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Abstract: Previous studies showed that the influence of meteorological variables and concentrations
of other air pollutants on O3 concentrations changes at different O3 concentration levels. In this
study, threshold models with artificial neural networks (ANNs) were applied to characterize the O3

behavior at an urban site (Porto, Portugal), describing the effect of environmental and meteorological
variables on O3 concentrations. ANN characteristics, and the threshold variable and value, were
defined by genetic algorithms (GAs). The considered predictors were hourly average concentrations
of NO, NO2, and O3, and meteorological variables (temperature, relative humidity, and wind speed)
measured from January 2012 to December 2013. Seven simulations were performed and the achieved
models considered wind speed (at 4.9 m·s−1), temperature (at 17.5 ◦C) and NO2 (at 26.6 µg·m−3) as
the variables that determine the change of O3 behavior. All the achieved models presented a similar
fitting performance: R2 = 0.71–0.72, RMSE = 14.5–14.7 µg·m−3, and the index of agreement of the
second order of 0.91. The combined effect of these variables on O3 concentration was also analyzed.
This statistical model was shown to be a powerful tool for interpreting O3 behavior, which is useful
for defining policy strategies for human health protection concerning this air pollutant.

Keywords: air pollution; artificial neural network; genetic algorithms; surface ozone;
threshold models

1. Introduction

Surface ozone (O3) is considered one of the most concerning air pollutants in Europe. It is
a secondary pollutant (it is not directly emitted), generated by chemical reactions that occur
in the atmosphere between primary air pollutants (nitrogen oxides—NOx—and volatile organic
compounds—VOCs) catalyzed by sunlight [1]. The impact of this air pollutant has been studied in
different areas [2–5]. Concerning human health, O3 can cause injuries to airway epithelial cells (and
lung diseases such as asthma), hyperplasia, headaches, and nausea, particularly in sensitive people,
such as children and elderly [6–10]. Regarding vegetation, O3 can damage plant leaves (decreases in
both leaf photosynthesis and leaf area), reducing crop yields associated with a high negative economic
impact [11–13]. Moreover, as a strong oxidant, it is responsible for the degradation of material via
corrosion [14].

As already mentioned, O3 is produced by chemical reactions between primary pollutants
present in the atmosphere. It can also be transported from other locations by the wind (horizontal
transport) and from the stratosphere (vertical transport) [15,16]. Thus, the atmosphere works as
an open chemical reactor, in which reaction kinetics depend on the concentrations of reactants
(primary air pollutants), mixture (wind speed and direction), temperature (influencing exponentially
kinetic reaction constants—Arrhenius equation), and solar radiation. Thus, the O3 behavior is
highly dependent on the environment (urban, rural, or background) and meteorological variables.

Appl. Sci. 2017, 7, 944; doi:10.3390/app7090944 www.mdpi.com/journal/applsci

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/162558573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-2738-5102
http://dx.doi.org/10.3390/app7090944
http://www.mdpi.com/journal/applsci


Appl. Sci. 2017, 7, 944 2 of 13

In urban areas, O3 concentrations are usually lower than the values observed in rural areas [17–20].
This phenomenon occurs mainly due to high NOx concentrations. Photochemical equilibrium is
defined by the following equations [21–23]:

NO2 + hν (λ< 420 nm)→ NO + O (R1)

O + O2 + M→ O3 + M (R2)

NO + O3 → NO2 + O2. (R3)

The photochemical reaction of NO2 decomposition (chemical reaction R1) leads to the production
of NO molecules and oxygen atoms that combine with molecular oxygen to produce ozone (chemical
reaction R2). O3 can also react with NO, forming NO2 (chemical reaction R3). The complexity of
phenomena associated with O3 formation makes it hard to understand and predict its concentration
in ambient air. Moreover, there are insufficient data (e.g., inventories of air pollutant emissions) to
develop consistent phenomenological models to describe O3 behavior.

