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Resumo

Os mercados de acções são considerados sistemas imprevisíveis (Fama, 1965) e com-
plexos (Bak et al., 1996; Mantegna and Stanley, 2000), estando as variações nos
preços das acções correlacionadas entre si (Bak et al., 1996).

Existem várias metodologias para estudar as correlações entre pares de séries
temporais representando atributos de acções. Uma abordagem possível é mapear
estas correlações em árvores (Mantegna, 1999) e redes (Tse et al., 2010) que eventu-
almente poderão evoluir no tempo (Onnela et al., 2003). Em tais redes, os vértices
representam acções e as arestas representam correlações entre as acções.

Este trabalho descreve uma metodologia para a interpretação em tempo real das
dinâmicas dos mercados de acções. A análise de redes sociais (SNA) serve de fonte
de inspiração, sendo utilizadas as suas técnicas e métricas para medir a evolução dos
mercados, detectar comunidades e quanti�car e quali�car a in�uência das acções.

O método propõe a análise temporal de dados �nanceiros transmitidos de forma
contínua, sendo construidas várias redes correspondentes a diferentes períodos tem-
porais. O �uxo contínuo de dados acarreta desa�os importantes, como calcular
estatísticas sobre dados in�nitos, escolher amostras não enviesadas e lidar com mu-
danças de contexto.

O método é aplicado a dados referentes a acções transacionadas em mercados
norte-americanos durante o período de 1997 a 2017, sendo os resultados analisados
e interpretados. É feita uma breve discussão sobre a aplicabilidade do método na
constituição de portfólios de investimento aceitáveis como motivação para trabalho
futuro.

Palavras-Chave: mercados de acções, redes complexas, análise de redes sociais,
�uxos de dados

iv



Abstract

Stock markets are regarded as unpredictable (Fama, 1965) and complex systems
(Bak et al., 1996; Mantegna and Stanley, 2000), where changes in stock price are
correlated to each other (Bak et al., 1996).

Several methodologies exist to study pair-wise correlations between time series
of stock attributes. A possible approach is to map correlation to trees (Mantegna,
1999) and networks (Tse et al., 2010) that may evolve in time (Onnela et al., 2003).
In such networks, nodes represent stocks and edges represent correlations between
stocks.

This work describes a methodology for the online interpretation of stock market
dynamics. Inspiration is drawn from social network analysis (SNA). Its techniques
and metrics are used to gauge the evolution of markets, detect communities and to
quantify and qualify the in�uence of stocks.

The method proposes temporal analysis of streaming �nancial data, constructing
several networks that correspond to di�erent periods of time. Data streams raise
important challenges, such as computing statistics over in�nite data, picking unbi-
ased samples and dealing with concept change.

The method is applied to data regarding stocks traded from 1997 through 2017
in United State's stock markets. Results are analysed and interpreted. A discussion
is held on the method's applicability in the construction of acceptable investment
portfolios as motivation for future work.

Keywords: stock market, complex networks, social network analysis, data streams
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Chapter 1

Introduction

In this chapter we introduce the problem to be studied, the motivation and contri-
butions of this work.

1.1 Problem de�nition

Stock markets are regarded as unpredictable and complex systems (Mantegna and
Stanley, 2000). Stock prices follow non-stationary time series (Fama, 1965) that are
correlated with changes in volume (Podobnik et al., 2009) and to each other (Bak
et al., 1996; Gopikrishnan et al., 2001). Stock prices also have a social component,
as many times volatility results from crown e�ect, with investors mimicking each
others' behaviours in response to market trends (Bak et al., 1996).

Investors perceive the value of a stock as a function of its expected future divi-
dends (Markowitz, 1952). As prices �uctuate through time, investors seek out tools
that can help them in decision-making regarding investment spending and durable
consumption (Raunig and Scharler, 2010), so that future returns can be maximized
while minimizing risk (Lima, 2015). Markowitz (1952), Rosenow et al. (2002) and
Roll (2013) show that the diversi�cation of investment into non-correlated assets
reduces risk, even in times of crisis (Preis et al., 2012).

The problem we face is then how to determine which communities develop in a
stock market, how do those communities evolve over time, which stocks are most
in�uential and how is that in�uence exerted over the remaining stocks according to
investors' reactions to economical, �nancial and political stimuli.

1.2 Motivation

Stock markets have been studied by economists and mathematicians for a long time.
In recent years, a growing number of physicists is engaging in a ground-breaking
multidisciplinary �eld of of research know as econophysics (Mantegna and Stanley,
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2000), where the analysis of economic systems is approached with techniques used
to solve physics' problems.

One important line of work under econophysics umbrella is that of asset price
dynamics in stock markets. Existing literature proposes several methodologies to
study pair-wise correlations between time series of stock attributes (e.g. price, re-
turns, volume). A possible approach is to map correlation to trees (Mantegna, 1999)
and networks (Tse et al., 2010), possibly evolving in time (Onnela et al., 2003, 2004).
Typically, in such networks, nodes represent stocks and edges represent strong cor-
relation between stocks.

Interesting contributions can be brough in from other disciplines. Otte and
Rousseau (2002) suggest the use of social network analysis (SNA) in information
sciences. SNA studies how the relations between individuals evolve through time,
how does this a�ect the importance and in�uence of those individuals and of the
communities they are involved in.

In recent works, Roy and Sarkar (2011), Dimitrios and Vasileios (2015) and Lima
(2015), among others, use SNA techniques to study the evolution of stock market
networks . One major drawback in such studies is that the used data sets of �nancial
time series are of a considerable size. Whenever processing such data batches, one
must consider practical aspects. On the one hand, batch processing of data is hard
to scale and evolve. Time and space complexity of processing algorithms are major
concerns, especially when dealing with evolving systems where the arrival of new
items implies the reprocessing of the whole batch. On the other hand, the optimal
size of the data set is hard to determine. Statistics go in disarray when dealing with
big data sets, naturally prone to concept drift. Conversely, small data sets may fail
to represent the phenomenon under study.

Arguably, a streaming approach is preferable. Nowadays, vast amounts of infor-
mation are streaming out of �nancial markets, day-in, day-out, down to the second.
Moreover, the sources of information are diverse: published annual reports, business
periodicals, specialized sites and investment advisory services. Despite its appeal,
streaming data is also not easy to process. In fact, streams raise important chal-
lenges, such as computing statistics over in�nite data, picking unbiased samples and
dealing with concept change.

1.3 Contributions

The goal of this work is to establish a methodology that can help investors to analyse
streaming stock market data, exposing the most important correlations between
stocks returns in the form of networks. Communities, in�uential stocks, common
stock-sets and network metrics are made available for the investor to assist in decision
making while conducting portfolio management.

2



1.4 Organization

This thesis is structured as follows:

Chapter 2 presents background information and state-of-art techniques in Stock
Networks, Social Network Analysis and Streaming.

Chapter 3 presents the methodology used to study the dynamics of a stock
market, including the criteria used to detect communities, identify important stocks
and frequent stock-sets. It includes a presentation of the experimental system.

Chapter 4 presents the application of the methodology to data regarding the
components of a stock market industrial index. The experimental results are pre-
sented and discussed throughout this chapter. The applicability of the methodology
to portfolio management is also approached.

Chapter 5 presents the conclusions, limitations and future paths of this work.
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Chapter 2

State of the Art

In this chapter, we go through the state of the art and look for the di�erent ap-
proaches to study the evolution of stock markets: how to collect, process and rep-
resent data, what metrics to collect and how to interpret the results.

The chapter is organized as follows: in the �rst section, we start by a brief
presentation of graph theory essentials and then move on to relevant papers about
�nancial networks, how to build and interpret them and the di�erences between
several types of networks. In the second section, we present bibliography on the
application of social networks analysis methodologies over �nancial networks. In the
third and �nal section, we go through papers on streaming, seeking to summarize
the best approaches to how to deal with �nancial data streams.

Throughout the entire chapter, we summarize the results, �ndings and sugges-
tions of futures lines of work of the reviewed literature.

2.1 Networks

Networks have been used to study complex problems ever since Euler's solution
for the Königsberg bridge problem (Euler, 1736). Networks are often represented
by graphs, mathematical structures consisting of sets of objects that are connected
together.

Formally, a graph G = (V,E) is an ordered pair consisting of a non-empty set
V of nodes and a set E of edges, which are pairs of nodes (u, v) ∈ V . A graph
G is said to be directed if E is comprised of sets of ordered pairs, otherwise it is
undirected. A graph G is said to be weighted if the edges in E are assigned with
numerical weights representing the strength of the connections.

