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Resumo

A descoberta de planetas em torno de outras estrelas é uma das significantes descobertas científicas do

Século XX. Hoje em dia, a Exoplanetologia é um dos ramos da Astronomia que mais interesse suscita, não só da

comunidade cientifica, mas também dos media e público em geral. Isso garante-lhe um grande apoio de ambos,

que lhe reconhecem o mérito cientifico e o apoiam no desenvolvimento de vários projectos (em missões espaciais

como Kepler, PLATO ou em observatórios terrestres como o espectrógrafo ESPRESSO instalado no VLT ou o

telescópio ELT do ESO).

Este trabalho foca-se na oportunidade criada pela espectroscopia de alta-resolução no ótico para caracterizar

as atmosferas de outros planetas, em particular o seu albedo. A forma como um exoplaneta interage com a luz

proveniente da sua estrela é essencial para entender algumas propriedades extremamente interessantes do planeta,

como por exemplo, o seu clima, cobertura de nuvens, equilíbrio químico, habitabilidade, etc. Em particular, a luz de

uma estrela refletida pela atmosfera de um planeta vai ser modulada pela refletividade (ou albedo) do planeta, uma

quantidade extremamente dependente das suas propriedades químicas e físicas. Na banda do ótico, a assinatura

de um planeta é maioritariamente luz refletida da sua estrela, mas várias ordens de grandeza mais ténue. Esta luz

refletida aparece sobreposta ao espectro da estrela hospedeira, e escondida por entre o ruído estelar. Isso torna a

sua deteção um difícil desafio observacional, no limite da geração atual de instalações astronómicas.

Ao longo deste projeto doutoral, estudamos a possibilidade de recuperar a dininuta assinatura ótica de planetas

em torno de outras estrelas e estimar o albedo desses mesmo planetas para inferir a sua composição atmosférica.

O resultado mais importante deste projeto foi a primeira deteção do espectro refletido de um exoplaneta (51 Pegasi

b) na banda do ótico a partir de observações do sistema com o espectrógrafo de alta-resolução HARPS. Com

base nessa deteção, conseguimos inferir que este planeta é provavelmente um planeta "inchado" com um albedo

alto. Para chegar a este resultado, desenvolvemos uma técnica que faz uma correlação cruzada dos espectros de

alta-resolução com uma máscara binária, o que permite amplificar o sinal do planeta e pô-lo em evidência face

ao ruído estelar. Também implementámos uma variante desta tecnica não só permite recuperar o sinal de banda

larga do planeta, mas também a sua dependência no comprimento de onda da radiação detetada. Testamos essa

nova versão da técnica em observações simuladas com os espectrógrafos ESPRESSO e HIRES de vários planetas

conhecidos. Em todos os casos conseguimos recuperar com sucesso as funções de albedo simuladas e distinguir

entre possíveis modelos atmosféricos com composições diferentes.

A deteção do espectro ótico refletido de 51 Pegasi b é um grande passo para a compreensão das atmosferas de

exoplanetas. No entanto, os verdadeiros desafios virão com a próxima geração de instrumentos como o ESPRESSO

e os telescópios de 30 m como o ELT. Estes irão colocar-nos numa posição privilegiada para a deteção de luz

refletida de exoplanetas e sonda as suas atmosferas com um nível de detalhe nunca antes atingido e talvez mesmo

encontrar provas de vida noutros planetas.

Palavras chave: espectroscopia de alta-resolução, exoplanetas, luz refletida, função de correlação cruzada, albedo
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Abstract

The discovery of planets around other stars is one of the greatest scientific discoveries of the 20th century.

Nowadays, exoplanetology is one of the fields in Astronomy that generates most interest, not only from the

scientific community but also from the media and public in general. This grants it a large support from both,

which recognize this field’s scientific value and support the development of several projects (space missions like

Kepler, PLATO or ground based like ESPRESSO, ESO’s ELT) with exoplanet science as one of their main drivers.

This work focuses on the opportunity that arises from optical high-resolution spectroscopy to characterize

exoplanetary atmospheres, in particular their albedo. How an exoplanet atmosphere interacts with the radiation

coming from its host star is paramount to understand some highly interesting planet’s characteristics such as its

climate, cloud coverage, chemical balance, habitability, etc. In particular, when the light from a star is reflected

on a planet’s atmosphere, it will be modulated by the planet’s reflectance – or albedo – which is highly dependent

on the atmospheric chemical and physical characteristics. At visible wavelengths, an exoplanet’s signature is

essentially reflected light from the host star, only several orders of magnitude fainter. However, it is superimposed

on the stellar host spectrum and hidden amidst the stellar noise. This makes its detection a difficult observational

challenge, pushing the limits of current generation of observing facilities.

In this doctoral project, we studied the possibility to recover the minute optical signature from exoplanets and

infer the planetary albedo to hint at its atmospheric composition. The major result from this project was the

recovery of the reflected optical spectral signal from 51 Pegasi b from HARPS observations of the system, and

infer that this planet is most likely a highly-inflated planet with a high albedo. To do so, we cross-correlated these

observations with a spectral mask to amplify the planetary signal and make it surface above the stellar noise. We

extended the cross-correlation technique to make it capable to not only recover the broadband albedo from the

planet, but also its color dependency. We tested the technique to simulated ESPRESSO and HIRES observations

of known planets. In all cases, we were able to successfully recover the simulated albedo function and distinguish

between possible atmospheric models with different compositions.

The detection of the reflected optical spectrum from 51 Pegasi b is a major step towards the understanding of

exoplanet atmospheres. However, the real challenges will come with the next generation of instruments such as

ESPRESSO and 30-m class telescopes like the ELT. These will put us in a privileged position to detect reflected

light from exoplanets, probe their atmospheres in unsurpassed detail and maybe even find proof of life.

Keywords:high-resolution spectroscopy,exoplanets,reflected light,cross-correlation function,albedo
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Chapter 1.

Introduction

The detection of 51 Pegasi b (Mayor et al., 1995) – the first exoplanet discovered around a solar-type star

other than the Sun – is one of the greatest scientific discoveries of the 20th century. This breakthrough had huge

implications in Astronomy, in particular by confirming that our Solar System was not alone. At the moment of

writing, more than 3600 planets in over 2700 systems have been announced (Schneider et al., 2011), with more

than 2600 additional candidates from the Kepler and K2 missions still awaiting confirmation (Borucki et al., 2010;

Howell et al., 2014). Figure 1.1 shows the number of confirmed planets by year and method since the discovery of

51 Pegasi b as per the exoplanet.eu database (Schneider et al., 2011). It can be seen that the transit technique

(e.g with the Kepler Mission, Lissauer et al., 2014; Rowe et al., 2014) has been the most prolific, shortly followed

by the radial velocities method (e.g. with the HARPS spectrograph – Mayor et al., 2003; Bonfils et al., 2013).

Initially, researchers were only able to detect large and massive planets in short period circular orbits (51

Pegasi b – Mayor et al., 1995; ups And b & τ Boo b - Butler et al., 1997, among others). These so called hot

Jupiter-type planets were completely unlike any planet known in the Solar System where giant planets orbit our

Sun with periods of several years. These discoveries challenged the accepted canons regarding planetary systems
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Figure 1.1: Exoplanet detection by year and method (data taken from the exoplanet.eu database as of December 2017).
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Figure 1.2: Confirmed exoplanets by year and mass (data taken from the exoplanet.eu database as of December 2017).

architecture and formation models (e.g. Pollack et al., 1996). At that time, the main current of thought dictated

that our own Solar System should be a typical planetary system: small rocky planets close to the star, giant

gaseous planets away from the star. 51 Pegasi b did not fit any of those categories: while being a Jupiter mass

planet, it was orbiting its host star at an orbital separation of 0.052 A.U., much closer to the star than Mercury

is from the Sun. Subsequent discoveries (e.g., Butler et al., 1997; Charbonneau et al., 2000) confirmed that 51

Pegasi b was not alone and the so called hot Jupiter-class planets were indeed real. With time, the development

of more sensitive instruments and advanced data analysis techniques have allowed to steadily detect increasingly

smaller and lighter planets (see Figure 1.2) at incrementing distances from their hosts.

Currently, astronomers are already able to probe into the Earth mass domain (e.g. Dumusque et al., 2012) and

Earth-like periods (e.g. Santos et al., 2004b; Fischer et al., 2008; Mayor et al., 2011). Some planets have already

been found on the so called Habitable Zone (e.g. Pepe et al., 2011; Borucki et al., 2012) of their stars, the torus

sharped region around a star where where water on a planet can be stably maintain a liquid state for extended

periods of time. Of those, the most notable case – due to its proximity to the Sun – is arguably Proxima Centauri

b (Anglada-Escudé et al., 2016), making it an ideal target for the search for life.

Figure 1.3 presents the current census of exoplanets in terms of distance to the host and masses, by detection
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Figure 1.3: Confirmed exoplanets by orbital period and mass per detection method (data taken from the exoplanet.eu database as of
December 2017). Different planet populations are identified: 1○: hot Jupiters; 2○: low-mass planets in close-in orbits; 3○: warm gas
giants; 4○: cold gas giants.
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method. Note that this plot only shows planets with known masses and as such does not include a large fraction of

the Kepler candidates that were validated statistically and for which only only the radius is known. In this figure,

several planets populations can be easily identified – with clear gaps separating them – which we highlighted with

colored ellipses and numbers. Population 1 corresponds to hot Jupiter type planets, gas giants (Mp > 0.3MJup –

Hatzes et al., 2015) with orbital periods typically under 10 days, of which 51 Pegasi b is the prototype. These

planets are highly irradiated by their hosts and have equilibrium temperatures of about 1500-2500 K (Komacek

et al., 2016), which caused them to have typically have anomalously large radii (e.g Guillot et al., 2002). Currently,

it is believed that these planets did not form in-situ, but far from their hosts and then migrated inwards (e.g. Kley

et al., 2012). Population 2 corresponds to low-mass planets also with close-in orbits. This population is mainly

composed of hot or warm Neptunes and super-earths, planets with M sin (i) < 30M⊕ and orbital periods inferior

to 50 days. It is worth noting that while hot or warm Neptunes and super-earths might cover similar mass ranges,

their compositions will be quite different (e.g., hot or warm Neptunes will have a much larger amount of H2/He,

which lead to quite different bulk densities for each planet type. As such, mass and radii measurements will permit

to estimate the planet bulk density and composition and distinguish between hot or warm Neptunes and super-

earths (see Section 2.1 for more details). Population 3 corresponds to warm gas giant planets, large gaseous with

orbital periods between 10 and 200 days and equilibrium temperatures under 1000 K. Although similar to their

hot Jupiter counterparts, warm Jupiters are thought to have formed in-situ (e.g Boley et al., 2016). Population

4 corresponds to cold gas giants, similar to to Jupiter and Saturn, which have been found and characterized in

much lower numbers, most of them through microlensing.

The large number of known exoplanets has led to some interesting statistical studies on planet populations.

it is now accepted that the planetary populations are dominated by hot or warm Neptunes, super-earths, and

potentially lower mass planets, which we are only now starting to discover. Currently accepted values suggest an

occurrence rate of such low-mass planets at about 30% around FGK stars (Howard et al., 2010; Mayor et al.,

2011) and about 40% around M dwarfs (Bonfils et al., 2013). In spite of being the first to be discovered due to

the large amplitude they induce on their host, hot Jupiter-type planets are thought to orbit only 1.2% of FGK

planet-hosts (Mayor et al., 2011; Wright et al., 2012).

DETECTION METHODS 1.1

As mentioned before, Figure 1.3 shows the current outlook of the detected planets in terms of distance to the

host and masses. In the plot, different colors denote different detection methods. It is clear from the plot that

each detection technique is sensitive to a different parameter space. In brief, the radial velocity (RV), transit and

transit timing variations (TTV) techniques are more sensitive to giant planets in close orbits as they measure the

impact of the presence of the planet on the stellar spectroscopic and photometric signals, which is proportional to

the planetary mass/radius and inversely proportional to the distance to the host. Imaging techniques will be more

sensitive to hot young giant planets far from their hosts as they are highly dependent on the angular separation
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between the planet and host, as well as the planetary flux (higher in the infrared for young planets).

Note that all planet detection method have their limitations, for example the subset of physical parameters

they measure (e.g. the RV method does not allow to recover the planetary radius) or that the effect they detect

can be mimicked by phenomena other than planets (e.g., grazing eclipses of a binary star might mimic a transit -

Winn, 2011; or radial velocity variations induced by stellar activity Queloz et al., 2001). As such, it is commonplace

for researchers to combine multiple detection methods to confirm the detection of a planet. When not possible,

the statistical validation of the planet candidates is normally performed (e.g with the BLENDER – Morton et al.,

2011; – and PASTIS – Díaz et al., 2014, –data analysis algorithms). A more extensive discussion can be found

in Seager (2011), as well as a complete derivation of the equations used in this chapter.

RADIAL VELOCITY 1.1.1

The principle behind this technique – depicted in the left panel of Figure 1.4 – is to measure the variations on

a star radial velocity (RV) induced by the gravitational pull of a companion. This is the method that led to the

detection of 51 Pegasi b. The right panel of Figure 1.4 shows the RV variation of 51 Pegasi measured by Mayor

et al. (1995) to detect its orbiting planet.

At any given moment, a star’s RV can be obtained by comparing the wavelength shift of its spectral lines

relative to their rest wavelength. Let’s consider a single spectral line i of a given spectrum, with rest wavelength

λi. As a result of the non-relativist Doppler effect, when an object is moving with a radial velocity RV , spectral

line i will have its wavelength shifted to λ′i, as per

λ′i = λi(1 +
RV

c
) (1.1)

where c the speed of light in vacuum.

If a star has no companions (planetary or otherwise), Equation 1.1 will yield the RV of the star relatively to

the Sun resulting from its proper motion around the galactic center. When a companion is present, the star will

Figure 1.4: Left: Diagram depicting the Radial Velocity method. Star spectra get Doppler shifted towards longer wavelengths if
moving away from the observer (red-shifted), and towards shorter wavelengths when it moves towards the observer (blue-shifted).
Right: Phase folded observations from the first detection of 51 Peg b (from Mayor et al., 1995).
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oscillate around the system’s barycenter, which will produce a periodic variation in its RV (Left panel of Figure

1.4). The amplitude of this RV variation is proportional to the companion/star mass ratio. Such stellar RV

oscillations can be modeled by the RV equation (Paddock et al., 1913)

RV∗ = RV0 − k∗ (cos(ω + f) + e cos(ω)) (1.2)

where RV0 is the radial velocity of the center of mass of the system relatively to the Sun, ω is the argument of

periapsis from the orbit and f is the true anomaly1. K∗ is the RV semi-amplitude, defined as

K∗ =
RVmax −RVmin

2
, (1.3)

where RVmax and RVmin are respectively the highest and lowest measured radial velocities of the star. Assuming

that m∗ >> mp – where m∗ and mp are respectively the mass of the star and the planet – this quantity can be

related to the orbital parameters by

K∗ =

(
2πG

P

)1/3 mp sin(i)

m
2/3
∗

1√
1− e2

(1.4)

where e is the orbital eccentricity, i is the inclination of the orbit relatively to the plane of the sky, P is the orbital

period and G is the gravitational constant.

As seen in Equation 1.4, the amplitude of the observed signal will depend on both the orbital inclination (i)

and the planetary mass. However, the planetary mass and orbital inclination are degenerate, and the RV method

can only recover the minimum mass of the planet, defined as mp sin(i). Nonetheless, if we assume that the

average value of sin (i) for a random distribution of angles is ∼ 0.79, the average factor of overestimation on the

planetary masses is only ∼ 1.27. Therefore, it is statistically more likely for planets detected with the RV method

to have close to edge-on orbits and thus the minimum mass of detected systems is, on average, quite close to the

real planet’s mass.

Table 1.1 presents the RV semi-amplitude induced for selected archetypal planets with different masses and

periods on a solar mass star. As noted before, a direct consequence of the previous equations is that the RV

K∗

mp p = 3 days 1 year 5 years

mJup 140.8 28.4 16.6 [m/s]

mNep 7.60 1.53 0.90 [m/s]

mEarth 44.3 8.9 5.2 [cm/s]

Table 1.1: Orbital semi-amplitude of the star for different planetary masses and orbital periods (from Figueira, 2010).

1The angle between the periastron direction and the star or planet position on its orbit. For circular orbits the ω = 0 and f is replaced by

the orbital phase φ, defined from the point of maximum radial velocity.
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Figure 1.5: RV semi-amplitude induced a one solar mass star, as a function of orbital period for different planet masses (colored
lines). The colored stars shows the position of selected known planets. The horizontal dashed lines correspond to the proposed RV
detection limits for HARPS and ESPRESSO as per the literature (Pepe et al., 2000; Pepe et al., 2010).

method is more sensitive to giant planets in close orbits, as the combination of larger masses with shorter orbital

semi-axis causes larger amplitude "wobbles" to the RV of the star (see Equation 1.4). As such, the first exoplanets

to be detected were, as expected, giant planets in close orbits (e.g. hot Jupiters like 51 Pegasi b – Mayor et al.,

1995; – υ And b & τ Boo b – Butler et al., 1997, – among many others). The subsequent increase in instrumental

precision (e.g. with HARPS) allowed the detection and mass measurement of increasingly lower mass planets (e.g.

hot Neptunes such as Gliese 436 b – Butler et al., 2004; and super-earths such as CoRoT-7b – Léger et al., 2009)

at increasing distances from their hosts (e.g. HD 134987 b – Jones et al., 2010). More recently, the development of

new data analysis methods (e.g. gaussian processes – Rajpaul et al., 2015) are enabling researchers to move into

the Earth-type planets domain (e.g. Kepler-78b – Grunblatt et al., 2015). In terms of instrumentation, the next

generation of observing facilities (e.g. ESPRESSO – Pepe et al., 2010) will permit to detect variation of the order

of 10 cm/s, a requirement to detect Earth like planets. Figure 1.5 shows the variation on the RV semi-amplitude

induced over a one solar mass star, as a function of orbital period for different planet masses (colored lines). The

horizontal dashed lines correspond to the proposed RV detection limits for HARPS and ESPRESSO as per the

literature (Pepe et al., 2000; Pepe et al., 2010). The colored stars shows the position of some archetypal planets:

i) the Earth, ii) Jupiter, iii) 51 Pegasi b (hot Jupiter with about half the mass of Jupiter and a 4.23 day orbital

period) and iv) 55 Cancri e (super-earth with about 8 times the mass of the Earth and a 17.5h orbital period).

ASTROMETRY 1.1.2

The physical principle behind this method is the same as with the RV method – both are based on the

gravitational pull a companion exerts over its host star – but measure different quantities. While the RV method

measures variations on the star’s RV, with astrometry what is measured are tiny periodic variations in the star’s

position, i.e., its movement on the plane of the sky. These variations result from dynamical perturbations induced

on the star proper motion due to the presence of a companion.

After subtracting Earth’s orbital motion, as it orbits the galactic center a star with no companions will follow

an apparent straight path on the sky. However, the gravitational influence of a companion will make it wobble

Jorge Humberto Costa Martins



FCUP 29
Characterizing the atmosphere of exoplanets using high-resolution spectroscopy

Figure 1.6: Astrometric signal for different planet types, as well as the detection limits of several facilities (from Quirrenbach, 2010).

around the straight path followed by the barycenter of the system. The amplitude of this wobble is proportional

to the companion/star mass ratio2 and the orbital parameters of the system can be extracted by using Kepler’s

Laws. The amplitude of the astrometric signature (θ) of a planet on a circular orbit (assuming Mp << M∗ ) is

given by

θ = Mp

M∗+Mp

a
D ≈ Mp

M∗

(
G
2π2

)1/3 Mp

M
2/3
∗

P 2/3

D

≈ Mp

M∗

a
1 A.U.

D
1 pc

−1
arcsec

(1.5)

where Mp and M∗ are respectively the mass of the planet and the star, a the semi-major axis of the orbit and D

the distance from the observer to the system (Perryman, 2011). This quantity corresponds to the semi-major axis

of the apparent ellipse the star describes in the sky in angular units. Figure 1.6 shows the astrometric signal for

different planet types, as well as the detection limits of several facilities, where Mp and M∗ are respectively the

mass of the planet and the star, P is their orbital period, a the semi-major axis of the orbit and D the distance

from the observer to the system. This quantity corresponds to the semi-major axis of the apparent ellipse the star

describes in the sky in angular units. Figure 1.6 shows the astrometric signal for different planet types, as well as

the detection limits of several facilities.

Figure 1.7 shows the modeled path of a star at 50 pc perturbed by a 15MJup planet on an orbit with a = 0.6 a.u

and e = 0.2 (Perryman, 2000).The straight dashed line represents the path of the system’s barycenter, as seen

from the Solar system barycenter. The dotted line shows the same path but as seen from Earth. The solid line

shows the perturbation to the movement of the star due to the presence of the planet, but magnified 30 times for

visibility. At the moment of writing there is only one confirmed planet discovered with this technique: HD 176051

b with the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) survey (Muterspaugh

et al., 2010). This planet has a mass of about 1 MJup and orbits its host in a circular orbit with a period of about

2Since we are observing a 2-dimensional projection of a 3-dimensional orbit, some degree of degeneracy is expected on the detected compan-

ion/star mass ratio.
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Figure 1.7: Modeled path of a star at 50 pc perturbed by a 15MJup planet on an orbit with a = 0.6a.u and e = 0.2 (Perryman,
2000). The straight dashed line represents the path of the system’s barycenter, as seen from the Solar system barycenter. The dotted
line shows the same path but as seen from Earth. The solid line shows the perturbation to the movement of the star due to the
presence of the planet, but magnified 30 times for visibility.

one thousand days.

The major strength of the astrometry technique is that, when combined with the RV technique, it has the

ability to reconstruct a 3-dimensional model of the planetary orbit and as such to recover all orbital parameters,

including the inclination of the orbit, as well as the mass for the planet. However, the major obstacle for the

technique is that it requires very precise measurements of the astrometric angles of the host stars – typically ≤

1 mas – over long periods of time. Although challenging, this is within the capabilities of the Global Astrometric

Interferometer for Astrophysics (GAIA) mission. Albeit not primarily designed as a planet hunting mission, it is

estimated that its high astrometric precision should permit to detect about 21 000 large mass planets over its 5

year mission (Perryman et al., 2014).

TRANSITS 1.1.3

This method is to date the most prolific planet detection method. At the moment of writing, it has detected

over 70% of all confirmed planets, most of them detected with the Kepler mission (Borucki et al., 2010). It relies

on the quantification of the periodic dimming in the flux from a star as an orbiting planets crosses the observer’s

line-of-sight, effectively causing a mini-eclipse. As such, this method is restricted to the detection of planets in

edge-on orbits, i.e., orbits aligned (within a few degrees) with the observer’s line-of-sight. Figure 1.8 shows the

light curve for Kepler-15 and its orbiting planet (Endl et al., 2011) and a diagram of a transiting system.

The main deliverable of this method is the planet/star radius ratio, as

∆L

L
∼
(
Rp
R∗

)2

(1.6)

where L and ∆L are respectively the luminosity and its maximum variation, and Rp and R∗ the radii of both the

planet and the star. Note that planets can only be detected through this method if the inclination of their orbit is
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close to 90◦. As such, the geometric probability P for a planet to transit its host star decreases with the distance

to the host and can be estimated from

P ≈ R∗
a (1− e2)

(1.7)

where R∗ is the stellar radius, a is the semi-major axis of the planetary orbit and e is its eccentricity (Barnes et al.,

2007).

The main limitation of the transit method is its inability to directly recover the mass of the detected planet or

its orbital eccentricity. Therefore, it needs to be combined with other methods – e.g. RVs – to fully characterize

a system in terms of orbital parameters. The ambiguity on the planet mass makes also this method extremely

susceptible to false-positive detections. Several astrophysical phenomena can mimic transiting planets (see Figure

1.9 for a few of the most common) and as such independent confirmation from other methods is required. Most

of these confirmations come from RV follow-ups (e.g. Santerne et al., 2011) and when confirmation is not possible

(e.g., the reflex motion of the star is too small to be measured with existing instrumentation), planetary candidates

need to be statistically validated (e.g with the BLENDER – Morton et al., 2011; – and PASTIS – Díaz et al.,

2014, – data analysis algorithms). From the analysis of K2 data, Fressin et al. (2013) finds a false positive rate of

9.4% (17.7% for giant planets, 6.7% for small Neptunes and 12.3% for Earth size planets), while for short period

giant planets Santerne et al. (2012) reported a false-positive rate as high as 35%. The 6-year RV followup with

the SOPHIE spectrograph (OHP, France) of 129 giant planets with orbital periods under 400 days yields even

higher values, a 54.6% false positive rate (Santerne et al., 2016). Note that these estimated false-positive rates

cannot be compared directly. First of all, Santerne et al. (2016) had access to a candidate sample (Kepler quarters

Q1-Q17 – Coughlin et al., 2016) with twice as many planet candidates as the other authors (Kepler quarters

Q1-Q6 – Batalha et al., 2013). Furthermore, the selection criteria differed for each author. For example, Fressin

et al. (2013) defined their giant-planet candidates based on their radii, while Santerne et al. (2016) made their

Figure 1.8: Top: Diagram of the orbit of a transiting planet. (A) corresponds to the primary transit point and (B) to opposition.
Bottom: Light curve for Kepler-15 b (Endl et al., 2011) with each of the orbit points in the top diagram identified. A large depression
can be seen that corresponds to the transit epoch.
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Figure 1.9: Some examples of astrophysical effects can mimic the signature of a transiting planet: a) real transiting planet; b) an
orbiting white dwarf or low mass star; c) blended stellar binaries in a triple star system ; d) grazing binary stars (from Cameron, 2012).

selection based on the transit depth. Finally, Fressin et al. (2013) did not consider eclipsing binaries as a source for

false-positives, overestimating the rate of giant planets in Kepler data. The confirmation of transiting planets – or

at least their statistical validation – will remove any bias on the their parameters – in particular radius and periods

– leading to better understanding planet formation and migration processes. Note that the statistical validation

of multiple transiting planet systems is more straightforward as the probability of having multiple false positives

on the same star is much lower than the probability of having multiple planets in the system (e.g. Lissauer et al.,

2012).

Note that in some particular cases it is possible to determine the masses of transiting planets. For systems

with a single planet and star, transits are extremely predictable periodic events. However, if additional planets

exist, they induce dynamical perturbations to the transiting planet orbit that will periodically delay or anticipate

the transit event. This method – known as the transit timing variations (TTV) method – is particularly useful

to detect planets in multi-planetary systems (e.g Steffen et al., 2007; Steffen et al., 2010; Holman et al., 2010)

Figure 1.10: Diagram showing changes in the timing of a transiting planet induced by a perturbing planet interior to its orbit (from
Agol et al., 2005).
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Figure 1.11: Composite image of brown dwarf 2M1207 and its orbiting planet in H (blue), Ks (green) and L ′ (red) bands. The
planetary companion 2M1207 b is clearly distinguishable from its host brown dwarf (Chauvin et al., 2004).

and sensitive enough to the masses of the perturbing planets to be able to detect planets with RV signals too

small for detection via the RV method (e.g Agol et al., 2005; Holman et al., 2004). This enables also the TTV

method to recover the mass of the transiting planet, and fully characterize its orbit. Note that the amplitude of

the TTV perturbation is highly dependent on the mass ratio between the perturbing planet and the transiting

planet, limiting in mass the planets that can be detected with this method. However, it was found that when

the planets are in close to mean-motion resonances, the TTV perturbation is amplified, allowing the detection of

perturbing planets with masses down to the Earth’s (e.g Agol et al., 2005). Figure 1.10 depicts a TTV event

(from Agol et al., 2005).

Similarly to the RV method, the transit detection method is particularly sensitive to large planets in short

orbits. The potential of this method for planet characterization will be discussed in detail in Section 1.2.1.

DIRECT IMAGING 1.1.4

As implied by the name, this method focuses on imaging directly the planet and spatially resolving it from

the host star. The first direct image of an exoplanet corresponds to 2MASSWJ 1207334-393254 with ESO’s

VLT/NACO instrument (See Figure 1.11 – Chauvin et al., 2004) and has only been possible for under a hundred

sub-stellar objects (Schneider et al., 2011). Note that only 46 of these objects have masses under 15MJup and the

lightest – Fomalhaut b – has a mass of 3MJup (Kalas et al., 2008), putting them in the transition region between

giant planets and brown dwarfs.

Direct imaging techniques face two main challenges: i) the minute planet-to-star flux ratio and ii) the small

angular separation between the planet and its hosts star.

The minute angular separation – θ u a
D (in arcseconds), where a is the semi-major axis of the orbit in

astronomical unit (A.U.) and D is the distance to the system in parsecs3 – is the main obstacle to the direct

imaging of exoplanets. Figure 1.12 shows the angular separation as a function of the distance to the system for

3 different semi-major axis (colored lines). The horizontal dashed lines correspond to the detection limits for the

3Note that we are using the small angle approximation θ u tan (θ)
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NICMOS and SPHERE/ZIMPOL instruments (Schneider et al., 1999; Kervella et al., 2016).

Even with instruments such as SPHERE (Beuzit et al., 2008) and GPI (Macintosh et al., 2008), that represent

the current frontline in direct imaging, it is very hard to resolve spatially the planets, even for planets around the

closest stars. Observing in the infrared (e.g. with SPHERE/IRDIS Langlois et al., 2010) partially mitigates the

effect of the small planet-to-star flux ratio, in particular when observing extremely young large planets. At those

wavelengths, thermal emission from the planets is dominant and they will appear much brighter than for other

wavelengths. Extremely young giant planets are highly favorable candidates for this method as i) they have formed

very recently and thus are still cooling down; ii) they have a larger surface area, dictated by their inflated radius.

Nowadays, diverse methods are enabling imaging techniques to overcome these issues and observe targets

increasingly closer to the star and with smaller contrasts. Adaptive Optics (AO) systems are becoming more

common and enabling telescopes to minimize the stellar contamination at the planet’s location, greatly increasing

the planet–star contrast in that region (e.g. with ESO’s SPHERE@VLT Chauvin et al., 2017). With Angular

Differential Imaging (ADI) (Marois et al., 2005), researchers use the field rotation of the telescope to distinguish

the planetary signal from spurious speckles of light created by static noise of the stellar Point Spread Function

(PSF). In summary, multiple observations with the telescope’s field rotation disabled are taken sequentially, and

then stacked after correction of their relative individual field rotation. This will dilute the speckles of light into

background noise, while enhancing the planet’s Signal-to-noise ratio (S/N) (e.g Marois et al., 2010). Polarized

Differential Imaging (PDI) (e.g. Schmid et al., 2005) combines polarized and non-polarized images of planetary

systems to remove the (not polarized) stellar light from the polarized images and extract the (polarized) planetary

signal. By physically blocking the light from the star – either externally via a starshade (e.g. Sirbu et al., 2017)

or internally to the telescope using coronographs (e.g. Mawet et al., 2005; Wang et al., 2017) – should permit to

achieve the level of contrast required for the detection of Earth twins around other stars (e.g Trauger et al., 2007;

N’Diaye et al., 2016).

Currently, direct imaging exoplanets allow to reconstruct low-resolution exoplanet spectra by imaging the planet

in different bands (e.g. Kuzuhara et al., 2013). Figure 1.13 shows multiband images of the HR 8799 system taken
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Figure 1.12: Angular separation as a function of the distance to the system for 3 different semi-major axis (colored lines). The
horizontal dashed lines correspond to the detection limits for the NICMOS and SPHERE instruments (Schneider et al., 1999; Kervella
et al., 2016)
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with ESO’s SPHERE-IRDIS instrument (from Zurlo et al., 2015).

Imaging techniques are particularly sensitive to large planets with long-period orbits, allowing to probe the

outer regions of planetary systems and thus filling a parameter space currently unavailable to other techniques

such as RV and transit. In the infrared, these techniques have permitted to image forming planets (e.g. Kraus

et al., 2012; Sallum et al., 2015) and place constrains on planetary formation models (e.g Spiegel et al., 2011).

MICROLENSING 1.1.5

As predicted by General Relativity, when a star passes in front of another star, it will act as a gravitational

lense and bend the light reaching us from the background star. This effect was first measured during the solar

eclipse of May 29th 1919 when Sir Arthur Eddington and his team took photographs of the Hyades cluster which

the Sun was crossing. Comparing these photographs with the ones taken before the eclipse – when the Sun is not

crossing their path – they got the first observational confirmation of Einstein’s General Theory of Relativity.

This effect can also be used for planet detection. The left panel of figure 1.14 shows a diagram of the

microlensing event created by a star+planet system . When a foreground star crosses the line-of-sight between

the observer and a background star, its gravity will bend the rays from the background star and magnify the light

we receive from it. If the lens star has any planets, they will induce caustics on the detected signal. These caustics

will show as peaks in the light curve from the background star. The right panel of figure 1.14 shows the light curve

of micro-lensing event OGLE2005-BLG-390 (Beaulieu et al., 2006). The main lensing event – centered around

JD-2453583 – corresponds to the increase in the flux of the background star when the foreground star crosses

the line-of-sight of the observer. This event has a small caustic – the smaller peak at around JD-2453592 and

amplified on the smaller axis – on it that corresponds to the micro-lensing event caused by the planet orbiting the

lensing star.

The major limitation of this method is that in most cases it is impossible to replicate as it is very unlikely that

the lens star will cross the line-of-sight of another background star. Nonetheless, once detected, these planets can,

in principle, be confirmed via other means, such as the RV or transit methods. However such cases are still low-

probability events, and as such scarce, with only a handful of candidates confirmed (Kubas et al., 2012; Bennett

Figure 1.13: Multiband images of the HR 8799 system taken with ESO’s SPHERE-IRDIS instrument (from Zurlo et al., 2015).
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(a) Credit: David Bennett, Notre Dame University. (b) The magnification of the micro-lensing effect caused by the
planet can be seen on the Top Right panel (Beaulieu et al., 2006).

Figure 1.14: Left Panel: Microlensing event diagram. Right Panel: Fitted light curve of micro-lensing event OGLE2005-BLG-390.

et al., 2015; Batista et al., 2015; Fukui et al., 2015; Santerne et al., 2016).This explains the low amount of planets

discovered using this technique (59 as per the exoplanet.eu database at the end of 2017 – Schneider et al., 2011).

An interesting case is the OGLE-2006-109L b, c system, where two planets similar to Jupiter and Saturn have been

found (Bennett et al., 2010). Note that the fitting of a caustic by a function of planetary and stellar parameters is

strongly degenerate. Different combinations of stellar and planetary parameters can represent/originate the same

caustic, and requires confirmation by other means to characterize the system (e.g. Gould et al., 2000).

This method is particularly useful as it probes a planet parameter space inaccessible to current RV and transit

surveys, as the micro-lensing technique is more sensitive to low mass planets behind the so called "snow-line", i.e.,

the point in the proto-planetary disk where water will be frozen. This is of great interest as, combined with other

methods, it gives a picture of planet demographics in our galaxy (e.g. Gould et al., 2010; Shvartzvald et al., 2015).

One of the most important results of this technique is being the only one to date to demonstrate the ubiquity of

cold Neptunes that are likely to be the most widespread class of planets beyond the "snow-line" (e.g. Sumi et al.,

2010; Suzuki et al., 2016). Furthermore, this technique also enables to discover free-floating planets and recover

their parameters (i.e., not gravitationally linked to any star,e .g. Sumi et al., 2011), something not possible with

other indirect methods.

PULSATIONS TIMING VARIATION 1.1.6

This method is responsible for the first discovery of a planet mass object orbiting a star other than the Sun

(Wolszczan et al., 1992). Pulsars are beacon-like neutron stars with extremely high rotating velocities. This type

of star has a strong radio emission in narrow beams coming from the star’s magnetic poles. Since the magnetic

and rotation poles are misaligned, we observe periodic pulses when the radio beams point towards the Earth. The

presence of a companion will periodically delay or anticipate these pulses. This method can in principle be used

to any kind of pulsating star with stable oscillations (e.g. white dwarfs – Hermes et al., 2017).

Of particular interest for the detection of exoplanets are millisecond pulsars, which, as the name suggests, have

rotation periods in the order of milliseconds. These pulsars have extremely stable rotation periods, making then

useful as extremely precise clocks. When in the presence of a companion, the period between two consecutive

pulses will have a periodic variation as the pulsar orbits the center of mass: the period increases as the pulsar

Jorge Humberto Costa Martins



FCUP 37
Characterizing the atmosphere of exoplanets using high-resolution spectroscopy

1990.6 1990.8 1991.0 1991.2 1991.4 1991.6 1991.8
Year

1.920

1.925

1.930

1.935

1.940

1.945

1.950

Pu
lsa

r P
er

io
d 

- 6
 2

18
 5

30
 [n

s] best fit
Measurements

Figure 1.15: Timing variations of pulsar PSR1257 + 12. The solid line represents the modeled fit of the best fitting timing
variations due to the presence of two super-earths with respectively mp sin(i) = 3.4m⊕, P = 66.6 days and mp sin(i) = 2.8m⊕, P =
98.2 days(adapted from Wolszczan et al., 1992).

moves away from us and decreases as it gets closer (Figure 1.15). The precision at which the variation of the

period of a pulsar can be currently measured is such that a radial velocity precision of a few centimeters per second

can be achieved (Phillips et al., 1994), making it sensitive to small planets in long period orbits (e.g. Earth twins).

An important result from this technique is that is has shown that second-generation planets exist, formed from

the remnants of dead systems, even after a catastrophic ending.

EXOPLANET ATMOSPHERES CHARACTERIZATION TECHNIQUES 1.2

In parallel to the detection of exoplanets through any the methods described in the previous section, researchers

are pursuing their detailed characterization. One of the most interesting aspects of exoplanet characterization is

their spectral characterization. The techniques we will briefly describe in this section represent the current front

line of exoplanet spectral characterization, limited only by the precision required for detection, due to the low

planet-to-star flux ratio. For example, in the visible wavelength domain, a Jupiter sized planet in 3 days orbit has

a planet-to-star flux ratio of ∼ 10−4, with the planetary flux being mostly due to the light from the host star that

the plane reflects. At infrared wavelengths, thermal emission from the planet dominates and this flux ratio raises

to up to ∼ 10−3. That means reaching a S/N level above 104 in the visible and above 103 in the infrared just

in order to have the planetary signal at the same level as the noise. These thresholds only recently have been

breached with current observing facilities and are still a challenge for researchers. We sorted current available

techniques in 3 categories: i) Photometric, ii) High-dispersion spectroscopic and iii) hybrid techniques.
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PHOTOMETRIC TECHNIQUES 1.2.1

TRANSMISSION AND OCCULTATION SPECTROSCOPY

When a transiting planets crosses the stellar disk of its host star (primary transit – position A in Figure 1.8),

its atmosphere will filter the light from the host. Different/elements molecules leave distinct spectral fingerprints

on the spectrum from the background star, i.e., absorb the light from the host star at different wavelengths and

depths in the atmosphere, depending on composition and structure of the planetary atmosphere. As such, the

cross-section of the transiting planet will be wavelength dependent and the measured planetary radius will vary

with wavelength. Measuring the drop in the photometric flux due to the transit event over several wavelength bins

enables the construction of the absorption spectra of a planetary atmosphere4 (e.g. Charbonneau et al., 2002).

Photometric transmission spectroscopy is mainly performed from space observatories, due to the atmospheric

contamination from Earth’s atmosphere.

Figure 1.16: Transmission spectra for several Hot-Jupiter type planets (colored dots) with their respective best-fit atmospheric models
(colored solid lines) (from Sing et al., 2016).

Figure 1.16 shows the transmission spectra for several Hot-Jupiter type planets (from Sing et al., 2016)

from Hubble Space Telescope (HST) observations where the data (colored markers) is compared against fitted

4Note that this can also be done with high-resolution spectrographs – see Section 1.2.2.
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atmospheric models. The y-axis shows the scale height at which the light from the star being covered by the

planet is absorbed. Scale heights are a typical measure of depth in planetary atmospheres, and are defined as

the vertical distance in an atmosphere over which the density and pressure drop by a factor of e, assuming an

isothermal atmosphere of uniform composition. Mathematically speaking it is defined as H = kT
mg (e.g. Iribarne

et al., 1981, Chapter 8.85), where k is the Boltzman constant, T the temperature, m the mean molecular mass

of the gas and g the gravitational acceleration. Assuming an isothermal profile for the atmosphere, it relates to

the pressure and density by

P (z)
P0

= e−
z
H

ρ(z)
ρ0

= e−
z
H (1.8)

where z is the altitude, and P0 and ρ0 are respectively the pressure and density at the surface. In summary,

extended atmospheres – e.g. inflated hot Jupiters – have large scale heights (i.e. small pressure and density

gradients) and compact atmospheres have small scale heights (i.e. large pressure and density gradients). It is

interesting to note that if we integrate the density function over all the atmosphere, we get that H corresponds

to the height of the atmosphere if all the gas was compressed into an atmosphere of constant density ρ0.

