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RESUMO 

 

A desregulação do gene MYC e dos miRNAs são eventos comuns no Cancro da 

Próstata (CaP). A sobreativação do MYC pode causar a desregulação dos miRNAs através 

de mecanismos transcricionais e pós-transcricionais. Podendo ainda esta desregulação ser 

devida a modificações epigenéticas. Assim, o objetivo deste estudo é clarificar a relação 

regulatória entre o MYC e a expressão de miRNAs na carcinogénese prostática. 

Dados preliminares mostraram uma sobreexpressão do MYC em tumores primários 

da próstata e em lesões precursoras. Mais ainda, amostras de CaP com níveis opostos de 

MYC foram analisadas num array específico para miRNAs, no qual foram identificados 

miRNAs sobreexpressos nos casos contendo elevado conteúdo de MYC. Por outro lado, a 

validação do miR-27a-5p em tecidos de tumores primários mostrou uma subregulação da 

expressão deste miRNA, que por sua vez se correlaciona com a hipermetilação do seu 

promotor. Numa série de tumores prostáticos resistentes à castração, verificou-se uma 

sobreexpressão do miR-27a-5p com concomitante hipometilação. Os níveis de expressão 

do MYC e do miR-27a-5p obtidos para as linhas celulares LNCaP e PC3 corroboram os 

resultados  observados nos tumores primários naíve e tumores resistentes à castração, 

respectivamente. A análise por imunoprecipitação da cromatina mostrou que a expressão 

do miR-27a-5p é somente regulada pelo c-Myc na ausência de metilação do promotor. 

Para além disso, quando se expressou ectopicamente o miR-27a-5p na linha celular PC3 

silenciada para o MYC verificou-se uma atenuação do fenótipo maligno, o que sugere um 

papel supressor tumoral para este miRNA. Curiosamente, a sobreregulação do miR-27a-

5p diminui a via de sinalização do EGFR/Akt1/mTOR. 

Concluíndo, o miR-27a-5p é um alvo regulado positivamente pelo MYC, mas a sua 

expressão é silenciada pela metilação do seu promotor nas etapas iniciais da 

carcinogénese prostática. Contudo, ao longo da progressão tumoral, o promotor do miRNA 

perde metilação permitindo ao c-Myc desempenhar a sua actividade regulatória. Porém, o 

contexto celular alterado evita que o miR-27a-5p recupere a sua função onco-supressora 

neste estadío mais avançado da doença. 
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SUMMARY 

 

Upregulation of MYC and miRNAs deregulation are common in prostate cancer (PCa). 

Overactive MYC may cause miRNAs’ expression deregulation through transcriptional and 

post-transcriptional mechanisms and epigenetic alterations are also involved in miRNAs 

dysregulation. Herein, we aimed to elucidate the role of regulatory network between MYC 

and miRNAs in prostate carcinogenesis.  

Preliminary data showed MYC overexpression in PCa and precursor lesions and 

microRNA’s microarray analysis of PCa samples with opposed MYC levels identified 

miRNAs significantly overexpressed in high-MYC PCa. However, validation of miR-27a-5p 

in primary prostate cancer tissues disclosed downregulation in PCa, instead, correlating 

with aberrant promoter methylation. In a series of castration-resistant PCa (CRPC) cases, 

miR-27a-5p was upregulated, along with promoter hypomethylation. MYC and miR-27a-5p 

expression levels in LNCaP and PC3 cells mirrored those observed in primary PCa and 

CRPC, respectively. ChIP analysis showed that miR-27a-5p expression is only regulated 

by c-Myc in the absence of aberrant promoter methylation. Moreover, forced miR-27a-5p 

expression in stable MYC knockdown PC3 cells attenuated malignant phenotype 

suggesting a tumor suppressive role for this miRNA. Furthermore, miR-27a-5p upregulation 

decreased EGFR/Akt1/mTOR signaling. 

We concluded that miR-27a-5p is a positively regulated target of MYC, and its silencing 

due to aberrant promoter methylation occurs early in prostate carcinogenesis, 

concomitantly with loss of c-Myc regulatory activity. Our results further suggest that along 

PCa progression, miR-27a-5p promoter becomes hypomethylated, allowing for c-Myc to 

resume its regulatory activity. However, the altered cellular context averts miR-27a-5p from 

successfully accomplishing its tumor suppressive function at this stage of disease. 
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1. PROSTATE CANCER 
 

Prostate gland is part of the male reproductive system responsible for producing 

important components of seminal fluid and its pathology is a major problem among older 

men worldwide. Prostate cancer (PCa) is considered multifocal and heterogeneous ranging 

from clinical indolent to more agressive disease. In last few years, PCa incidence has been 

rising mainly because of population aging, increased awareness and widespread 

introduction of PSA test [1]. Therefore, efforts have been made to understand the biology 

of prostate cancer in order to improve diagnostic tools and therapeutic approaches [2]. 

Neverthless, there are important challenges regarding PCa management that need to be 

solved.  Specifically, new patients’ stratification methods and the discovery (and validation) 

of novel sreening, prognostic and predictive biomarkers are still required [3]. 

 

1.1 Epidemiology 

 

In 2012, according to GLOBOCAN, prostate cancer was the second most common 

cancer and the fifth leading cause of death from cancer in men (Figure 1). Geographically, 

PCa incidence and mortality rates have a highly heterogeneous distribution. Specifically, 

incidence rates vary more than 25-fold worldwide with the highest rates being observed in 

the most developed countries. Conversely, lesser variation in mortality rates (aproximately 

10-fold worldwide) are found with a larger number of prostate cancer deaths in less 

developed regions and predominantly african descendents populations [4]. This widely 

variation between incidence and mortality rates may be related with the quality of cancer 

registry, genetic susceptibility, exposure to risk factors (eg. Sedentary lifestyle), variations 

in the access to screening methods (eg. PSA test) and treatment management [5]. 

 



 

I.INTRODUCTION | 3 
 

Figure 1 Estimated age-standardized incidence and mortality rates for cancer in men in 2012 [4]. 

 

 

In Portugal, prostate cancer was the most frequently diagnosed cancer in men and the 

third leading cause of cancer death in men, with an estimated 6,622 new cases and 1,582 

deaths caused by PCa in 2012 (Figure 2) [6].  

 

 

Figure 2 Estimated cancer incidence and mortality in portuguese men in 2012 [6]. 
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1.2 Risk Factors 

 

Although numerous behavioural factors, like smoking and obesity had been associated 

to prostate cancer, only three non-modifiable risk factors were identified for this disease: 

age, race and family history [7].  

Prostate cancer is a disease of older men, a reason by which age is so many times 

considered the most important risk factor. Incidence of this pathology increases 

considerably with age and approximately 85% of the cases are diagnosed after 65 years of 

age [8]. In the past few years, the median age at diagnosis has substancially dropped, in 

particular due to early detection methods, such as measurement of serum PSA [9]. 

Race is another well-estabilished risk factor in prostate illness. Prostate cancer 

incidence varies widely between different etnic groups, being higher among African-

american men and lowest in Asian men [8]. These etnic differences may result from the 

interaction of epidemiological and genetic factors, as well as variations in care delivery and 

treatment selection. Recent findings suggest unique single-nucleotide-polymorphism 

patterns, epigenetics changes and variations in fusion gene products may explain the higher 

prevalence of this disease among African origin men [10]. 

Prostate cancer is strongly associated with family history  and genetic predisposition. It 

is estimated that men with one first-degree relative affected with PCa have higher risk of 

developping PCa and that increase is proportional to the number of relatives affected [8]. 

About 5-10% of PCa are familial and normally manifest at a younger age (6-7 years earlier) 

compared to sporadic disease [9]. Hereditary prostate cancer is a subset of familial prostate 

cancer and it is defined as a pattern of cancer distribution consistent with Mendelian 

inheritance. Numerous studies have already identified several susceptibility genes with a 

dominant mode of inheritance related with PCa, such as BRCA1, BRCA2, HOXB13 and 

CHEK2 [8, 9]. 

Notwithstanding the inevitability of all these three risk factors, further investigation into 

possible novel risk factors with impact in prostate carcinogenesis may be useful to 

determine prevention stratagies. 

 

1.3 Screening and Diagnosis  

 

PCa is described as a clinically silent disease until extra-prostatic invasion occurs, thus 

the development of screening methods to detect PCa in earlier stages, while it is still organ-

confined and therefore potentially curable is mandatory. However, frequently PCa screening 
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has been associated to overdiagnosis and overtreatment. Hence, men considering the 

screening of prostate cancer should be awared about the potential benefits and harms. 

According to European Association of Urology (EAU) guidelines, screening should be 

started in men with more than 50 years of age and not recommended in men with life 

expectancy less than 15 years, but can start earlier depending on family history of PCa and 

race [11]. 

Currently, the main tools to screen and diagnose PCa are digital rectal examination 

(DRE), serum concentration of prostate-specific antigen (PSA) and transrectal ultrasound 

(TRUS)-guided biopsy [12]. However, both DRE and PSA test have demonstrated to be 

fallible. DRE was the primary screening test for PCa during many years, but the 

interexaminer variability and the fact of the majority of cancers detected were already at an 

advanced stage conditioned its use [13]. PSA is the most widely used biomarker in prostate 

cancer. This serine protease is responsible for semen liquefaction and secreted into the 

seminal plasma [14]. In normal conditions, only low levels of PSA are detected in blood, 

however the increase of serum PSA can represent abnormalities in prostate gland 

architecture but not always cancer, since prostatitis and benign prostate hyperplasia (BPH) 

are also associated to increased PSA values [15]. Therefore, although a strong correlation 

between high serum PSA levels and PCa incidence was reported, this molecular biomarker 

is not cancer-specific nor allows predict aggressive disease [16]. Notwithstanding the lack 

of specificity and low positive predictive value, specially in the “gray zone” (2-10 ng/mL), the 

combination of serum PSA levels ≥4.0 ng/mL with DRE was demonstrated to improve 

detection of prostate cancer. Taking into account the PSA limitations and its high false-

positive rate, new parameters were developed to increase PSA specificity like PSA density, 

velocity, doubling-time and age/race-specific reference ranges [15]. Besides PCa screening 

and detection, PSA is also used for staging and monitoring both the patients already 

diagnosed and the recurrence after curative therapy [16]. 