The adjacency matrix A of a graph G is a n× n matrix de�ned as

Auv =

{
1 if (u, v) ∈ E
0 otherwise

(2.1)

4



For undirected graphs, matrix A is symmetric. For weighted graphs, the adjacency
matrix is de�ned as

Wuv =

{
w if (u, v) ∈ E
0 otherwise

(2.2)

where w represents the weight or strength of the edges.
The order of a graph G, denoted as |V (G)| = n, is the number of elements of

the set V of nodes. The size of a graph G, denoted as |E(G)| = m is the number
elements of the set E of edges. For directed graphs, the maximum number of edges
is mmax = n(n− 1), for undirected graphs it is mmax = n(n− 1)/2.

An alternating sequence of nodes and edges v0, e0, v1, . . . , vk−1, ek−1, vk that be-
gins and ends with nodes is called a walk (of length k). A trail is a walk in which all
edges are distinct. A path is a trail in which all nodes are distinct. Two nodes u and
v are connected if there is a path between them in G. A graph G is connected when
there is a path between every pair of nodes; in particular, a graph with a single node
is connected. A graph that is not connected is disconnected.

A connected undirected graph G with no cycles is called a tree. A tree T that
spans the entire graph G and is a subgraph of G is called a spanning tree. If G is
a weighted graph and T bears the minimum possible total edge weight, then T is
called a minimal spanning tree (MST).

A compreehesive exposition on graph theory is presented in Bondy et al. (1976).
Graph theory provides answers in many �elds of research, from Mathematics to
Social Sciences (Boccaletti et al., 2006).

2.1.1 Hierarchical structure in �nancial markets

In recent years, the involvement of physicists in the study of economical problems
brought graph theory into Economy and Finance (Mantegna and Stanley, 2000).

Mantegna (1999) publishes a seminal paper proposing a topological approach
to the characterization of stock markets. The author represents markets as graphs
where stocks are nodes and edges are established based on similarities in stocks'
return performance. Given a pair of stocks (i, j), similarity is determined by the
correlation coe�cient

ρij =
< XiXj > − < Xi >< Xj >√

(< X2
i > − < Xi >2)(< X2

j > − < Xj >2)
(2.3)

where Xi = lnPi(t)− lnPi(t− 1) is a series of daily logarithmic return values,
< Xi > is the average over all trading days in a studied time period T and Pi(t) is
the closing quote (price) of stock i at days t ∈ T .

The author introduces a distance function

5



Figure 2.1: MST for Dow Jones Industrial.

d(i, j) = 1− ρ2
ij (2.4)

that, at once, is a function of the of stocks' i and j similarity and ful�ls the four
axioms of Euclidean metric:

1. d(i, j) ≥ 0

2. d(i, j) = 0 ⇐⇒ i = j

3. d(i, j) = d(j, i)

4. d(i, j) ≤ d(i, k) + d(k, j)

The distance matrix D = {dij | ∀i, i} is used to determine a minimal spanning
tree (MST), a particular kind of weighted graph �rst described in Bor·vka (1926)1.
Figure 2.1 illustrates an MST of the Dow Jones Industrial index components from
mid 1989 through late 1995.

Mantegna observes that MSTs exhibit interesting properties that ensure the
preservation of the most relevant connections between stocks in a portfolio. Each n
node of the MST is connected by n− 1 edges without any loops. Moreover, the sum
of the weights of edges is minimal. Later, Vandewalle et al. (2000) prove that the
probability of nodes in stock-correlation MSTs to exhibit a degree of k is given by

P (k) ∼ k−α (2.5)

Networks where the distribution of node degrees follow such a power-law are
knows as scale-free networks. Vandewalle et al. results are corroborated by Boginski
et al. (2005) when authors conduct a statistical study of stock-correlation graphs to

1An excellent translation of this paper is presented in Ne²et°il et al. (2001)
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prove that the same power law also applies to nodes in graphs de�ned in according
to the methodology of Onnela et al. (2004).

Sector-based clustering, volatility and the expressiveness of correlation

Bonanno et al. (2004) �nds evidence of clustering based on economical sectors in
MSTs obtained from the components of S&P 100 index from 1995 through 1998.
Seeking to con�rm the Epps e�ect, a decrease in stock return correlation caused by
the increase in data sampling (Epps, 1979), Bonanno et al. change Mantegna's def-
inition of return series to Xi = lnPi(t)− lnPi(t−∆t), where ∆t is the frequency of
data sampling. Authors build several MSTs by picking di�erent values for ∆t, from
one day down to nineteen minutes. In this process, they witness the transformation
of the MSTs from multi-cluster hierarchical structures to simpler star-shaped graphs
where intra-sector correlations decrease fast.

Bonanno et al. analyse the volatility of stock, a key �nancial indicator obtained
by the ratio between daily maximum and minimum quotes. The authors notice
that the probability distribution functions of return and volatility are di�erent in
nature; the former is symmetrical, the later is skewed. For this reason, Bonanno et al.
suggest more robust non-parametric correlation coe�cients, such as Spearman Rank,
to study volatility. Results show that MSTs obtained from Spearman's correlation
are more stable and present better characterized clusters than those obtained from
Pearson's, but no major topological di�erences emerge between the two when the
same sampling rate is used.

Finally, Bonanno et al. compare the topological properties of correlation with an
uncorrelated Gaussian time series (Dudley, 1965) and the robust one-factor model
(Sharpe, 1964). Authors notice that none of the MSTs resulting from the later
models is able to capture the topological properties of those spawned by real-data's
correlation. This is particularly interesting since the one-factor model is known to
explain more than 80% of correlation coe�cients observed in real-data.

Trees versus Graphs

Tumminello et al. (2005) argue that stock correlations disclosed by MSTs are too
restrictive and that valuable information is lost. Tumminello et al. propose a richer
correlation-based graph called Planar Maximally Filtered Graph (PMFG), which is
iteratively built by adding highly correlated nodes as long as the resulting graph is
planar and can be embedded in a surface with a �xed genus G = 0 (i.e., a plane or
a sphere). The genus of a surface is the largest number of non-intersecting closed
curves that can be drawn on the surface without separating it.

Tuminello et al. point out several advantages in PMFGs. First, every MST is
always included in a PMFG. Second, for a set of n nodes, MST has n− 1 edges
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whereas the PMFG has 3(n− 2). Last, while the MST is a tree, the PMFG is a
network with loops and cliques of 3 or 4 elements. The PMFG is therefore more
appealing in terms of information, since 4-element cliques can reveal intra and inter-
sector clusters.

2.1.2 Time-evolving trees and graphs

Onnela et al. (2003) introduce the concept of dynamic asset trees : a time-evolving
MST. The authors collect daily closing quotes of stocks in the S&P500 index
from 1982 through 2000 and section these time series into several consecutive
windows of size w, displaced by a small ∆w. One asset tree t is created out of
each window. Them, trees are compared according to their normalized length L(t)
and single-step surviving ratio σt, respectively the average of the sum of distances
between nodes and the average of the intersection of sets of edges in consecutive
windows. Results show that asset trees undergo a drastic topological recon�guration
during �nancial crisis, such as 1987's Black Monday, when huge drops in L(t) and
σt lead to shorter, centralized and fast-changing trees with several high-degree nodes.

In a later work, Onnela et al. (2004) introduces asset graphs, an evolution of
asset trees obtained by relaxing the non-looping constraint of Kurskal's algorithm
(Kruskal, 1956). Onnela et al. claim that asset trees can be unrepresentative of the
real stock's correlations because their spanning nature spawns edges that are less
relevant than they seem. Conversely, asset graphs are more robust since the weak
edges introduced in trees are prone to break. Moreover, graphs allow disconnected
components, thus being able to capture clique phenomena naturally occurring in
stock markets.

Complex networks

Tse et al. (2010) pursue an interesting variation of asset graphs (Onnela et al.,
2004). The authors notice that both MSTs and PMFGs su�er from information
loss, as topological conditions over-�tting the reduction criteria might remove edges
representing high correlation coe�cients while keeping others of lower interest. Tse
et al. propose full complex networks where edges are added if and only if they
represent correlation coe�cients ρij larger than a threshold value θ; this method is
dubbed the winner-take-all approach.

Tse et al. study the prices, returns and trading volumes of stocks traded in the
S&P 500, NASDAQ and Dow Jones indices from mid 2005 through mid 2007 and
from mid 2007 to mid 2009, to prove that all obtained networks exhibit a scale-
free degree distribution. Authors conclude that quote variation is driven by a small
number of stocks, especially those in the �nancial sector.
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Figure 2.2: Partial network for US stock prices from July 1, 2005 through August
30, 2007.