Alternatively, statistical models have the capability of characterizing the relationship between
variables using collected data and they involve mere pattern-recognition using mathematical
operations. One of the most applied statistical models is the artificial neural network (ANN). ANNs are
nonlinear models, which are inspired in the biological neural processing system [24,25]. These models
are composed by artificial neurons (grouped in layers; three layers—input, hidden, and output—are
often applied) that receive an input value and converts to an output through a selected function
(activation function). Additionally, ANNs are characterized by a high fitting performance. The rapid
development of computer hardware has increased the processing capabilities, which have led to
achievement of ANN models with less computation time [26]. Therefore, these models have been used
in a wide range of applications, including classification, regression, and mapping [27–29]. However,
there are too many variables that need to be defined before the model parameters can be determined,
including (i) the number of processing neurons in the hidden layer, and (ii) the activation function for
each neuron. In recent years, genetic algorithms (GAs) have been applied to help in the definition of
these variables. GAs are commonly applied to generate high-quality solutions for optimization and
search problems, based on bio-inspired operators, such as mutation, crossover, and selection [30,31].
In GAs, a set of candidate solutions (called population—a group of individuals) are iteratively
modified though the mentioned genetic operators in order to find a group of better solutions for
the next generation (new iteration). GAs present the following advantages: (i) continuous or discrete
variables can be optimized; (ii) a derivative function is not required; (iii) multivariable problems can
be optimized; (iv) extremely complex cost surfaces can be dealt with; and (v) a list of optimal solutions
(and not just a single one) is provided.

In Porto (selected area in this study—Portugal), an increasing trend of O3 concentrations (147%
higher) has been observed since the 19th century due to the photochemical production of this pollutant,
associated with the increase in anthropogenic emissions mainly due to traffic [32]. Additionally, in
the north of Portugal, Lamas d’Olo is a rural site where the highest O3 concentrations are usually
measured. Consequently, this site is often selected to evaluate O3 behavior. Russo et al. [33] mentioned
that high-ozone episodes can be explained by several factors: (i) atmospheric stagnation; (ii) horizontal
transport by the wind of ozone-rich air masses; (iii) high solar radiation and temperature; and
(iv) the influence of local winds (sea breezes and valley winds). Carvalho et al. [19] observed a
positive correlation between O3 concentrations with temperature and a negative correlation with
relative humidity. Regarding the effect of wind field, the northeast flow from Spain (Galicia and
Asturias) was observed, and this can be associated with the long-range transport of atmospheric
pollutants to Portugal. Fernández-Guisuraga et al. [34] compared O3 trends at urban and rural sites.
At the rural site, O3 concentrations were mainly influenced by the wind (transport), showing low
variability with the concentrations of other pollutants. On the other hand, at the urban site, most
of the variance was explained by the NO2/NOx ratio. Several research studies can be found where
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ANN models were applied to determine O3 trends and to predict its concentration (to provide early
warning to the population when high O3 concentration episodes occur). Comrie [35] compared
the performance of an ANN model with a multiple linear regression (MLR) model to predict daily
average O3 concentrations in different cities with distinct climate and O3 regimes. ANN models
presented slightly better performance than MLR. Abdul-Wahab and Al-Alawi [36] developed ANN
models to predict O3 concentrations through meteorological and environmental data. The contribution
of the meteorological data was defined between 33% and 41%, while the remaining variation was
attributed to chemical pollutants. NO, SO2, relative humidity (the highest contribution), non-methane
hydrocarbon, and NO2 were the variables that most influenced the O3 concentrations. Additionally,
temperature also presents an important role, while solar radiation had a lower effect than expected.
Pires et al. [37] compared threshold autoregressive (TAR) models, autoregressive (AR) models, and
ANN in the prediction of the next day hourly average O3 concentrations. In the training period, ANN
presented a higher performance. However, in the test period, TAR models presented more accurate
results and the distinction became greater when the evaluation was performed for the prediction of
extreme values.

In recent studies, O3 concentrations have shown different behaviors regarding certain explanatory
variables [25,37], which can be classified as O3 regimes. This observation can be justified by the
chemical reactions associated with O3 formation/destruction that are influenced by certain variables,
such as temperature, solar radiation, and wind speed [32]. To take these regimes account, threshold
regression models were considered in this study [38]. Thus, GAs were used to define the threshold
variable and value (the value of the explanatory variable corresponding to the change of the regime;
two regimes were selected), the number of hidden neurons, and the activation function in the hidden
and output layers. In this study, hourly average O3 concentrations were modeled using threshold
models with an ANN, whose structure was iteratively optimized by GAs. The achieved models enable
the characterization of O3 variability with selected meteorological and environmental variables in
different regimes.

