simbody; Dynamic An-

imation and Robotics Toolkit (DART), with the possibility to load robot models with

any of these engines.

The rendering library uses OGRE which provides a simple interface for rendering 3D

scenes to both the GUI and sensor libraries.

Sensor generation library implements all types of sensors, with world state updates

and produces output specified by sensors.

The GUI library uses Qt to create graphical widgets for simulation.

All libraries in Gazebo simulator support plugins. Those plugins have access to

libraries and can add new features without using the communication system.

4.3 Gazebo-ROS

Integration between Gazebo and ROS is performed with the gazebo ros pkgs meta pack-

age. This includes:

• gazebo ros: Wraps gzserver and gzclient by using two Gazebo plugins that pro-

vide the necessary ROS interface for messages, services and dynamic reconfigure;

• gazebo msgs: Messages and Service data structures for interfacing with Gazebo

from ROS;

• gazebo plugins: Robot-independent Gazebo plugins, sensors and motory (joints,

force, template).

Figure 4.1 represent Gazebo-ROS architecture. The gazebo ros api plugin plugin,

located within the gazebo ros package, initializes a ROS node called ”gazebo”. It inte-

grates a scheduler to provide the ROS interfaces, such as services and topics that enables

the user to manipulate the properties of the simulation environment over ROS, as well

as spawn and introspect on the state of models in an environment.

A second plugin, gazebo ros paths plugin, also available in the gazebo ros package,

allows Gazebo to find ROS resources.

4.4 Plugins

A plugin in Gazebo is a C++ code that is compiled as a shared library and inserted

directly into the simulation. The plugin has direct access to all the functionalities of

Gazebo through the standard C++ classes.

23

4.4. Plugins Chapter 4

Figure 4.1: Gazebo-ROS architecture[1].

24

Chapter 4 4.5. Environment description

All plugins must be inside the gazebo namespace. Each plugin inherits from a plugin

class type, such as a sensor, model, world, GUI, and others. A mandatory function is

Load which receives SDF file with all robot descriptions.

In the end, the plugin is registered within the simulator using a macro.

On startup, Gazebo parses the SDF file, locates the plugin, and loads the code.

Plugins are attached to an SDF file, it can be either model, world, sensor, etc. Each

plugin is attached to different parts of environment description depending on the type

of plugin.

Plugins can improve and add new functionalities to the simulation and also publish/-

subscribe to ROS topics and services.

4.5 Environment description

4.5.1 World Files

World file contains all the description about elements in simulation, including models,

lights, sensors, physics. The file format of a world file is same as the model file, using

SDF format, with .world extension. The Gazebo server (gzserver) reads this file to

generate and populate a world in the simulation.

4.5.2 Model Files

A model file uses the same SDF format as the world files. A model file can be included

in the world file, or spawn directly into the simulation with spawn robot node in ROS.

With the second method is possible the use of Xacro files that allow management and

implementation of parameters allowing the user to adjust every aspect of robot, sensor

or simulation. Spawn robot node translates Xacro file to SDF file for Gazebo simulator

interpretation. The spawn robot method uses a python script to make a service call re-

quest to the gazebo ros ROS node to add a custom URDF into a simulated environment.

The script is located within gazebo ros package.

4.5.3 Environment Variables

There are many ways to start Gazebo, open world models and spawn robot models

into the simulated environment. Gazebo uses different environment variables (paths)

to locate files, including model, resource, master, plugin. These variables can be mod-

ified in a shell script, to extend the path it searches for models which facilitate the

creation of new packages in ROS and makes them more cross-platform ready. URDF

25

4.5. Environment description Chapter 4

files, meshes, materials, media, are stored in ROS packages with resource paths relative

to ROS workspace.

4.5.4 Xacro

Xacro (XML Macros) is an XML format file that can construct shorter and more readable

XML files by using macros. It’s most useful when working with large XML files and add

new functionalities, including property’s, property blocks, math expressions, condition

blocks, rospack commands, macros, default parameters and the inclusion of other xacro

files.

4.5.5 URDF

The Universal Robotic Description Format (URDF) is an XML file format used in ROS

to describe all elements of a robot. Besides the inclusion and use of all distinctive pa-

rameters and macros, inside URDF files are also defined the property’s like links, joints,

visual, collision, mass, inertial, pose, sensors, plugins, geometry, and all the parameters

that are required for each plugin.

The conjunction of URDF files describes all the information about the robot that

will spawn inside the simulation world. That include its material properties, dynamics,

sensors, plugins, navigation algorithms, everything that is related directly to the robot.

The Gazebo simulator uses SDF file for robot description, which is similar to URDF

files but with extra information that is unique for the simulator. Inside URDF files is

used the parameter < gazebo > to describe every information about the robot that is

unique to SDF file. Before the robot is spawned into the simulation world, URDF file is

translated automatically into a SDF file by Gazebo and is launched into Gazebo world.

26

Chapter 5

UNEXMIN Simulator

This chapter will describe the details of the developed simulation platform, such as the

environment, models, sensors, controllers, etc. The platform also includes a multi-robot

option with individual sensors and messages for each robot, numerous environments,

sensors configurations, hydrodynamics, thruster forces, and ocean visualization. Fig-

ure 5.1 represent the relation between the simulator and real robot (Hardware in loop

simulation),

Figure 5.1: General architecture between robot and simulator.

The simulation platform aggregates various modules. Figure 5.2 represents the soft-

ware architecture of the simulation models and interaction between Gazebo and ROS.

Developed plugins are displayed in the middle of the figure as they works between ROS

and Gazebo. On Gazebo side, plugins receive/send information to simulator in order to

perform desired tasks. And in ROS part, information is send/received from plugins and

published into desired topics. ROS nodes are also created in that part for messages in-

terpretation. In order to perform hardware in loop simulation, the messages and formats

27

5.1. Simulation platform structure Chapter 5

of the simulated modules are strictly the same as in real robot. Only the information

inside the messages is simulated. With the close interaction between Gazebo and ROS

it is possible to apply the simulation into the real robot information system and vice

verse, as will be explained in this chapter.

5.1 Simulation platform structure

Simulations, vehicles, sensors, and control have been done multiple times before. ROS

and Gazebo have already basic packages for simulation of different aspects of robot

and environment. This implementation consists of the making of new UNEXMIN sim-

ulator that will accomplish the project requirements. The simulation package consists

of the creation of new plugins and models for underwater environments and sensors.