Network stability and market cycles

Heiberger (2014) claims that topological properties of complex networks di�er when
stock markets go through calm or troubled times, extending the �ndings of Onnela
et al. (2003). The author con�rms evidences of the May-Wigner theorem (Hastings,
1982; Haldane and May, 2011) in complex stock networks. The theorem states that
a system's stability is inversely proportional to the complexity of its network.

Heiberger mixes the methodologies of Onnela et al. (2003) and Tse et al. (2010)
to build dynamic �ltered networks out of stock in the S&P index from 2000 through
2012, thus covering the dot-com bubble and the sub-prime crisis. During calm times,
the networks exhibit a clear and well-partitioned community structure, where clus-
ters of companies from the same sector of activity often occur. Converselty, in
troubled times networks become cohesive and centralized, with multiple commu-
nities quickly merging into massive clusters. Results prove that the May-Wigner
theorem, devised for ecological networks, can be used as a predictor of turmoil in
stock market networks.

2.2 Social Network Analysis

Social Networks Analysis (SNA) is an inter-disciplinary methodology started in the
1920s (Boccaletti et al., 2006). Social networks can be de�ned as the relationships,
or ties, between social entities, or actors. Common tasks in SNA involve the iden-
ti�cation of central actors, authorities, links, hubs and communities. Oliveira and
Gama (2012b) and Adedoyin-Olowe et al. (2013) provide a good general overview
on the essentials of SNA.

Social networks are represented as mathematical graphs. Therefore, concepts

9



originating from graph theory, such as centrality, density, distance, clustering, com-
ponents, cliques, etc, are also present in SNA. This proximity leads to a growing
application of SNA concepts in the �eld of econophysics.

2.2.1 Centralities

The concept of centrality in SNA is systematized in Freeman (1978). The author
recognises centrality as an important structural attribute of social networks since it
relates intimately to the way in which social groups are organized. Freeman covers
three types of centrality: degree, betweenness and closeness.

The �rst and simplest centrality concept is degree. The degree of a node is the
number of edges incident on it. Mathematically, the degree of node i it can be
expressed as

ki =
n∑
j=1

aij (2.6)

where n is the number of nodes in the graph and aij is the entry of the adjacency
matrix A corresponding to the ith row and jth column. In weighted networks, the
strength of a node is the sum of the weights of edges incident on it. The degree of
an actor is an indicator of its communication activity. Actors with high degree are
focal points in information �ow, given their direct contact with many other actors.
Conversely, actors with low degree are regarded as peripheral.

The second centrality concept is betweenness, the frequency at which a node falls
in the shortest path between other nodes. Betweenness is given by

bk =
∑

i,j∈V \{k}

σij(k)

σij
(2.7)

where σij(k) is the number of shortest paths between nodes i and j passing through
node k and σij(k) is the total number of shortest paths between nodes i and j.
The betweenness of an actor is an indicator of its control over communication.
Actors with high betweenness, also know as gatekeepers, act as interfaces between
tightly-connected groups and therefore can exert control over them by withholding
or distorting information. Gatekeepers are often regarded as coordinators of group
processes. Betweenness can also be de�ned for edges.

The third and last centrality concept is closeness, the mean length of all shortest
paths from one node to all other nodes in the network. Formally, closeness is given
by

Ci =
n− 1∑
j∈V \{i} dij

(2.8)
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Figure 2.3: Hipothetical networks.

where dij is the length of the shortest path between node i and all nodes j 6= i.
Closeness is a measure of e�ciency, an indicator of how fast a given actor can
reach every other actor in the network. It is also an indicator of independence, as
actors with high closeness can reach other groups without the need of going through
gatekeepers.

The quantity and quality of in�uence and status

Bonacich (1972, 1987) proposes eigenvalue centrality as a measure of in�uence and
status for actors. The central idea is that the status of an actor is proportional to
the weighted sum of the statuses of those connected to him. Let A be an adjacency
matrix where aij is the contribute of actor i to actor j's status, let

λxi = a1ix1 + a2ix2 + . . .+ anixn (2.9)

be a eigenvector of A and λ its largest associated eigenvalue. If A is a n×n matrix,
the system has n solutions corresponding to the n values of λ. The eigenvalue
centrality of actor i given by Eq. 2.9, commonly represented as

xi =
1

λ

n∑
j=1

aijxj (2.10)

Eigenvalue centrality is meaningless in some situations. If the status of an actor is
a function of its neighbours statuses, then an actor with no neighbours has no status
and thus contributes nothing to any other statuses as well. Figure 2.3 illustrates two
cases from Bonacich and Lloyd (2001). All positions in network I have zero status,
whereas in network II positions a, b, c, and d have the same status since e has no
contribution to a's status.

Centrality measures for weighted networks

Opsahl et al. (2010) contributes with a generalization of centrality measures
for weighted networks. Authors extend the notions of degree, betweenness and
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closeness to weighted networks, trying to overcome the limitations of previous
works based on edge weight alone.

Opsahl et al. revisit degree centrality as de�ned by Freeman (1978). The authors
observe that degree can be generalized for weighted networks by replacing the binary
adjacency matrix A by the weight matrix W . The strength of a node i can thus be
de�ned as

si =
n∑
j=1

wij (2.11)

where wij is the weight or strength of the edge between nodes i and j. The problem
with strength alone is that it can be misleading in what regards to the node's
involvement in the network; a node with a few strong connections can have a better
index than another with more but weaker connections. Opsahl et al. propose a
tuning parameter α > 0 that determines the relative importance of connections over
weights. The new de�nition of degree is

Cwα
D (i) = ki ×

(
si
ki

)α
= k

(1−α)
i × sαi (2.12)

where ki and si are respectively the degree (Eq. 2.6) and the strength (Eq. 2.11) of
node i.

Opsahl et al. then turn on betweenness and closeness. Both measures rely
on the notion of shortest paths, usually identi�ed by Dijkstra (1959) algorithm.
In unweighted networks, the binary shortest distance between nodes i and j is
dij = min(aik + . . .+ akj) where k are intermediate nodes. In weighted networks,
weights represent the strength of edges, so before applying Dijkstra's, the weights
must �rst be inverted so that they are regarded as costs. That way, strong edges
represent cheap connections and weak edges represent costly ones; in particular,
an edge bearing a weight of zero will have an in�nite cost. The shortest path is
therefore de�ned as dwij = min(w−1

ik + . . .+ w−1
kj ) where k are intermediate nodes.

Once again, Opsahl et al. notice that this shortest path algorithm disregards
the involvement of the node in the network. They again propose the adjustment of
weights using a tuning parameter α > 0 before applying Dijkstra's algorithm. By
doing so, the shortest path between nodes i and j becomes

dwαij = min(
1

wαik
, . . . ,

1

wαkj
) (2.13)

The weighted version of shortest distance can be applied to the formula of close-
ness centrality, that becomes

12



Figure 2.4: Hierarchical tree (dendrogram) with cut point determining the number
of communities.

Cw
i =

n− 1∑
j∈V \{i} d

wα
ij

(2.14)

Likewise, the weighted shortest distance can be used to compute σwαij (k), the
number of shortest paths between nodes i and j passing through node k, and σwαij ,
the total number of of shortest paths between nodes i and j. Betweenness centrality
is thus rewritten as

bwk =
∑

i,j∈V \{k}

σwαij (k)

σwαij
(2.15)

2.2.2 Communities

Social networks tend to show community structure. Communities, modules or clus-
ters, are groups of similar nodes. A better de�nition is obtained resorting to density:
communities are densely connected groups of nodes with sparse connections between
them.

Hierarchical Clustering and Graph Partitioning are two main lines of research in
community discovery, both seeking to determine groups of related nodes based on
the information provided by the networks's topology (Oliveira and Gama, 2012b).
Hierarchical clustering methods use measures of similarity between nodes (e.g. co-
sine similarity, Jaccard Index, Euclidean distance, etc.) and clusters (e.g. single
linkage, complete linkage, Ward's method, etc.) to uncover the nested structure
of networks. Graph Partitioning progressively divides graphs into sets of disjoint
subgraphs, identifying and removing high betweenness edges (bridges) to isolate
communities. Both classes of methods produce hierarchical structures, called den-
dograms, from which communities are produced by horizontal cut according to some
criteria.

Finding communities in networks

Newman and Girvan (2004) use divisive algorithms to discover community struc-
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Figure 2.5: Graph with three communities, exhibiting dense internal links and sparse
external links.

tures in networks. The authors notice higher betweenness in edges lying between
communities and lower in intra-community edges. The proposed algorithms com-
putes edge betweenness for all edges in the network, removes the edge with higher
betweenness and then repeats the process for all remaining edges. Without the re-
calculation step, edge betweenness would be outdated after the �rst removal, thus
rendering an inaccurate �nal result.