2. Materials and Methods

2.1. Data

Air quality data were obtained from an urban background site (Sobreiras—Lordelo do Ouro,
see Figure 1) of the Air Quality Monitoring Network (AQMN) of Porto, Portugal. The AQMN
is managed by the Regional Commission of Coordination and Development of Northern Portugal
(Comissão de Coordenação e Desenvolvimento Regional do Norte), under the responsibility of the Ministry
of Environment. Hourly average concentrations of NO, NO2, and O3 from the period from
January 2012 to December 2013 (8760 hourly average values in 2012 and 7481 in 2013) were used to
develop the proposed models. NO and NO2 were obtained through the chemiluminescence method
according to European Union (EU) Directive 1999/30/EC (European Community). According to EU
Directive 2002/3/EC, O3 measurements were performed through UV-absorption photometry using the
equipment 41 M UV Photometric Ozone Analyzer (Environment S.A., Poissy, France). This monitoring
equipment was subject to a rigid maintenance program, calibrated every 4 weeks. Measurements were
continuously registered, and hourly average concentrations (in µg·m−3) were recorded.

The meteorological data were collected in a meteorological station located at Pedras Rubras, which
is managed by Instituto Português do Mar e da Atmosfera (IPMA, I.P.); these values are considered
representative for the entire Metropolitan Area of Porto. In this study, hourly averages of temperature
(T, ◦C), relative humidity (RH, %), and wind speed (WS, m·s−1) were used to analyze the influence of
meteorological conditions on O3 concentrations.
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Figure 1. Monitoring site of Sobreiras—Lordelo do Ouro (from http://qualar.apambiente.pt/).

2.2. Statistical Model

In this study, threshold models with ANNs were defined with GAs, aiming to evaluate the effect
of environmental and meteorological variables in O3 concentrations. The applied model is defined as
the following:

y =

{
net1(xi), if xd ≤ r

net2(xi), if xd > r
(1)

where y is the output variable, net1 and net2 are ANN models, xi are the exploratory variables, xd is
the threshold variable, and r is the threshold value. Applied feedforward ANN models had three
layers (input, hidden, and output) and considered eight input variables (hourly average data): NO
concentration, NO2 concentration (due to the chemical reactions R1 and R3), the ratio NO2/NO
(due to the equilibrium constant of the chemical reaction R3), T, RH, 1/RH (as RH usually shows a
negative effect on O3 levels), WS, and 1/WS (the same as the RH effect). The output variable was
the hourly average O3 concentrations measured at the same time of the input data to infer the direct
influence of these variables on O3 chemistry. Regarding the activation functions, the linear function
was considered for the output neuron and four functions were selected by GAs: sigmoid, hyperbolic
tangent, inverse, and radial basis. The data were divided in training (75%) and validation (25%) sets
and the early stopping method (ANN training procedure is stopped when an increase in validation
error is observed) was applied to avoid overfitting. The division of the data was performed by time:
75% for training (January 2012 to 25 May 2013); 25% for validation (25 May 2013 to 19 December 2013).
In the training set, O3 concentrations ranged from 0 to 161 µg·m−3, while O3 concentrations ranged
from 0 to 170 µg·m−3 in the validation set.

GAs are a search and optimization technique based on Darwin principles of evolution and
natural genetics [30,31]. This procedure begins with a set of individuals (population) that is randomly
generated. Each individual (also called chromosome) is a binary code string and contains information
about a set of parameters, which is a potential solution to a given problem. To evaluate the quality of
the proposed solution (to rank the individuals in the population), a fitness function should be defined.
To create new chromosomes for the next generation, the fittest chromosomes are submitted to the
genetic operations [30]: (i) selection; (ii) crossover; (iii) mutation. These new chromosomes are then
evaluated according to the fitness function, and the ones with the highest performance were selected.
The repetition of this procedure generates a sequence of populations containing better solutions.
The termination criteria can be (i) to stop after a previously defined maximum number of generations is
achieved, or (ii) to stop when a desired fitness value is achieved. In this study, GAs were used to define
the threshold variable and value, the number of hidden neurons, and the activation function in the

http://qualar.apambiente.pt/
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hidden layer, and to select the explanatory variables to be used in each ANN model. The determination
of the models was coded by the authors with MATLAB® software (R2014a, MathWorks, Natick, MA,
USA, 2014) using the following specifications:

• a population size of 100;
• a selection probability of 0.20 (proportion of the individuals of the new generation obtained by

selection operator);
• a selection criterion based on elitism (a small proportion of the fittest candidates is copied

unchanged into the next generation);
• a crossover probability of 0.70 (proportion of the individuals of the new generation obtained by

crossover operator);
• a mutation probability of 0.1 (proportion of the individuals of the new generation obtained by

mutation operator);
• an evaluation of root mean squared error (RMSE) in training and validation sets;
• a stopping criterion based on the maximum number of generations.

Figure 2 shows an example of chromosome (37 bits). It is divided in 8 sets of bits (SBi). SB1 (3 bits)
defines the threshold variable (from the explanatory variables; the maximum number of 8) through
the conversion from binary to decimal numbers (MATLAB function bin2dec). SB2 (8 bits) defines the
threshold value. With the threshold variable already defined, the maximum (xmax) and minimum (xmin)
values of this variable are determined. Threshold value is calculated based on Equation (2).

r =
bin2dec(SB2)

255
× (xmax − xmin) + xmin. (2)

SB3 and SB6 (2 bits) define the activation function for the hidden layer of each ANN:
00—log-sigmoid (logsig); 01—hyperbolic tangent sigmoid (tansig); 10—inverse (netinv); 11—radial basis
(radbas). SB4 and SB7 (3 bits) define the number of neurons in the hidden layer through the conversion
from binary to decimal number (1 to 8). SB5 and SB8 (8 bits) define the explanatory variables that are
used in each ANN (1 bit for each explanatory variable): 0—not selected; 1—selected.

Appl. Sci. 2017, 7, 944  5 of 12 

The determination of the models was coded by the authors with MATLAB® software (R2014a, 
MathWorks, Natick, MA, USA, 2014) using the following specifications: 

• a population size of 100; 
• a selection probability of 0.20 (proportion of the individuals of the new generation obtained by 

selection operator); 
• a selection criterion based on elitism (a small proportion of the fittest candidates is copied 

unchanged into the next generation); 
• a crossover probability of 0.70 (proportion of the individuals of the new generation obtained by 

crossover operator); 
• a mutation probability of 0.1 (proportion of the individuals of the new generation obtained by 

mutation operator); 
• an evaluation of root mean squared error (RMSE) in training and validation sets; 
• a stopping criterion based on the maximum number of generations. 

Figure 2 shows an example of chromosome (37 bits). It is divided in 8 sets of bits (SBi). SB1 (3 bits) 
defines the threshold variable (from the explanatory variables; the maximum number of 8) through 
the conversion from binary to decimal numbers (MATLAB function bin2dec). SB2 (8 bits) defines the 
threshold value. With the threshold variable already defined, the maximum (xmax) and minimum (xmin) 
values of this variable are determined. Threshold value is calculated based on Equation (2). = 2 SB255 + . (2) 

SB3 and SB6 (2 bits) define the activation function for the hidden layer of each ANN: 00—log-
sigmoid (logsig); 01—hyperbolic tangent sigmoid (tansig); 10—inverse (netinv); 11—radial basis 
(radbas). SB4 and SB7 (3 bits) define the number of neurons in the hidden layer through the conversion 
from binary to decimal number (1 to 8). SB5 and SB8 (8 bits) define the explanatory variables that are 
used in each ANN (1 bit for each explanatory variable): 0—not selected; 1—selected. 

 
Figure 2. Example of a chromosome. 