Transrectal ultrasound (TRUS)-guided biopsy is the standard way to obtain material for 

histopathologic examination and, thus, a more detailed diagnostic. Normally, the need for 

prostate biopsy is determined using PSA threshold of 4ng/mL, suspicious DRE, patient’s 

age and comorbidities [12]. However the likelihood of identification of prostate cancer on 

biopsy based on those parameters is only about 21%, which means that we are overtesting 

and overdiagnosis cancers that probably have remained undetectable [3]. Hence, it is 

important to realise that prostate cancer diagnosis is not always active treatment synonym  

because that is the only way to decrease overtreatment and, at the same time, maintain the 

prostate cancer screening potential benefits. 

In last few years, researchers focus on the discovery and characterization of emerging 

biomarkers assays for prostate cancer and the urinary prostate cancer antigen (PCA3) and 
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genomic rearrangements, such as TMPRSS2:ERG, look promising. PCA3 is a mRNA that 

is normally overexpressed in PCa. ProgensaTM PCA3 is a non-PSA-based diagnostic test 

approved by FDA in 2012 for use in conjunction with other patient information to aid in the 

decision for repeat prostate biopsy in men ≥ 50 years [17]. Although PCA3 cannot replace 

PSA test in clinical practice, since an appropriate cutoff level is not defined yet, the addition 

of PCA3 to risk assessment tools promotes an increase in predictive capability [16]. 

TMPRSS2:ERG fusion is the most common genetic abnormality found in prostate cancer 

and can even be detected in precursor lesions. This fusion transcript appears to be another 

promising urinary RNA marker for cancer detection and prognosis and, in combination with 

PCA3, improved the performance of the multivariate Prostate Cancer Prevention Trial risk 

calculator in predicting cancer on biopsy [18]. 

Actually, there is an urgent need of new biomarkers to improve disease risk stratification 

at the screening time and to clear the suitable approach to each case. Multivariate risk 

stratification appears to improve prostate cancer screening and diagnosis, classifying and 

monitoring the disease. Individual stratification according to risk can maximize benefits, in 

terms of morbidity and mortality, and decrease overdiagnosis and overtreatment costs [19]. 

Moreover, genomic disease signatures as well as epigenetic patterns seem to be helpful to 

cancer cells identification in clinical samples. These alterations might also be used to 

assess disease extent and prognosis, enabling the identification of more aggressive tumors 

and a better definition of therapeutic stratagies [20, 21]. 

 

1.4 Grading System: Gleason Score 

 

Prostate cancer is a very heterogeneous neoplasia, as already mentioned above, 

whereby ascertain its potential clinical aggressiveness based on tumor grading is 

imperative. Gleason score, developed by Donald Gleason, is currently the major tool to 

graduate PCa according to architectural patterns of prostate gland [22]. This grading system 

assigns histological features 1 through 5 and results from adding the most common and 

second most common patterns, generating a combined Gleason score which ranges from 

2 (1+1) to 10 (5+5) [23]. 

The contemporary application of Gleason score is significantly different from the 

original version, being the most recent update from 2014 [24]. Nowadays, a five-grade 

group system is proposed for PCa grading: grade group 1 (Gleason score ≤6), grade group 

2 (Gleason score 3+4=7), grade group 3 (Gleason score 4+3=7), grade group 4 (Gleason 

score 8) and grade group 5 (Gleason score 9-10). This new methodology has potential 

benefits not only in reducing low-grade PCa overtreatment but also in Gleason score 7 
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differentiation, 3+4 and 4+3, which are prognostically very different [23]. Thus, with the 

current Gleason score grading system, score 2-5 are no longer assigned, being Gleason 

score 6 now considered the lowest PCa grade. In addition, score 6 is now graded as 7, 

whereby actual score 6 offers better cancer prognosis than before [22]. 

The Gleason score is one of the most powerful prognostic predictors in prostate cancer. 

Despite the significant revisions that this grading system has undergone in last few years, 

there are still some limitations that might have impact in patient care, such as the 

interobserver reproducibility and the frequent biopsies undergrading compared with the 

corresponding radical prostatectomy specimens [24]. 

 

1.5 Clinical and Pathological Staging 

 

An accurate disease staging is crucial to obtain a prognosis assessment and treatment 

planning for prostate cancer. Nevertheless, the pathological complexity and the ambiguous 

clinical course of prostate carcinogenesis make difficult to ascertain a clear staging 

classification system for personalized medical care [25]. 

Depending on the moment at which tumor staging is performed, cancer staging can be 

divided into clinical and pathological (Table 1). The clinical staging of PCa is based on data 

obtained prior to the first definitive treatment and is evaluated by the combination of prostate 

biopsy assessment with DRE and PSA and may be more accurately if bone scanning and 

other image techniques are included [11]. Pathologic staging requires tumor extention 

histological identification and is obtained after radical prostatectomy (RP). This staging 

system is centered in surgical specimen’s macro and microscopic examination and 

dissected regional lymph nodes. Agreement between clinical and pathological stage enable 

better prognosis evaluation and appropriate treatment [25]. 

The staging of PCa is performed according to the TNM classification system, the 

staging tool most widely used for solid tumors. This tool is divided into three main areas: T-

staging concerning to the extension of primary tumor, N-staging that evaluate the presence 

and extension of involved lymph nodes and M-staging that assess the existence of distant 

mestastasis [26]. 

 

 

 

 

 

 



 

I.INTRODUCTION | 8 
 

Table 1 Clinical and pathological staging of PCa according with AJCC/IUCC in 2010. 

PRIMARY TUMOR (T) 

Clinical 
Tx Primary tumor cannot be assessed 

T0 No evidence of primary tumor 

T1 Clinically inapparent tumor neither palpable nor visible by imaging 

T1a Tumor incidental histologic finding in 5% or less of tissue resected 

T1b Tumor incidental histologic finding in more than 5% of tissue resected 

T1c Tumor identified by needle biopsy (e.g., because of elevated PSA) 

T2 Tumor confined within prostate 

T2a Tumor involves one-half of one lobe or less 

T2b Tumor involves more than one-half of one lobe but not both lobes 

T2c Tumor involves both lobes 

T3 Tumor extends through the prostate capsule 

T3a Extracapsular extension (unilateral or bilateral) 

T3b Tumor invades seminal vesicle(s) 

T4 Tumor is fixed or invades adjacent structures other than seminal vesicles such as 
external sphincter, rectum, bladder, levator muscles, and/or pelvic wall 

Pathologic (pT) 
pT2 Organ confined 

pT2a Unilateral, one-half of one side or less 

pT2b Unilateral, involving more than one-half of side but not both sides 

pT2c Bilateral disease 

pT3 Extraprostatic extension 

pT3a Extraprostatic extension or microscopic invasion of bladder neck 

pT3b Seminal vesicle invasion  

pT4 Invasion of rectum, levator muscles, and /or pelvic wall 

REGIONAL LYMPH NODES (N) 
Clinical 

Nx Regional lymph nodes were not assessed  

N0 No regional lymph node metastasis 

N1 Metastasis in regional lymph node(s) 

Pathologic (pN) 
pNx Regional nodes not sampled 

pN0 No positive regional nodes 

pN1 Metastases in regional node(s) 

DISTANT MESTASTASIS (M) 
M0 No distant metastasis 

M1 Distant metastasis 

M1a Nonregional lymph node(s) 

M1b Bone(s) 

M1c Other site(s) with or without bone disease 
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1.6 Therapeutic Approaches  

 

Prostate cancer’s clinical and molecular heterogeneity hinders adequate risk 

stratification and management. Age, life expectancy, comorbidities and patients’ life quality 

are taken in consideration to select the better treatment approach [27]. Management 

decisions should be discussed within a multidisciplinary team and balance the benefits and 

side effects of each therapy modality is mandatory [1]. 

For patient with clinically localized disease the standard approaches, depending on 

clinical and pathological staging, are active surveillance, watchful waiting, radical 

prostatectomy, external radiotherapy and brachytherapy [1]. Active surveillance and 

watchful waiting are two distinct strategies for conservative management that aim to reduce 

overtreatment. Active surveillance is recommended for indolent tumors in which more 

aggressive treatments should be deferred to avoid life quality injury. Watchful waiting is 

more appropriate for men with comorbidity and limited life expectancy or slow-growing 

tumors [11]. On the other hand, radical prostatectomy is more suitable for more aggressive 

disease, although still organ-confined, and external radiotherapy for locally advanced 

tumors [12]. Relapse after local therapy is considered when PSA levels rise above 0.2 

ng/mL after radical prostatectomy or above 2 ng/mL following radiation therapy [28]. 

Androgen deprivation therapy (ADT) is highly recommended for advanced and 

metastatic prostate cancer as well as for patients displaying  biochemical recurrence (BCR) 

after local treatment [28]. Currently, chemical castration is more frequently used than 

surgical castration to achieve androgen deprivation either by suppressing the secretion of 

testicular androgens (LHRH agonists) or by inhibiting the action of circulating androgens at 

the receptor level using competitive molecules (LHRH antagonists) [29]. In men with 

prostate cancer metastasis at first presentation, cytotoxic chemotherapy using docetaxel in 

combination with ADT is chosen, unless the patient was not fit enough to receive the drug 

[28].  

Usually prostate tumors remain hormone-sensitive at initial presentation, however, a 

considerable percentage of them eventually develop resistence to ADT and becomes 

castration-resistant prostate cancer (CRPC). The treatment of metastatic CRPC (mCRPC) 

includes abiraterone acetate plus prednisone (AA/P) in first-line and enzalutamide for 

second-line therapy [30]. 
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2. EPIGENETICS 
 

Epigenetics is defined as heritable and reversible mechanisms that regulate gene 

expression dynamic without altering the DNA sequence [31]. The majority of these heritable 

changes are estabilished during differentiation and are stably maintained through several 

cell cycles, enabling that cells containing the same genetic information present different 

phenotypes [32].  

Epigenetic mechanisms are based in a complex network of chemical reactions 

involving not only DNA and histone post-translational modifications but also numerous 

context-specific DNA, RNA and protein interactions. All this machinery work together to 

regulate the genome structure, organization and function in the cellular environment and it 

appears significantly contribute to transformation [33]. In addition to genetic alterations, 

epigenetic deregulation also play crucial and complementary roles in cancer initiation and 

progression [34]. Moreover, since epigenetic abnormalities are potentially reversible and 

can be restored to their normal state, epigenetic therapies appear to be a promising field in 

cancer management. [32]  

The key epigenetic processes involved in gene expression control are DNA 

methylation, histone post-translational modifications, structural and functional histone 

variants and non-coding RNAs [31] (Figure 3). These mechanisms work together to regulate 

genome functioning and their interplay constitute the “epigenetic landscape” that is involved 

in many cellular processes including malignant cellular transformation [32]. 