When a transiting planet passes behind its host star (also known as secondary eclipse or occultation – position

C in Figure 1.8), a drop in flux will occur as we stop receiving light from the planet. At this point of the orbit,

the recovered signal will only have the stellar component, allowing to measure the baseline stellar flux. However,

on both sides of the opposition (i.e., right before or after it), the recovered signal will consist in the sum of the

stellar and planetary signals. Since the planet is colder than the star, in a first order approximation the thermal

component will follow a Planck curve and be dominant at infrared wavelengths; the reflected component dominates

in the optical and mimic the spectrum of the star (modulated by a few absorption lines). Therefore, measuring

the variation in flux during the secondary transit allows to infer the planet’s brightness temperature and recover

the planet’s thermal (e.g. Deming et al., 2005) and reflected (Alonso et al., 2009) signatures. Doing so at at

different wavelengths, will allow to recover the planet’s emission and reflection spectra, which will be indicative of

the planet’s atmospheric composition (e.g. Stevenson et al., 2014).

PHASE VARIATIONS

This method relies on measuring the planetary flux variation as it moves over its orbital path and present us

its day/night hemispheres alternately. Similarly to occultation spectroscopy, variations in both the thermal and

reflected signatures can be measured.

Multiband phase curves of an exoplanet will permit to estimate the planet’s energy budget (e.g. Knutson

et al., 2009; Esteves et al., 2013; Schwartz et al., 2017), i.e., the net balance between the absorbed, reflected and

emitted fluxes. Optical phase curves will be mainly modeled by the albedo (the fraction of incident light the planet

reflects to the observer at full phase and highly dependent on the chemical properties of the atmosphere) and phase

function (a measure of the fraction of the planet being illuminated by the host star and quantity highly dependent
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Figure 1.17: Band integrated phase curve of WASP-43b (from HST infrared data - Stevenson et al., 2014).

on the scattering properties and aerosol content of the atmosphere, e.g. Madhusudhan et al., 2012; Oreshenko

et al., 2016). Infrared phase curves are largely modulated by the thermal emission from the planet and can provide

insights on its thermal structure and heat circulation (e.g. Goodman, 2009; Cowan et al., 2011; Knutson et al.,

2012; Koll et al., 2016). Figure 1.17 show the band integrated phase curve of WASP-43b (from HST infrared

data - Stevenson et al., 2014), where a obvious phase offset on the star+planet emitted flux can be observed.

This offset suggests that the planet hottest point does not correspond to the sub-stellar point, i.e., the point in

the planet’s surface closest to the star. Simulations show that this comes as a result of the existence of a broad

superrotating jet that moves the hotest point in the planetary atmosphere from the sub-stellar point (Showman

et al., 2002). A much cooler night side – an indication of a inefficient day/night heat distribution mechanism – can

be inferred from the large phase curve amplitude in Figure 1.17. Should the planetary atmosphere have efficient

day/night heat distribution mechanism, it would quickly average out the temperature over the whole atmosphere

and show a low variation in the amplitude of the infrared phase curve.

HIGH-DISPERSION SPECTROSCOPIC TECHNIQUES 1.2.2

High-dispersion spectroscopic techniques rely on high-resolution spectrographs installed on ground based fa-

cilities such as HARPS@ESO-3.6m or HIRES@Keck observatory. In most cases, the planet and the star cannot be

spatially resolved, and their spectral signatures are stacked on the same spectrum. However, when the planet and

the star have different RVs, astronomers can attempt to separate them spectroscopically when their signals are

not spectroscopically blended.

Typically, researchers cross-correlate high S/N high-resolution observations with model planetary templates to

recover it signal. First attempts at recovering the reflected spectrum from exoplanets used this class of methods,

allowing to put upper limits on the reflectivity of their targets in the optical (e.g. Cameron et al., 1999; Charbonneau

et al., 1999). In the infrared, this technique has been much more successful – mainly due to the larger planet-to-
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Figure 1.18: The detected cross-correlation signal with a carbon monoxide template of CRIRES observations of HD 209458 b (from
Snellen et al., 2010)

star flux ratio – and permitted to recover the planetary signal for several targets (e.g. Snellen et al., 2010; Kok

et al., 2013; Birkby et al., 2017).

High-dispersion spectroscopy has also provided invaluable data for ground based observatories to catch-up

with space observatories and recover the transmission spectrum of transiting exoplanets (e.g. Redfield et al.,

2008; Wyttenbach et al., 2015; Khalafinejad et al., 2017). The main advantage of high-dispersion spectroscopic

techniques over space-based transmission spectroscopy (e.g. with the HST) is the access to the large collecting

areas of current and future ground based facilities and the ability to observe at high resolution. Furthermore, the

main advantage high-dispersion spectroscopy has over ground-based photometric transmission spectroscopy is the

ability to resolve spectroscopically Earth’s atmospheric absorption lines – in particular water – and the equivalent

spectral lines in the planet’s atmosphere which allows to recover the spectral profile of several elements with

minimum telluric contamination.

When possible to spatially resolve the signal from the planet, researchers are able to recover directly its

spectrum with little or no stellar contamination (e.g. Brogi et al., 2012; Konopacky et al., 2013; Snellen et al.,

2014). Unfortunately, this is extremely difficult to perform due to small angular separation between the planet and

its host, which is inversely proportional to the distance from our Sun to the star. This limits this type of analysis

to either planetary systems close to ours and/or planets far from their hosts stars.

HYBRID TECHNIQUES 1.2.3

One of the most promising techniques for the future is the High-Dispersion Spectroscopy and High-Contrast

Imaging (HDS+HCI) technique (Snellen et al., 2015), which combines high-dispersion spectroscopy and high

contrast imaging to recover the spectrum from exoplanets. In brief, the authors propose to use adaptive optics

to minimize stellar contamination and enhance the image contrast, and as such the planet-to-star flux ratio, at

the expected location of the planet. At the location in the sky corresponding to the expected planet position

at time of observations, a fiber will be placed and connected to a high-resolution spectrograph to recover the

planetary spectrum. Although no current instruments exist with this configuration, the main principle behind this

technique had been previously tested successfully by combining the CRyogenic high-resolution InfraRed Echelle
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Figure 1.19: Left panel: CO + H2O cross-correlation signal from β Pictoris b as a function of angular separation from the star and
radial velocity. The signal’s maximum corresponds to the planet’s location.Right panel: Recovered CO + H2O signature of β Pictoris
b at the planet’s location. (from Snellen et al., 2014).

Spectrograph (CRIRES) with the Multi-Application Curvature Adaptive Optics (MACAO) system on the VLT.

Instead of using fibers, (Snellen et al., 2014) aligned both β Pictoris and its orbiting planet on the slit of CRIRES

spectrograph and were able to recover the carbon monoxide (CO)+water (H2O) cross-correlation signal of β

Pictoris b atmosphere and infer the planet’s rotation period (See Figure 1.19 Snellen et al., 2014). An interesting

future application of this technique has been proposed by Lovis et al. (2017). The authors propose to combine the

high-contrast imaging capabilities of SPHERE@ VLT with the high-resolution and stability of ESPRESSO@ VLT

by building an interface that would physically link both instruments by means of an optical fiber bundle. With this

setup in place, their simulations predict that it should be possible to detect the reflected spectrum of Proxima b

at a 5-σ significance with 20-40 nights worth of observing time, spread over 3 years. Furthermore, with 60 nights

of observations, they expect to be able to retrieve with a 3.6-σ significance the signature of molecular oxygen,

assuming the planet has an Earth-like atmospheric composition.

MOTIVATION 1.3

Before space missions that permitted to visit them, the characterization of the planets in the Solar System was

very similar to what is now being done with exoplanets. The analysis of the solar light reflected on Solar System

planets was an important tool for their characterization, in particular of their atmospheres. Exoplanet researchers

are performing similar analyses – on a much lower S/N domain – to attempt to recover the composition and

dynamics of exoplanetary atmospheres (Chapter 2).

The main motivation behind this dissertation is to study how the light from a star at optical wavelengths

reflected on an orbiting planet can be used to characterize the said planet, in particular its atmosphere. Specifically,

we focus on using a technique that cross-correlates high-resolution spectral observations with binary masks to unveil

and recover the minute planetary spectral signature from exoplanets. The main challenge we face is to detect

the planetary signal, as it is a minute signal next to the much brighter stellar host, even in the best scenarios.

The best targets for detection and characterization are typically hot and large planets with short period orbits (i.e
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hot Jupiters). In the infrared, their planet-to-star flux ratio can reach 10−3, mainly due to their thermal emission

peaking at these wavelengths, while in the optical, the planet-to-star flux ratio can reach up to only 10−4.

Notwithstanding that the planetary flux is higher at infrared than at optical wavelengths, attempting the

recovery of the planetary reflected signal in the optical has several advantages to study its reflectivity/albedo (See

Chapter 4), leading us to choose optical wavelengths for the recovery of the reflected spectra from exoplanets.

To do so, we developed a new technique that computes the cross-correlation function of high-resolution optical

spectra with a spectral line mask to amplify the planetary reflected signal above the stellar noise (Chapter 4). With

this method, we were able to detect the optical reflected signature of 51 Pegasi b from HARPS observations and

infer that this prototypical hot Jupiter is most likely a highly-inflated hot Jupiter type planet with a high albedo.

Going further, we attempted to perform the same analysis to UVES@VLT data and recover the planetary albedo

and its color dependency. The detailed analysis of this data and results are presented in Chapter 5.

Yet the true challenges for the detection of the reflected signal from exoplanets come with the advent of next-

generation observing facilities. These will permit to move our observations into much higher S/N domains with

unsurpassed precision. From simulated observations with ESPRESSO@VLT and HIRES@ELT, we can conclude

that not only we should be able to recover the planetary albedo, but also its color dependency, a key factor to hint

a planetary atmosphere composition (see Chapter 6).
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Chapter 2.

The structure, composition and

atmospheres of exoplanets

STRUCTURE AND COMPOSITION 2.1

How can we gain insight on the planet’s composition? In the case of our Earth, seismic data makes it possible

to directly probe the interior of our planet and infer its structure in much detail. For many years, researchers

have been able to perform high-resolution spectroscopy (e.g. Titan with UVES – Civeit et al., 2005) of most

planets in the Solar System, as well as image them from the ground (e.g., Jupiter with the Gemini, Keck and

HST observatories – Pater et al., 2010). In addition, most planets were visited by space missions which allowed

high-definition imaging (e.g., of Saturn with the Cassini spacecraft – Del Genio et al., 2017) of the planets, as well

as probing their atmospheres (e.g., microwave sounding, near-infrared mapping and gravity field measurements of

Jupiter from the Juno spacecraft – Bolton et al., 2017) and even made surface measurements (e.g., of Mars with

the Mars Exploration Rover – Squyres et al., 2004). It is obvious that due to their proximity and visiting space

missions the level of detail of the acquired data exceeds by orders of magnitude the one from exoplanets. Still,

even in the Solar System, most internal structure data still comes from detailed models based and constrained by

the above mentioned observational evidence and the equations of state from the observed elements at either the

surface or the outer atmosphere (e.g, for Jupiter – Wahl et al., 2017; and Saturn – Vazan et al., 2016).

The properties of planet atmospheres, both on our Solar System and outside it, are deeply linked to the planet

structure and composition. From observations it is evident that structurally different types of planets exist in our

Solar System. The composition of the planets in our Solar System can be broken down into 3 main components

(see Stern et al., 2002): i) rock (silicates, metals, etc), ii) ices (any ice-forming materials – e.g. water, methane,

etc – in either solid and fluid forms) and iii) gases (Hydrogen and Helium).
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Figure 2.1: Schematic diagram showing the prototypical exoplanet types (adapted from Figure 1 of Chapter "Terrestrial Planet
Formation" by John Chambers of the "Exoplanets" book - Seager et al., 2010).

Although the combinations are endless, the relative proportions of each component make it possible to define

an ad-hoc catalog for planets – both in the Solar System and outside – based on their most abundant component:

i) Rocky (including Earth-like and Super-Earths, e.g. Earth, Kepler-10 b, 55 Cnc e), ii) Icy (e.g. Neptune,

HD 76700 b) and iii) Gaseous (e.g. Jupiter, 51 Pegasi b, HD 209548 b) planets. This classification system is

summarized in Figure 2.1, which shows a schematic diagram showing the prototypical planet types (adapted from

Figure 1 of Chapter "Terrestrial Planet Formation" by John Chambers of the "Exoplanets" book - Seager et al.,

2010).

The vast majority of the chemical elements that compose a planet – and its host star – will likely originate

from the proto-planetary cloud of which it originated (e.g. Santos et al., 2001). If we consider that on a first order

approach, the relative elemental abundances in the galactic disk are similar and as such exoplanetary disks will have

similar compositions as well (e.g. Lodders, 2010), it is intuitive to attempt to extrapolate this to exoplanets (e.g.

Guillot et al., 2006; Delgado-Mena et al., 2010; Santos et al., 2017). Note that this extrapolation is only valid in

terms of bulk compositions, i.e., does not apply to the fine-structure of the planet or its detailed composition.

Note that when looking in more detail, different stars will have different chemical abundances. This difference

translates itself into a different composition of the planet-forming protoplanetary disk. Therefore, the precise

determination of stellar abundance is of huge relevance towards the characterization of exoplanets and the re-

finement of formation models. A correlation between stellar metallicity and the presence of giant planets exists

as stars hosting giant planets are systematically more metallic than a normal sample of stars (e.g. Santos et al.,

2004a). In terms of planet formation models, this favours core accretion over disk-instability mechanisms as the

main responsible for the formation of giant planets (e.g. Mordasini et al., 2012). The core accretion model states

that planets from by the coalescence of debris from the proto-planetary disk which grow into small rocky cores or

planetesimals. Once these planetesimals are massive enough, they start accreting a gas envelope and form giant

planets. For low-mass rocky planets, which are now believed to be abundant and outnumber the higher-mass

population characterized up to now (Mayor et al., 2011), researchers have that this correlation either does dot

exist or is much weaker (e.g. Wang et al., 2015; Zhu et al., 2016). This result is still compatible with the core

accretion model.
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Figure 2.2: Mass-radius relationships for low-mass rocky planets assuming different possible compositions (from Motalebi et al.,
2015).

The mean density of a planet (also referred to as "bulk density") has been used for many years as a proxy for

planet composition. This quantity can be computed directly from its mass and radius. However it is not always

possible to recover both these parameters. The radii of exoplanets can be obtained for transiting planets, with

most radius measurements having been obtained by the Kepler and K2 missions which yield extremely precise

radii. Following RV surveys permitted the recovery of masses of these planets, but for many of them the error

bars are quite large with the RV only allowing to place upper limits on the mass of the planet (e.g. K2-33 b –

David et al., 2016). To be able to recover the mass with high precision for these planets is a challenge beyond

current facilities as the RV amplitudes to be detected are close to instrumental precision and the photon noise is

frequently an order of magnitude larger (e.g. Lovis et al., 2010).

Additionally, the radius is impossible to recover for non-transiting planets detected only by the RV method,

limiting further the sample of planets for which the density can be estimated. However, the combination of empirical

data from observations and the derivation of the equations of state for each of the interior components (e.g. Seager

et al., 2007; Swift et al., 2012) led to the development of mass-radius relations for exoplanets. Figure 2.2 shows

the mass-radius relationships for low-mass rocky planets assuming different possible compositions superimposed

on observational data for several planets (from Motalebi et al., 2015).

Low-mass planets tend to be mostly rocky with small or no atmospheres. In a first order approximation of its

equation of state, rock can be seen as in-compressible – a result confirmed from empirical data (e.g. Weiss et al.,

2014) – and is practically insensitive to the incident flux. This means that mass-radius relations hold for the low

mass regime, and the bulk composition of the planet can be inferred. However, in terms of inner structure, for the

same mass, infinite combinations of iron cores, silicate mantles, and water outer layers can yield the same radius

(e.g. Seager et al., 2007). Note that the radius of solid exoplanets is quite sensitive to the gas content of the

atmosphere, and a small increase in H/He in the planet atmosphere can yield a large increase in the radius (e.g.

Adams et al., 2007).

As the mass increases, ice and gas layers become more predominant and the mean bulk density of the planet

lowers. When the H/He layer becomes dominant, planets will start to have radii that are independent of their

masses (e.g. Lopez et al., 2014). Also, for planets with a high H/He content (e.g., gas giants), the irradiation of
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the planet – depending on the planet’s distance to its host – is a major factor in the equation of state for their

gaseous component (e.g. Fortney et al., 2009). In consequence, these planets present a vast range of different

radii for similar masses (e.g. 51 Pegasi b – Martins et al., 2015a; WASP-113 b – Barros et al., 2016; CoRoT-28

b – Pätzold et al., 2012, among many others).

EXOPLANET ATMOSPHERES 2.2

Currently, the frontier of exoplanet characterization has been pushed toward the study of exoplanet atmo-

spheres, both from a composition and dynamics point of view. The ultimate goal behind this is the detection of

life around another planet, for which a clear path passes through the detection of bio-signature gases (e.g. Des

Marais et al., 2002; Seager et al., 2013).

In terms of dynamics, exoplanetary atmospheres have been found to be as complex as their Solar System

counterparts. Doppler shifts in the spectral lines of some elements permitted to detect high speed winds in

strongly irradiated planets like Hot Jupiters (e.g. Snellen et al., 2010), a feature previously predicted from

simulations (e.g. Showman et al., 2002). As proposed by Kawahara, 2012, spectral line broadening has been

used to successfully recover the rotation of the planetary atmospheres (e.g. Snellen et al., 2014; Brogi et al., 2015;

Louden et al., 2015).

The techniques presented in Section 1.2 have been paramount to the characterization of exoplanetary atmo-

spheres. The first measurement of an exoplanetary atmosphere was performed with HST around HD 209458 b

(Charbonneau et al., 2002), one of the better studied exoplanets to date. By using transit spectroscopy they

detected the strong sodium absorption line at 589.3-nm predicted by Seager et al., 1998 (See Figure 2.3). This

discovery laid the groundwork for the detection of many more elements and molecules from transmission spectra

of exoplanets, with both space observatories (for example, water – Tinetti et al., 2007; – and methane in HD

189733 b – Swain et al., 2008) and high-resolution spectrographs on the ground (e.g. sodium in – HD 189733

b Redfield et al., 2008; Wyttenbach et al., 2015; and CO and water in HD 179949 b – Brogi et al., 2014).

Clouds have also been detected in exoplanetary atmospheres, as they create grey absorption/reflection spectra

(i.e. with constant and as such wavelength-independent fluxes), masking the constituents of the atmosphere (e.g.

Barman et al., 2011; Line et al., 2016; Sing et al., 2016). Note that recently, to bypass this problem, MacDonald

et al. (2017) have proposed an atmospheric retrieval algorithm that models in-homogeneous clouds to unmask the

atmospheres from their cloud/hazes and recover the principal molecular components from transmission spectra of

cloudy exoplanetary atmospheres.
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Figure 2.3: Atmosphere detection around HD 209458 b (from Charbonneau et al., 2002).
.

REFLECTED LIGHT AND THE ALBEDO FUNCTION 2.3

As done in the past with the planets in our Solar System, the direct detection of reflected light from exoplanets

can be used as a tool towards the comprehension of their atmospheres. When reflected on the atmosphere of a

planet, the spectrum of the host star will be modulated by its atmosphere composition and dynamics.

At optical wavelengths, the wavelength dependent planet-to star flux ratio is given by :

Fplanet (λ, φ)

Fstar (λ)
= Ag (λ) g (λ, α)

(
Rplanet
a

)2

(2.1)

where:

• φ is the orbital phase;

• Ag (λ) is the planetary albedo function;

• g (αλ) is the phase function;

• α is the orbital phase;

• Rplanet is the radius of the planet and

• a is the semi-major axis of the orbit (Leigh et al., 2003).

The phase function of an exoplanet is a combination of both the percentage of the planet illuminated by the

star (i.e., the "day portion" of the planet) and the scattering properties of the planet’s surface/atmosphere. Figure

2.4 shows the phase function for different single scattering models as a function of orbital phase where α = 0
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Figure 2.4: Phase function for different scattering models as a function of orbital phase where α = 0 corresponds to opposition/full
phase (from Greco et al., 2015). Note that the Lambert phase function is independent of the scattering albedo ω.

corresponds to opposition/full phase (from Greco et al., 2015) and ω represents 3 different scattering albedos

functions: i) Rayleigh ii) Isotropic and iii) Lambert scattering. In most works (e.g Esteves et al., 2013), Lambert

scattering phase-functions are assumed for simplicity, as this scattering has an analytically solution and thus is easy

to model. Lambert scattering assumes that the scattering surface reflects light isotropically and the scattering

does not depend upon the angle of incidence (Sobolev et al., 1975). Similarly for the sake of simplicity – but with

no loss of generality – we will adopt Lambert scattering phase functions all through this work (see Langford et al.,

2010), which are defined as

g(α) =
[sin(α) + (π − α) cos(α)]

π
(2.2)

where α is the phase angle, given by

cos(α) = sin(I) cos(2πφ) (2.3)

where I is the inclination of the orbit and φ is the orbital phase.

The albedo function measures the reflectivity of a planetary atmosphere as a function of wavelength. Different

elements and molecules will reflect/absorb/scatter light with different intensities and at different wavelengths. As

such, this function can be used as a probe to constraint and improve our knowledge of the physics of current

atmospheric models (e.g. Marley et al., 1999; Cowan et al., 2011; Madhusudhan et al., 2012). Figure 2.5 shows

possible theoretical albedo functions at optical wavelengths for different temperatures and metallicities of the

atmosphere (from Greco et al., 2015).

Indirect methods – such as the energy budget from the secondary eclipse (e.g. Christiansen et al., 2010) or
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p a Rp (
Rp
a

)2
Ag Reference for the albedo

[days] [A.U.] [RJup]

51 Peg b 4.23 0.052 1.90a) 292 0.50a) Martins et al., 2015a

HD 189733 b 2.22 0.0314 1.14 286 0.40±0.12 Evans et al., 2013

HD 209458 b 3.52 0.0475 1.38 185 0.04±0.045 Rowe et al., 2008

Kepler-5 b 3.55 0.0506 1.43 174 0.16±0.03 Angerhausen et al., 2015

Kepler-6 b 3.23 0.0457 1.32 183 0.07±0.03 Angerhausen et al., 2015

Kepler-7 b 4.89 0.0625 1.61 146 0.32±0.03 Demory et al., 2011

Kepler-8 b 3.52 0.0483 1.42 188 0.11±0.03 Angerhausen et al., 2015

Kepler-10 b 0.84 0.0169 0.13 13 0.55±0.11 Hu et al., 2015

Kepler-12 b 4.44 0.0556 1.70 203 0.09±0.02 Angerhausen et al., 2015

Table 2.1: Recovered geometric albedos for an arbitrary sample of exoplanets. a) Note that for 51 Pegasi b the recovered albedo and
radius are degenerate as Martins et al., 2015a recovered AgR

2
p (See Chapter 5).

from the phase the planet presents us as it orbits its host (e.g. Snellen et al., 2009) – have proved invaluable to

recover the albedo of exoplanets. Even nowadays, the sample of planets with known albedos is quite small (see e.g.

Demory, 2014, for Super-Earths; and Angerhausen et al., 2015; Schwartz et al., 2015; Esteves et al., 2015, for

larger planets), all of them obtained through indirect methods. For most Hot-Jupiters in this sample, low albedos

have been detected (e.g. 0.04 for HD209458b Rowe et al., 2008), which is in agreement with early theoretical

models which predict heavy absorption in the optical from TiO and VO and/or alkali metals (e.g Marley et al.,

1999). However, several exoplanets have been detected with high albedo values (e.g Ag < 0.4 for τ Boo –

Rodler et al., 2010; 0.32 for Kepler-7b – Demory et al., 2011; 0.44 for Kepler-91b – Esteves et al., 2015; 0.5

for 51 Pegasi b – Martins et al., 2015a). Table 2.1 presents the geometric albedos for a sample of exoplanets

selected from the exoplanet.eu database.

Figure 2.5: Examples of possible geometric (top panel) and scattering (bottom panel) albedo functions for different temperatures
and metallicities of the atmosphere (from Greco et al., 2015).
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Despite the increasing number of planets with measured albedos, no unifying picture on the properties of

exoplanet atmospheres has emerged so far. An important step in that direction was given by the recent work

of Sing et al. (2016), which shows that the detection of absorption features in an atmosphere depends on the

presence of clouds and hazes for a variety of planets.

The main purpose of this work is the recovery of the reflected spectrum from exoplanets and the albedo

function from their atmosphere as a proxy for exoplanet characterization. To do so, we developed a technique that

cross-correlates high-resolution spectra with stellar masks. With this technique we were able to perform a direct

detection of the reflected spectrum from the prototypical hot Jupiter 51 Pegasi b and conclude that 51 Pegasi b is

most likely a highly-inflated planet with a high albedo (i.e., we inferred an albedo of 0.5 for a radius of 1.9 RJup

Martins et al., 2015a). In the following chapter we proceed to describe the technique in detail.
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Chapter 3.
High-resolution spectroscopy

concepts

Ubiquitous in all fields of Astronomy, a spectrograph is an instrument capable of measuring the flux of a target

as a function of wavelength by dispersing the light from the target, similarly to water droplets that create rain-

bows. Figure 3.1 presents a simple schematic showing the major components of a spectrograph. The component

responsible for dispersing the light is the disperser, of which the most common types are prisms and gratings.

The diffraction of light by prisms is due to the refraction of the beam inside the prism (see Figure 3.2). As

per Snell’s law

ni sin (θi) = nr sin (θr) (3.1)
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Figure 3.1: Spectroscopy: simple spectrograph diagram.
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Figure 3.2: Dispersion of light by a prism.

where ni and nr are respectively the refraction index outside and inside the prism1 and θi and θr are respectively

the angle of the incident (outside the prism) and refracted beam (inside the prism) relatively to the normal to the

prism-outside medium interface. Since the refraction index of a material is wavelength dependent, the refraction

angle θr of an incident beam will vary with wavelength and thus white light will be dispersed. Note that the

dispersion obtained by refraction is quite small and thus the resolution achievable by this method is quite limited.

In order to achieve high-resolutions, dispersers capable of dispersing the light more efficiently are required. The

most commonly used of these alternative dispersers is the dispersion grating.

Dispersion gratings are optical elements that consist in narrow slits (transmission grating, left panel of Figure

3.3) or grooves (reflection grating, right panel of Figure 3.3) parallel to each other and very close together. Incident

light will be diffracted by the slits/grooves and interfere to create spectral orders that obey the grating equation:

m λ = d [sin (θi)± (sin (θr)] (3.2)

where m is the spectral order, λ is the wavelength, d is the distance between the grating slits/grooves, θi is the

incident angle of light relative to the normal to the grating, and θr is the reflected angle relative to the normal to

the grating for order m.

Echelle spectrographs (Figure 3.4) are a special genre of spectrographs that get their name from the type

of grating they use: an echelle grating. This genre of spectrograph permits to record high-resolution spectra,

d
Θi

Θr(m)

(a) Transmission grating

Θ
r(
m
)

Θi

d

(b) Reflected grating
Figure 3.3: Dispersion of light by gratings.

1The refraction index of vacuum is n = 1.
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Figure 3.4: Simple echelle spectrograph diagram (from Wikipedia).

while covering a wide wavelength range (e.g. HARPS – Pepe et al., 2000). This is possible by combining two

perpendicular dispersion elements, one that will provide the high-resolution – typically a high-dispersion grating –

and another that will disperse the orders (also known as a cross-disperser).

We will now present briefly a few useful concepts from high-resolution spectroscopy used throughout this work,

as well as the instruments that were used.

CONCEPTS 3.1

SPECTRAL RESOLUTION

The spectral resolution of a spectrograph represents its capacity to measure an as small as possible wavelength

difference ∆λ. Mathematically, for a given wavelength λ it is defined as

R =
λ

∆λ
(3.3)

The higher the resolution, the smaller the ∆λ it can measure and the better it can sample a spectral line (and the

more precise will RV measurements be). Typically, spectrographs can be classified as i) low-resolution (R < 1000),

ii) medium-resolution (1000 < R < 20 000) and iii) high-resolution (R > 20 000).

Note that all spectrographs used all through this work – and in typical RV planet detection studies as well

– permit spectral resolutions that are considered high even for the "high-resolution" standard (e.g., the HARPS

spectrograph with R ∼ 115 000 Pepe et al., 2000).
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SPECTRAL COVERAGE

The spectral coverage of a spectrograph is the range of wavelengths covered by the spectrograph.

SPECTRAL BLENDING

Two spectral lines are said to be blended when they cannot be spectrally resolved, i.e., cannot be measured

individually. This occurs when the distance between their centers is smaller than ∆λ.

SPECTRAL SAMPLING

The spectral sampling of the spectrograph corresponds to the number of pixels of the sensor used to sample

the Full Width at Half Maximum (FWHM) of the PSF.

HIGH-RESOLUTION SPECTROGRAPHS USED IN THIS WORK 3.2

HARPS 3.2.1

The HARPS spectrograph (Pepe et al., 2000) is a fiber-fed and cross-dispersed high-resolution echelle spec-

trograph installed on ESO’s 3.6-m telescope at the LaSilla-Paranal observatory. The main scientific goal that led

to its development was the detection of exoplanets from extremely precise RV measurements.

Figure 3.5: The echelle grating of the HARPS spectrograph inside its vacuum sealed container (©ESO).

HARPS has several key features that turned it into the workhorse of RV surveys. The combination of its

high-resolution (R ∼ 115000) with precise wavelength calibrations and extreme stability allows it to achieve a

RV precision of about 80 cm/s (Lo Curto et al., 2012). The wavelength calibration is usually performed by using

a Th-Ar lamp or a laser-frequency comb being fed trough a second fiber, allowing to simultaneously obtain the

science and calibration observations2. Note that the installation of a Laser Frequency Comb (Lo Curto et al.,

2012) – currently undergoing testing – allowed to increase the RV precision down to a few cm/s.

2Note that the simultaneous mode is only used to track instrumental drift during an observing night, with the wavelength calibrations being

performed at the beginning of the night.
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The HARPS spectrograph is also extremely stable thermally, as it is sealed in a pressure and temperature

controlled vacuum container (See Figure 3.6), which guarantees an invariable refraction index for the whole

optical path inside the spectrograph. Furthermore, its fiber scrambling setup ensures an evenly illuminated fiber

exit, regardless of variations in the illumination at the entrance of the fiber. These factors makes it so that HARPS

has an extremely stable PSF over large periods of time, guaranteeing an unsurpassed long term stability for RV

measurements.

In terms of wavelength coverage, HARPS covers most of the visible spectrum (378-691 nm), where thousands

of precisely known spectral lines can be used for precise RV calculations and stellar characterization. Note that

in a typical 2-dimensional echelle spectrographs (e.g. HARPS), there is usually an overlap in wavelength between

adjacent orders.

Besides the default High Accuracy Mode (HAM), HARPS also has a high efficiency mode (EGGS) with

projected aperture on the sky of 1.4 arcsec against 1 arcsec for the default mode. This leads to an increase in flux

of about 75 per cent for a seeing of 0.8. This increase comes at the expense of a higher diffuse light contamination

on the resulting spectra (See Table 9.1 of the HARPS user manual3 for more details). Table 3.1 presents some of

the technical specification of the spectrograph4.

Some scientific highlights on the exoplanetary field are:

* the detection of a trio of Neptune-like planets around HD 69830 (Lovis et al., 2006)

* the detection of Proxima b, the first Earth-like planet in its host Habitable Zone (Anglada-Escudé et al., 2016);

More recently, HARPS-North (Cosentino et al., 2012) – a clone of HARPS – was commissioned for the

Telescopio Nazionale Galileo (TNG) telescope in the Canary Islands, Spain. Details on the facility can be found

at http://www.tng.iac.es/instruments/harps/.

UVES 3.2.2

The UVES spectrograph is a high-resolution fiber spectrograph installed in UT2 of the VLT, at the La Silla-

Paranal observatory (Dekker et al., 2000).

UVES has two arms – that can either be used separately or together – and a resolution of up to 80 000

for the blue arm: (300-500 nm) and up to 110 000 with the red arm (420-1100 nm). It can also be coupled

with Fibre Large Array Multi Element Spectrograph (FLAMES) – the VLT multifiber instrument – to obtain the

spectra of multiple objects simultaneously. The spectrum of each individual object will have a spectral resolution

of R ∼ 47 000.

The technical specifications of UVES can be found in Table 3.2.

Although not developed primarily with this goal in mind, some attempts have been made at the detection

and characterization of exoplanets. However, UVES lacks the stability of either HARPS or ESPRESSO, which
3http://www.eso.org/sci/facilities/lasilla/instruments/harps/doc/manual/userman2_1.pdf
4A detailed description of HARPS can be found at http://www.eso.org/sci/facilities/lasilla/instruments/harps/inst/

description.html
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System 2 fibres (1” dia.) spectral range 378-691nm, collimated beam 208mm

Echelle grating
R4, 31.6 gr/mm blaze angle 75 degrees, mosaic 2x1 on Zerodur monolith 840x214x125mm,

efficiency > 65% in the visible

Cross disperser grism FK5 grism, 257.17 gr/mm blazed at 480nm, 240x230x50mm, T=73% (av)

Collimator mirror Zerodur with protected silver coating, f=1560mm, used diameter 730mm, triple pass

Camera all dioptric, 6 elements in 6 groups, f=728mm, f/3.3, T>85%

Spectral format upper” CCD (Jasmin): 89-114, 533-691nm

lower” CCD (Linda): 116-161, 378-530nm

Spectral resolution RS=120,000 (measured)

Sampling per spectral

element
4.1 px per FWHM

Separation of spectra

from fibres A and B
17.3 px

Order separation Jasmin: order 89: 1.510mm = 100.7px, order 114: 0.940mm = 62.7px

Linda: order 116: 0.910mm = 60.7px, order 161: 0.513mm = 34.2px

Table 3.1: Technical specifications of HARPS (from http://www.eso.org/sci/facilities/lasilla/instruments/harps/inst/
description.html)

Figure 3.6: The UVES spectrograph at the VLT (©ESO/H.Zodet).

translates into not being able to perform long term precise RV measurements at a level of 1 m/s. Furthermore,

calibration errors have been detected (Whitmore et al., 2010), which significantly increase the error bars on RV

measurements. Some scientific highlights on the exoplanetary field are:

* the detection of atmospheric sodium in the atmosphere of HD 189733b (Khalafinejad et al., 2017);

* observing the Earth as an extrasolar transiting planet (Arnold et al., 2014).

Jorge Humberto Costa Martins

http://www.eso.org/sci/facilities/lasilla/instruments/harps/inst/description.html
http://www.eso.org/sci/facilities/lasilla/instruments/harps/inst/description.html


FCUP 59
Characterizing the atmosphere of exoplanets using high-resolution spectroscopy

ESPRESSO 3.2.3

ESPRESSO (Pepe et al., 2010) is a new high-resolution fiber-fed optical spectrograph (380-686 nm) currently

being commissioned for the VLT at ESO’s La Silla-Paranal Observatory. The main science drivers behind its

development are

• the search and characterization of rocky planets around solar-type stars with precise RVs;

• the detailed determination of the chemical composition of stars in nearby galaxies and

• the measurement of the variability of the physical constants.

ESPRESSO will ally a HARPS-like high-resolution and stability to the collecting power of up to all four VLT

8.4-m telescopes. It will have 3 available observing modes: i) Multi UT Mode (MR) with a resolution of 60 000;

ii) High-Resolution (HR) with a resolution of 135 000; and iii) Ultra High-Resolution (UHR) with a resolution of

200 000.

In MR mode, ESPRESSO will be able to combine incoherently the light from up to all 4 VLT Unit Telescopes

(UT), effectively increasing the collecting area up to the equivalent of a 16m telescope. In both HR and UHR

modes, it will only be able to receive the light for one of the telescope UT. For both MR and HR modes, ESPRESSO

will be fed by a 1′′ fiber, while on UHR mode, the fiber diameter drops to 0.5′′. While allowing for a large increase

in the resolution for the UHR mode, it comes at the cost of a lower photon collecting power.

Figure 3.7 shows the efficiency curve of all 3 resolution modes of ESPRESSO (Pepe, Lovis and Sosnowska

- private communication), as well as the efficiency curve of HARPS (from HARPS ETC). Both HARPS and

ESPRESSO (all 3 modes) efficiency curves were computed for a seeing of 0.65′′and air mass of 1.0 (i.e. pointing

towards the zenith). For all of them, the efficiency includes the transmission factors of the atmosphere, telescope,

and spectrograph, as well as slit losses.

The technical specifications of ESPRESSO can be found in Table 3.3 and the optical setup of ESPRESSO is

shown in Figure 3.8.

Blue Red

Wavelength range 300-500 nm 420-1100 nm

Max. resolution ∼80,000 (0.4" slit) ∼110,000 (0.3" slit)

Limiting magnitude 18.0 at R=58 000 in U 19.5 at R=62 000 in V

(1.5 hr integration, S/N=10, 0.7" slit)

Overall detective quantum efficiency 12% at 400 nm 14% at 600 nm

(DQE)(from the top of the telescope, wide slit)

Min. order separation 10 arcsec or 40 pixels 12 arcsec or 70 pixels

Table 3.2: Technical specifications of UVES (adapted from http://www.eso.org/sci/facilities/paranal/instruments/uves/
inst.html)
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Figure 3.7: Total efficiency of ESPRESSO (in all resolution modes) and HARPS as a function of wavelength. The efficiency of the
atmosphere, telescope, optical components and detector are included in the total efficiency of the instrument. Note that these are
the theoretical efficiencies for all 3 modes. The first results from the instrument’s commissioning shows a global efficiency 20-30 per
cent lower than predicted.

HIRES 3.2.4

HIRES (Maiolino et al., 2013) is a high-resolution spectrograph proposed for ESO’s ELT that will operate

simultaneously at visible and infrared wavelengths (0.4–1.8 µm) with a spectral resolution of R ∼ 100000. The

primary science drivers behind HIRES are

• the characterization of low-mass exoplanet atmospheres and to search for bio-signatures;

• to study the evolution of stars and galaxies;

• to study the first generation of stars in the young Universe;

• the determination ot the time variability of some of the fundamental constants of physics and

HR mode MHR mode (4UT) UHR mode

Wavelength Range 380-686 nm 380-686 nm 380-686 nm

Resolving Power 135 000 60 000 200 000

Aperture on Sky 1.0 arcsec 4x1.0 arcsec 0.5 arcsec

Sampling (average) 3.3 pixels 4.0 pixels (binned x2) 2.1 pixels

Spatial Sampling 6.9 pixels 4.0 pixels (binned x2) 3.5 pixels

Simultaneous reference Yes (no sky) Yes (no sky) Yes (no sky)

Sky subtraction Yes (no sim. ref.) Yes (no sim. ref.) Yes (no sim. ref.)

Total Efficiency >10% at peak >10% at peak >7% at peak

Instrumental RV

precision (requirement)
<10 cm/sec <=5 m/sec <=5 m/sec

Table 3.3: Technical specifications of ESPRESSO (adapted from https://www.eso.org/sci/facilities/develop/instruments/
espresso.html)
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Figure 3.8: Optical configuration of the ESPRESSO spectrograph (©ESO).

• the direct measurement of the acceleration of the expansion of the Universe.

A detailed description for the spectrograph can be found at https://www.eso.org/public/portugal/

teles-instr/elt/elt-instr/hires/?lang.

Since the instrument is still in the planning phase, very little information from it is available. As such,

throughout this work we will assume and a HARPS-like profile for HIRES in terms of efficiency and spectral

format, using HARPS calibration files as a spectral template.
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Chapter 4.

Recovering the reflected spectrum from

exoplanets

Planets are comparatively small and far from their hosts, and as such have very small effective cross-sections.

Adding to that, for most of the orbit, only a fraction of the day-side of the planet will be visible from the

observer’s vantage point. Finally, they will not reflect the totally of the incident light, it will partially be absorbed

and scattered by its surface/atmosphere (see Figure 4.1). As such, the main issue with detecting optical light

reflected on an exoplanet is the extremely low planet-to-star flux ratio, which can be computed from Equation 2.1.

The best targets for detection and characterization are typically hot and large planets with short period orbits

(i.e hot Jupiters). In the infrared, their planet-to-star flux ratio can reach 10−3, mainly due to their thermal

emission peaking at these wavelengths. At optical wavelengths, the planet-to-star flux ratio can reach up to only

10−4 1 (see Cameron et al., 1999). As such, to recover this signal with a 3-σnoise confidence, it would require

Figure 4.1: Diagram illustrating the minute amount of light from a star reflected by an orbiting planet assuming a circular orbit.