Although, some parts of the simulation package include other software, such as UUV

Simulator package and other ROS packages that have already developed useful plugins

and modules. Those packages were modified and adapted for this work. The implemen-

tation consists of a ROS metapackage with three main packages, unexmin description,

unexmin keyboard op and unexmin gazebo plugins. This metapackage requires Gazebo

version 8 or later and ROS installed. It is recommended the usage of ROS Kinetic or

later. The package was tested in ROS Kinetic with Gazebo 8.6, which was chosen in

order to take advantage of all its latest features. The folder structure follows the next

representation:
unexmin gazebo plugins

include

msg

src

unexmin keyboard op

src

unexmin descriptions

launch

media

meshes

urdf

UX 0

UX 1

UX 2

worlds

unexmin gazebo plugins package includes all plugins, ROS nodes and messages for

simulation. unexmin descriptions package includes a description of all simulation as-

28

Chapter 5 5.1. Simulation platform structure

Figure 5.2: Software Architecture.

29

5.2. Simulation World Chapter 5

pects, such as launch file, textures, images, meshes, URDF files for each robot and

worlds. Inside the URDF folder, the URDF files are separated for each robot descrip-

tion aspect and are combined with a macro file. unexmin keyboard op package include

a python robot control tool. Which enables the keyboard control over thrusters, pendu-

lum and ballast system. This control tool is only necessary for test purposes and direct

command on simulator.

The robot description is made in a URDF file. URDF files are commonly used by

ROS, these are converted to SDF files when used by Gazebo. Xacros are also used in this

package, which can combine files in a specific order and run URDF files with parameters.

5.2 Simulation World

The visualization of world elements such as mines, ocean, robot, and sensors are possible

with the use of real mesh files. Mesh files are created and exported into the simulation

with the proper visual elements, dynamic properties, collisions, and size.

Gazebo only accepts meshes described in Collada(.dae) type files and .obj so it was

necessary the resort to 3 third-party software for processing and conversions. The first

one, MeshLab[24], was used to import the Point Cloud file of the underground mine,

reduce its quality using Poisson Sampling, reconstruct its surfaces, using Poisson Re-

construction and finally, to export the final mesh as a Collada file. The second one,

FreeCad[25], was used to import the Step files from a Sphere Robot, where the sensors

will be placed, and of the sensor obtained from the company’s website, and exporting

them as Collada files. The third one, Blender[26], was used mostly to add textures to

the meshes without changing its Collada format, this was done simply to improve the

visual realism of the simulation.

Finally, to import the meshes into Gazebo it was necessary to create a World file

where the path to the Collada file was indicated.

5.3 UX Robot

The robot consists of a sphere with the diameter of 0.6m, with multiple attached sensors,

being all of them implemented in Gazebo simulation. The weight of the sphere (robot)

was calculated so that it would achieve neutral buoyancy, a condition that imposes that

the density of the robot is the same as the water, 1000 kg/m3, obtaining the approximate

value of 113 kg. Sphere model includes the visual and collision parameters from the mesh

30

Chapter 5 5.4. Sensors

Figure 5.3: UX-1 Robot in simulation world.

and, for a proper behavior of the sphere, it was also necessary to compute its moment

of inertia matrix, based on its mass and radius.

All robots implemented in the simulation have the same dimensions and structure.

Although, the sensors can be configured with different parameters and position. The

sensor configuration can be different from robot to robot for distinct mission plans.

5.4 Sensors

5.4.1 MSIS - Micron DST

The mechanical scanning imaging sonar includes the dimensions of the sensor equal to

the real one since its original mesh was loaded into the simulation. This also applies

to its mass and position in the sphere robot. Collisions and inertial parameters are

calculated for each part of the sensor. The sensor uses a Ray type Gazebo sensor to

create a 3D point cloud.

The physical part of the sensor is separated by two links. The bottom link is attached

directly to the sphere robot, with a fixed type joint, in a correct robot position. The top

link is attached to the bottom link, through a continuous rotational type joint, without

limits.

31

5.4. Sensors Chapter 5

Heading Rotation

This Model plugin was created to simulate the mechanical rotation of the sensor. It

rotates the joint located between the top and bottom parts of the MSIS sensor. Simulates

a mechanical rotation with configurable parameters like mechanical resolution, velocity

and right/left limits of the scan sector up to a continuous 360º scan. The plugin is

controlled by Gazebo world updates, ensuring constant and proper rotation of the joint.

2D Point Cloud Sonar Image

As referred above the MSIS sensor is simulated thought a Gazebo plugin that uses the

sensor Ray’s to form a 3D pointcloud. This 3D pointcloud is then transformed into a 2D

pointcloud sonar image, similar to the real sensor output. The sensor plugin is attached

to the top link.

The transformation process is based on an area density method, where a specific area

is selected and, based on the 3D pointcloud density, the intensity of echo and gain on

the new 2D pointcloud are calculated, as represented in figures 5.4 and 5.5.

Figure 5.4: 3D to 2D pointcloud representation.

Rays are defined in horizontal and vertical planes, and each point is formed from

intersection between horizontal and vertical rays. During the calculations of the points,

the ray sensor is deactivated and is activated again after the pointcloud creation, this

process occur in every update from Gazebo world, assuring that the calculations are

made with current update. The Plugin obtains several parameters from Gazebo, such

as range, horizontal angle and vertical angle from each simulated ray. The raw point

32

Chapter 5 5.4. Sensors

Figure 5.5: 3D to 2D pointcloud representation.

cloud is created with that parameters, where the points (X,Y,Z) are computed with the

equations below:

X = range ∗ cos(verticalAngle) ∗ cos(horizontalAngle) (5.1)

Y = range ∗ cos(verticalAngle) ∗ sin(horizontalAngle) (5.2)

Z = range ∗ sin(verticalAngle) (5.3)

The Raw 3D pointcloud only includes points where a collision was detected (echo).

This is used to create a new 2D pointcloud that is filled with points from the minimum

range to the maximum range. The number of points created depends on two parameters:

• horizontal point resolution(HPR): is a representation by how many points

are created between the minimum and maximum ranges of the rays. For example,

if min = 0.3 m and max = 75 m, with resolution = 250, there will be created

250 points in horizontal with 0.3 m of spacing between them. More resolution will

decrease the spacing.

• vertical point resolution(VPR): is a representation by how many points are

created between the minimum horizontal angle and the maximum horizontal angle

of the sensor. For example, if min = -1.5º and max = 1.5º, with resolution = 10,

there will be created 10 points in vertical with 0.3º of spacing between them. More

33

5.4. Sensors Chapter 5

resolution will decrease the spacing.