 

Figure 3 Epigenetic mechanisms. M-5- methy-cytosine; the symbols (hexagon and triangle) 

represent different post-translational modifications in N-terminal tails of histone proteins (CBEG, 

IPO Porto). 
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2.1 DNA Methylation 

 

DNA methylation patterns’ change have been widely correlated with cancer 

development. More specifically, there are evidences indicating that such alterations could 

represent early events of prostate carcinogenesis, being the most recurrent epigenetic 

phenomenon in both localized and metastatic prostate tumors [35, 36]. 

This epigenetic mechanism involves the addition by DNA-methyltransferases (DNMTs) 

of a methyl group in the fifth carbon of the cytosine (C), forming 5-methyl-cytosine (5mC) 

[37], which establish and maintain these patterns through cell division. DNMT1 is the major 

maintenance methylase, whereas DNMT3A and DNMT3B are two de novo DNA 

methyltransferases involved in several mechanisms during development, such as parental 

imprinting on the DNA, methylation of constitutive heterochromatin and host defense 

against foreign DNA integration and expression [38].  

Despite cancer genomes are globally hypomethylated, some genome regions’ are 

commonly hypermethylation, namely promoter regions. DNA methylation occurs almost 

exclusivelly in CpG dinucleotides, which occupy aproximatly 60% of human gene promoters 

[37]. Indeed, tumors from distinct sites display different CpG methylation profiles as well as 

different pathways of carcinogenesis, therefore this could be useful for diagnosis [39]. When 

a CpG island, a region with high frequency of CpG dinucleotides, becomes aberrantly 

hypermethylated, it can cause the silencing of the associated gene, either by directly 

interacting with transcription factors or by recruiting methyl-binding proteins that 

consequently interacts with histone-modifying enzymes and change chromatin to a 

repressive state [40]. Wereby hight levels of DNA methylation at gene promoter region 

correlates with low gene expression. Tumor suppressor genes are normally silenced by 

methylation during tumorigenesis and this could potentially influence mechanisms such as 

DNA repair and apoptosis. Regarding prostate cancer, GSTP1 is the most widely studied 

and it is hypermethylated in 70-80% of PCa cases [36]. 

However, DNA methylation can also be reverted by epigenetic-modulating drugs, such 

as 5-azacytidine (5-aza-C) and 5-aza-2’-deoxicytidine (5-aza-CdR). These drugs are 

incorporated into the genome during cell division and DNA replication. Once there, they 

irreversiblly bind to DNMTs enabling their degradation and thus inhibiting DNA methylation 

[41]. 
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2.2 Histone Post-translation Modifications 

 

The nucleosome is composed of double-helical DNA wrapped around a histone 

octamer (one pair of each H2A, H2B, H3 and H4) which, depending on the packaging level, 

may establish different chromatin conformations. Chromatin condensed states, also known 

as heterochromatin, repress transcriptional activity while relaxed states, called 

euchromatin, facilitate the transcription [38]. Histone modifications play a major role in the 

development and progression of cancer and it seems to regulate key cellular processes, 

such as transcription, replication and repair [32]. The N-terminal tails of histones can 

undergo a variety of post-translation covalent modifications (PTMs), including methylation, 

acetylation, ubiquitylation and phosphorylation on specific residues, thus constituting the 

histone code [42]. Histone PTMs can regulate chromatin accessibility and/or recruit specific 

binding proteins (readers) like transcription factors, chromatin remodelers or chromatin 

structure proteins [43]. These PTMs may change histone electrostatic charge resulting in a 

stuctural alteration in their DNA binding [44]. 

Histone mdifications can lead to either activation or repression, depending on which 

residue is modified as well as the type of modification involved [32]. Histone methylation 

mainly occurs on the side chains of lysines and arginines and has been associated with 

both transcriptional activation and repression, based on the specific residue methylated. In 

contrast, histone acethylation is strongly associated with transcriptional activation, since this 

alteration induce positive charged histones’ neutralization decreasing the interaction with 

negatively charge DNA [45]. Histone PTMs are dynamically regulated by enzymes 

responsible of adding or removing covalent modifications to histone proteins, such as 

histone methyltransferase (HMTs) and histone acetyltransferases (HATs) or histone 

demethylases (HDMs) and histone deacetylases (HDACs), respectively [46, 47]. 

Histone marks alterations can be associated with a variety of human cancers, including 

prostate cancer, and changes in global histone PTMs levels can be used as predictor of 

prostate cancer recurrence outcomes [48]. Besides their individual role, both histone 

modifications and DNA methylation may interact to regulate gene expression, chromatin 

organization and cellular phenotype [44].  
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2.3 Histone Variants 

 

Nucleossomal histones (except H4) have different histone variants and in the last few 

years, these proteins were introduced as major actors in epigenetic field. Indeed, recent 

studies refer histone variants as key players in transcriptional regulation, cell cycle 

progression and DNA repair [49].  In contrast to canonical histone genes, histone variants 

genes are non-allelic being mainly expressed in an independent replication manner during 

cell cycle. Despite these differences, histone variants may also undergo post-translational 

modifications, which determine their nuclear localization and function [50]. Moreover, 

replacement of canonical histone proteins by specialized histone variants can introduce 

further diversification of chromatin status, enabling distinct PTMs as well as recruitment of 

different interactors [51]. Notwithstanding, the histone variants’ temporal and tissue-specific 

expression, their incorporation into the nucleosome requires the intervention of histone 

chaperones [52]. Tacking into account the histone variants’ importance to nucleosome 

structure and consequently gene expression regulation, it has been suggested that they 

may, ultimately, contribute to disease development like cancer [49]. 

 

2.4 Non-coding RNAs 

 

Despite the majority of the genome is transcribed into RNAs, only a small percentage 

codes for proteins (1-2%). Thus, RNAs can be categorized in two classes: the one that has 

the ability to code for proteins and the non-coding RNAs (ncRNAs) without coding potential 

[53]. In the past few years, ncRNAs have been shown to be major gene expression 

regulators with critical roles both in molecular mechanisms and biological processes [54]. 

NcRNAs are also classified into different groups according to several criteria, being the most 

commonly used the length. Generally, ncRNAs smaller than 200 nucleotides are designated 

small non-coding RNAs, whereas the ones longer than 200 nucleotides are called long non-

coding RNAs (lncRNAs) [55]. Among small ncRNAs, microRNAs (≈20 nucleotides) are the 

most well studied group. 

 

 

 

 



 

I.INTRODUCTION | 14 
 

2.4.1 MicroRNAs Biogenesis 

 

MicroRNAs are small non-coding RNAs with length between 18-25 nucleotides which 

are encoded within intergenic regions or within the introns or exons of protein-coding genes. 

Currently, they are extensively studied because of their role as gene regulators during 

development and disease, like cancer [56]. MiRNAs are transcribed in the nucleous by RNA 

polymerase II or III into a primary transcript designated pri-miRNA (Figure 4). Then, 

Drosha/DGCR8 process the pri-miRNA producing a precursor miRNA (pre-miRNA). 

Subsequently, Exportin 5 (XPO5) and Ran-GTP export the pre-miRNA from the nucleous 

to the cytoplasm where it will be transformed in a mature miRNA duplex by RNase III-type 

enzyme Dicer. This duplex consists in a guide and a complementary passanger strand, 

which are also called miR-3p and miR-5p, according to the direction of the sequence. 

Finally, the double-strand miRNA complex binds to the RNA-induced silencing complex 

(RISC), which includes the transactivation-responsive RNA-binding (TRBP) and 

Argonaute2 (Ago2). After, a single-stranded miRNA is obtained which binds its 

complementary sites at 3’UTR of target mRNA regulating gene expression [57-60]. 

Depending on the matching degree miRNA-mRNA, there are two different transcriptional 

repression mechanisms. When miRNA has a near-perfect match to the mRNA target a site-

specific cleavage occurs, whereas an imperfect match only abolishes target mRNA 

translation. However, some miRNA can bind to gene targets promoter region and increase 

its expression at a transcription level [57, 60]. With the advent of next-generation 

sequencing (NGS) technologies multiple length or sequence variants, also called isomiRs, 

have been identified for many miRNAs. Such variants are frequently found in several tissue 

types, including prostate, and they can also have a relevant biological function [61]. IsomiRs 

derive from the same precursor miRNA and are the result of imprecise processing by 

endoribonucleases (Dicer and Drosha) or enzymatic post-transcriptional modifications [62]. 
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Figure 4 MicroRNAs biogenesis (Kindly provided by Ramalho-Carvalho from [63]). 

 

2.4.2 Epigenetic Regulation of MicroRNAs 

 

Recent information regarding epigenetic processes has pointed out miRNAs as 

putative targets of epigenetic modulation in both physiological and pathological conditions, 

such as cancer. Indeed, miRNAs genes were also found to be susceptible to epigenetic 

regulation (Figure 5), as DNA methylation and histone modifications [64]. One of the first 

evidence that microRNAs’ expression is epigenetically changed was obtained by using 

chromatin modifying drugs to reactivate its expression at the transcription level [65] and 

since then several reports showed similar findings [66]. Furthermore, considering miRNAs 

have a huge impact in neoplastic transformation, understand how epigenetic machinery 

could influence its expression is crucial, particularly because epigenetic control is miRNA 

specific and epigenetic effector specific [67]. Generally, DNA methylation leads to miRNA 

silencing while histone modification, depending on the alteration type and target amino acic 

residue, can either trigger or suppress miRNAs [64]. Recently, 155 out of 332 human miRNA 

promoter genes were associated with CpG islands, that are targets of DNA methylation 

machinery [68]. 
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In addition to epigenetic regulation, certain miRNAs have the ability to translocate back 

to the nucleus and activate or repress transcriptional activity through the recruitment of 

chromatin-modifying factors to the target region [69]. A subset of miRNAs, called epi-

miRNAs, can also directly or indirectly target epigenetic machinery key effectors, such as 

DNA methyltransferases (DNMTs), chromatin remodeling enzymes and polycomb group 

genes [70]. MiR-101 was shown to directly target EZH2, the catalytic subunit of  polycomb 

repressor complex 2 (PRC2) in prostate cancer, thus being suggested as an epi-miRNA, 

[71]. Recently, miR-34b was found to target DNMT1, HDAC1, HDAC2 and HDAC4 in PCa 

cell lines. Interestingly, the same study also showed that miR-34b was aberrantly 

methylated in the same cell lines, providing an insight into the interplay between epigenetic 

modulation and miRNAs [72]. Thus, miRNAs can function either as modulators of other 

epigenetic regulators or as specific genes’ expression regulators. 