Newman and Girvan use modularity to assess the quality of the partitions (New-
man, 2003). Given a particular partition of a network into k communities, authors
de�ne a matrix Ek×k where each entry eij is the fraction of edges that connect nodes
in community i to nodes in community j. Modularity can then be de�ned as

Q =
∑
i

(
eii − a2

i

)
= TrE − ||E2|| (2.16)

where TrE =
∑

i eii is the trace of matrix E, ai =
∑

j aij is the row sum of the
fractions of edges incident to nodes in community i and ||E2|| is the sum of all
elements in matrix E2.

Modularity Q is the di�erence between the number of edges connecting intra-
community nodes and the expected number of edges connecting intra-community
nodes in a network where intra-community edges are built at random. Q takes
its values in [−1, 1]. A value of Q = 0 show that the found communities are no
better than random connections. A positive value reveals community structure; the
higher the value, the better the partition. Newman and Girvan state that empiric
evidence shows that any value between 0.3 and 0.7 is a good indicator of meaningful
communities; this observation is later con�rmed by Clauset et al. (2004).

Community detection based in heuristics

Blondel et al. (2008) introduce the Louvain method for community detection, a two-
phase heuristic approach based on modularity optimization. Blondel et al. de�ne
modularity as
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Figure 2.6: Louvain algorithm in process.

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
δ(ci, cj) (2.17)

where m is the number of edges, ki and kj are respectively the degree of nodes i and
j, Aij is the cell of the adjacency matrix holding the number of edges between i and
j, kikj

2m
is the expected number of edges falling between i and j, ci and cj denote the

groups to which nodes i and j belong and δ(ci, cj) is the Kronecker delta.
The algorithm's two phases, illustrated in Figure 2.6, are iteratively repeated.

The �rst phase starts by creating communities of one node. Every node i is then
removed from its community and added to the community of each neighbour j. Ev-
ery time i changes community, modularity is recalculated. Once every community
is visited, i is placed into the community that presents the largest modularity gain
if one is found, otherwise i returns to its original community. The process is re-
peated for all nodes until no more gains in modularity are detected; by then, a local
maximum is determined and phase one ends.

In the second phase, all nodes in a community are aggregated into a single node;
the resulting network is therefore comprised of nodes representing the communities
found in phase one. Edges connecting new nodes are weighted according to the sum
of the weights of edges connecting the old communities (pre-aggregation); edges
within the same old community are represented as self loops. Phase two ends once
the new network is completely determined. The algorithm resumes phase one and
the process goes on iteratively until no more changes in modularity are found.

Blondel et al. (2008) point out the advantages of the Louvain algorithm: it is
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Figure 2.7: Ebbinghaus' forgetting curve.

easy to implement and very e�cient, its outcome is unsupervised, and intermediate
results are meaningful, even at small scale. The authors apply the algorithm to net-
works of assorted sizes and compare results with those obtained by other community
detection algorithms by Clauset et al. (2004), Pons and Latapy (2005) and Wakita
and Tsurumi (2007). Louvain outperforms all other methods, even in networks of
unprecedented sizes.

2.2.3 Retention and Stability

Kudelka et al. (2010) propose the reduction of networks based on node and edge
stability. The authors de�ne two coe�cients, retention and stability, that describe
the relevance of nodes and edges in the social network based on their long-term
behaviour. The network is reduced to smaller components by removal of irrelevant
nodes and edges.

Kudelka et al. use the forgetting curve (Ebbinghaus, 1913), which de�nes the
probability of one remembering information after t time has passed since a previous
recall. The forgetting curve is given by

R = e−
t
S (2.18)

where e is the Euler number, t is the time elapsed since last recall and S is an
estimate of the time required to store information in memory after last recall. S
changes over time. The time required to store new information is a constant Sini > 0.
For every recall after a time t > 0, the value of Snew can be computed by

Snew = ch(t, S, F, Sini)× S (2.19)

where F > 1 is a multiplicative factor of S and ch is a function that determines the
speed of the forgetting process.

Kudelka et al. suggest that edges connecting pairs of nodes can be regarded
as experiences stored in memory. Stable networks result from connections that are
frequently recalled. The authors identify three characteristics of nodes and edges
that change over time depending on the frequency of interactions:

Node Retention (NR): probability of recalling an edge between this node and a
previously incident node at time t;
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Figure 2.8: Contributions network before and after reduction.

Node Stability (NS): estimated time for which the node remains active;

Active Node: node for which NS > 0 in time t;

Edge Retention (ER): probability of recalling an edge between two previously
incident nodes at time t;

Edge Stability (ES): estimated time for which the edge remains active;

Active Edge: edge for which ES > 0 in time t;

Kudelka et al. build networks for a dataset comprising 2 million co-authorship
relationships between 443 thousand authors over a period of 45 years. Data is di-
vided in non-overlapping monthly windows. Within each window span, an edge is
added for every article published by an author and a co-author. The forgetting
curve is used to calculate retention and stability monthly; edge stability is used as
weight. Results show that stability changes every month and that retention quickly
decreases due to the forgetting curve. Not surprisingly, authors with many publi-
cations in common are represented by nodes and edges with steady high retention
and increasing stability over time. At the end, only 28% of the nodes and 12% of
the edges are active. Figure 2.8 shows the networks before and after reduction. The
�nal networks is comprised of small backbones of authors with high stability. Small
cycles and cliques are also detected.

2.2.4 Tracking the evolution of networks

Complex networks modelling real-worlds phenomena are organized in community
structures that evolve through time. While early research represented networks
as static mathematical objects that seldom captured the evolving nature of the
underlying concept, recent works acknowledge the importance of time in the shaping
of network topologies (Rossetti and Cazabet, 2018).

Figure 2.9 illustrates four concepts that gradually introduce the temporal di-
mension into network models. A static network captures a single snapshot of real-
ity. Edge weights can be used to measure strength over well-de�ned time-windows.
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Figure 2.9: From static graph to temporal networks: complexity increasing with
temporal information.

Figure 2.10: Temporal snapshots at time t = 1 to 6.

Snapshots are temporal ordered series of networks taken in (regular) intervals that
can be used to keep track of changes in networks topologies. Temporal networks
allow a �ne-grain description of network dynamics, adding explicit birth and death
timestamps to every node and edge. Complexity increases as one moves from static
to temporal networks. One must then consider the trade-o� between richness of
information versus the performance in the storing/processing of data (Rossetti and
Cazabet, 2018).

Characterizing the evolutionary behavior of interaction graphs

Asur et al. (2009) propose a snapshot-based framework to study the evolution of net-
works. The authors monitor transformations in communities through critical events
detected in transitions between consecutive snapshots. These events characterize
the behavioural patterns of both individuals and communities over time.

Let St and St+1 be snapshots of network S in two consecutive times intervals t
and t+ 1, Cn

t be the n-th cluster in snapshot St and V n
t the set of nodes in cluster

Cn
t . Asur et al. propose the following events:

Form A cluster Cn
t+1 is formed if no two nodes in V n

t+1 existed in a same cluster Cn
t

at time t. In Figure 2.10, snapshot t = 5 shows a new cluster C3
5 forming.
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Form(Cn
t+1) = 1 ⇐⇒ @Cn

t : V n
t ∩ V n

t+1 > 1 (2.20)

Continue A cluster Cn
t+1 is the continuation of Cn

t if V n
t+1 equals V n

t . Figure 2.10
shows a continue event in snapshot t = 2 . Despite the new interaction between
nodes in cluster C2

1 , the clusters do not change.

Continue(Cn
t , C

n
t+1) = 1 ⇐⇒ V n

t = V k
t+1 (2.21)

k-Merge Two distinct clusters Ci
t and C

j
t merge if there is a cluster Cn

t+1 at time
t+ 1 containing at least k% of the nodes belonging to Ci

t and C
j
t . Figure 2.10

shows a merge event in snapshot t = 3. The dashed lines are newly created
edges, joining all nodes under a single cluster C1

3 .

Merge(Ci
t , C

j
t , k) = 1 ⇐⇒ @Cn

t+1 :
|(V i

t ∪ V
j
t ) ∩ V k

t+1|
Max(|V i

t ∪ V
j
t |, |V n

t+1|)
> k% ∧

|V i
t ∪ V n

t+1| > 0.5|Ci
t | ∧ |V

j
t ∪ V n

t+1| > 0.5|Cj
t |

(2.22)

The condition holds if there are edges between V i
t and V j

t at time t+ 1.

k-Split A cluster Cn
t splits if k% of its nodes are in two di�erent clusters at time

t+ 1. Figure 2.10 shows a split event in snapshot t = 4, when cluster C2
3 splits

into two smaller clusters C2
4 and C3

4 .