The final point cloud created has HPR*VPR points. Inlcuding X, Y, Z, intesity of

echoes and RGB (which represent different color for each intensity value). X, Y and Z

are represented with following equations:

X = HPR range ∗ cos(V PR Angle) (5.4)

Y = HPR range ∗ sin(V PR Angle) (5.5)

Z = 0 (5.6)

Noise Models

This package includes four types of noise models:

• Gaussian Noise: The Gaussian noise is applied directly into the Ray sensor

before the 3D point cloud generation. The simulation of this noise is included in

the Gazebo sensor parameters. The standard deviation is based on the Micron

DST specifications.

• Salt And Pepper: Even with Gaussian noise included, simulation provides re-

sults far too perfect, to simulate a more realistic output, salt and pepper noise

was included. This noise can be simply described by the introduction of random

echoes.

• Acoustic Shadow: Another common effect in sonar sensors is the acoustic

shadow. This noise model improves even more veracity to our sensor output.

• Artifacts: With few active rays, the simulation produce artifacts in the ground

plane. This noise model includes echoes between these artifacts maintaining a

constant echo in the output.

Output and Parameters

This package publishes two ROS topics:

• /tritech micron/scan: include the sensor msgs/PointCloud2 message with custom

structure (x, y, z, intensity, RGB);

34

Chapter 5 5.4. Sensors

Figure 5.6: Final 2D pointcloud representation.

• /msis/msis r : include the heading angle of the rotating Micron DST sensor in

radians;

The metapackage includes highly customized parameters, like update rate, beamwidth,

range, noise, pointcloud resolution, gain, step angle size, scanned sector (up to 360º
continuous scan), etc. With these parameters is possible to simulate any MSIS type

sensor. These parameters are described in a launch file. Figure 5.6 represents the

/tritech micron/scan 360º scan output in Rviz. Colors represent:

• Red: High intensity echoes;

• Yellow: Medium intensity echoes;

• White yellow: Low intesity echoes;

35

5.4. Sensors Chapter 5

• Blue: No echoes;

• Dark blue: Shadow artifacts.

5.4.2 DVL

DVL sensor has already been developed in UUV Simulation ROS package, and its base

is used in this simulation platform. The dimensions, parameters, and specifications are

modified to assimilate Nortek DVL 1000, as it is used in the real robot.

DVL plugin publishes next ROS topics:

• /dvl: Velocity (m/s), velocity covariance;

• /dvl sonar0-3: Field of view, minimum range, maximum range and range mea-

surement (m);

• /dvl twist: Linear (x,y,z), angular (x,y,z) and covariance.

In order to publish similar message as used in the real robot (Nortek DVL 1000), a

ROS node was created that transforms DVL topics described before into a single DVL

ROS topic similar to the one published by the real robot. In order to do so, dvl nortek

package from real robot was used for it contains the message description. Noise models

have obtained from Nortek DVL 100 datasheet and are introduced in this package.

New ROS topic message type is dvl nortek/DvlBottomWaterTrack and pub-

lished topic /dvl water track, with next information inside:

• Sound speed;

• Temperature;

• Pressure;

• Range (m) for each beam (4);

• Velocity beam (4), in beam coordinates;

• fom beam;

• dt1 beam;

• dt2 beam;

• time beam;

36

Chapter 5 5.4. Sensors

• Velocity xyzz (4), in instrument coordinates;

• fom xyzz;

• dt1 xyzz;

• dt2 xyzz;

• time xyzz;

Messages are published with 8 Hz rate which is same as real message from Nortek DVL

drivers.

5.4.3 IMU

IMU sensor is already included in Gazebo library and has also been developed/improved

by the community for better performance. This simulation platform uses an already

developed IMU sensor and modifies the specifications to follow KVH 1775 sensor, which

is used in the real robot.

The simulated IMU KVH 1775 sensor encompass a gyroscope, accelerometer, and a

magnetometer. In order to simulate an exact copy of KVH 1775, a new ROS node was

created to add all integrated sensors and publish the same messages as the real one. The

published ROS topic follows the original driver with next parameters:

• Accelerometer [x,y,z] (m/s2);

• Gyroscope [x,y,z] (rad/s);

• Magnetometer [x,y,z] (mG);

• temperature imu (º);

• pressure (bar);

• temperature pressure (º).

The type of published message is kvh 1775/ImuRawKvh, and it is published at 500

Hz rate which is equal to the real sensor. Noise models are obtained from KVH 1775

datasheet and are introduced in this package.

37

5.4. Sensors Chapter 5

5.4.4 M3

The Gazebo simulator only possess one sonar sensor model, and the characterization of

that model is insufficient. In this case, the better option to simulate M3 multibeam sonar

was the simulation with Ray plugin, already included in Gazebo library, which returns

a pointcloud ROS topic with type sensor msgs/LaserScan. That way, the simulated

sonar only returns first echoes from each scan. As real sensor implemented in the vehicle

return ROS topic type PointCloudXYZ, a ROS node was created that transforms the

LaserScan type of message into a new ROS topic that is similar to the one used in the

vehicle, PointCloudXYZ.

Simulated M3 sensor follows the same specifications as the real sensor (M3 Kingsberg)

in profiling mode:

• Update Rate: 40 Hz;

• Range: 0.2m to 150m;

• Range resolution: 1cm;

• Horizontal Field of View: 120º;

• Vertical Field of View: 3º;

• Number of Beams: 256.

M3 sonar include visuals, collisions and position equal to the one in real robot con-

figuration.

5.4.5 SLS

The SLS sensor is composed of laser, camera, and light to illuminate dark areas under-

water. This sensor is developed in INESC-TEC laboratory and each part of the sensor is

simulated. The laser scan line is between 90º and 110º and a camera has the resolution

of 2054x1544.

Projector

The simulation of the laser part that is visible on the camera of the sensor is obtained

via the Projector plugin, which is included in the Gazebo library. This plugin requires

only an image as an input, and it projects the image in the simulation world. The

projected image is a simple green line that is visually similar to the real laser used on

38

Chapter 5 5.4. Sensors

the vehicle. A new ROS node was created in order to simulate various SLS sensors,

multiple projectors were thus installed in different positions on the robot.