1Note that in the case of an Earth-Sun analog system, the planet-to-star flux ratio will be around 10−9.
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observations with S/Ns well above 104. Notwithstanding that the planetary flux is higher at infrared than at optical

wavelengths, attempting the recovery of the planetary reflected signal in the optical has several advantages to study

its reflectivity/albedo. First of all, in the optical it will be mainly a reflected and scaled-down copy of the stellar

spectrum2, modulated by the planetary albedo function, while in the infrared thermal emission dominates, which

creates a far more complex spectra, difficult to model with the current knowledge. Furthermore, in the infrared the

Earth’s atmospheric transmission and emission features – in particular water vapor absorption – severely imprints

themselves on the recovered spectra (e.g. Smette et al., 2015) contrary to what happens at optical wavelengths.

These reasons led us to choose optical wavelengths for the recovery of the reflected spectra from exoplanets. To

so so, we employ a technique that mathematically increases the S/N of observations by cross-correlating them

with a mask of spectral lines present the host star spectrum.

THE CROSS CORRELATION FUNCTION TECHNIQUE 4.1

The Cross Correlation Function (CCF) of high-resolution spectra with binary masks has been used very suc-

cessfully for many years to determine with high-precision the radial velocity of astronomical objects (e.g. Zinn

et al., 1984; Baranne et al., 1996; Mayor et al., 2003). In particular for exoplanets, astronomers cross-correlate

high-resolution spectra of stellar systems with numerical masks over a range around the host’s radial velocity.

These masks are fundamentally lists of spectral lines identified on the particular spectral type of the host. Each

spectral line on the mask is represented by a theoretical initial and final wavelengths, as well as the weight for

each line. These parameters are computed assuming that the line can be represented by a rectangle with the same

area as the real spectral line, with the continuum normalized to one and the weight corresponding the relative

depth of the line, centered at the rest wavelength of the spectral line. Using this technique, researchers are able to

recover the periodic variations in the star RV due to the dynamical pull of an orbiting planet with high-precision

(see Chapter 1.1.1).

Let’s consider a spectral line i from an hypothetical high-resolution spectrum of a star. If the star is moving

with radial velocity v relative to the observer, its measured wavelength will be λ′i. The same spectral line will have

rest wavelength λi on the spectral mask template. The relation between the two is given by Equation 1.1 (See

Section 1.1.1)

The Cross Correlation Function (CCF) computes the degree of similarity between the spectral mask and each

spectrum over a given radial velocity range, with the maximum similarity obtained for the correct radial velocity

of the star. Mathematically speaking, the particular CCF implementation we use can be found in Baranne et al.,

2Lopez-Morales2007 have shown that this is not necessarily true for all cases, e.g. super close-in hot Jupiters might have a non-negligible

contribution in red bands.
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Spectrum

RVstar - 40 km/s

CCF

RVstar - 20 km/s

RVstar
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Wavelength [Å]

RVstar + 40 km/s

Radial Velocity [km/s]

Figure 4.2: Diagram depicting the construction of a CCF. Left Panel: order 6 of an arbitrary UVES spectrum (blue line) of 51Pegasi
b with the spectral mask superimposed for different radial velocities. The white bands correspond to the spectral lines selected for
the CCF computation, with their wavelength corrected for the radial velocity presented in the center panel. It can be seen that for
the radial velocity of the star (RVstar), the spectral lines of the mask are aligned with the respective lines in the spectrum. Central
Panel: different radial velocities for which the CCF is computed relative to RVstar. Right Panel: CCF for order 6 of the spectrum of
the left for different radial velocities. The black dotted line corresponds to the complete CCF over the whole wavelength range for
which it was computed. The blue line corresponds to the CCF computed up to the radial velocity on the central panel. The lowest
value of the CCF corresponds to the highest degree of similarity between the spectrum and the stellar mask.

1996. For a given velocity v, the CCF is defined by

C(v) =
∑
x,l

wl pl,x(v) fx (4.1)

where l is the spectral line, x the pixel number. The fraction of line l that falls on pixel (x) is given by pl,x, fx

is the flux for the same pixel and wl is the relative weight for each spectral line and a function of the relative line

depths for each line.

Figure 4.2 depicts the construction of a CCF. The CCF stacks together the spectral information from all

spectral lines included in the mask, creating what can be seen as an average spectral line3. In brief, the CCF

measures the degree of similarity between the spectrum and the mask as a function of the radial velocity of the

object. The velocity that corresponds to the object’s radial velocity will be the one with the highest degree of

similarity between both spectra, which corresponds to the minimum of the CCF. Assuming that the spectral mask

matches the spectral type of the star (i.e., that the lines contained in the mask match the lines in the spectrum)

and that all lines have equal weight (i.e., wl = 1 for each line) or the weight is taken into account optimally (w.g.,

see Pepe et al., 2002), the S/N of the CCF will be

S/NCCF ≈
√
nS/Nspectrum (4.2)

where S/NCCF and S/Nspectrum are respectively the S/N of the CCF and of the spectrum, and n is the number

of spectral lines in the mask used in the calculus of the CCF. Typical masks for solar-type stars have thousands of

spectral lines, yielding a significant increase in the S/N of the observations. For example, the HARPS mask for a

3In a common abuse of notation, this average line is also known as CCF.
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G2 type star has about 4100 lines, increasing the S/N of the observations by ∼ 64.

Note that when computing the CCF with a non-weighted spectral mask, broad weak lines would contribute

to the CCF as much as deep narrow lines. However, deep lines contain more spectral information than weak lines

(Gray et al., 1992). As such, when using a non-weighted spectral mask all this information is averaged out. By

weighting the spectral lines in the mask against their depth ensures that no spectral information is lost (e.g., Pepe

et al., 2002).

4.1.0

Albeit not spectra in the strict sense, the CCFs from high-resolution spectra contain the spectral information

of the spectrum that originated them and inherit some of the properties of the original spectrum. For example,

the CCF of stacked spectra is equivalent to the sum of the CCFs from the individual spectra. Let’s consider a star

with an orbiting planet being observed with an high-resolution echelles spectrograph. For any given order o and

pixel x, the flux measured in the spectrograph is fx,total. As per Equation 4.1, the CCF of the generated spectrum

for an arbitrary velocity v is given by

CCFtotal(v) =
∑
l,x

pl,x(v)fx,total

=
∑
l,x

pl,x(v) (fx,star + fx,planet)

=
∑
l,x

pl,x(v)fx,star +
∑
l,x

pl,x(v)fx,planet

(4.3)

By definition:

CCFstar(v) =
∑
l,x

pl,x(v)fx,star

CCFplanet(v) =
∑
l,x

pl,x(v)fx,planet
(4.4)

where CCFstar(v) and CCFplanet(v) are respectively the CCFs of the star and planet. Therefore

CCFtotal(v) = CCFstar(v) + CCFplanet(v) (4.5)

Another particularly useful property of the CCF is that similarly to their spectral analogues, its noise follows a

Poisson distribution (see Appendix C for details on spectral noise statistics). Since the sum of CCFs is still a CCF,

its noise will also follow a Poisson distribution. Therefore, when stacking multiple CCFs on the same rest frame –

i.e. corrected for the radial velocity of the object being observed, effectively aligning its signal on the RV domain

– the S/N of the CCF increases with the square root of the number of stacked CCFs.

We now proceed to describe the method we developed to recover the optical signature from exoplanets.
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THE RECOVERY METHOD 4.1.1

For simplicity – but with no loss of generality – let’s consider we intend to recover the optical reflected signature

from a planet in a single star+planet system, from high-resolution spectra covering a wavelength range between

λini and λfin. The method we propose can be summarized by 4 major steps:

• Phase coverage constraints,

• Computation of the CCFs,

• Removal of the stellar signature and

• Recovery of the reflected signal from the planet.

We now proceed to describe each step of the technique in detail as applied to an arbitrary wavelength range.

PHASE COVERAGE CONSTRAINTS

When planning the observations, the main factor to consider is the selection of the orbital phases at which the

planet will be observed. Since we are attempting to recover the reflected signal from the planet in the optical, as

the planet orbits the star, it will present alternately its day and night sides to the observer. Figure 4.3 illustrates

the variations in planet-to-star flux ratio (top panel, from Eq. 2.1) and radial velocity (bottom panel, from Eq.

1.4) for 51 Pegasi b as it orbits its host. The orbital parameters were obtained from Martins et al. (2015a). The

corresponding orbital position is shown on the right panel from the figure. Orbital phase φ = 0 has been defined

as the orbital phase when the planet is closest to the observer. At this point of their orbit – also known as inferior

conjunction – the movement of both the planet and the star will be tangential to the plane of the sky and they will

present no radial velocity4. Note that 51 Pegasi b has an almost circular and edge-on orbit, but the conclusions

of this analysis are valid for any type of orbit with no loss of generality.

It is clear that in terms of flux, the most privileged orbital phases are the ones close to opposition/superior

conjunction (phase φ = 0.5), and for which the planet is not occulted by the star (relevant only for occulting

planets). At those points in the orbit, the fraction of flux reflected by the planet towards the observer is at its

maximum. On the other hand, the worst choice of orbital phase is close to transit/inferior conjunction, when the

planet reflection towards the observer is at is minimum – or null for edge-on orbits.

However, to be able to recover the planetary signal, it is necessary to be able to separate the planet and host

signals. This will be easiest to perform the further apart the signals are in the RV domain. Looking at the bottom

panel from Figure 4.3, it is easy to perceive that this will happen close to maximum elongation, i.e., phase 0.25

and 0.75. Note that for those phases the planet-to-star flux ratio will have dropped to under 50% of its maximum

value, making it less than ideal to recover the planetary signal. On the other hand, close to superior conjunction –

when the planet is at its brightest – the difference in RV between to the planet and the star is negligible and both

signals are spectroscopically blended. Since the stellar lines a a few orders of magnitude deeper than the planetary

4Note that the same will happen at superior conjunction, i.e., φ = 0.5.
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Figure 4.3: Top panel : Variation of the planet-to-star flux ratio as a function of orbital phase. Bottom panel : Variation of the planet
radial velocity as a function of orbital phase.

signal, the residuals of the removal of the stellar signal are much stronger than the planetary signal itself, making

it impossible to recover the planetary signal. Therefore, we have defined that the minimum distance between the

planet and the star in the RV domain to be able to recover the planetary signal to be about 3 times the FWHM

of the stellar CCF. For example, in the case of the star 51 Pegasi, this corresponds to about 18 km/s on each side

of superior conjunction. Outside this region, the noise structures left after the removal of the stellar signal are

negligible comparing to the planetary signal.

We have defined as optimal windows, the orbital phases that balance the need to retrieve as much flux as

possible from the planet and the ability to spectroscopically resolve the stellar and planetary signals.

Figure 4.4 shows the variation in the planet-to-star flux ratio across the orbit as a function the difference in

radial velocity between the star and the planet for the 51 Pegasi system. The green regions correspond to the radial

velocities where the planet-to-star is within 75% and 95% of its maximum at superior conjunction (in this case,

the optimal windows correspond to the orbital phases within 15 and 45 degrees on each side of opposition/superior
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Figure 4.4: Normalized planet-to-star flux ratio as a function of the planet-star distance in the RV domain. The red region corresponds
to radial velocities for which we assume that the planetary and stellar signals cannot be separated. The green regions correspond to
the optimal observing windows.
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conjunction). The red region corresponds to radial velocities for which we estimate that the planetary and stellar

signals cannot be separated (phases around the blue and green stars).

COMPUTATION OF THE CCF

Equation 4.1 shows a mathematical implementation of the Cross Correlation Function (CCF). To recover

the planetary signal, the CCF will need to be computed for several radial velocities over a large RV range that

encompasses the whole orbit of the planet.

To define this range, we need to take into account that planets have much larger radial velocity amplitudes

than their host stars, and as such the computation of the CCF will need to be performed over large radial velocity

ranges. Equation 1.4 allows to compute the radial velocity semi-amplitude of the stellar orbit (K∗) from its orbital

elements. The radial velocity semi-amplitude of the planetary orbit (Kp) can be obtained from K∗ given that

Kp mp sin i = −K∗ m∗ sin i (4.6)

K = |Kp −K∗| will be the largest RV separation between the planet and its host star. This will be the

maximum distance between the center of their CCFs over one full orbit. We also assume that all the relevant

information from the planetary CCF to be encompassed within a radial velocity range

W = 3× FWHM∗ (4.7)

on each side of the center of the planetary CCF, where FWHM∗ corresponds to the FWHM of the stellar

CCF. Such a large range will allow for the detection of the CCFs from the planet, even after being affected by

broadening effects such as rotation (e.g. Kawahara, 2012), or atmospheric thermodynamics (e.g. Hedges et al.,

2016). Furthermore, a fraction C = 3× FWHM∗ of the wings of the planetary CCF needs to be added to act

as a continuum (C) of the planetary CCF and allow to characterize the noise level of the CCF.

In the end, the CCF will be computed for radial velocities in the range

RV∗ − (K +W + C) < RV < RV∗ + (K +W + C) (4.8)

Figure 4.5 exemplifies the factors in the definition of the radial velocity range for the computation of the CCF.

Another parameter that needs pondering is the CCF computation step, i.e., the distance between two consec-

utive points in the above interval for which the CCF is computed. In several points of the recovery process, it

is necessary to shift the CCFs in RV. This will implicate an interpolation between consecutive pixels. Therefore,

the selection of a step as small as possible is favored, as it will minimize the interpolation errors during the shift.

However, the computation of the CCF is computationally intensive, and too small CCF step might make the

computing time unacceptably lengthy. The default step CCF for the HARPS Data Reduction Software (HARPS

DRS) CCF computation routine is 250 m/s. Bellow 50 m/s we do not expect to see any appreciable difference in
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Figure 4.5: Definition of the radial velocity range for the computation of the CCF. The amplitude of the signal for the planet has
been amplified to be noticeable.

the CCF. Note that a single pixel from a HARPS spectrum corresponds to about 800 m/s.

Finally, the correct spectral mask need to be selected for the computation of the CCF. The spectral masks

used in computing the CCFs of high-resolution spectra for planet detection via the RV method consist in spectral

line lists tailored to the spectral type of the star being observed5. As stated before, since we are searching for the

spectrum of the star reflected on the planet, the same spectral mask can be used to detect both the stellar and

planetary signals.

REMOVING THE STAR

A critical step in the method we developed is the separation of the planetary signal from the stellar one. After

the computation of the CCFs of the observations, the spectral signature of both the planet and star are still stacked

together. To remove the stellar signal, we construct a extremely high S/N stellar template by stacking together

the CCFs from multiple observations, after correcting them individually from stellar radial velocity drift. This way,

the S/N will be enhanced by a factor proportional to the square root of the number of stacked CCFs (See Equation

4.2). The stellar signal will then be removed by normalizing each individual CCF by the stellar template.

Some caution is required when constructing the stellar template CCF. First of all, its S/N needs to be sig-

nificantly higher than the one of the individual CCFs. Using a template with a S/N comparable to that of the

individual CCFs will introduce non-negligible noise to the planetary CCF. As a rule of thumb, we normally consider

that the S/N of the template should be at least 10 times larger than the one of the individual CCFs. This implies

that at least 100 observations should be used in its construction. A detailed statistical analysis of the problem is

discussed in Appendix C.

Note that extremely high-resolution and S/N stellar models are currently available (e.g. Kurucz, 2006) which

could be used to construct a noiseless stellar template, with no planetary contamination. However, constructing

it from real observations will allow it to be model independent and enable the template to mimic effects affecting

the observations and/or the stellar flux (e.g. atmospheric Cunha et al., 2014; or instrumental effects Lovis et al.,

2011).

5Note that the same mask might be suited for several sub-types.
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Figure 4.6: Randomly distributed observations across two optimal observing windows as defined in Section 4.1.1 (blue stars) and
close to inferior conjunction (orange stars).

The most intuitive strategy is to construct the stellar template from observations at orbital phases where

the planetary signal is null or negligible. Such is the case from observations performed when the planet is at

inferior conjunction (or transit for transiting planets – orange stars in Figure 4.6). This strategy allows for the

construction of the purest stellar template and has two main advantages. The first one is that the signal from the

optical signature of the planet will be, in principle, null, as its night side will be facing the observer6. The second

one is that the stellar and planetary signals will have matching radial velocities and be spectroscopically blended.

As such, the planetary contamination in the template will be negligible in the RV ranges/orbital phases where we

will be searching for the planet (see Section 4.1.1). The main disadvantage is that it requires additional observing

time just for the template creation. While this might not be a problem for bright targets (e.g. 51 Pegasi) where

short exposure times will yield easily 100+ observations. However, the required time to obtain enough observations

to construct a template for fainter targets (e.g. HD 209458 b) will increase greatly due to the large number of

additional observations required.

When observations close to inferior conjunction are not available or are insufficient to provide a high-S/N

template, an alternative strategy is to construct the template by stacking all available observations. This strategy

has the advantages of maximizing the exposure time to recover the planetary signal, with no "lost" time to

construct the stellar template and maximizing the S/N of the template. However, it is critical to minimize

planetary contamination as the observations include both the planetary and stellar signals. If the orbital phases

of the planet for each observation are randomly spread across a large orbital phase range, the planetary signal on

each CCF will appear at different radial velocities. Co-adding them all together – after correction of the stellar RV

motion – will dilute the planetary signal amidst the stellar noise, making it negligible and creating a high-quality

template. However, if the RV of the planet – a function of the orbital phase of the planet – does not vary

significantly and is similar to the one of the CCF being normalized, the template might also remove the planetary

signal.

6Albeit not true for planets not on edge-on – or close to – orbits, it was demonstrated that most planets detected via the RV method have

high-inclination orbits (e.g. Jorissen et al., 2001).
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RECOVERING THE ALBEDO

Once the CCFs of the observations have been normalized by the stellar template, we are left with planetary

CCF and noise. To further increase the S/N of the planetary signal, we stack the normalized CCFs after correction

of the planetary RV. The final result is the CCF of the planet over the selected radial velocity range.

Since the CCF can be seen as an average spectral line, it can be approximated by an inverted Gaussian profile

G, given by

G = B −Ae−4 ln 2 ( x−µ
FWHM )

2

(4.9)

where B is the level of the continuum of the CCF, µ is the mean or center of the CCF, A is the amplitude of the

CCF and FWHM is the full width at half maximum of the CCF (a measure of the width of the CCF). The area

of the Gaussian profile defined by Equation 4.9 is given by

Area =

∫ ∞
−∞

G dx = C ×A× FWHM (4.10)

where C is a constant. This equation can then be used to compute the areas of both the recovered planetary and

stellar template CCFs.

The ratio of the areas of the recovered planetary CCF and of the stellar template CCF will be the planet-to-star

flux ratio Fplanet
Fstar

. Hence, the planetary albedo can be recovered inverting Equation 2.1:

Ag =
1

< g (α) >
×
(

a

Rplanet

)2

×
(
Fplanet
Fstar

)
(4.11)

where < g (α) > is the mean of the phase function over the CCFs used in the recovery of the planetary signal.

Note that we are considering the ideal case where the planetary radius Rplanet is known. When that does not

occur, it is only possible to recover Ag R2
planet. Despite the degeneracy of the problem, this value can still be used

to characterize the planetary atmosphere properties.
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Chapter 5.

Reflected optical light from 51 Pegasi b

To apply our method to real data, we chose to observe the 51 Pegasi system with both the HARPS and UVES

spectrographs installed at the LaSilla-Paranal observatory.

As per Equation 2.1, the amount of incident light that gets reflected by a planet towards the observer is

proportional to i) the orbital phase at the moment fo the observations, ii) its albedo, iii) radius and iv) distance

from the host. The orbital phase can be carefully selected to maximize the fraction of day-side it presents the

observer (see Section 4.1.1 for details). The ratio of the radius by the distances suggest that giant planets in

close orbits such as hot Jupiters are the best candidates for such a detection. Considering a conservative value

of Ag = 0.1 for the albedo, the planet-to-star flux ratio will be at most 10−4, requiring a S/N of the order of

104 − 105. To choose a target, it is also important to take into account the visual magnitude of the host as it

will impact the required exposure time for a detection. In summary, our ideal target needs to be a giant planet

orbiting a bright star on a short orbit. 51 Pegasi b is the ideal candidate, as it is a hot Jupiter type planet, on

4.23 days orbit around a magV = 5.49 G2 star. It also has the added attraction of having historical importance

as it was the first exoplanet to be detected.

In terms of instrument, the detection of the reflected light from an exoplanet requires large collecting areas

or high exposure times to achieve the required S/N level. Furthermore, long term stability of the instrument

is essential, as we require to stack a high number of observations taken over long periods of time. Finally, a

high-resolution spectrographs is indispensable to be able to resolve a high number of spectral lines. The HARPS

spectrograph1 was at the time the only instrument with the necessary high-resolution and proven long term stability

to detect the broadband integrated geometric albedo of the planet. With it, we were able to recover the reflected

signal from 51 Pegasi b with a 3-σ significance from 12.5 h of data and infer that it is most likely a highly-inflated

planet (Rp = 1.9RJup) with a large geometric albedo (Ag = 0.5). These results were published as Evidence for

a spectroscopic direct detection of reflected light from 51 Pegasi b in Astronomy & Astrophysics, 2015, Volume

1Details on the HARPS spectrograph can be found in Chapter 3.2.1.
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576, id.A134 (Martins et al., 2015a).

As for UVES2 it combines its high-resolution with the collecting power of a 8.2-m telescope, allowing to achieve

the required S/N with short exposure times. With it, we expected that instead of detecting a single broadband

albedo for the planet, we could – in principle – recover the wavelength dependence of the albedo. However, the

extra collecting power comes at the expense of a lower intrumental PSF stability over long periods of time. This

aspect turned out to preclude our ability to detect the reflected signal for the planet (See Section 5.2 for details).

These results are presented in Section 5.2.

In parallel, we acquired archival observations for the 55 Cnc system obtained with HARPS and HARPS-N. A

brief description of the analysis performed on this data can be found in Appendix C.

RECOVERING THE ALBEDO FROM 51 PEGASI B 5.1

For this project, we acquired a total of 12.5h of HARPS observations of the 51 Pegasi system under ESO’s

programme 091.C-0271 (PI: Santos, N. C.). As discussed in Section 4.1.1, to maximize the detectability of the

planet, the observations need to be performed as close to superior conjunction as possible, while keeping the

spectroscopic signals of both the planet and the star separated on the RV domain. Therefore, the observations

were performed in several carefully selected time windows that were computed from the ephemeris provided by

Butler et al. (2006). These observations span over seven different nights and consist in 91 spectra with a S/N

on the 50th order (∼556-nm) that varies between 122 and 388. As per HARPS ETC, the predicted S/N on the

50th for a 600s exposure, an airmass of 1.5 and a seeing of 1.0 is around 420. Note that although the 51 Pegasi

system is a bright target, the S/N of most of the gathered observations for the same order is much lower, due

to the presence of clouds for some of the nights (e.g., an exposure of 600s on 2013-08-02 yields a S/N of ∼150,

while on 2013-09-30 it reaches ∼390 after 450s).

A summary of the observational parameters of the acquired data are presented in Table 5.1. Individual exposure

times range from 300s to 600s. Table B.1 presents the detailed description of the observational parameters for

each independent observation.

The reduction of the data was performed with HARPS DRS (Mayor et al., 2003) version 3.6 using the default

settings.

2Details on the UVES spectrograph can be found in Section 3.2.2.
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Night Number of Total exposure S/N range

Spectra [seconds]

2013-06-08 3 1360 243 - 296

2013-06-25 10 5260 273 - 351

2013-08-02 2 1092 145 - 151

2013-08-04 20 10000 215 - 311

2013-09-05 4 2400 191 - 248

2013-09-09 13 7810 122 - 265

2013-09-30 39 17100 179 - 388

Table 5.1: Summary of the observational parameters of the acquired data on a per night basis (from Martins et al., 2015a). Individual
exposure times range from 300s to 600s.

COMPUTATION OF THE CCF 5.1.1

The computation of the CCF was also executed with HARPS DRS with the following parameters:

SPECTRAL MASK

51 Pegasi is a G2 spectral type star, for which HARPS DRS has a weighted spectral mask available with 4165

spectral lines (Pepe et al., 2002). This will lead to a S/N increase by a factor of 64 when measured on the CCF

relative to that measured on the original spectra.

INITIAL RV

For the initial estimate of the RV location of the center of the CCF we provided −33.02 km/s as presented

in the SIMBAD astronomical database for the systematic RV of the 51 Pegasi system (Nidever et al., 2002).

CCF WIDTH

In terms of CCF width, the expected planet semi-amplitude is around 130 km/s (e.g. Brogi et al., 2013) and

the FWHM of the star is about 7.5 km/s. This means that K +W +C – the minimum value for the CCF width

as defined in Section 4.1.1 – is about 175 km/s. This allowed to cover the full orbit of the planet en terms of RV,

while allowing for a continuum section large enough on both sides of the planetary CCF to account for broadening

effects of the planetary signal and estimate its noise level.
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Instrument Number of Dates RVSystem Reference

measurements [km/s]

ELODIE@OHP 153 -33.252 Naef et al. (2004)

KECK, AAT, Lick 256 -0.002 Butler et al. (2006)

HARPS 91 Jun-Sep 2013 -33.152 Martins et al. (2015a)

Table 5.2: 51 Pegasi radial velocity data used to derive the orbital parameters. RVsystem corresponds to the radial velocity of the
system as measured by the corresponding instrument (from Martins et al., 2015a).

CCF STEP

After testing the construction of the CCF with different values for the CCF step, we selected a value of 50

m/s, which adequately balances the required precision for the CCF and the extensive computational time required

to compute it.

The computation of the CCF of each observation allowed to derive precise radial velocities (See Table B.1) for

our observations. To do so, a Gaussian profile defined by Equation 4.9 is fitted to each CCF. For each individual

observation, the radial velocity of the star corresponds to the center of the Gaussian fitted to the computed CCF.

The measured radial velocity of the star for all observations is listed in Table B.1.

These measurements were combined with measurements from other facilities available in the literature, which

permitted to derive a new set of precise orbital parameters for the star and its planetary companion. The combined

set of measurements spans over almost 20 years and is summarized in Table 5.2.

To compute the new orbital solution, we used the Y ORBIT (Ségransan et al., 2011) code. The eccentricity

– and thus the longitude of the ascending node ω – was set to zero as the initially fitted value was not statistically

different from zero. The new orbital parameters are presented in Table 5.3, and were used through the remainder

of this work. Note that the recovered parameters do not fully characterize the orbit as the fitted mass is the

minimum mass, as the inclination of the orbit is degenerate. We note that this degeneracy does not have an

impact on the orbital phase, of importance to us here. However, the direct detection of the planetary signal will

enable to lift this degeneracy (see Section 5.1.3).

Figure 5.1 shows the measured radial velocity (RV∗) of each HARPS observation as a function of orbital phase

(blue dots), with the best-fitting orbital solution (red line) in the top panel. The horizontal blue line corresponds to

the barycentric radial velocity of the system. In the bottom panel, Figure 5.1 shows the residuals on the measured

radial velocity (RV∗) of the star versus the fitted one (RV ′∗). The error bars correspond to the 1-σ errors on the

measurements as delivered by the pipeline. Note that a large dispersion in the stellar RV residual can be observed

for phases 0.5 < φ < 0.6, which we attribute to bad weather that deteriorated the seeing for the corresponding

night.
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Figure 5.1: [Top panel] : Measured radial velocity of each HARPS observation as a function of orbital phase (blue dots), with the
best-fitting orbital solution (red line). The horizontal blue line corresponds to the barycentric radial velocity of the system.
[Bottom panel] : Residuals on the measured radial velocity (RV∗) of the star versus the fitted one (RV ′∗) . The error bars correspond
to the 1-σ errors on the measurements.

REMOVAL OF THE STELLAR SIGNAL 5.1.2

A stellar template that replicates as closely as possible the stellar signal is of paramount importance to remove

the stellar signal from the observations. For our work, we constructed the stellar template by stacking together

real observations, after correction of the RV drift of the star for each observations (see Table B.1).

As highlighted in Section 4.1.1, ideally it should be constructed from observations where there is little or no

planetary contamination. Yet, it requires a S/N much higher than that of the observations to makes sure the

removal of the stellar signal will not introduce additional noise of significance. With those parameters in mind, we

decided to construct two different stellar templates and test their performance.

Parameter Unit Value

RVsystem [km/s] −33.152

Period [days] 4.231

e 0.0(fixed)

a [AU] 0.052

k∗ [m/s] 55.2

mp sin(i) [MJup] 0.450

m∗ [M�] 1.04

ω [degrees] 0.0(fixed)

t0 [BJD-2400000] 56021.256

Table 5.3: Orbital parameters for the 51 Pegasi system recovered by Y ORBIT (from Martins et al., 2015a).
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TEMPLATE #1 (hereafter T1)

We created this template with the objective of maximizing its S/N while sacrificing the purity of the template.

As such, we constructed it by stacking all available HARPS observations. It is expected that each observation will

contaminate slightly the stellar template with some reflected planetary flux. However, the RV of the planet varies

very rapidly and the observations are spread more or less randomly across the orbit. Therefore, the planetary signal

is diluted amidst the stellar jitter and should be negligible.

TEMPLATE #2 (hereafter T2)

In this case we chose to favour the purity of the template in expense of S/N. Therefore, to construct this

template, we selected only observations close to inferior conjuntion (0.9 < φ < 0.1, where φ is the orbital phase).

At this point of the orbit, not only the observer is facing the planetary night side, but also the planetary and

stellar signals have matching RVs. Therefore, the planetary contamination in the wings of the stellar CCF – where

we expect the planetary signal to be located on the observations from which it will be recovered – is negligible.

However, the number of observations at that point of the orbit is limited, and the template was constructed from

only 20 of the 93 available observations. As such, the S/N of Template #2 is expected to be around ∼40% of

the S/N of T1.

Finally to remove the stellar signal, we normalized independently all our observations by both stellar templates.

Doing so will permit to choose the most adequate stellar template for this study.

RECOVERY OF THE PLANETARY REFLECTED SIGNAL 5.1.3

For both stellar templates, after removal of the stellar signal we selected the observations from which the

planetary signal would be recovered. As discussed in detail in Section 4.1.1, it is necessary that both the stellar

and planetary signals do not overlap on the RV domain. However, observations as close to superior conjuntion as

possible will maximize the effective cross-section for the planet and the reflected flux collected from the planet.

To balance these two factors, we only considered observations for which the RV difference between the planet and

the star is over 60 km/s (see Section 4.1.1).

For each observation, the RV of the planet can be computed from the previously measured stellar radial velocity

if we consider that the planet-to-star mass ratio (q) is given by

q ≡ Mp

M∗
=
K∗
Kp

(5.1)

where K∗ and Kp are respectively the RV semi-amplitudes for the stellar and planetary orbits. However, although

K∗ can be inferred from the orbital fit of the RV measurements and Equation 1.3, Kp is degenerate as the RV

technique only yields the minimum mass of the planet. Figure 5.2 shows in orange the observations that meet the

above criteria, assuming that the planetary mass is equal to the minimum mass from Table 5.3. On the left panel,
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it presents the normalized planet-to-star flux ratio (Fp/F∗ = 1 for φ = 0.5) as a function of the distance between

the planet and the star in the RV domain. On the right panel, it shows the distribution of all observations along

the orbit.

To recover the real semi-amplitude of the orbit, we computed the RV of the planet for each observation

assuming different values for the planetary orbital semi-amplitude3 Kp, in the range 75 km/s ≤ Kp ≤ 275 km/s.

Then, for each of these possible orbital solutions, we aligned the CCF on the expected RV of the planet and

stacked them together. As done with the stellar signal, the parameters of the recovered planetary signal for each

orbital solution are obtained by fitting the Gaussian profile defined by Equation 4.9 to the stacked CCFs (and not

to the individual CCFs). Note that some physical restrictions had to be put in place on the fitted parameters:

• FWHMp > 0.9 FWHM∗ - Noise on the CCF might affect the fitting of the Gaussian profile of the

planetary CCF and as such make it appear narrower that the stellar CCF. However, this effect is expected

to be minimal and as such allowing for a 10% decrease on the FWHM of the planetary CCF should suffice.

Note that it is possible for the convective envelope of the host to be tidally locked to the planet. In that

case, an observer on the planet would "see" the stellar unaffected by rotation and as such the reflected

planetary CCF would present a narrower FWHM that the star’s (for further details see Charbonneau et al.,

1999). In the case of the 51 Pegasi system, the stellar rotation period is much longer than the planetary

orbital period (∼ 21 days against ∼ 4 days, see Simpson et al., 2010), hence this effect should be negligible;

• FWHMp < 4 FWHM∗ - This value was selected to allow for enough continuum on each side of the

planetary CCF to permit to estimate the noise on the CCF (1 × FWHM∗) while allowing for Doppler

broadening due to the rotation of the planet (Kawahara, 2012). It corresponds to the extreme case of a hot

Jupiter class planet with the same rotation period as Jupiter (∼ 10h) but twice its radius being observed

edge on. However, it is expected that hot Jupiter class planets such as 51 Pegasi b to be tidally locked to
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Figure 5.2: Left panel : Normalized planet-to-star flux ratio (Fp/F∗ (φ = 0.5) = 1) as a function of the distance between the planet
and the star in the RV domain; Right panel : Distribution of our observations along the orbit. The orange stars correspond to the
observations used for the recovery of the planetary signal.

3Note that each different Kp will correspond to a different inclination of the orbit.
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their hosts (Goldreich et al., 1966) and thus Doppler broadening should be much lower.

To quantify which orbital solution corresponds better fits the data, we have defined the significance of the

detection – or detectability – of the planetary signal as:

D =

∣∣∣∣ Apσnoise

∣∣∣∣ (5.2)

where Ap is the amplitude of a Gaussian fit to the planetary signal and σnoise is the continuum noise of the CCF

on both sides of the recovered signal. The continuum region of the CCF was defined the regions whose distance

to the center of the fitted Gaussian profile on the RV domain is > 2×FWHMp. The continuum noise is defined

as the standard deviation of the pixel intensity of the stacked CCFs on the continuum regions.

It is expected that at the correct Kp, when stacking the CCFs together, the signal of the planet will be aligned

and increasing the significance of the detected planetary signal. As we move away from the correct orbital solution,

the signal of the planet on each CCF will not be aligned and thus the final signal will be diluted amidst the noise

and the detectability D will be of the order of unity (or smaller). Thus, the correct radial velocity semi-amplitude

for the planetary orbit should occur at for the maximum value of the detectability of the planetary signal. At the

end we expect the recovery signal of the planet to be centerd at RV = 0 and with a FWHM ∼ 7.5 km/s.

Assuming the derived value for the stellar mass presented in Table 5.3 and using Equation 5.1, the real mass of

the planet can be inferred, and consequently the inclination of the planetary orbit. Note that, given the planetary

orbital parameters presented in Table 5.3, the maximum possible planetary semi-amplitude (i.e., for an edge-on

orbit) is Kp = 133.6 km/s (assuming M∗ = 1.04 M� and Mp sin (i) = 0.460 MJup).

THE ALBEDO FROM 51 PEGASI B 5.1.4

As discussed in detail in the previous Section, we computed the radial velocity of the planet for each normalized

CCF for uniformly distributed orbital semi-amplitudes in the [75− 275] km/s range, with a step of 50 m/s. Then,

for each Kp, after correction of the RV of the planet all CCF for which the planet-star RV difference is over 60

km/s were aligned on the RV of the planet and stacked. Note that the number of CCFs that can be stacked will

decrease as Kp decreases, leading to a decrease in the S/N of the stacked CCF as Kp decreases as well.

Then, for each Kp, the detection significance of the recovered planetary CCFs was computed from Equation

5.2. The detection significance for all Gaussian fits that did not meet the physical restriction criteria presented

previously was set to zero. This procedure was repeated for both templates.

Figure 5.3 shows the detectability of the recovered planetary CCFs as a function of Kp/orbital inclination

for both T1 (left panel) and T2 (right panel). On each plot, the red vertical line corresponds to Kp with the

maximum detectability for each template.

Template T1, yields a maximum detection significance of 3.7-σnoise for Kp = 132 km/s. In terms of error

bars, a visual inspection of the detectability as a function of Kp shows clearly that the detectability curve is almost

flat for values of Kp in the [120 − 150] km/s range, while always above 3-σnoise. As such, we defined the error
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bars on Kp as the range of RV semi-amplitude where the detection significance is above 3.0-σnoise. This yields a

final detection significance of 3-σnoise for the best fitting planetary orbital semi-amplitude of Kp = 132+19
−15 km/s

for T1.

In the case of T2, a maximum detection significance of 5.6-σnoise for Kp = 133 km/s is attained. To be

conservative, the error bars on Kp were defined as the range of RV semi-amplitude where the fitted amplitude

to the recovered signal is within a 2-σ uncertainty in the best-fitting amplitude at maximum detectability. This

yields a best fitting planetary orbital semi-amplitude of Kp = 133+19
−20 km/s for T2. This choice of error bars

results from the fact that for maximum detectability, T2 was constructed from only 25 observations (∼ 27% of

the available 91). Albeit the higher detectability for T2, T1 represents much more accurately the stellar signal

as it has a much higher S/N and much less liable to introduce additional noise into the CCF (see discussion in

Section 4.1.1). Using the same reasoning, we chose to proceed with template T1 for the reminder of this work.

Figure 5.4 shows the recovered planetary CCF for maximum detection significance, using Template T1. The

red line corresponds to the best fitting Gaussian profile computed using a Levenberg-Marquardt algorithm. For

both signals, the CCF continuum has been set to 1 by normalizing the continuum regions of both CCFs by the

median pixel value of the continuum. The continuum regions were defined as the RVs of the CCF outside a region

within 2×FWHM∗ of the central position of both the stellar and planetary signals. The fitted parameters for the

best-fitting Gaussian profile are presented in Table 5.4, against the parameters of the stellar CCF (computed from

fitting a Gaussian profile to T1). To estimate the errors bars on the parameters from the best fitting Gaussian

profile to the recovered planetary CCF, we:

(a) subtracted the best-fitting Gaussian to the recovered planetary CCF;

(b) injected in the residuals from step (a) a Gaussian profile defined by Equation 4.9 with the same amplitude

and FWHM of the best-fitting Gaussian, but a different mean RV;

(c) recovered the injected Gaussian profile;

(d) repeated steps (a) to (c) 10 000 times.
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Figure 5.3: Detection significance as a function of Kp. The red line correspond to the Kp value for maximum detection. It can be
seen that the maximum detection occurs for similar Kp value for both templates. The amplitude values set to zero corresponds to
Kp values for which no Gaussian fit with the aforementioned restrictions could be achieved. Left Panel: Using template #1; Right
Panel: Using template #2. (from Martins et al., 2015a)
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Figure 5.4: Recovered planetary signal for maximum detection (in blue), using Template T1. The red line corresponds to the best
fitting Gaussian profile computed using a Levenberg-Marquardt algorithm.

Star Planet

Amplitude 0.48 6.0±0.4 ×10−5

Significance [σnoise] – 3.7±0.2

FWHM [km/s] 7.43 22.6±3.6

Table 5.4: Comparison of fitted parameters of both the stellar and planetary CCFs, after setting the continuum region to one.

The 1-σ errors listed in Table 5.4 correspond to the standard deviation for each parameter of the recovered

Gaussian profiles.

Figure 5.5 displays the recovered planetary CCFs for different values of Kp over the [75 − 175] km/s range,

centered on the expected radial velocity of the planet. It is clear that for the planetary orbital semi-amplitude

that corresponds to maximum detectability – Kp = 132km/s – the recovered signal is well defined and its wings

less noisy, closer to the distribution of the expected Gaussian profile of a CCF. As the value of Kp gets further

from 132 km/s, when stacking the individual CCF for each observation, the planetary signals for each individual

CCF will not be aligned with each other but spread out across the continuum. As such, the recovered signal will

be of lower significance as the signal from multiple CCFs will be spread across the wings which will seem more

noisy in consequence due to the presence of the non-superimposed signal from the different CCFs. Note that

close to Kp = 132km/s, a signal can still be seen clearly above the noise level (for example, for Kp = 115km/s

and Kp = 120km/s in Figure 5.5). While for those values of Kp, the recovered signal might appear of similar

amplitude than the one at maximum detectability, the detection significance will be lower due to the dilution of

the signal from the planet across the CCF continuum.
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TESTING THE DETECTED SIGNAL 5.1.5

SPURIOUS COMBINATION OF RANDOM NOISE?

