
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

The effect of mesh partitioning quality
on the performance of a scientific

application in an HPC environment

Antonio Pedro Araujo Fraga

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Name of the Supervisor

September 22, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/162558807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The effect of mesh partitioning quality on the
performance of a scientific application in an HPC

environment

Antonio Pedro Araujo Fraga

Mestrado Integrado em Engenharia Informática e Computação

September 22, 2018

Abstract

The need of fast and reliable methods to solve large linear systems of equations is growing rapidly.
Because this is a challenging problem, several techniques have been developed in order to solve it
accurately and efficiently. Geometric Multigrid methods are being used to solve these problems,
as they accelerate the convergence to a solution. With these methods, it is possible to use a coarser
grid as an input, reducing the problem domain and thus reducing the computational cost.

The focus of this thesis is the development of new algorithms to generate a sequence of coarser
grids from the original grid. By treating this problem as a minimization problem, one can attempt
to optimize the overall grid quality by choosing how to merge elements. In order to evaluate our
algorithms, we are going define how to quantify the overall grid quality, and therefore analyse the
grids obtained by them. We are also going to use the multilevel grid construction paradigm, which
is known to be adequate to solve similar problems.

Such construction can be done in parallel, by adding a small overhead and not sacrificing the
quality produced by our multilevel constructor. Hence, we can achieve a high level of concurrency.

i

ii

Resumo

A procura de métodos rápidos e eficazes para resolver grandes sistemas de equações lineares está a
crescer rapidamente. Visto que este é um problema desafiante, várias técnicas foram desenvolvidas
para que estes sistemas possam ser resolvidos de forma eficiente e com um nível razoável de
precisão. Métodos Geometric Multigrid estão a ser utilizados para resolver estes problemas, já
que aceleram a convergência para uma solução. Com estes métodos é possível utilizar grelhas
mais pequenas como entrada de dados, reduzindo o tamanho do problema e consequentemente
reduzindo o custo computacional.

Esta tese foca-se no desenvolvimento de novos algoritmos para gerar uma sequência de grelhas
mais pequenas obtidas a partir da grelha inicial. Tratando este problema como um problema de
minimização, é possível tentar otimizar a qualidade da grelha, estudando os resultados obtidos
pelos vários algoritmos. Para que estes resultados possam ser estudados, foram definidos métodos
que quantificam a qualidade de cada grelha, podendo assim, compará-las. O paradigma usado
para obter grelhas mais pequenas é definido como Construção Multinível, que é conhecido por ser
adequado para resolver problemas relacionados.

Esta construção pode ser feita em paralelo, adicionando um pequeno overhead, e não sacrif-
icando a qualidade produzida pelo construtor. Consequentemente, é possível obter um alto nível
de concorrência.

iii

iv

Acknowledgements

I would like to express my gratitude to my family, who always supported me with my choices and
my education. I have to thank my father for the values and good manners that he persistently tried
to pass me. I have to thank my mother for the love and empathy in my everyday life. I would like
to thank my brother for all the advises, making me a better brother, and a better man.

Secondly, I would like to thank my girlfriend, who tends to see the best qualities in other
people. Reminding me that seeking such qualities helps us to do the right thing.

Thirdly, I want to thank to Dr. Irene Moulitsas, for her teaching, her patience and support with
my academic and future professional life. With special thanks to Soren Rasmussen, for several
technical advices and for, the always, available help.

I’m grateful to everyone who contributed for my interest in Computer Science, Math, Physics
and Logic, that in some extent helped me to write this thesis.

António Pedro Araújo Fraga

v

vi

Contents

1 Introduction 1
1.1 Multigrid Methods . 1
1.2 Problem Complexity . 3
1.3 Parallelisation . 4

1.3.1 Hardware . 4
1.3.2 Software . 5

2 Literature Review 9
2.1 Path, Trees and Flowers . 9
2.2 Maximum matching and a polyhedron with 0,1-vertices 9
2.3 Moore’s law . 10
2.4 Amdahl’s law . 10
2.5 Gustafson’s law . 11
2.6 A linear-time heuristic for improving network partitions 11
2.7 A multilevel algorithm for partitioning graphs 11
2.8 Multilevel k-way partitioning scheme for irregular graphs 11
2.9 A fast and highly quality multilevel scheme for partitioning irregular graphs . . . 12
2.10 Parallel multilevel k-way partitioning for irregular graphs 13
2.11 Multilevel algorithms for generating coarse grids for multigrid methods 13
2.12 A simple approximation for the Weighted Matching Problem 14
2.13 Mesh Partitioning: A Multilevel Ant-Colony-Optimization Algorithm 14
2.14 Engineering a Scalable High Quality Graph Partitioner 14
2.15 Engineering Multilevel Graph Partitioning Algorithms 14

3 Methodologies 17
3.1 Optimization Problem . 17
3.2 Multilevel Coarse Grid Construction . 19

3.2.1 Dual Graph representation . 19
3.2.2 Coarsening Phase . 20
3.2.3 Uncoarsening Phase . 23

3.3 Parallel Implementation . 24
3.4 Execution Conditions . 25
3.5 Validation . 25
3.6 Scalability . 26

4 Results 29
4.1 F3 + F4 . 29

4.1.1 Serial Algorithm Evaluation . 29

vii

CONTENTS

4.1.2 Parallel Algorithm Evaluation . 30
4.2 Local Heaviest Approximation . 32
4.3 Path Growing Algorithm . 34

4.3.1 Traditional . 35
4.3.2 Squared Ratio . 37

4.4 Minimum Approximation Matching . 39

5 Conclusions 41

References 43

A Source Code 47

viii

List of Figures

1.1 Circle and hexagon with the same area. 3
1.2 Time complexities visual representation. 4
1.3 Number of cores comparison in a CPU and GPU. 5
1.4 An example of a shared memory architecture. 5
1.5 An example of a distributed memory architecture. 6
1.6 An example of a hybrid architecture. 6

2.1 An example of a multilevel k-way partitioning. 12

3.1 Multilevel Coarse Grid construction. 19
3.2 A two-dimensional mesh and the correspondent dual graph. 20
3.3 A visualisation of a possible coarsening phase. 21
3.4 A visualisation of a possible uncoarsening phase. 23
3.5 Parallel partition [MK01]. 25

ix

LIST OF FIGURES

x

List of Tables

3.1 Number of elements per mesh. 25
3.2 Quality measures on Delta on 1, 2, 4, 8, 16, 32 and 64 processors. 26
3.3 Quality measures on Cray T3E on 1, 2, 4, 8, 16, 32 and 64 processors. 26
3.4 Quality measures on BEO on 1, 2, 4, 8, and 16 processors. 27
3.5 Execution times in seconds with 1, 2, 4, 8, 16, 32 and 64 processors on Delta,

CRAY T3E and BEO clusters. 27

4.1 Comparison between the Traditional and Squared Sum combinations. 30
4.2 M6 quality measurements comparison between the Traditional and Squared Sum

combinations on 1, 2, 4, 8, 16, 32 and 64 processors. 31
4.3 F22 quality measurements comparison between the Traditional and Squared Sum

combinations on 1, 2, 4, 8, 16, 32 and 64 processors. 31
4.4 F16 quality measurements comparison between the Traditional and Squared Sum

combinations on 1, 2, 4, 8, 16, 32 and 64 processors. 32
4.5 Execution times in seconds and Coarsening Factors comparison between the tra-

ditional and Squared Sum combinations on 1, 2, 4, 8, 16, 32 and 64 processors. . 32
4.6 M6 quality measurements comparison between Globular Matching and Local Heav-

iest Approximation on 1, 2, 4, 8, 16, 32 and 64 processors. 33
4.7 F22 quality measurements comparison between Globular Matching and Local

Heaviest Approximation on 1, 2, 4, 8, 16, 32 and 64 processors. 33
4.8 F16 quality measures comparison between Globular Matching and Local Heaviest

Approximation on 1, 2, 4, 8, 16, 32 and 64 processors. 34
4.9 Execution times in seconds and Coarsening Factors comparison between Globular

Matching and Local Heaviest Approximation on 1, 2, 4, 8, 16, 32 and 64 processors. 34
4.10 M6 quality measurements comparison between Globular Matching and Path Grow-

ing Algorithm on 1, 2, 4, 8, 16, 32 and 64 processors. 35
4.11 F22 quality measurements comparison between Globular Matching and Path Grow-

ing Algorithm on 1, 2, 4, 8, 16, 32 and 64 processors. 35
4.12 F16 quality measurements comparison between Globular Matching and Path Grow-

ing Algorithm on 1, 2, 4, 8, 16, 32 and 64 processors. 36
4.13 Execution times in seconds and Coarsening Factors comparison between Globular

Matching and Local Heaviest Approximation on 1, 2, 4, 8, 16, 32 and 64 processors. 36
4.14 M6 quality measurements comparison between Traditional and Squared Sum on

1, 2, 4, 8, 16, 32 and 64 processors. 37
4.15 F22 quality measurements comparison between Traditional and Squared Sum on

1, 2, 4, 8, 16, 32 and 64 processors. 37
4.16 F16 quality measurements comparison between Traditional and Squared Sum on

1, 2, 4, 8, 16, 32 and 64 processors. 38

xi

LIST OF TABLES

4.17 Execution times in seconds and Coarsening Factors comparison between Tradi-
tional and Squared Sum on 1, 2, 4, 8, 16, 32 and 64 processors. 38

4.18 Comparison between the Globular Matching and Minimum Approximation Match-
ing, following F3 + F2. 39

4.19 Comparison between the Minimum Approximation Matching algorithm, following
F3 + F2 and F3 + F4. 40

xii

Abbreviations

SATM School of Aerospace, Technology and Manufacturing
HPC High Performance Computing
CPU Central Processing Unit
GPU Graphics Processing Unit
API Application Programming Interface
OpenMP Open Multi-Processing
MPI Message Passing Interface
CUDA Compute Unified Device Architecture
SPMD Single Program, Multiple Data
MIMD Multiple Instruction, Multiple Data
SIMD Single Instruction, Multiple Data
PU Processing Unit

xiii

Chapter 1

Introduction

The need of fast and reliable methods to solve large linear systems of equations is growing rapidly.

The Aerospace industry, for instance, is focused on predicting the fluids behaviour around the

several aircraft components. This simulation is possible by solving equations called Euler and

Navier-Stokes [SA95, HC00]. These systems play an important role on weather and climate fore-

casting as well. The results can be influenced by many observations around the Earth surface, and

in case of Met Office in the UK, they receive millions of those observations [Buc95].

Because this is a challenging problem, several methods have been developed in order to solve

it accurately and efficiently. These techniques have different benefits and drawbacks, and there is

no standard method that produces significantly good results on both metrics. Accuracy presents,

in most cases, proportionally inverse improvements when comparing to efficiency.

One can split methods for solving linear systems of equations into two categories, direct
and iterative. Direct methods are able to obtain a solution by performing a set of operations

or following a formula. The solution will not be ready until all operations are complete. LU

decomposition is an example of a direct method. Iterative methods, on the other hand, converge to

an approximated solution. One should establish a limit of iterations, where hopefully, a sufficiently

accurate solution is found [dir13].

Nevertheless, some problems are very large, and is very time consuming to solve them. Thus,

new methods have to be introduced. Methods that will speed up the solution process, but still

obtain a reasonable solution.

1.1 Multigrid Methods

This problem can be solved by making use of multigrid methods. Given a system of equations

A.x = b where A ∈ Rn×n,x,b ∈ Rn and x is unknown, it is faster to solve a problem with a lower

number of unknowns. Hence, one can try to decrease the domain size, by generating a smaller

(approximated) A matrix. Hence, the obtained solution, being a smaller matrix, can be used

as a starting point of an iterative method again. The methods to produce a coarser grid can be

categorized as Algebraic and Geometric.

1

Introduction

In an Algebraic approach all unknowns are treated separately, and by declaring a system A.x =

b, 
A(0,0) . . . A(0,n)

...
. . .

...

A(n,0) . . . A(n,n)




x(0)
...

x(n)

=


b(0)

...

b(n)


, where n indicates the number of unknowns in the given system, an interpolation between

the several entries is made. To be specific, when having an unknown variable on index i, only

variables related with the i-th unknown are interpolated [FS11].

In Geometric multigrid approaches, a hierarchy of grids is created, by successively decreasing

the number of points recursively. In this method, coarser and coarser grids are generated by

grouping a set of points into one single point in each coarsening step. These agglomerated points

can be defined as control volumes [Len06].

Future work will be based on a previously developed software, MGridGen/ParMGridGen, that

makes use of a Geometric Approach. It is important to mention that there is no single method to

generate a set of coarse grids, nor to choose which points should be put together. This software,

however, treats the choice of points to be put together as an optimization problem. The sequence of

coarse grids must generate well shaped control volumes. Therefore, a minimization metric called

Aspect Ratio was introduced, that defines what means to have a "well shaped" control volume,

A =
l2

S

, where A is defined to be the aspect ratio for two dimensional matrices. l is the circumferential

length and S is the area of the control volume. Hence, for three-dimensional grids, one can defined

this metric as,

A =
S

3
2

V

, where S is the surface area and V is the volume of the whole control volume. As mentioned,

this metric should be minimized in order to generate control volumes that are as close of having a

circular / spherical shape as possible [MK01]. The reason why a minimization of this value will

converge to such shape can be explained by stating that a circle has a smaller circular length that

any other shape with the same area. Similarly, a sphere has a smaller surface area than any other

solid with the same volume. By taking a two-dimensional example, represented on figure 1.1,

containing a circle and an hexagon with the same area,

the perimeter of the hexagon is 6 times the length of AB, whereas the perimeter of the circle

is 6 times the length of
_

CD. In a similar polygon with n equal sides, the length of a side is given

by tan(π

n), but a coincident arc of a circle will have a length of π

n . Since n ∈ N, one can state that

tan(π

n) >
π

n , and therefore the perimeter of such polygon is greater than the perimeter of a circle

with equal area. The value will be even larger when considering irregular polygons. Thus, in order

2

Introduction

Figure 1.1: Circle and hexagon with the same area.

to converge to a circle, one would have to decrease the perimeter of the polygon, or, in other hand,

increase its area. And by analysing both two- and tree-dimensional formulas of the Aspect Ratio,

one can minimize its value by applying the exact same changes.