Ray

The simulation part of the laser that returns a pointcloud of the scanned world is simu-

lated via Ray plugin. Each SLS sensor has one Ray plugin attached in order to obtain

pointclouds from each sensor. Ray plugin publishes pointcloud in sensor msgs::LaserScan

type of ROS message. Another plugin was created in order to transform sensor msgs::LaserScan

to sensor msgs::PointCloud2. This was necessary for the implementation of SLS system

lasers with Octomaps, as octompas require sensor msgs::PointCloud2 type of message

in input.

The published pointcloud only returns laser line that is seen on the camera. From

each camera, only the observable part of the laser (projector) is transformed into a final

pointcloud. This is performed by projecting the camera field of view in world frame and

then only publishing 3D laser point that are inside the field of view.

Camera

The simulation of the camera already exists in Gazebo library and its used in this part

of the sensor. Each SLS sensor is related to one camera and it is positioned in the place

designed by vehicle. Each camera has the same resolution and distortion parameters as

the real robot, which makes the output image similar to the real one.

The camera can publish images with configurable fps. This parameter is actualized

with real robot output fps.

Light

The lights of each SLS sensor are simulated with Attach Light Gazebo plugin. This is

a world plugin and its located in the same position and orientation as every SLS sensor

LED component in real robot. The light brightness, dispersion and other parameters

are also adjustable to reassemble the real robot lights.

Motor

The rotation of the laser motor is simulated with a joint rotation plugin. The SLS system

is composed of two links, that are connected with a single rotational joint. This plugin

accepts three parameters that are velocity, left and right limits. With this parameters,

39

5.5. World Chapter 5

it’s possible to adjust the rotation of the SLS system and test different sensor acquisition

situations.

5.5 World

The world model in the Gazebo simulation platform is a collection of robots, objects,

and global parameters. Those include the sky, light, shadow, environmental physics,

ocean, mines, lakes, etc.

Every scenario has a different world file. Main underwater mine scenario include

mine mesh, ocean waves, underwater visibility, attach lights models, projector models,

and underwater current, with the parameters:

• Topic name;

• Velocity: mean, minimum, maximum, and noise amplitude;

• Horizontal angle: mean, minimum, maximum;

• Vertical angle: mean, minimum, maximum, and noise amplitude;

This plugin publishes a ROS topic. Then the vehicle that uses the underwater current

subscribes to the topic.

5.5.1 Underwater visibility

Underwater properties in the Gazebo simulator are absent. In order to add more visual

fidelity and realistic underwater environment for simulated underwater cameras, the

muddy water effect is added to the simulation package.

This effect uses the fog parameter within Gazebo scenes description, which can be

configured for particual colour and density. As demonstrated in figures 5.7, , 5.8, 5.9 and

5.10. This effect reduces the visibility and details of the simulated world. With muddy

water effect, it is harder to detect SLS laser lines within the image.

40

Chapter 5 5.5. World

(a) Front Camera (b) Right Camera (c) GUI

Figure 5.7: Simulation image with high muddy water effect of (a) Front Camera, (b)

Right Camera and (c) GUI.

(a) Front Camera (b) Right Camera (c) GUI

Figure 5.8: Simulation image with medium muddy water effect of (a) Front Camera, (b)

Right Camera and (c) GUI.

(a) Front Camera (b) Right Camera (c) GUI

Figure 5.9: Simulation image with low muddy water effect of (a) Front Camera, (b)

Right Camera and (c) GUI.

41

5.6. Hydrodynamics plugins Chapter 5

(a) Front Camera (b) Right Camera (c) GUI

Figure 5.10: Simulation image with no muddy water effect of (a) Front Camera, (b)

Right Camera and (c) GUI.

5.6 Hydrodynamics plugins

This simulation platform hydrodynamics are based on [27]. The hydrodynamic forces

are expressed by:

MAv̇r + CA(vr)vr +D(vr)vr + g(η) = τ (5.7)

v is linear and angular velocities of the vehicle calculated by gazebo simulator.

Where, added mass is a matrix of 6x6 is represented by:

MA =



Xu̇ 0 0 0 0 0

0 Yv̇ 0 0 0 0

0 0 Zẇ 0 0 0

0 0 0 Kṗ 0 0

0 0 0 0 Mq̇ 0

0 0 0 0 0 Nṙ


(5.8)

42

Chapter 5 5.6. Hydrodynamics plugins

Coriolis matrix is represented by an 6x6 maxtrix:

CA(v) =



0 0 0 0 −a3 a2

0 0 0 a3 0 −a1
0 0 0 −a2 a1 0

0 −a3 a2 0 −a6 a5

a3 0 −a1 a6 0 −a4
−a2 a1 0 −a5 a4 0


(5.9)

Where:

a1 = Xu̇u+Xv̇v +Xẇw +Xṗp+Xq̇q +Xṙr

a2 = Yu̇u+ Yv̇v + Yẇw + Yṗp+ Yq̇q + Yṙr

a3 = Zu̇u+ Zv̇v + Zẇw + Zṗp+ Zq̇q + Zṙr

a4 = Xṗu+ Yṗv + Zṗw +Kṗp+Kq̇q +Kṙr

a5 = Xq̇u+ Yq̇v + Zq̇w +Kq̇p+Mq̇q +Mṙr

a6 = Xṙu+ Yṙv + Zṙw +Kṙp+Mṙq +Nṙr

(5.10)

D(vr) is damping matrix consisted of linear(vector of 6) and quadratic(vector of 6)

damping. g(η) is buoyancy force. Then, τ is converted into forces and moments applied

to Gazebo’s reference frame. Those forces and moments are simulated thought external

propulsion originating from thrusters.

τ =
[
X Y Z K M N

]T

(5.11)

Buoyancy force are already developed in Gazebo and other ROS packages and it is

used in this simulation.

A model plugin applies the hydrodynamics and hydrostatic forces described above in

the vehicle. The plugin require a list of vehicle and environment parameters, such as:

• Fluid density;

• Volume;

• Type of object (sphere, square, ...);

• Center of buoyancy;

• Hydrodynamic model;

43

5.7. Thrusters Chapter 5

5.7 Thrusters

Each thruster included in the vehicle has its own link and joint. It includes rotating

visualization that comes with same propellers mesh file as in real robot.

Thruster dynamics are described in thruster Gazebo model plugin, with next param-

eters:

• Thruster ID;

• Publish thrust topic - ”/RobotName/thrusters/ID/thrust”;

• Subscribe to input topic - ”/RobotName/thrusters/ID/input”;

• Dynamics;

• Conversion.

Plugin is subscribed to /RobotName/thrusters/ID/input topic for force input, which

is converted to thruster thrust in x-forces, as represented in figure 5.11.