It is possible that the detected signal is not of physical origin but an artifact resulting from a spurious combi-

nation of random noise. To test for this scenario, we devised the following test. As before, after removal of the

planetary signal, we computed the orbit for uniformly distributed orbital semi-amplitudes in the [75 − 275] km/s

range, with a step of 50 m/s. However, after computing the RV of each observations, the RV-spectrum pairs were

shuffled, resulting in the signal being stacked with an RV that does not correspond to its observation. Finally, the

CCF were centered on the assigned RV of the planet, stacked and a Gaussian profile was fit to the resulting CCF.

In none of the cases was a significant signal detected which gave us confidence that the detected CCF of the

planet is not a mere artifact resulting from the combination of random noise. Figure 5.6 displays the resulting

stacked CCFs with randomly assigned RVs for selected values of Kp. Note that in some of the panels in Figure

5.6, some structures can be identified (e.g., the center structure in the 115 km/s panel of the figure) which could

be identified as the planetary signal. However, all of them have FWHMs much smaller (∼ 2− 3 km/s) than the

stellar one (7.43 km/s). As mentioned in Section 5.1.3, it would be possible that the planet would "see" the

star unaffected by rotation (See Charbonneau et al., 1999, for details) and thus the planet CCF could in theory

present a smaller FWHM. However, in the case of the 51 Pegasi system this effect should be negligible and thus

the structures that can be seen in Figure 5.6 can all be discarded as nonphysical.
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Figure 5.5: Recovered planetary signal for different selected values of Kp over the [75− 175] km/s range. It is clear that as the value
of Kp gets closer to the value corresponding to maximum detectability, the signal becomes better defined and the continuum noise
lowers.
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Figure 5.6: Detected signals as a function of kPlanet but for random sections of the normalised CCF where the planetary signal is not
expected to be found.

STELLAR CONTAMINATION

We explored the possibility that the detected signal could be contamination of stellar origin (This is highly

unlikely, it would mean that the contaminating signal had to have the correct radial velocity and be in phase for

most – if not all – observations). The option of a visual stellar companion has been discarded by adaptive optics

search for stellar companions on stars with planets with the Keck telescope (Luhman et al., 2002). The other

possibility was the presence of a background star that could contaminate our observations with a signal with the

magnitude of our detection’s. To inject a signal as strong as the one we detected, and considering the magnitude

of 51 Pegasi (magv = 5.49), would required a background star with magv < 16, assuming the worst case scenario

where all of the background’s star flux would be collected by the HARPS fiber. To estimate the probability of

such an alignment, we used the Besançon galactic model (Robin et al., 2003). According to this model, there

are only 760 FGK and M stars per square degree at the coordinates of 51 Pegasi with magv < 16. Note that we

can safely discard all other spectral types as the CCF mask would not be compatible with them. Assuming that

the recovered signal could be produced by any star within 2.6′′of 51 Pegasi, the probability of this signal to be

the result of a background star is below 0.1% (for details see Cunha et al., 2013), making contamination by a

background star highly unlikely.
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RECOVERY ALGORITHM ERROR

We also tested the planet CCF recovery algorithm to make sure it was recovering the signal correctly. To do

so, we created 100 sets of noiseless CCFs simulating the observations of the 51 Pegasi system. The goal of this

exercise was to test if the planetary signal could be recovered from each simulated set of observations. Each set of

simulations consists in 91 observations of the star and planet – mimicking our observations – and was attributed

a random RV semi-amplitude for the planet in the [100, 180] km/s range. Each observation was built by adding

one Gaussian profile for the planet to a Gaussian profile for the star at their corresponding radial velocities. Both

Gaussian profiles were computed from the stellar parameters presented in Table 5.4, except for the amplitude of

the planetary signal which was set to 5× 10−5 (a similar value to the one recovered for 51 Pegasi b).

For all simulated sets, the injected signal was successfully recovered. Furthermore, the recovered values of Kp

were always close to the injected ones with a standard deviation of only 0.11%. A similar result was obtained

for the amplitude, which was always recovered with a standard deviation under 0.01%. This test shows that the

recovery algorithm is working correctly and can be used safely to retrieve the planetary signal.

CHARACTERIZING THE PLANET 5.1.6

BREAKING THE MASS-INCLINATION DEGENERACY

The direct detection of the reflected spectrum from the planet enabled to lift the mass-inclination degeneracy

that results from the RV method which only yields the minimum mass. Note that the orbital inclination is limited

to 90 degrees, and as such the planet’s mass cannot be inferior to the minimum mass. Assuming a stellar mass

of is 1.04 M� (Santos et al., 2013), and the 90 degrees limit on the inclination, Equation 5.1 yields a real

mass of 0.46+0.06
−0.01 MJup for 51 Pegasi b. Combining this value with the minimum mass presented in Table 5.3

(mp sin (i) = 0.45 MJup), we derived an orbital inclination of 80+10
−19 degrees. This result is compatible with

results from the literature: 79.6◦ < i < 82.2◦ for Brogi et al. (2013); 70◦ < i < 82.2◦ for Birkby et al. (2017).

Note that the upper limit on the inclination found by these authors corresponds to the limit for which the planet

would transit, which has been discarded from photometric surveys of the system (e.g. Henry et al., 1997).

THE ALBEDO

In principle, the recovery of the reflected planetary signal should enable us to estimate the planetary albedo

from Equation 4.11. However, 51 Pegasi b does not transit its host, and thus we have no information on the

planetary radius of the planet4. Yet, it is still an interesting exercise to attempt to infer what possible albedo/radius

combinations can plausibly create the signal we have detected.

First of all, we need to estimate the planet-to-star flux ratio. In Section 4.1.1, we mentioned that this value

would be given by the ratio of the areas of the planetary and stellar CCF. However, a visual inspection of Figure

4As discussed in Chapter 2, no mass-radius relations for hot-Jupiters exits due to the degeneracy in the measured radii for planets with similar

masses.
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Figure 5.7: Simulated signal injected at +60 km s−1 in relation to the position of the center of the planetary CCF.

5.4 shows that the planetary CCF is dominated by noise and the planetary CCF appears extremely broadened

relatively to the stellar one. The most obvious physical explanation for the broadening of the planetary CCF is

rotational broadening. However, such close-in planets are expected to be tidally locked to their hosts, which for a

radius of 1.2RJup would imply a rotational velocity of ∼ 2 km/s. For the same radius, to explain the detected

broadening requires a much higher rotational velocity of ∼ 18 km/s. Additionally, the error on the stellar RV

measurements is of the order of the m/s, which transposed into the planetary RV domain correspond to errors

inferior to 2-3 km/s, clearly insufficient to explain this level of broadening.

A simple test has suggested that this broadening could be noise-related. On each observed CCF (before the

removal of the stellar signal) we injected an artificial signal (a pure Gaussian) with an amplitude of 5× 10−5 and

a FWHM equal to the star’s at +60 km/s relatively to the position of the planet (where only noise is expected).

Then, we ran anew our recovery pipeline to attempt to recover the injected signal.

Figure 5.7 shows the recovered signal which was recovered with a similar amplitude (4.6 × 10−5). However,

what is most intriguing is that the FWHM of the recovered signal is much larger that the injected one (∼ 27.6

km/s against 7.43 km/s). Note that this level of broadening is similar to the broadening detected on the recovered

planetary signal of 51 Pegasi b (FWHM = 22.6± 3.6 km/s) . We repeated this test for several injected signals

with different amplitudes (but same FWHM as the star). When the injected signal amplitude is much larger than

the noise, the recovered parameters are close to the injected ones. However, if the injected signal has an amplitude

close to the noise level, the recovered CCF appears extremely broadened. Since we are working close to the noise

level, this result indicates that the FWHM of the CCF is strongly affected by noise. Note that this effect was not

identified when recovering artificial signals from noiseless CCFs (i.e., pure Gaussian functions) to test the recovery

algorithm (see previous Section), which supports the assumption that the broadening is noise-related.

The tests we have performed make us confident on the validity of the detection. However, the amount of

structured noise that can be seen on the recovered planetary CCF (Figure 5.4) suggest that the parameters of the

recovered planetary CCF might not all be reliable to derive physical parameters for the planet. In summary, the

results presented in the previous paragraph suggest that:
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Figure 5.8: Possible albedo values for the detected signal for a range of planetary radii between 1 and 2.5 Jupiter radius. The red
region corresponds to albedo values above unity and thus nonphysical. The green line corresponds to an albedo of 2/3, corresponding
to a Lambert sphere. The orange lines correspond to the albedo (Ag = 0.5) and radii (Rp = 1.9) we chose.

• the amplitude of the injected signals was always recovered correctly, suggesting that the impact the structured

noise on the recovered amplitude of the planetary CCF for 51 Pegasi b is negligible;

• the recovered simulated signals would always appear significantly broadened, meaning that the structured

noise on the recovered planetary CCF impacts severely the FWHM of the planetary signal. Therefore, we

believe that the FWHM of the recovered signal is not reliable to derive physical parameters of the planet

(e.g. the rotation of the planet Kawahara, 2012; or atmospheric winds Snellen et al., 2010).

Therefore, when computing the planet-to-star flux ratio, we chose to ignore the broadening of the CCF and

compute it from the ratio of the amplitudes of the planetary (6.0± 0.4× 10−5) and stellar signals (0.48), yielding
Fp
F∗

= 1.25 × 10−4 (see Table 5.4). Figure 5.8 shows the possible albedo values as a function of the planetary

radius in the [1− 2.5] RJup range. These were computed for a phase function g (α) = 0.87, the average value for

the phase functions corresponding to the observations used in recovering the signal. The red region corresponds to

nonphysical albedo values, i.e., above unity. Note that for a Lambertian sphere (i.e., the planetary surface reflects

isotropically in all directions), it has been shown that the the planetary albedo will not be larger than 2/3 (Tiatco,

2016). For that value of the albedo, 51 Pegasi b would have a radius of 1.6 ± 0.2 RJup (the error bars on the

radius were estimated from the error in the CCF amplitude). In the Solar System, cloud covered planets have been

shown to behave as Lambertian surfaces (e.g., Venus - see Knutson, 2013), making this assumption plausible

should 51 Pegasi b be covered with clouds. To have a higher value of the albedo would imply for the planet to

be strongly back-scattering which although physically plausible (Buratti et al., 1990, e.g. the saturnian satellites

Mimas, Enceladus and Thetys) is highly unlikely due to the low ice content of hot Jupiters. Planets with no or thin

atmospheres tend to reflect more uniformly (e.g., the Earth and the Moon - see Knutson, 2013) than Lambertian

surfaces. If we assume a geometric albedo of 0.5, the radius of the planet will increase to 1.9 ± 0.3 RJup. Such

a large radius is not uncommon and has been observed in other highly inflated hot Jupiters with similar masses

(e.g. WASP-17 b with ∼ 2RJup Anderson et al., 2011; HAT-P-67 b with ∼ 2.1RJup Zhou et al., 2017; Kepler-12

b with ∼ 1.7RJup Fortney et al., 2011), making this notion plausible.
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Figure 5.9: Recovered signal for Kp = 132 km/s with the blue mask (left panel) and the red mask (right panel). The grey line on
the right panel corresponds to the best-fitting Gaussian profile.

A COLOR-DEPENDENT ALBEDO?

As mentioned previously, the albedo function from an exoplanet is a quantity highly dependent on a the

composition of its atmosphere and its wavelength dependence can be used to hint at possible compositions. As

such, we decided to probe further at the HARPS observations of 51 Pegasi b and check if it was possible to find

some color dependency on the recovered albedo.

To do so, we divided the G2 spectral mask into two sub-masks: the red mask covering a spectral range from

462-nm to 680-nm and the blue mask covering a spectral range from 378-nm to 462-nm. Each sub-masks is

composed of about 2000 spectral lines.

The recovery procedure for the signal was the same as the one used previously to recover the broadband

reflected signal of 51 Pegasi b, assuming a semi-amplitude for the planet of Kp = 132km/s. Figure 5.9 shows

the recovered signal with both masks. No signal was detected on the CCF computed with the blue mask (left

panel). With the red mask, a signal is detected with a 2.4± 0.1σ significance. The best fitting Gaussian profile to

this signal (in grey) has an amplitude of 5.0± 0.2× 10−5 and a FWHM of 22.3± 1.2 km/s, similar to the signal

recovered with the standard G2 mask.

A few interesting considerations can be made from these results. Firstly, it appears that the majority of the

planetary reflected flux originates in the redder regions of the spectrum. It is known that spectrographs are more

sensible towards redder wavelengths than in the bluer regions. As such, it is possible that the signal is still present

on the bluer regions – with a similar amplitude as the signal in redder wavelengths – but below the detection

threshold and hidden amidst the noise. It can be seen clearly that the noise amplitude on the right panel is

significantly larger than for the left panel. Also, the reduction in detection significance from using the red mask

(∼2000 lines) instead of the standard G2 mask (∼4000 lines) is close to the expected from halving the number

of lines of the CCF computation (1.54 against
√

2). However, the significance of these results is not high enough

to be conclusive.

To study this result in more detail, we have submitted a proposal additional observation of the 51 Pegasi

system with HARPS (ESO Program ID: 0101.C-0106). The additional time totals 27.5h, that combine with the
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Figure 5.10: Possible φ-albedo configurations for a planet with Rp = 1RJup and rings within 1−3 RJup. φ represents the rings/orbit
misalignment. The green gradient corresponds respectively to the 1,2 and 3-σ confidence levels on the recovered flux.

data from ESO’s programme 091.C-0271 should enable to reach a S/N on the CCF around 5300. After the albedo

recovery process we should be able to reach a final S/N of around 150 000. This data should permit to recover (or

at least put an upper limit) down to a geometric albedo of ∼ 0.09 with a 3σ confidence over 3 wavelength subsets

of the HARPS spectral coverage. Although not enough for a detailed characterization of the planet’s atmosphere,

these 3 albedo measurements should permit to probe the impact of the sodium doublet at 589-nm and the cloud

coverage of the planetary atmosphere. At the moment of writing, ESO still hasn’t released the results regarding

observing call P101.

EXOPLANETARY RINGS?

It is possible that the recovered broadened FWHM of the CCF is of physical origin, and not the result of noise

as proposed in Section 5.1.6. In this case, computing the planet-to-star flux ratio from the ratio of the areas of the

planetary and stellar CCFs yields Fp
F∗
≈ 3.8×10−4. To explain such a high flux, Santos et al. (2015) proposed that

a large system of misaligned rings would orbit 51 Pegasi b. Figure 5.10 shows possible φ-albedo configurations for

a planet with Rp = 1RJup and rings within 1 − 3 RJup. φ represents the rings/orbit misalignment. The green

gradient corresponds respectively to the 1, 2 and 3-σ confidence levels on the recovered flux.

However, dynamical analysis of the system suggest that for tidally locked hot Jupiter planets (such as 51

Pegasi b), it is highly unlikely that the rings will be misaligned with the orbital plane. A rings system co-planar

with the planetary orbit is insufficient to explain the measured flux. No alternative physical mechanism has been

proposed to explain such a high flux.
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PLANETARY CCF OFFSET

A visual analysis of Figure 5.4 suggests that the planetary signal could be red-shifted ∼ 5km/s from the

expected location for the real orbital semi-amplitude (RV = 0). It is enthralling to search for plausible physical

origins for this offset: (i) high-speed winds from the day-side to the night-side due to the temperature gradient

(e.g. Miller-Ricci Kempton et al., 2012); (ii) observational bias from stacking observations all on the same side of

the superior conjunction (see Figure 5.2); (iii) a higher contribution of noise in the redder parts of the CCF.

A similar offset was found in HD 189733 b, where Wyttenbach et al. (2015) used to identify a ∼ 8km/s blue-

shift of the sodium doublet (590-nm) in the planetary atmosphere. This value was later revised by Brogi et al.

(2016), who found a blue-shift of ∼ 1.7km/s on the planetary signal from CRIRES observations of the planetary

transit. Snellen et al. (2010) have also detected ∼ 2km/s blue-shift of the carbon monoxide signal from transit

observations of HD 209458 b with CRIRES. In the case of transmission spectra – which observe the terminator

region of the atmosphere – this genre of offset on transmission spectra has been predicted by theoreticians (e.g.

Kempton et al., 2014, propose net blue-shifts of up to 3km/s). When looking at reflected light, we are observing

the other side of the orbit and thus the signal appear red-shifted, in concordance to what we apparently detected

in 51 Pegasi b. However, the observed red-shift is larger than the expected ∼ 3km/s, which could be attributed

the large amount of noise seen on the planetary CCF.

UVES OBSERVATIONS OF 51 PEGASI B 5.2

To test if a color-dependency could be found in the reflected signal of 51 Pegasi on its orbiting planet, we

acquired UVES observations of the the system. Being mounted on a larger telescope, UVES should be able to

recover the reflected light from 51 Pegasi b on a much larger S/N domain, and thus allow for the recovery of the

wavelength dependency of the albedo.

Our data was collected with the red arm of UVES spectrograph at ESO’s Very Large Telescope at La Silla-

Paranal Observatory, as part of ESO programme 093.C-0929. It consists of 575 spectra (resolution: 110 000)

observed in five different nights adding up to slightly over 8 h of observing time. These observations were split into

several carefully selected time windows in which the planet could be observed close to superior conjunction (i.e.

when the day side of the planet is facing us) in order to maximise the planet’s flux (maximum phase). These time

windows were computed from the ephemeris provided by Butler et al. (2006). The obtained individual spectra

have a S/N that varies between 130 and 363. The spectra cover the wavelengths range from roughly 450-nm to

750-nm. Table 5.5 summarizes the parameters of the collected observations. More detailed information can be

found in Table B.2.
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DATA REDUCTION 5.2.1

To be able to recover the reflected light spectrum of the exoplanet, we require 2-dimensional wavelength-

calibrated spectra of our target. Our first reduction was performed with ESO Reflex Environment (Freudling et

al., 2013), which by default returns 1-dimensional wavelength and flux calibrated spectra of point-like objects (see

http://www.eso.org/sci/observing/phase3/data_releases.html#idps). Using the default 1-dimensional

spectra would cause i) loss of spectral information and ii) possible errors in the computation of the CCF in the

"stitching" regions of the spectra. Note that it is possible to force this software to produce the 2-dimensional

spectra by hacking some of the data reduction recipes and actors in the graphical reduction pipeline of ESO Reflex

Environment.

We also tested reducing the data with Gasgano and ESORex (ESO Recipe Execution Tool), two alternative

data reduction packages provided by ESO that work as wrappers for ESO’s data reduction recipes. Both these

packages permit great control over the data reduction procedure by permitting to fine-tune every parameter in

the process. However, they do not permit an easy automation of the data reduction process, which is essential

for the number of spectra we acquired. Ultimately we chose to create our own data reduction pipeline in python

that uses the python-cpl libraries to interface directly with ESO’s CPL (Common Pipeline Library) recipes. This

strategy combines the possibility to automate the data reduction process for a large number of observations with

the high-degree of customization resulting from interfacing directly with ESO’s CPL recipes to reduce the UVES

data. This method permits two different approaches: i) run the red chain recipe that would perform the whole

reduction; ii) perform a step-by-step data reduction using the individual data reduction recipes. We chose the latter

approach as it permits complete control over the whole data reduction process. Table 5.6 shows the reduction

steps, as well as the ESO CLP recipes in the order they were used and the settings we found more adequate for

our study.

When performing the flat-fielding of the science raw spectra, the UVES reduction recipes will remove the

instrumental profile (blaze function) information from the spectra. This means that the reduced spectra will have

an apparent flux variability that is not physical as we get closer to the edges of each order. Furthermore, the

correction of the blaze function will give incorrect weights to the spectral lines closer to the edges when computing

Night Number of Total exposure S/N range

spectra [seconds] L-side R-Side

2014-07-31 49 1127 126-181 138-181

2014-08-17 107 7875 129-223 148-253

2014-08-25 177 8058 113-223 130-255

2014-09-28 198 7242 126-214 147-247

2014-10-28 44 4779 199-312 229-363

Table 5.5: Description of the available data on a per night basis. The S/N columns correspond to the S/N at the central wavelength
of order 104 (λ = 587.22-nm) for the L-side of the spectrograph and order 128 (λ = 477.14-nm) for the R-side.
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Step CLP recipes Description

1. Master Bias uves_cal_mbias default settings

2. Order definition uves_cal_predict default settings

uves_cal_orderpos

3. Wavelength Solution uves_cal_wavecal default settings

4. Science Data Reduction uves_obs_scired Flatfield removal was performed in pixel-space instead of

spectral space, as the later introduced additional noise. All

other setting were kept at their default values.

Table 5.6: Reduction steps with used CLP recipes and adopted settings.

the CCF. To mend this issue, we used the extracted reduced master flat functions for each order to reconstruct

the blaze function, i.e., the instrumental profile of the instrument on each order. These were constructed by

performing a moving average over the extracted flat function for each order with a window of 100 pixels in the

spectral space. This permits to recover the blaze function of the instrument for each order, by smoothing the flat

function over a 100 pixels region in the spectrum space to discard local defects (e.g., due to bad pixels). Each

2-dimensional spectrum was then multiplied by the reconstructed blaze function.

THE CROSS CORRELATION FUNCTION 5.2.2

As done for many years to compute precise radial velocities, we require to cross correlate our spectra with a

binary mask that contains the rest wavelengths of thousands of spectral lines across the spectrographs wavelength

coverage. Initially we attempted to use the cross correlation recipe from the HARPS DRS on our UVES data.

Unfortunately,this approach required that the headers of the FITS files would have to be heavily modified. Thus

we decided to implement our own cross-correlation recipe, which is similar to the one implemented for HARPS

(see Baranne et al., 1996). We defined our cross-correlation function for a given order order as follows:

CCForder =
∑

lines,order

dline × ∑
pixels

(fline,pix Fline,pix)

 (5.3)

where dline is the depth of the selected line (from the mask), pixels represents the list of spectral pixels

covered by the selected line, fline,pix the fraction of the pixel that falls on the line, Fline,pix the flux of the line

for each pixel (from the spectrum).

For the spectral binary mask, we used the new_G2 mask from the HARPS DRS (Mayor et al., 2003) version

3.6. Although originally built to be used with HARPS data, the wavelength coverage of both instruments is similar
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enough ([450-750]nm for UVES, against [378-691]nm for HARPS) that the same masks can be used (albeit at the

expense of loosing some spectral information). Figure 5.11 shows the CCF applied to two different orders from

the red chip of one of the observations.

RESULTS AND DISCUSSION 5.2.3

After applying the recovery procedure presented in Chapter 4, the noise level attained on the UVES data was

found to be much higher than the one achieved with the HARPS data, regardless of the larger collecting area of

the VLT relatively to ESO’s 3.6m telescope. The main reason appears to come from unexpected noise structures

that appear on the CCF from the individual observations. This can be seen in Figure 5.11b, were some dips with

amplitude comparable to the stellar CCF can be seen.

At the moment we do not know the origin of these structures – which will require additional attention –

although in continuation of this work we intend to test for

1. the impact of telluric lines in the spectrum;

2. inner reflections in the instrument that might cause ghosts on the CCD;

3. the possibility for an erroneous wavelength calibration solution of the UVES spectrograph as proposed by

Whitmore et al. (2010):

4. the impact of an imperfect flat-filed correction and

5. the impact of instrumental drift on our observations.

Understanding possible sources of noise is of great importance for future reflected light studies as we are

looking for signals close to the noise limit of current observing facilities.
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(b) Order 6 of one of the UVES observations
Figure 5.11: Orders 4 and 6 of the UVES spectra. On both figures the top panel shows the 1D extracted spectrum and the bottom
panel shows the resulting CCF.
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Chapter 6.

Prospects for next-generation observing

facilities

The next generation of high-resolution extremely stable spectrographs to be installed at 10-m and 40-m

class telescopes presents a unique opportunity for exoplanet atmospheric characterization. The combination of a

HARPS-like stability with the increased collecting power of larger telescopes should enable to probe exoplanets

and their atmospheres in great detail.

With this in mind, we studied the potential of both ESPRESSO@VLT and HIRES@ELT in the recovery of the

color-dependent reflected spectrum from exoplanets using the CCF technique and distinguish between possible

atmospheric models. Additionally, we explored the possibility of recovering the reflected signal from exoplanets

currently known to be inside their hosts Habitable Zone.

EXOPLANETARY ALBEDOS WITH ESPRESSO AND HIRES 6.1

The goal of this project was the recovery of the wavelength dependence of the albedo from high-resolution

observations of prototypical single planet systems with both ESPRESSO@ESO’s VLT and HIRES@ESO’s ELT (see

Section 3.2 for a description of the instruments). In terms of targets, we chose to simulate known single planet

systems that would represent the following planet classes: i) hot Jupiters, ii) hot Neptunes and iii) short-period

super-earths.
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Figure 6.1: Top Panel: Estimated exposure times for the recovery of the grey albedo function (Ag = 0.2) for a 3-day period hot
Jupiter with a radius of 1.2 RJupiter from ESPRESSO observation (HR mode) as a function of Nbins and of the host’s magnitude.
Bottom Panel: Same as top panel, but for HIRES observations (from Martins et al., 2017).

SAMPLING OF THE RECOVERED ALBEDO FUNCTION 6.1.1

For each planet class, we defined a fixed number Nbins of wavelength bins (i.e.,the number of wavelength

subsets of the full coverage of the chosen spectrograph) for which the albedo will be recovered using the CCF

technique. The number of wavelength bins selected for each planet type needs to balance the required exposure

time and sampling of the recovered albedo function. Figure 6.1 shows on the top panel the estimated required

times to recover the albedo function of a prototypical hot Jupiter (p = 3 days; RP = 1.2RJupiter; grey albedo

with Ag = 0.2) with ESPRESSO (HR mode), as a function of Nbins and different visual magnitudes of the host

star. The bottom panel shows the same, but from HIRES observations.

Too high a value for Nbins and the exposure time cost will be prohibitively high (e.g., for Nbins = 25 the

required S/N to recover the reflected light spectrum from the above target is close to 800 000). For a magV = 8

star this requires over 100 hours of ESPRESSO time. Too low a value for Nbins and the level of detail of the

recovered albedo function will be too low to distinguish between possible albedo models. Note that Nbins = 1

corresponds to the work presented in Martins et al. (2015a).

As such, for simulated observations of hot Jupiters with ESPRESSO we settled on 15 wavelength bins for

the recovered albedo function. For simulated observations with HIRES we selected i) 70 wavelength bins for hot

Jupiters; ii) 6 wavelength bins for hot Neptunes and iii) 5 wavelength bins for Super-Earths. We believe these

values to yield a good balance between exposure time and the level of detail in the recovered albedo function.

Note that the proposed values of Nbins are just for this exploratory work, for real observations we would attempt

different values for Nbins and try to maximize the level of detail on the recovered albedo function. Once the signal

of an exoplanet is detected at 3-σ, we passed the detection threshold, and the significance for a detection on a

different Nbins value or integration time can be calculated by scaling from the presented values.
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ESTIMATING THE EXPOSURE TIME 6.1.2

The computation of the exposure time required to recover the albedo from an exoplanet involves the estimation

of the planet-to-star flux ratio (F?/Fp, see Equation 2.1) of the planet over the selected phase range of the

observations. To do so, we assumed for each selected planet: i) an average Lambertian phase function g(α) u 0.87;

ii) a grey albedo with Ag = 0.2; iii) the planetary radius Rp, and semi-major axis a from the exoplanet.eu database1.

Under the above assumptions, the signal-to-noise ratio required (SNrequired) to recover the planetary signal

at a 3-σnoise significance is given by

SNrequired =
3
Fp
F?

(6.1)

The S/N that can be achieved with both our simulated instruments was extrapolated from the S/N that can

be accomplished with HARPS (SNHARPS (λ)) given the same parameters. SNHARPS (λ) was estimated with

HARPS ETC2 version P100.2.

Note that all simulated targets are bright (Vmag < 8). As such, to avoid saturation and ensure linearity of the

instrument, we fixed the individual exposure time in the ETC to 300s. For reference, for our brightest star – 51

Pegasi with Vmag = 5.49 – in 300s we only reach about 65% of the detector’s saturation limit per pixel, a regime

where the detector is still linear. The stellar parameters for each target were obtained from the exoplanet.eu

database. The values for the other customized parameters of the ETC are shown in Table 6.1. The parameters

not in the Table were left to their default values.

The S/N that can be obtained with either ESPRESSO or HIRES can be extrapolated from SNHARPS (λ, t)

Parameter Value

Target Input Flux Distribution

Template spectrum G2V (Kurucz)

Sky Conditions

Moon phase 3 days

Airmass 1.2

Seeing 0.8

Instrument Setup

Exposure Time 300 s

Table 6.1: HARPS ETC settings. The settings not in this table were left to their default values.

1Note that we intend to simulate known prototypical planets from the exoplanet.eu database.
2https://www.eso.org/observing/etc/bin/gen/form?INS.NAME=\gls{harps}+INS.MODE=spectro with HARPS User Manual, Issue 2.1,

October 1st 2011 - https://www.eso.org/sci/facilities/lasilla/instruments/harps/doc.html
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with

SNinstrument (λ, t) =
√
A× E (λ) SNHARPS (λ, t) (6.2)

where SNinstrument (λ) is the expected wavelength dependent S/N for the simulated instrument . A is the ratio

of the collecting areas for the selected facility and HARPS 3.6m telescope (A ≈ 5.4 for ESPRESSO@VLT (HR

mode) and A ≈ 117.4 for HIRES@ELT). E (λ) is a scaling factor to account for the different wavelength dependent

efficiencies between the ESPRESSO/HIRES and HARPS.

For ESPRESSO, this scaling factor is defined as

E (λ) =
EffESPRESSO,mode (λ)

EffHARPS (λ)
(6.3)

where EffESPRESSO,mode (λ) and EffHARPS (λ) are respectively the efficiency of ESPRESSO for each mode

(see Figure 3.7) and of the HARPS spectrograph. Note that for all 3 resolution modes of ESPRESSO, when

estimating the required exposure time we assumed the same efficiency profile as HR mode. This will allow to

compare the impact of the resolution on the error bars from the recovered albedos. However, when constructing

the simulations (see Section 6.1.5), each mode will have the efficiency profile presented in Figure 3.7. In the

case of HIRES, no efficiency profile is yet available and thus we assumed a HARPS-like efficiency (i.e., E = 1).

This assumption is reasonable as HARPS is the spectrograph that has its efficiency measured with the highest

precision.

By using the CCF technique, the S/N of the observations will be increased by a factor proportional to the

square root of the number of spectra lines used in the correlation. Since we intend a 3-σ detection per bin, we

assume that the increase in SN per bin is proportional to the average number of spectral lines per bin and as such

〈SNinstrument,bin (300s)〉 = 〈SNinstrument (300s)〉
√
Nlines

Nbins
(6.4)

where 〈SNinstrument,bin (300s)〉 is the average SN per wavelength bin that can be achieved with the selected

instrument after a 300s exposure with the cross correlation technique.

Therefore, the total exposure time ttotal required to achieve SNrequired is given by:

ttotal = 300s×
(

SNrequired

〈SNinstrument,bin (300s)〉

)2

(6.5)
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Mp Rp P a kp I
(
Rp
a

)2
[MJup] [RJup] [days] [A.U.] [km/s] [degrees] [ppm]

51 Peg b 0.47 1.90 4.2 0.051 130.8 80.0 315

HD 209458 b 0.69 1.38 3.5 0.045 137.2 86.6 212

HD 109749 b 0.28 0.99 5.2 0.059 109.7 90.0 64

HD 76700 b 0.23 0.99 4.0 0.049 120.4 90.0 93

55 Cnc e 0.03 0.18 0.7 0.016 128.8 85.4 28

Table 6.2: Orbital parameters for simulated planets (from Martins et al., 2017).

TARGET SELECTION 6.1.3

Our initial pre-selection consisted in all the planet from the exoplanet.eu database orbiting FGK dwarfs with

Vmag ≤ 10 in under 10 days and have measured radii that are observable from ESO’s La Silla-Paranal Observatory

(i.e., whose host has a declination −50◦ < δ < 20◦). For all targets that met these criteria, we estimated the

required exposure time to recover the albedo function from the planet (see Section 6.1.2 for a detailed description

on how the required time was computed) assuming a grey albedo – i.e. wavelength independent – with Ag = 0.2.

We also limited our list to target which could be detected within reasonable times (t < 30h or ∼ 3 nights). The

complete target lists can be found on Appendix A.

Of the resulting planet sample we selected a few targets which we consider representative of the different

exoplanet types:i) two hot Jupiters – 51 Pegasi b, HD 209458 b – to be observed with both instruments3; ii) two

hot Neptunes – HD 109749 b, HD 76700 b – to be observed with HIRES and iii) one super-earth – 55 Cnc e – to

be observed with HIRES. Table 6.2 presents the orbital parameters for the selected planetary systems and Table

6.3 shows the parameters for their hosts.

The observational parameters for the simulated observations of our sample are presented in Table 6.4. For

each target, we define one observing run as a of set of simulated observations whose cumulative exposure times

M? k? Teff Spectral Vmag

[M�] [m/s] [K] Type

51 Peg 1.11 52.9 5793 G2 IV 5.5

HD 209458 1.15 78.7 6092 G0 V 7.7

HD 109749 1.20 24.4 5610 G3 IV 8.1

HD 76700 1.00 26.4 5726 G6 V 8.1

55 Cnc 0.91 3.6 5196 K0IV-V 6.0

Table 6.3: Parameters for simulated hosts (from Martins et al., 2017).

3Selecting the same targets for instruments allows to compare the effect of an increased telescope size on sampling of the recovered albedo

function.
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(
Rp
a

)2
texp 〈S/N〉 ttotal Nbins

[ppm] [seconds] [hours]

ESPRESSO (all modes)

51 Peg b 315 36 330 1.0 15

HD 209458 b 212 432 430 12.0 15

HIRES

51 Peg b 315 36 1100 1.0 70

HD 209458 b 212 188 930 5.2 70

HD 109749 b 64 263 890 7.3 6

HD 76700 b 93 130 610 3.6 6

55 Cnc e 28 153 1850 4.25 5

Table 6.4: Parameters for simulated observing runs (from Martins et al., 2017).

is given by ttotal. We fixed a minimum observing time of 1h, which corresponds to the maximum time length of

one observing block with ESO instruments.

The simulation of observations and the computation of the CCF is computationally expensive and as such it

is advisable to keep the number of simulation to a minimum to minimize the computational effort. However, as

discussed on Section 4.1.1, the stellar template used in the removal of the stellar signal from the observations

requires a S/N at least 10 times higher that of the individual observations. This corresponds to a minimum of

100 individual exposures just to construct the template, a value adopted for the number of observations for each

simulated observing run. Note that if we were dealing with real observations, the proposed individual exposure

times might saturate the simulated instrument. However, we can safely assume that each individual simulated

observation can be constructed by stacking individual observations with lower exposure times until the equivalent

S/N is attained. To construct the template, we will not be simulating dedicated in-transit observations, but

construct it by stacking the simulated observations as done in Chapter 5 (i.e., template T1 from Section 5.1.2).

CONSTRUCTING THE SIMULATED SPECTRA 6.1.4

Our simulations were constructed from the extremely high-resolution (R = 500000) solar spectrum available at

http://kurucz.harvard.edu/sun.html (hereafter Kurucz spectrum – Kurucz, 2006). The Kurucz spectrum

was degraded4 to the resolutions of both ESPRESSO (all modes) and HIRES (see Section 3.2). For each individual

observation, with a given orbital phase φ, the simulated spectra will have three main components: i) the stellar

signal S? (λ,RV? (φ)), ii) the planetary signal Sp (λ, φ) and iii) noise.

These three components were co-added to create the final spectra. We defined the spectral template in

4Our convolution code was adapted from https://github.com/jason-neal/equanimous-octo-tribble/blob/master/IP_Convolution.

py.
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terms of spectral order, coverage and in-order characteristic efficiency (i.e., the blaze function) for each simulated

instrument to be the same as HARPS instrumental profile. On other words, the computed spectra are projected on

a wavelength grid defined by the HARPS spectrograph instrumental profile. Additionally, each order is multiplied

by HARPS blaze function B (λ)) to account for in-order sensitivity variations. The resulting spectra were saved

in the standard fits format used for HARPS observations, which allowed to use HARPS DRS vs 3.6 to compute

the CCF for each observation.

THE STELLAR COMPONENT

The stellar spectrum has a continuum flux defined as F? (λ). Since the Kurucz spectrum used to construct the

observations is normalized in flux, its continuum S(λ,RV = 0) need to be scaled in flux to match the expected

continuum flux of the host star. For each observation

F? (λ) = A× E (λ)× FHARPS (λ) (6.6)

where FHARPS (λ) corresponds to the collected flux from the star collected by HARPS (estimated from HARPS

ETC). Both A (ratio between the collecting areas of the simulated telescopes and ESO’s 3.6m) and E (λ) (ratio

of the efficiencies of ESPRESSO/HIRES and HARPS) are the same scaling factors defined in Section 6.1.2.

For each planet+instrument configuration, HARPS ETC was used to estimate the stellar flux (F? (λ)) for each

observation (column Obj for the central column of each order) assuming the parameters from i) Table 6.2 for the

star; ii) Table 6.4 for the exposure time and iii) Table 6.1 for the remaining settings.

THE PLANETARY SPECTRUM

Since we are working at optical wavelengths, the planetary spectrum will basically be a scaled down copy of

the stellar spectrum given by

Sp (λ, φ) =
Fp (λ, φ)

F? (λ)
× S (λ,RVp (φ)) (6.7)

where RVp (φ) is the radial velocity of the planet for phase φ, Fp (λ) is the flux reflected by the planet, and Fp(λ,φ)
F?(λ)

is computed from Equation 2.1.

Each individual observation was assigned a random orbital phase between 15 and 45 degrees on each side of

opposition/superior conjunction. This choice of phase balances the need to collect as much flux as possible from

the planet and the ability to spectroscopically resolve the stellar and planetary signals (see Section 4.1.1). The

phase function g(α) was assumed for our observations a Lambertian (see Equation 2.2)

The main goal of this project is to test the CCF method to recover the color dependence of the reflected optical

spectrum from an exoplanet. In particular, we are interested in the ability of the CCF technique to distinguish

between possible atmospheric models and hint at the composition of the simulated planetary atmospheres. This
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led us to use albedo function models with real physical meaning to construct our simulated observations. These

models were computed by our collaborator Antonio Garcia-Muñoz, which simulated two different configurations

in terms of atmospheric composition (Model A and Model B). Additionally, each configuration was simulated

for two different scattering scenarios (×1,×100). These models are described in detail in Appendix B. For each

planet+instrument configuration, we simulated independent observing runs assuming a grey albedo Ag = 0.2 and

two different albedo models from the ones presented in Appendix B.

THE NOISE COMPONENT

For this study, we assumed the noise to be Gaussian with a mean of zero and a standard deviation of σ =√
F? (λc) as we are simulating extremely high signal-to-noise spectra and thus working in a photon noise limited

domain (see e.g. Howell et al., 2000).

SIMULATIONS OVERVIEW 6.1.5

In total, we simulated ESPRESSO@VLT (in all 3 modes – MHR mode R = 60000, HR mode R = 130000

and UHR mode R = 220000) observations of 24 planet+star+instrument+albedo configurations, with an average

S/N around 300 − 400. For HIRES@ELT, we created 13 planet+star+instrument+albedo configurations, with

an average S/N varying between 600 and 1800. The observational parameters for each observing run of each

star+planet system are presented in Table 6.4. Note that although each ESPRESSO mode will have different

efficiencies, the total exposure time for each star+planet system with ESPRESSO was set as the same for all

modes.

For each planet+star+instrument+albedo configuration, we simulated 100 observing runs – each with the total

exposure time presented in Table 6.2 – of 100 observations each. Table 6.5 summarizes the planet+star+instrument+albedo

configurations that were simulated for this project.

RESOLUTION DEPENDENCE

Note that to test the impact of different resolutions/modes on the recovered albedos, we constructed additional

simulated observations of the HD 209458 b system as observed with ESPRESSO in all 3 modes. Note that the

MHR mode of ESPRESSO allows to combine incoherently the light from up to 4 of the UTs of VLT, and thus we

simulated observations in this mode with 1, 2 and 4 UTs. For each star+planet+mode configuration we simulated

100 observing runs of 100 spectra with a total exposure time per run of 10h, independent of the simulated

resolution mode. This ensures that the achievable S/N is much higher than the one required for a 3-σ per bin

recovery of the reflected planetary signal, over 10 wavelength bins. For simplification purposes but no loss of

generality, we assumed for all observations a grey albedo model with Ag = 0.2. The results of the recovery of the

albedo function for these simulations will be discussed in Section 6.1.7.
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Planet Instrument Mode Albedo models

51 Pegasi b ESPRESSO HR mode Ag = 0.2, Model A (x1,x100)

MHR mode Ag = 0.2, Model A (x1,x100)

UHR mode Ag = 0.2, Model A (x1,x100)

HIRES Ag = 0.2, Model A (x1,x100)

HD 209458 b ESPRESSO HR mode Ag = 0.2, Model B (x1,x100)

MHR mode Ag = 0.2, Model B (x1,x100)

UHR mode Ag = 0.2, Model B (x1,x100)

HIRES Ag = 0.2, Model B (x1,x100)

HD 109749 b HIRES Ag = 0.2, Model A (x100), Model B (x100)

HD 76700 b HIRES Ag = 0.2, Model A (x1), Model B (x1)

55 Cnc e HIRES Ag = 0.2

Table 6.5: Summary of the simulated planet+star+instrument+albedo configurations.