Having the circular length as a power of 2, will make the Aspect Ratio to converge to a constant

value without any variables in our final result. In order to follow the same idea in three-dimensions,

we declare the surface area as a power of 3
2 . Such optimization, having circular / spherical control

volumes, tends to result in a solution obtained by fewer iterations.

1.2 Problem Complexity

Such optimization problem can not be solved quickly. Problems are often categorized by its solu-

tion time complexity. This term defines on how will the execution time increase as the problem

domain is increasing. Hence, two main categories were created. The problems in the first category

are defined as problems that can already be solved in polynomial time, or P problems. This means

that its solution has a number of steps which is bounded by a polynomial function of n, where

n is defined to be the length of the problem. In the second category we include problems where

its solution can be guessed and verified in polynomial time, called Nondeterministic-polynomial
problems or NP-Problems, where nondeterministic means that there is no guide or rule to make

a guess. This category contains problems to which a solution with a polynomial time complexity

was not found yet.

Nevertheless, two more controversial categories can be defined. A problem is said to be NP-

hard if its solution can be modified to solve any NP-Problem. Thus, having an NP-Problem that

is NP-hard would originate in an NP-complete problem. This area is quite controversial, since

finding an efficient solution for an NP-complete problem will end up by meaning that an effi-

cient solution was found for every NP-Problems [Hos, CLRS09]. The previous statements can be

visually represented in figure 1.2.

The referred optimization problem is given as an NP-Problem, where for now, guesses have

to be made in order to obtain a solution in polynomial time. There are several ways of solving

3

Introduction

Figure 1.2: Time complexities visual representation.

these kind of problems, and one would have to come up with a method that would obtain an

approximated solution, similarly to what happens with iterative methods. A different approach

is to try to predict what method would be capable of solving a reasonable amount of cases, in

other words, try to define a method that often produces good results. Such method is defined as

an heuristic method. But because heuristic methods are shown to often present good results, it

doesn’t mean that results with a good quality will always be presented.

1.3 Parallelisation

The importance of parallel computing has been recognized for the last years. This paradigm

has made an enormous impact in a set of areas like computational simulations, data mining and

transaction processing. Rather than having a single-core (monolithic) processor, new integrated

circuits called multi-core processors were introduced. In these systems, multiple instances of a

program can run at the same time [Pac11].

1.3.1 Hardware

Several architectures were developed in order to attend the needs of such model. The multi-core

Central Process Unit and the Graphics Process Unit are two examples of them. These processors

have different characteristics that makes them suitable to deal with different situations. The num-

ber of cores in a CPU is often smaller when compared to the number of cores present in a GPU

device. Notice that one can also state that the number of cores in a common home computer is

significantly smaller when compared to a high end computer. As the name suggests, a GPU was

initially built to perform computer graphics calculations. Nevertheless, the computation power of

a CPU core is often higher when compared to a GPU core, but the level of parallelism is lower.

4

Introduction

Most of the tasks can be processed by the CPU, specially when it is important to maximize the

performance of a single task.

Figure 1.3: Number of cores comparison in a CPU and GPU.

The GPU plays an important role when in need of executing hundreds of smaller tasks. The

reason why we call them small, is because of the GPU cores memory limitations. Thereby, having

such a large number of cores would mean that it is possible to have a larger number of execution

flows at the same time. The comparison of cores between a CPU and GPU can be represented in

figure 1.3.

1.3.2 Software

Parallel software had to be developed in order to take advantage of these systems. Software de-

velopers started to build programs that exploited shared- and distributed-memory architectures.

Among other types of techniques, Flynn classified multiprocessors as Multiple Instructions, Multiple

Data (MIMD), and Single Instruction, Multiple Data (SIMD). MIMD is characterized by having

multiple execution flows operating on different data, whereas in SIMD, the parallel units share the

same instructions on multiple data [Fly72]. The Single Program, Multiple Data (SPMD) paradigm

is included in the MIMD category, executing the same program with independent execution flows.

MIMD is often considered to be the dominant style of parallel programming. By following it, in

a shared-memory paradigm, tasks are carried by several threads running in the same process. W

when running distributed-memory programs, processes are the ones carrying out tasks.

Figure 1.4: An example of a shared memory architecture.

5

Introduction

When dealing with a shared-memory architecture, several threads can read/write shared vari-

ables at the same time, whereas private variables can only be read/written within a private exe-

cution flow. The fact of having variables that can be modified/read at the same time can create

unexpected results. In order to solve this problem, several synchronization mechanisms had to be

introduced. These issues can be solved by insuring mutually exclusive access to critical sections.

Figure 1.4 represents an example of such system, where PU stands for Processing Unit.

Figure 1.5: An example of a distributed memory architecture.

On the other hand, in a distributed-memory architecture, processes usually don’t share mem-

ory among each other. Processes should communicate in order to exchange information. One

can achieve such communication with commonly used APIs, like message-passing or partitioned

global address space. This paradigm allows multiple processes to be running on independent CPUs

within independent systems. The system in figure 1.5 has distributed-memory architectu

Figure 1.6: An example of a hybrid architecture.

By keeping in mind the last model, each node that is forming the system has a shared memory

architecture with one or more multicore processors [Pac11]. If this is the case, processes can

also fork multiple threads on each node. Such systems are defined as hybrid, and they can be

represented in figure 1.6.

6

Introduction

A considerable number of parallel implementations were developed during the last decades.

Their goal is to offer a higher-level API that implements the same functionalities. OpenMP and

MPI are technologies that make use of the shared- and distributed-memory architectures respec-

tively. CUDA is also a parallel computing platform that was created by Nvidia. The last platform

is a software layer for the execution of compute kernel in a GPU. Notice that CUDA is limited to

Nvidia devices, but different technologies can be used to achieve the same purpose with devices

from other vendors [KGGK94, Pac11].

7

Introduction

8

Chapter 2

Literature Review

Several papers will be summarized and evaluated. The research will appear in chronological order.

The level of accuracy and relevance will be discussed.

2.1 Path, Trees and Flowers

The assignment problem is known as maximum weighted matching problem for bipartite graphs.

In 1965, Jack Edmonds, proposed an algorithm which was capable of finding a maximal matching

in a non-bipartite graph G = (V, E) in polynomial time. The algorithm could find a matching M,

such that each vertex is incident with at most one edge in M and |M| is maximized.

The main idea of this algorithm was to add alternating edges of a path to a Match until a cycle

is found. It has a particular characteristic of being able to deal with augmented paths with an

odd-length cycle, which was contracted to a single vertex, forming a new interior graph, and a

new contracted graph. The new augmented path had similarities with a flower, where the cycle

could be seen as the blossom, and the remaining extended path was apparent to a stem. Several

expansions would create a tree.

This algorithm had a time complexity of O(|E||V |2), where |E| represents the total number of

edges, and |V | represents the total number of vertexes [Edm65b].

2.2 Maximum matching and a polyhedron with 0,1-vertices

Edmonds, adpated the initial algorithm to find a maximum or minimum weighted matching, by

implementing a variant of the Hungarian Method on bipartite cases. Therefore, the new algorithm

consisted of the maximum cardinality algorithm described in section 2.1 with small modifications

[Edm65a]. The new algorithm was capable of producing a matching M, such as M includes the

minimum or maximum total weight.

9

Literature Review

2.3 Moore’s law

For the past years, Moore’s law has been served as a guide of the integrated circuits evolution.

Initially being an observation, Moore could predict trends in the premature times of integrated cir-

cuits. Such predictions would claim that the number of transistors that can be inexpensively placed

on an integrated circuit would double roughly every 18 months. It is worth to mention that such

prognosis was strongly linked to the cost reduction of integrated systems components. Notice that

several characteristics like memory capacity and computational power are connected to this claim.

By adding new features to the integrated circuit, more transistors had to be included, leading to

larger chips. Such additions were being followed by a compaction of the original design, originat-

ing in a more efficient and economical circuit. Thus, with such process, integrated circuits were

being shrunk over time [Ste07]. This trend was initially described in 1965, and Moore predicted

that it would evolve in the same way "for at least ten years" [Moo65]. Such prediction was later

confirmed. As the years passed by, Moore’s law was being declared accurate and long-lasting.

After more than 50 years, chipmakers are considering even more seriously different strategies to

advance their platforms. As this law is starting to wind down. Alternatives like quantum, neuro-

morphic and optical processors are being explored [Fel18].

2.4 Amdahl’s law

As parallel computing was being introduced, methods for speeding the execution time were being

explored. Chips with multiple processors were being announced, and the computational power was

evolving by repeatedly doubling the number of cores per chip. The development of parallelized

applications was increasing, and the need of studying parallel execution times was increasing. By

declaring the term Speedup as the original execution time divided by the enhanced execution time,

one can formulate,

Speedup =
OriginalExecTime

EnhancedExecTime

Amdahl introduced the idea of taking into account the fact that a portion of the program might

not be parallelised. This idea includes a fixed workload, and a workload which execution time can

be enhanced. The theoretical speedup in latency of execution of a given task could be obtained.

This law can be formulated as follows,

Slatency =
1

rs +
rp
n

, with rp being the ratio of the parallel portion in one program. Similarly, rs was declared as

the sequential portion. The variable n represents the number of processors executing the program

in parallel. Such statements can introduce one extra condition rp + rs = 1 [Amd67, Rod85].

10

Literature Review

2.5 Gustafson’s law

Gustafson re-evaluated Amdahl’s law, and claimed that the problem size scales with the number

of processors. In other words, instead of fixing the problem size, a parallel program would allow

us to increase it. By using rp and rs to represent the serial and parallel time in a parallel system,

then it would be necessary rs + rp×n execution time. Formulating,

Sscaled = rs + rp×n

To conclude, this law states that by increasing the the problem size, one can retain scalability

with respect to the number of processors [Gus88]. Nevertheless, these speedups were considered

optimistic, as they don’t take into account bottlenecks like communication costs or memory bound

limitations.

2.6 A linear-time heuristic for improving network partitions

This paper introduces an idea of what is called as FM algorithm. Where given two blocks (A, B),

one cell can be removed from one block to another in order to minimize the number of cuts to be

made within a graph. The cell to be chosen is based on its effect on the size of the next set of

unmatched cells [FM88].

2.7 A multilevel algorithm for partitioning graphs

This paper is among the first work in this area. It introduces the idea of having a NP-complete

problem, and that heuristics should be used in order to obtain an approximated solution.

A coarsening technique is introduced by finding a maximal matching with either a depth-first

search or a randomized algorithm. It explains the concept of vertex-weight.

It also explains that uncoarsed graphs have more levels of freedom than smaller coarsed graphs,

therefore, a local refinement scheme can be applied. This refinement scheme is based on an algo-

rithm developed by Kerninghan and Lin, usually called KL. In this algorithm the gain of moving

vertices from one control point to a different control volume is analysed during the refinement

process. Some size constraints are established in order to obtain balance control volumes [HL95].

2.8 Multilevel k-way partitioning scheme for irregular graphs

This document clarifies the k-way partitioning scheme. Specifically, the uncoarsening phase. This

is done by projecting the graph with m partitions (Gm) back to the original graph G1. Thus, the

sequence of graphs in this phase is given as Gm, Gm−1, Gm−2 ... G1. This idea can be graphically

represented in figure 2.1.

As this propagation is being made, partitions are gaining more vertexes. For instance when

declaring a level of partition Gn, it is know that level Gn−1 has more degrees of freedom. This

11

Literature Review

Figure 2.1: An example of a multilevel k-way partitioning.

means that is possible to improve the partitioning to further decrease the edge-cut value. It is

performed a backtracking-like procedure, where subsets of vertexes are moved from one control-

point to another.

The results obtained show that it is not guaranteed to improve the quality of a given solution

at this phase, but is something that is definitely possible.

Some algorithms regarding this phase were discussed, like Greedy Refinement and Global

Kernighan–Lin Refinement [KK98b].

2.9 A fast and highly quality multilevel scheme for partitioning ir-
regular graphs

This paper introduces a study of several algorithms to be applied in the coarsening phase. There

are at least two algorithms discussed that are relevant to the future work of this project. They are

called Random Matching and Heavy-Edge Matching.

The first algorithm consists in choosing vertexes in a randomized approach. One can declare

such vertex as u. If u exists, then the algorithm should select one of its unmatched adjacent

vertices. One can name the second vertex as v. Notice that this relation corresponds to an edge (u,

v). If there are no unmatched adjacent vertices, then vertex u remains unmatched.

The second algorithm can be declared as a greedy approach. Similarly to what happens in the

previous algorithm, the approach is to choose an unmatched vertex u randomly. But the method

won’t randomly choose a vertex v. It will instead, choose the adjacent vertex that would minimize

the weight of the next graph to be analysed. In other words, it will choose the edge that will

maximize the weight of the sub-graph that is being coarsen. Thus, the coarser graph decreases its

edge-weight with a solution that it seems to be the best at that time.