3. Results and Discussion 

3.1. Air Quality and Meteorological Data Characterization 

During the analyzed period, the hourly average O3 concentrations were between 0 and 170 μg·m−3 
(not exceeding the information neither the alert threshold—180 and 240 μg·m−3, respectively). 
Regarding O3 exceedances to EU limits for the protection of human health, the 8 h average O3 
concentrations were higher than 120 μg·m−3 twice in September 2012, twice in July 2013, and once in 
August 2013. Figure 3 shows the average daily profile of O3 concentrations. As a photochemical 
pollutant, its concentration increases during the daylight period, presenting a maximum between 14 
and 15 h and a minimum at night time. The observed profile is characteristic of an urban site, as it 
does not present a high amplitude of concentrations (due to the presence of high NOx concentrations).  

Figure 4 shows the monthly average values of NO, NO2, and O3 concentrations, as well as the analyzed 
meteorological variables (temperature, relative humidity, and wind speed). High O3 concentrations 
were observed in April 2012 (63.7 μg·m−3) and from March to July 2013 (59.9–71.3 μg·m−3). In this 
period, low concentrations of NO and NO2 were also measured. High temperatures and low relative 
humidity were also observed. On the other hand, lower O3 concentrations were measured for periods 
with high NO and NO2 concentrations and lower temperatures. These observations are in agreement 
with other research studies in which the behavior of O3 was analyzed [18,39–41]. Pires et al. [40] 
compared several linear models to predict O3 concentrations at an urban site in Porto. The correlation 

Figure 2. Example of a chromosome.

3. Results and Discussion

3.1. Air Quality and Meteorological Data Characterization

During the analyzed period, the hourly average O3 concentrations were between 0 and 170 µg·m−3

(not exceeding the information neither the alert threshold—180 and 240 µg·m−3, respectively).
Regarding O3 exceedances to EU limits for the protection of human health, the 8 h average O3

concentrations were higher than 120 µg·m−3 twice in September 2012, twice in July 2013, and once
in August 2013. Figure 3 shows the average daily profile of O3 concentrations. As a photochemical
pollutant, its concentration increases during the daylight period, presenting a maximum between
14 and 15 h and a minimum at night time. The observed profile is characteristic of an urban site, as it
does not present a high amplitude of concentrations (due to the presence of high NOx concentrations).

Figure 4 shows the monthly average values of NO, NO2, and O3 concentrations, as well as
the analyzed meteorological variables (temperature, relative humidity, and wind speed). High O3

concentrations were observed in April 2012 (63.7 µg·m−3) and from March to July 2013
(59.9–71.3 µg·m−3). In this period, low concentrations of NO and NO2 were also measured.
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High temperatures and low relative humidity were also observed. On the other hand, lower
O3 concentrations were measured for periods with high NO and NO2 concentrations and lower
temperatures. These observations are in agreement with other research studies in which the behavior
of O3 was analyzed [18,39–41]. Pires et al. [40] compared several linear models to predict O3

concentrations at an urban site in Porto. The correlation analysis performed between O3 concentrations
and meteorological variables showed also negative correlations with NO, NO2, and RH and a positive
correlation with T. In another study focusing on the same region [41], O3 concentrations were negatively
correlated with NO, NO2, and RH and positively correlated with T and WS. Zhang, Wang, Park, and
Deng [18] analyzed high O3 concentration episodes and related them with meteorological variables.
O3 concentrations were highly correlated with maximum temperature and minimum relative humidity.
The effect of minimum WS was also analyzed at urban, suburban, and rural sites. O3 concentrations
were positively (negatively) correlated with minimum WS at urban (suburban and rural) sites. Shan,
Yin, Zhang, Ji, and Deng [39] analyzed the effect of meteorological variables on O3 concentrations at
an urban site in China. Daily average O3 concentrations were negatively correlated with pressure and
RH, and positively correlated with temperature, solar radiation, sunshine duration, and wind speed.
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3.2. Linear Correlation Analysis