RESULTS 6.1.6

For each configuration (see Table 6.5), we attempted the recovery of the reflected signal from the planet

applying the methodology presented in Chapter 4 to each wavelength bin of each simulated observing runs inde-

pendently. The wavelength bins were defined by dividing the wavelength coverage of HARPS into Nbins subsets

with equal wavelength coverage (see Table 6.4, Section 6.1.3). Figure 6.2 shows the recovered planetary signal

and albedo for simulated observations of the HD 209458 system over 15 contiguous wavelength ranges in the

optical. The left panel shows the recovery planetary CCFs for each wavelength range. The right panel shows the

recovered albedos for each range (orange dots) overlapped on the simulated albedo function (grey line). It is clear

that the recovered albedo for each wavelength bin follows the simulated albedo curve.

The distribution of the recovered albedo values for each configuration permitted to estimate the 1-σ error

inherent to the method. The recovered albedo distributions are presented in Figures 6.3 to 6.8 (from Martins

et al., 2017). The green diamonds correspond do the mean of the recovered albedos for each wavelength bin, over

all simulated observing runs for the selected configuration. The error bar corresponds to the 1-σ error bar of the

distribution of the recovered albedos for each wavelength bin, over all simulated observing runs for the selected

configuration. The blue horizontal lines represent the mean albedo for the simulated model over each wavelength

bin. The horizontal orange lines correspond tot the upper limit for non-detection – or minimum detectable albedo

– on each wavelength bin as 3 times the average noise across all 100 observing runs simulated per selected

configuration. For the bins where the mean albedo from the model is lower than the minimum detectable albedo,

we set the value for the recovered albedo as the upper detection limit (orange arrows).

For all configurations, we tested our recovered albedo function against all atmospheric models presented in
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Figure 6.2: Example of a recovered albedo function from simulated observations of 51 Pegasi b with ESPRESSOLeft panel : recovered
planet CCFs for each wavelength bin. Right panel : Recovered albedo for each wavelength bin (in orange) versus the injected albedo
model (grey line).

Appendix B plus a grey albedo with Ag = 0.2, with a simple reduced chi-squared (χ2
ν) comparison. χ2

ν was

computed from:

χ2
ν =

Nbins∑
i=1

1

N

(< Ameasured,i > −< Amodel,i >)2

σ2i
(6.8)

where < Amodel,i > is the mean of the simulated albedo function over the wavelength range covered by bin i;

< Ameasured,i > is the mean of the measured albedo for wavelength bin i over all independent runs and σi is the

standard deviation of the recovered albedos for all runs. The χ2
ν results are presented in Tables 6.6 to 6.10. For

each simulated configuration, the lowest reduced χ2
ν value is highlighted with a red box.

Note that a different analysis using Akaike Information Criterion (AIC) or Bayesian Inference Criterion (BIC)

could have been used to attempt to identify the correct simulated albedo model. However, the assumption of non-

correlated noise makes it that the distribution of the recovered values for the albedo follows a normal distribution

and consequently so does the likelihood. Furthermore, each model has the same number of parameters (in this case

zero as we are comparing against a fixed albedo function). As a result the AIC/BIC values are only proportional
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to the likelihood and therefore to the χ2
ν value, being the analysis equivalent.

A visual inspection of Figures 6.3 to 6.8 shows that for each wavelength bin, the mean simulated albedo

(horizontal blue lines) is within the 1-σ error bars of the recovered albedo functions and that in all cases the

recovered albedo function is close to the simulated one. Furthermore, Tables 6.6 to 6.11 show that for each

planet+star+instrument+albedo configuration – regardless of the simulated instrument or atmosphere – the lowest

reduced χ2 value (highlighted with a red box) occurs when the recovered albedo matches the simulated albedo

function.

These results were accepted for publication in Montly Notices of the Royal Astronomy Society (MNRAS) as .

(a) 51 Peg b; Ag = 0.1; χ2 = 0.56 (b) 51 Peg b; Model A (×100); χ2 = 4.37

(c) 51 Peg b; Model A (×1); χ2 = 1.71 (d) HD 209458 b; Ag = 0.1; χ2 = 0.34

(e) HD 209458 b; Model B (×100); χ2 = 3.62 (f) HD 209458 b; Model B (×1); χ2 = 1.78

Figure 6.3: Distribution of the recovered albedo functions from the simulated ESPRESSO (HR mode) observations. For each
wavelength bin: i) the green dots represent the mean recovered albedo over the 100 simulated runs with error bars given by their
standard deviation; ii) the blue horizontal lines represent the mean albedo of the simulated model over the bin; iii) the orange horizontal
bar represents the 3σ detection limit of the albedo.

Jorge Humberto Costa Martins



FCUP 106
Characterizing the atmosphere of exoplanets using high-resolution spectroscopy

(a) 51 Peg b; Ag = 0.1; χ2 = 0.59 (b) 51 Peg b; Model A (×100); χ2 = 3.97

(c) 51 Peg b; Model A (×1); χ2 = 1.94 (d) HD 209458 b; Ag = 0.1; χ2 = 0.29

(e) HD 209458 b; Model B (×100); χ2 = 3.51 (f) HD 209458 b; Model B (×1); χ2 = 1.72

Figure 6.4: Distribution of the recovered albedo functions from the simulated ESPRESSO (MHR mode - 1UT) observations. For
each wavelength bin: i) the green dots represent the mean recovered albedo over the 100 simulated runs with error bars given by their
standard deviation; ii) the blue horizontal lines represent the mean albedo of the simulated model over the bin; iii) the red horizontal
bar represents the 3σ detection limit of the albedo.
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(a) 51 Peg b; Ag = 0.1; χ2 = 0.89 (b) 51 Peg b; Model A (×100); χ2 = 6.75

(c) 51 Peg b; Model A (×1); χ2 = 3.45 (d) HD 209458 b; Ag = 0.1; χ2 = 0.54

(e) HD 209458 b; Model B (×100); χ2 = 6.68 (f) HD 209458 b; Model B (×1); χ2 = 3.44

Figure 6.5: Distribution of the recovered albedo functions from the simulated ESPRESSO (MHR mode - 2UT) observations. For
each wavelength bin: i) the green dots represent the mean recovered albedo over the 100 simulated runs with error bars given by their
standard deviation; ii) the blue horizontal lines represent the mean albedo of the simulated model over the bin; iii) the red horizontal
bar represents the 3σ detection limit of the albedo.
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(a) 51 Peg b; Ag = 0.1; χ2 = 1.91 (b) 51 Peg b; Model A (×100); χ2 = 14.87

(c) 51 Peg b; Model A (×1); χ2 = 8.11 (d) HD 209458 b; Ag = 0.1; χ2 = 1.42

(e) HD 209458 b; Model B (×100); χ2 = 13.79 (f) HD 209458 b; Model B (×1); χ2 = 5.98

Figure 6.6: Distribution of the recovered albedo functions from the simulated ESPRESSO (MHR mode - 4UT) observations. For
each wavelength bin: i) the green dots represent the mean recovered albedo over the 100 simulated runs with error bars given by their
standard deviation; ii) the blue horizontal lines represent the mean albedo of the simulated model over the bin; iii) the red horizontal
bar represents the 3σ detection limit of the albedo.
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(a) 51 Peg b; Ag = 0.1; χ2 = 0.73 (b) 51 Peg b; Model A (×100); χ2 = 3.6

(c) 51 Peg b; Model A (×1); χ2 = 1.61 (d) HD 209458 b; Ag = 0.1; χ2 = 0.41

(e) HD 209458 b; Model B (×100); χ2 = 3.96 (f) HD 209458 b; Model B (×1); χ2 = 1.99

Figure 6.7: Distribution of the recovered albedo functions from the simulated ESPRESSO (UHR mode) observations. For each
wavelength bin: i) the green dots represent the mean recovered albedo over the 100 simulated runs with error bars given by their
standard deviation; ii) the blue horizontal lines represent the mean albedo of the simulated model over the bin; iii) the red horizontal
bar represents the 3σ detection limit of the albedo.
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(a) 51 Peg b; Ag = 0.1; χ2 = 5.38 (b) 51 Peg b; Model A (×100); χ2 = 19.77

(c) 51 Peg b; Model A (×1); χ2 = 7.84 (d) 55 Cnc e; Ag = 0.1; χ2 = 0.67

(e) HD 109749 b; Ag = 0.1; χ2 = 1.05 (f) HD 109749 b; Model A (×100); χ2 = 8.24

(g) HD 109749 b; Model B (×100); χ2 = 10.29 (h) HD 209458 b; Ag = 0.1; χ2 = 2.04

Distribution of the recovered albedo functions from the simulated HIRES observations. For each wavelength bin: i) the green dots
represent the mean recovered albedo over the 100 simulated runs with error bars given by their standard deviation; ii) the blue
horizontal lines represent the mean albedo of the simulated model over the bin; iii) the red horizontal bar represents the 3σ detection
limit of the albedo. (continued . . . ))
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(i) HD 209458 b; Model B (×100); χ2 = 15.94 (j) HD 209458 b; Model B (×1); χ2 = 8.17

(k) HD 76700 b; Ag = 0.1; χ2 = 2.13 (l) HD 76700 b; Model A (×1); χ2 = 3.0

(m) HD 76700 b; Model B (×1); χ2 = 10.91

Figure 6.8: Distribution of the recovered albedo functions from the simulated HIRES observations. For each wavelength bin: i) the
green dots represent the mean recovered albedo over the 100 simulated runs with error bars given by their standard deviation; ii)
the blue horizontal lines represent the mean albedo of the simulated model over the bin; iii) the red horizontal bar represents the 3σ
detection limit of the albedo.
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ESPRESSO (HR mode) χ2 value

Ag = 0.1
Model A

(×1)

Model A

(×100)

Model B

(×1)

Model B

(×100)

51 Peg b Ag = 0.1 0.56 1252.09 2883.25 2380.86 3750.83

Model A (×100) 3166.72 850.43 4.37 84.88 307.53

Model A (×1) 1497.32 1.71 833.82 487.17 1324.44

HD 209458 b Ag = 0.1 0.34 630.85 1415.97 1165.54 1855.49

Model B (×100) 2362.25 937.77 111.94 308.75 3.62

Model B (×1) 1672.73 244.56 74.97 1.78 383.86

Table 6.6: Results of the recovery of the albedo function for each batch of simulated ESPRESSO (HR mode) observations. The first
column shows the simulated instrument+planet configurations, the second one the simulated albedo for each configuration, and the
remaining columns the reduced χ2 comparison between the simulated model and the models from Table B.1. For each configuration,
the lowest χ2 value is highlighted with a red box. Note that in all cases it occurs when the simulated model matches the comparison
model, indicating that the correct albedo function has been recovered.

ESPRESSO (MHR mode - 1UT χ2 value

Ag = 0.1
Model A

(×1)

Model A

(×100)

Model B

(×1)

Model B

(×100)

51 Peg b Ag = 0.1 0.59 862.38 1992.87 1633.98 2618.26

Model A (×100) 2511.01 688.48 3.97 74.61 285.29

Model A (×1) 1240.68 1.94 707.1 413.69 1143.95

HD 209458 b Ag = 0.1 0.29 342.57 846.75 682.27 1129.48

Model B (×100) 1933.61 831.58 103.41 279.58 3.51

Model B (×1) 1338.98 193.76 60.34 1.72 303.29

Table 6.7: Results of the recovery of the albedo function for each batch of simulated ESPRESSO (MHR mode - 1UT) observations.
The first column shows the simulated instrument+planet configurations, the second one the simulated albedo for each configuration,
and the remaining columns the reduced χ2 comparison between the simulated model and the models from Table B.1. For each
configuration, the lowest χ2 value is highlighted with a red box. Note that in all cases it occurs when the simulated model matches
the comparison model, indicating that the correct albedo function has been recovered.
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ESPRESSO (MHR mode - 2UT) χ2 value

Ag = 0.1
Model A

(×1)

Model A

(×100)

Model B

(×1)

Model B

(×100)

51 Peg b Ag = 0.1 0.89 1819.82 3823.3 3176.37 5028.64

Model A (×100) 4268.15 1154.99 6.75 133.3 508.01

Model A (×1) 2101.37 3.45 1424.64 817.0 2315.4

HD 209458 b Ag = 0.1 0.54 758.16 1742.24 1425.48 2325.58

Model B (×100) 3312.67 1511.6 205.49 540.77 6.68

Model B (×1) 2268.51 349.04 115.93 3.44 589.1

Table 6.8: Results of the recovery of the albedo function for each batch of simulated ESPRESSO (MHR mode - 2UT) observations.
The first column shows the simulated instrument+planet configurations, the second one the simulated albedo for each configuration,
and the remaining columns the reduced χ2 comparison between the simulated model and the models from Table B.1. For each
configuration, the lowest χ2 value is highlighted with a red box. Note that in all cases it occurs when the simulated model matches
the comparison model, indicating that the correct albedo function has been recovered.

ESPRESSO (MHR mode - 4UT) χ2 value

Ag = 0.1
Model A

(×1)

Model A

(×100)

Model B

(×1)

Model B

(×100)

51 Peg b Ag = 0.1 1.91 3074.13 6962.03 5675.48 9370.81

Model A (×100) 8253.72 3034.02 14.87 453.84 1874.56

Model A (×1) 4951.37 8.11 6415.28 3127.65 12758.4

HD 209458 b Ag = 0.1 1.42 2213.95 5323.42 4298.97 7102.65

Model B (×100) 6442.4 3093.26 493.54 1244.16 13.79

Model B (×1) 4455.57 665.3 259.87 5.98 1476.43

Table 6.9: Results of the recovery of the albedo function for each batch of simulated ESPRESSO (MHR mode - 4UT) observations.
The first column shows the simulated instrument+planet configurations, the second one the simulated albedo for each configuration,
and the remaining columns the reduced χ2 comparison between the simulated model and the models from Table B.1. For each
configuration, the lowest χ2 value is highlighted with a red box. Note that in all cases it occurs when the simulated model matches
the comparison model, indicating that the correct albedo function has been recovered.
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ESPRESSO (UHR mode) χ2 value

Ag = 0.1
Model A

(×1)

Model A

(×100)

Model B

(×1)

Model B

(×100)

51 Peg b Ag = 0.1 0.73 1422.0 3200.04 2636.73 4198.8

Model A (×100) 3247.76 765.05 3.6 77.2 271.94

Model A (×1) 1558.19 1.61 866.93 502.27 1394.81

HD 209458 b Ag = 0.1 0.41 927.23 2207.22 1789.34 2935.23

Model B (×100) 2919.3 1195.16 158.4 422.0 3.96

Model B (×1) 2060.49 303.4 95.82 1.99 501.21

Table 6.10: Results of the recovery of the albedo function for each batch of simulated ESPRESSO (UHR mode) observations. The first
column shows the simulated instrument+planet configurations, the second one the simulated albedo for each configuration, and the
remaining columns the reduced χ2 comparison between the simulated model and the models from Table B.1. For each configuration,
the lowest χ2 value is highlighted with a red box. Note that in all cases it occurs when the simulated model matches the comparison
model, indicating that the correct albedo function has been recovered.

HIRES χ2 value

Ag = 0.1
Model A

(×1)

Model A

(×100)

Model B

(×1)

Model B

(×100)

51 Peg b Ag = 0.1 5.38 7150.26 17168.62 13772.93 23739.76

Model A (×100) 7725.97 2878.74 19.77 391.53 1771.47

Model A (×1) 4881.94 7.84 6924.96 3480.13 13008.05

HD 109749 b Ag = 0.1 1.05 645.38 2006.96 1478.67 2928.78

Model A (×100) 1897.37 662.68 8.24 70.7 241.85

Model B (×100) 3610.79 1798.4 258.4 647.7 10.29

HD 209458 b Ag = 0.1 2.04 2440.33 6088.13 4835.52 8452.54

Model B (×100) 6073.89 2987.44 393.93 1055.57 15.94

Model B (×1) 3911.57 801.72 317.0 8.17 1730.91

HD 76700 b Ag = 0.1 2.13 2623.96 6485.17 5179.69 8967.27

Model A (×1) 3007.09 3.0 2699.31 1508.58 4400.09

Model B (×1) 4379.23 834.28 318.99 10.91 1777.48

55 Cnc e Ag = 0.1 0.67 1081.99 2078.01 1732.81 2942.96

Table 6.11: Results of the recovery of the albedo function for each batch of simulated HIRES observations. The first column shows the
simulated instrument+planet configurations, the second one the simulated albedo for each configuration, and the remaining columns
the reduced χ2 comparison between the simulated model and the models from Table B.1. For each configuration, the lowest χ2 value
is highlighted with a red box. Note that in all cases it occurs when the simulated model matches the comparison model, indicating
that the correct albedo function has been recovered.
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DISCUSSION 6.1.7

The results presented in the previous section confirm that the CCF technique can be used to recover the

wavelength dependence of the reflected optical signal of exoplanets – and albedo – from spectra obtained with

the next generation of high-resolution spectrographs.

Note that for this project we initially fixed the number of wavelength bins over the albedo function would

be recovered for each simulated planet. An alternative approach could have been to fix the total exposure time

for all targets (e.g. one night, ∼ 11h) and estimate the number of bins for which the albedo function could

be recovered at a 3-σ significance per bin. Table 6.12 presents the number of wavelength bins for which the

albedo could recovered at a 3-σ significance for a total observing time of 11 hours (about one observing night)

for the selected targets, assuming different grey albedo functions. We limited Nbins at 70, which is the number of

orders of the HARPS spectrograph. It is clear that as soon as 2018, ESPRESSO will make it possible to probe in

detail the atmospheres of hot Jupiter planets such as 51 Pegasi b with a few hours worth of observing time. By

increasing the exposure time or decreasing the level of detail will also enable ESPRESSO to probe smaller and/or

longer period planets. The sheer increase of collecting power from moving to a 30-m class telescope will permit

to facilities such as HIRES to probe those smaller and/or longer period planets with increased detail.

Nbins for 〈Ag〉

〈Ag〉= 0.1 0.2 0.3 0.4 0.5

ESPRESSO

51 Peg b 55 70 70 70 70

HD 209458 b 3 13 31 55 70

HIRES

51 Peg b 70 70 70 70 70

HD 209458 b 37 70 70 70 70

HD 109749 b 2 9 20 36 56

HD 76700 b 4 18 41 70 70

55 Cnc e 3 12 29 51 70

Table 6.12: Estimated number of wavelength bins for which the albedo could recovered at an average 3-σ significance for a total
observing time of 11 hours (about one observing night) for different grey albedos models. We limited Nbins at 70, which is the
number of orders of the HARPS spectrograph (from Martins et al., 2017).
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IDENTIFICATION OF SPECTRAL FEATURES

The spectral feature that dominates the selected albedo models (see Appendix B) is the optical sodium doublet

at 589.59-nm and 588.99-nm. In an ideal case, where it is possible to recover the CCF of the planet for each

order of the spectrograph (i.e., Nbins is equal number of orders of the spectrograph) each wavelength bin will be

over 4-nm wide, clearly insufficient to resolve both lines of the doublet. However, this feature is extremely wide

– typically over 10-nm – and it should be possible to sample it with two or more wavelength bins and resolve it.

Note that the amount of aerosols impacts the width of the sodium doublet: the lower the fraction of aerosols,

the wider the sodium doublet will appear and most likely to be sampled and resolved, even with a lower value

for Nbins. More aerosols mean a decrease in the width of sodium doublet absorption line and a higher global

geometric albedo. This can be easily understood if we consider that high-altitude aerosols prevent the access

of the starlight to the deepest regions of the atmosphere (e.g. Sing et al., 2016), where the sodium absorption

dominates and is responsible for the line broadening. On the other hand, less aerosols also mean a lower global

albedo, making it more difficult to detect the reflected planetary signature. However, this decrease in albedo is

not color-independent. Although the albedo towards bluer wavelengths will remain almost unchanged, towards

redder bands the albedo might drop significantly (e.g., the albedo for the ×1 configuration of the Model A family

of atmospheric models – see Appendix B – is close to zero). Therefore, even in cases where the albedo can only

be recovered for a small number of wavelength bins, the ratio of the recovered albedo for redder and bluer bands

should permit to retrieve important information such as the aerosol fraction on the atmosphere.

Narrower spectral features – with widths smaller than the spectral range covered by 2-3 wavelength bins (e.g.

water absorption lines) – will not be possible to resolve. However, for wavelength ranges where a significant

number of absorption lines are present, the local average albedo will be lower than the expected continuum for

the albedo function. This can be clearly seen on the simulations where albedo function from the Model B family

were created. Since the ratio of water to alkali metals is lower, the albedo function is much more structured, i.e.,

a large amount of water absorption lines can be found. In those "water bands", the albedo will be lower than the

albedo function continuum (e.g., panels e and f of Figures 6.3 to 6.7, panel g, i, j and m of Figure 6.8).

ESPRESSO RESOLUTION DEPENDENCE

As discussed in Section 3.2, the ESPRESSO spectrograph has 3 different resolution modes available: MHR

mode with R = 60000, HR mode with R = 130000 and UHR mode with R = 220000. To test if the resolution

of the spectrograph impacted the recovery of the albedo function from the planet, we attempted to recover the

albedo from the simulations described in Section 6.1.5.

Figure 6.9 shows the relative error X (Ag,i) on the geometric albedo Ag,i recovered for each wavelength bin

i, defined as

X (Ag,i) =

〈
σAg,i

〉
Ag,i

(6.9)
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Figure 6.9: Relative errors for the recovered albedo function from simulated observations of HD209458 b with ESPRESSO in all 3
resolution modes. X (Ag,i) represents the relative error on the geometric albedo Ag,i recovered for each wavelength bin i, as defined
in Equation 6.9. For the MHR mode, we simulated observations with 1, 2 and 4 UT telescopes.

where Ag,i is the mean measured geometric albedo for bin i and σ (Ag,i) is the dispersion over all simulated runs

of Ag,i.

In UHR mode (R = 220000), the error on the recovered albedo is significantly larger than with the two other

modes. In UHR mode the spectrograph is fed by a fiber with a diameter of 0.5” – half the diameter of the fiber

feeding the spectrograph for HR and UHR mode – and thus a much lower number of photons reaches the detector,

leading to observations on a much lower S/N domain. This can be seen clearly in Figure 6.7, panel d. When we

computed the total exposure times for each observing run, we assume ESPRESSO to be in the HR configuration.

Since the fiber diameter for the UHR mode is half of the fiber for the other modes, the planetary CCFs will be

significantly noisier. Therefore, in most wavelength bins, the S/N of the recovered planetary CCF is lower than

the upper limit for the albedo with a 3-σ confidence.

For both HR (R = 135000) and MHR (R = 60000) modes, no evidence can be found of the impact of the

resolution on the recovered albedo errors. However, a clear decrease in the error on the recovered albedo can

be seen as the collecting area increases, i.e., going from 1 UT to 4UT in MHR mode. Note that an increased

resolution is paramount to be able to retrieve precise orbital parameters for both host and planet.

In summary, if only 1 UT is available, HR mode is the best choice, as it combines the highest resolution for

the same collecting area. However, if 2 or more UT are available, the increase in collecting area will make MHR

mode the ideal choice. Regardless of the number of UTs available, UHR mode does not present any advantage

for the CCF technique over the other available modes as a result in the significantly smaller fiber.
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Figure 6.10: Number of spectral lines from the CCF mask per wavelength bin for 5, 6, 20 and 70 bins.

WAVELENGTH DEPENDENCE OF THE NOISE 6.1.8

From Figures 6.3 to 6.8 it can be seen that the noise per bin on the planetary CCF is wavelength dependent.

This dependence results from the combination of i) the efficiency of the instrument, ii) the distribution of the

mask lines along the spectral coverage and iii) the spectral type of the star. The measured efficiency curves for

ESPRESSO (in all 3 resolution modes) and HARPS (used as a template for HIRES) are shown in Figure 3.7.

Figure 6.10 shows the distribution of spectral lines for the different number of wavelength bins simulated in

this document (5, 6, 20 and 70 wavelength bins). The number of spectral lines of the mask per bin is inscribed on

the individual histogram bars.It is clear that the number of spectral lines in the mask is not uniform and decreases

towards larger wavelengths, yielding to a lower increase in S/N from CCF construction for redder wavelength bins.

For Nbins = 70, the wavelength range covered by each wavelength bin corresponds to a spectral order of the

HARPS spectrograph and several gaps can be seen. The lack of mask lines around 530-nm corresponds to a

gap between the two chips of the HARPS spectrograph. The other 3 gap in the number of mask lines (590-nm,

630-nm and 645-nm) correspond to orders where the number of spectral lines is inferior to 5. Those orders are

known for significant telluric contamination and have larges wavelength ranges that are not considered for the

CCF calculation. Note that these gaps do not show for lower values of Nbins as their orders will be merged with

adjacent ones.

Different spectral types will have different spectral energy distributions. Figure 6.11 presents the expected

S/N from a 300-s exposure with HARPS of Vmag = 6.0 F0, G2 K2 and M2 spectral type stars as computed with

HARPS ETC. It can be seen that M stars will attain higher S/N towards redder wavelengths, while F stars will

attain higher S/N than G to M stars towards bluer wavelengths, with G stars somewhere in the middle of both.

Note that for all simulations we have used a high-resolution G2 spectral template, independently of the spectral

type of the stellar host. It is interesting to discuss how the spectral type of the star would affect the recovery of

the planetary albedo function. It is clear from Equation 2.1 that the planet-to-star flux ratio is independent on

the stellar type of the star.

However, the detectability limit of the albedo function (per bin) will depend on the stellar type. Assuming the

same magnitude and exposure times:
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• for redder wavelengths, the detection limit for the albedo function will decrease from F to M stars;

• for bluer wavelengths, the detection limit for the albedo function will increase from F to M stars;

It is interesting to compare this result with the albedo models presented in Appendix B (see Figure B.1). These

models show higher albedos for shorter wavelengths, with most of the absorption (depending on the alkali metal

concentration) occurring at larger wavelengths. As such, it is realistic to assume that cooler spectral type stars

will be better targets than warmer stars as lower albedo detection limits can be attained for the same exposure

time. Note that this assumption is only valid for the models we present here (or similar) and is not universal. It is

not unusual in the solar system planets that some absorber affects the ultraviolet wavelengths and diminishes the

planet reflectivity towards bluer wavelengths (e.g. the case Venus – Lee et al., 2017).

Figure 6.11: Comparison of the expected S/N from a 300s exposure with HARPS of Vmag = 6.0 F0, G2 K2 and M2 spectral type
stars as per HARPS ETC (from Martins et al., 2017).
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REFLECTED LIGHT FROM GIANT PLANETS

IN HABITABLE ZONES 6.2

It is interesting to explore the possibility provided by future high-resolution spectrographs installed on 30-m

class telescopes to recover the reflected signal of exoplanets in the habitable zones of their host stars. The results

of this work were published in Martins et al. (2016)

WHAT IS THE HABITABLE ZONE? 6.2.1

Since liquid water is a requirement for life as we know it, the Habitable Zone of a star has been defined as

the orbital region around a star in which an Earth-like planet can possess liquid water on its surface and possibly

support life as we know it (e.g. Huang, 1959; Kasting et al., 1993).

For this work, we adopted the Habitable Zone criteria from the Habitable Exoplanet Catalog (http://phl.

upr.edu/hec). However, we chose not to limit the planets by mass, to encompass possible giant planets in their

star’s Habitable Zone that might have habitable satellites. Mathematically speaking, the chosen Habitable Zone

model is based on the model proposed by Kasting et al. (1993) defines the inner and outer limits (ri and ro, in

[A.U.]) of the Habitable Zone by

ri =
[
ris − ai (Teff − TS)− bi (Teff − TS)2

]√
L∗
L�

ro =
[
ros − ao (Teff − TS)− bo (Teff − TS)2

]√
L∗
L�

(6.10)

where ri and ro are the inner and outer limits of the Habitable Zone, L∗ is the luminosity of the star and Teff is

the effective temperature of the star. The remaining factors are constants defined by the models of Selsis et al.

(2007) and Underwood et al. (2003):

ris = 0.72 ai = 2.7619× 10−5 bi = 3.8095× 10−9

ros = 1.77 ao = 1.3796× 10−4 bo = 1.4286× 10−9

TS = 5700K

(6.11)

Using this model, we computed for all planets in the exoplanet.eu database (as of October 2017) the inner

and outer limit of the Habitable Zone. Figure 6.12 shows the semi-major axis of their orbit and the effective

temperature of their host between 2000K and 8000K. Currently, 54 planets orbiting stars with Vmag < 12 can be

found in the Habitable Zone of their host (red dots).
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Figure 6.12: Effective temperature of all planets in the exoplanet.eu data bases as a function of the distance to their host star. The
red dots correspond to the planets in the Habitable Zone of their host (from Martins et al., 2016).

REFLECTED LIGHT FROM HABITABLE ZONE PLANETS WITH ESO’S ELT 6.2.2

To estimate for which planets in their host’s Habitable Zone it would be possible to detect the reflected signal

using the CCF technique, we used Equation 2.1 (assuming Ag = 0.5) to estimate the planet-to-star flux ratio for

all planets orbiting FGKM stars. In the cases where no radius is known (e.g., planets detected by the RV method),

we used the empirical mass-radius relation proposed in Weiss et al. (2013):

Mp < 150M⊕ −→ Rp
R⊕

= 1.78
(
Mp

M⊕

)0.53
F−0.03i

Mp > 150M⊕ −→ Rp
R⊕

= 2.45
(
Mp

M⊕

)−0.039
F 0.094
i

(6.12)

where Mp and Rp are respectively the mass and radius of the planet, and Fi (in [c.g.s]) is the stellar flux incident

on the planet. This factor is given by

Fi = σ T 4
eff

(
R∗
a

)2
√

1

1− e2
(6.13)

where σ is the Stephan-Boltzmann constant.

Period a Teff ri ro Mp Rp Fp
F∗

[days] [AU ] [K] [AU ] [AU ] [MJup] [RJup]

16CygB b 800 1.68 5766 0.70 1.72 1.7 0.6 1.4×10−8

47Uma b 1078 2.10 5892 0.92 2.25 2.5 0.6 8.3×10−9

55Cnc f 261 0.78 5196 0.56 1.40 0.1 0.8 1.1×10−7

GJ687 b 38 0.16 3413 0.11 0.30 0.1 0.5 9.8×10−7

GJ876 b 61 0.21 3350 0.09 0.25 1.9 0.6 8.5×10−7

Planets in the exoplanet.eu database within their host star HZ. (continued . . . )
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Period a Teff ri ro Mp Rp Fp
F∗

[days] [AU ] [K] [AU ] [AU ] [MJup] [RJup]

GJ876 c 30 0.13 3350 0.09 0.25 0.9 0.7 2.8×10−6

HD10647 b 1003 2.03 6039 0.85 2.07 0.9 0.6 9.5×10−9

HD114729 b 1135 2.08 5662 1.01 2.49 0.8 0.6 9.7×10−9

HD11506 b 1270 2.43 6058 1.08 2.61 3.4 0.6 6.1×10−9

HD117618 c 318 0.93 5861 0.88 2.14 0.2 0.9 1.1×10−7

HD125612 b 502 1.37 5897 0.78 1.91 3.0 0.6 2.2×10−8

HD12661 b 264 0.83 5742 0.80 1.95 2.3 0.7 7.3×10−8

HD128356 b 298 0.87 4875 0.45 1.14 0.9 0.6 5.7×10−8

HD137388 b 330 0.89 5240 0.49 1.24 0.2 1.0 1.4×10−7

HD141399 d 1070 2.09 5600 0.99 2.45 1.2 0.6 9.2×10−9

HD141937 b 653 1.52 5925 0.80 1.94 9.7 0.6 1.6×10−8

HD142415 b 386 1.05 5834 0.75 1.84 1.6 0.7 4.3×10−8

HD147513 b 528 1.32 5701 0.70 1.72 1.2 0.6 2.4×10−8

HD153950 b 499 1.28 6076 1.05 2.55 2.7 0.7 2.9×10−8

HD154857 b 409 1.29 5445 1.14 2.82 2.2 0.7 2.9×10−8

HD156411 b 842 1.88 5900 1.61 3.93 0.7 0.7 1.5×10−8

HD164509 b 282 0.88 5922 0.79 1.94 0.5 0.7 7.2×10−8

HD165155 b 434 1.13 5426 0.61 1.51 2.9 0.6 3.1×10−8

HD169830 c 2102 3.60 6266 1.52 3.66 4.0 0.6 2.7×10−9

HD196885A b 1326 2.60 6340 1.51 3.62 3.0 0.6 6.2×10−9

HD202206 b 256 0.83 5750 0.73 1.78 17.4 0.6 6.1×10−8

HD216435 b 1311 2.56 5767 1.43 3.51 1.3 0.6 6.5×10−9

HD218566 b 226 0.69 4820 0.44 1.13 0.2 1.0 2.2×10−7

HD224538 b 1189 2.28 6097 1.06 2.56 6.0 0.6 6.9×10−9

HD23079 b 731 1.60 5848 0.83 2.03 2.5 0.6 1.5×10−8

HD28254 b 1116 2.15 5664 1.03 2.53 1.2 0.6 9.6×10−9

HD30562 b 1157 2.30 5861 1.21 2.94 1.3 0.6 8.5×10−9

HD33564 b 388 1.10 6250 0.91 2.18 9.1 0.6 3.5×10−8

HD43197 b 328 0.92 5508 0.66 1.63 0.6 0.7 6.5×10−8

HD44219 b 472 1.19 5752 0.94 2.31 0.6 0.7 3.8×10−8

HD564 b 492 1.20 5902 0.75 1.84 0.3 1.2 1.2×10−7

Planets in the exoplanet.eu database within their host star HZ. (continued . . . )
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Period a Teff ri ro Mp Rp Fp
F∗

[days] [AU ] [K] [AU ] [AU ] [MJup] [RJup]

HD69830 d 197 0.63 5385 0.57 1.41 0.3 1.1 3.1×10−7

HD7199 b 615 1.36 5386 0.61 1.51 0.3 1.2 8.2×10−8

HD73526 c 379 1.03 5590 1.01 2.49 2.2 0.7 4.7×10−8

HD86264 b 1475 2.86 6210 1.53 3.69 7.0 0.6 4.8×10−9

HIP57050 b 41 0.16 3190 0.09 0.26 0.3 1.2 5.7×10−6

WASP-41 c 421 1.07 5546 0.67 1.67 3.2 0.6 3.6×10−8

WASP-47 c 572 1.36 5576 0.77 1.91 1.2 0.6 2.3×10−8

muAra b 643 1.50 5700 0.87 2.15 1.7 0.6 1.9×10−8

muAra d 311 0.92 5700 0.87 2.15 0.5 0.7 6.5×10−8

upsAn d d 1281 2.55 6212 1.33 3.20 23.6 0.6 5.1×10−9

Table 6.13: Planets in the exoplanet.eu database within their host star HZ.

Table 6.13 presents all planets in their host star’s Habitable Zone that orbit FGKM stars.The last column shows

the maximum planet-to-star flux ratio as computed from Equation 2.1. This permitted us to estimate the total

exposure time required for a 3-σ detection of the reflected optical light from their orbiting planets with ESO’s ELT.

This was done extrapolating the S/N computed for a 30s exposure of a magV = 6 star as estimated by ESO’s

online spectroscopic ETC for the ELT. Note that this ETC assumes a generic high-resolution spectrograph with a

theoretical efficiency of 25% for telescope+instrument+detector. As such, the computed exposure times should

be taken as indicative only as different instruments will have different efficiencies which are currently impossible

to estimate. For more details, we refer you to the online documentation for the ELT’s ETC, which can be found

at https://www.eso.org/observing/etc/doc/elt/etc_spec_model.pdf.

Table 6.14 shows the parameters we used on the ELT’s ETC. Then, we extrapolated from the S/N estimated

for by the ETC to the S/N required for the detection of the reflected signal of each planet with

maghost −magref = −5log

(
SNhost

SNref

)
(6.14)

where maghost and SNhost are respectively the visual magnitudes and expected S/N of the host star, magref is

the reference value used in the ETC for the visual magnitude and SNhost is the predicted S/N.

The required total exposure time required for a 3-σ detection (t3σ) of the target will be given by

t3σ =
tref
Nlines

(
SNp

SNhost

)2

(6.15)

where tref is the reference time used in the ETC, Nlines the number of spectral lines in the CCF masks and SNp
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Parameter Value

Target Input Flux Distribution

Spectral Type G2V

Vega mag V = 6.0

Spatial distribution Point source

Telescope Setup

Observatory site Paranal (2635-m)

Spatial distribution 39-m

Sky Conditions

Seeing 0.8′′

Airmass 1.5

Instrument Setup

AO mode Seeing limited

Observing wavelength Band V (550-nm)

Radius of circular S/N area 1000.0 mas

Number of spectra on the detector 1

Spectral resolution 100 000

Results

Exposure time NDIT = 1

DIT = 30s

Table 6.14: Observing parameters used for the ELT’s ETC.

Host SNp magV SN(30s) t3σ

Spectral type

55Cnc f K0IV-V 2.68×107 6.0 4031.8 89.5

GJ687 b M3.5V 3.05×106 9.2 923.6 22.1

GJ876 b M4V 3.54×106 10.2 577.4 76.1

GJ876 c M4V 1.08×106 10.2 577.4 7.0

HD69830 d K0V 9.60×106 6.0 4031.8 11.5

HIP57050 b M4V 5.28×105 11.9 260.3 8.3

Table 6.15: Planets where a 3-σ detection can be accomplished under 100-h

is the required S/N for a 3-σ detection of the planet.

The for all planets in the sample are shown in Figure 4. Table 4 shows the cases where a 3-sigma detection

can be accomplished under 100h (in green on Figure 4). Figure 6.13 shows the estimated required exposure times

for a 3-σ detection of the planets in Table 6.13 (from Martins et al., 2016). The planets where a 3-σ detection

can be accomplished under 100-h are presented in Table 6.15 (green bars in Figure 6.13).
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Figure 6.13: Required exposure times for a 3-σ detection of the planets in Table 6.13 (from Martins et al., 2016). The green bars
correspond to the planets where a 3-σ detection can be accomplished under 100-h.

DISCUSSION 6.2.3

For all planets in the exoplanet.eu database, we computed the limits of the host’s habitable zones using

the Kasting et al. (1993) model. Then, we computed the planet-to-star flux ratio for all planets in their hosts

Habitable Zones that orbited Vmag ≤ 10 main sequence stars with effective temperatures in the 2000K-8000K

range. For these we estimated the time required for a 3-σ detection of their reflected signal with @ELT using the

CCF technique. From these targets, only 5 have can be detected with less that 100-h worth of observing time. It

is worth noting that these 5 planets are all giant planets, making them unsuitable for life as we know it. However,

they might be orbited by satellites with conditions to support life as we know it and be habitable.

From the final sample, all planets orbiting FJK hosts have Vmag ≤ 6. This means that even with 30-m class

telescopes, it will be extremely difficult to detect planets in their host’s Habitable Zone. However, for M dwarfs,

despite the host low intrinsic brightness, the Habitable Zone is close enough to the star to make the planets

detectable with the ELT. Of particular interest are the cases of Gliese 876 c and is HIP 57050 b as their required

exposure time is under 8-h due to their proximity to their host. Extrapolating to a VLT sized telescope, this means

a 3-σ detection under 40-h, implying that even current generation facilities could used to detect these targets.

As a final note, this analysis assumes that the planetary CCF has not been broadened by planetary rotation

relatively to the host’s (e.g. Kawahara, 2012). A planet with a high rotation rate will have its signal broadened

relatively to the host’s. Since the area of the CCF is conserved, this implies a reduced CCF amplitude, making it

harder to detect.
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Chapter 7.

Summary

Atmospheric characterization of exoplanets is a daunting task, at the limit of the capabilities of current

generation observing facilities. Nonetheless, in-depth knowledge of an exoplanet’s atmosphere is fundamental

towards our understanding of the planet’s chemistry, physics, origins and ultimately its capability of sustaining life.