12

Literature Review

When comparing the two methods, the coarsening time of Random Matching is only up to

4% less that the coarsening time of the Heavy-Edge Matching approach. Nevertheless, the un-

coarsening time of Random Matching can sometimes be, 50% higher than the time measured with

Heavy-Edge Matching [KK98a].

2.10 Parallel multilevel k-way partitioning for irregular graphs

This paper presents a parallel approach to implement a multilevel k-way partitioning algorithm.

It starts by explaining what multilevel k-way partitioning is, followed by a formulation of their

approach to solve such problem. They solve the problem by using a graph colouring approach.

In the coarsening phase, is possible to exchange vertices with the same colour between proces-

sors. Thus, it is assured that these vertex movements will reduce the edge-cut. The evaluation of

which vertices can be properlymoved creates a need of communication and synchronization. Even

though that these factors are an execution time bottleneck, some improvements could be observed

[KK96, GK97].

2.11 Multilevel algorithms for generating coarse grids for multigrid
methods

The software (MGridGen/ParMGridGen) was based on this research, as these approaches are im-

plemented in the software.

This paper focus in the development of algorithms for generating a sequence of coarse grids

from the original grid. The algorithms should be capable of solving an optimization problem

with serial and parallel approaches using a multilevel paradigm. Existing coarsening algorithms

were studied, and several metrics of quality were established. These metrics are related with the

optimization problem, more specifically a minimization problem.

These grids can be represented as graphs, where each vertex can correspond to a grid element.

The graphs contain enough information for being able to solve the given minimization problem.

Vertex-weight is an important value, which can be used in the coarsening processes as described

in section 2.9.

An uncoarsening phase is included as well, as it is expected to propagate the obtained solution

into the original graph. This phase is based on what was described in section 2.8, but the approach

is described by visiting vertices in a random order. It will posteriorly evaluate the reduction in

the value of a given objective function, in case a vertex is moved to a different control-point. The

change occurs whenever this condition is met without violating size constraints.

The parallel approach strategy consists in distributing the mesh among processors, where the

difference of elements between each processor should be minimized. Since the processors are

solving the problem with the serial algorithm within each domain, the quality of interior elements

is significantly good. But because it is not allowed to create fused elements across processors, the

elements formed at the domain boundaries may suffer from a bad solution.

13

Literature Review

The results of both serial and parallel algorithms were discussed. It was seen that the per-

formance of each serial algorithm didn’t vary much. There are some results that have significant

variances when compared to results obtained with different algorithms. For the parallel algo-

rithm, despite the referred issue, the performance increases as the number of processes (up to 16)

increases. The parallelized approach is capable of obtaining fairly "good" results [MK01, IM01].

2.12 A simple approximation for the Weighted Matching Problem

This research was made public after the paper described on section 2.11 being published. A new

approach, Path Growing Algorithm was developed. This method is declared to find a maximum

weight matching in a given graph. Starting with a path of length zero, the algorithm tries to extend

the path in a given direction for as long as possible. The path is extended by choosing the heaviest

edge, and deleting all other edges in the current vertex. This happens until its no longer possible to

extend that path. In that case, a new path is created from a different vertex. In the end all vertices

should belong to a given path. Even if the path has length zero. This algorithm has a linear time

efficiency [DH03].

2.13 Mesh Partitioning: A Multilevel Ant-Colony-Optimization Al-
gorithm

It was intended to achieve a quality graph portioning by using an Ant Colony Algorithm. This

algorithm uses a metaheuristic and is based on probabilities. While building the solution, they

consider heuristic information, which is associated with ant trails that are dynamically changing.

The results show that this algorithm performed well in very small graphs. Several improve-

ments are suggested by the authors.

2.14 Engineering a Scalable High Quality Graph Partitioner

One part of this research was conducted by comparing serial matching algorithms. It was seen that

the algorithm described in section 2.12 was capable of achieving better results than Sorted Heavy

Edge Matching and Heavy Edge Matching [HSS10].

2.15 Engineering Multilevel Graph Partitioning Algorithms

This paper contains a collection of algorithms that can be used to solve graph partitioning prob-

lems.

Novel local improvement algorithms and global search strategies were transferred from exis-

tent linear solvers. The refinement algorithms are based on max-flow min-cut techniques.

14

Literature Review

By using an algorithm described in section 2.12, this paper confirms that this algorithm achieves

"empirically considerably better results" than Sorted Heavy Edge Matching, Heavy Edge Matching

and Random Matching.

Several refinement schemes were introduced, one that moves vertices between control volumes

like those referred in section 2.8, and the second is declared as a two-way local search algorithm.

This method consists on keeping one priority queue per each pair of control volumes being con-

sidered. Each priority is defined with the gain of changing a vertex to a different control volume.

The strategy to select a block whose node can be moved is defined as Top-Gain. Restrictions

were added in order to converge to a load balanced scenario. Local improvement schemes were

discussed [SS11].

15

Literature Review

16

Chapter 3

Methodologies

3.1 Optimization Problem

Having a metric that is capable of measuring the quality of a control volume, one can define several

techniques to measure the overall quality of the entire grid. These techniques were previously

defined as Objective Functions. If N is defined as the number of control volumes in the coarse

grid, one can define the first function as,

F1 =
N

∑
i=1

Ai

, where Ai is the Aspect Ratio of the i-th control volume. It is trivial that this function must

be minimized, but it has a few limitations. Different control volumes can have different aspect

ratios. Having one control volume with a large aspect ratio value would "penalise" a solution that

is considered to have a good solution for most of the other control volumes. Therefore, one control

volume with a poor aspect ratio would turn a good solution into a bad one.

The previous function can be modified by giving higher weights to larger control volumes.

F2 =
N

∑
i=1

wi Ai

In this function, wi is the number of elements that were put together to form the i-th control

volume. Despite of attenuating the problem of the previous function, this issue is not eradicated.

Having a few control volumes with poor aspect ratios, would still potentially create a wrong eval-

uation of the overall grid quality.

One can create a different function F3. This function will look at the worst aspect ratio in a

particular grid. This value, similar to what happened in the previous functions, would have to been

minimized. Thereby, one can define,

F3 = maxN
i=1 Ai

17

Methodologies

One more function was created, F4. It is defined by dividing the Aspect Ratio of the i-th

control volume by a limit of what would be an acceptable value. Hence, one can formulate,

F4 =
N

∑
i=1

(
Ai

Limit

)2

Because the objective function is given as the sum of squared ratios, it will "penalize" values

greater than 1, and "reward" values less than 1. Nonetheless, a Limit has to be established. Hence,

the Aspect Ratio of a Square/Cube was proposed as such limit. Notice that both aspect ratios lead

to a constant value, by taking the two dimensional case as an example,

A =
l2

S
The A of a square of side m is given as,

A =
(4m)2

m2 and by factoring out m2,

A = 42 = 16 hence, we can reformulate,

F4 =
N

∑
i=1

Ai
2

256

The same idea can be applied in the three dimensional case,

A =
S3/2

V
The A of a cube of length m is given as,

A =
(6m2)3/2

m3 that can be translated into,

A =
63/2×m3

m3 and by simplifying,

A = 63/2 =
√

216 therefore, F4 can be reformulated,

F4 =
N

∑
i=1

Ai
2

216

By defining the previously described functions, one can formulate an optimization problem,

such as: Having an initial large grid, one can generate a smaller grid with a number of control

volumes between Lmin and Lmax. The generated coarse grid must minimize at least one of the

functions, F1, F2, F3, F4. The algorithm goal is to first minimize F3, and then minimize F1, F2
or F4 [MK01].

18

Methodologies

3.2 Multilevel Coarse Grid Construction

An algorithm capable of solving the minimization problem, described in section 3.1, was pre-

viously developed. It is based on the multilevel paradigm, a geometric multigrid approach.

Points are converged, successively forming smaller grids at each iteration. As discussed in sec-

tion 1.1, these grids are an approximation of the original problem, forming a sequence of grids

{G0,G1, ...,Gn}. Once this process is complete, the obtained grid is continuously optimized. Grid

Gn is used to find a finer approximation, Gn−1. And the Gn−1 grid is further refined on Gn−2. By

introducing the refinement phase, the solution ends up by propagating to the original grid, G0.

Figure 3.1 represents this approach with an example of a simple multilevel construction.

Figure 3.1: Multilevel Coarse Grid construction.

3.2.1 Dual Graph representation

It is possible to represent a grid as a Dual Graph G = (V,E), where each vertex corresponds to grid

element. Graphs can be weighted, for which each edge has an associated weight, typically given

by a weight function. With E being the set of edges in a graph G, and V its set of vertices, one can

store the weight w(v1,v2) of the edge (v1,v2) ∈ E ∧ v1,v2 ∈ V . When graphs are unweighted,

no weight is associated with an edge. The graph G can be a directed graph, where an edge (v1,v2)

means that v2 is adjacent to v1 but v1 is not adjacent to v2. If G is an undirected graph, the edge

(v1,v2) means that v1 is adjacent to v2, and vice-versa [CLRS09]. Our grid can be seen as an

undirected and weighted graph, where an edge is connecting two vertices if a segment or face is

shared, for a two- or three-dimensional grid respectively.

In order to have information to calculate the aspect-ratios of each control-volume, three values

were defined: the vertex-weight (vw), the vertex-boundary-surface (vs) and the vertex-volume (vv).

19

Methodologies

The vertex-weight represents the number of elements within the same control-volume. This

number will increase with the successive number of executions of the coarsening/uncoarsening

phase. The vertex-boundary-surface defines the number of segments or faces that are not shared by

any other elements within the same control-volume. Therefore it is possible to know whether these

elements belong to a boundary or not. The vertex-volume represents the area (in two-dimensional

grids), or the volume (in three-dimensional grids) of a given control-volume. Lastly, one more

metric was defined, the edge weight. This value corresponds to the length of the shared edge or

the area of the shared face. The figure 3.2 contains a representation of a two-dimensional mesh

and its dual graph.

Figure 3.2: A two-dimensional mesh and the correspondent dual graph.

With this representation, one can approach such problem as a k-way partitioning of the ver-

tices. Each partition must have a number of vertices that is between a range of values. These

values are declared as Lmin, the lower limit, and Lmax, the upper limit. The process must be

completed by following a particular objective-function [KK98b, MK01].

3.2.2 Coarsening Phase

As mentioned in section 3.2, the grid can be represented as a Dual Graph G = (V,E). Each vertex

V represents an element of the grid, and pairs of elements who share a segment or a face (for

two- or three-dimensional grids) are connected by a given edge E. A sequence of smaller grids

can be obtained {G0,G1, ...,Gn}. Each grid Gi is an approximation of the original grid G0, and

is calculated by merging pairs of vertices which are connected by a given edge. This method can

be better visualized in figure 2.9. Therefore, having a grid Gi with a maximal independent set of

edges Ii, it is possible to know that the next approximation Gi+1 will have less Ii−1 vertices. An

independent set of edges of a graph is a set of edges no two of which are incident to the same

vertex. An independent set is maximal if it is not possible to add any other edge to it without

making two edges become incident on the same vertex [MK01].

After such operation, the properties vw, vs and vv are updated: Having two vertices v1,v2, that

are being collapsed to form a vertex u, one can declare the new properties, as,

• uw = vw
1 + vw

2

20

Methodologies

• us = vs
1 + vs

2

• uv = vv
1 + vv

2

The connectivity information is also preserved. If both vertices, v1 and v2 are connected to

the same vertex v3, (u1,v3) and (u2,v3), then a new edge is formed with a weight that can be

represented as the sum of both edges weight (u1 + u2,v3). Notice that this won’t happen if both

vertices are not connected to the same vertex. In this case, only the weight of the connected edge

is preserved.

Figure 3.3: A visualisation of a possible coarsening phase.

One of the algorithms used to conduct this phase is called Globular Matching. It is based in

the Heavy-Edge Matching algorithm described in section 2.9. This algorithm selects a maximal

independent set of edges, trying to create a control volume from the pairs of vertices v1,v2 where

(v1,v2) ∈ E, leads to the smallest aspect ratio. One can formulate the steps of the algorithm as

follows,

Algorithm 0: Globular Matching

1 let V be the set of unmatched vertices;

2 while V 6= /0 do
3 let e = (v,u) be the edge leading to the smallest aspect ratio ;

4 match v and u;

5 add e to the independent set;

6 end

The time complexity of this algorithm is O(|E|), where |E| represents the number of edges in

a given G graph.

The second algorithm is called Local Heaviest Approximation, maintaining a greedy ap-

proach. This method arbitrarily selects a control volume, avoiding to keep them sorted by their

weight. It follows the same idea of matching the randomly chosen vertex v1 with a vertex v2, that

leads to the smallest aspect ratio. Hence, it maintains a time complexity of O(|E|).

21

Methodologies

Algorithm 0: Local Heaviest Approximation

1 let V be the set of unmatched vertices;

2 while V 6= /0 do
3 let v be an arbitrarily chosen vertex ∈V ;

4 let e = (v,u) be the edge leading to the smallest aspect ratio ;

5 match v and u;

6 add e to the independent set;

7 end

The third coarsening method, Path Growing Algorithm, grows a set of disjoint paths. By

randomly choosing an unmatched vertex, the edge that leads to the smallest aspect ratio is selected

e = (v,u), extending a path in that direction, with u being the next vertex from which the algorithm

is going to grow a path of. A path is no longer extended when no more vertexes can be matched.