Figure 5.11: Thrusters axis.

44

Chapter 5 5.8. Pendulum

5.8 Pendulum

Based on the configuration of the external thrusters and center of the mass, the UX-1

vehicle cannot pitch. To achieve it, an internal pendulum is used. Its movement displaces

the internal mass of the robot, which then changes the center of mass and achieves new

equilibrium position.

The pendulum model plugin simulates the pitch rotation of UX 1 robot and function-

ality of pendulum system implemented in the robot. The only plugin parameter input

is the name of the topic to subscribe(/UX 1/pendulum).

The movement of a pendulum is simulated with a joint between robot model link and

interior pendulum link. After receiving angle(α) command from ROS topic, it rotates

with constant velocity to the desired position and lock’s the pendulum in that position.

The velocity is another parameter and can be set to different values.

5.9 Variable Ballast System

In order to allow for accurate trimming of the vehicle weight and compensation of hull

compression due to depth, Variable Ballast System (VBS) is implemented in the robot.

The system makes possible the very precise adjusts to the weight of the robot for its

stability and maneuver control.

The VBS model plugin simulates the management of mass in the robot model. The

only plugin parameter input is the name of the topic to subscribe (/UX 1/vbs).

The data received from the subscribed topic is expressed in mass, then its converted

to force in Newton and is applied as a function of force in Z-axis of robot in world model.

This changes the vehicle density inside a simulated underwater world.

5.10 Control

The control of the simulated vehicle follows the same philosophy as the real robot. Its

movement is simulated through the rotation of the thrusters and thrust force. The pitch

movement is performed by a pendulum system and VBS helps to maintain stability

and control of vehicle weight. All those control properties were implemented in this

simulation platform and will be described in this section.

Two types of control were implemented. First, consist of control performed by key-

board applying only simulation packages. The second one makes use of control packages

from a real robot and publishes/subscribe to topics of the real robot, allowing hardware

45

5.10. Control Chapter 5

in loop simulation control.

5.10.1 UNEXMIN Keyboard Operative

UNEXMIN Keyboard Operative is a simulation control package for UNEXMIN simu-

lated vehicle performed only by keyboard inputs.

This package includes a python file that publishes data to simulation movement topics

like thrusters, pendulum and VBS system.

Keyboard input keys and correspondent functionality are represente in table 5.1.

Table 5.1: Keyboard Operative inputs.
Controls Functionality

W Up

S Down

A -Yaw

D +Yaw

I Forward

K Backward

J Left

L Right

Z/X Increase/Decrease linear speed

C/V Increase/Decrease angular speed

E/R Increase/Decrease pendulum angle by 1 degree

Y/U Increase/Decrease VBS mass by 0.01 kg

The output of the controller is published in three different topics:

• Thruster control is published to /force moments topic;

• Pendulum is published to /UX 1/pendulum topic;

• Ballast system is published to /UX 1/vbs topic.

5.10.2 Simulation Thruster Allocator

Thruster control is performed by Thruster allocator sim ROS node. Which subscribes

to /forces moments. /forces moments contains an array with forces (X,Y,Z) and mo-

ments (K,M,N), these are the external moments and forces provided by the thrusters

in the body reference frame. The thruster allocation matrix (5.12) provides the map-

ping between each thruster and the generating forces acting on the vehicle. Control

node publish data (force) information into each thruster input topic. Hardware in loop

46

Chapter 5 5.11. Cross-workspace compatibility

simulation is achieved with /ux1/command/motors topic, which is used by real robot

Electronic Speed Controller (ESC) driver.

Published thrusters data is defined by thrusters matrix, which is the same as imple-

mented in real robot model:

Motors

X

Y

Z

K

M

N


=



M0 M1 M2 M3 M4 M5 M6 M7

0.5 0.0 −0.50 0.0 0.50 0.0 −0.50 0.0

−0.25 −0.25 −0.25 0.25 0.25 −0.25 0.25 −0.25

0.0 −0.50 0.0 −0.5 0.0 0.50 0.0 −0.50

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−0.25 0.0 0.25 0.0 0.25 0.0 −0.25 0.0


(5.12)

Each thruster receives input based on the matrix described above. The simulation

platform publishes two types of messages, /forces moments that is received in simulation

to control the simulated vehicle and /ux1/command/motors, which is received by the

real robot for thruster control. This makes possible the control of simulated and real

robot at the same moment, in real time.

5.10.3 Simulation ESC Driver

Another type of control is performed by following the real robot commands. This control

is performed by another node, the simulated ESC driver.

ESC simulation driver subscribes to /ux1/command/motors topic and convert rpm/-

duty cycle values into force data that is published to each simulation thruster.

This topic is responsible for missions reproduction and test in simulation. After doing

a real test with the robot in the desired environment and saving a rosbag, it is possible

to reproduce the experience in a simulation which will perform similar trajectory, with

same thruster forces as in real experience.

5.11 Cross-workspace compatibility

The simulation platform packages work with other ROS workspaces without the complex

installation process. The only requirement is ROS kinetic or higher, Gazebo 8 and

dependent ROS packages. No installation is required. The simulation package was tested

with other platforms and within virtual machine environments (virtual box). Although

being possible to run the simulation on a virtual machine, the performance is greatly

47

5.12. Vehicle Description and Initiation Chapter 5

reduced and some actions are almost impossible to perform.

5.12 Vehicle Description and Initiation

As described in this chapter, the robot is detailed in multiple URDF files. The initial-

ization of all parameters, simulation, and spawn of the robot is defined in the launch

file.

5.12.1 Launch file

The launch file includes all parameters initiation, for the robot, sensor and starts the

simulation with robot included in the desired environment. This is one of the standard

methods in ROS to start and configure multiple processes running in the system.

First, it starts the Gazebo simulator and loads the world file. Next, it spawns the

robot(s) with all the parameters included for URDF files. The launch file also includes

initialization of all ROS nodes:

• DVL msg: Node providing DVL message that is identical to real robot message

(translation from the simulated output to a robot compatible format for hardware

in loop simulation);

• KVH msg: Node providing KVH message that is identical to real robot message;

• thruster allocator: Matrix transformation for thrusters input;

• rviz mesh ros node: Mesh visualization in Rviz;

• sls pointcloud2: ROS laser message transformation to pointcloud2 type;

• M3 topic: Node responsible for creation of multibeam message that is identical

to real robot message;

• Robot state publisher: Publish the state of a robot to tf. The node takes the

joint angles of the robot as input and publishes the 3D poses of the robot links,

using a kinematic tree model of the robot.