In this thesis, we proposed to use the optical high-resolution spectrum of a star reflected on an orbiting

exoplanet to recover the planetary albedo and thus characterize the planet’s atmosphere. The main problem

faced with this approach is the extremely low planet-to-star flux ratio, typically inferior to 10−4 for the best case

scenario, large planets in close orbits. To surpass this low planet-to-star flux ratio, we proposed a technique that

cross-correlates high-resolution spectra with binary masks representing the stellar spectrum. With it, the S/N

as measured in the CCF is increased by the square root of the number of spectral lines identified in the mask.

This allows the planetary signature to surface above the noise and make it detectable. The application of this

technique to HARPS observations of the 51 Pegasi system yielded great results. With it, we were able to recover

the reflected optical spectrum of 51 Pegasi b with a 3-σ confidence, and infer that this planet is most likely a

highly inflated hot Jupiter planet with a high albedo (Ag = 0.5 for Rp = 1.9RJup). This detection was performed

from a total of 2.5-h of exposure time with the HARPS spectrograph. Due to the increased collecting power of

the VLT and its higher efficiency, ESPRESSO@VLT should permit us to recover the albedo function from hot

Jupiters with just a few hours of observing time (e.g 1-h for 51 Pegasi b and ∼ 8-h for HD 209458 b assuming

15 wavelength bins). Similarly, HIRES – and following similar stable high-resolution optical spectrographs to be

mounted on 30-m class telescopes (e.g G-CLEF@Giant Magellan Telescope (GMT) Szentgyorgyi et al., 2014) –

should permit to recover the albedo function from the same planets but with an increased number of wavelength

bins, effectively increasing the level of detail for which this function can be measured. Lowering the number of

wavelength bins and/or increasing the total exposure time will permit to probe smaller and/or with larger period

planets.

The recovery of the albedo function from exoplanets should permit to place important constrains in the
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composition and dynamics of exoplanetary atmospheres. In terms of chemistry, the albedo function will permit

to infer the planet’s cloud coverage and composition (for example, high reflectances are usually indicative of

high-altitude clouds, Garcia-Muñoz et al., 2015). The phase function can be used to infer the atmosphere’s back

scattering properties, a quantity dependent on the clouds/dust particle size (e.g. Buey et al., 2015). In what

regards the physics of the atmosphere, the broadening of the CCF of the planet relatively to the star permits to

infer the planet’s rotation rate and/or velocity of high-altitude clouds (e.g. Kawahara, 2012). Periodic variations

in the reflected flux correlated to the planetary rotation period might hint at the planet’s topography. However,

the albedo from an exoplanet is not the only factor that modulates the reflected spectrum from an exoplanet.

An exciting prospect to further characterize the planet comes from the observation of the phase function of the

planet. This function describes the light curve of a planet as a function of orbital phase. It depends not only on

the fraction of the planet illuminated by the host star but also on the back scattering properties of the planet’s

atmosphere.

From the analysis of the UVES observations of the 51 Pegasi system, it is clear that unknown sources of noise

are hampering the recovery of the planetary signal (Section 5.2). As such, it is essential to perform an in-depth

study of systematic noise sources that might be significant at the signal amplitude level. Some possibilities for the

origin of the noise we detected i) the impact of telluric/micro telluric lines; ii) inner reflections in the instrument

and/or iii) stitching of the CCD. This genre of study might have important implications in the design and use of

future facilities like ESPRESSO@VLT and HIRES@ELT, regardless of the technique used to recover the planetary

signal.

The results we present of this work are encouraging, as they exemplify the power of the CCF technique

as a powerful tool in the characterization of exoplanetary atmospheres from their optical reflected spectra. To

summarize the most important results of this work:

• using the CCF technique, we were able to recover the optical reflected signal from 51 Pegasi b with a 3-σ+

significance, which suggests that 51 Pegasi b is most likely a highly inflated hot Jupiter planet with a high

albedo (Ag = 0.5 for Rp = 1.9RJup) (Martins et al., 2015a);

• the CCF technique permits the recovery of the wavelength dependence of reflected spectra of exoplanets,

and consequently their albedo function. It allows to distinguish between possible albedo configurations and

hint at the planetary atmosphere composition (Martins et al., 2017);

• it will be possible to probe at planetary atmospheres for planets in a vastly accessible orbital parameter range

not accessible to other techniques such as transit spectroscopy (Martins et al., 2017);

• even in cases where a low number of wavelength bins is possible, the ratio between the albedo at redder and

bluer wavelengths should help constrain possible chemical and physical atmospheric configurations (Martins

et al., 2017).

• as close as 2018, ESPRESSO should already be able to recover the albedo function from hot Jupiter class

exoplanets with a few hours of exposure time (e.g. 51 Pegasi b with 1-h) (Martins et al., 2017);
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• the advent of HIRES will allow to probe smaller planets (e.g. hot Neptunes and super-earths) with just with

a few hours of exposure time (e.g. HD 76700 b with around 5-h and 55 Cancri e with about 4-h) (Martins

et al., 2017);

• HIRES should also permit to detect the reflected optical signature from exoplanets in their host’s Habitable

Zones (Martins et al., 2016).

The next-generation of observing facilities will be paramount to build up our understanding of exoplanets as

a whole and their atmospheres in particular. Future space-based missions such as PLATO (Rauer et al., 2013)

and TESS (Ricker et al., 2014) will be invaluable in the detection of large quantities of exoplanets by performing

large-scale photometric transit surveys, with special emphasis given to the search of Earth-like exoplanets in their

hosts Habitable Zones. The most promising planets will then be followed closely by both space (e.g., CHEOPS

– Fortier et al., 2014; JWST – Gardner et al., 2006) and ground-based (e.g., ESPRESSO@VLT – Pepe et

al., 2010; HIRES@ELT – Maiolino et al., 2013) observatories for a detailed characterization. Being free from

the influence of Earth’s atmosphere, space-based observatories such as the JWST or dedicated space missions

such as ARIEL (Tinetti et al., 2016) are expected to provide exquisite photometric measurements and recover

low-resolution transmission and reflection/emission profiles from detected transiting planets (e.g. Beichman et al.,

2014; Greene et al., 2015). Although their observations are imprinted with the Earth’s atmospheric spectral

signature, ground-based observatories are able to complement their space counterparts either in terms of the

high-resolution spectroscopic measurements they can provide (e.g., ESPRESSO@VLT – Pepe et al., 2010), the

sheer collecting power of 30-m class telescopes (e.g., ESO’s ELT – Gilmozzi et al., 2007) or by permitting "easy"

upgrades to any available instrument (e.g., the SPHERE+ upgrade mentioned in Lovis et al., 2017), a feature

unavailable to space observatories. For ground-based facilities, the impact of the atmosphere can be mitigated

with advanced Adaptive Optics (AO) systems (e.g, SPHERE@ESO’s VLT – Beuzit et al., 2008) and the fact that

the Earth’s atmospheric spectral lines will appear separated from their exoplanet counterparts on the RV domain.

Furthermore, high-resolution spectroscopy data analysis methods – such as the CCF technique we propose –

permit to study in detail the atmospheres of non-transiting planets (e.g. Snellen et al., 2015; Martins et al., 2017).

At the limit, synergies between the accurate photometric data obtained by space observatories with the precise

high-resolution spectroscopic measurements that only ground-based observatories can achieve, researchers expect

to accomplish a detailed and complete characterization of the planets most likely to support life as we know it.

The search for bio-signature gases will enter a golden age, and most probably signs of life will be found within the

next couple of decades. The future of exoplanet research presents itself extremely bright.
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Appendix A.

PhD output

This section lists the activities in which I have been involved over the duration of my doctoral training, from

scientific output (e.g. articles, talks) to outreach or other topics I deemed relevant.

In summary, over the duration of my doctoral training:

• I authored 3 first author articles – of which two got accepted (Martins et al., 2015a; Martins et al., 2016) and

another is currently undergoing the reviewing process (Martins et al., 2017) – and one article in conference

proceedings (Martins et al., 2015b).

• I also got involved as a co-author in 4 more articles (Santos et al., 2014; Santos et al., 2015; Montalto

et al., 2015; Lovis et al., 2017).

• I also had the opportunity to attend 4 international conferences and 2 workshop, on which I presented 4 oral

communications and 2 posters. Additionally, I presented 3 seminars.

• I tutored at the 10th edition of the Physics Summer School from the Faculty of Science of the University of

Porto.

• In parallel to my scientific work, I participated in several outreach events, both as a organizer and presenter.

• I also gained experience as an observer, with 3 observing runs and 1 accepted proposal.

I now proceed to list all the above in detail.
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ABSTRACT

Context. The detection of reflected light from an exoplanet is a difficult technical challenge at optical wavelengths. Even though this
signal is expected to replicate the stellar signal, not only is it several orders of magnitude fainter, but it is also hidden among the stellar
noise.
Aims. We apply a variant of the cross-correlation technique to HARPS observations of 51 Peg to detect the reflected signal from
planet 51 Peg b.
Methods. Our method makes use of the cross-correlation function (CCF) of a binary mask with high-resolution spectra to amplify
the minute planetary signal that is present in the spectra by a factor proportional to the number of spectral lines when performing
the cross correlation. The resulting cross-correlation functions are then normalized by a stellar template to remove the stellar signal.
Carefully selected sections of the resulting normalized CCFs are stacked to increase the planetary signal further. The recovered signal
allows probing several of the planetary properties, including its real mass and albedo.
Results. We detect evidence for the reflected signal from planet 51 Peg b at a significance of 3σnoise. The detection of the signal
permits us to infer a real mass of 0.46+0.06

−0.01 MJup (assuming a stellar mass of 1.04 MSun) for the planet and an orbital inclination
of 80+10

−19 degrees. The analysis of the data also allows us to infer a tentative value for the (radius-dependent) geometric albedo of
the planet. The results suggest that 51Peg b may be an inflated hot Jupiter with a high albedo (e.g., an albedo of 0.5 yields a radius
of 1.9 ± 0.3 RJup for a signal amplitude of 6.0 ± 0.4 × 10−5).
Conclusions. We confirm that the method we perfected can be used to retrieve an exoplanet’s reflected signal, even with current
observing facilities. The advent of next generation of instruments (e.g. VLT-ESO/ESPRESSO) and observing facilities (e.g. a new
generation of ELT telescopes) will yield new opportunities for this type of technique to probe deeper into exoplanets and their
atmospheres.

Key words. planetary systems – planets and satellites: detection – techniques: spectroscopic – techniques: radial velocities

1. Introduction

Since the discovery in 1995 of a planet orbiting 51 Peg (Mayor
& Queloz 1995), over 1900 planets in around 1200 planetary
systems have been found (Schneider et al. 2011)1: this number
increases steadily. Furthermore, close to 470 multiple planetary
systems have been detected, some of which are highly complex
(e.g., Borucki et al. 2013).

⋆ Based on observations made with ESO Telescopes at the La Silla
Paranal Observatory under programme ID 091.C-0271 (with the
HARPS spectrograph at the ESO 3.6 m telescope).
⋆⋆ The radial velocity data for the HARPS observations of 51 Pegasi
are only available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/576/A134
1 http://exoplanet.eu/

The search for exoplanets has been following two differ-
ent, but complementary, paths: the detection of exoplanets with
increasingly lower masses, and the characterization of these ex-
oplanets and their atmospheres. On the detection side, the radial
velocity (e.g., Lovis & Fischer 2010; Bonfils et al. 2013) and
transit methods (e.g., Borucki et al. 2010; Winn 2010) have been
the most prolific. One of the most important results of planet de-
tection surveys is the ubiquity of planets around solar-type stars
(e.g., Howard et al. 2010).

On the characterization side, the current frontier of exo-
planet characterization has been pushed toward the study of exo-
planet atmospheres, both from a composition and from a dynam-
ics point of view. To overcome this difficult challenge, several
indirect techniques have been developed. Transmission spec-
troscopy relies on observing the host star spectrum as it is fil-
tered by a planet atmosphere during a transit (e.g., Charbonneau
et al. 2002; Knutson et al. 2014). Occultation photometry and

Article published by EDP Sciences A134, page 1 of 9
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Exoplanet Reflections: the light from 51 Peg b
J. H. C. Martins1,2,3, N. Santos1,3, P. Figueira1, C. Melo2

Talk given at OHP-2015 Colloquium

1Instituto de Astrofı́sica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto,
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Abstract

The direct detection of reflected light from an exoplanet is, even in the most favourable cases, a
herculean task, close to the detection limit of current observing facilities. To surpass this problem, we
made used of a technique (Martins et al. 2013, MNRAS, 436, 1215) that uses the power of the Cross
Correlation Function to recover the minute reflected signal from 51 Pegasi b with a 3-σ+ significance.
This allowed us to conclude that this prototypical hot-Jupiter is most likely a highly inflated planet
with a high albedo. These results were presented in the OHP2015: Twenty years of giant exoplanets
conference and published in Martins et al. 2015, A&A, 576, A134.

1 Introduction
Twenty years have passed since the pioneering discovery of the prototypical Hot-Jupiter 51 Peg b (Mayor & Queloz
1995), the first planet to be discovered around a solar-type star other than our Sun. Now over two thousand exo-
planets have been confirmed (see http://exoplanet.eu , Schneider et al. 2011), some of them in systems with
a level of complexity that challenges our own (e.g. HD10180 with 7 planets, Lovis et al. 2011). An interesting
result in this line of research is the correlation between stellar metallicity and the presence of giant planets: stars
hosting the giant planets are systematically more metallic than a normal sample of stars (Bond et al. 2008; Sousa
et al. 2011). Curiously, this correlation was found not to hold for low-mass rocky planets (Sousa et al. 2011), which
are now believed to be abundant and outnumber the higher-mass population characterized up to now (Mayor et al.
2011).

A rarity at first, exoplanets have been found to be ubiquitous around solar-type stars (Howard et al. 2010) and
extremely diverse in terms of characteristics (Schneider et al. 2011). Their characterization is one of the greatest
challenges in exoplanet science, to the point that it is now possible to determine the bulk composition and planetary
structure of several planets, some of which seem to be mostly rocky/iron in nature (e.g. Batalha et al. 2011; Léger
et al. 2009). The boundaries of this line of research are being pushed towards the characterization of planetary
atmospheres, for which several techniques have been developed.

Transmission spectroscopy (e.g. Charbonneau et al. 2002; Knutson et al. 2014) measures the wavelength de-
pendence of the radius of a planet during transits to infer the atmosphere’s composition. Occultation photometry
and spectroscopy techniques measure the wavelength dependency of the depth of the occultation of a transiting
planet to infer the planetary thermal (e.g. Snellen et al. 2010) and reflected (e.g. Rodler et al. 2013) signals. The
measurement of the flux variation of a planet along its orbit allows to reconstruct the planetary phase variation along
its orbit and recover its reflected signal (e.g. Knutson et al. 2009).

Another approach in the study of planetary atmospheres is the measurement of their albedo as it permits to
constrain current atmosphere models (Cowan & Agol 2011; Demory 2014) and infer their composition (e.g. the
presence of clouds in HD 189733 b, see Barstow et al. 2014). Unfortunately, the measurement of the optical
spectroscopic reflected signal from exoplanets has been elusive for many years. The main challenge to this is the
low planet-to-star flux ratio in the optical, which is in the most favourable scenarios of the order of 10−4, at the
detection limit of current observing facilities. Consequently, the initial attempts at capturing the reflected signal of
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Abstract The direct detection of reflected light from exoplanets is an excellent probe

for the characterization of their atmospheres. The greatest challenge for this task is the

low planet-to-star flux ratio, which even in the most favourable case is of the order of

10−4 in the optical. This ratio decreases even more for planets in their host’s habitable

zone, typically lower than 10−7. To reach the signal-to-noise level required for such

detections, we propose to unleash the power of the Cross Correlation Function in

combination with the collecting power of next generation observing facilities. The

technique we propose has already yielded positive results by detecting the reflected

spectral signature of 51 Pegasi b (see Martins et al. 2015). In this work, we attempted

to infer the number of hours required for the detection of several planets in their host’s

habitable zone using the aforementioned technique from theoretical EELT observations.

Our results show that for 5 of the selected planets it should be possible to directly

recover their reflected spectral signature.
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2European Southern Observatory, Alonso de Córdova 3107, Vitacura, Región Metropolitana, Chile
3Departamento de F́ısica e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
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5Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, CH-1290 Sauverny, Switzerland

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
The characterization of planetary atmospheres is a daunting task, at the limit of cur-
rent observing facilities. The next generation of high-resolution spectrographs mounted
on large telescopes – such as ESPRESSO@VLT and HIRES@ELT – will allow to probe
exoplanetary atmospheres and characterize them. We present a method that permits
the recovery of the color-dependent reflectivity of exoplanets from high-resolution spec-
troscopic observations. This wavelength-dependent albedo is highly controlled by the
planetary atmosphere chemical properties and weather dynamics.

For this work, we simulated ESPRESSO@VLT and HIRES@ELT high-resolution
observations of known planetary systems with several albedo configurations. Further-
more, we demonstrate how the cross correlation function of theses simulated observa-
tions can be used to successfully recover the geometric albedo function from exoplanets.
In all cases, we were able to recover the wavelength dependent albedo of the simulated
exoplanets and distinguish between several distinct atmospheric models representing
different atmospheric chemistry.

In brief, we demonstrate that the cross correlation technique allows for the recovery
of exoplanetary albedo functions from optical observations with the next generation
of high-resolution spectrographs that will be mounted on large telescopes with reason-
able exposure times. Its recovery should permit the characterization of exoplanetary
atmospheres in terms of composition and dynamics and makes the cross correlation
technique a powerful tool for exoplanet characterization.

Key words: Stars: Planetary systems, Planets and satellites: atmospheres, tech-
niques: spectroscopy, techniques: radial velocities

1 INTRODUCTION

The detection of what turned out to be the prototypical hot
Jupiter planet around the solar twin 51 Pegasi (Mayor &
Queloz 1995) paved the way for one of the most prolific fields
in Astronomy. Currently over 3600 planets in around 2700
planetary systems have been discovered1, with more than
2600 additional candidates from the Kepler (Borucki et al.
2010) and K2 (Howell et al. 2014) missions still awaiting
confirmation.

⋆ E-mail: Jorge.Martins@astro.up.pt
1 From the http://exoplanet.eu/ database (Schneider et al.
2011)

Nowadays, one of the main research paths of exoplan-
etology is the study and characterization of exoplanetary
atmospheres. Atmospheric characterization of exoplanets is
a formidable task, at the limit of the capabilities of current
generation observing facilities. However, in-depth knowledge
of exoplanetary atmospheres is fundamental towards our un-
derstanding of the planet’s chemistry, physics, origin and ul-
timately its capability of sustaining life (e.g. see Seager et al.
2010).

The main challenge for the study of exoplanetary at-
mospheres is the extreme contrast ratio required to detect
even a hot Jupiter class planet. At infrared wavelengths, the
planet-to-star flux ratio at opposition can reach 10−3, mainly
due to the thermal emission of the planet peaking at these
wavelengths. At optical wavelengths, the planet-to-star flux

© 2017 The Authors
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ABSTRACT

Context. The search for planets orbiting metal-poor stars is of utmost importance for our understanding of planet formation models.
However, no dedicated searches have been conducted so far for very low mass planets orbiting such objects. Only a few cases of
low-mass planets orbiting metal-poor stars are thus known. Amongst these, HD 41248 is a metal-poor, solar-type star on the orbit of
which a resonant pair of super-Earth-like planets has been announced. This detection was based on 62 radial velocity measurements
obtained with the HARPS spectrograph (public data).
Aims. We present a new planet search program that is using the HARPS spectrograph to search for Neptunes and super-Earths that
orbit a sample of metal-poor FGK dwarfs. We then present a detailed analysis of 162 additional radial velocity measurements of
HD 41248, obtained within this program, with the goal of confirming the existence of the proposed planetary system.
Methods. We analysed the precise radial velocities, obtained with the HARPS spectrograph, together with several stellar activity
diagnostics and line profile indicators.
Results. A careful analysis shows no evidence for the planetary system. One of the signals, with a period of ∼25 days, is shown to be
related to the rotational period of the star, and is clearly seen in some of the activity proxies. We were unable to convincingly retrieve
the remaining signal (P ∼ 18 days) in the new dataset.
Conclusions. We discuss possible causes for the complex (evolving) signals observed in the data of HD 41248, proposing that they
might be explained by the appearance and disappearance of active regions on the surface of a star with strong differential rotation, or
by a combination of the sparse data sampling and active region evolution.

Key words. planetary systems – stars: individual: HD 41248 – stars: solar-type – stars: activity – stars: abundances – surveys

1. Introduction

Precise spectroscopic studies of stars with giant planets show
that their frequency is a strong function of the stellar metallicity.
It is easier to find such a planet around a metal-rich star than
around a metal-poor object (Gonzalez 1998; Santos et al. 2001,
2004b; Reid 2002; Fischer & Valenti 2005; Sousa et al. 2011b).

⋆ Based on observations collected at ESO facilities under pro-
grams 082.C-0212, 085.C-0063, 086.C-0284, and 190.C-0027 (with
the HARPS spectrograph at the ESO 3.6-m telescope, La Silla-Paranal
Observatory).
⋆⋆ Table 1 is available in electronic form at http://www.aanda.org
⋆⋆⋆ Radial velocity data are only available at the CDS via anonymous
ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A35

Several studies on solar neighbourhood stars have shown that at
least 25% of stars with [Fe/H] above +0.3 dex (twice the solar
value) have an orbiting giant planet. This frequency decreases to
about 5% for solar metallicity stars. This observational result is
usually interpreted to be due to a higher probability of forming
a giant-planet core before the dissipation of the proto-planetary
disk in a metal-rich environment (e.g. Mordasini et al. 2009).

A number of questions are still open, however, whose an-
swer may have strong implications for planet formation mod-
els, especially in the metal-poor regime. In the context of one
of the HARPS surveys, a search for giant planets around a sam-
ple of ∼100 metal-poor stars was conducted. Three new giant-
planet candidates were discovered, and a fourth interesting can-
didate was announced (Santos et al. 2007, 2011). As expected,
the results seem to confirm that metal-poor stars have a lower
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ABSTRACT

Aims. In this paper we explore the possibility that the recently detected reflected light signal of 51 Peg b could be caused by a ring
system around the planet.
Methods. We use a simple model to compare the observed signal with the expected signal from a short-period giant planet with rings.
We also use simple dynamical arguments to understand the possible geometry of such a system.
Results. We provide evidence that, to a good approximation, the observations are compatible with the signal expected from a ringed
planet, assuming that the rings are non-coplanar with the orbital plane. However, based on dynamical arguments, we also show that
this configuration is unlikely. In the case of coplanar rings we then demonstrate that the incident flux on the ring surface is about 2%
the value received by the planet, a value that renders the ring explanation unlikely.
Conclusions. The results suggest that the signal observed cannot in principle be explained by a planet+ring system. We discuss,
however, the possibility of using reflected light spectra to detect and characterize the presence of rings around short-period planets.
Finally, we show that ring systems could have already been detected by photometric transit campaigns, but their signal could have
been easily misinterpreted by the expected light curve of an eclipsing binary.

Key words. techniques: spectroscopic – planets and satellites: dynamical evolution and stability – planets and satellites: rings –
planetary systems

1. Introduction

The detection of the atmospheres of extrasolar planets is becom-
ing one of the major research topics in the exoplanet field (for
a recent review see Burrows 2014). Current technology and a
detailed data analysis have already allowed the signature of the
atmospheres of other worlds to be detected using different meth-
ods, such as transmission spectroscopy (e.g., Charbonneau et al.
2002; Vidal-Madjar et al. 2003; Madhusudhan et al. 2014), oc-
cultations (e.g., Deming et al. 2005; Demory et al. 2012), and
phase curve variations (e.g., Angerhausen et al. 2014). These
studies allowed several detailed analyses of exoplanet atmo-
spheres, including tracing of thermal or albedo maps of the plan-
ets (e.g., Knutson et al. 2007; Stevenson et al. 2014; Demory
et al. 2013).

Although a large majority of the exoplanet atmosphere
studies involved space-based data, the use of ground-based

⋆ Based on observations collected at ESO facilities under pro-
gram 091.C-0271 (with the HARPS spectrograph at the ESO 3.6-m
telescope, La Silla-Paranal Observatory).
⋆⋆ Appendices are available in electronic form at
http://www.aanda.org

instrumentation to detect exoplanet atmospheres is providing a
growing amount of information. This is particularly true con-
cerning the use of high-resolution spectroscopic techniques.
Using both optical and the near-infrared (near-IR) wavelengths,
these methods allowed the spectrum to be probed in detail for
several exoplanets (for some examples see Snellen et al. 2010;
Birkby et al. 2013; Wyttenbach et al. 2015).

In a recent paper, Martins et al. (2015) have explored a
new technique for detecting the signature of a high-resolution
(optical) reflected light spectrum from an exoplanet. This de-
tection allowed estimation of the radius and albedo of the his-
torical 51 Peg b planet (Mayor & Queloz 1995), suggesting that
this planet may be a high-albedo, inflated hot-Jupiter such as
Kepler-7 b (with Ag = 0.35 Demory et al. 2013).

The predicted star-to-planet flux ratio for a star+planet sys-
tem be estimated from (e.g., Seager 2010):

Fplanet

F∗
= Ag g(α)

(
Rp

a

)2

(1)

where Ag is the geometric albedo of the planet, a the semi-
major axis of the orbit, g(α) the phase function, and Rp the
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ABSTRACT

We report on novel observations of HAT-P-1 aimed at constraining the optical transmission spectrum of the
atmosphere of its transiting hot-Jupiter exoplanet. Ground-based differential spectrophotometry was performed
over two transit windows using the DOLORES spectrograph at the Telescopio Nazionale Galileo. Our
measurements imply an average planet to star radius ratio equal to Rp/R*= (0.1159 ± 0.0005). This result is
consistent with the value obtained from recent near-infrared measurements of this object, but differs from
previously reported optical measurements, being lower by around 4.4 exoplanet scale heights. Analyzing the data
over five different spectral bins of ∼600Å wide, we observed a single peaked spectrum (3.7 σ level) with a blue
cutoff corresponding to the blue edge of the broad absorption wing of sodium and an increased absorption in the
region in-between 6180 and 7400Å. We also infer that the width of the broad absorption wings due to alkali metals
is likely narrower than the one implied by solar abundance clear atmospheric models. We interpret the result as
evidence that HAT-P-1b has a partially clear atmosphere at optical wavelengths with a more modest contribution
from an optical absorber than previously reported.

Key words: planets and satellites: atmospheres – planets and satellites: individual (HAT-P-1b) – techniques:
spectroscopic

1. INTRODUCTION

The possibility to characterize transiting exoplanet atmo-
spheres by means of high precision spectrophotometric
measurements acquired during transits was theorized in a few
works earlier in this century (Seager & Sasselov 2000;
Brown 2001). The light of the hosting star, filtered by the
planeary atmosphere in the terminator region is absorbed and
scattered by chemical compounds so that, once observed at
different wavelenghts, the atmosphere may appear more or less
opaque to the observer. Hence, transit depth determinations
obtained in different spectral domains can be used to
reconstruct a low-resolution spectrum of the planetary
atmosphere.

Models predict that atmospheres of cloud free hot-Jupiter
planets should be dominated in the optical by broad absorption
features of the alkali metals Na and K. Studies so far have
revealed a certain diversity of atmospheric features. Sodium
was first detected by Charbonneau et al. (2002) in the
atmosphere of HD 209458b using the STIS spectrograph on
board the Hubble Space Telescope (HST) and also confirmed
later on by ground-based observations (Snellen et al. 2008).
Subsequent studies have also revealed the presence of alkali
metals in the atmospheres of other planets, for example sodium
was detected in WASP-17b (e.g., Wood et al. 2011; Zhou &
Bayliss 2012) and HAT-P-1b (Nikolov et al. 2014) while
potassium has been detected in XO-2b (Sing et al. 2011),
WASP-31b (Sing et al. 2015), and HAT-P-1b (Wilson et al.
2015). The atmospheres of other planets seem to be obscured
by clouds or hazes, as in the case of WASP-12b (Sing
et al. 2013) and HD 189733 (Pont et al. 2013), albeit for this
planet narrow line cores of sodium were also found (Redfield
et al. 2008; Huitson et al. 2012; Jensen et al. 2011).

Near infrared studies have soon complemented analysis
conducted in the optical domain, particularly exploiting the
Spitzer Space Telescope and lead to the conclusion that close-in
extrasolar planets could be broadly subdivided into two big
categories according to the structure of their temperature–
pressure profiles (Hubeny et al. 2003; Fortney
et al. 2006, 2008; Burrows et al. 2007, 2008). The pM class
planets show a high altitude temperature inversion in their
atmospheres whereas the pL class planets do not, resulting in
different emergent spectral energy distributions in the near-
infrared domain and different spectral signatures (like the
flipping of water bands from absorption to emission passing
from non-inverted to inverted atmospheres). The origin of such
inversion is identified with the absorption of strong stellar
irradiation in the optical domain by a variety of possible
absorbers (Burrows et al 2007; Zahnle et al. 2009; Fortney
et al. 2010).
The present study is focussed on HAT-P-1b, one interesting

member of the family of hot-Jupiter planets. HAT-P-1b is a low
mean density ( 0.35pr ~ g cm−3

) giant exoplanet (Rp∼ 1.2 RJ)

discovered by theHATNet transit survey (Bákos et al. 2007). The
host star (V 10.4= ) is amemberof avisual binary systemwith the
two components separated by around11 on the sky (∼1500 AU).
Both are G0V stars and the companion star is around half
amagnitude brighter than the target in theVfilter. The lowdensity
of the exoplanet, the brightness of the host star, and the presence
of a close-by stellar companion make HAT-P-1b an ideal
target for follow-up studies aiming at characterizing its atmo-
sphere using transmission spectroscopy. In particular, the close
stellar companion can be used to correct for systematic effects
performing simultaneous differential spectrophotometric mea-
surements of the two stars.

The Astrophysical Journal, 811:55 (12pp), 2015 September 20 doi:10.1088/0004-637X/811/1/55
© 2015. The American Astronomical Society. All rights reserved.
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ABSTRACT

Context. The temperate Earth-mass planet Proxima b is the closest exoplanet to Earth and represents what may be our best ever
opportunity to search for life outside the Solar System.
Aims. We aim at directly detecting Proxima b and characterizing its atmosphere by spatially resolving the planet and obtaining
high-resolution reflected-light spectra.
Methods. We propose to develop a coupling interface between the SPHERE high-contrast imager and the new ESPRESSO spectro-
graph, both installed at ESO VLT. The angular separation of 37 mas between Proxima b and its host star requires the use of visible
wavelengths to spatially resolve the planet on a 8.2-m telescope. At an estimated planet-to-star contrast of ∼ 10−7 in reflected light,
Proxima b is extremely challenging to detect with SPHERE alone. However, the combination of a ∼103-104 contrast enhancement
from SPHERE to the high spectral resolution of ESPRESSO can reveal the planetary spectral features and disentangle them from the
stellar ones.
Results. We find that significant but realistic upgrades to SPHERE and ESPRESSO would enable a 5-σ detection of the planet and
yield a measurement of its true mass and albedo in 20-40 nights of telescope time, assuming an Earth-like atmospheric composition.
Moreover, it will be possible to probe the O2 bands at 627, 686 and 760 nm, the water vapour band at 717 nm, and the methane band
at 715 nm. In particular, a 3.6-σ detection of O2 could be made in about 60 nights of telescope time. Those would need to be spread
over 3 years considering optimal observability conditions for the planet.
Conclusions. The very existence of Proxima b and the SPHERE-ESPRESSO synergy represent a unique opportunity to detect biosig-
natures on an exoplanet in the near future. It is also a crucial pathfinder experiment for the development of Extremely Large Telescopes
and their instruments, in particular the E-ELT and its high-resolution visible/near-IR spectrograph.

Key words. Planets and satellites: individual: Proxima b – Planets and satellites: atmospheres – Techniques: high angular resolution
– Techniques: spectroscopic

1. Introduction

1.1. Observing exoplanet atmospheres

The field of exoplanets has seen tremendous progress over the
past two decades, evolving from a niche research field with
marginal reputation to mainstream astrophysics. The number of
exoplanet properties that have become accessible to observations
has been continuously growing. The radial velocity and transit
techniques have been the two pillars over which exoplanet stud-
ies have developed, providing the two most fundamental physi-
cal properties of an exoplanet: mass and radius. Simultaneously,
spatially-resolved imaging has been studying the properties of
young and massive exoplanets on wide orbits. More recently,

Send offprint requests to: C. Lovis, e-mail:
christophe.lovis@unige.ch

the field has been moving towards a more detailed characteri-
zation of planets and planetary systems, from their orbital ar-
chitecture to their internal structure to the composition of their
atmospheres. The study of exoplanet atmospheres, in particular,
is widely seen as the new frontier in the field, a necessary step
to elucidate the nature of the mysterious and ubiquitous super-
Earths and mini-Neptunes. It is also the only means of directly
addressing the fundamental question: has life evolved on other
worlds?

Atmospheric characterization heavily relies on the availabil-
ity of favourable targets, given the extremely low-amplitude sig-
nals to be detected and the present instrumental limitations. That
is why a major effort is being made to systematically search
for the nearest exoplanets with the largest possible atmospheric
signatures. One of the most successful techniques so far has
been transit spectroscopy, where an exoplanet atmosphere is il-

Article number, page 1 of 16
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TALKS AND SEMINARS A.2

Exoplanet Reflections in the era of Giant Telescopes

Location: ESO Thirty Minute Talk, ESO - Chile Date: 2016-11-30

File: N/A

Abstract:

The detection of reflected light from exoplanets is a daunting task, pushing current observing facilities to

their limits. The advent of 30m class telescopes will get us past these boundaries, enabling us not only to

detect reflected light from exoplanets, but recover the color dependence of those planets albedo function.

This quantity is paramount towards the understanding of exoplanet atmospheres as it is highly dependent

on the constituents of a planet’s atmosphere and is a direct measure on how these reflect the incident light

under a given conditions of temperature and pressure.

In this talk I will show how the Cross Correlation Technique presented in Martins et al 2015 can be

used to recover recover the color dependence of the albedo function from exoplanets with next generation

observing facilities. I will present some results on the recovery of the color dependence of the albedo function

from selected known planets from simulated observations with ESPRESSO@VLT and HIRES@ELT.

S
E
M
IN
A
R

Jorge Humberto Costa Martins

N/A


FCUP 151
Characterizing the atmosphere of exoplanets using high-resolution spectroscopy

Exoplanet Reflections in the era of Giant Telescopes

Location: E3LT: Exoplanets in the Era of Extremely Large Tele-

scopes, Asilomar Conference Grounds, Pacific Grove,

CA, USA

Date: 2016-09-28

File: N/A

Abstract:

The detection of reflected light from exoplanets is a daunting task, pushing current observing facilities to

their limits. The advent of 30m class telescopes will get us past these boundaries, enabling us not only to

detect reflected light from exoplanets, but recover the color dependence of those planets albedo function.

This quantity is paramount towards the understanding of exoplanet atmospheres as it is highly dependent

on the constituents of a planet’s atmosphere and is a direct measure on how these reflect the incident light

under a given conditions of temperature and pressure.

In this talk I will the present our latest results using the current instrumentation available in the 4-m to

8-m class telescopes. In a second part, I will explore the future perspectives brought by the next generation of

30m class telescopes such as the GMT and ESO’s ELT in the recovery of the color dependence of the albedo

function from exoplanets. I will focus on how to recover this color dependence using the Cross Correlation

Technique presented in Martins et al. (2015a). I will also present the results of recent simulations in which we

were able to recover the color dependence of the albedo function for several prototypical exoplanet classes.
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Exoplanet Reflections: the light from 51 Peg b

Location: OHP2015 : 20 Years of Giant Exoplanets, Observatoire

Haute Provence, France

Date: 2015-10-07

File: http://interferometer.osupytheas.fr/colloques/OHP2015/slides/OHP2015_

JorgeMartins.pdf

Abstract:

This talk was presented at the OHP2015 : 20 Years of Giant Exoplanets conference at the Observatoire

Haute Provence (France). This conference was intended to celebrate the 20 years of discovery of the first

exoplanet confirmed around a solar-type star by discussing key questions regarding giant planets and how to

solve them in the coming years.

In this conference talk, I presented a technique based on the Cross Correlation Function to detect the

reflected spectroscopic optical signature from exoplanets (Martins et al., 2013) and how it was applied the

first time to recover the signal from 51 Pegasi b (Martins et al., 2015a)
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Reflected light from exoplanets via high resolution spectroscopy

Location: Astrobiology and Planetary Atmospheres, ESO - Chile Date: 2015-10-01

File: http://www.eso.org/sci/meetings/2015/AstroBio2015/Talks/Thursday/

MartinsJ.pdf

Abstract:

The direct detection of reflected light from exoplanets is an excellent probe for the characterization of an

exoplanet’s atmosphere. In this talk we will introduce a technique that makes use of high resolution spectra to

surpass the difficult technical challenge this genre of detection represents. We will also present its application

to real observations of the prototypical planet 51 Pegasi b and show the potential of this technique when

applied to future observing facilities.
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Detecting the optical reflected spectrum of 51 Peg b

Location: Exoplanet Focus Meeting for the Chilean Scientific

Community, ESO - Chile

Date: 2015-06-04

File: www.eso.org/sci/meetings/2015/Exoplanet2015/Talks/Jorge_martins.pdf

Abstract:

The direct detection of reflected light from an exoplanet is, even in the most favourable cases, a herculean

task, close to the detection limit of current observing facilities. In this talk, we will show how the Cross

Correlation Function can be used to recover the minute reflected signal from an exoplanet in the optical (see

Martins et al., 2015a). We will also present the evidences for the first direct detection of the optical reflected

spectrum of 51 Peg on its orbiting planet, as well as how this result can be used to tentatively infer some of

the planet’s characteristics as detaily described in Martins et al. (2015a)
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Reflected light from exoplanets: The case of 51 Peg b

Location: ESO Thirty Minute Talk, ESO - Chile Date: 2015-04-24

File: N/A

Abstract:

The direct detection of reflected light from an exoplanet is, even in the most favourable cases, a herculean

task, close to the detection limit of current observing facilities. In this talk, we will show how the Cross

Correlation Function can be used to recover the minute reflected signal from an exoplanet in the optical

(Martins et al., 2013). We will also present the evidences for the first direct detection of the optical reflected

spectrum of 51 Peg on its orbiting planet, as well as how this result can be used to tentatively infer some of

the planet’s characteristics as detaily described in Martins et al. (2015a).
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Complementarity Between Detection Methods

Location: Cookie Seminar, CAUP, Portugal Date: 2014-04-30

File: N/A

Abstract:

Planet detection methods have evolved greatly over the last few years, allowing for the detection of over 1700

planets in over one thousand planetary systems. Nonetheless,individually detection methods are extremely

limited and in most cases they do not allow to fully characterize the planetary systems. To access the

unavailable parameter spaces we need combine several detection methods, usually spending more time on

follow up observations. In this talk, I will make a brief introduction on current planet detection methods.

Next, I intend to present a few examples where the combination of planet detection methods allows for a

full characterization of the detected systems, not only in terms of directly detectable parameters, but also to

infer and constrain information otherwise inaccessible (e.g. composition).
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POSTERS A.3

A method to detect reflected light from giant planets in habitable

zones

Location: K2 meeting, IA - Porto, Portugal Date: 2016-05-10

File: http://www.iastro.pt/research/conferences/k2meeting/index.html?opt=

posters

Abstract:

In this poster we describe how the Cross Correlation Function can be used to make the planetary signal

surface above the noise level of our observations and how it can be used to detect giant planets in their

host’s habitable zone. These restults were published in Martins et al., 2016
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Spectroscopic direct detection of reflected light from an exoplanet

Location: Towards Other Earths II: The star-planet connection,

Porto, Portugal

Date: 2014, Sep 15-19

File: http://www.astro.up.pt/investigacao/conferencias/toe2014/index.php?opt=

posters

Abstract:

In this poster I presented the preliminary results on the detection of the reflected optical spectrum from

an unamed exoplanet. This work led to the puclication of the aforementioned article on the detection of

reflected light from the prototypical Hot-Jupiter 51 Pegasi b (see Martins et al., 2015a)
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ATTENDED CONFERENCES AND WORKSHOPS A.4

E3LT: Exoplanets in the Era of Extremely Large Telescopes

Location: Asilomar Conference Grounds, Pacific Grove, CA, USA Date: 2016, Sep 26-28

Website http://www.gmtconference.org/welcome-reception/

Description:

From September 25-28 more than a hundred astronomers gathered at the Asilomar Conference Grounds in

Pacific Grove, CA to participate in the Fourth Annual GMT Community Science Meeting, Exoplanets in

the Era of Extremely Large Telescopes. GMTO’s policy of supporting young astronomers to attend these

meetings ensured there were many students and postdocs presenting their cutting-edge research.