In this case, the next random and unmatched vertex is selected, growing a path from there. While

growing the paths, vertexes are alternatively added to two different matchings P1 and P2. The

matching that leads to the best minimization of F4 prevails [DH03, MS07].

Notice that the time complexity of this algorithm is still O(|E|), as every edge is analysed at

most once.

Algorithm 0: Path Growing Algorithm

1 let V be the set of unmatched vertices;

2 while V 6= /0 do
3 let v be an arbitrarily chosen vertex ∈V ;

4 let alt be true;

5 let P1 and P2 be /0;

6 while ∃ v,u ∈V where v,u can be matched do
7 let e = (v,u) be the edge leading to the smallest aspect ratio ;

8 if alt is true then add e to P1 ;

9 else add e to P2;

10 alt is !alt;

11 let v be u;

12 end
13 match vertexes in P, where P is min of P1,P2;

14 end

The fourth and last coarsening algorithm obtains a minimum matching in every coarsening

level. Since the idea of our coarsening algorithms is to match pairs of vertexes in each level of

approximation of our original grid Gi, the number of matching possibilities reduces significantly.

As seen in section 2.2, by defining such premiss, it is possible to obtain a minimum matching in

polynomial time. Therefore, by using a variance of the blossom algorithm [Kol], we can define

our Minimum Approximation Algorithm as,

22

Methodologies

Algorithm 0: Minimum Approximation

1 let E be the set of edges;

2 let M’ be the edges ∈ E matched by the blossom algorithm;

3 while number of matched vertexes < 0.25× number of vertexes do
4 let e = (v,u) be the edge in M’ leading to the smallest aspect ratio ;

5 match v and u;

6 remove e from M’;

7 end

Notice that only 25% of the total number of vertexes are matched. Such constraint increases

the number of neighbours to be considered during the uncoarsening phase, increasing the proba-

bility of overall improvement as well. This algorithm has a time complexity of O(|E||V |log|E|)
[Kol].

3.2.3 Uncoarsening Phase

As mentioned before, the main purpose of the uncoarsening phase is to propagate the coarsest

graph to the the original graph, going through the graphs {Gn−1, ...,G1,G0}, and refining the so-

lution of each graph. The refinement process consists in moving vertices among control volumes,

always respecting the constraints imposed by the Lmin and Lmax limits. Figure 3.4 shows possi-

ble adaptions. Such movements are an attempt in minimizing the objective function that is being

followed throughout the multilevel construction.

Figure 3.4: A visualisation of a possible uncoarsening phase.

Such action is possible because of three conditions. The use of a greedy algorithm to construct

independent sets of edges may not lead to an optimal independent set. The objective function

being followed may be different than the heuristic used to guide the multilevel construction. And

finally, uncoarsed graphs have more levels of freedom than smaller coarsed graphs. The algorithm

used to complete this stage can be described in the following steps,

23

Methodologies

1 let V be the set of vertices;

2 while ∃ v ∈V where v can be moved and reduce a given objective function do
3 for each random v in V do
4 let r = biggest reduction in moving v into a different control volume c;

5 if r > 0 then
6 move v to c;

7 end
8 end
9 end

This algorithm does not guarantee contiguous partitions, because vertices that are not adjacent

to a control volume, can become part of it. In order to correct this problem, non-contiguous

control volumes are split into different partitions. But this process may result in having control

volumes that don’t respect the Lmin constraint. In this case, after having a contiguous graph, small

partitions are merged with adjacent partitions, respecting the established number of vertices limits

within a control volume. The merging process of this phase is driven by the objective function to

be optimized. In case of still having control volumes with fewer vertices than the established limit

Lmin, some vertices are moved from large adjacent control volumes that can afford to lose those

vertices.

3.3 Parallel Implementation

The multilevel graph partition algorithm described in section 3.2 can be implemented in parallel.

Our algorithm distributes the mesh into p partitions, where p represents the total number of pro-

cessors. This process distributes elements among processors, resulting in a balanced number of

vertices between partitions. Each processor operates in its local partition, without communicat-

ing with any other processor during this process. The serial algorithm for multilevel coarse grid

construction is then applied in each one of these subdomains. This approach creates good aspect

ratios in the interior of the subdomains. But because boundary elements are not capable of fusing

with elements in different subdomains, those areas may suffer from low quality control volumes.

One solution to this problem is to allow elements in the boundary areas to participate in refine-

ment iterations with elements from different partitions. This approach may limit the efficiency of

the parallel algorithm, because it includes a overhead of communication and synchronization.

Our solution to this problem is to use an adaptive graph partitioning algorithm [MK01]. In

this approach, the elements near to a boundary move closer to the interior of the partition. This

method will cause fused elements in other subdomains to move to the same subdomain as well.

This method can be visualized in figure 3.5. The local refinement, similar to what is done in the

serial refinement process, is performed until the overall quality of the coarse grid does not improve

any further.

24

Methodologies

Figure 3.5: Parallel partition [MK01].

3.4 Execution Conditions

The performance of the previously described methods was evaluated in an HPC cluster named

Delta. This cluster is installed locally, at Cranfield University. There are 11 6U chassis, and 12

nodes housed per each one of them. These chassis are spread over five racks, what makes a total

of 118 compute nodes with two Intel E5-2620 v4 (Broadwell) CPUs each. Such CPU is built with

16 cores, and 128 GB of shared memory. Hence, this machine has a total of 1888 available cores.

Delta compute nodes are connected via an Infiniband EDR low-latency interconnect [Sta18].

The grids available to execute and experiment the algorithm can be consulted on table 3.1.

These are 3D tetrahedral meshes, with each one being a representation of an air-plane wing, and

their number of elements varies considerably.

Table 3.1: Number of elements per mesh.

Name # Elements

M6 94,493

F22 428,748

F16 1,124,648

3.5 Validation

The starting point of this thesis was based on work developed by I. Moulitsas and G. Karypis in

2001 [MK01]. In this section, the a software implementation for generating a sequence of coarse

grids, MGridGen / ParMGridGen, are going to be validated. Notice that the multilevel construction

25

Methodologies

methodology for generating coarser grids was described in the previous sections. The values of

the objective functions F2 and F3 are going to be analysed. We will obtain results regarding a

serial and several parallel executions with 2, 4, 8, 16, 32 and 64 processors. Table 3.2 contains the

information regarding this verification.

Table 3.2: Quality measures on Delta on 1, 2, 4, 8, 16, 32 and 64 processors.

M6 F22 F16

Processes F3 F2 F3 F2 F3 F2

1 2.25e+01 1.83e+06 2.64e+01 8.33e+06 2.29e+01 2.04e+07

2 2.26e+01 1.83e+06 3.17e+01 8.30e+06 2.84e+01 2.04e+07

4 2.35e+01 1.82e+06 2.33e+01 8.30e+06 2.84e+01 2.04e+07

8 2.25e+01 1.82e+06 2.52e+01 8.28e+06 2.84e+01 2.03e+07

16 2.26e+01 1.81e+06 3.08e+01 8.26e+06 2.50e+01 2.03e+07

32 2.26e+01 1.81e+06 3.17e+01 8.23e+06 2.90e+01 2.02e+07

64 2.26e+01 1.80e+06 3.49e+01 8.22e+06 2.24e+01 2.02e+07

Table 3.3: Quality measures on Cray T3E on 1, 2, 4, 8, 16, 32 and 64 processors.

M6 F22 F16

Processes F3 F2 F3 F2 F3 F2

1 2.43e+01 1.83e+06 — — — —

2 2.26e+01 1.83e+06 — — — —

4 2.25e+01 1.82e+06 2.71e+01 8.29e+06 — —

8 2.27e+01 1.82e+06 2.93e+01 8.28e+06 2.24e+01 2.02e+07

16 2.26e+01 1.81e+06 2.31e+01 8.25e+06 2.64e+01 2.02e+07

32 2.26e+01 1.80e+06 2.36e+01 8.23e+06 7.11e+01 2.01e+07

64 2.26e+01 1.80e+06 2.40e+01 8.21e+06 2.28e+01 2.01e+07

By looking at the tables 3.2, 3.3 and 3.4, it is possible to state that the quality measurements

present similar results in the F2 values. Even though that the results of F3 are somewhat different

from the original results, this is due to the fact that this value is much more influenced by the

random generation approach of each machine. Keeping that in mind, it is safe to consider that the

obtained results are valid.

3.6 Scalability

The beginning of the MGridGen / ParMGridGen development was roughly 17 years ago. Hence,

it was expected to have runs, under the same conditions, with a smaller execution time. Since the

26

Methodologies

Table 3.4: Quality measures on BEO on 1, 2, 4, 8, and 16 processors.

M6 F22 F16

Processes F3 F2 F3 F2 F3 F2

1 2.70e+01 1.82e+06 2.55e+01 8.33e+06 2.28e+01 2.04e+07

2 2.29e+01 1.82e+06 2.32e+01 8.30e+06 2.84e+01 2.03e+07

4 3.19e+01 1.82e+06 2.55e+01 8.29e+06 2.84e+01 2.03e+07

8 2.27e+01 1.81e+06 2.41e+01 8.28e+06 2.28e+01 2.03e+07

16 2.26e+01 1.81e+06 2.31e+01 8.25e+06 2.84e+01 2.02e+07

computational power and the amount of available memory are strongly connected with Moore’s

Law, previously explained in section 2.3, we can presume that after this time, the computational

power of a recent machine increased considerably. Thereby, in this section, we’re going to study

the contrast between execution times obtained by I. Moulitsas and G. Karypis in 2001 [MK01]

and today. Their results were obtained in two different machines. One was a CRAY T3E-1200

with 1024 EV6 Alpha processors and 512MB of memory at each processor. This machine was

running at 600MHz. The second machine had 16 processors with workstations connected through

a 100MBit Ethernet switch. It had Intel Pentium III processors running at 650 MHz with 1GB of

memory. This architecture was referred as "BEO".

Table 3.5: Execution times in seconds with 1, 2, 4, 8, 16, 32 and 64 processors on Delta, CRAY
T3E and BEO clusters.

Delta CRAY T3E BEO

Processes M6 F22 F16 M6 F22 F16 M6 F22

1 1.69 10.23 30.91 80.66 — — 32.74 173.61

2 2.35 14.53 44.34 103.17 — — 46.14 246.66

4 1.15 6.47 19.98 50.43 256.13 — 28.21 153.21

8 0.64 3.55 10.56 22.30 125.21 — 14.18 74.71

16 0.37 2.03 5.97 9.95 61.06 163.14 18.64 50.55

32 1.02 2.18 3.51 4.38 29.71 90.08 — —

64 1.35 2.45 2.89 2.24 14.86 40.47 — —

The execution time of each mesh on Delta, CRAY T3E and BEO can be found on table 3.5.

When looking at Delta results, it can be seen that the computational time of M6 and F22 par-

titioning increases with 32 and 64 processes. By following Amdahl’s law, since the number of

processors is increasing and the problem size is fixed, the execution time would increase until

there’s no space of enhancement. But as mentioned before, this law is given as optimistic, and

doesn’t take several variables into account. The time increase is related with the high communi-

27

Methodologies

cation cost among a larger number of processes. Following this idea, and keeping in mind that

each Delta CPU has 16 cores, execution times with more than 16 processes will certainly contain

communication cost. But because the F16 mesh has more edges and vertices, the execution time

of that mesh continues on scaling. The last statement is supported by Gustafson’s law, described

in section 2.5. It is also possible to see that Delta produced considerably lower computational

times when running the program with all three mesh. Each one of the grids could fit in memory,

overcoming the memory limitations of CRAY T3E.

28

Chapter 4

Results

The development of new coarsening approaches requires analysis, they need to be studied and

compared. The effect of new objective functions is going to be analysed as well. The execution

conditions to test such changes are the same as the ones presented in section 3.4. These results

were obtained with 1, 2, 4, 8, 16, 32 and 64 processes.

As mentioned in section 3.1, the overall grid quality can be measured by the several objective

functions. The sum, weighted sum, and squared sum of Aspect Ratios are going to be presented

in order to perform an analysis of the overall grid quality. Nevertheless, the coarsening factor of

a coarse grid is going to be presented as well. Less coarsened grids present less elements, and

therefore tend to present lower objective function values. The coarsening factor can be obtained

by dividing the number of elements of the original grid by the number of elements of the coarsened

grid, telling us how many times the grid was coarsened. The Lmin and Lmax limits to obtain these

results were established as one and four respectively.

4.1 F3 + F4

As mentioned in section 3.6, the refinement driven by the F3 + F2 combination was already stud-

ied. Hence, a new combination F3 + F4 will be studied and analysed. The traditional algorithm

Globular Matching was used to drive the coarsening phase during this study. In this section, for

the sake of simplicity, figures and tables are going to label the F3 + F2 and F3 + F4 combinations

as Traditional (trad) and Squared Sum (ssum) respectively. The reader should keep in mind that

these are, in fact, combinations of two objective functions.

4.1.1 Serial Algorithm Evaluation

The following results were obtained by the serial multilevel coarse grid construction algorithm.

These results are going to evaluate the overall grid quality and the algorithm performance.

Regarding to execution time, table 4.1 shows that the Squared Sum combination is slightly

faster. But it never gets more than 10% faster. Despite the difference of coarsening factors in the

29

Results

Table 4.1: Comparison between the Traditional and Squared Sum combinations.