Split(Cn
t , k) = 1 ⇐⇒ ∃Ci

t+1, C
j
t+1 :

|(V i
t+1 ∪ V

j
t+1) ∩ V n

t |
Max(|V i

t+1 ∪ V
j
t+1|, |V n

t |)
> k% ∧

V i
t+1 ∪ V n

t | > 0.5|Ci
t+1| ∧ |V

j
t+1 ∪ V n

t | > 0.5|Cj
t+1|
(2.23)

Dissolve A cluster Cn
t dissolves if no two nodes in the cluster are in a same cluster

at time t+ 1. In Figure 2.8, snapshot t = 6 shows a dissolve event when the
edges in cluster C1

5 disappear, spawning three new clusters C1
6 , C

2
6 and C3

6 .

Dissolve(Cn
t , C

n
t+1) = 1 ⇐⇒ @Cn

t+1 : V n
t ∩ V n

t+1 > 1 (2.24)

Experimental results over two large datasets show that the value of k has great
in�uence on the number of merges and splits: the number of events drops as the
value of k raises. Asur et al. claim that a high value for k helps to capture interesting
merge and split events in highly overlapping clusters.
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Figure 2.11: MEC bipartite graph: nodes as clusters and edges' weights as condi-
tional probabilities.

Monitor of the Evolution of Clusters

Oliveira and Gama (2012a) develop a framework to Monitor of the Evolution of
Clusters (MEC). The process consists on the detection of transitions undergone by
mutually exclusive clusters observed in consecutive snapshots of a network taken in
regular time intervals ∆t.

For any given time interval [ti, ti+∆t], Oliveira and Gama build a bipartite graph
G (U, V,E), where U is the set of clusters existing at time ti, V is the set of clusters
existing at time ti+∆t and E is the set of weighted edges connecting all possible pairs
of clusters in U and V . The weight function is de�ned as

weight(Cu(ti), Cv(ti+∆t)) = P (X ∈ Cv(ti+∆t)|X ∈ Cu(ti))

=

∑
P (x ∈ Cu(ti) ∩ Cv(ti+∆t))∑

P (x ∈ Cu(ti))
(2.25)

where X is the set of observations found in cluster Cu(ti) and
P (X ∈ Cv(ti+∆t)|X ∈ Cu(ti)) is the conditional probability of X belonging to
cluster Cv(ti+∆t) at time t+ 1 given that X belongs to Cu(ti) at time t.

Oliveira and Gama use two thresholds to reduce the fully-connected graph. The
survival (τ) threshold is used to remove edges whose weights indicate meaningless
matching probabilities. The split (λ) threshold is used to detect changes in clusters.
The authors consider �ve types of transitions in the reduced graph:

Birth A cluster Cv is born when all edges connecting it to any previous clusters Cu
have weights below the survival threshold τ

0 < weight(Cu(ti), Cv(ti+∆t)) < τ, ∀u (2.26)

Survival A cluster Cu survives if there is a single edge connecting it to a cluster
Cv in the following snapshot and if that edge's weight is above the survival
threshold τ
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weight(Cu(ti), Cv(ti+∆t)) ≥ τ ∧
@ Cw 6= Cu : weight(Cw(ti), Cv(ti+∆t)) ≥ τ

(2.27)

Merge Two (or more) distinct clusters Cu and Cw merge if there are edges connect-
ing them to a cluster Cv in the following snapshot and if those edges' weights
are above the survival threshold τ

weight(Cu(ti), Cv(ti+∆t)) ≥ τ ∧
∃ Cw 6= Cu : weight(Cw(ti), Cv(ti+∆t)) ≥ τ

(2.28)

Split A cluster Cu is split if there are edges connecting it to clusters Cv and Cw in
the following snapshot, if those edges' weights above the split threshold λ and
if the sum of those weights is above the survival threshold τ

∃ Cv 6= Cw : weight(Cu(ti), Cv(ti+∆t)) ≥ λ ∧
weight(Cu(ti), Cw(ti+∆t)) ≥ λ ∧
n∑
k=1

weight(Cu(ti), Ck(ti+∆t)) ≥ τ

(2.29)

Death A cluster Cu dies when all edges connecting it to clusters Cv in the following
snapshot have weights below the split threshold λ

weight(Cu(ti), Cv(ti+∆t)) < λ, ∀v (2.30)

Oliveira and Gama conduct two independent sets of experiments over three large
datasets, varying one threshold and keeping the other constant in each turn. The
�rst set of experiences shows that high values of τ lead to few survivals and many
splits, whereas births ans deaths remain constant. The second set shows that high
values of λ lead to few splits and many births and deaths, and that λ as no e�ect
on the number of survivals and merges. The authors conclude that the tuning of
the split threshold λ is not critical since its impact is low for a signi�cant number
of transitions. Conversely, the tuning of the survival threshold τ is very important
since transitions are more sensitive to this parameter and even small variations of
this value may lead to very di�erent results.

2.2.5 Centralities and communities in stock markets

Roy and Sarkar (2011) study the evolution of global stock markets before and after
the 2008 �nancial crisis. The authors focus on the 2006-2010 period, seeking to
understand the e�ect of Lehman Brothers' collapse in stock markets.

21



Roy and Sarkar follow the methodology of Onnela et al. (2004) to track the evo-
lution of a network comprised of 93 global-wide indices. Data is split in overlapping
windows displaced every 4 week. Each window originates one MST and one corre-
lation network, for which degree, betweenness, closeness and eigenvector centralities
are determined. Additionally, authors determine the tree length of every MST. The
metrics are used to build normalized ranks for each of the indices; the ordering
assigns the smallest rank to the most in�uential index. A �nal normalized rank is
build as an average of the normalized ranks.

Empiric results show that the variance in ranks increases by 62% during the
peak of 2008 crisis, pointing to turbulence in markets. North America indices in
particular drop a few positions, while pan-European indices begin to rise. Changes
are more prominent in indices with higher ranks (less in�uence). Moreover, there
is a topological recon�guration of MSTs and networks. The collapse of Lehman
Brothers is captured by a clear decrease in the length of MSTs, thus showing a
signi�cant increase in correlation between indices around the globe. Pre-crisis
communities, heavily in�uenced by regional and trading interactions, give place to
new ones where smaller indices (South America, South-east Asia) move away from
US and European indices into more economically stable communities featuring the
UK and Japan.

In a di�erent work, Dimitrios and Vasileios (2015) use SNA techniques to study
the most in�uential stock and stock communities in the Greek stock exchange during
the years 2007 and 2012.

The authors collect daily closing quotes to derive daily returns, used to obtain
the cross-correlation matrices from which they build unweighted threshold-�ltered
networks according to methodology of Huang et al. (2009). Several networks are
built using di�erent threshold values, both positive and negative. Dimitrios and
Vasileios conduct the analysis of degree,closeness, betweenness and eigenvector cen-
tralities and local clustering coe�cients for every produced network2.

Dimitrios and Vasileios �nd that small positive threshold values produce highly
dense networks, thus yielding results of little use. As the threshold increases, many
communities begin to emerge, re�ecting a healthy state of the market. Conversely,
cluster tend to merge as the network becomes highly connected during the peak of
the sovereign debt crisis of 2012; in particular, the banking sector forms a tightly
connected community, despite the small �uctuations in return values. This herd be-
haviour is considered a sign of �nancial turmoil (Hastings, 1982; Onnela et al., 2003;
Heiberger, 2014). Authors also �nd a very small number of negative correlations;
the percentage of negative correlated stock is 0.3% of the positive ones.

2Gephi (Bastian et al., 2009) is used for network representation and analysis.
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2.2.6 The role of SNA in portfolio management

Portfolio management is an important topic since Markowitz (1952) proposed di-
versi�cation as a tool to mitigate risk and optimize return. Several approached to
the topic have been put forth, including Fama (1965), Ross (1976), Rosenow et al.
(2002), Tola et al. (2008), Preis et al. (2012), Roll (2013) among others. In what
follows, we focus on approaches based on SNA.

Networks of experts

Koochakzadeh et al. (2012) propose the use of social networks of investors based on
the similarity of their publicly available portfolios. The authors �nd that investors
may be fully characterized by the expected return and risk level of their portfolios.