• Message to tf: Translates robot pose information to tf.

Tf is a ROS package that lets the user keep track of multiple coordinate frames

over time. Tf maintains the relationship between coordinate frames in a tree structure

48

Chapter 5 5.13. Multirobots

buffered in time and lets the user transform points, vectors, etc. between any two

coordinate frames at any desired point in time.

A robotic system typically has many 3D coordinate frames that change over time,

such as a world frame, base frame, gripper frame, head frame, etc. Tf keeps track of

all these frames over time. Tf can operate in a distributed system. This means all the

information about the coordinate frames of a robot is available to all ROS components

on any computer in the system. There is no central server to transform information.

In figure 5.12 one can observe the ROS computational graph (rqt graph) detailing the

running nodes and publish/subscribe topics in the robot simulation.

5.13 Multirobots

The Gazebo simulator permits multiple robot simulations. In this work, there were used

up to three UX robots (simulating the UNEXMIN multi-robot configuration scenario).

Those robots are spawn in the launch file.

Each robot has individual sensors, thrusters, models, dynamics, and controllers. Ev-

ery Gazebo plugin and ROS node is unique to each robot with the use of parameters.

This implies that there are individual ROS topics and information for each sensor that

is simulated in Gazebo.

The configuration of each robot can be customized with different sensors, thrusters,

and overall composition. However, with every additional spawn robot, the performance

of the simulation is reduced.

49

5.13. Multirobots Chapter 5

Figure 5.12: ROS partial rqt grath.

50

Chapter 6

Results

The simulation platform was tested with a real robot in different environments and sce-

narios. A comparison between simulated robot scenarios and real ones were performed

in order to achieve the fidelity of the simulator. This allows to determine the valid-

ity of testing developments in simulation and also to predict expected variations when

translating results to real world scenarios.

Several tests were performed with the simulation platform, those include real mines

implementation and laboratory tank tests.

6.1 Laboratory Tank tests

To validate the simulation implementation, there were performed multiple tests with the

UX-1 robot in a laboratory tank environment. The tests include the validation of:

• Dynamics: Simple dynamics adjust meant to assimilate real robot dynamics

recorded inside tank;

• Control: Thruster control tests with both simulation control over robot and robot

real control over simulation;

• Imaging: Imaging sensors validation, that include Micron DST sonar, M3 multi-

beam sonar, Cameras and SLS with distorted cameras.

• Navigation: DVL and IMU sensors data validation and comparison.

• Other systems: Pendulum and Ballast system validation.

The selected object for sonar sensors validation was a metal anchor. The anchor was

placed in the middle of the laboratory tank at 1.8m depth. It was secured with a cord,

51

6.1. Laboratory Tank tests Chapter 6

as seen in figure 6.1. In all comparison experiments, the simulated robot was positioned

in the same position as a real robot experiment. This information was extracted from

navigation software and injected in simulation for a fair comparison.

(a) (b)

(c)

Figure 6.1: UX-1 robot in laboratory test tank.

6.1.1 Micron DST

Simulated Micron DST sensor is positioned in the same location as the robot as a real

UX-1 robot. For a fair comparison, both simulated and real sensor have the same

configurations:

• Speed: 1500;

• Range: 3 meters;

• nbins: 400;

• Continuous(360º): True;

• Gain: Low.

52

Chapter 6 6.1. Laboratory Tank tests

Figures 6.2, 6.3 and 6.4represent pointcloud comparison between simulated and real

sonar results in distinct positions. The real sensor represent more noise in center and

it gets higher when the robot is closer to surface due to water reflections. As seen in

the figures, from different angles, the shape of the object is represented distinctly in real

and simulated sonar.

(a) Real (b) Simulated

Figure 6.2: Micron DST pointcloud with long range object, (a) Real and (b) Simulated.

53

6.1. Laboratory Tank tests Chapter 6

(a) Real (b) Simulated

Figure 6.3: Micron DST pointcloud with medium range object, (a) Real and (b) Simu-

lated.

(a) Real (b) Simulated

Figure 6.4: Micron DST pointcloud with close range object, (a) Real and (b) Simulated.

54

Chapter 6 6.1. Laboratory Tank tests

6.1.2 M3 multibeam

The M3 multibeam sensor was compared in a laboratory tank with the anchor as a target.

In order to obtain an M3 multibeam scan area, there is an obligation to move/rotate

the robot for the desired scan area. Scanned areas are same in simulated and real tests

due to navigation information obtained from the real robot.

Sensor range was set to 5 meters and the results are represented in figures 6.5, 6.6,

?? and ??. The real sonar have higher noise than the simulated one. The noise is

higher in real sonar image due to multipath echoes relfections inside laboratory tank

and configurations used in this test. The shape of the object is detected and observable

in both real and simulated sonar images, with similar results.

(a) Real (b) Simulated

Figure 6.5: Simulated M3 multibeam pointcloud, (a) Real and (b) Simulated.

55

6.1. Laboratory Tank tests Chapter 6

(a) Real (b) Simulated

Figure 6.6: Simulated M3 multibeam pointcloud, (a) Real and (b) Simulated.

56

Chapter 6 6.2. SLS

6.2 SLS

SLS system comparison was performed in laboratory water tank with appropriate light-

ning. Results are presented in figures 6.7, 6.8, 6.9 and 6.10. The position of the robot

and laser rotation is roughly the same in simulation and tank tests. As observed in

figures, the simulated SLS system have high fidelity and is quite similar to the real one.

The variations of laser line intesity in real SLS system is due to slight innacuracy on

focus. In ideal situation, it should have same intensity in the laser line. In figure 6.11 is

represented the simulated laser in Rviz.

Figure 6.7: Real SLS laser image. Figure 6.8: Simulated SLS laser image.

Figure 6.9: Real SLS laser image. Figure 6.10: Simulated SLS laser image.

57

6.3. Mapping Chapter 6

Figure 6.11: Simulated representation of 4 SLS lasers in Rviz.

6.3 Mapping

With SLS and M3 sensors is possible to obtain a 3D mapping of mine environment.

Octomaps[28] are a great tool for 3D map generation and are easy to use in navigation

software. In order to test the mapping feature of simulation, 4 SLS sensors and M3

Kingsberg sensor were used in conjunction with Octomaps. Pointclouds from each sensor

were added into one and then processed with Octomaps, to create a global 3D map of

the environment. One section of test map are represented in figures 6.12 and 6.13.