M6 F22 F16

trad ssum trad ssum trad ssum

Execution Time (s) 1.69 1.54 10.23 10.05 30.91 29.96

Coarsening Factor 3.47 3.15 3.47 3.45 3.46 3.47

F1 5.25e+05 5.67e+05 2.38e+06 2.40e+06 5.87e+06 5.86e+06

F2 1.82e+06 1.81e+06 8.33e+06 8.33e+06 2.04e+07 2.04e+07

F3 2.25e+01 2.38e+01 2.63e+01 2.33e+01 2.28e+01 2.55e+01

F4 6.98e+06 5.52e+06 1.70e+07 1.56e+07 8.53e+05 7.64e+05

M6 grid, both combinations obtained similar coarsening factors with F22 and F16 meshes. When

it comes to overall grid quality, looking at M6 results, even though that Squared Sum produced

a larger grid, it can be seen that the F1, F2 and F4 values are lower. This is not true for F3.

Both F1 and F2 metrics present similar results in the other two grids. The F4 function produces

better results in the Squared Sum combination for all three grids. Following the same idea, it

would be expected that the Traditional method would produce better results when looking at the

F2 function, but this is not true. It is worth to mention that the F3 results were not consistent. The

Traditional combination produced better values for two meshes (M6 and F16), and the Squared

Sum combination obtained better results in F22.

4.1.2 Parallel Algorithm Evaluation

The following results were obtained by the parallel multilevel coarse grid construction algorithm.

Identically to the previous subsection, these results are going to evaluate the overall grid quality

and the algorithm performance. The overall quality of M6 will be analysed first, followed by F22

and F16.

Table 4.2 shows a comparison of the overall quality of grids obtained from M6. This is a

comparison between the Traditional and Squared Sum combinations. Squared Sum was shown to

obtain better results in F4 and F2 for all runs. When looking at F3 results, we can see some variance,

but the difference is never larger than 1.3. It is worth to emphasize, that similarly to the results

obtained with the serial algorithm, the Squared Sum combination was capable of minimizing the

F2 objective function better. When looking at table 4.5 it can be seen that for M6 this combination

is producing larger grids than the Traditional combination. Despite of having larger grids, the

sums of aspect ratios, F2 and F4, are presenting lower results.

The data in table 4.3 shows again a comparison of the overall grid quality between the Tradi-

tional and Squared Sum combinations, but this time from grids obtained from F22. It can be seen

that the Squared Sum combination produces better results in F2 and F4. For this combination only

30

Results

Table 4.2: M6 quality measurements comparison between the Traditional and Squared Sum
combinations on 1, 2, 4, 8, 16, 32 and 64 processors.

Traditional Squared Sum

Processes F3 F4 F2 F3 F4 F2

1 2.25e+01 6.98e+06 1.83e+06 2.38e+01 5.52e+06 1.81e+06

2 2.26e+01 6.94e+06 1.82e+06 2.38e+01 5.10e+06 1.79e+06

4 2.35e+01 6.93e+06 1.82e+06 2.38e+01 5.14e+06 1.78e+06

8 2.34e+01 6.93e+06 1.82e+06 2.38e+01 5.14e+06 1.78e+06

16 2.26e+01 6.85e+06 1.81e+06 2.25e+01 5.62e+06 1.77e+06

32 2.26e+01 6.78e+06 1.80e+06 2.24e+01 5.71e+06 1.77e+06

64 2.26e+01 6.81e+06 1.80e+06 2.24e+01 5.77e+06 1.77e+06

Table 4.3: F22 quality measurements comparison between the Traditional and Squared Sum
combinations on 1, 2, 4, 8, 16, 32 and 64 processors.

Traditional Squared Sum

Processes F3 F4 F2 F3 F4 F2

1 2.63e+01 1.70e+07 8.33e+06 2.33e+01 1.56e+07 8.33e+06

2 3.16e+01 1.70e+07 8.30e+06 2.33e+01 1.45e+07 8.28e+06

4 2.32e+01 1.69e+07 8.29e+06 2.41e+01 1.46e+07 8.27e+06

8 2.52e+01 1.70e+07 8.28e+06 2.41e+01 1.45e+07 8.26e+06

16 3.08e+01 1.69e+07 8.25e+06 2.44e+01 1.46e+07 8.24e+06

32 3.16e+01 1.69e+07 8.23e+06 2.71e+01 1.48e+07 8.22e+06

64 3.48e+01 1.69e+07 8.21e+06 3.24e+01 1.53e+07 8.20e+06

one value of F3 is worst, in a grid obtained from a run with 16 processes.

Finally, table 4.3 shows the same comparison from grids obtained from F16. It can be seen

that F2 values are quite similar in both combinations, but F4 presents smaller values on Squared

Sum. F3 presented some fluctuations, ranging from 2.28e+ 01 to 2.89e+ 01, and Squared Sum

presents better results on runs with 4, 8 and 32 processes.

As seen in table 4.5, and focusing on runs following the Squared Sum combination, the coars-

ening factor of grids obtained from the M6 mesh is smaller, but it becomes identical in the remain-

ing meshes. The execution time of runs following this combination is always smaller.

31

Results

Table 4.4: F16 quality measurements comparison between the Traditional and Squared Sum
combinations on 1, 2, 4, 8, 16, 32 and 64 processors.

Traditional Squared Sum

Processes F3 F4 F2 F3 F4 F2

1 2.28e+01 8.53e+05 2.04e+07 2.55e+01 7.64e+05 2.04e+07

2 2.84e+01 8.45e+05 2.03e+07 2.84e+01 7.03e+05 2.03e+07

4 2.84e+01 8.44e+05 2.03e+07 2.27e+01 7.03e+05 2.03e+07

8 2.84e+01 8.44e+05 2.03e+07 2.24e+01 7.22e+05 2.03e+07

16 2.49e+01 8.40e+05 2.03e+07 2.84e+01 7.25e+05 2.03e+07

32 2.90e+01 8.40e+05 2.02e+07 2.44e+01 7.39e+05 2.02e+07

64 2.24e+01 8.29e+05 2.01e+07 2.89e+01 7.32e+05 2.02e+07

Table 4.5: Execution times in seconds and Coarsening Factors comparison between the
traditional and Squared Sum combinations on 1, 2, 4, 8, 16, 32 and 64 processors.

Execution time (s) Coarsening Factor

Traditional Squared Sum Traditional Squared Sum

Processes M6 F22 F16 M6 F22 F16 M6 F22 F16 M6 F22 F16

1 1.69 10.24 30.81 1.54 10.11 29.79 3.47 3.47 3.46 3.13 3.44 3.47

2 2.33 14.70 44.39 2.17 13.94 42.86 3.45 3.42 3.43 2.86 3.34 3.42

4 1.15 6.50 19.76 1.11 6.33 18.76 3.43 3.40 3.41 2.85 3.32 3.41

8 0.61 3.48 10.47 0.61 3.34 9.78 3.38 3.36 3.39 2.83 3.30 3.43

16 0.36 2.06 5.95 0.36 1.92 5.53 3.31 3.30 3.35 2.81 3.24 3.35

32 0.26 1.07 2.81 0.22 0.94 2.68 3.25 3.25 3.27 2.78 3.20 3.28

64 0.19 0.74 1.44 0.15 0.65 1.33 3.19 3.16 3.24 2.77 3.24 3.24

4.2 Local Heaviest Approximation

In this section, the results obtained by the Maximum Local Matching algorithm are going to be

analysed. Since this algorithm is meant to drive the coarsening phase, the results were obtained

by following the traditional combination, F3 + F2, of objective functions.

Starting by analysing the overall quality of grids obtained from M6 in table 4.6, it becomes

evident that this matching algorithm produced worst results in all of F2 values. The same happened

in most of F4 values, being able to produce better results in runs with 8, 16 and 32 processes. In

regards to F3 metric, better values were obtained in three runs again, with 16, 32 and 64 processes.

Both F3 and F4 were not very consistent, since they obtained three cases with better results with

Local Heaviest Approximation and four cases with better results with Globular Matching.

32

Results

Table 4.6: M6 quality measurements comparison between Globular Matching and Local Heaviest
Approximation on 1, 2, 4, 8, 16, 32 and 64 processors.

Globular Matching Local Heaviest Approximation

Processes F3 F4 F2 F3 F4 F2

1 2.25e+01 6.98e+06 1.83e+06 2.33e+01 7.13e+06 1.84e+06

2 2.26e+01 6.94e+06 1.82e+06 2.29e+01 8.84e+06 1.45e+06

4 2.35e+01 6.93e+06 1.82e+06 2.55e+01 6.97e+06 1.83e+06

8 2.34e+01 6.93e+06 1.82e+06 2.55e+01 6.92e+06 1.83e+06

16 2.26e+01 6.85e+06 1.81e+06 2.24e+01 6.83e+06 1.82e+06

32 2.26e+01 6.78e+06 1.80e+06 2.24e+01 6.76e+06 1.81e+06

64 2.26e+01 6.81e+06 1.80e+06 2.24e+01 6.82e+06 1.80e+06

Table 4.7 shows several data regarding to the overall quality of grids derived from F22. Fo-

cusing on F4 and F2, the Local Heaviest Approximation algorithm, obtained worst results in every

execution. F3 was not consistent again, showing some fluctuations and obtaining better results in

3 of 7 runs.

Table 4.7: F22 quality measurements comparison between Globular Matching and Local
Heaviest Approximation on 1, 2, 4, 8, 16, 32 and 64 processors.

Globular Matching Local Heaviest Approximation

Processes F3 F4 F2 F3 F4 F2

1 2.63e+01 1.70e+07 8.33e+06 2.36e+01 1.74e+07 8.41e+06

2 3.16e+01 1.70e+07 8.30e+06 2.39e+01 1.72e+07 8.37e+06

4 2.32e+01 1.69e+07 8.29e+06 2.86e+01 1.73e+07 8.35e+06

8 2.52e+01 1.70e+07 8.28e+06 2.90e+01 1.72e+07 8.33e+06

16 3.08e+01 1.69e+07 8.25e+06 2.32e+01 1.72e+07 8.29e+06

32 3.16e+01 1.69e+07 8.23e+06 2.31e+01 1.71e+07 8.26e+06

64 3.48e+01 1.69e+07 8.21e+06 2.58e+01 1.71e+07 8.23e+06

Thirdly, table 4.8 shows the same information about the F16 mesh. Similarly to what hap-

pened in the previous grid, worst results were obtained in every run, when looking at F4 and F2.

Again, variances were encounter in regards to F3.

Finally, table 4.9 shows the execution times and Coarsening Factors of both Globular Match-

ing and Local Heaviest Approximation. When observing this table, it can be seen that the fact of

being avoiding to sort edges by their weight, produces faster runs in every case. The difference

33

Results

Table 4.8: F16 quality measures comparison between Globular Matching and Local Heaviest
Approximation on 1, 2, 4, 8, 16, 32 and 64 processors.

Globular Matching Local Heaviest Approximation

Processes F3 F4 F2 F3 F4 F2

1 2.28e+01 8.53e+05 2.04e+07 2.27e+01 8.61e+05 2.06e+07

2 2.84e+01 8.45e+05 2.03e+07 2.84e+01 8.58e+05 2.05e+07

4 2.84e+01 8.44e+05 2.03e+07 2.24e+01 8.59e+05 2.05e+07

8 2.84e+01 8.44e+05 2.03e+07 2.45e+01 8.54e+05 2.04e+07

16 2.49e+01 8.40e+05 2.03e+07 2.50e+01 8.49e+05 2.04e+07

32 2.90e+01 8.40e+05 2.02e+07 2.23e+01 8.44e+05 2.03e+07

64 2.24e+01 8.29e+05 2.01e+07 2.32e+01 8.35e+05 2.02e+07

between Coarsening Factors was shown to be more evident in runs with less processes.

Table 4.9: Execution times in seconds and Coarsening Factors comparison between Globular
Matching and Local Heaviest Approximation on 1, 2, 4, 8, 16, 32 and 64 processors.

Execution time (s) Coarsening Factor

Globular Matching Max Local Matching Globular Matching Max Local Matching

Processes M6 F22 F16 M6 F22 F16 M6 F22 F16 M6 F22 F16

1 1.69 10.24 30.81 1.41 8.98 27.04 3.47 3.47 3.46 3.59 3.60 3.60

2 2.33 14.70 44.39 2.07 13.32 41.05 3.45 3.42 3.43 3.56 3.53 3.56

4 1.15 6.50 19.76 1.03 5.98 18.01 3.43 3.40 3.41 3.53 3.50 3.54

8 0.61 3.48 10.47 0.55 3.22 9.88 3.38 3.36 3.39 3.47 3.45 3.50

16 0.36 2.06 5.95 0.33 1.94 5.62 3.31 3.30 3.35 3.37 3.36 3.43

32 0.26 1.07 2.81 0.23 0.94 2.64 3.25 3.25 3.27 3.30 3.30 3.33

64 0.19 0.74 1.44 0.13 0.70 1.49 3.19 3.16 3.24 3.22 3.24 3.28

4.3 Path Growing Algorithm

Similarly to the previous section, the results obtained by the Path Growing Algorithm are going to

be analysed. The first set of results was collected from executions driven by F3 + F4. In order to

understand how the Path Growing Algorithm and the F3 + F2 combination work together, a second

set of results, acquired from executions driven by this combination, will be studied as well.

34

Results

Table 4.10: M6 quality measurements comparison between Globular Matching and Path Growing
Algorithm on 1, 2, 4, 8, 16, 32 and 64 processors.