Figure 5 shows the variation in linear correlation between O3 and meteorological parameters on a
monthly basis. Negative correlations were observed for NO (−0.547 to −0.296) and NO2 (−0.807 to
−0.276) concentrations. The effect of these air pollutants was more significant in winter periods than in
summer periods. Regarding the effect of meteorological variables, temperature was usually positively
correlated with O3, which was in agreement with what was expected. The highest value (R = 0.661) was
determined in September 2013 and an unusual negative correlation (R = −0.376) was determined in
July 2013. RH was negatively correlated in almost all periods. The highest impact was also observed in
September 2013 (R =−0.685) and an unusual positive correlation was determined in July 2013 (R = 0.419).
Chen et al. [42] demonstrated that RH favors O3 decomposition, justifying the associated negative effect.
Regarding WS, this variable can have two different effects on O3 concentrations. Low WS can promote
the accumulation of O3 produced in the region (increasing its concentration), while high values reduce
the levels of other air pollutants (such as NOx) that influence the O3 chemistry (in the case of NOx, its
concentration decrease leads to the increase in O3 levels). Thus, the effect of WS on O3 concentrations
depends on the studied environment: urban or rural. In this study (urban environment), WS was
positively correlated with O3 concentrations, with the highest value (R = 0.593) in February 2013.
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(R = 0.661) was determined in September 2013 and an unusual negative correlation (R = −0.376) was 
determined in July 2013. RH was negatively correlated in almost all periods. The highest impact was 
also observed in September 2013 (R = −0.685) and an unusual positive correlation was determined in 
July 2013 (R = 0.419). Chen et al. [42] demonstrated that RH favors O3 decomposition, justifying the 
associated negative effect. Regarding WS, this variable can have two different effects on O3 
concentrations. Low WS can promote the accumulation of O3 produced in the region (increasing its 
concentration), while high values reduce the levels of other air pollutants (such as NOx) that influence 
the O3 chemistry (in the case of NOx, its concentration decrease leads to the increase in O3 levels). 
Thus, the effect of WS on O3 concentrations depends on the studied environment: urban or rural. In 
this study (urban environment), WS was positively correlated with O3 concentrations, with the 
highest value (R = 0.593) in February 2013. 
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3.3. ANN Models and Interpretation

Seven simulations were performed to determine the models able to describe the relationship
between O3 concentrations with NO, NO2, T, RH, and WS (measured at same time). These models
are threshold models, considering two O3 regimes where the relationship between output and input
variables are different. The change from one regime to another depends on the value (threshold value)
of a specific input variable (threshold variable). GAs were used to optimize the ANN characteristics
(the number of hidden neurons, the activation function in the hidden layer, and the input variables),
and the threshold variable and value. The models were evaluated according their fitting performance
in training and validation sets. Table 1 shows the best models for the seven simulations. All of them
presented similar fitting performance: (i) R2 = 0.71–0.72; (ii) RMSE between 14.5 and 14.7 µg·m−3; and
(iii) the index of agreement of the second order of 0.91. Three explanatory variables were selected,
each one with a specific threshold value: (i) WS with 4.9 m·s−1; (ii) T with 17.5 ◦C; and (iii) NO2 with
26.6 µg·m−3. Generally, hyperbolic tangent and radial basis were the functions selected for the hidden
layer, composed by 7 or 8 neurons. In almost all models, all input variables were selected as ANN
inputs in both O3 regimes.

The analysis of the combined effect of input variables (two variables) was performed for the three
threshold variables, considering the two regimes determined by the best models in Simulations I, II,
and III. Figure 6 shows the combined effect of NO2, T, and WS on O3 concentrations for WS≤ 4.9 m·s−1

and for WS > 4.9 m·s−1. For WS ≤ 4.9 m·s−1, O3 concentrations (i) decreased with NO2 except when
T > 17 ◦C (without significant variation), (ii) increased with T except when WS > 2.8 m·s−1 (O3