Koochakzadeh et al. collect the investment portfolios of 125 experts and 57
amateurs, and the daily quotes from 2010 through 2011 for the stocks in those
portfolios. The authors compute the semestral expected return and risk for each
stock, using those values to compute the semestral expected return and risk of each
portfolio. To measure portfolio performance, authors use Sharpe ratio, a measure of
the amount of return added per unit of risk. Each expert is placed in one of �ve risk
categories, according to the performance of his/her portfolio. The experts portfolio
data set is used to train a classi�er, which in turn is used to predict the risk level of
the amateurs investors.

Koochakzadeh et al. use the K-means algorithm to determine the similarity
between every pair of portfolios, as a function of the number of common clusters.
The authors build a social network of experts where similarity values are used as
weights for edges. Amateur investors are then inserted into communities of experts
exhibiting similar propensity for risk. The expert with highest degree centrality in
each community is chosen as its representative and his/her portfolio is recommended
to amateurs in that community. Results show that in all cases, the mean Sharpe
ratio of amateur investors is lower than that of experts belonging to the same class,
meaning that amateurs get higher return for the same risk.

Evolution of communities in stock networks

Lima (2015) addresses portfolio management base on the evolution of communities
of stocks traded in the Russel 1000 index during 2014.

Lima (2015) starts by computing the time series of daily prices variations as

V ari(t) =
Pi(t)− Pi(t− 1)

Pi(t− 1)
(2.31)

where Pi(d) and Pi(d− 1) are the closing prices of stock i at days d and d− 1
respectively. Lima divides each time series in sliding windows wk, k = 1, . . . , n
of size t displaced by a small ∆t and creates one correlation matrix ρij,t for each
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window wk, from which the author creates one unweighted, acyclical, threshold-
�ltered graph according to the metodology of Huang et al. (2009). From the graph,
the author extracts3 the eigenvector centrality of each node, the average degree of
the network, and the communities as detected by the Louvain's algorithm (Blondel
et al., 2008).

Lima deems a stock in�uential if its eingenvector centrality is above a threshold
ε at least in one network. Likewise, he considers networks to be eligible for study if
its size is above a threshold ω. The author uses the MEC framework (Oliveira and
Gama, 2012a) to monitor the survival of communities, setting the survival threshold
τ according to the recommendations of Oliveira and Gama (2012a).

Lima conducts several experiments over the dataset, setting di�erent sizes for
sliding windows and both positive and negative threshold values for correlation. Re-
sults show that positive and negative correlations do not di�er signi�cantly in terms
of results. Small windows prompt short-lived communities and transient in�uence
in terms of stock. Conversely, longer windows yield long lasting communities and
a stable behaviour. For comparative purposes, the author repeats the study using
the ultrametric distance proposed by Mantegna (1999). Lima observes a decrease
in network density and an increase on the number of detected communities, which
last longer; in�uential stock also maintain their status for longer.

2.3 Streaming

Data streams are stochastic processes in which events occur continuously and inde-
pendently of each other (Gama, 2010). Unlike data sets, streams are unbounded in
length, its items arrive in any order and are discarded or archived as soon as they
are processed. Algorithms dealing with streams must therefore be prepared to deal
with limitations in time and space. Common approaches involve the adoption of
synopses, summaries and sliding windows over past data, and sampling as a way to
reduce the �ow rate of input streams (Babcock et al., 2002; Gama, 2010).

Babcock et al. (2002) peruses a number of issues regarding data management,
query processing and algorithmic problems that arise from dealing with continuous
data streams. Gama (2010) presents a comprehensive approach to several aspects
and applications of knowledge discovery from data streams.

2.3.1 Statistics over streams

Often, one has to compute statistics over streamed data. Since data arrives contin-
uously, the calculation of statistics must be incremental. Arguably, the best way to
achieve results is through recursive formulas. Given a stream xi, the sample mean
recursively obtained as

3Using Gephi (Bastian et al., 2009)
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x̄i =
(i− 1)x̄i−1 + xi

i
(2.32)

for which one needs to keep in memory the number i of observations and the sum
of all observed values

∑
xi. A similar formula can be deduced for the standard

deviation

σi =

√∑
x2
i −

(
∑
xi)2

i

i− 1
(2.33)

for which one keeps the number i of observations, the sum of all observed values∑
xi and the sum of all squared observed values

∑
x2
i . Multiple stream statistics

can be obtained as well. Given two streams xi and yi, the recursive formula for
correlation is

ρ(X, Y ) =
i
∑

(xi · yi)−
∑
xi
∑
yi√

i
∑
x2
i − (

∑
xi)2

√
i
∑
y2
i − (

∑
yi)2

(2.34)

for which one keeps the number i of observations, the sum of the values for each
stream

∑
xi and

∑
yi, the sum of the squared values

∑
x2
i and

∑
y2
i and the sum

of cross product
∑

(xi · yi).

2.3.2 Statistics over sliding windows

Datar et al. (2002) address the problem of maintaining aggregates and statistics
over data streams, seeking a way to conduct the analysis in one scan, within memory
bounds and without resource to precomputed summaries of data. The authors notice
that, for most applications, decision making is continuous and based on statistics
gathered over recent events. This motivates the concept of sliding window : a subset
xi−w, . . . , xi of the observed values, where i is the current element and w is the
�xed size of the window. A sliding windows is a �rst-in, �rst-out data structure
from which element xi−w is removed (and forgotten) as the next observed element
xj, j = i+ 1 is inserted.

Datar et al. propose exponential histograms as a means to hold statistics, his-
tograms and hash tables in memory. Exponential histograms keep arriving data in
buckets, each of them tagged with the timestamp of arrival of its most recent item.
Two auxiliary variables LAST and TOTAL are kept to record respectively the size
of the last bucket and the total size of the buckets. The authors prove that the size
of these histograms grows exponentially to 2w, where w is the size of the sliding
window.

Datar et al. illustrate the concept by consuming a binary stream and counting
the number of 1's observed in the last N elements. The algorithm starts by checking
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Figure 2.12: Data stream, sliding window and timestamps.

whether the last bucket's time stamp falls outside the range of the sliding window.
If so, the bucket is discarded and LAST and TOTAL are updated accordingly.
Then, the value of the arriving item is observed. Every 0 is immediately discarded.
Conversely, every 1 is associated with a time stamp and inserted into a new bucket
of size one, while TOTAL is incremented. The list of buckets is then traversed in
increasing order of sizes. Given a parameter ε, if there are d1/εe/2 + 2 buckets of
the same size, the oldest two of them are merged into a new bucket with the double
of size, updating LAST if the last bucket is the result of the merger. The process
iterates over all buckets, cascading into a series of mergers. It is important to notice
that the last bucket may contain 1's beyond the size of the sliding window. To avoid
a miscount, Datar et al. establish that the last bucket holds an estimated number
of LAST/2 active items. To compute the number of 1's in the sliding window, one
computes the value of TOTAL− LAST/2.

The detail level in data becomes coarser as buckets grow old. As buckets are
merged, time gets compressed by a factor equal to the growth rate and older infor-
mation loses importance until it is discarded. Authors suggest ways to apply the
same technique to other problems with a multiplicative overhead of O(1

ε
log(w)) and

at the cost in accuracy with a 1 + ε factor.

Statistics over variable-sized sliding windows

Bifet and Gavalda (2006, 2007) introduces ADWin (for ADaptive Window) as a
variable-size sliding window algorithm capable of keeping updates statistics over
streams of numeric data while acting as a change detector.

ADWin takes two inputs: a con�dence level δ ∈ [0, 1] and an in�nite stream
x1, . . . , xt, . . . of independent values generated according to an unknown distribution
Dt with unknown expected value µt. One sliding windowW of size n is used to keep
the most recently observed values xi. Let W0 and W1 be a partition of W , n0 and
n1 their respective sizes, µ̂w0 and µ̂w1 their known averages and µw0 and µw1 their
unknown expected values.

ADWin processes the incoming stream one item a time, adding it to the head
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of the sliding window (W1). The algorithm then looks for partitions W = W0.W1

where |µ̂W0 − µ̂W1| ≥ εcut. If found, W0 is dropped and the process resumes with a
new window W = W1. The cutting threshold is given by

εcut =

√
1

2m
.ln

4n

δ
(2.35)

where m is the harmonic mean of n0 and n1. Bifet and Gavalda claim that, in every
step, the probability that ADWin shrinks W is at most δ when µt remains constant.
Conversely, when µt diverges, the probability that W is cut down to W1 or shorter
is 1− δ.