 

 

2.4.3 MicroRNAs Deregulation in Prostate Carcinogenesis 

 

MiRNAs are involved in multiple biological processes and numerous studies already 

document miRNA deregulation contribution to cancer initiation, progression, metastasis and 

drug resistance. MiRNA profiling changes were found in several cancers and PCa is not an 

exception [73].  

Figure 5 Epigenetic regulatory mechanisms crosstalk. 
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Usually, miRNAs deregulated in cancer are divided in two major classes: oncogenic 

miRs, which are normally overexpressed during carcinogenesis and act by repressing 

tumor-supressor genes, and miRs with tumor suppressive functions that negatively regulate 

oncogenes and are frequently underexpressed in cancer [57]. MicroRNA-21 is an example 

of an oncogenic miRNA whose target is the tumor suppressor gene PTEN [74], whereas 

let-7 which targets the oncogene RAS typify a tumor suppressive miRNA [75]. However, 

depending on the context, a single miRNA can act either as oncogene or as tumor 

suppressor. MiR-375 is an example of that in PCa cell lines, in which 22Rv1 cells displayed 

higher expression levels, whereas PC3 cells disclosed significantly lower levels. 

Interestingly, both anti-miR-375 transfection in 22Rv1 cells and forced miR-375 expression 

in PC3 cells attenuated the malignant phenotype. Thus, while in 22Rv1 cells (hormone-

sensitive PCa cell line) an oncogenic role for miR-375 is suggested, a tumor-suppressive 

function is implied for PC3 cells (hormone-independent PCa cell line) [76]. 

 Furthermore, regulation of miRNA expression is also correlated with the presence or 

absence of androgens in PCa, whereby their action may be androgen-dependent. In 

general, AR-inducible miRNAs present conserved androgen response elements (ARE) 

responsible for transcripton in their promoter regions [73]. MiR-32 and miR-148a are two 

androgen-regulated miRNAs overexpressed in castration-resistant prostate cancer (CRPC) 

[77]. Other miRNAs are also potential modulators of AR-mediated signalling, such as miR-

488 whose upregulation represses transcriptional AR activity [78], or miR-146a loss of 

function that is frequent in hormone-refractory prostate cancer [79]. Despite their role in AR 

signaling, several miRNAs that target proto-oncogenes, such as RAS, BCL2 and E2F3, are  

also frequently downregulated during prostate carcinogenesis [80]. 

In last years, multiple researchers focus their studies in discovery miRNAs function in 

PCa and their usage as tools to understand the molecular mechanisms behind 

oncogenesis. Hence several clinical applications were already demonstrated for miRNAs in 

PCa, thus providing new opportunities for stratagies in cancer diagnosis and treatment [81, 

82]. 

 

2.4.4 MicroRNAs in Human Cancer: Possible New Biomarkers and Treatment 

Targets 

 

As mentioned above, miRNAs are key molecules implicated in cancer development. 

Indeed, miRNAs are warning signs because their deregulation patterns sometimes precede 

phenotype changes [83]. Thus, miRNAs are attractive targets for biomarker discovery once 

they have short length and they are relatively resistant to RNase degradation improving 
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their longevity in clinical samples [84]. Furthermore, miRNAs show great potential as earlier 

diagnosis tools because they are the final gene product, and thus biologically relevant levels 

are measured, reproducible extracted from a wide range of biological samples (plasma 

and/or urine) and resistant to various storage conditions. The fact of miRNAs could be easily 

detected and accurately quantified by numerous techniques, such qRT-PCR and 

microarray, are also miRNAs’ advantages as attractive molecular biomarkers [85]. A study 

concerning  circulating miRNAs in prostate cancer revealed clinical relevance of several 

miRNAs as pronounced markers for high-risk tumors, once again in line with the potential 

of miRNAs as diagnostic biomarkers in cancer [86]. Recently, also exossomal miRNA, such 

as miR-1290 and miR-375, were found to be promising prognostic markers for PCa [87]. 

Aberrantly expressed miRNAs observed in cancer are very important concerning new 

approaches development for future therapies. MicroRNAs own several advantages which 

allows them to play a crucial role both as therapeutic agent or as molecular target [88]. 

MiRNA manipulation usually involves direct silencing or tumor promoting activity reduction. 

Generally, in vivo approaches include genetically engeneered animals and miRNA vector 

systems such as viral vectors, nanoparticle-based delivery, mimics and anti-miRs [89]. They 

have relative simple structures and predictable mechanisms whereby the design of miRNA-

based therapeutic molecules seems easier than conventional chemical drugs. However, the 

use of miRNAs as therapeutical tools is also ambiguous because miRNAs can target 

multiple protein-coding genes at once and their fuctions are fine-tuned and context-

dependent [90]. In other words, the manipulation of a given miRNA may change the protein 

products in several signal transduction pathways, causing unwanted side effects. MiRNA-

based therapeutics involve both miRNA mimics and inhibitors (antimiRs). MiRNA mimics 

are functionally contructed to replenish the lost of the corresponding miRNA expression in 

disease. Inversely, antimiRs inhibit and block the function of the miRNA target by strongly 

binding to it. In last few years, significant improvements have been made to increase the 

binding affinity and stability of these RNA-based therapeutic stratagies mainly through 

chemical modifications to the nucleotide backbone, such as methylation or LNAs [91]. 

Although miRNAs have already proven to be important mediators of tumorigenesis and 

disease progression, there are still major challenges regarding their application in clinical 

daily practice. Results’ discrepancy in different studies constitute a huge limitation that 

persists among research community, making difficult to reach a consensus about miRNAs 

function. The usage of distinct profiling platforms and the reduced number of samples may 

contribute to this disparate results [59, 92].  
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3. OVERVIEW OF C-MYC ROLE IN PROSTATE CANCER 
 

MYC is a proto-oncogene which encodes c-Myc transcription factor and it was firstly 

reported as cellular homolog of v-myc, an oncogenic retrovirus that causes tumorigenesis 

in birds [93]. In humans, MYC gene is located on chromosome 8q24 and deregulations of 

its expression, such as, amplifications, chromosome translocations or loss of upstream 

repressor, have already been identified in several cancers [94]. The c-Myc oncogene 

encodes a conserved basic helix-loop-helix leucine zipper transcription factor that binds to 

approximately 10-15% of genome as well as regulate genes that codify both proteins and 

non-coding RNAs [95, 96]. This transcription factor regulates many genes involved in a 

variety of cellular processes, namely cell growth and proliferation, cell-cycle progression, 

transcription, differentiation, apoptosis and cell motility [97].  

Regarding prostate cancer, amplification at 8q24 stated as one of the most common 

chromosomal abnormality with potential prognostic value and also predictor of biochemical 

recurrence for this neoplasia [98]. A few years ago, c-Myc was also reported to associate 

with higher pathological stages and Gleason’s scores as well as earlier disease progression 

[99]. Recently, MYC was found to be activated in  PIN lesions, a pre-maliganant lesion that 

is frequently regarded as prostatic adenocarcinoma’s precursor [100]. 

 

3.1 MicroRNA Regulation by c-Myc 

 

Besides genetic and epigenetic regulation, miRNAs expression can also be altered by 

aberrant transcription factors activity in tumor cells and recent evidence has confirmed that 

there is, indeed, a crosstalk between c-Myc and miRNAs. Moreover, c-Myc activation is 

responsible for miRNAs’ expression profile reprogramming in cancer cells [101-103]. 

Once c-Myc acts as an oncogenic transcription factor, normally it regulates miRNA 

expression binding to its promoter region and promoting a widespread downregulation of 

miRNAs [104]. Previous observations have already reported globally reduced miRNA levels 

during carcinogenesis which could be explained not only by miRNA biogenesis blockade, 

but also by c-Myc repression of miRNA transcription [105]. Curiously, the majority of MYC-

downregulated miRNAs have anti-tumorigenic properties suggesting a tumor suppressive 

role, like miR-15a and miR-16-1 [106]. Notwithstanding the extensive miRNA repression by 

c-Myc, there is also studies reporting that this transcription factor upregulates the pro-

tumorigenic miR-17-92 cluster [107, 108].  

Remarkably, transcription factors are frequently targets for repression by the miRNAs 

they regulate creating complex feedback circuits (example: c-Myc/let-7 miRNA regulatoty 
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network). One the one hand, c-Myc is described as suppressing let-7 miRNA expression 

[109]; on the other hand, let-7 miRNA is itself a negative regulator of c-Myc [110].  

As mentioned above, several MYC-regulated miRNAs are already classified as 

oncogenic or tumor suppressor miRNAs, according with the functions they display, 

therefore they may represent useful anti-cancer therapies. MiRNA-based therapies in 

tumors with MYC hyperactivity could consist essencially in two types of mechanisms: the 

first one is the c-Myc-induced oncogenic miRNAs’ inhibition; the second one is the MYC-

downregulated tumor supressor miRNAs’ reintroduction [111] (Figure 6). 

 

 

 

 

 

 

  

Figure 6 Strategies to target the interplay between MYC and miRNA in cancer. In neoplasms with 

MYC deregulation, anti-miRNAs could be directed against MYC-induced oncogenic miRNAs (1) or 

miRNA mimics could be used for reintroduction of MYC-repressed miRNAs (2) or to target MYC 

itself (3). 
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 This study is integrated in a larger project developed in the Cancer Biology and 

Epigenetics Group (CI-IPO-Porto), whose major goal is to understand the regulatory 

network between c-Myc and specific miRNAs involved in prostate tumorigenesis. 

 

Thus, the results gathered until the beginning of this project are: 

1. UPREGULATION OF MYC IN CLINICALLY LOCALIZED 

PROSTATE CANCER TISSUE SAMPLES (COHORT #1)   

 

MYC transcript and protein levels were assessed in 198 PCa (Primary prostate cancer) 

cases, 37 PIN lesions and 10 MNPT (morphologically normal prostate tissue) (Figure 7A). 