The conference highlighted how the next generation of Extremely Large Telescopes (ELTs), and in

particular the GMT and its suite of instruments, are needed to make progress in the field of exoplanet

science.
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OHP2015 : 20 Years of Giant Exoplanets

Location: Observatoire Haute Provence, France Date: 2015, Oct 5-9

Website http://ohp2015.sciencesconf.org/

Description:

The OHP2015 : 20 Years of Giant Exoplanets conference at the Observatoire Haute Provence (France) was

intended to celebrate the 20 years of discovery of the first exoplanet confirmed around a solar-type star by

discussing key questions regarding giant planets and how to solve them in the coming years.
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Astrobiology and Planetary Atmospheres

Location: ESO - Chile Date: 2015, Sep 28 to Oct

2

Website http://www.eso.org/sci/meetings/2015/AstroBio2015.html

Description:

The discovery of an imensity of exoplanets over the past 20 years brought forward an ages question old ques-

tion: Are we alone in the Universe? To answer this question, the organization fo this conference brought

together researchers from the major astrobiology groups from the World and their South American counter-

parts to share knowledge and foster colaborations among the major subjects in the field of astrobiology.
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Exoplanet Focus Meeting for the Chilean Scientific Community

Location: ESO - Chile Date: 2015-06-04

Website http://www.eso.org/sci/meetings/2015/Exoplanets2015.html

Description:

Chile hosts some of the most advanced observing facilities in the world and thus is of paramount importance

for exoplanetary research. The purpose of this workshop was to bring together exoplanets researchers from

the Chilean Scientific Community and give a better understanding of the status of exoplanetary research in

Chile.
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K2 meeting

Location: IA - Porto, Portugal Date: 2016-05-10

Website http://www.iastro.pt/research/conferences/k2meeting/

Description:

The K2 mission is finding very interesting planetary candidates that can be characterised with ground-based

facilities. Several groups are participating independently to the follow-up efforts. While competition is a good

source of motivation, duplication of the work is also a waste of time (both human and facility resources).

With a better communication, coordination or even collaboration between the groups, it would be possible

to improve the exploitation of the K2 data and the use of available resources. Organising the various K2

efforts will also be a good practice for the upcoming follow-up of the TESS and PLATO candidates.
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Towards Other Earths II: The star-planet connection

Location: Porto, Portugal Date: 2014, Sep 15-19

Website http://www.astro.up.pt/investigacao/conferencias/toe2014/

Description:

The study of extrasolar planets is one of the most active areas of research of modern astronomy. The

number of discoveries attests for the importance of a topic that reaches out and captivates the imagination

of scientists and public alike. This conference aims at reviewing the state of the art of star-planet connection,

with some focus on the detection and characterization of Earth like planets orbiting other stars. We propose

to debate how the field of extrasolar planets will evolve in respect to this and how it will face the challenges

of the upcoming years.
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OUTREACH A.5

From here to Infinity

Location: Astronomy on Tap, The Shamrock, Santiago, Chile Date: 2015-06-24

File: https://www.facebook.com/AstronomyonTapChile/

Abstract:

Astronomy on Tap ([link]) is a international outreach programme that consists of a monthly series of outreach

talks given by Astronomers at a local pub the intent to reduce the gap between Astronomers and the general

Public. I presented a talk of the series in June 2015 regarding distances and dimensions in Astronomy from

the smallest to the largest objects/distances.
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Organization and hosting of Astronomy on Tap - Chile

Location: The Shamrock, Santiago, Chile Date: 2015 May-Aug

Website N/A

Description:

Astronomy on Tap ([link]) is a international outreach programme that consists of a monthly series of outreach

talks given by Astronomers at a local pub the intent to reduce the gap between Astronomers and the general

Public. ESO-Chile got involved in this programme through Dr. Amy Tyndal (while she was a PhD student at

ESO-Chile), for which she would be responsible to prepare and host the events. Between March and August

2015, I took over the hosting of Astronomy on Tap - Chile and was responsible for the preparation of each

individual event in colaboration with several Pos-Docs/Fellows at ESO Chile.
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ESO/ALMA Open House Day, Chile

Location: ESO - Chile Date: 2015-03-20

Website N/A

Description:

On March 20th, Chile celebrated the second edition of Día de la Astronomía organised by Planetario de la

Universidad de Santiago (http://www.planetariochile.cl/) and Conicyt (http://www.conicyt.cl/).

This year, ESO joined the celebrations with an Open House Day at Vitacura premises. During this day, over

140 children from local public schools visited the ESO/Atacama Large Millimeter Array (ALMA) premises,

where several activities expected them. These activities were supported by ESO/ALMA volunteers which

gave the visitors a walking tour around the ESO/ALMA facilities, showed them the Sun on solar telescopes

and the southern sky in an inflatable planetarium. My participation in these activities included showing

them the premises, explaining some astronomical images spread across the ESO/ALMA fences and solar

observations.
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Four Elements - Earth

Location: Municipal Library of Porto, Portugal Date: 2017-10-28

File: N/A

Abstract:

Informal talk between myself, an astro-philosopher and the curator responsible for the Earth element of an

art exhibit at the Municipal Library of Porto, Portugal. This talk was part of the art exhibit and the subject

was the Earth element. My approach was the scientific perspective of the detection of New Earths around

other stars.
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OTHER A.6

ESO P93 Proposal: 093.C-0929(D)

Detecting the optical reflected light from exoplanets

Location: ESO’s La Silla-Paranal Observatory, Chile Date: 2014 Apr-Sep

Website https://www.eso.org/sci/observing/teles-alloc/All_proposals/P93_All_

Scheduled_Runs.pdf

Description:

We submitted a proposal to ESO call P93 regarding the detection of reflected light from exoplanets. Of

the 4 runs we proposed (once per planet), one was accepted and we acquired UVES observations of 51 Peg

totalling around 9h of total exposure time (17h with overheads). I propose 20 points for this task.
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Monitor at the 10thPhysics Summer School

Location: Faculty of Science, University of Porto, Portugal Date: 2014 Sep

Website http://e-fisica.fc.up.pt/edicoes/10a-edicao

Description:

Na sua 10a Edição a Escola desafia os participantes com o programa mais radical de sempre com projectos

envolvendo lasers, supercondutores, nanotecnologias, física espacial, fibras ópticas, biosensores e astrofísica.

Projectos que abrangem as três grandes áreas de investigação do DFA, Física, Astronomia e Engenharia

Física. Assim, se tens apetência pelo conhecimento e pelo processo de investigação que permite inquirir

a Natureza e testar hipóteses acerca das causas das coisas, então deixa-te arrastar pelo encantamento da

experimentação e do entendimento das ideias mais profundas e abrangentes. O DFA garante uma viagem

através do Universo, do microcosmo ao macrocosmo, inserindo-te num projecto que te dilatará a imaginação.

Tens coragem? Aparece!
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HARPS@3.6m observing run

Location: ESO’s La Silla-Paranal Observatory, Chile Date: 2014-2016

Website N/A

Description:

Observing runs are an essential part of the training of any astronomer. During my PhD I realized the following

runs:

? 2014, February 9-16

? 2015, February 6-13

? 2016, May 6-10

In all of them I went observing for mixed programs from IA-Porto researchers and collaborators.
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Appendix B.

Observations of 51 Pegasi b

The tables presented in this appendix present the values for the most relevant parameters for each individual

HARPS observation of the 51 Pegasi system with HARPS (Table B.1) and UVES (Table B.2). The presented

parameters are:
BJD barycentric Julian date at the start of each observation minus 2 400 000 days;

RV RV of the stellar CCF;

σ(RV ) error on the RV of the stellar CCF;

FWHM FWHM of the stellar CCF;

σ(FWHM) error on the FWHM of the stellar CCF (only for UVES);

Contrast depth of the stellar CCF of the stellar CCF, with the continuum defined as one;

texp individual exposure time for each observation;

S/N S/N at the center of order XXX (λ = Y Y Y nm) for HARPS and order XXX (λ = Y Y Y nm) for UVES;

HARPS B.1

BJD RV σ(RV ) FWHM Contrast texp S/N

56506.318050 -33.147 0.438 7.422 0.482 600 17

56565.084257 -33.181 0.230 7.427 0.484 450 35

56565.229447 -33.170 0.199 7.427 0.484 450 40

56508.344226 -33.154 0.217 7.432 0.484 500 36

56565.056347 -33.183 0.252 7.428 0.484 450 30

Description of the available data on a per night basis. (continued . . . )

161
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BJD RV σ(RV ) FWHM Contrast texp S/N

56544.085928 -33.168 0.361 7.425 0.482 600 19

56468.299933 -33.155 0.301 7.426 0.483 550 23

56565.026221 -33.185 0.326 7.426 0.483 300 21

56565.145630 -33.178 0.187 7.430 0.484 450 42

56565.022382 -33.185 0.337 7.425 0.483 300 20

56508.282646 -33.149 0.294 7.429 0.483 500 27

56565.140051 -33.178 0.202 7.429 0.484 450 39

56565.095415 -33.181 0.212 7.428 0.484 450 38

56451.341380 -33.158 0.277 7.427 0.483 420 25

56565.089832 -33.182 0.200 7.429 0.484 450 40

56565.179101 -33.175 0.184 7.429 0.484 450 43

56565.117741 -33.181 0.199 7.428 0.484 450 40

56544.144477 -33.164 0.385 7.425 0.482 600 19

56508.338069 -33.152 0.228 7.434 0.484 500 35

56565.106578 -33.181 0.210 7.427 0.484 450 38

56544.107891 -33.168 0.256 7.430 0.484 600 30

56565.128893 -33.180 0.196 7.428 0.484 450 41

56544.166448 -33.163 0.422 7.427 0.482 600 17

56565.223747 -33.171 0.183 7.430 0.485 450 42

56544.173775 -33.163 0.361 7.425 0.483 600 21

56540.178824 -33.143 0.302 7.428 0.483 600 26

56565.167949 -33.176 0.193 7.429 0.484 450 41

56565.134472 -33.179 0.198 7.429 0.484 450 40

56565.100994 -33.180 0.218 7.429 0.484 450 37

56565.173523 -33.175 0.203 7.430 0.484 450 40

56540.164174 -33.145 0.270 7.428 0.484 600 29

56508.288809 -33.149 0.267 7.431 0.484 500 30

56565.033910 -33.185 0.329 7.425 0.483 450 22

56565.151211 -33.178 0.198 7.428 0.484 450 40

56468.417741 -33.144 0.202 7.429 0.484 500 36

56565.061925 -33.184 0.232 7.428 0.484 450 33

56508.368854 -33.156 0.261 7.432 0.484 500 30

56565.030068 -33.186 0.381 7.427 0.482 300 18

Description of the available data on a per night basis. (continued . . . )
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BJD RV σ(RV ) FWHM Contrast texp S/N

56565.156791 -33.177 0.205 7.430 0.484 450 39

56468.284909 -33.156 0.260 7.426 0.484 450 29

56565.207014 -33.173 0.188 7.432 0.484 450 42

56508.387322 -33.156 0.245 7.433 0.484 500 30

56508.301124 -33.151 0.239 7.430 0.484 500 33

56540.186127 -33.143 0.342 7.427 0.483 600 23

56544.159118 -33.162 0.539 7.420 0.481 600 12

56508.270334 -33.148 0.289 7.431 0.483 500 27

56508.325748 -33.153 0.224 7.432 0.484 500 35

56508.381170 -33.156 0.263 7.432 0.484 500 29

56468.411151 -33.145 0.220 7.428 0.484 500 33

56565.162370 -33.176 0.212 7.430 0.484 450 37

56565.078679 -33.183 0.225 7.426 0.484 450 35

56508.350383 -33.154 0.234 7.434 0.484 500 33

56508.319590 -33.151 0.227 7.431 0.484 500 35

56508.294967 -33.151 0.250 7.428 0.484 500 32

56565.190264 -33.174 0.176 7.430 0.484 450 44

56451.336146 -33.157 0.281 7.429 0.483 420 25

56540.171503 -33.144 0.271 7.429 0.483 600 29

56508.313433 -33.152 0.219 7.433 0.484 500 36

56565.039607 -33.185 0.283 7.425 0.483 450 26

56451.346607 -33.158 0.233 7.431 0.484 520 31

56544.137157 -33.165 0.345 7.425 0.483 600 21

56565.050768 -33.184 0.285 7.426 0.483 450 26

56544.093251 -33.169 0.311 7.426 0.483 600 23

56508.331905 -33.152 0.236 7.432 0.484 500 33

56544.115219 -33.168 0.264 7.427 0.484 600 29

56565.123319 -33.180 0.204 7.428 0.484 450 39

56508.356540 -33.155 0.216 7.434 0.484 500 36

56565.184682 -33.175 0.185 7.431 0.484 450 43

56565.212591 -33.171 0.184 7.431 0.484 450 43

56468.307488 -33.155 0.392 7.423 0.482 600 17

56544.151803 -33.164 0.430 7.423 0.482 600 17

Description of the available data on a per night basis. (continued . . . )
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BJD RV σ(RV ) FWHM Contrast texp S/N

56544.129842 -33.166 0.291 7.429 0.483 600 26

56468.436622 -33.145 0.198 7.428 0.484 500 36

56506.325361 -33.148 0.457 7.424 0.482 493 16

56544.122533 -33.166 0.291 7.426 0.483 600 26

56508.375012 -33.156 0.246 7.432 0.484 500 31

56468.443203 -33.145 0.204 7.429 0.484 500 35

56565.073089 -33.182 0.227 7.427 0.484 450 35

56565.067510 -33.183 0.234 7.427 0.484 450 33

56468.430464 -33.144 0.201 7.428 0.484 500 36

56508.276493 -33.147 0.309 7.432 0.483 500 25

56565.045194 -33.185 0.257 7.425 0.484 450 29

56565.195849 -33.174 0.178 7.431 0.484 450 44

56468.291639 -33.157 0.207 7.428 0.484 600 38

56544.100565 -33.169 0.262 7.428 0.483 600 29

56468.424306 -33.144 0.200 7.431 0.484 500 36

56565.201434 -33.174 0.179 7.431 0.484 450 44

56508.307280 -33.151 0.232 7.432 0.484 500 34

56565.218169 -33.171 0.176 7.430 0.485 450 44

56565.112157 -33.181 0.212 7.428 0.484 450 38

56508.362692 -33.155 0.233 7.433 0.484 500 33

Table B.1: Description of the available data on a per night basis.

UVES B.2

BJD RV σ(RV ) FWHM σ(FWHM)Contrast texp S/N

[km/s] [km/s] [km/s] [km/s] [s]

56869.388921 -32.477 0.015 7.916 0.037 0.361 23 181

56958.063755 -32.652 0.007 7.958 0.018 0.358 105 219

56958.085150 -32.727 0.007 7.961 0.018 0.357 150 281

56958.069122 -32.677 0.007 7.950 0.018 0.359 105 207

56958.106642 -32.752 0.007 7.955 0.018 0.358 77 224

56958.065543 -32.661 0.007 7.963 0.018 0.358 105 221

Description of each individual UVES observation. (continued . . . )
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BJD RV σ(RV ) FWHM σ(FWHM)Contrast texp S/N

[km/s] [km/s] [km/s] [km/s] [s]

56958.075922 -32.660 0.007 7.964 0.018 0.358 150 256

56958.103720 -32.753 0.007 7.954 0.018 0.358 77 217

56958.044102 -32.587 0.007 7.953 0.018 0.358 105 215

56958.051244 -32.600 0.007 7.954 0.018 0.358 105 215

56958.078230 -32.662 0.007 7.960 0.018 0.358 150 262

56958.109568 -32.770 0.007 7.962 0.018 0.358 77 227

56958.098994 -32.777 0.007 7.966 0.018 0.356 150 312

56958.087456 -32.741 0.007 7.956 0.018 0.357 150 291

56958.040528 -32.594 0.007 7.952 0.018 0.359 105 211

56958.054819 -32.619 0.007 7.957 0.018 0.358 105 226

56958.067330 -32.661 0.007 7.957 0.018 0.358 105 229

56958.082847 -32.700 0.007 7.955 0.018 0.358 150 272

56958.061964 -32.635 0.007 7.957 0.018 0.358 105 233

56958.118330 -32.762 0.007 7.964 0.018 0.358 77 217

56958.092068 -32.742 0.007 7.963 0.018 0.357 150 283

56958.094375 -32.742 0.007 7.969 0.018 0.357 150 283

56958.115411 -32.722 0.007 7.963 0.018 0.358 77 208

56958.108106 -32.736 0.007 7.953 0.018 0.358 77 222

56958.038745 -32.585 0.007 7.955 0.017 0.358 105 215

56958.116872 -32.737 0.007 7.955 0.018 0.358 77 199

56958.111027 -32.800 0.007 7.959 0.018 0.358 77 224

56958.080542 -32.679 0.007 7.956 0.018 0.358 150 275

56958.053032 -32.616 0.007 7.957 0.018 0.358 105 216

56958.112490 -32.780 0.007 7.962 0.018 0.358 77 232

56958.056606 -32.612 0.007 7.954 0.018 0.358 105 221

56958.036958 -32.585 0.007 7.950 0.018 0.359 105 201

56958.042317 -32.576 0.007 7.947 0.018 0.359 105 213

56958.096685 -32.755 0.007 7.966 0.018 0.356 150 306

56958.113950 -32.755 0.007 7.962 0.018 0.358 77 222

56958.058388 -32.635 0.007 7.945 0.018 0.359 105 226

56958.089763 -32.728 0.007 7.964 0.018 0.357 150 291

56958.072690 -32.660 0.007 7.957 0.018 0.358 105 214

Description of each individual UVES observation. (continued . . . )
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BJD RV σ(RV ) FWHM σ(FWHM)Contrast texp S/N

[km/s] [km/s] [km/s] [km/s] [s]

56958.049461 -32.602 0.007 7.956 0.018 0.358 105 217

56958.105180 -32.745 0.007 7.963 0.018 0.358 77 222

56958.102259 -32.786 0.007 7.956 0.018 0.358 77 224

56958.060172 -32.640 0.007 7.956 0.018 0.358 105 224

56958.047675 -32.609 0.007 7.959 0.018 0.358 105 212

56958.045888 -32.588 0.007 7.951 0.018 0.359 105 215

56958.070905 -32.659 0.007 7.952 0.018 0.358 105 227

56928.216316 -33.111 0.007 7.946 0.018 0.361 34 159

56928.117549 -32.706 0.007 7.882 0.018 0.363 34 183

56928.097690 -32.887 0.007 7.915 0.019 0.361 49 207

56928.151249 -32.642 0.007 7.891 0.018 0.362 34 161

56928.127180 -32.623 0.007 7.879 0.018 0.363 34 178

56928.204742 -33.028 0.007 7.906 0.019 0.362 34 171

56928.199932 -33.106 0.007 7.914 0.018 0.361 34 164

56928.081779 -33.018 0.011 8.184 0.028 0.359 49 205

56928.038738 -32.770 0.007 7.967 0.019 0.359 34 142

56928.062836 -32.892 0.008 7.949 0.019 0.360 34 155

56928.162652 -32.725 0.019 8.309 0.049 0.360 34 152

56928.168437 -32.590 0.007 7.888 0.018 0.363 34 138

56928.163616 -32.502 0.007 7.863 0.019 0.364 34 153

56928.182889 -32.992 0.007 7.942 0.018 0.360 34 154

56928.188665 -33.005 0.008 7.893 0.019 0.362 34 155

56928.206673 -33.032 0.008 7.928 0.019 0.361 34 161

56928.034877 -32.802 0.007 7.980 0.019 0.359 34 140

56928.094282 -32.861 0.007 7.939 0.018 0.360 49 200

56928.211494 -32.930 0.007 7.927 0.019 0.361 34 155

56928.201858 -33.041 0.008 7.926 0.019 0.361 34 164

56928.152209 -32.689 0.007 7.905 0.018 0.362 34 158

56928.070545 -32.844 0.007 7.944 0.018 0.360 34 160

56928.147398 -32.688 0.007 7.899 0.018 0.362 34 163

56928.121402 -32.678 0.007 7.875 0.019 0.363 34 181

56928.190589 -33.001 0.008 7.895 0.019 0.362 34 172

Description of each individual UVES observation. (continued . . . )
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BJD RV σ(RV ) FWHM σ(FWHM)Contrast texp S/N

[km/s] [km/s] [km/s] [km/s] [s]

56928.222085 -33.107 0.008 7.956 0.021 0.360 34 149

56928.064762 -32.836 0.008 7.964 0.019 0.359 34 164

56928.044520 -32.827 0.008 7.969 0.019 0.359 34 149

56928.063800 -32.870 0.008 7.947 0.019 0.360 34 157

56928.126216 -32.648 0.007 7.888 0.019 0.362 34 177

56928.082918 -32.880 0.008 7.951 0.019 0.360 49 191

56928.105654 -32.843 0.007 7.916 0.019 0.361 49 207

56928.210530 -32.919 0.008 7.911 0.019 0.361 34 155

56928.224974 -33.055 0.009 7.971 0.022 0.360 34 140

56928.145471 -32.692 0.007 7.880 0.019 0.363 34 171

56928.200891 -33.044 0.007 7.922 0.019 0.361 34 162

56928.221123 -33.150 0.009 7.964 0.022 0.361 34 157

56928.074961 -32.890 0.007 7.951 0.019 0.359 49 194

56928.035841 -32.774 0.007 7.977 0.018 0.358 34 143

56928.112480 -32.797 0.008 7.887 0.019 0.362 49 213

56928.054152 -32.766 0.007 7.974 0.019 0.359 34 142

56928.132952 -32.524 0.007 7.836 0.018 0.365 34 172

56928.217281 -33.014 0.008 7.947 0.021 0.361 34 153

56928.058008 -32.778 0.007 7.963 0.019 0.359 34 142

56928.089734 -32.860 0.007 7.962 0.019 0.359 49 201

56928.212461 -32.914 0.008 7.921 0.019 0.361 34 153

56928.150286 -32.652 0.007 7.894 0.018 0.362 34 158

56928.115629 -32.711 0.007 7.871 0.019 0.363 34 186

56928.109069 -32.832 0.007 7.910 0.019 0.361 49 208

56928.169402 -32.513 0.007 7.870 0.018 0.363 34 143

56928.137767 -32.702 0.007 7.868 0.018 0.363 34 183

56928.043555 -32.813 0.007 7.979 0.019 0.359 34 146

56928.042591 -32.826 0.007 7.968 0.019 0.359 34 150

56928.122362 -32.678 0.008 7.891 0.019 0.362 34 178

56928.203780 -33.012 0.008 7.938 0.019 0.360 34 173

56928.224010 -33.110 0.008 7.965 0.020 0.360 34 142

56928.125251 -32.671 0.008 7.900 0.019 0.362 34 177

Description of each individual UVES observation. (continued . . . )
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FCUP 168
Characterizing the atmosphere of exoplanets using high-resolution spectroscopy

BJD RV σ(RV ) FWHM σ(FWHM)Contrast texp S/N

[km/s] [km/s] [km/s] [km/s] [s]

56928.031985 -32.783 0.008 7.977 0.019 0.358 34 143

56928.061874 -32.918 0.007 7.953 0.019 0.360 34 161

56928.156875 -32.624 0.007 7.896 0.018 0.362 34 156

56928.088600 -32.923 0.007 7.935 0.019 0.360 49 204

56928.234593 -33.262 0.009 7.972 0.022 0.360 34 132

56928.036812 -32.787 0.008 7.980 0.019 0.358 34 142

56928.041628 -32.770 0.007 7.982 0.019 0.359 34 145

56928.090871 -32.926 0.008 7.944 0.019 0.359 49 214

56928.186739 -33.068 0.007 7.912 0.019 0.361 34 156

56928.060909 -32.847 0.008 7.963 0.019 0.359 34 161

56928.079508 -32.946 0.008 7.932 0.019 0.360 49 201

56928.191551 -32.978 0.007 7.910 0.019 0.361 34 176

56928.159762 -32.644 0.007 7.894 0.018 0.362 34 147

56928.161688 -32.613 0.007 7.882 0.019 0.363 34 149

56928.184813 -32.991 0.007 7.915 0.019 0.361 34 153

56928.129104 -32.594 0.007 7.869 0.018 0.363 34 170

56928.148363 -32.682 0.008 7.898 0.019 0.362 34 162

56928.138729 -32.735 0.008 7.881 0.019 0.363 34 182

56928.235560 -33.269 0.007 7.962 0.019 0.360 34 134

56928.096554 -32.884 0.007 7.931 0.019 0.360 49 204

56928.111345 -32.781 0.007 7.897 0.019 0.361 49 213

56928.215353 -33.042 0.009 7.948 0.022 0.361 34 163

56928.173254 -32.697 0.007 7.907 0.018 0.362 34 147

56928.095421 -32.893 0.007 7.937 0.018 0.360 49 199

56928.149323 -32.691 0.007 7.891 0.018 0.363 34 156

56928.197043 -32.912 0.007 7.903 0.018 0.362 34 177

56928.170364 -32.603 0.007 7.887 0.018 0.363 34 140

56928.055117 -32.782 0.007 7.966 0.018 0.359 34 141

56928.205706 -32.997 0.007 7.941 0.019 0.360 34 162

56928.180007 -32.798 0.007 7.919 0.018 0.361 34 158

56928.039699 -32.781 0.007 7.979 0.018 0.359 34 139

56928.051258 -32.756 0.008 7.971 0.019 0.359 34 137

Description of each individual UVES observation. (continued . . . )
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FCUP 169
Characterizing the atmosphere of exoplanets using high-resolution spectroscopy

BJD RV σ(RV ) FWHM σ(FWHM)Contrast texp S/N

[km/s] [km/s] [km/s] [km/s] [s]

56928.059945 -32.826 0.007 7.960 0.019 0.359 34 159

56928.154135 -32.636 0.007 7.886 0.018 0.363 34 163

56928.130067 -32.601 0.007 7.866 0.018 0.363 34 173

56928.037776 -32.785 0.007 7.974 0.019 0.359 34 140

56928.067657 -32.813 0.008 7.949 0.019 0.360 34 161

56928.143546 -32.680 0.007 7.889 0.018 0.363 34 165

56928.194435 -32.974 0.008 7.908 0.019 0.362 34 169

56928.053189 -32.779 0.007 7.990 0.019 0.358 34 143

56928.068621 -32.823 0.008 7.957 0.019 0.360 34 159

56928.098828 -32.863 0.007 7.928 0.019 0.360 49 207

56928.198009 -32.914 0.007 7.890 0.018 0.362 34 164

56928.057044 -32.769 0.007 7.963 0.019 0.359 34 138

56928.230746 -33.190 0.007 7.975 0.018 0.360 34 134

56928.202820 -33.056 0.008 7.928 0.019 0.361 34 158

56928.192511 -32.927 0.007 7.908 0.019 0.361 34 176

56928.144510 -32.690 0.007 7.874 0.018 0.363 34 174

56928.226898 -33.164 0.009 7.963 0.022 0.361 34 139

56928.076099 -32.920 0.007 7.941 0.019 0.360 49 197

56928.093144 -32.903 0.013 8.020 0.031 0.361 49 205

56928.106792 -32.836 0.007 7.914 0.019 0.361 49 205

56928.118509 -32.694 0.007 7.877 0.019 0.363 34 179

56928.193476 -32.946 0.008 7.912 0.019 0.361 34 176

56928.180969 -32.947 0.007 7.945 0.019 0.360 34 156

56928.233634 -33.263 0.007 7.969 0.018 0.360 34 135

56928.214388 -33.071 0.008 7.957 0.020 0.361 34 155

56928.110207 -32.804 0.007 7.924 0.019 0.360 49 205

56928.131989 -32.542 0.007 7.849 0.019 0.364 34 175

56928.080642 -32.959 0.007 7.959 0.019 0.359 49 209

56928.128141 -32.636 0.007 7.879 0.018 0.363 34 170

56928.116587 -32.717 0.007 7.865 0.019 0.363 34 185

56928.136803 -32.713 0.007 7.876 0.019 0.363 34 185

56928.181929 -32.961 0.008 7.940 0.019 0.360 34 156

Description of each individual UVES observation. (continued . . . )
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FCUP 170
Characterizing the atmosphere of exoplanets using high-resolution spectroscopy

BJD RV σ(RV ) FWHM σ(FWHM)Contrast texp S/N

[km/s] [km/s] [km/s] [km/s] [s]

56928.078372 -32.949 0.008 7.934 0.020 0.360 49 198

56928.208605 -32.979 0.008 7.902 0.019 0.362 34 160

56928.179043 -32.753 0.007 7.899 0.019 0.362 34 156

56928.139694 -32.719 0.007 7.883 0.018 0.363 34 181

56928.135841 -32.724 0.007 7.868 0.018 0.363 34 185

56928.131027 -32.554 0.007 7.861 0.018 0.364 34 171

56928.167468 -32.582 0.007 7.891 0.018 0.363 34 144

56928.052224 -32.760 0.008 7.977 0.019 0.359 34 132

56928.140659 -32.732 0.008 7.893 0.019 0.362 34 176

56928.225934 -33.104 0.007 7.956 0.018 0.360 34 133

56928.032951 -32.773 0.008 7.978 0.019 0.358 34 138

56928.229787 -33.083 0.008 7.973 0.020 0.360 34 139

56928.033915 -32.792 0.007 7.986 0.019 0.358 34 136

56928.120436 -32.669 0.008 7.866 0.019 0.363 34 183

56928.172293 -32.495 0.007 7.856 0.018 0.364 34 141

56928.231710 -33.263 0.007 7.973 0.017 0.360 34 134

56928.077235 -32.928 0.008 7.939 0.019 0.360 49 202

56928.207643 -32.990 0.008 7.921 0.019 0.361 34 165

56928.209567 -33.026 0.008 7.903 0.019 0.362 34 167

56928.219203 -33.164 0.008 7.936 0.020 0.362 34 154

56928.101104 -32.856 0.008 7.942 0.019 0.360 49 206

56928.048368 -32.819 0.008 7.974 0.019 0.359 34 145

56928.171329 -32.505 0.007 7.869 0.018 0.364 34 139

56928.119473 -32.702 0.007 7.876 0.019 0.363 34 176

56928.157838 -32.656 0.007 7.905 0.018 0.362 34 152

56928.040662 -32.774 0.007 7.978 0.019 0.359 34 147

56928.123327 -32.656 0.007 7.871 0.018 0.363 34 176

56928.107930 -32.803 0.008 7.910 0.019 0.361 49 197

56928.142587 -32.664 0.007 7.884 0.019 0.363 34 175

56928.218244 -33.109 0.008 7.929 0.021 0.361 34 154

56928.058970 -32.794 0.008 7.976 0.019 0.359 34 151

56928.134878 -32.731 0.007 7.878 0.019 0.363 34 181

Description of each individual UVES observation. (continued . . . )
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FCUP 171
Characterizing the atmosphere of exoplanets using high-resolution spectroscopy

BJD RV σ(RV ) FWHM σ(FWHM)Contrast texp S/N

[km/s] [km/s] [km/s] [km/s] [s]

56928.133916 -32.747 0.007 7.874 0.019 0.363 34 178

56928.198970 -32.993 0.007 7.895 0.019 0.362 34 168

56928.099966 -32.876 0.007 7.924 0.019 0.360 49 203

56928.213424 -32.893 0.008 7.917 0.019 0.361 34 155

56928.153174 -32.642 0.007 7.887 0.018 0.363 34 164

56928.046442 -32.857 0.007 7.975 0.018 0.359 34 152

56928.185777 -33.034 0.008 7.910 0.019 0.362 34 159

56928.087461 -32.920 0.008 7.934 0.019 0.360 49 200

56928.141623 -32.670 0.007 7.883 0.018 0.363 34 176

56928.227860 -33.163 0.007 7.956 0.018 0.360 34 136

56928.050296 -32.748 0.007 7.958 0.018 0.359 34 137

56928.165543 -32.555 0.007 7.876 0.018 0.363 34 149

56928.056082 -32.803 0.007 7.967 0.018 0.359 34 146

56928.189626 -33.004 0.007 7.889 0.019 0.362 34 159

56928.085192 -32.867 0.007 7.945 0.018 0.360 49 191

56928.146435 -32.689 0.007 7.906 0.018 0.362 34 161

56928.164577 -32.554 0.007 7.890 0.019 0.363 34 149

56928.049333 -32.769 0.007 7.971 0.019 0.359 34 143

56928.103378 -32.833 0.007 7.933 0.019 0.360 49 209

56928.158801 -32.700 0.007 7.906 0.018 0.362 34 150

56928.183851 -33.047 0.007 7.929 0.019 0.361 34 156

56928.045482 -32.861 0.008 7.965 0.019 0.359 34 149

56928.175179 -32.885 0.007 7.923 0.018 0.361 34 159

56928.086327 -32.899 0.008 7.934 0.019 0.360 49 198

56928.228823 -33.155 0.008 7.968 0.019 0.360 34 126

56928.160723 -32.575 0.007 7.876 0.019 0.363 34 155

56928.069585 -32.793 0.007 7.949 0.019 0.360 34 152

56928.232670 -33.243 0.010 7.988 0.024 0.360 34 136

56928.174219 -32.849 0.007 7.924 0.019 0.361 34 163

56928.047406 -32.785 0.007 7.975 0.019 0.359 34 140

56928.124286 -32.682 0.007 7.907 0.018 0.362 34 178

56928.102243 -32.854 0.008 7.948 0.019 0.359 49 202

Description of each individual UVES observation. (continued . . . )
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FCUP 172
Characterizing the atmosphere of exoplanets using high-resolution spectroscopy

BJD RV σ(RV ) FWHM σ(FWHM)Contrast texp S/N

[km/s] [km/s] [km/s] [km/s] [s]

56928.092008 -32.918 0.007 7.940 0.019 0.359 49 212

56928.220163 -33.163 0.008 7.946 0.020 0.361 34 150

56928.176146 -32.848 0.007 7.903 0.019 0.362 34 147

56928.065730 -32.813 0.008 7.964 0.019 0.359 34 163

56928.066697 -32.828 0.007 7.958 0.018 0.359 34 161

56928.177110 -32.817 0.007 7.884 0.019 0.363 34 165

56928.178078 -32.781 0.007 7.890 0.019 0.363 34 157

56928.104518 -32.853 0.007 7.917 0.019 0.361 49 209

56928.195399 -32.962 0.007 7.899 0.019 0.362 34 172

56928.084055 -32.878 0.007 7.946 0.019 0.360 49 191

56928.166509 -32.549 0.007 7.878 0.018 0.363 34 143

56928.223045 -33.176 0.009 7.965 0.022 0.361 34 144

56928.187701 -33.004 0.008 7.909 0.019 0.362 34 155

56894.307248 -32.706 0.015 7.927 0.037 0.358 49 198

56894.271282 -32.728 0.008 7.997 0.021 0.357 49 195

56894.244608 -32.808 0.011 7.939 0.028 0.358 49 215

56894.163099 -32.730 0.008 7.988 0.021 0.358 49 146

56894.152854 -32.748 0.007 7.990 0.018 0.358 49 166

56894.172201 -32.732 0.009 7.985 0.024 0.357 49 157

56894.236645 -32.784 0.010 7.939 0.025 0.357 49 209

56894.158545 -32.742 0.007 7.994 0.019 0.357 49 153

56894.220697 -32.775 0.009 7.986 0.024 0.358 34 136

56894.200452 -32.757 0.009 8.026 0.022 0.357 34 113

56894.341368 -32.587 0.007 7.903 0.018 0.359 49 218

56894.310660 -32.711 0.016 7.974 0.039 0.358 49 209

56894.196611 -32.747 0.010 7.999 0.025 0.358 34 126

56894.250294 -32.814 0.013 7.999 0.033 0.358 49 206

56894.161963 -32.741 0.008 7.998 0.019 0.357 49 155

56894.279239 -32.716 0.009 7.986 0.024 0.357 49 185

56894.273555 -32.724 0.010 7.991 0.025 0.358 49 179

56894.166512 -32.735 0.009 7.984 0.022 0.357 49 157

56894.209123 -32.733 0.010 7.999 0.026 0.357 34 124

Description of each individual UVES observation. (continued . . . )
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FCUP 173
Characterizing the atmosphere of exoplanets using high-resolution spectroscopy

BJD RV σ(RV ) FWHM σ(FWHM)Contrast texp S/N

[km/s] [km/s] [km/s] [km/s] [s]

56894.344784 -32.591 0.009 7.977 0.023 0.357 49 193

56894.243474 -32.804 0.010 7.944 0.026 0.357 49 211

56894.149441 -32.722 0.008 8.004 0.021 0.358 49 129

56894.286068 -32.686 0.007 7.979 0.019 0.358 49 175

56894.280375 -32.732 0.012 7.959 0.031 0.357 49 177

56894.315198 -32.704 0.011 7.999 0.027 0.358 49 210

56894.221661 -32.808 0.007 7.981 0.018 0.358 34 144

56894.259391 -32.767 0.008 7.998 0.020 0.357 49 184

56894.234375 -32.765 0.010 7.973 0.026 0.358 49 212

56894.335681 -32.637 0.008 7.960 0.020 0.359 49 191

56894.194682 -32.795 0.007 7.981 0.017 0.358 34 135

56894.249156 -32.812 0.009 7.963 0.023 0.357 49 212

56894.180164 -32.757 0.008 7.984 0.021 0.358 49 160

56894.171062 -32.735 0.008 7.991 0.019 0.358 49 157

56894.228696 -32.741 0.010 7.961 0.024 0.357 49 197

56894.238923 -32.770 0.008 7.965 0.020 0.357 49 214

56894.169928 -32.724 0.009 7.985 0.023 0.358 49 157

56894.304266 -32.727 0.080 8.294 0.203 0.362 49 187

56894.151719 -32.767 0.008 7.974 0.020 0.358 49 162

56894.212013 -32.763 0.010 7.974 0.026 0.357 34 140

56894.297445 -32.709 0.015 7.978 0.039 0.357 49 186

56894.253709 -32.857 0.009 8.009 0.023 0.357 49 214

56894.222625 -32.855 0.011 7.982 0.028 0.358 34 155

56894.290618 -32.767 0.014 8.012 0.035 0.358 49 208

56894.150580 -32.733 0.007 7.984 0.018 0.358 49 148

56894.235512 -32.759 0.009 7.971 0.022 0.358 49 203

56894.298581 -32.694 0.008 7.987 0.021 0.358 49 185

56894.164238 -32.708 0.008 7.991 0.021 0.357 49 147

56894.241202 -32.742 0.008 7.971 0.020 0.358 49 202

56894.204312 -32.761 0.009 7.998 0.023 0.358 34 120

56894.229834 -32.727 0.009 7.970 0.024 0.357 49 188

56894.308388 -32.763 0.008 7.963 0.021 0.358 49 207

Description of each individual UVES observation. (continued . . . )
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FCUP 174
Characterizing the atmosphere of exoplanets using high-resolution spectroscopy

BJD RV σ(RV ) FWHM σ(FWHM)Contrast texp S/N

[km/s] [km/s] [km/s] [km/s] [s]

56894.274694 -32.768 0.010 7.969 0.025 0.358 49 199

56894.201418 -32.773 0.009 7.994 0.023 0.357 34 136

56894.146033 -32.762 0.011 7.945 0.028 0.358 49 161

56894.257119 -32.791 0.009 7.974 0.022 0.357 49 195

56894.328855 -32.660 0.009 7.980 0.024 0.359 49 183

56894.295169 -32.777 0.009 7.969 0.023 0.358 49 198

56894.187937 -32.779 0.012 7.964 0.030 0.357 34 143

56894.258255 -32.780 0.012 7.988 0.030 0.358 49 183

56894.311797 -32.684 0.019 7.965 0.047 0.361 49 189

56894.199491 -32.769 0.008 7.992 0.020 0.358 34 126

56894.289481 -32.721 0.010 7.995 0.024 0.358 49 204

56894.218763 -32.847 0.009 7.993 0.023 0.358 34 153

56894.226425 -32.727 0.010 7.999 0.025 0.358 49 190

56894.267861 -32.766 0.008 7.967 0.020 0.358 49 199

56894.342512 -32.610 0.007 7.931 0.018 0.358 49 220

56894.312932 -32.714 0.041 7.833 0.103 0.357 49 200

56894.207202 -32.756 0.009 7.993 0.021 0.357 34 134

56894.208160 -32.738 0.009 8.005 0.023 0.358 34 126

56894.301993 -32.733 0.011 7.951 0.027 0.358 49 194

56894.242339 -32.765 0.010 7.964 0.024 0.358 49 203

56894.195647 -32.750 0.009 7.988 0.022 0.358 34 119

56894.276967 -32.766 0.014 8.033 0.034 0.359 49 202

56894.251433 -32.832 0.010 7.952 0.026 0.357 49 207

56894.288341 -32.689 0.009 7.980 0.022 0.357 49 184

56894.160825 -32.738 0.008 7.989 0.020 0.357 49 151

56894.334544 -32.641 0.010 7.940 0.024 0.358 49 193

56894.190831 -32.752 0.008 7.975 0.021 0.357 34 126

56894.193719 -32.774 0.008 7.992 0.021 0.358 34 127

56894.203347 -32.784 0.008 7.991 0.019 0.357 34 134

56894.212973 -32.757 0.008 7.992 0.019 0.358 34 125

56894.320888 -32.693 0.010 7.970 0.024 0.358 49 208

56894.240063 -32.753 0.009 7.965 0.023 0.358 49 195

Description of each individual UVES observation. (continued . . . )
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FCUP 175
Characterizing the atmosphere of exoplanets using high-resolution spectroscopy