Bifet and Gavalda (2007) introduce an improved version of ADWin that uses
a variation of exponential histograms (Datar et al., 2002). Results prove that the
di�erence in approximation power between the two versions is negligible. Tests
over synthetic and real data streams prove that ADWin can be successfully used as
an estimator for statistics since older parts of the window are dropped when their
average diverges from that of the most recently ones. Additionally, it is also a good
change detector because windows shrink if and only if there are signi�cant changes
in data.

Non-parametrical statistics over sliding windows

The Pearson correlation coe�cient is not robust in the presence of outliers, missing
points and heavy-tailed distributions, which makes it un�t for some streaming ap-
plications. Xiao (2017) proposes an online algorithm to compute Spearman's Rank
(ρS) and Kendall's Tau (τ) non-parametric correlation coe�cients.

Both ρS and τ require the sorting (ranking) of two series X and Y , a computa-
tionally heavy task. The recursive approach used for Pearson's cannot be used for
the two non-parametric correlations; in ρS, past observations may have their ranks
changed as new data arrives, and τ computes the correlation by comparison of new
and past data. Xiao's algorithm deals with these limitations while keeping both
time and memory cost complexities constant. The algorithm can work with both
�xed-sized and variable-sized sliding windows.

Let (X, Y ) be a pair of time series, {cXk | k = 0, . . . , p} and {cYl | l = 0, . . . , q}
sets of cut-points in increasing order of X and Y and ngap ≥ 1 a positive inte-
ger. Xiao uses the cut-point sets to build a matrix Mp×q where each cell M [k, l]
stores the frequency, up until time t, of sample values (xt, yt) falling into the range
[cXk−1, c

X
k [×[cYl−1, c

Y
l [. When (t mod ngap) is equal to zero, the non-parametric cor-

relation coe�cient of choice is computed and stored in the return array r. At any
given time t, the the value so far of coe�cients can be computed by observing the
values in (r[ngap], r[2ngap], . . . ).

Xiao tests his online algorithm on streams of data generated over an year by
4 sensors of an industrial plant. Several settings are de�ned for the number of
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cut-points, gap and sliding windows sizes. Based on the experimental results, Xiao
proposes di�erent values of p, q for ρS and τ . For comparison purposes, a batched
version is tested against the same streams and results show that the online version
is always faster.

Other interesting approaches

We kindly refer the reader to two other interesting works in the �eld of statistics
over sliding windows: StatStream (Zhu and Shasha, 2002) and Local Correlation
(LoCo) score (Papadimitriou et al., 2006). The �rst is a parallel computing system
based on Discrete Fourier Transforms capable of computing single and multiple
stream statistics in one pass, constant time and bounded memory. The second is a
sound alternative to Pearson correlation that tracks the evolution of local correla-
tions among series using a joint model of the series without any assumption about
stationarity.

2.3.3 Statistics with gradual forgetting

In most real world applications, such as biomedicine, industrial processes, stock
markets and fault detection and diagnosis, data �ows continuously according to
non-stationary distributions for which the underlying concept changes over time
(Gama, 2010). As the characteristics of data change, old data items become less
signi�cant than new ones for future behaviour prediction or resource allocation.

Linear gradual forgetting

Koychev (2000) proposes gradual forgetting, implemented by time-based weight
functions w = f(t), t ≥ 0, as a means to deal with concept drift in data streams.
In a practical example, Koychev de�nes a linear forgetting function that takes item
i's elapsed time since arrival, the total number of items n and a slope adjustment
factor k ∈ [0, 1] as parameters and returns a weight wi. The function is subject to
the following constraints: wi > 0 and (1/n)

∑n
i=1wi = 1.

Koychev test his function in conjunction with ID3 (Quinlan, 1986) and Naïve
Bayes Classi�er (NBC) algorithms in two sets of experiments involving the dataset
used to test stagger (Schlimmer and Granger, 1986). In the �rst set, the author
uses a landmark window with the classi�ers, in the second Koychev uses �xed-
size non-overlapping sliding windows. Results show that gradual forgetting always
increases the average prediction accuracy of both classi�ers, especially when used
together with sliding windows.

Koychev's �ndings prove that gradual forgetting can be used alone or together
with other forgetting mechanisms for partial memory learning, improving the pre-
dictive accuracy of learning algorithms. The author suggest the use of logarithmic
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and exponential functions for gradual forgetting.

Other gradual forgetting functions

Cohen and Strauss (2003) address the problem of maintaining time-decaying ag-
gregates and statistics over data streams. The authors de�ne storage-e�cient algo-
rithms that use non-increasing decay functions to transform data so that the relative
contribution of each item to the aggregate is scaled down by a factor depending on
elapsed time.

The authors start by presenting the Decayed Count Problem (DCP). Given a
binary data stream f(t) ≥ 0 and a non-increasing decay function g(x) ≥ 0 de�ned
for all x ≥ 0, the decayed sum is

Vg(T ) =
∑
t<T

f(t)g(T − t) (2.36)

where T is the current time and t is an integer. Given a acceptable error threshold
ε > 0, the goal is to produce an approximate estimate V

′
g (T ) such that

V
′
g (T )− Vg(T )

V ′g (T )
≤ ε (2.37)

Cohen and Strauss present several families of decay functions. One of such
families is exponential decay, commonly used due to its simplicity. Given λ > 0, the
function is de�ned as g(x) = exp(−λx). Given any current time T , the exponentially
decayed count can be obtained by

Vexp(T ) = f(T ) + exp(−λ)Vexp(T − 1) (2.38)

The authors also study the sliding windows family. Given a window size W ,
the decay function is de�ned as g(x) = 1 for x ≤ W and g(x) = 0 otherwise. The
authors focus on exponential histograms introduced by Datar et al. (2002) as a
method to produce approximate estimates of sliding windows' decayed counts up
to an acceptable error of 1 + ε. At any given current time T , the estimate for the
decayed count can be obtained as

Vslidwin(T ) =
∑
i

Ci =
∑
i

∑
wi−1<t≤wi

f(t) (2.39)

Cohen and Strauss prove that the decayed count problem using any decay func-
tion can be estimated using exponential histograms over window of size W . Using
summation by parts, the decayed count problem is rewritten as
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Vg(T ) =
∑

T−W≤t<T

f(t)g(T − t)

= g(W )
∑

T−W≤t<T

f(t)

+
W−1∑
i=1

(g(W − i)− g(W + i− 1))
∑

T−W+i≤t<T

f(t)

= g(W )VslidwinW
(T )

+
W−1∑
i=1

(g(W − i)− g(W + i− 1))VslidwinW−i
(T )

(2.40)

The approximate estimate for decayed count using exponential histograms can
then be obtained by

Vslidwin(T ) = g(T − w0)C0 +
∑
i≤1

(g(T − wi)− g(T − wi−1))Ci (2.41)

This result shows that sliding windows decay is the "hardest" decay function in
terms of data storage, as other decay functions can be used to produce estimates
equivalent to those produced by exponential histograms. Cohen and Strauss argue
that exponential and sliding windows decays do not provide su�cient �exibility
when it comes to �ne tune the rate of decay and propose e�cient algorithms for the
polynomial, polyexponential and polygonal decay families.

2.4 Summary

In this chapter, we cover graph theory and its application to �nancial networks, dif-
ferent types of networks, their traits and capabilities in terms of expressiveness. We
also peruse the application of social network analysis as a tool to extract information
from �nancial networks. Finally, we introduce and summarize some approaches to
streaming, seeking to learn how to best use the power of streamed data to deal with
�nancial data streams. The goal of reviewing the state of the art is to guide us in
the de�nition of a methodology, presented in the next chapter. The results, �ndings
and suggested future lines of work found in literature motivate our choices.
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Chapter 3

Methodology

In this chapter, we discuss the methodology of the study. We start by presenting the
pre-processing method that turns a stream of stock prices into a stream of return
values. We describe how to compute statistics over that stream using three window
models, how to build the correlation networks and how to measure the evolution
node centralities, communities and the networks themselves. We conclude with an
overview of the experimental system implementing the methodology.

3.1 Overview

Stock market analysis is often approached as the study of relationships between
variables that represent a particular stock attribute (e.g. price, return value, volume,
etc.) over a period of time.

Network analysis has proven to be an excellent tool to address this problem:
a market can be modelled as a network, an undirected weighted graph in which
nodes represent stocks, edges represent correlation between stocks and the weight
associated with each edge illustrates the strength of the relationship.

In what follows, we present a methodology that enables the use of network anal-
ysis on streams of stock data to study the evolution of correlation between return
values of pairs of stocks over di�erent periods of time. Markets are dynamic in the
sense that new stocks may be added and to and/or removed from time to time (Rao
et al., 2000; Harris and Gurel, 1986; Shoven and Sialm, 2000), therefore changes in
the node set must be addressed. The goal is to provide a tool that can be used to
drive decision-making for stock portfolio management.