presented a maximum between 17 and 20 ◦C), and (iii) did not change significantly with WS except
when T > 26 ◦C (presenting a decreasing tendency). For WS > 4.9 m·s−1, O3 concentrations (i) decreased
with NO2 except when T > 17 ◦C (presenting a slight increase), (ii) presented high values for high
T with all tested ranges of NO2 concentrations (presenting a local maximum—≈ 87.4 µg·m−3—for
T ≈ 11 ◦C and NO2 ≈ 6 µg·m−3), (iii) increased with T for the tested range of WS, (iv) did not
change significantly with WS, and (v) presented higher values than those where WS ≤ 4.9 m·s−1.
The combined effect of T-NO2 is in agreement with what was concluded in linear correlation analysis.
The effect of NO2 is more significant in the winter period, in which temperatures are usually low and
NO2 concentrations are high (see Figure 4). With high NO2 concentrations, the chemical equilibrium
given by Equation (R3) limits the increase in O3 concentrations. In addition, based on a comparison of
the two regimes defined by WS, the combined effect of these two variables presented similar behavior;
however, O3 concentrations were higher when WS > 4.9 m·s−1 (49–104 µg·m−3) than they were when
WS≤ 4.9 m·s−1 (11–41 µg·m−3). High values of WS are associated with the dispersion of air pollutants,
reducing their concentration. As NO2 concentrations decrease, O3 concentrations can achieve higher
values [17,19,20,22]. The combined effect of T-WS showed the highest variability of O3 with T, showing
a positive correlation between these variables. The O3 variability with WS is almost insignificant.



Appl. Sci. 2017, 7, 944 9 of 13

Regarding the combined effect NO2-WS, similar conclusions were drawn: O3 concentrations presented
a decreasing tendency with NO2 concentrations, and their variability with WS is almost insignificant.
Figures S1 and S2 present the effect of the same combinations of variables on O3 concentrations
considering T (simulation II) and NO2 (simulation III) as threshold variables, respectively. Similar
analysis can be performed through these figures.

Table 1. ANN models: their input variables, activation functions (AF), number of hidden neurons
(HN), and performance indexes (R2, RMSE (root mean squared error) and d2) for each performed
simulation (Sim).

Sim Model AF HN R2/RMSE/d2

I O3|t =

 net1

(
NO, NO2, NO2

NO , T, RH, 1
RH , WS, 1

WS

)
, if WS ≤ 4.9

net2

(
NO, NO2, NO2

NO , T, RH, 1
RH , WS, 1

WS

)
, if WS > 4.9

tansig
radbas

8
8 0.71/14.7/0.91

II O3|t =

 net1

(
NO, NO2, NO2

NO , T, RH, 1
RH , WS, 1

WS

)
, if T ≤ 17.5

net2

(
NO, NO2, NO2

NO , T, RH, 1
RH , WS, 1

WS

)
, if T > 17.5

tansig
tansig

7
7 0.72/14.5/0.91

III O3|t =

 net1

(
NO, NO2, NO2

NO , T, RH, 1
RH , WS

)
, if NO2 ≤ 26.6

net2

(
NO, NO2, NO2

NO , T, RH, 1
RH , WS, 1

WS

)
, if NO2 > 26.6

tansig
radbas

8
7 0.71/14.7/0.91

IV O3|t =

 net1

(
NO, NO2, NO2

NO , T, RH, 1
RH , WS, 1

WS

)
, if WS ≤ 4.9

net2

(
NO, NO2, NO2

NO , T, RH, 1
RH , WS, 1

WS

)
, if WS > 4.9

tansig
radbas

8
8 0.71/14.7/0.91

V O3|t =

 net1

(
NO, NO2, NO2

NO , T, RH, 1
RH , WS, 1

WS

)
, if T ≤ 17.5

net2

(
NO, NO2, NO2

NO , T, RH, 1
RH , WS, 1

WS

)
, if T > 17.5

tansig
tansig

7
7 0.72/14.5/0.91

VI O3|t =

 net1

(
NO, NO2, NO2

NO , T, RH, 1
RH , WS

)
, if NO2 ≤ 26.6

net2

(
NO, NO2, T, RH, 1

RH , WS, 1
WS

)
, if NO2 > 26.6

tansig
radbas

8
8 0.71/14.7/0.91

VII O3|t =

 net1

(
NO, NO2, NO2

NO , T, RH, WS
)

, if T ≤ 17.5

net2

(
NO2, NO2

NO , T, RH, 1
RH , WS, 1

WS

)
, if T > 17.5

tansig
tansig

7
7 0.72/14.5/0.91

The application of this statistical methodology allows for the determination of the influence
of environmental and meteorological variables on O3 concentration. Consequently, it is possible to
develop more accurate predictive models for this secondary pollutant, which is important for the
definition of policy measures for human health protection.