Globular Matching Path Growing Algorithm

Processes F3 F4 F2 F3 F4 F2

1 2.25e+01 6.98e+06 1.83e+06 2.24e+01 6.63e+06 1.78e+06

2 2.26e+01 6.94e+06 1.82e+06 2.26e+01 6.55e+06 1.77e+06

4 2.35e+01 6.93e+06 1.82e+06 2.24e+01 6.44e+06 1.77e+06

8 2.34e+01 6.93e+06 1.82e+06 2.25e+01 6.38e+06 1.75e+06

16 2.26e+01 6.85e+06 1.81e+06 2.24e+01 6.26e+06 1.74e+06

32 2.26e+01 6.78e+06 1.80e+06 2.24e+01 6.25e+06 1.73e+06

64 2.26e+01 6.81e+06 1.80e+06 2.26e+01 6.20e+06 1.72e+06

4.3.1 Traditional

Table 4.10 shows a comparison between quality measurements of results acquired by the Globular

Matching and Path Growing Algorithm. It can be seen that the last matching algorithm obtained

better results for this grid in very metric. F4 is showing 5% to 10% smaller values, whereas the F2

objective function obtained an improvement of 2% to 5%. The F3 metric presented similar values

in two runs, with 2 and 64 processes. Notice that in the Path Growing Algorithm, this objective

function presented values that were very stable whilst the number of processes was increasing.

Table 4.11: F22 quality measurements comparison between Globular Matching and Path
Growing Algorithm on 1, 2, 4, 8, 16, 32 and 64 processors.

Globular Matching Path Growing Algorithm

Processes F3 F4 F2 F3 F4 F2

1 2.63e+01 1.70e+07 8.33e+06 2.31e+01 1.64e+07 8.14e+06

2 3.16e+01 1.70e+07 8.30e+06 2.32e+01 1.63e+07 8.09e+06

4 2.32e+01 1.69e+07 8.29e+06 2.74e+01 1.62e+07 8.05e+06

8 2.52e+01 1.70e+07 8.28e+06 2.71e+01 1.62e+07 8.01e+06

16 3.08e+01 1.69e+07 8.25e+06 2.90e+01 1.61e+07 7.95e+06

32 3.16e+01 1.69e+07 8.23e+06 4.48e+01 1.60e+07 7.90e+06

64 3.48e+01 1.69e+07 8.21e+06 2.68e+01 1.58e+07 7.86e+06

When looking at table 4.10, which shows the same comparison with a different grid, F22, it can

be seen that better results were still obtained on F4 and F2. However, F3 presents an uncommon

difference in the execution with 32 processes. The difference in the F4 function becomes less

evident, with improvements ranging from 4% to 7% only, and the F2 function presenting roughly

35

Results

the same percentage of difference. The F3 function, however, was not as stable as it was in the

previous grid, presenting 3 larger values out of 7.

The results of the third grid, F16, can be consulted in table 4.12, which presents similar results

to what was seen in the previous grid. Again, we can see smaller values in the F4 and F2 objective

functions, and 2 larger values on F3.

Table 4.12: F16 quality measurements comparison between Globular Matching and Path
Growing Algorithm on 1, 2, 4, 8, 16, 32 and 64 processors.

Globular Matching Path Growing Algorithm

Processes F3 F4 F2 F3 F4 F2

1 2.28e+01 8.53e+05 2.04e+07 2.24e+01 8.05e+05 2.00e+07

2 2.84e+01 8.45e+05 2.03e+07 2.27e+01 8.02e+05 1.99e+07

4 2.84e+01 8.44e+05 2.03e+07 2.24e+01 8.04e+05 1.98e+07

8 2.84e+01 8.44e+05 2.03e+07 2.39e+01 8.01e+05 1.97e+07

16 2.49e+01 8.40e+05 2.03e+07 2.64e+01 7.92e+05 1.96e+07

32 2.90e+01 8.40e+05 2.02e+07 2.64e+01 7.79e+05 1.94e+07

64 2.24e+01 8.29e+05 2.01e+07 2.64e+01 7.70e+05 1.93e+07

Table 4.13 shows a comparison between Execution Times and Coarsening Factors. This al-

gorithm presents a smaller execution time in the serial run, and larger execution times in every

parallel run. The algorithm produced smaller grids in the overall, increasing the difference in exe-

cutions with a larger number of processes.

Table 4.13: Execution times in seconds and Coarsening Factors comparison between Globular
Matching and Local Heaviest Approximation on 1, 2, 4, 8, 16, 32 and 64 processors.

Execution time (s) Coarsening Factor

Globular Matching Path Growing Alg. Globular Matching Path Growing Alg.

Processes M6 F22 F16 M6 F22 F16 M6 F22 F16 M6 F22 F16

1 1.69 10.24 30.81 1.43 10.14 30.00 3.47 3.47 3.46 3.05 3.04 3.06

2 2.33 14.70 44.39 2.72 16.03 49.91 3.45 3.42 3.43 2.97 2.95 3.01

4 1.15 6.50 19.76 1.30 7.38 21.90 3.43 3.40 3.41 2.88 2.88 2.95

8 0.61 3.48 10.47 0.70 3.95 11.66 3.38 3.36 3.39 2.78 2.78 2.86

16 0.36 2.06 5.95 0.44 2.26 6.67 3.31 3.30 3.35 2.65 2.66 2.75

32 0.26 1.07 2.81 0.23 1.09 3.11 3.25 3.25 3.27 2.54 2.57 2.62

64 0.19 0.74 1.44 0.12 0.59 1.66 3.19 3.16 3.24 2.45 2.49 2.55

36

Results

4.3.2 Squared Ratio

Table 4.14: M6 quality measurements comparison between Traditional and Squared Sum on 1, 2,
4, 8, 16, 32 and 64 processors.

Traditional Squared Sum

Processes F3 F4 F2 F3 F4 F2

1 2.24e+01 6.63e+06 1.78e+06 2.28e+01 5.58e+06 1.77e+06

2 2.26e+01 6.55e+06 1.77e+06 2.26e+01 5.15e+06 1.75e+06

4 2.24e+01 6.44e+06 1.77e+06 2.24e+01 5.17e+06 1.74e+06

8 2.25e+01 6.38e+06 1.75e+06 2.24e+01 5.17e+06 1.73e+06

16 2.24e+01 6.26e+06 1.74e+06 2.24e+01 5.19e+06 1.71e+06

32 2.24e+01 6.25e+06 1.73e+06 2.24e+01 5.35e+06 1.71e+06

64 2.26e+01 6.20e+06 1.72e+06 2.24e+01 5.44e+06 1.69e+06

The results of M6 executions, with the Path Growing Algorithm as the matching method, and

Squared Sum as the objective functions to be followed, can be viewed in table 4.14. These re-

sults can be represented as a comparison of the new algorithm working with the Traditional and

Squared Sum combinations. When looking at this table, it can be seen that the Squared Sum tends

to produce better F3 results. The table also shows that every F4 and F2 values are lower with this

combination. Notice that a better minimization of the F2 value was obtained, similarly to what

happened previously, with a different matching algorithm.

Table 4.15: F22 quality measurements comparison between Traditional and Squared Sum on 1,
2, 4, 8, 16, 32 and 64 processors.

Traditional Squared Sum

Processes F3 F4 F2 F3 F4 F2

1 2.31e+01 1.64e+07 8.14e+06 2.28e+01 1.54e+07 8.13e+06

2 2.32e+01 1.63e+07 8.09e+06 2.29e+01 1.43e+07 8.07e+06

4 2.74e+01 1.62e+07 8.05e+06 2.80e+01 1.44e+07 8.03e+06

8 2.71e+01 1.62e+07 8.01e+06 4.44e+01 1.46e+07 7.98e+06

16 2.90e+01 1.61e+07 7.95e+06 2.39e+01 1.44e+07 7.93e+06

32 4.48e+01 1.60e+07 7.90e+06 3.16e+01 1.43e+07 7.89e+06

64 2.68e+01 1.58e+07 7.86e+06 2.47e+01 1.47e+07 7.85e+06

Table 4.15 shows the same comparison on a different grid, F22. F4 and F2 show improvements

from the Traditional combination of objective functions again. We can see a larger improvement

on F4, but smaller values of F2 in every run.

37

Results

Table 4.16: F16 quality measurements comparison between Traditional and Squared Sum on 1,
2, 4, 8, 16, 32 and 64 processors.

Traditional Squared Sum

Processes F3 F4 F2 F3 F4 F2

1 2.24e+01 8.05e+05 2.00e+07 2.24e+01 7.55e+05 2.00e+07

2 2.27e+01 8.02e+05 1.99e+07 2.64e+01 6.99e+05 1.99e+07

4 2.24e+01 8.04e+05 1.98e+07 2.64e+01 7.07e+05 1.98e+07

8 2.39e+01 8.01e+05 1.97e+07 2.28e+01 7.04e+05 1.97e+07

16 2.64e+01 7.92e+05 1.96e+07 2.64e+01 7.10e+05 1.96e+07

32 2.64e+01 7.79e+05 1.94e+07 2.46e+01 7.02e+05 1.94e+07

64 2.64e+01 7.70e+05 1.93e+07 2.64e+01 7.15e+05 1.93e+07

Thirdly, results of the F16 grid were gathered in table 4.16. F2 shown similar values in both

combinations. F4, identically to what happened before, obtained lower values in every run. F3

presented only two larger values.

The Execution times and Coarsening Factors of all runs can be seen in table 4.17. Faster runs

were obtained whilst using the Squared Sum combination of objective functions. The Coarsening

Factor was also smaller, what means that this combination produced larger and less coarsened

grids.

Table 4.17: Execution times in seconds and Coarsening Factors comparison between Traditional
and Squared Sum on 1, 2, 4, 8, 16, 32 and 64 processors.

Execution time (s) Coarsening Factor

Traditional Squared Sum Traditional Squared Sum

Processes M6 F22 F16 M6 F22 F16 M6 F22 F16 M6 F22 F16

1 1.62 10.14 30.00 1.43 9.62 29.93 3.05 3.04 3.06 2.87 3.01 3.05

2 2.72 16.03 49.91 2.48 15.19 47.11 2.97 2.95 3.01 2.54 2.89 2.98

4 1.30 7.38 21.90 1.18 6.89 20.86 2.88 2.88 2.95 2.47 2.80 2.92

8 0.70 3.95 11.66 0.66 3.67 11.04 2.78 2.78 2.86 2.40 2.71 2.83

16 0.44 2.26 6.67 0.39 2.12 6.18 2.65 2.66 2.75 2.33 2.61 2.73

32 0.23 1.09 3.11 0.22 1.08 2.89 2.54 2.57 2.62 2.27 2.52 2.60

64 0.12 0.59 1.66 0.10 0.55 1.59 2.45 2.49 2.55 2.21 2.44 2.53

38

Results

4.4 Minimum Approximation Matching

In this section, results of the serial Minimum Approximation Matching algorithm are going to

be analysed. The first results are a comparison between the Globular Matching algorithm and the

Minimum Approximation Matching algorithm, with both following the traditional F3 + F2 objective

functions. In a second instance, the effect of the new combination F3 + F4 is going to be studied

as well.

Table 4.18: Comparison between the Globular Matching and Minimum Approximation Matching,
following F3 + F2.

M6 F22 F16

G. Match. Min Ap. G. Match. Min Ap. G. Match. Min Ap.

Execution Time (s) 1.69 4.90 10.23 94.44 30.91 182.97

Coarsening Factor 3.47 3.14 3.47 3.13 3.46 3.12

F1 5.25e+05 5.69e+05 2.38e+06 2.59e+06 5.87e+06 6.37e+06

F2 1.82e+06 1.79e+06 8.33e+06 8.17e+06 2.04e+07 2.00e+07

F3 2.25e+01 2.24e+01 2.63e+01 2.32e+01 2.28e+01 2.64e+01

F4 6.98e+06 6.75e+06 1.70e+07 1.65e+07 8.53e+05 8.26e+05

In table 4.18, it is evident that the execution time of our mesh partitioning algorithm increases

with the new Minimum Approximation Matching method. We can see an increase on the execution

time of around 4, 9 and 5 times in M6, F22 and F16 respectively. This algorithm tends to produce

less coarsened grids as well. Nevertheless, when looking at the overall grid quality, the values of

F2 and F4 are always lower, with F3 only obtaining a larger value in the F16 mesh. F1 obtained

larger values in each one of the three grids. This can be explained with the fact of having larger

grids, and therefore, having more control volumes. Notice that despite such condition, F2 and F4

still obtained better results.

In table 4.19 we can see the effect of Minimum Approximation Matching algorithm following

F3 + F4, comparing it with the previous results. Despite of having slightly faster executions with

M6 and F16, the execution of the same algorithm on F22 took approximately 5 more seconds.

The coarsening factors were also similar on F22 and F16, but smaller on M6. F2 produced similar

values with F22 and F16, but a smaller value with M6. F3 produced the same values with every

grid, but we can see improvements in the F4 metric. The results obtained in F1 can, again, be

explained by the same factor.

39

Results

Table 4.19: Comparison between the Minimum Approximation Matching algorithm, following F3
+ F2 and F3 + F4.