BJD RV σ(RV ) FWHM σ(FWHM)Contrast texp S/N

[km/s] [km/s] [km/s] [km/s] [s]

56894.326579 -32.690 0.008 7.964 0.020 0.358 49 188

56894.168787 -32.699 0.008 7.987 0.021 0.358 49 149

56894.189864 -32.777 0.017 7.974 0.043 0.356 34 145

56894.216828 -32.762 0.010 7.974 0.025 0.358 34 135

56894.319751 -32.724 0.008 7.971 0.020 0.358 49 208

56894.270141 -32.694 0.010 7.972 0.026 0.358 49 183

56894.292898 -32.815 0.014 8.010 0.036 0.359 49 201

56894.314064 -32.695 0.011 7.953 0.027 0.357 49 187

56894.167652 -32.739 0.008 7.990 0.020 0.358 49 150

56894.275830 -32.741 0.013 7.971 0.033 0.358 49 200

56894.197572 -32.727 0.010 8.000 0.025 0.358 34 133

56894.327717 -32.625 0.008 7.987 0.019 0.358 49 182

56894.144895 -32.754 0.015 7.935 0.038 0.358 49 162

56894.213936 -32.761 0.014 8.026 0.036 0.357 34 133

56894.148304 -32.741 0.008 7.985 0.020 0.358 49 145

56894.157409 -32.727 0.009 7.996 0.022 0.358 49 151

56894.176755 -32.777 0.008 7.995 0.021 0.358 49 156

56894.337956 -32.604 0.009 7.964 0.022 0.358 49 213

56894.300855 -32.813 0.014 7.982 0.035 0.358 49 207

56894.340231 -32.601 0.014 7.922 0.035 0.359 49 202

56894.331133 -32.626 0.016 7.939 0.041 0.357 49 190

56894.333405 -32.704 0.007 7.970 0.018 0.358 49 195

56894.303133 -32.765 0.009 7.945 0.023 0.358 49 198

56894.227558 -32.726 0.012 7.982 0.029 0.358 49 192

56894.159687 -32.747 0.008 8.007 0.019 0.357 49 151

56894.323163 -32.689 0.007 7.973 0.019 0.358 49 203

56894.217796 -32.828 0.008 7.997 0.020 0.358 34 153

56894.210086 -32.761 0.009 8.012 0.023 0.358 34 128

56894.232107 -32.732 0.008 7.981 0.019 0.358 49 190

56894.186970 -32.754 0.007 7.987 0.019 0.358 34 144

56894.316338 -32.706 0.014 7.932 0.035 0.357 49 216

56894.262800 -32.909 0.011 8.016 0.028 0.358 49 203

Description of each individual UVES observation. (continued . . . )
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BJD RV σ(RV ) FWHM σ(FWHM)Contrast texp S/N

[km/s] [km/s] [km/s] [km/s] [s]

56894.215864 -32.732 0.008 8.003 0.021 0.358 34 138

56894.322028 -32.669 0.008 7.969 0.020 0.358 49 202

56894.177892 -32.739 0.008 7.992 0.019 0.358 49 158

56894.294033 -32.788 0.020 7.912 0.051 0.357 49 212

56894.317475 -32.743 0.011 7.997 0.028 0.357 49 223

56894.268999 -32.723 0.014 7.946 0.035 0.357 49 195

56894.223589 -32.908 0.011 7.975 0.027 0.357 34 158

56894.173340 -38.529 2.807 41.182 19.122 0.551 49 154

56894.254847 -32.831 0.015 7.979 0.037 0.357 49 209

56894.299720 -32.747 0.008 7.967 0.021 0.359 49 202

56894.246883 -32.843 0.011 7.967 0.029 0.357 49 214

56894.324304 -32.636 0.010 7.972 0.025 0.358 49 202

56894.318612 -32.723 0.021 7.949 0.053 0.358 49 211

56894.181302 -32.760 0.007 7.994 0.019 0.358 49 157

56894.230970 -32.706 0.008 8.001 0.021 0.357 49 180

56894.185040 -32.817 0.009 7.988 0.023 0.358 34 142

56894.296307 -32.742 0.046 7.812 0.117 0.356 49 201

56894.191792 -32.791 0.009 7.981 0.023 0.358 34 136

56894.272418 -32.749 0.012 7.991 0.031 0.358 49 189

56894.165377 -32.730 0.007 7.994 0.019 0.357 49 157

56894.260528 -32.796 0.011 7.995 0.028 0.357 49 187

56894.147167 -32.761 0.011 7.965 0.027 0.357 49 156

56894.278105 -32.749 0.008 7.994 0.021 0.358 49 191

56894.182442 -32.747 0.009 7.970 0.023 0.358 49 166

56894.248021 -32.836 0.014 7.932 0.035 0.357 49 217

56894.219730 -32.834 0.011 7.952 0.028 0.358 34 157

56894.339093 -32.608 0.007 7.935 0.019 0.359 49 202

56894.206241 -32.752 0.008 8.001 0.021 0.358 34 137

56894.336819 -32.659 0.007 7.972 0.018 0.357 49 191

56894.282655 -32.732 0.008 7.983 0.020 0.357 49 188

56894.174477 -32.734 0.010 7.978 0.024 0.358 49 160

56894.153990 -32.757 0.008 7.991 0.019 0.357 49 163

Description of each individual UVES observation. (continued . . . )
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BJD RV σ(RV ) FWHM σ(FWHM)Contrast texp S/N

[km/s] [km/s] [km/s] [km/s] [s]

56894.198532 -32.789 0.010 7.984 0.025 0.357 34 134

56894.325440 -32.680 0.012 7.963 0.030 0.357 49 199

56894.261664 -32.869 0.008 7.987 0.021 0.357 49 195

56894.156270 -32.741 0.008 7.997 0.020 0.357 49 153

56894.233239 -32.741 0.009 7.952 0.022 0.357 49 199

56894.205278 -32.768 0.012 8.005 0.029 0.358 34 132

56894.281517 -32.722 0.007 7.974 0.018 0.358 49 182

56894.284928 -32.686 0.010 7.980 0.025 0.358 49 170

56894.263938 -32.880 0.013 7.973 0.032 0.358 49 202

56894.309521 -32.717 0.010 7.922 0.026 0.358 49 209

56894.202383 -32.810 0.009 7.994 0.022 0.358 34 139

56894.155128 -32.747 0.008 7.991 0.020 0.357 49 158

56894.255981 -32.813 0.008 8.018 0.020 0.357 49 200

56894.188899 -32.766 0.008 8.000 0.020 0.358 34 141

56894.237784 -32.759 0.028 8.065 0.072 0.359 49 211

56894.332272 -32.653 0.018 7.936 0.044 0.357 49 202

56894.192754 -32.748 0.007 7.987 0.017 0.358 34 124

56894.266721 -32.715 0.010 7.993 0.026 0.358 49 188

56894.283792 -32.690 0.009 7.974 0.022 0.358 49 171

56894.175614 -32.756 0.007 7.996 0.018 0.358 49 165

56894.245744 -32.855 0.011 7.984 0.028 0.358 49 220

56894.252570 -32.809 0.011 7.975 0.027 0.358 49 201

56894.329996 -32.639 0.008 7.984 0.020 0.358 49 196

56894.179025 -32.739 0.008 7.983 0.019 0.357 49 154

56894.211047 -32.794 0.009 7.983 0.021 0.357 34 143

56894.343645 -32.586 0.008 7.960 0.021 0.358 49 205

56894.287205 -32.692 0.007 7.996 0.018 0.357 49 174

56894.186004 -32.809 0.009 7.980 0.022 0.358 34 140

56894.291761 -32.726 0.009 7.987 0.023 0.357 49 191

56894.214900 -32.726 0.012 7.980 0.031 0.357 34 113

56886.290168 -32.824 0.007 8.015 0.019 0.357 77 175

56886.213311 -32.896 0.007 8.012 0.018 0.357 49 141

Description of each individual UVES observation. (continued . . . )
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BJD RV σ(RV ) FWHM σ(FWHM)Contrast texp S/N

[km/s] [km/s] [km/s] [km/s] [s]

56886.269736 -32.824 0.008 8.012 0.019 0.357 77 181

56886.200792 -32.899 0.008 8.005 0.019 0.357 49 164

56886.342610 -32.744 0.007 8.032 0.019 0.356 105 214

56886.243455 -32.814 0.007 8.020 0.019 0.356 77 180

56886.297485 -32.795 0.008 8.019 0.019 0.356 77 159

56886.216715 -32.891 0.008 8.021 0.019 0.356 49 147

56886.229244 -32.895 0.007 8.034 0.018 0.356 49 138

56886.218994 -32.909 0.007 8.010 0.018 0.357 49 153

56886.222413 -32.891 0.008 8.008 0.019 0.357 49 157

56886.208756 -32.861 0.008 8.007 0.019 0.357 49 142

56886.211038 -32.924 0.007 8.014 0.019 0.356 49 154

56886.326540 -32.744 0.008 8.028 0.019 0.356 105 207

56886.335469 -32.781 0.007 8.022 0.019 0.356 105 213

56886.266819 -32.797 0.007 8.004 0.019 0.357 77 188

56886.288701 -32.839 0.007 8.024 0.019 0.356 77 163

56886.234685 -32.887 0.007 8.032 0.019 0.356 77 171

56886.203063 -32.899 0.007 8.003 0.018 0.357 49 153

56886.252218 -32.837 0.007 8.019 0.018 0.356 77 186

56886.258058 -32.806 0.007 8.005 0.019 0.357 77 187

56886.293088 -32.820 0.007 8.019 0.019 0.357 77 170

56886.265361 -32.805 0.007 8.005 0.019 0.357 77 180

56886.347962 -32.729 0.008 8.023 0.019 0.356 105 199

56886.328323 -32.761 0.008 8.012 0.019 0.356 105 208

56886.294559 -32.837 0.007 8.022 0.019 0.356 77 172

56886.274085 -32.845 0.007 8.007 0.019 0.357 77 175

56886.304796 -32.796 0.007 8.025 0.019 0.356 77 154

56886.349754 -32.714 0.008 8.022 0.019 0.356 105 193

56886.300412 -32.813 0.007 8.020 0.019 0.357 77 142

56886.322962 -32.783 0.008 8.036 0.019 0.356 105 194

56886.315830 -32.760 0.008 8.017 0.019 0.356 105 210

56886.212173 -32.883 0.007 8.000 0.018 0.357 49 148

56886.199654 -32.910 0.007 7.997 0.019 0.357 49 163

Description of each individual UVES observation. (continued . . . )
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BJD RV σ(RV ) FWHM σ(FWHM)Contrast texp S/N

[km/s] [km/s] [km/s] [km/s] [s]

56886.324751 -32.749 0.008 8.022 0.019 0.356 105 207

56886.314044 -32.775 0.008 8.028 0.019 0.356 105 206

56886.277016 -32.823 0.007 8.007 0.019 0.357 77 175

56886.330108 -32.755 0.008 8.034 0.019 0.356 105 208

56886.224696 -32.902 0.007 8.002 0.019 0.357 49 156

56886.281395 -32.851 0.007 8.015 0.019 0.357 77 173

56886.247834 -32.830 0.007 8.023 0.018 0.356 77 173

56886.217854 -32.879 0.007 7.995 0.018 0.357 49 142

56886.346177 -32.733 0.007 8.026 0.019 0.356 105 211

56886.279932 -32.848 0.008 8.010 0.019 0.357 77 177

56886.307715 -32.816 0.007 8.034 0.019 0.356 77 156

56886.193964 -32.903 0.007 7.985 0.018 0.358 49 148

56886.226969 -32.922 0.007 8.023 0.019 0.356 49 148

56886.195101 -32.905 0.007 8.023 0.018 0.356 49 144

56886.207616 -32.915 0.008 8.008 0.019 0.357 49 129

56886.249296 -32.834 0.007 8.021 0.018 0.356 77 180

56886.223550 -32.908 0.008 8.001 0.019 0.357 49 155

56886.244914 -32.843 0.007 8.023 0.018 0.356 77 170

56886.225831 -32.923 0.008 8.013 0.019 0.357 49 158

56886.236143 -32.858 0.007 8.022 0.018 0.356 77 155

56886.298949 -32.797 0.007 8.018 0.018 0.356 77 145

56886.201927 -32.890 0.007 7.999 0.019 0.357 49 165

56886.306255 -32.805 0.007 8.014 0.019 0.356 77 154

56886.337254 -32.762 0.007 8.028 0.019 0.356 105 211

56886.255134 -32.814 0.007 8.014 0.019 0.356 77 192

56886.198516 -32.926 0.008 8.032 0.019 0.356 49 160

56886.241991 -32.834 0.007 8.022 0.019 0.356 77 167

56886.333680 -32.756 0.008 8.027 0.019 0.356 105 220

56886.221271 -32.902 0.007 8.012 0.018 0.357 49 152

56886.296022 -32.816 0.007 8.019 0.019 0.356 77 168

56886.317616 -32.781 0.008 8.017 0.019 0.356 105 213

56886.197376 -32.917 0.007 7.999 0.019 0.357 49 151

Description of each individual UVES observation. (continued . . . )
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BJD RV σ(RV ) FWHM σ(FWHM)Contrast texp S/N

[km/s] [km/s] [km/s] [km/s] [s]

56886.291628 -32.814 0.008 8.019 0.019 0.357 77 169

56886.284318 -32.850 0.007 8.016 0.018 0.356 77 174

56886.209895 -32.909 0.007 8.003 0.019 0.357 49 144

56886.260985 -32.792 0.008 8.007 0.019 0.357 77 187

56886.268278 -32.793 0.008 8.011 0.019 0.357 77 179

56886.206478 -32.893 0.008 8.002 0.019 0.357 49 133

56886.196238 -32.905 0.007 7.997 0.018 0.358 49 150

56886.278474 -32.833 0.007 8.025 0.019 0.356 77 182

56886.240530 -32.847 0.007 8.038 0.019 0.356 77 173

56886.262442 -32.795 0.007 8.011 0.019 0.357 77 175

56886.287238 -32.847 0.008 8.022 0.019 0.356 77 173

56886.246372 -32.826 0.007 8.017 0.018 0.356 77 165

56886.303335 -32.807 0.007 8.031 0.019 0.356 77 145

56886.214445 -32.873 0.008 8.004 0.019 0.357 49 147

56886.340823 -32.727 0.007 8.021 0.019 0.356 105 206

56886.285778 -32.872 0.008 8.011 0.019 0.357 77 174

56886.239063 -32.814 0.007 8.019 0.019 0.356 77 177

56886.282855 -32.860 0.007 8.017 0.019 0.357 77 174

56886.205341 -32.874 0.007 7.994 0.018 0.358 49 144

56886.344393 -32.734 0.008 8.010 0.019 0.356 105 208

56886.256596 -32.804 0.007 8.009 0.019 0.357 77 190

56886.253676 -32.831 0.008 8.020 0.019 0.356 77 184

56886.230379 -32.899 0.008 8.006 0.019 0.357 49 148

56886.321180 -32.771 0.008 8.026 0.019 0.356 105 208

56886.309181 -32.813 0.007 8.039 0.018 0.356 77 159

56886.310640 -32.784 0.007 8.013 0.018 0.356 77 161

56886.319398 -32.779 0.007 8.020 0.019 0.356 105 214

56886.233226 -32.900 0.007 8.016 0.019 0.357 77 173

56886.259523 -32.821 0.007 8.019 0.019 0.356 77 187

56886.228109 -32.888 0.007 8.018 0.019 0.356 49 139

56886.215576 -32.885 0.007 8.023 0.019 0.356 49 147

56886.192827 -32.890 0.008 7.973 0.020 0.358 49 163

Description of each individual UVES observation. (continued . . . )
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BJD RV σ(RV ) FWHM σ(FWHM)Contrast texp S/N

[km/s] [km/s] [km/s] [km/s] [s]

56886.263901 -32.792 0.007 8.014 0.019 0.357 77 171

56886.275552 -32.814 0.007 8.014 0.019 0.357 77 174

56886.301872 -32.812 0.007 8.017 0.019 0.357 77 154

56886.331896 -32.768 0.007 8.035 0.019 0.355 105 223

56886.220133 -32.908 0.008 8.004 0.019 0.357 49 149

56886.339039 -32.727 0.008 8.023 0.019 0.356 105 206

56886.204200 -32.941 0.008 8.001 0.019 0.357 49 149

56886.237602 -32.866 0.007 8.031 0.018 0.356 77 164

56886.250760 -32.829 0.007 8.027 0.019 0.356 77 182

56869.376347 -32.529 0.007 7.932 0.017 0.359 23 138

56869.377186 -32.567 0.007 7.926 0.017 0.359 23 139

56869.387248 -32.494 0.007 7.906 0.017 0.360 23 142

56869.392273 -32.474 0.007 7.881 0.017 0.361 23 147

56869.369655 -32.607 0.007 7.922 0.017 0.360 23 149

56869.373000 -32.563 0.007 7.931 0.017 0.359 23 133

56869.395621 -32.440 0.007 7.852 0.017 0.363 23 126

56869.394784 -32.433 0.007 7.892 0.017 0.361 23 135

56869.381369 -32.500 0.007 7.908 0.017 0.360 23 134

56869.380531 -32.527 0.007 7.928 0.016 0.359 23 142

56869.383887 -32.488 0.007 7.909 0.016 0.360 23 132

56869.372158 -32.595 0.007 7.934 0.017 0.359 23 143

56869.383053 -32.518 0.006 7.912 0.016 0.360 23 131

56869.378025 -32.504 0.006 7.924 0.016 0.359 23 144

56869.382207 -32.468 0.007 7.886 0.017 0.361 23 134

56869.359607 -32.780 0.007 7.926 0.017 0.359 23 155

56869.362127 -32.731 0.007 7.924 0.017 0.360 23 150

56869.388081 -32.485 0.007 7.912 0.017 0.360 23 144

56869.361290 -32.772 0.007 7.924 0.016 0.360 23 155

56869.364642 -32.696 0.007 7.916 0.017 0.360 23 143

56869.374677 -32.534 0.007 7.905 0.017 0.360 23 138

56869.365476 -32.697 0.007 7.904 0.017 0.361 23 150

56869.386411 -32.484 0.007 7.887 0.017 0.361 23 144

Description of each individual UVES observation. (continued . . . )
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BJD RV σ(RV ) FWHM σ(FWHM)Contrast texp S/N

[km/s] [km/s] [km/s] [km/s] [s]

56869.375510 -32.569 0.007 7.929 0.017 0.359 23 141

56869.360451 -32.794 0.007 7.919 0.017 0.360 23 155

56869.379694 -32.503 0.006 7.924 0.016 0.360 23 142

56869.371325 -32.581 0.007 7.936 0.016 0.359 23 131

56869.391439 -32.446 0.007 7.891 0.017 0.361 23 141

56869.390595 -32.499 0.007 7.914 0.017 0.360 23 133

56869.367143 -32.713 0.007 7.940 0.017 0.359 23 156

56869.357933 -32.761 0.007 7.938 0.017 0.359 23 149

56869.393946 -32.447 0.007 7.880 0.017 0.361 23 145

56869.393112 -32.478 0.007 7.890 0.017 0.361 23 147

56869.368817 -32.624 0.007 7.919 0.017 0.360 23 155

56869.384726 -32.501 0.006 7.913 0.016 0.360 23 135

56869.370492 -32.598 0.007 7.930 0.017 0.360 23 143

56869.396455 -32.390 0.007 7.857 0.017 0.362 23 136

56869.363802 -32.694 0.007 7.938 0.017 0.359 23 152

56869.366310 -32.685 0.007 7.909 0.017 0.360 23 157

56869.388921 -32.505 0.007 7.878 0.017 0.361 23 147

56869.378861 -32.506 0.007 7.931 0.016 0.359 23 142

56869.362965 -32.719 0.007 7.932 0.017 0.359 23 146

56869.357097 -32.783 0.007 7.919 0.017 0.360 23 147

56869.358773 -32.728 0.007 7.928 0.017 0.360 23 151

56869.389759 -32.437 0.007 7.873 0.017 0.362 23 146

56869.385566 -32.467 0.007 7.883 0.017 0.361 23 144

56869.367978 -32.694 0.006 7.934 0.016 0.359 23 153

56869.373837 -32.565 0.006 7.901 0.016 0.361 23 129

Table B.2: Description of each individual UVES observation.
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Appendix C.

Reflected light from 55 Cnc b

Although not initially part of this PhD project, we acquired through our collaborators observations from the

55 Cnc system obtained with HARPS and HARPS-N which we analyzed in parallel to this PhD project. The

original purpose of this data was the observation of the transit of Super-Earth type planet 55 Cancri e. Since

these observations were taken during (and close to) transit, the phase function is close to zero and as such it

is extremely unlikely to detect reflected light from this planet. Nonetheless, these observations could (in theory)

be applied to recover the reflected signal from one of its planetary companions, hot Jupiter type 55 Cancri b.

However, the noise level on the results is much higher than the expected signal for 55 Cancri b. The observations

consist in 179 HARPS spectra (ESO ID: 288.C-5010, PI: TRIAUD) and 261 HARPS-N spectra (ID: CAT13B_33)

observed in 4 + 7 different nights adding up to around 8 + 22.3 h of observing time. The properties of these data

are summarized in C.1.

Due to their orbital characteristics (See Table C.2), the reflected signal at opposition of both 55 Cancri b and

55 Cancri e are of similar amplitude, assuming a similar albedo for both planets. The S/N of the data permitted

to infer a detection limit of ∼ 7.2 × 10−6 for the HARPS-North data and a detection limit of ∼ 6.2 × 10−5 for

the HARPS-South data. Combining both data sets we should be able to reach a noise level ∼ 6.2 × 10−6. This

should permit to infer down to a 3−σ limit for Ag = 0.5, or a 1−σ limit for Ag = 0.18 (assuming the planet has

the radius of Jupiter). Although the radius of 55 Cancri b is unknown, we expected to be able to put an upper

limit for Ag ×R2
p.

The HARPS DRS pipeline was used to reduced the data and compute the CCFs. For the CCF parameters we

used: spectral mask - K0; initial RV - 27.58 km/s; CCF width - 320; CCF step - 100 m/s;

We applied the CCF technique to retrieve the reflected light spectrum from planet 55 Cancri b as done with

51 pegasi b in Martins et al., 2015a. To compute the RV of both the planet and the star, we used the orbital

parameters in Table C.2.

As can be seen on Figure C.1a the noise level on the results (∼ 2.6× 10−4 for both data sets) is much higher
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Night Number of Total exposure S/N range

spectra [hours]

HARPS

2012-01-28 47 2.32 105-172

2012-02-14 55 1.83 112-133

2012-02-28 36 1.80 136-183

2012-03-16 41 2.05 40-135

HARPS-N

2012-12-26 27 2.70 182-296

2013-11-15 53 3.53 140-290

2013-11-29 61 4.07 119-225

2014-01-01 33 3.30 279-381

2014-01-27 30 3.00 97-182

2014-02-26 30 3.00 77-146

2014-03-29 27 2.70 248-400

Table C.1: Description of the available data on a per night basis.

than the expected signal for 55 Cancri b (FpF∗
' 1.7 × 10−5 for Ag = 0.5). Please note that the spectra we

were analyzing contain not only the spectroscopic signature of planet 55 Cancri b and its host star, but also the

signature of 55 Cancri e, only at a different radial velocity on each spectra.

To confirm that the issue was not with the quality of the data, we attempted to perform an analysis for planet

55 Cancri e from the same data. Albeit no signal was expected– all data was taken during (or close to) transit of

55 Cancri e – we would be able to place a lower limit on the detection limit possible with our data as at the end

Parameter Unit 55 Cnc b 55 Cnc e

RVsystem [km/s] 27.58(1)

period [days] 14.65314 0.7365478

e 0.0023 0.028

a [AU ] 0.11339 0.015439

k∗ [m/s] 71.47 6.12

mp sin(i) [MJup] 0.84 0.02547

mp [MJup] 0.84 0.02547

i [degrees] 89.73 90.36

m∗ [M�] 0.905(2)

ω [degrees] 110 170.0

t0 [BJD − 2400000] 53035.0 49999.83643

Table C.2: Orbital parameters for the 55 Cnc e/b planets (from Nelson et al., 2014). (1) Nidever et al. (2002) (2) Braun et al. (2012)
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(a) CCF for 55 Cnc b (b) CCF for 55 Cnc e
Figure C.1: Results for the analysis of reflected light from 55 Cnc b/e. The green horizontal lines correspond to the ±10−4 noise
levels, the red ones to ±10−5. The pink lines correspond to ±FWHM∗ ' 3.5km/s on each side of the expected radial velocity of
the planet.

of the analysis only noise should remain. With this, we were able to place a limit of ∼ 2.0× 10−5 (predicted limit

∼ 7.2× 10−6) to the HARPS-North data and ∼ 4.6× 10−5 (predicted limit∼ 1.3× 10−5) to the HARPS-South

data. Combining both data sets we should be able to reach a noise level ∼ 1.8× 10−5, allowing a 1−σ detection

of 55 Cancri b for Ag = 0.5.

What could explain the disparity in SN from the CCF of both planets, if the data is the same? The answer

appears to be related with the radial velocity variation of each planet over a night. On Figure C.2, it can be seen

that the radial velocity of planet 55 Cancri e (green stars) varies very rapidly, and the vertical noise structures get

diluted amidst the noise as we stack the normalized CCFs corrected for the planet radial velocity. On the contrary

55 Cancri b (red stars) varies very little and thus the noise structures are amplified and create the peaks/dips that

can be seen in figure C.1a. Albeit no detection is expected in this case, this study is of great use toward similar

future reflected light studies. These results have shown us the importance of a careful sampling in time of the

observations, namely to make sure that they span over a sufficiently large radial velocity range to avoid boosting

static noise structures. Furthermore, it is important to identify the source of the these structures that can be seen

in Figure C.1a and if they can be removed.
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Figure C.2: CCF for HARPS-S observations on night 2012-02-14. Each row corresponds to a different observation. The y-axis
correspond to the fraction of the corresponding Julian day. The x-axis corresponds to the radial velocity of each point (RVStar = 0).
The red stars correspond to the expected radial velocity of planet 55 Cancri e and the green stars to the position of 55 Cancri b.
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Appendix A.

Target lists for Chapter 6

The following tables present the list of possible targets that can be detected byt both ESPRESSO and HIRES

with ttotal < 30 hours and assuming Ag = 0.2.

Planet Mp Rp P I magv Host Nbins Fp/F∗ ttotal

[MJup] [RJup] [AU ] [deg] type [ppm] [hours]

HD 75289 b 0.470 1.030 3.509 90.0 6.3 G0 V 15 20.90 4.00

HD 179949 b 0.920 1.050 3.092 90.0 6.2 F8 V 15 25.70 3.00

HD 63454 b 0.390 1.060 2.817 90.0 9.4 K4 V 15 29.66 30.00

WASP-76 b 0.920 1.830 1.810 88.0 9.5 F7 15 159.41 2.00

KELT-3 b 1.418 1.333 2.703 84.6 9.8 F 15 49.38 16.00

HD 189733 b 1.142 1.138 2.219 85.5 7.7 K1-K2 15 46.90 3.00

WASP-72 b 1.461 1.270 2.217 90.0 9.6 F7 15 58.62 10.00

KELT-2 A b 1.486 1.306 4.114 90.0 8.7 F7V 15 27.18 18.00

HD 149143 b 1.330 1.050 4.072 90.0 7.9 G0 IV 15 17.81 22.00

WASP-74 b 0.970 1.560 2.138 79.8 9.7 F9 15 91.63 5.00

51 Peg b 0.470 1.900 4.231 80.0 5.5 G2 IV 15 54.73 1.00

HD 86081 b 1.500 1.080 1.998 90.0 8.7 F8V 15 48.68 6.00

HD 83443 b 0.400 1.040 2.986 90.0 8.2 K0 V 15 26.43 13.00

HD 209458 b 0.690 1.380 3.525 86.6 7.7 G0 V 15 37.24 4.00

HD 212301 b 0.400 1.070 2.246 90.0 7.8 F8 V 15 40.89 4.00

Table A.1: Hot Jupiters type planets detectable by ESPRESSO with ttotal < 30 hours for Nbins = 15 and assuming Ag = 0.2.
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Planet Mp Rp P I magv Host Nbins Fp/F∗ ttotal

[MJup] [RJup] [AU ] [deg] type [ppm] [hours]

HD 75289 b 0.470 1.030 3.509 90.0 6.3 G0 V 70 20.90 4.00

HD 179949 b 0.920 1.050 3.092 90.0 6.2 F8 V 70 25.70 3.00

HD 63454 b 0.390 1.060 2.817 90.0 9.4 K4 V 70 29.66 30.00

WASP-76 b 0.920 1.830 1.810 88.0 9.5 F7 70 159.41 2.00

KELT-3 b 1.418 1.333 2.703 84.6 9.8 F 70 49.38 16.00

HD 189733 b 1.142 1.138 2.219 85.5 7.7 K1-K2 70 46.90 3.00

WASP-72 b 1.461 1.270 2.217 90.0 9.6 F7 70 58.62 10.00

KELT-2 A b 1.486 1.306 4.114 90.0 8.7 F7V 70 27.18 18.00

HD 149143 b 1.330 1.050 4.072 90.0 7.9 G0 IV 70 17.81 22.00

WASP-74 b 0.970 1.560 2.138 79.8 9.7 F9 70 91.63 5.00

51 Peg b 0.470 1.900 4.231 80.0 5.5 G2 IV 70 54.73 1.00

HD 86081 b 1.500 1.080 1.998 90.0 8.7 F8V 70 48.68 6.00

HD 83443 b 0.400 1.040 2.986 90.0 8.2 K0 V 70 26.43 13.00

HD 209458 b 0.690 1.380 3.525 86.6 7.7 G0 V 70 37.24 4.00

HD 212301 b 0.400 1.070 2.246 90.0 7.8 F8 V 70 40.89 4.00

Table A.2: Hot Jupiters type planets detectable by HIRES with ttotal < 30 hours for Nbins = 70 and assuming Ag = 0.2.

Planet Mp Rp P I magv Host Nbins Fp/F∗ ttotal

[MJup] [RJup] [AU ] [deg] type [ppm] [hours]

HD 49674 b 0.100 0.980 4.947 90.0 8.1 G5 V 5 11.97 5.00

WASP-69 b 0.260 1.057 3.868 86.7 9.9 K5 5 19.30 10.00

HD 46375 b 0.230 1.020 3.024 90.0 7.9 K1 IV 5 25.00 1.00

HD 76700 b 0.230 0.990 3.971 90.0 8.1 G6 V 5 16.37 3.00

KELT-11 b 0.195 1.370 4.737 85.8 8.0 G8 5 24.73 1.00

HD 88133 b 0.300 1.000 3.416 90.0 8.0 G5 IV 5 20.42 2.00

HD 109749 b 0.280 0.990 5.239 90.0 8.1 G3 IV 5 11.31 6.00

Table A.3: Hot Neptune type planets detectable by ESPRESSO with ttotal < 30 hours for Nbins = 5 and assuming Ag = 0.2.
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Planet Mp Rp P I magv Host Nbins Fp/F∗ ttotal

[MJup] [RJup] [AU ] [deg] type [ppm] [hours]

HD 49674 b 0.100 0.980 4.947 90.0 8.1 G5 V 6 11.97 5.00

WASP-69 b 0.260 1.057 3.868 86.7 9.9 K5 6 19.30 10.00

HD 46375 b 0.230 1.020 3.024 90.0 7.9 K1 IV 6 25.00 1.00

HD 76700 b 0.230 0.990 3.971 90.0 8.1 G6 V 6 16.37 3.00

KELT-11 b 0.195 1.370 4.737 85.8 8.0 G8 6 24.73 1.00

HD 88133 b 0.300 1.000 3.416 90.0 8.0 G5 IV 6 20.42 2.00

HD 109749 b 0.280 0.990 5.239 90.0 8.1 G3 IV 6 11.31 6.00

Table A.4: Hot Neptune type planets detectable by HIRES with ttotal < 30 hours for Nbins = 6 and assuming Ag = 0.2.

Planet Mp Rp P I magv Host Nbins Fp/F∗ ttotal

[MJup] [RJup] [AU ] [deg] type [ppm] [hours]

55 Cnc e 0.025 0.178 0.737 90.4 6.0 K0IV-V 5 4.98 4.00

Table A.5: Super-Earth type planets detectable by HIRES with ttotal < 30 hours for Nbins = 5 and assuming Ag = 0.2.
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Appendix B.

Atmospheric models used in Chapter 6

In Chapter 6, we tested the recovery of albedo functions from modeled exoplanet atmospheres that include

real physics. These models were generated by our collaborator Antonio Garcia-Muñoz, lecturer and researcher at

the Zentrum für Astronomie und Astrophysik of the Technische Universität Berlin, Germany.

For both simulated hot Jupiter and hot Neptune class planets, the albedo functions were created by solving

the problem of multiple scattering of starlight in the atmosphere. The integration over the planetary disk was

computed with the algorithm described in Horak, 1950. Partial solutions at the integration points were obtained

with a discrete-ordinate method (Stamnes et al., 1988). The line lists for molecular absorption were taken

from HITEMP (Rothman et al., 2010). The absorption by the alkalis was estimated from the parameterization

presented in Iro et al., 2005. The base albedo function for each simulated atmospheric model was computed for

full illumination (i.e., assuming superior conjunction and no orbital inclination) and then projected for each orbital

phase assuming a Lambert phase function (see Equation 2.2).

In terms of atmospheric configuration, we assumed hydrostatic balance in the atmosphere, with an equilibrium

temperature for the planet equal to 1150K. Another assumption is that the gas absorption at wavelengths shorter

than 1 µm is dominated by water and alkalis (Na and K). The contribution from other gases (e.g. V O, Ti O)

was ignored.

In terms of composition, we choose two different configurations (Model A and Model B) for the altitude-

independent Volume Mixing Ratio (VMR) of water and the alkalis.

The Model A configuration assumes VMRs for both the water and alkali content of about half the one in the

solar atmosphere. The Model B configuration assumes the same VMR for water content, while for the alkalis the

VMR are 0.5% the VMR in the solar atmosphere. By reducing the alkali content relatively to water, will enhance

the impact of water bands on the simulated atmosphere and create a more structured spectrum. Note that we are

assuming that both water and alkali behave as well-mixed gases, which is probably more realistic for water than for

the alkalis. According to the photo-chemical models of hot Jupiters (e.g. Lavvas et al., 2014), Na and K should
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Model A Model B

Volume Mixing Ratios

H2O 5× 10−4

Na 1.5× 10−6 1.5× 10−8

K 1.2× 10−7 1.2× 10−9

Configurations

Aerosols ×1, ×100 ×1, ×100

Table B.1: Atmospheric models composition (from Martins et al., 2017).

ionize lower in the atmosphere, which will result in the removal of their neutral forms at pressures less than 104

bars. Both these models also include Rayleigh scattering by the H2/He component of the atmosphere. Aerosol

scattering is also included in the models by adding extra scattering opacity and assuming that aerosols scatter

without absorbing. Each A and B configuration was simulated for two different scattering scenarios (×1, ×100),

where the baseline ×1 scenario corresponds to the gas opacity and the ×100 scenario corresponds to 100 times

the baseline opacity. Table B.1 summarizes the parameters for these configurations and Figure B.1 exemplifies the

different albedo functions obtained for each configuration.

It can be seen that in wavelength ranges far from the water and alkali bands, the geometric albedo is around

0.75, as expected for a semi-infinite, conservative Rayleigh atmosphere. However, in wavelength ranges where

water and alkali absorption is significant (e.g., around the 589-nm neutral sodium line), the albedo depends strongly

on the adopted aerosol and gas content.

For more details on the simulated atmospheric and albedo models we refer the reader to Garcia-Muñoz et al.

(2012) and Nielsen et al. (2016).

Figure B.1: Albedo function for the different configurations of the atmospheric models in Table B.1. Top Panel: Model A (×1,×100
configurations); Bottom Panel: Model B (×1,×100 configurations). The ×1,×100 scenarios correspond respectively to different
scattering configurations, where the opacity in the ×100 configuration is 100 times larger that on the ×1 baseline configuration (from
Martins et al., 2017).
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Appendix C.

Relevant spectroscopy statistics

In this Appendix we will summarize some statistical properties of spectral white noise that are relevant for this

work. For a more detailed analysis, we refer you to (e.g. Wall et al., 2003).

SPECTRAL NOISE AS A POISSON DISTRIBUTION C.1

Stellar spectral noise is of thermal origin and thus follows Bose-Einstein statistics

σn =
√
n

(
1 +

1

e
hν

KbT
−1

)−1
(C.1)

where n and σn are respectively the number of photons and the photon noise, h the Planck constant, KB the

Boltzmann constant, and T surface temperature of the star.

In the optical, where hν � KT , the photons collected by a detector follow a Poisson distribution (e.g. Kitchin

et al., 2003) as

σn =
√
n (C.2)

and thus Poisson Statistics can be used to describe the behavior of stellar spectra.

The Poisson distribution is a statistical distribution defined by:

prob(n) =
µn

n!
e−µ (C.3)
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where µ =
√
n is the expected value of the random variable n – in this context the number of photos – with

standard deviation σn =
√
n = µ.

The Poisson distribution is linear, i.e., the sum of Poisson distributions is still a Poisson distribution. Therefore,

the sum of several spectra will still be a spectrum and its noise will still follow a Poisson distribution. Since the

signal will be constant in in all summed spectra, it will add to itself. However, white noise, being of random

nature, will average out. As such, the S/N of the sum of multiple spectra is given by

S/N2
sum =

∑
i

S/N2
i (C.4)

where S/Ni and S/Nsum are respectively the S/N of each individual spectrum and of their sum. In the particular

case where all spectra have similar S/N:

S/Nsum ≈
√
N 〈S/Ni〉 (C.5)

where N is the number of spectra we are summing and 〈S/Ni〉 is the average of the S/N of all spectra. Note that

red noise does not follow a Poisson statistic and needs to be treated as a signal by itself.

NOISE AS A GAUSSIAN DISTRIBUTION C.2

As N �∞, the Central Limit Theorem dictates that Poisson distributions can be approximated by a Gaussian

(or normal) distribution with mean = σ = λ. Therefore, for large values of N , this discrete variable can be

approximated by a continuous variale and Equation C.3 becomes

P (x) =
1

σ
√

2π
e

(x−µ)2

2 σ2 (C.6)

This means that for a large number of photons, spectral noise will follow a Gaussian (or normal) distribution.

This is applicable to the high S/N domain we worked through this project and as such CCF noise has a Gaussian

distribution.

This property is particularly useful in our work when removing the stellar signal by normalizing the CCF of

each individual observations by the stellar template CCF. Let’s define Defining Z = X
Y , where X and Y are two

arbitrary normal random variables whose distributions have parameters µX , σX , µY and σY . By definition, for

each variables X, Y and Z, the S/N is given by

S/NX,Y,Z = µX,Y,Z/σX,Y,Z =
√
µX,Y,Z (C.7)
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The error propagation formula for measured quantities states that:

σZ
µZ

=

√(
σX
µX

)2

+

(
σY
µY

)2

(C.8)

which applied to the ratio of an individual spectrum k by the stellar template, gives that the S/N of that ratio is

S/Nk,Normalized ≈
(√

S/N−2k + S/N−2Template

)−1
≈ S/Nk

(√
1 + 1

N

)−1 (C.9)

where S/Nk and S/NTemplate are respectively the S/N of spectrum k and of the star template and S/Nk,Normalized

is the S/N of their ratio. Therefore, for a template constructed from a high number of spectra (N > 100)

S/Nk,Normalized ≈ S/Nk (C.10)

and thus the removal of the stellar CCF from our observations by normalization does not impact significantly

the S/N the resulting obsevations
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