PCa and PIN depicted significantly higher MYC transcript levels compared with MNPT (P < 

0.001). Moreover, a significant increase of c-Myc protein levels was also apparent from 

MNPT to PCa samples (Table 2, Figure 7B and Figure 7D). Statistically significant 

differences were observed concerning MYC transcript and respective protein levels across 

the three groups of immunostaining scores (P < 0.001), and, overall, c-Myc protein levels 

followed the same trend (Figure 7C). In pairwise comparisons, however, statistical 

significance was observed for +1 vs. +2 (P < 0.001) and +1 vs. +3 score groups (P < 0.001), 

but not for +2 vs. +3 scores. 

Clinicopathological data from all clinical samples tested in this study are depicted in 

Table 3. No statistically significant differences between the two groups of patients were 

found for age. Furthermore, a statistically significant association was disclosed between c-

Myc protein levels and some clinicopathological parameters. Somer’s D coefficient test 

revealed that higher c-Myc protein levels associated with higher serum PSA (Somer’s D = 

0.157; P = 0.011) and higher GS (Somer’s D = 0.131; P = 0.044) in PCa. 
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Table 2 Immunohistochemical expression of c-Myc in cohort #1. 

Clinical Sample 

Group 

(cohort #1) 

Negative Positive 

1+ (≤ 10%) 

N (%) 

2+ (10%< - ≤ 50%) 

N (%) 

3+ (>50 %) 

N (%) 

MNPT 
9 

(100 %) 
- - 

PIN 
20  

(54 %) 

13  

(35.1 %) 

4  

(8.1 %) 

PCa 
74  

(37.4 %) 

83  

(41.9 %) 

41  

(20.7 %) 

 

 

Figure 7 MYC transcript levels (A) and distribution of c-Myc immunostaining (B) in cohort #1; MYC 

transcript levels in cohort #1, grouped according to c-Myc immunostaining(C); Representative 

images of c-Myc immunostaining in cohort #1 (D).  
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Table 3 Clinical and pathological data of fresh-frozen tissues included in this study (cohort #1). 

 

2. REGULATORY NETWORK BETWEEN c-MYC AND 

microRNAS  

 

Three PCa cases with low MYC expression and four with high MYC expression were 

chosen for microarray analysis. The resulting heatmap shows only miRNAs that achieved 

statistical significance and revealed 78 miRNAs were overexpressed in samples with high 

MYC content, representing possible targets of c-Myc regulation (Supplementary Figure 1). 

From these, a panel of 3 miRNAs (miR-27a-5p, miR-570 and miR-1292) were selected for 

validation in a larger and independent dataset. Selection of miR-27a-5p, miR-570 and 

miRNA-1292 was based on a critical review of published studies so that miRNAs without 

prior documented implication in PCa were considered for further analysis. Further validation 

was only accomplished for miR-27a-5p, since very low expression levels of miR-570 and 

miR-1292 in the clinical samples impaired the amplification reaction.

 

Clinicopathological Data 

Cohort #1 

PCa 

n = 198 

PIN 

n = 37 matched with a PCa 

MNPT 

n = 9 

Age (years), 

Median (range) 

64 

(49 - 75) 

65 

(51 - 75) 

58 

(45 - 79) 

PSA (ng/mL), 

Median (range) 

8.10 

(2.66 - 35.50) 
n.a. n.a. 

Pathological Stage, N (%) 

pT2 
110 

(55.6 %) 
n.a. n.a. 

pT3a 
65 

(32.8 %) 
n.a. n.a. 

pT3b 
23 

(11.6 %) 
n.a. n.a. 

Gleason score, N (%) 

< 7 
67 

(33.8 %) 
n.a. n.a. 

= 7 
115 

(58.1 %) 
n.a. n.a. 

> 7 
16 

(8.1 %) 
n.a. n.a. 
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The main goal of this project is to characterize the role of a novel miRNA in prostate 

carcinogenesis and to further analyze its possible link to MYC signaling and to other 

epigenetic mechanisms. 

 

Specifically the following tasks were set: 

 

1. Evaluate miR-27a-5p expression  and methylation levels in a larger and independent 

set of clinically localized prostate cancer tissue samples (cohort #1);  

2. Assess MYC and miR-27a-5p expression and methylation status in a series of 

castration-resistant prostate cancer tissue samples (cohort #2); 

3. Compare the molecular findings with clinical and pathological features of prostate 

cancer; 

4. Characterize MYC and miR-27a-5p in prostate cancer cell lines; 

5. Confirm the specific binding of MYC at miR-27a-5p promoter region in PCa cell lines; 

6. Identify miR-27a-5p’s targets and assess its relevance in prostate carcinogenesis. 
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1. CLINICAL SAMPLES 
 

1.1 Patients and Samples Collection  

 

Primary tumors from 198 patients harboring clinically localized prostate carcinoma 

(PCa) were prospectively collected after diagnosis and primary treatment with radical 

prostatectomy, at Portuguese Oncology Institute of Porto (IPO-Porto). In 37 cases, PIN 

lesions were available and included in this study. A set of 24 castration resistant prostate 

tumors collected from patient that accomplish transurethral resection of prostate were also 

included. 10 morphologically normal prostate tissues (MNPT) were collected from prostatic 

peripheral zone of bladder cancer patients submitted to cystoprostatectomy and used  as 

control samples. Histological slides from formalin-fixed paraffin-embedded tissue fragments 

were obtained from the surgical specimens and assessed for Gleason score and TNM 

stage. Relevant clinical data was collected from clinical charts. Informed consent was 

obtained from all participants, according to institutional regulations. This study was 

approved by the institutional review board [Comissão de Ética para a Saúde-(CES-IPOFG-

EPE 205/2013)] of IPO Porto. 

 

1.2 Total RNA Extraction 

 

Total RNA from clinical samples was obtained by suspension in TRIzol® reagent 

(Invitrogen, USA) and total RNA was purified from the aqueous phase of TRIzol® extract 

using PureLink™ RNA Mini Kit (Invitrogen, USA) following manufacturer recommendations. 

RNA concentration, purity and integrity of samples were determined on a Nanodrop ND-

1000 spectrophotometer (NanoDrop Technologies, USA) and electrophoresis. 

 

1.3 MicroRNA Expression Assay 

 

Reverse transcription (RT) was performed to a total of 350 ng using TaqMan MicroRNA 

Reverse Transcription Kit and Megaplex RT human pool B v3.0 (Applied Biosystems®, USA) 

according to manufacturer’s instructions.  

Quantitative Real-Time PCR (RT-qPCR) was performed using TaqMan Small RNA 

Assays for miR-27a-5p (assay ID: 0004501) and TaqMan Universal PCR Master Mix II no 
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UNG (2x) in a 7500 Real-Time PCR system (Applied Biosystems®, USA), according to the 

recommended protocol. For each sample, the mean quantity of each miRNA was 

normalized to the mean quantity for the endogenous control RNU48 (assay ID: 001006), 

according to the following formula: miRNA expression = (target miRNA expression mean 

quantity)/(RNU48 mean quantity). Results were then multiplied by 1000 for easier 

tabulation. Each plate included multiple non-template controls and 5 cDNA serial dilutions 

(10x) obtained from human prostate RNA (Ambion, USA) were used to construct a standard 

curve for each plate. All experiments were run in triplicate. 

 

1.4 DNA Extraction and Bisulfite Modification  

 

One thousand ng of DNA was extracted from all clinical samples using phenol-

chloroform method. The bisulfite modification was accomplished using EZ DNA 

Methylation-Gold™ Kit (Zymo Research, USA), that integrates DNA denaturation and 

bisulfite conversion processes into one-step, according to the recommended protocol.  

 

1.5 Quantitative Methylation-specific PCR 

 

Quantitative Methylation-specific PCR (qMSP) assay was performed using AmpliTaq 

Gold® DNA Polymerase, in a 7500 Real-Time PCR system (Applied Biosystems®, USA), 

according to the recommended protocol. Sequence-specific primers and a TaqMan probe 

used in this study were synthesized by Sigma-Aldrich (USA) (Table 4). In each sample, the 

mean quantity of miRNA-27a-5p DNA methylation status was normalized to the mean 

quantity for the endogenous control β-Actin, according to the following formula: miRNA DNA 

methylation status = (miRNA methylation mean quantity)/( β-Actin mean quantity). Results 

were then multiplied by 1000 for easier tabulation. CpGenome™ Universal Methylated DNA 

(Merck Millipore, Germany) underwent bisulfite conversion was used to construct a 

standard curve in five serial dilutions (5x factor dilution), in order to allow relative 

quantification and ascertain PCR efficiency. 
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Table 4 TaqMan probe and primer sequence, amplicons, locations and annealing 

temperatures for qMSP. 

MiR-27a-5p (Family Name: MIR27) 

Forward Sequence 5’TGTATTTTAGTCGTGGCGATA3’ 

Probe Sequence 5’(6-FAM)AGAGATGGGGTATTGTCGTATTGC(BHQ-1)3’ 

Reverse Sequence 5’ATAACGACTCACGCCTATAATC3’ 

Amplicon Size (bp) 172 

Location (bp upstream TSS) 1222 

Annealing Temp (oC) 60 

β-Actin [112] 

Forward Sequence 5’TGGTGATGGAGGAGGTTTAGTAAGT3’ 

Probe Sequence 5’(6-FAM)ACCACCACCCAACACACAATAACAAACACA(TAMRA)3’ 

Reverse Sequence 5’ACCAATAAAACCTACTCCTCCCTTAA3’ 

Amplicon Size (bp) 132 

Location (bp upstream TSS) 1599 

Annealing Temp (oC) 60 

 

2. PROSTATE CANCER CELL LINES STUDIES 
 

Three prostate cancer cell lines were selected for subsequent studies to explore the 

importance of epigenetic mechanisms on miR-27a-5p’s regulation. The selected cell lines 

were PNT2, a normal prostatic epithelium cell line (Sigma-Aldrich, USA), LNCaP and PC3 

(ATCC – American Type Culture Collection, USA). Regarding metastatic cell lines, LNCaP 

is hormone-sensitive, while PC3 is castration-resistant. PNT2 and LNCaP cells were grown 

in RPMI 1640 and PC3 cells were grown in 50% RPMI-50% F-12 medium (GIBCO, 

Invitrogen, USA). All culture media were supplemented with 10% fetal bovine serum and 

1% penicillin/streptomycin (GIBCO, Invitrogen, USA). Cells were maintained in an incubator 

at 37oC with 5% CO2. All PCa cell lines were routinely tested for Mycoplasma spp. 

contamination (PCR Mycoplasma Detection Set, Clontech Laboratories). To harvest the 

cells for subculture, TrypLE™ Express (GIBCO, Invitrogen, USA) dissociation reagent was 

used. 
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2.1 Cell Lines Treatment with Epigenetic-modulating Drugs  

 

To reverse DNA methylation effect in the cell lines, we used 1 μM of the DNA 

methyltransferases inhibitor 5-aza-2-deoxycytidine (5-Aza-CdR; Sigma-Aldrich, USA).  