Appl. Sci. 2017, 7, 944  9 of 12 

WS is almost insignificant. Figures S1 and S2 present the effect of the same combinations of variables 
on O3 concentrations considering T (simulation II) and NO2 (simulation III) as threshold variables, 
respectively. Similar analysis can be performed through these figures. 

Table 1. ANN models: their input variables, activation functions (AF), number of hidden neurons 
(HN), and performance indexes (R2, RMSE (root mean squared error) and d2) for each performed 
simulation (Sim). 

Sim Model AF HN R2/RMSE/d2

I O | = net NO, 	NO , NONO , , , 1 , , 1 , if ≤ 4.9net NO, 	NO , NONO , , , 1 , , 1 , if > 4.9  tansig  
radbas 

8  
8 

0.71/14.7/0.91 

II O | = net NO, 	NO , NONO , , , 1 , , 1 , if ≤ 17.5net NO, 	NO , NONO , , , 1 , , 1 , if > 17.5  tansig  
tansig 

7  
7 

0.72/14.5/0.91 

III O | = net NO, 	NO , NONO , , , 1 , , if NO ≤ 26.6net NO, NO , NONO , , , 1 , , 1 , if NO > 26.6  tansig  
radbas 

8  
7 

0.71/14.7/0.91 

IV O | = net NO, 	NO , NONO , , , 1 , , 1 , if ≤ 4.9net NO, 	NO , NONO , , , 1 , , 1 , if > 4.9  tansig  
radbas 

8  
8 

0.71/14.7/0.91 

V O | = net NO, 	NO , NONO , , , 1 , , 1 , if ≤ 17.5net NO, 	NO , NONO , , , 1 , , 1 , if > 17.5  tansig  
tansig 

7  
7 

0.72/14.5/0.91 

VI O | = net NO, NO , NONO , , , 1 , , if NO ≤ 26.6net NO, NO , , , 1 , , 1 , if NO > 26.6  tansig  
radbas 

8  
8 

0.71/14.7/0.91 

VII O | = net NO, 	NO , NONO , , , , if ≤ 17.5net 	NO , NONO , , , 1 , , 1 , if > 17.5  tansig  
tansig 

7  
7 

0.72/14.5/0.91 

The application of this statistical methodology allows for the determination of the influence of 
environmental and meteorological variables on O3 concentration. Consequently, it is possible to 
develop more accurate predictive models for this secondary pollutant, which is important for the 
definition of policy measures for human health protection. 

(a) (b)

Figure 6. Cont.



Appl. Sci. 2017, 7, 944 10 of 13
Appl. Sci. 2017, 7, 944  10 of 12 

(c) (d)

(e) (f)

Figure 6. The combined effect of NO2 concentrations, temperature, and wind speed on O3 
concentrations based on model determined in Simulation I where WS (wind speed) ≤ 4.9 m·s−1 (a,c,e) 
and where WS > 4.9 m·s−1 (b,d,f). 

4. Conclusions 

Linear correlation analysis showed a positive relationship between O3 concentrations with T and 
WS, while NO, NO2, and RH showed a negative effect. In the studied period, the highest O3 
concentrations were observed for low NOx concentrations and high wind speed. Threshold models 
with ANNs and those defined by genetic algorithms define three important variables that could 
define different O3 regimes: (i) a wind speed of 4.9 m·s−1; (ii) a temperature of 17.5 °C; and (iii) an NO2 
concentration of 26.6 μg·m−3. The achieved models enabled the evaluation of the combined effect of 
two input variables in different O3 regimes. This information may be useful for defining policy 
strategies for human health protection concerning surface ozone. 
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4. Conclusions

Linear correlation analysis showed a positive relationship between O3 concentrations with T
and WS, while NO, NO2, and RH showed a negative effect. In the studied period, the highest O3

concentrations were observed for low NOx concentrations and high wind speed. Threshold models
with ANNs and those defined by genetic algorithms define three important variables that could define
different O3 regimes: (i) a wind speed of 4.9 m·s−1; (ii) a temperature of 17.5 ◦C; and (iii) an NO2

concentration of 26.6 µg·m−3. The achieved models enabled the evaluation of the combined effect
of two input variables in different O3 regimes. This information may be useful for defining policy
strategies for human health protection concerning surface ozone.
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