M6 F22 F16

trad ssum trad ssum trad ssum

Execution Time (s) 4.90 4.59 94.44 99.50 182.97 181.30

Coarsening Factor 3.14 2.89 3.13 3.11 3.12 3.13

F1 5.69e+05 6.04e+05 2.59e+06 2.61e+06 6.37e+06 6.37e+06

F2 1.79e+06 1.78e+06 8.17e+06 8.17e+06 2.00e+07 2.00e+07

F3 2.24e+01 2.24e+01 2.32e+01 2.32e+01 2.64e+01 2.64e+01

F4 6.75e+06 5.47e+06 1.65e+07 1.52e+07 8.26e+05 7.53e+05

40

Chapter 5

Conclusions

Starting by the F3 + F4 combination of objective functions, and comparing it to the traditional com-

bination, F3 + F2, we can see that it produces larger grids, but in a slightly smaller execution time.

Despite of producing grids with more elements, F3 + F4 is obtaining better results in most of the

overall grid quality metrics. Even when comparing the F2 results obtained by both combinations,

we can see lower values with the new combination. Notice that F3 + F4 is not directly minimizing

the F2 objective function.

The Local Heaviest Approximation algorithm avoids to access control volumes from the small-

est to the largest Aspect Ratio, reducing the time complexity of the matching algorithm. The

overall grid quality, however, is sacrificed, as it produced larger F2, F3 and F4 results in most runs.

The Path Growing Algorithm produces better results in F4 and F2 in every run under these

conditions. However, we can see some fluctuations on F3. Notice that this algorithm produced

better F3 values in every serial run, and the variations took place whilst scaling the number of

processors. It is worth to mention that it produced grids considerably larger, what can contribute to

an increase in our quality metrics. This algorithm is slower than the Globular Matching algorithm

when constructing grids in parallel, but it is faster when constructing them with serial runs.

To conclude, the Minimum Approximation Matching approach was considerably slower, ob-

taining less coarser grids. The execution times were expected to increase, since the time complex-

ity of this algorithm is higher. In comparison to Globular Matching, this algorithm obtained grids

with better overall quality, as we should keep in mind that we’ve obtained larger grids. When

conducting a construction with this algorithm following F3 + F4, we obtain results in less time and

with better quality, originated by the F3 + F4 combination.

41

Conclusions

42

References

[Amd67] Gene M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, Spring Joint Com-
puter Conference, AFIPS ’67 (Spring), pages 483–485, New York, NY, USA, 1967.
ACM.

[Buc95] S. Buckeridge. Numerical solution of weather and climate systems. International
Journal for Numerical Methods in Fluids, 21(3):783–805, 1995.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[DH03] Doratha E. Drake and Stefan Hougardy. A simple approximation algorithm for the
weighted matching problem. Inf. Process. Lett., 85(4):211–213, February 2003.

[dir13] Numerical solution of weather and climate systems, November 2013.

[Edm65a] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of
Research of the National Bureau of Standards B, 69:125–130, 1965.

[Edm65b] Jack Edmonds. Paths, trees and flowers. CANADIAN JOURNAL OF MATHEMAT-
ICS, pages 449–467, 1965.

[Fel18] M. Feldman. As moore’s law winds down, chipmakers con-
sider the path forward. https://www.top500.org/news/
as-moores-law-winds-down-chipmakers-consider-the-path-forward/,
June 2018. Online; accessed 19 Jun 2018.

[Fly72] Michael J. Flynn. Some computer organizations and their effectiveness. IEEE Trans.
Comput., 21(9):948–960, September 1972.

[FM88] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network
partitions. In Papers on Twenty-five Years of Electronic Design Automation, 25 years
of DAC, pages 241–247, New York, NY, USA, 1988. ACM.

[FS11] T. Füllenbach and K. Stüben. Algebraic Multigrid for Selected PDE Systems, pages
399–410. 2011.

[GK97] Vipin Kumar George Karypis. A coarse-grain parallel formulation of multilevel k-
way graph partitioning algorithm. In Proceedings of the Eighth SIAM Conference
on Parallel Processing for Scientific Computing, PPSC 1997, Hyatt Regency Min-
neapolis on Nicollel Mall Hotel, Minneapolis, Minnesota, USA, March 14-17, 1997,
1997.

43

https://www.top500.org/news/as-moores-law-winds-down-chipmakers-consider-the-path-forward/
https://www.top500.org/news/as-moores-law-winds-down-chipmakers-consider-the-path-forward/

REFERENCES

[Gus88] John L. Gustafson. Reevaluating amdahl’s law. Commun. ACM, 31(5):532–533, May
1988.

[HC00] K.A. Hoffmann and S.T. Chiang. Computational Fluid Dynamics. Number v. 1 in
Computational Fluid Dynamics. Engineering Education System, 2000.

[HL95] Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning
graphs. In Proceedings of the 1995 ACM/IEEE Conference on Supercomputing, Su-
percomputing ’95, New York, NY, USA, 1995. ACM.

[Hos] W. L. Hoschv. Polynomial versus nondeterministic polynomial problem.

[HSS10] Manuel Holtgrewe, Peter Sanders, and Christian Schulz. Engineering a scalable high
quality graph partitioner. In IPDPS, pages 1–12. IEEE, 2010.

[IM01] G. Karypis I. Moulitsas. MGridGen/ParMGridGen, Serial/Parallel Library for Gen-
erating Coarse Grids for Multigrid Methods, 1st edition, December 2001.

[KGGK94] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to
Parallel Computing: Design and Analysis of Algorithms. Benjamin-Cummings Pub-
lishing Co., Inc., Redwood City, CA, USA, 1994.

[KK96] George Karypis and Vipin Kumar. Parallel multilevel k-way partitioning scheme for
irregular graphs. In Proceedings of the 1996 ACM/IEEE Conference on Supercom-
puting, Supercomputing ’96, Washington, DC, USA, 1996. IEEE Computer Society.

[KK98a] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, December 1998.

[KK98b] George Karypis and Vipin Kumar. Multilevelk-way partitioning scheme for irregular
graphs. J. Parallel Distrib. Comput., 48(1):96–129, January 1998.

[Kol] Vladimir Kolmogorov. Blossom v: A new implementation of a minimum cost perfect
matching algorithm.

[Len06] J. Van Lent. Multigrid methods for time-dependent partial differential equations.
Technical report, Katholieke Universiteit Leuven, January 2006.

[MK01] Irene Moulitsas and George Karypis. Multilevel algorithms for generating coarse
grids for multigrid methods. In Proceedings of the 2001 ACM/IEEE Conference on
Supercomputing, SC ’01, pages 45–45, New York, NY, USA, 2001. ACM.

[Moo65] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8), April 1965.

[MS07] Jens Maue and Peter Sanders. Engineering algorithms for approximate weighted
matching. In Camil Demetrescu, editor, Experimental Algorithms, pages 242–255,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[Pac11] Peter Pacheco. An Introduction to Parallel Programming. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1st edition, 2011.

[Rod85] David P. Rodgers. Improvements in multiprocessor system design. In Proceedings
of the 12th Annual International Symposium on Computer Architecture, ISCA ’85,
pages 225–231, Los Alamitos, CA, USA, 1985. IEEE Computer Society Press.

44

REFERENCES

[SA95] T. Tezduyar. S. Aliabadi. Parallel fluid dynamics computations in aerospace applica-
tions, 1995.

[SS11] Peter Sanders and Christian Schulz. Engineering multilevel graph partitioning algo-
rithms. In ESA, volume 6942 of Lecture Notes in Computer Science, pages 469–480.
Springer, 2011.

[Sta18] R. Stanworth. Delta hpc cluster user guide. https://intranet.cranfield.
ac.uk/it/Documents3/Delta-UserGuide.pdf, May 2018. Online; ac-
cessed 20 Jun 2018.

[Ste07] Jack K. Steehler. Understanding moore’s law—four decades of innovation (david c.
brock, ed.). Journal of Chemical Education, 84(8):1278, 2007.

45

https://intranet.cranfield.ac.uk/it/Documents3/Delta-UserGuide.pdf
https://intranet.cranfield.ac.uk/it/Documents3/Delta-UserGuide.pdf

REFERENCES

46

Appendix A

Source Code

Local Heaviest Approximation

/***

* This function finds a match using the Local Heaviest Approximation Alg.

**/

void Match_Local_Heaviest_Approximation(CtrlType *ctrl, GraphType *graph)

{

int i, ii, k, j, dim, nvtxs, cnvtxs, mink;

idxtype *xadj, *vwgt, *adjncy;

idxtype *match, *cmap, *perm, *randperm;

realtype *vvol, *vsurf, *adjwgt, *adjwgtsum, ar, minar;

dim = ctrl->dim;

nvtxs = graph->nvtxs;

xadj = graph->xadj;

vwgt = graph->vwgt;

vvol = graph->vvol;

vsurf = graph->vsurf;

adjncy = graph->adjncy;

adjwgt = graph->adjwgt;

adjwgtsum = graph->adjwgtsum;

cmap = graph->cmap = idxsmalloc(nvtxs, -1, "cmap");

match = idxsmalloc(nvtxs, -1, "match");

perm = idxsmalloc(nvtxs, -1, "perm");

randperm = idxmalloc(nvtxs, "randperm");

RandomPermute(nvtxs, randperm, 1);

/* insert the vertices according to the path growing algorithm */

ii = 0, cnvtxs = 0;

i = randperm[ii++];

47

Source Code

while (cnvtxs <= .25*nvtxs && ii < nvtxs) {

if (match[i] != UNMATCHED) {

i = randperm[ii++];

continue;

}

minar = DBL_MAX, mink = UNMATCHED;

for (j=xadj[i]; j<xadj[i+1]; j++) {

k = adjncy[j];

if (k > i || vwgt[i] + vwgt[k] > ctrl->maxsize || match[k] !=

UNMATCHED)

continue;

ar = ARATIO2(dim, vsurf[i]+vsurf[k]+adjwgtsum[i]+adjwgtsum[k]

-2.0*adjwgt[j], vvol[i]+vvol[k]);

if (minar > ar) {

minar = ar;

mink = k;

}

}

if (mink != UNMATCHED) {

perm[cnvtxs] = i;

perm[nvtxs-cnvtxs-1] = mink;

cmap[i] = cmap[mink] = cnvtxs++;

match[i] = mink;

match[mink] = i;

}

i = randperm[ii++];

}

/* take care of the unmatched vertices */

for (i=0; i<nvtxs; i++) {

if (match[i] == UNMATCHED) {

perm[cnvtxs] = i;

cmap[i] = cnvtxs++;

match[i] = i;

}

}

CreateCoarseGraph(graph, cnvtxs, match, perm);

IMfree((void**)&randperm, (void**)&perm, (void**)&match, LTERM);

48

Source Code

}

Path Growing Algorithm

void choosePath(idxtype * perm, idxtype * cmap, idxtype * match, idxtype

* seen, int * first,

idxtype * patha, idxtype * pathb, int *sizea, int *sizeb,

realtype *suma, realtype *sumb, int *alternate,

int *cnvtxs, int *nvtxs, double * cost) {

idxtype * path; int size, j;

if ((*suma) > (*sumb)) {

path = pathb, size = *sizeb;

seen[(*first)] = UNMATCHED;

*cost += (*sumb);

} else {

path = patha, size = *sizea;

*cost += (*suma);

}

for (j = 0; j < size; j += 2) {

int a = path[j], b = path[j + 1];

perm[(*cnvtxs)] = a;

perm[(*nvtxs)-(*cnvtxs)-1] = b;

cmap[a] = cmap[b] = (*cnvtxs)++;

match[a] = b;

match[b] = a;

}

(*sizea) = 0, (*sizeb) = 0;

(*suma) = 0.0, (*sumb) = 0.0;

(*alternate) = 0;

}

/***

* This function finds a match using the Path Growing Algorithm

**/

void Match_Path_Grow(CtrlType *ctrl, GraphType *graph) {

int i, ii, k, j, dim, first, nvtxs, cnvtxs, sizea = 0, sizeb = 0,

alternate = 0, mink;

idxtype *xadj, *vwgt, *adjncy;

idxtype *match, *seen, *cmap, *perm, *randperm, *patha, *pathb;

realtype *vvol, *vsurf, *adjwgt, *adjwgtsum, suma = 0.0, sumb = 0.0, ar,

minar;

dim = ctrl->dim;

nvtxs = graph->nvtxs;

49

Source Code

xadj = graph->xadj;

vwgt = graph->vwgt;

vvol = graph->vvol;

vsurf = graph->vsurf;

adjncy = graph->adjncy;

adjwgt = graph->adjwgt;

adjwgtsum = graph->adjwgtsum;

cmap = graph->cmap = idxsmalloc(nvtxs, -1, "cmap");

match = idxsmalloc(nvtxs, -1, "match");

seen = idxsmalloc(nvtxs, -1, "seen");

perm = idxsmalloc(nvtxs, -1, "perm");

randperm = idxmalloc(nvtxs, "randperm");

RandomPermute(nvtxs, randperm, 1);

patha = idxmalloc(nvtxs, "patha");

pathb = idxmalloc(nvtxs, "pathb");

/* insert the vertices according to the path growing algorithm */

ii = 0, cnvtxs = 0;

i = randperm[ii++];

first = i;

double cost = 0.0;

while (ii < nvtxs) {

if (seen[i] != UNMATCHED) {

if (sizea > 0)

choosePath(perm, cmap, match, seen, &first, patha, pathb,

&sizea, &sizeb,

&suma, &sumb, &alternate, &cnvtxs, &nvtxs, &cost);

i = randperm[ii++];

first = i;

continue;

}

minar = DBL_MAX, mink = UNMATCHED;

for (j=xadj[i]; j<xadj[i+1]; j++) {

k = adjncy[j];

if (k > i || vwgt[i] + vwgt[k] > ctrl->maxsize || seen[k] !=

UNMATCHED)

continue;