The cell lines were grown until 20 to 30% of confluence was reached in T25cm3 cell 

culture flasks and, then, medium containing the drug was added. On day 4, the cells were 

harvested by trypsinization and centrifuged. All the treatments were done in triplicate. 

Pellets were washed in PBS and stored for DNA and RNA extraction at -80oC. 

 

2.2 Total RNA  and DNA Extraction from Cell Lines 

 

Cell culture flasks (25 cm3) with PCa cell lines were harvested with a dissociation 

reagent, TrypLE™ Express (GIBCO, Invitrogen, USA) and centrifuged for 5 minutes at 

1,200 rpm. Cell pellets were ressuspended in 1 mL of PBS (GIBCO, Invitrogen, USA), 

divided for 2 eppendorfs (for RNA and DNA extraction) and centrifuged for another 5 

minutes at 1,200 rpm. The supernatant was discarded and cell pellets were stored at -80oC. 

Total RNA from cell lines was obtained by suspension in TRIzol® reagent (Invitrogen, 

USA) and total RNA was purified from the aqueous phase of TRIzol® extract using 

PureLink™ RNA Mini Kit (Invitrogen, USA) following manufacturer recommendations. 

MicroRNA reverse transcription (RT) and Quantitative Real-Time PCR (RT-qPCR)  for miR-

27a-5p were performed in cell lines as for clinical samples. 

One thousand ng of DNA was extracted from all cell lines using phenol-chloroform 

method. The bisulfite modification was accomplished using EZ DNA Methylation-Gold™ Kit 

(Zymo Research, USA), that integrates DNA denaturation and bisulfite conversion 

processes into one-step, according to the recommended protocol. Quantitative Methylation-

specific PCR (qMSP) assay for miR-27a-5p was performed in cell lines as for clinical 

samples. 

 

2.3 MYC Expression 

 

For each sample, first strand synthesis was performed using the High-Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems®, USA). MYC Expression levels were 

quantified by RT-qPCR using TaqMan Universal PCR Master Mix and MYC TaqMan Gene 

Expression Assay (Hs00153408_m1) (Applied Biosystems®, USA) and GUSβ 

(Hs99999908_m1) was used as a reference gene for normalization, according to the 
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formula: relative expression = (target gene mean quantity/reference gene mean quantity). 

Ratios were then multiplied by 1000 for easier tabulation. Each plate included multiple non-

template controls and cDNA serial dilutions (10x) obtained from human prostate RNA 

(Ambion, USA) were used to construct a standard curve for each plate. All experiments 

were run in triplicate. 

 

2.4 In Silico Analysis 

 

 In silico analysis was performed to calculate the probability of c-Myc to bind to the 

promoter of gene where validated miRNA are inserted, based on a recently reported c-Myc 

binding sequence and its respective binding matrix [113]. MicroRNA promoter sequence 

were obtained from Genome Browser database (MIR27A: 19p13.12) and the number of 

transcription factor binding sites was retrieved with the help of ConSite web-based tool, 

after the alignment between miRNA promoter sequence and c-Myc binding sequence. 

Additionally, RNA22 tool [114] was used to predict miRNA target sites in the mRNA 

sequence of EGFR, Akt1 and mTOR. 

 

2.5 Chromatin Immunoprecipitation for Transcription Factors   

 

Cells were crosslinked with formaldehyde (37%) and chromatin was 

immunoprecipitated using the iDeal Chip-seq Kit for Transcription Factors (Diagenode, 

Belgium), according to the recommended protocol. Rabbit monoclonal antibody specific for 

c-Myc (Abcam®, United Kingdom) was used to immunoprecipitate chromatin fragments and 

rabbit IgG antibody was used as negative control. Real-time PCR was performed using 

7500 Real-Time PCR system (Applied Biosystems®, USA) with NZYSpeedy qPCR Green 

Master Mix (NZYTech, Portugal). Sequences of primers used to amplify ChIP samples 

were: primer forward 5’TGCTTGGCCTGAAATTCTTAG3’ and primer reverse 

5’ACCAGGGCAAGATACAGGA3’. To analyze the results the percentage input method was 

used.  

 

2.6 MicroRNA Transfection 

 

A previous MYC gene silencing in PC3 cell line was achieved through the use of 

particles carrying the pGIPZ lentiviral vector containing a shRNA sequence targeting MYC 

(Thermo Scientific, USA) that functions as a small interfering RNA (siRNA). As a negative 
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control, one scrambled siRNA (sh-scramble RNA) sequence was used, with the same 

nucleotide composition as the three shRNAs randomly ordered. MicroRNA-27a-5p was 

transiently transfected in PC3 sh-scramble and PC3 sh-MYC with Pre-miRTM miRNA 

Precursor (has-miR-27a-5p, AM17100, Ambion, USA). A miRNA negative control was used 

as control in all experiments (miR-NC, AM17010, Ambion, USA). Cells were seeded under 

standard conditions in six-well and 96-well plates for 24 h before transfection, reaching 30% 

to 50% confluence. In these experiments, pre-miR-27a-5p and miR-NC concentration was 

50nM. Oligofectamine™ reagent (Invitrogen, USA) was used under conditions indicated by 

the manufacturer. Cells were then incubated at 37°C and 5% CO2 in a humidified chamber 

for 72 h upon transfection. At 72 h, forced expression of miR-27a-5p were confirmed by RT-

qPCR. 

 

2.7 Cell Viability Assay 

 

To evaluate the impact of in vitro transfection of miR-27a-5p in PC3, 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT; Sigma-Aldrich, USA) assay was 

performed in 96-well plates. Briefly, cells were incubated with 10% MTT at 5 mg/mL in a 

humidified chamber for 24, 48, and 72 h after transfection. Reaction was stopped by 

removal of MTT and addition of 100 μL DMSO (Sigma-Aldrich, USA) per well. Absorbance 

levels were measured using a microplate reader (Fluostar Omega, BMG Labtech) at 

540 nm with background deduction at 630 nm. Number of viable cells was obtained using 

the following formula: (OD experiment × Mean number of cells at 0 h)/Mean OD at 0 h. 

Three biologically independent experiments were performed, comprising methodological 

triplicates for each experiment. 

 

2.8 Apoptosis Assay 

 

Apoptosis was assessed using the APOPercentage™ kit (Biocolor Ltd., UK). Cell lines 

were seeded under the same conditions as described for MTT assay and, after 72 h 

incubation, apoptosis assay was performed according to the manufacturer’s instructions. 

Quantification of apoptosis was achieved by measuring the optical density of the released 

dye at 550 nm with background deduction at 620 nm using a FLUOstar Omega microplate 

reader. To normalize the OD obtained for the apoptosis assays relatively to cell number, 

OD of cell viability assay at 72 h was used. Results were expressed as ratio of transfected 

cells OD to miR-NC OD (set as 100%). 
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2.9 Protein Extraction and Quantification 

 

Nuclear protein was extracted from PC3 cells using performed using Nuclear Extract 

Kit (Active Motif) and total protein was extracted from LNCaP cell lysates using the 

radioimmuno precipitation assay (RIPA) (Santa Cruz Biotechnology Inc., USA) and 

subsequently quantified using a Pierce BCA Protein Assay Kit (Applied Biosystems, USA), 

according to manufacturer instructions. 

 

2.10  Western Blot 

 

Briefly, 30 µg of protein from each sample were separated using 10% sodium dodecyl 

sulfate polyacrylamide gel, for further electrophoresis (SDS-PAGE) at 120 V and 

subsequently blotted onto 0.2 μm nitrocellulose membranes (Bio-Rad Laboratories Inc., 

Hercules, CA, USA). After that, membranes were blocked with a 5% non fat dry milk solution 

in TBS-T and then incubated with antibody. To ascertain equal loading of protein, the 

membranes were incubated with an endogenous control antibody. All antibodies used are 

listed in Table 5. Protein band intensities were determined using ImageJ (Wayne Rasband 

software from National Institute of Health), by comparing the protein band intensity with the 

loading control (LMNB1 in nuclear protein extract and β-Actin in total protein extract). 

 

Table 5 All antibodies used in Western blot. 

Antibodies Vendor Catalog number 

Anti-c-Myc antibody Abcam, Cambridge, MA, USA ab32072 

Anti-LMNB1 antibody 
Cell Signaling Technology, 

Danvers, MA, USA 
12586S 

Anti-EGFR antibody Kinexus Inc., Vancouver, Canada AB-NK052-4 

Anti-EGFR phospholylated Y1172 

antibody 
ProSci Inc., Poway, CA, USA XBP-4085 

Anti-Akt1antibody 
Santa Cruz Biotechnology, Santa 

Cruz, CA, USA 
sc-5298 

Anti-Akt1 phosphorylated S473 

antibody 

EMD Millipore, Temecula, CA, 

USA 
05-1003 

Anti-mTOR antibody 
Cell Signaling Technology, 

Danvers, MA, USA 
2972 

Anti-β-Actin antibody 
Sigma-Aldrich, CO., St Louis, MO, 

USA 
A5316 
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2.11 Statistical Analysis 

 

Unless otherwise stated, experiments were performed in triplicates. The Shapiro-Wilk’s 

W test allowed for the examination of the appropriateness of a normal distribution 

assumption for each of the parameters (data not shown). Comparisons between two groups 

were then performed using non-parametric Mann–Whitney U-test. P-values were 

considered statistically significant if lower than 0.05. Correlation between miRNAs’ 

expression and methylation were measured by the Spearman correlation coefficient (r) test. 