Kaatiala mine is located in the province of Western Finland, Kuortane town. Mine

information:

• Max depth: 353 m;

• Max lenght: 620 m;

• Max width: 30 m;

• Size: 218860 m2.

A model of Kaatiala mine was implemented inside the simulation. Kaatiala mine is

one of the test mines in UNEXMIN project. Figure 6.14 represents the Kaatiala mine

model inside the simulated world. This model include real size, visual and colision pa-

rameters to assimilate the real mine environment. In figure 6.15 is represented octomap

of the Kaatiala mine.

58

Chapter 6 6.3. Mapping

Figure 6.12: Octomap of a section of a test mine.

Figure 6.13: Octomap inside of test mine.

59

6.4. Performance Chapter 6

Figure 6.14: Kaatiala mine in simulation world.

Figure 6.15: Octomap of a section of Kaatiala mine.

6.4 Performance

All tests were performed in a computer with following specifications:

• Intel(R) Core(TM) Quad-Core i5-3210M CPU @ 2.50GHz;

• Nvidia GeForce 630m graphic card;

• 6GB RAM;

60

Chapter 6 6.5. Navigation

• 500GB HDD.

In order to optimize simulation performance, operational and visual modes were

implemented. The only difference between the modes is the addition of Attached Lights

plugin and Projector plugin, which can add up to 40 Frames Per Second (FPS) in the

simulation. These modes can be easily switched before the simulation start.

Next table represents performance with an operational mode for the multi-robot

platform:

Operational Mode 1 Robot 2 Robots 3 Robots

CPU 80% 100% 100%

RAM 2.3GB 2.4GB 2.5GB

Simulation FPS 55 42 30

Simulation RTF 0.7 0.2 0.1

Simulated RTF represents Real Time Factor between the simulation time and real

time. Where the simulation time is equal to real time is defined by value=1.

6.5 Navigation

As mentioned before, the simulation has two navigation modes that interact with the real

robot (hardware in the loop). The first mode consists in simulation software controlling

directly real robot movement, performing the same trajectory as in simulation world, in

real time. This mode uses thruster allocator sim plugin.

Second mode is providing from a ROS bag or in real time, the trajectory performed

by real robot is replicated in simulation environment. This mode uses vesc sim node

plugin. Figures 6.16, 6.17 ,6.18, and 6.19 represent second mode results.The trajectory

was performed in real robot in laboratory tank with X, Y, Z and Yaw remote control.

Both modes work with no additional software conversions between real robot software

and simulation. All names and information are the same as a real robot, and simulation

package converts the information into respective nomenclatures for proper control with

no conflicts involved.

In the simulation, the robot has neutral buoyancy as it is supposed to be in real

life robot, but due to weight management, new hardware implementations, and weight

distributions, the real robot in experiments was slightly more positive buoyant. Because

of irregular weight distribution, the vehicle was also slightly inclined in pitch and roll,

61

6.5. Navigation Chapter 6

that made the center of mass not equal to the center of geometry. All that aspects made

difference between the real and simulated trajectories.

(a) Real (b) Simulated

Figure 6.16: Robot trajectory in XY axis, (a) Real and (b) Simulated.

(a) Real (b) Simulated

Figure 6.17: Robot trajectory in XZ axis, (a) Real and (b) Simulated.

62

Chapter 6 6.5. Navigation

(a) Real (b) Simulated

Figure 6.18: Robot trajectory in YZ axis, (a) Real and (b) Simulated.

(a) Real (b) Simulated

Figure 6.19: Robot yaw plot, (a) Real and (b) Simulated.

63

This page was intentionally left blank.

Chapter 7

Conclusion and Future Work

A simulation platform for the UNEXMIN project was completed with the main ob-

jectives accomplished. With final tests, it was possible to validate the fidelity of the

simulator and demonstrate the comparison between simulated and real results from var-

ious sensors. This information is important for future software developments and will

indicate the level of proximity between the simulator and real robot.

The performance of the simulation platform is adequate when compared to other sim-

ulators, and with all the sensor models, environment, and hydrodynamics the recorded

performance is acceptable even for real-time simulations. The only problem starts with

the addition of multi-robots simulation, in which case, the performance drops signifi-

cantly with every added robot. This is however a problem also existing in many other

high fidelity 3D multi-robot simulation environments. Although, all tests were performed

on a laptop with low specifications, compared to new CPU’s. With a better computer,

the performance of the simulation would increase greatly and make multi-robot simula-

tions more usable.

Hardware in loop navigation tests confirmed the simulation capabilities of performing

trajectories similar to the real robot with the same input commands. As expected, those

trajectories are not completely equal due to the real robot imperfections during the test

and the simulation dynamics. The robot during the tests was a prototype and had a

slightly miss-placed center of the mass than the simulated one and had offset in pitch

(14º) and roll (8º) which made the most difference between the real robot performed

trajectory and simulated one. Also, the simulated dynamics model is simplified and for

more accurate results, a more accurate dynamic model can be implemented. Although,

it can take significant development time to create a highly reliable underwater dynamic

model in the Gazebo simulator (which has no underwater plugins).

65

Chapter 7

With the constant updates of the Gazebo simulator, the developed models of every

aspect in the simulation can be further optimized and improved for better performance.

With all available modules in the simulation platform, it is possible to create or test

software for underwater missions. Those can include confined mine environments or

open pit mines.

Developed sensor models are universal, for the purpose of the UNEXMIN project,

those sensors have been adapted to simulate the sensors attached in a real robot. Al-

though, the same sensor models can be adapted to different models of the same type

sensor. With the use of Xacro files and universal code type, it is simple to change the

sensor specifications.

As stated in UNEXMIN simulation chapter, this simulation platform includes multi-

robot models with individual control and sensor models. In UNEXMIN project those

robots are strictly the same, but with little effort, it is possible to change the robot model

for a completely different underwater vehicle type. Other robot models like EVA and

MARA can be implemented in the simulator with little effort, because of system files

distribution and description method. The only information needed is the visual mesh

and values for the dynamics of the vehicle. The addition of the sensors, thrusters or

other models are possible and can be placed in the desired position of the robot without

the need of creating complex new models and structures. The possibilities even extend

to the point of simulating different types of robots in the same environment, for distinct

multi-robot missions.

The work described in this thesis was already resulted in the publishing of a research

paper in the IEEE Oceans conference[29].

66

Bibliography

[1] Gazebo gazebo-ros packages. http://gazebosim.org/tutorials?tut=ros_

overview&cat=connect_ros. Accessed: 2018-10-18.