50

Source Code

ar = SQUAREDARATIO(dim, vsurf[i]+vsurf[k]+adjwgtsum[i]+adjwgtsum[k]

-2.0*adjwgt[j], vvol[i]+vvol[k]);

if (minar > ar) {

minar = ar;

mink = k;

}

}

if (mink != UNMATCHED) {

if (alternate) {

pathb[sizeb++] = i;

pathb[sizeb++] = mink;

sumb += minar;

} else {

patha[sizea++] = i;

patha[sizea++] = mink;

suma += minar;

}

seen[i] = 1;

alternate = (alternate + 1) % 2;

i = mink;

} else {

if (sizea > 0)

choosePath(perm, cmap, match, seen, &first, patha, pathb,

&sizea, &sizeb,

&suma, &sumb, &alternate, &cnvtxs, &nvtxs, &cost);

i = randperm[ii++];

first = i;

continue;

}

}

/* take care of the unmatched vertices */

for (i=0; i<nvtxs; i++) {

if (match[i] == UNMATCHED) {

perm[cnvtxs] = i;

cmap[i] = cnvtxs++;

match[i] = i;

}

}

CreateCoarseGraph(graph, cnvtxs, match, perm);

IMfree((void**)&randperm, (void**)&perm, (void**)&match, (void**)&seen,

(void**)&patha, (void**)&pathb, LTERM);

51

Source Code

}

Minimum Approximation Matching

/***

* This function finds a matching using the Match Minimum Approximation

**/

void Match_Minimum_Approximation(CtrlType *ctrl, GraphType *graph)

{

int i, ii, k, j, dim, nvtxs, cnvtxs, anvtxs, nedges;

idxtype *xadj, *vwgt, *adjncy;

idxtype *match, *cmap, *perm;

realtype *vvol, *vsurf, *adjwgt, *adjwgtsum;

FKeyValueType *edges;

dim = ctrl->dim;

nvtxs = graph->nvtxs;

xadj = graph->xadj;

vwgt = graph->vwgt;

vvol = graph->vvol;

vsurf = graph->vsurf;

adjncy = graph->adjncy;

adjwgt = graph->adjwgt;

adjwgtsum = graph->adjwgtsum;

anvtxs = nvtxs;

perm = idxsmalloc(nvtxs, -1, "perm");

cmap = graph->cmap = idxsmalloc(nvtxs, -1, "cmap");

match = idxsmalloc(nvtxs, -1, "match");

if (anvtxs & 1) { anvtxs--; }

PerfectMatching pm(anvtxs, (xadj[anvtxs]/2));

pm.options.verbose = false;

edges = (FKeyValueType

*)IMmalloc((xadj[anvtxs]/2)*sizeof(FKeyValueType), "edges");

nedges = 0;

for (i=0; i<anvtxs; i++) {

for (j=xadj[i]; j<xadj[i+1]; j++) {

52

Source Code

k = adjncy[j];

if (k >= i || k == anvtxs || i == anvtxs)

continue;

realtype ar = ARATIO2(dim,

vsurf[i]+vsurf[k]+adjwgtsum[i]+adjwgtsum[k]

-2.0*adjwgt[j], vvol[i]+vvol[k]);

pm.AddEdge(i, k, ar);

edges[nedges].val1 = i;

edges[nedges].val2 = k;

edges[nedges].key = ar;

edges[nedges].val = nedges;

nedges++;

}

}

pm.Solve();

ifkeysort(nedges, edges);

cnvtxs = 0;

for (ii = 0; ii < nedges && cnvtxs < .2*nvtxs; ii++) {

i = edges[ii].val1, k = edges[ii].val2, j = edges[ii].val;

if (pm.GetSolution(j)) {

perm[cnvtxs] = i;

perm[nvtxs-cnvtxs-1] = k;

cmap[i] = cmap[k] = cnvtxs++;

match[i] = k;

match[k] = i;

}

}

for (i=0; i<nvtxs; i++) {

if (match[i] == UNMATCHED) {

perm[cnvtxs] = i;

cmap[i] = cnvtxs++;

match[i] = i;

}

}

CreateCoarseGraph(graph, cnvtxs, match, perm);

IMfree((void**)&perm, (void**)&match, (void**)&edges, LTERM);

}

53

Source Code

F4 macro definition

#define LIMITSQUARE 16

#define LIMITCUBE3 216

#define SQUAREDARATIO(dim, surf, vol) ((dim == 2) ?

pow(((surf)*(surf)/(vol)) / LIMITSQUARE, 2) :

((surf)*(surf)*(surf))/((vol)*(LIMITCUBE3)))

K-Way refinement following F4

/***

* This function performs k-way refinement, whose objective is to directly

* minimize the sum of squared aspect ratios

**/

void Random_KWaySquaredARatioRefine(CtrlType *ctrl, GraphType *graph, int

npasses)

{

int i, ii, j, dim, nparts, pass, nvtxs, nmoves, ndegrees, pmax;

int from, to, jbest, jbest1, jbest2;

idxtype *xadj, *vwgt, *adjncy, *where, *pwgts, *perm, *phtable, *ptarget;

realtype old, newar, best, best1, best2, id, ed, maxar;

realtype OldToAR, NewToAR, OldFromAR, NewFromAR;

realtype *vvol, *vsurf, *adjwgt, *pvol, *psurf, *degrees;

nvtxs = graph->nvtxs;

xadj = graph->xadj;

vwgt = graph->vwgt;

vvol = graph->vvol;

vsurf = graph->vsurf;

adjncy = graph->adjncy;

adjwgt = graph->adjwgt;

where = graph->where;

pwgts = graph->pwgts;

pvol = graph->pvol;

psurf = graph->psurf;

dim = ctrl->dim;

nparts = ctrl->nparts;

degrees = realmalloc(nparts, "degrees");

phtable = idxsmalloc(nparts, -1, "phtable");

54

Source Code

ptarget = idxsmalloc(nparts, -1, "ptarget");

perm = idxmalloc(nvtxs, "perm");

/* Determine the domain that has the maximum aspect ratio */

pmax = 0;

maxar = SQUAREDARATIO(dim, psurf[0], pvol[0]);

for (i=1; i<nparts; i++) {

newar = SQUAREDARATIO(dim, psurf[i], pvol[i]);

if (newar > maxar) {

maxar = newar;

pmax = i;

}

}

IFSET(ctrl->dbglvl, DBG_REFINE,

printf("Partitions: [%3d %3d]-[%3d %3d]. MaxRatio: [%4d, %e], Ratio:

%e\n",

pwgts[iamin(nparts, pwgts)], pwgts[iamax(nparts, pwgts)],

ctrl->minsize, ctrl->maxsize, pmax, maxar, graph->minratio));

RandomPermute(nvtxs, perm, 1);

for (pass=0; pass<npasses; pass++) {

RandomPermute(nvtxs, perm, 0);

RandomPermute(nvtxs, perm, 0);

for (nmoves=ii=0; ii<nvtxs; ii++) {

i = perm[ii];

from = where[i];

if (pwgts[from] - vwgt[i] < ctrl->minsize)

continue;

/* Determine the connectivity of the ’i’ vertex */

for (id=ed=0.0, ndegrees=0, j=xadj[i]; j<xadj[i+1]; j++) {

to = where[adjncy[j]];

if (to == from)

id += adjwgt[j];

else

ed += adjwgt[j];

if (to != from && pwgts[to]+vwgt[i] <= ctrl->maxsize) {

if (phtable[to] == -1) {

degrees[ndegrees] = adjwgt[j];

55

Source Code

ptarget[ndegrees] = to;

phtable[to] = ndegrees++;

}

else

degrees[phtable[to]] += adjwgt[j];

}

}

/* Determine which of the ndegrees moves is the best */

for (best1=0.01, best2=0.1, jbest1=-1, jbest2=-1, j=0; j<ndegrees;

j++) {

to = ptarget[j];

OldFromAR = SQUAREDARATIO(dim, psurf[from], pvol[from]);

OldToAR = SQUAREDARATIO(dim, psurf[to], pvol[to]);

NewFromAR = SQUAREDARATIO(dim, psurf[from]+id-ed-vsurf[i],

pvol[from]-vvol[i]);

NewToAR = SQUAREDARATIO(dim,

psurf[to]+ed+id-2.0*degrees[j]+vsurf[i], pvol[to]+vvol[i]);

/* Check first objective min(max) */

/* Check if it increases the max aspect ratio */

if (NewFromAR > maxar || NewToAR > maxar)

continue;

/* If not... */

/* If move involves partition with max asp ratio, do the move now

*/

if (to == pmax || from == pmax) {

jbest1 = j;

break;

}

/* Else if partition with max asp ratio is not involved, do the

move

that gives best local gain */

else {

old = amax(OldFromAR, OldToAR);

newar = amax(NewFromAR, NewToAR);

if (old-newar > best1) {

best1 = old-newar;

jbest1 = j;

}

}

56

Source Code

/* Check second objective squared AR */

old = OldFromAR + OldToAR;

newar = NewFromAR + NewToAR;

if (best2 < old-newar) {

best2 = old-newar;

jbest2 = j;

}

}

IFSET(ctrl->dbglvl, DBG_MOVEINFO,

printf("\tjbest1=%d, jbest2=%d Gains: %8.6f %8.6f.\n", jbest1,

jbest2, best1, best2));

if (jbest1 != -1) {

jbest = jbest1;

best = best1;

IFSET(ctrl->dbglvl, DBG_MOVEINFO,

printf("\t1st OBJECTIVE. Gain: %8.6f\n", best1));

}

else if (jbest2 != -1) {

jbest = jbest2;

best = best2;

IFSET(ctrl->dbglvl, DBG_MOVEINFO,

printf("\t2nd OBJECTIVE. Gain: %8.6f\n", best2));

}

else {

jbest = -1;

IFSET(ctrl->dbglvl, DBG_MOVEINFO,

printf("\tNO OBJECTIVE. Gains: %8.6f %8.6f.\n" , best1,

best2));

}

if (jbest != -1) {

to = ptarget[jbest];

where[i] = to;

INC_DEC(pwgts[to], pwgts[from], vwgt[i]);

INC_DEC(pvol[to], pvol[from], vvol[i]);

psurf[from] = psurf[from] + id - ed - vsurf[i];

psurf[to] = psurf[to] + id + ed - 2.0*degrees[jbest] + vsurf[i];

/* If we moved from/to the pmax subdomain find the newar one! */

if (from == pmax || to == pmax) {

pmax = 0;

maxar = SQUAREDARATIO(dim, psurf[0], pvol[0]);

57

Source Code

for (i=1; i<nparts; i++) {

if ((newar = SQUAREDARATIO(dim, psurf[i], pvol[i])) > maxar) {

maxar = newar;

pmax = i;

}

}

graph->minratio = maxar;

}

nmoves++;

IFSET(ctrl->dbglvl, DBG_MOVEINFO,

printf("\tMoving %6d from %3d to %3d. Gain: %4.2f. MinRatio: %e

[%e]\n" , i, from, to, best, graph->minratio, vsurf[i]));

/* CheckParams(ctrl, graph); */

}

for (j=0; j<ndegrees; j++)

phtable[ptarget[j]] = -1;

}

IFSET(ctrl->dbglvl, DBG_REFINE,

printf("\t[%6d %6d], Nmoves: %5d, MinRatio: %e\n",

pwgts[iamin(nparts, pwgts)], pwgts[iamax(nparts, pwgts)],

nmoves, graph->minratio));

if (nmoves == 0)

break;

}

graph->nmoves = nmoves;

IFSET(ctrl->dbglvl, DBG_REFINE, printf("FinalMax: %d %e\n", pmax,

maxar));

IMfree((void**)&perm, (void**)&phtable, (void**)°rees,

(void**)&ptarget, LTERM);

}

58

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Multigrid Methods
	1.2 Problem Complexity
	1.3 Parallelisation
	1.3.1 Hardware
	1.3.2 Software

	2 Literature Review
	2.1 Path, Trees and Flowers
	2.2 Maximum matching and a polyhedron with 0,1-vertices
	2.3 Moore's law
	2.4 Amdahl's law
	2.5 Gustafson's law
	2.6 A linear-time heuristic for improving network partitions
	2.7 A multilevel algorithm for partitioning graphs
	2.8 Multilevel k-way partitioning scheme for irregular graphs
	2.9 A fast and highly quality multilevel scheme for partitioning irregular graphs
	2.10 Parallel multilevel k-way partitioning for irregular graphs
	2.11 Multilevel algorithms for generating coarse grids for multigrid methods
	2.12 A simple approximation for the Weighted Matching Problem
	2.13 Mesh Partitioning: A Multilevel Ant-Colony-Optimization Algorithm
	2.14 Engineering a Scalable High Quality Graph Partitioner
	2.15 Engineering Multilevel Graph Partitioning Algorithms

	3 Methodologies
	3.1 Optimization Problem
	3.2 Multilevel Coarse Grid Construction
	3.2.1 Dual Graph representation
	3.2.2 Coarsening Phase
	3.2.3 Uncoarsening Phase

	3.3 Parallel Implementation
	3.4 Execution Conditions
	3.5 Validation
	3.6 Scalability

	4 Results
	4.1 F3 + F4
	4.1.1 Serial Algorithm Evaluation
	4.1.2 Parallel Algorithm Evaluation

	4.2 Local Heaviest Approximation
	4.3 Path Growing Algorithm
	4.3.1 Traditional
	4.3.2 Squared Ratio

	4.4 Minimum Approximation Matching

	5 Conclusions
	References
	A Source Code