Data are presented as median ± interquartile range for tissue analysis and mean ± SD for 

cell line analysis. Significance is shown versus the respective control and depicted as 

follows: *P < 0 .05, **P < 0.01, ***P < 0.001 and ns – non-significant. 

Statistical analysis was performed using SPSS 20.0 for Mac (IBM-SPSS Inc., Chicago, 

IL, USA) and graphs were built using GraphPad Prism 5.0 software for Mac (GraphPad 

Software Inc., La Jolla, CA, USA). 
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1. PROSTATE CANCER TISSUE SAMPLES 

 

1.1 MicroRNA-27a-5p Status in Clinically Localized Prostate 

Cancer (Cohort #1) 

 

Contrarily to our expectations, in the validation series (cohort #1), microRNA-27a-5p 

expression levels were significantly downregulated in PCa (P < 0.001) and PIN lesions (P 

< 0.01), compared with MNPT (Table 6, Figure 8A). In an attempt to explain the previous 

result and since a CpG island was found at miR-27a-5p promoter region, promoter 

methylation status was assessed in the same cohort #1. PCa samples depicted significant 

higher methylation levels than PIN lesions (P < 0.001) and MNPT (P < 0.001) (Table 6, 

Figure 8B). Moreover, there was a significant inverse correlation between miR-27a-5p 

promoter’s methylation and expression levels in PCa (Spearman's rho = -0.263; P < 0.05). 

Nonetheless, MYC-overexpressing PCa correlated positively with miR-27a-5p expression 

levels (Spearman's rho = 0.333; P < 0.05) in cases without miRNA promoter methylation 

(18/198 cases) (Supplementary Figure 2). 

 

 

Table 6 miR-27a-5p expression and promoter methylation levels in cohort #1. 

Cohort #1 MNPT PIN PCa 

miR-27a-5p expression 

Median (IQR) 

11.34 

(7.18 – 17.00) 

2.88 

(1.42 – 5.18) 

1.68 

(0.80 – 3.18) 

miR-27a-5p methylation 

Median (IQR) 

868.86 

(741.32 – 960.97) 

960.29 

(949.32 – 971.81) 

1136.28 

(926.00 – 1448.47) 
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1.2 Interplay between MYC and miR-27a-5p in Castration-

Resistant Prostate Cancer (Cohort #2) 

 

MYC and miR-27a-5p status were also assessed in a second cohort of FFPE tissues 

consisting of castration-resistant PCa (CRPC). Clinicopathological data from cohort #2 are 

depicted in Table 8. No statistically significant difference between PCa and MNPT samples 

were found for age. A significant increase in both MYC (P < 0.01) (Table 7, Figure 9A) and 

miR-27a-5p (P < 0.001) (Table 7, Figure 9B) expression levels was found in CRPC 

compared to MNPT. Contrarily, miR-27a-5p promoter methylation levels in CRPC were 

significantly lower than those found in MNPT (P < 0.001) (Table 7, Figure 9C). Moreover, 

MYC-overexpressing CRPC correlated positively with miR-27a-5p expression levels 

(Spearman's rho = 0.274; P < 0.05), whereas a significant inverse correlation between miR-

27a-5p promoter’s methylation and expression levels in CRPC was disclosed (Spearman's 

rho = -0.434; P < 0.05).  

 

Table 7 MYC and miR-27a-5p status in cohort #2. 

Cohort #2 MNPT CRPC 

MYC expression  

Median (IQR) 

18.33 

(14.09 – 34.89) 

83.25 

(28.49 – 160.52) 

miR-27a-5p expression 

Median (IQR) 

10.68 

(7.10 – 13.16) 

645.87 

(293.75 – 847.82) 

miR-27a-5p methylation 

Median (IQR) 

852.35 

(806.93 – 889.56) 

495.46 

(413.78 – 573.54) 

Figure 8 Expression levels of miRNA-27a-5p (A) and methylation levels of miR-27a-5p promoter 

(B) in cohort #1.  
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Table 8 Clinical and pathological data of cohort #2 included in the study. 

Clinicopathological Data 

Cohort #2 

CRPC 

n = 24 

MNPT 

n = 10 

Age (years), 

Median (range) 

66 

(55 – 82) 

58 

(45 - 79) 

PSA (ng/mL), 

Median (range) 

60.88 

(1.20 – 360) 
n.a. 

Gleason Score, N (%) 

<7 
5  

(20.8 %) 
n.a. 

=7 
11  

(45.8 %) 
n.a. 

>7 
8  

(33.3 %) 
n.a. 

 

1.3 Association of miR-27a-5p with Clinicopathological 

Features  

 

No significant association was found between miR-27a-5p expression as well as 

promoter’s methylation levels and any of the clinicopathologic parameters both in PCa 

(cohort #1) and CRPC (cohort #2). 

 

  

Figure 9 MYC transcript levels(A), expression levels of miRNA-27a-5p (B) and methylation levels 

of miR-27a-5p promoter (C) in cohort #2.  
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2. IN VITRO STUDIES: PCa CELL LINES 

 

2.1 MYC Characterization  

 

 PCa cell lines, LNCaP and PC3, displayed higher MYC expression levels in 

comparison with PNT2 (P < 0.001). In PC3 cells, MYC expression levels were 15 times 

higher than in PNT2 cells (Figure 10). We also evaluated the number of copies of 

chromosome 8q24, in which MYC is mapped, and both PC3 and LNCaP displayed copy 

number gains (Table 9). Moreover, an association between copy number gain and MYC 

expression levels was disclosed. 

 

 

 

Table 9 8q24 copy number in PCa cell lines. 

  

 

 

 

 

 

 

 

8q24 amplification 

Cell Line Number of copies 

LNCaP 4 

PC3 6 

Figure 10 Expression of MYC in PCa cell lines. Results are displayed after normalization to PNT2.  
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2.2 MicroRNA-27a-5p Status: Expression vs. Methylation  

 

 Significant differences were found for miR-27a-5p expression and promoter 

methylation levels in LNCaP and PC3 cells compared to PNT2 (Figure 11A and B). Indeed, 

LNCaP cells showed lower miRNA transcript levels (P < 0.001) and higher miR-27a-5p 

promoter methylation levels (p=0.004), whereas in PC3 cell line, higher miR-27a-5p 

expression levels (P < 0.001) and lower methylation levels (P = 0.019) were apparent.  

 

 

2.3 Impact of 5-aza-2’deoxycytidine (5-Aza-CdR) Treatment  

 

To confirm whether miR-27a-5p expression was regulated by promoter methylation, 

PCa cell lines were exposed to 5-aza-2’deoxycytidine (5-Aza-CdR) (Figure 12), and a 

statistically significant reduction of miR-27a-5p promoter methylation levels was observed 

in both PCa cell lines (P < 0.05). However, significantly higher miR-27a-5p re-expression 

(50% increase) was only observed in LNCaP cells (P < 0.001). 

 

Figure 11 Expression (A) and methylation (B) of miR-27a-5p in PCa cell lines. Results are 

displayed after normalization to PNT2.  
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2.4 MicroRNA-27a-5p Regulation by MYC Signaling 

 

In silico analysis for putative c-Myc binding sites within miR-27a-5p promoter region 

was performed. c-Myc is known to bind to the canonical E-box sequence CACGTG [108] 

and we identified one putative binding site matching these sequence in miR-27a-5p 

promoter region. c-Myc regulation of miR-27a-5p expression was assessed in LNCaP cells 

(hypermethylated at miR-27a-5p’s promoter) and PC3 (hypomethylated at miR-27a-5p’s 

promoter) by ChIP (Chromatin immunoprecipitation) and the results are depicted in Figure 

13. A significant increase (P < 0.001) of c-Myc binding at miR-27a-5p promoter region was 

apparent in LNCaP 5-Aza-CdR treated cells, whereas low c-Myc amount was found in mock 

cells. Conversely, in PC3, c-Myc enrichment was found at miR-27a-5p promoter both in 

mock and 5-Aza-CdR exposed PC3 cells. Therefore, our data suggest that miR-27a-5p is 

regulated by c-Myc depending on the methylation status of its promoter. 

 

 

Figure 12 Methylation and expression levels of miR-27a-5p in LNCaP (A) and in PC3 (B) upon 5-

Aza-CdR treatment. Results are displayed after normalization to mock.  
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2.5 Phenotypic Impact of MYC Silencing and miR-27a-5p 

Forced Expression in PC3 Cell Line 

 

Effective MYC silencing was achieved in PC3 cells, confirmed at mRNA (87%, p < 

0.001) and protein level (50%, P < 0.05) (Figures 14A and 14B, respectively). Furthermore, 

MYC knockdown attenuated the malignant phenotype with a statistically significant 

reduction of cell viability, more evident at 48 hours (54%, P < 0.001), and an increase of 

apoptosis, at 72 hours (about 3 times, P < 0.001) (Figure 14E). 

After MYC silencing we found a significant reduction in miR-27a-5p transcript levels 

(80%, P < 0.01) (Figure 14C). Mir-27a-5p mimics was transfected in sh-scramble and sh-

MYC PC3 cell line and transfection efficiencies were confirmed by RT-qPCR (Figure 14D). 

Forced miR-27a-5p expression in sh-scramble PC-3 cells caused an inhibitory effect on cell 

viability more evident at 72 hours (32%; P = 0.003) and increased apoptosis (1.92 times; P 

< 0.001) also at 72 hours’ post-transfection (Figure 14F). In sh-MYC PC-3 cells transfected 

with miR-27a-5p, a significant reduction in number of viable cells was found, particularly at 

Figure 13 Real-time PCR analysis for c-Myc chromatin immunoprecipitated of miR-27a-5p 

promoter region in LNCaP and PC3 cell lines.  
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72 hours (40%; P < 0.001) and a 2.94-fold increase in apoptosis (P < 0.001) was also 

apparent at the same time point (Figure 14G). 

Figure 14 MYC expression (A), c-Myc protein levels (B) and miR-27a-5p expression (C) after MYC 

knockdown in PC3 cell lines; Assessment of pre-miR-27a-5p transfection efficiency in PC3 (D); 

Phenotypic impact (viability and apoptosis) of MYC knockdown (E), pre-miR transfection (F) and 

both (G) in PC3 cell line. 
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2.6 Putative miR-27a-5p Targets 

 

In search for genes regulated by miR-27a-5p, we evaluated putative targets associated 

with cellular processes and pathways relevant in PCa. The epidermal growth factor receptor 

(EGFR) signaling pathway has been previously reported as a target of miR-27a-5p in head 

and neck squamous carcinoma cell lines [115] and in silico analysis identified one predicted 

miRNA response element (MRE) at CDS of EGFR. Further analysis for more potential 

targets of miR-27a-5p led to the identification of Akt1 (Akt serine/threonine kinase 1) and 

mTOR (mechanistic target of rapamycin) within the EGFR signaling axis (Figure 15A, Table 

10), which are also documented as frequently deregulated in PCa [116]. 