[2] VAMOS project description. http://www.unexmin.eu/. Accessed: 2018-10-08.

[3] UNEXMIN project description. http://vamos-project.eu//. Accessed: 2018-09-

30.

[4] KVH 1775 description. https://www.kvh.com/Commercial-and-OEM/

Gyros-and-Inertial-Systems-and-Compasses/Gyros-and-IMUs-and-INS/

IMUs/1775-IMU.aspx. Accessed: 2018-10-24.

[5] Nortek DVL 1000 description. https://www.nortekgroup.com/products/

dvl1000-4000m. Accessed: 2018-10-24.

[6] Kongsberg M3 sonar description. https://www.km.kongsberg.com/ks/web/

nokbg0240.nsf/AllWeb/C2D49096683E47EFC125783E002C6E0F?OpenDocument.

Accessed: 2018-10-24.

[7] Tritech Micron DST sonar description. https://www.tritech.co.uk/product/

small-rov-mechanical-sector-scanning-sonar-tritech-micron. Accessed:

2018-10-24.

[8] Gilberto Echeverria, Nicolas Lassabe, Arnaud Degroote, and Séverin Lemaignan.

Modular open robots simulation engine: Morse. In Robotics and Automation

(ICRA), 2011 IEEE International Conference on, pages 46–51. IEEE, 2011.

[9] Jeff Craighead, Robin Murphy, Jenny Burke, and Brian Goldiez. A survey of com-

mercial & open source unmanned vehicle simulators. In Robotics and Automation,

2007 IEEE International Conference on, pages 852–857. IEEE, 2007.

67

BIBLIOGRAPHY BIBLIOGRAPHY

[10] Adam Harris and James M Conrad. Survey of popular robotics simulators, frame-

works, and toolkits. In Southeastcon, 2011 Proceedings of IEEE, pages 243–249.

IEEE, 2011.

[11] Patricio Castillo-Pizarro, Tomás V Arredondo, and Miguel Torres-Torriti. Introduc-

tory survey to open-source mobile robot simulation software. In Robotics Sympo-

sium and Intelligent Robotic Meeting (LARS), 2010 Latin American, pages 150–155.

IEEE, 2010.

[12] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an

open-source multi-robot simulator. In Intelligent Robots and Systems, 2004.(IROS

2004). Proceedings. 2004 IEEE/RSJ International Conference on, volume 3, pages

2149–2154. IEEE, 2004.

[13] Stefano Carpin, Mike Lewis, Jijun Wang, Stephen Balakirsky, and Chris Scrapper.

Usarsim: a robot simulator for research and education. In Robotics and Automation,

2007 IEEE International Conference on, pages 1400–1405. IEEE, 2007.

[14] Olivier Kermorgant. A dynamic simulator for underwater vehicle-manipulators.

In International Conference on Simulation, Modeling, and Programming for Au-

tonomous Robots, pages 25–36. Springer, 2014.

[15] Kevin J DeMarco, Michael E West, and Ayanna M Howard. A simulator for under-

water human-robot interaction scenarios. In Oceans-San Diego, 2013, pages 1–10.

IEEE, 2013.

[16] Thomas Tosik and Erik Maehle. Mars: A simulation environment for marine

robotics. In Oceans-St. John’s, 2014, pages 1–7. IEEE, 2014.

[17] Andreas Birk, Gianluca Antonelli, Andrea Caiti, Giuseppe Casalino, Giovanni In-

diveri, Antonio Pascoal, and Andrea Caffaz. The co 3 auvs (cooperative cognitive

control for autonomous underwater vehicles) project: Overview and current pro-

gresses. In OCEANS, 2011 IEEE-Spain, pages 1–10. IEEE, 2011.

[18] Mario Prats, Javier Pérez, J Javier Fernández, and Pedro J Sanz. An open source

tool for simulation and supervision of underwater intervention missions. In 2012

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2577–

2582. IEEE, 2012.

[19] J. J. Fernandez, J. Perez, A. Penalver, J. Sales, D. Fornas, and P. J. Sanz. Bench-

marking using UWSim, Simurv and ROS: An autonomous free floating dredging

68

BIBLIOGRAPHY BIBLIOGRAPHY

intervention case study. MTS/IEEE OCEANS 2015 - Genova: Discovering Sus-

tainable Ocean Energy for a New World, 2015.

[20] Weijia Yao, Wei Dai, Junhao Xiao, Huimin Lu, and Zhiqiang Zheng. A simulation

system based on ROS and Gazebo for RoboCup Middle Size League. 2015 IEEE

International Conference on Robotics and Biomimetics, IEEE-ROBIO 2015, pages

54–59, 2016.

[21] Musa Morena Marcusso Manhães, Sebastian A. Scherer, Martin Voss, Luiz Ricardo

Douat, and Thomas Rauschenbach. UUV simulator: A gazebo-based package for

underwater intervention and multi-robot simulation. In OCEANS 2016 MTS/IEEE

Monterey. IEEE, sep 2016.

[22] Jeremi Gancet, Peter Weiss, Gianluca Antonelli, Max Folkert Pfingsthorn, Sylvain

Calinon, Alessio Turetta, Cees Walen, Diego Urbina, Shashank Govindaraj, Pierre

Letier, et al. Dexterous undersea interventions with far distance onshore supervision:

The dexrov project. IFAC-PapersOnLine, 49(23):414–419, 2016.

[23] marinesimulation. http://marinesimulation.com/. Accessed: 2018-09-30.

[24] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio

Ganovelli, and Guido Ranzuglia. MeshLab: an Open-Source Mesh Processing Tool.

In Vittorio Scarano, Rosario De Chiara, and Ugo Erra, editors, Eurographics Italian

Chapter Conference. The Eurographics Association, 2008.

[25] FreeCAD. https://www.freecadweb.org/. Accessed: 2018-10-08.

[26] Blender. https://www.blender.org/. Accessed: 2018-10-08.

[27] Thor I Fossen. Handbook of marine craft hydrodynamics and motion control. John

Wiley & Sons, 2011.

[28] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram

Burgard. OctoMap: An efficient probabilistic 3D mapping framework based on

octrees. Autonomous Robots, 2013. Software available at http://octomap.github.

com.

[29] D Sytnyk, R Pereira, D Pedrosa, J Rodrigues, A Martins, A Dias, J Almeida, and

E Silva. Simulation environment for underground flooded mines robotic exploration.

In OCEANS 2017-Aberdeen, pages 1–6. IEEE, 2017.

69