Because increased miR-27a-5p transcript levels were found upon 5-Aza-CdR exposure 

in LNCaP cells, we looked for altered expression of some miR-27a-5p putative targets, at 

protein level. Thus, in the EGFR signaling axis, we found decreased expression of EGFR, 

EGFR phosphorylated at Y1172, Akt1 phosphorylated at S473 and mTOR, in 5-Aza-CdR 

exposed LNCaP cells, compared to mock (Figures 15B, C and D). 

 

Table 10 miRNA pre-computed static target predictions based on the RNA22 tool [114]. 

 

hsa-miR-27a-5p  

miRNA Response Elements (MRE) 

Target cDNA region 
Left most position of 

predicted target site 

Folding energy 

(Kcal/mol) 
P-value 

EGFR CDS 1849 -12.20 0.00777 

AKT1 CDS 1033 -13.90 0.0135 

mTOR CDS 1116 -19.00 0.0381 
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Figure 15 Identification of predicted miRNA response element (MRE) using in silico screening 

methods (A); Protein levels in LNCaP mock and 5-Aza-CdR tretated cell lines by Western Blot 

analysis (B): EGFR 134 KDa, Akt1 62 KDa, mTOR 289 KDa and β-Actin 42 KDa. 
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Prostate cancer remains one of the major health challenges due to its incidence rate 

worldwide, lack of accurate biomarkers and scarce information concerning its onset and 

progression [2, 117, 118]. Thus, a more in-depth understanding of molecular alterations 

underlying prostate carcinogenesis may help improve current diagnostic and therapeutic 

approaches. Abnormal activation of the MYC oncogene may occur through several distinct 

mechanisms and it is currently recognized as a major event in many cellular pathways 

leading to the development of various types of neoplasia, including PCa [119]. Indeed, the 

c-Myc transcription factor, which may act as a transcription activator or repressor, greatly 

contributes to neoplastic transformation, by targeting genes with critical functions in cell 

cycle, differentiation, growth, metabolism, protein synthesis, adhesion, migration, 

angiogenesis and many others processes [93]. Recently, not only c-Myc was shown to 

regulate the transcription of several miRNA, but also several miRNAs were suggested to 

regulate c-Myc expression [120-122]. These data support the existence of a complex 

regulatory network established between MYC and several miRNAs, which tightly controls 

the expression levels of target genes in a normal cell but, once deregulated, may be critical 

for cancer development.  

Herein, we aimed to identify novel miRNAs implicated in prostate carcinogenesis that 

might be regulated by c-Myc. In a set of primary PCa, PIN and MNPT samples (cohort #1), 

we confirmed MYC overexpression in PCa, in accordance with its oncogenic role [123, 124]. 

Additionally, in the same cohort, higher c-Myc protein levels were statistically associated 

with predictors of more aggressive disease (higher serum PSA and GS), again in line with 

previous findings [98]. Moreover, in PIN lesions, c-Myc protein levels were higher than in 

MNPT but lower than in PCa, which is consistent with its precursor lesion status in prostate 

carcinogenesis [125].  

Microarray analysis identified three miRs - miR-27a-5p, miR-570 and miR-1292 - as 

overexpressed in MYC upregulated PCa samples, suggestive of possible targets of c-Myc 

regulation. However, miRNA candidate validation was only accomplished for miR-27a-5p, 

because no successful amplification was accomplished for miR-570 and miR-1292, 

probably due to the very low levels of those two miRNAs in prostatic tissues. This highlighs 

the importance of microarray validation through different techniques, as microarray and RT-

qPCR methodologies have different detection sensitivities [126]. Interestingly, miR-27a-5p 

is part of the miR-23a-27a-24-2 cluster, previously reported to be frequently overexpressed 

[127] and targeted by c-Myc regulation in breast cancer [128]. 

Surprisingly, when miR-27a-5p expression levels were assessed in the large series of 

clinically localized PCa (cohort #1), for validation purposes, significant downregulation was 

found in PCa compared to MNPT, suggesting a tumor suppressive role for this miRNA, 

contrarily to the data from microarray analysis. Because we have found aberrant promoter 
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methylation to be associated with silencing of several miRNAs in PCa [81, 82, 92], we 

hypothesized that this epigenetic mechanism might be responsible for miR-27a-5p 

downregulation. Indeed, significantly higher methylation levels were found in PCa and PIN 

lesions comparatively with MNPT, and a significant inverse correlation between expression 

and promoter methylation levels was disclosed. This pattern suggest tumor suppressive 

functions for miR-27a-5p, in agreement with previous findings in a different cancer model 

[115]. Interestingly, miR-23a, another member of miR-23a-27a-24-2 cluster, was also found 

downregulated due to promoter methylation in PCa [129]. Intriguingly, high-MYC PCa 

samples that displayed higher miR-27a-5p expression levels in the array, depicted the 

lowest methylation levels. Hence, the discrepancy between results of microarray and the 

validation cohort may be due to the small number of samples used in the array, whose 

selection was based only in MYC transcript levels. Thus, it is possible that we have 

introduce a significant bias in miRNAs analysis, emphasizing the need to always validate 

array results in an independent series with a different method.  

As previously stated, the oncogenic role of MYC in prostate cancer is well documented 

and its amplification is often associated with the emergence of CRPC phenotype [130, 131]. 

We confirmed this finding in a cohort CRPC tissues (cohort#2), which displayed MYC 

upregulation, with higher MYC transcript levels compared with clinically localized PCa 

(cohort #1, data not shown). Interestingly, in the CRPC cohort, miR-27a-5p expression and 

promoter methylation levels followed opposite trends compared with primary PCa (cohort 

#1). These results suggest that miR-27a-5p regulation might be context dependent (primary 

PCa vs. CRPC), with a predominantly epigenetic regulation in hormone-naïve tumors, 

whereas other mechanisms prevail in advanced, castration-resistant disease.  

Remarkably, the results observed in primary PCa and CRPC tissues were paralleled 

by those of obtained in PCa cell lines. Although MYC upregulation was found both in LNCaP 

(androgen-sensitive) and PC3 (androgen-insensitive) cells, expression levels were much 

higher in PC3 cell line. Moreover, miR-27a-5p expression and promoter methylation levels 

disclosed the same trends found in primary PCa (LNCaP) and CRPC (PC3). Interestingly, 

although exposure to 5-Aza-CdR decreased promoter methylation levels in both cells lines, 

only in LNCaP cell significant restored expression was disclosed, reinforcing that in CRPC 

cells DNA methylation is not the main miR-27a-5p expression regulatory mechanism. In 

silico analysis identified putative c-Myc binding sites at miR-27a-5p promoter region and 

ChIP assay results strongly suggested that miR-27a-5p’s regulation by c-Myc only occurs 

in the absence of promoter methylation. This is likely due to conformational modifications 

induced by DNA methylation in chromatin framework, preventing c-Myc binding at miR-27a-

5p promoter region [132, 133]. 
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We further verified that MYC knockdown in PC3 cells not only mitigated the malignant 

phenotype, as expected, but it also caused miR-27a-5p downregulation, further supporting 

miR-27a-5p as a putative target of c-Myc regulation. Interestingly, the phenotypic impact of 

MYC knockdown was mimicked by miR-27a-5p ectopic expression (increased apoptosis 

and diminished viability) in PC3 cells. Furthermore, restored miR-27a-5p expression in 

LNCaP cells, upon 5-Aza-CdR exposure, was associated with EGFR/Akt1/mTOR signaling 

pathway downregulation. EGFR signaling axis is deregulated in various solid tumors, 

including prostate cancer [134, 135], and during prostate carcinogenesis, EGFR is normally 

upregulated and plays an important role in fostering cancer cell growth [136]. Considering 

these data, we propose that miR-27a-5p role in PCa depends on the stage of disease. In 

normal prostate epithelial cells, miR-27a-5p promoter in not hypermethylated and its 

expression is regulated by c-Myc, constituting a negative feedback loop that counteracts 

MYC signaling, eventually as a similar mechanism to oncogene-induced senescence. Then, 

at the earliest steps of neoplastic transformation, miR-27a-5p promoter gradually acquires 

methylation and its expression is silenced. This abolishes the MYC feedback loop and 

stimulates cell proliferation and survival, contributing to the emergence of PIN (which 

consists of neoplastic cells accumulate in glands, with preserved architecture, due to 

excessive proliferation and impaired cell death) and, subsequently, of invasive carcinoma. 

As PCa evolves, locus-specific hypermethylation is accompanied by global expansion of 

DNA hypomethylation, causing chromosome instability [137], which promotes disease 

progression and metastatic spread. Thus, in CRPC, the miR-27a-5p promoter becomes 

hypomethylated, allowing for c-Myc to resume its regulatory role and leading to increased 

miR-27a-5p expression. However, at this stage, miR-27a-5p increased expression is no 

longer sufficient to halt PCa progression as cancer cells have acquired many genetic and 

epigenetic alterations, which concur to the fatal evolution of the disease. Although this is a 

rather speculative hypothesis (Figure 16), the data presented here fully support it and 

provides a framework for subsequent research in this field. 
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Figure 16 Proposed model for miR-27a-5p regulation in Prostate Cancer. 
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In conclusion, our study provides further insight into miRNAs’ deregulation in PCa. 

Specifically, this is the first study reporting the interplay between two independent 

mechanisms, aberrant promoter methylation and MYC signaling, in the regulation of miR-

27a-5p in prostate cancer. Our results further emphasize that the role of miRNA 

deregulation in neoplastic transformation and progression is highly context-dependent, 

even in the same cancer model. 
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Supplementary Figure 1 Heatmap resulting from the miRNA microarray performed with total RNA 

extracted from PCa cases with high and low levels of MYC transcript. The selected miRNAs 

candidates were evidenced by the black arrows. 
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Supplementary Figure 2 MYC and miRNA-27a-5p expression levels according with miR-27a-5p 

promoter methylation in PCa cases. 

 