3.2 Preprocessing data

Given a stock market M composed of n stocks si (i = 1, . . . , n), let
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M(t) = (M1, . . . ,MT ), 1 ≤ t ≤ T (3.1)

be a matrix-based time-series (Tiao and Box, 1981; Antille, 2007) where each time
point Mt is a matrix of size n× k bearing information about the n stocks traded in
M at a given point in time t. Each row in Mt is a k-tuple

si = (t, i,mi, pi, hi, li, ai, ti, vi) (3.2)

where t is a time stamp, i is the stock's ticker name, mi is the name of the
company, pi is the quote (price) at time t, hi and li are respectively the highest
and lowest quotes up until t, ai and ti are respectively the absolute and per-
centage di�erences between the last quote at times t and t− 1 and vi is the
traded volume until t. Due to changes in the market's components, it is possible
that two consecutive matrices Mt and Mt+1 exhibit a di�erent number of rows,
that is, it may happen that dim(Mt) = n× k and dim(Mt+1) = m× k where n 6= m.

The M(t) time series meets the criteria de�ned by Datar et al. (2002) for a
data stream: it is constantly changing, by insertion of new elements only, rendering
repeated operations over its entire contents unnecessary. Let us then process M(t)
as a data stream, collecting one matrix Mt for every time period ∆t = t− (t− 1)
and extracting quotes pi for each stock si in the market. Given two consecutive
matrices Mt−1 and Mt, we can then compute the return values (Mantegna, 1999;
Vandewalle et al., 2000; Bonanno et al., 2001; Onnela et al., 2004; Tumminello et al.,
2005; Tse et al., 2010) for each stock si as

ri,t =

{
0 if @ pi,t−1

log(pi,t)− log(pi,t−1) otherwise
, t = 0, 1, · · · , T (3.3)

We can thus transform a stream of stock quotes into a stream of stock return
values from which we can derive statistics.

3.3 Statistics and data streams

In a streaming context, data is unbound in size which makes the task of keeping
all return values in memory impracticable. We solve the problem by adopting
either summary or synopsis that allow us to compute statistics over an in�nite
sequence of return values without having to keep them all in memory and with an
acceptable associated error ε (Gama, 2010). Since market components may change
over time, we adapt by adding and/or removing summaries/synopsis following a
naïve approach: summaries/synopsis are added and dropped as stocks enter and
exit the market.
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Gama (2010) presents a practical approach to maintain simple statistics over
data streams. Cross-correlation, in particular, can be computed incrementally by

ρij = ρ(ri,t, rj,t) =
nSij − SiSj√

nS2
i − (Si)2

√
nS2

j − (Sj)2
(3.4)

where i and j are stocks in market M , t = 1, . . . , n is a particular point in time,
and n, Si, Sj, S2

i , S
2
j and Sij are summaries de�ned as

n = min(#ri,t,#rj,t) minimum number of return values collected for
stocks si and sj until time t

Si =
n∑
t=1

ri,t sum of return values for stock si until time t

Sj =
n∑
t=1

rj,t sum of return values for stock sj until time t

S2
i =

n∑
t=1

r2
i,t sum of squared return values for stock si until

time t

S2
j =

n∑
t=1

r2
j,t sum of squared return values for stock sj until

time t

Sij =
n∑
t=1

ri,t · rj,t sum of cross-product of return values for
stocks si and sj until time t

The correlation table PM = {ρij | ∀i, j ∈M} is built by computing cross-
correlation of all pairs of stocks.

Computing statistics using landmark window

Landmark windows (Babcock et al., 2002; Sarmento et al., 2016) keep track of all
data items from a given point in time onwards; no di�erentiation is made between
data items as older ones are as important as the more recent ones. This model serves
as a baseline of the study, helping helps us to determine how the return values of
stocks correlate with each other in the entire time span of the study.

To compute the cross-correlation between the return values of any pair of stocks
in the market, all it takes is to de�ne a set of the previously enumerated summaries
per stock and keep updating it. The use of summaries enables us to compute exact
cross-correlations.

Computing statistics using a gradual forgetting

Stock markets are dynamic environments, where prices follow non-stationary dis-
tributions (Fama, 1965; French et al., 1987; Mantegna and Stanley, 2000) and re-
turn rates go through alternated periods of big and small �uctuations (Raunig and
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Figure 3.1: Forgetting curves of di�erent intensities

Scharler, 2010). As prices and returns vary, we want to adapt and update relation-
ships between stock.

Koychev (2000, 2002) and Klinkenberg (2004) present time-based forgetting func-
tions based on weights as a means to deal with concept shift. Cohen and Strauss
(2003) introduces time-decay forgetting functions and peruses its impact on statis-
tics computed over data streams. In our work, we resort to an aggregation function
that multiplies the previously enumerated summaries by a fading factor α ∈ ]0, 1[.
Let us assume that, at a given point in time t, ri is the observed return value for a
particular stock si and that Ai(t− 1) is one of the �ve summaries storing data up
until t− 1. If we update the summary as

Ai(t) = ri,t + αAi(t− 1) (3.5)

we manage to progressively adapt to the current context while keeping enough in-
formation to remember the recent performance of si in terms of return value. When
we expand the right-hand side of the aggregation function

Ai(t) = ri,t + αAi(t− 1)

= ri,t + α(Ri,t−1 + αAi(t− 2))

= ri,t + αri,t−1 + α2ri,t−2 + . . .+ αnri,t−n

(3.6)

we observe that it evolves exponentially (Cohen and Strauss, 2003) with the degree
of coe�cient α increasing as time goes by, thus rendering the older return values ever
smaller. This fenomenon resembles the forgetting curve (Ebbinghaus, 1913), whose
e�ect in social networks is studied by Kudelka et al. (2010). Figure 3.1 illustrates
forgetting curves produced by three di�erent values for α; one can clearly see the
e�ect of the fading factor's value of the forgetting process' speed.
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Figure 3.2: Landmark window, with (top) and without (bottom) forgetting

Figure 3.3: Sliding window, without (top) and with (bottom) exponential histogram

Computing statistics over sliding windows

Sliding windows (Babcock et al., 2002), whether �xed or adaptive, are another ap-
proach to force loss of relevance on older data. It is an abrupt forgetting mechanism
where items falling out of the window span are deleted from memory never to be
used again.

We de�ne a �xed sliding window spanning over a period of t = ω trading days,
displaced every ∆t days. On top of that window, we de�ne an exponential his-
togram synopsis (Datar et al., 2002) whose buckets hold return values computed
in non-overlapping periods of 2kt < T, where k = 0, 1, . . . , n trading sessions. The
admissible relative error in statistics is given by 0 < ε < 1.

Just like with summaries, we keep a set of �ve histograms for each stock in the
stock market. To get the cross-correlations between a pair of stock, we compute the
sum of the contents of all buckets in the respective histograms as described in Datar
et al. (2002).
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3.4 Building the network

The building blocks are now in place for us to produce market M 's network as an
undirected weighted graph

GM = (VM , EM , w) (3.7)

where VM = {s1, . . . , si, sj, . . . , sn} is the set of nodes (the stocks),
EM = {(si, sj) | ∀si, sj ∈ VM} is the set of edges that connect every possible
pair-wise combinations of stocks and w is a function that returns the weight of each
edge as

w : EM → PM

eij  ρij
(3.8)

By design GM is undirected, since cross-correlation as de�ned in equation 3.4 is
a symmetrical function in which ρij = ρji, ∀si 6= sj ∈ VM . It is also fully connected,
thus holding many edges that bring little information about the market dynamics.
To �lter out these edges, we follow the approach proposed in Tse et al. (2010);
Namaki et al. (2011); Heiberger (2014) and de�ne a threshold value θ > 0 that is
used to keep in the network any edge eij ∈ EM such that

ρij ≥ θ (3.9)

For the sake of completeness, we also wish to consider the impact of negative
correlations in the structure of the networks. For that matter, we rede�ne the
inclusion criterion to keep in the network any edge ei,j ∈ EM such that

|ρij| ≥ θ (3.10)

3.5 Studying the evolution of the network

We wish to study the evolution of the network, its communities and actors over
a period of time T . To do so, we split T in several small overlapping windows
∆t = t− (t− 1) for which we build networks such as the one as described in section
3.4. Formally, we build time series of graphs or network snaphots (Park et al., 2013;
Rossetti and Cazabet, 2018)

G(t) = (G1, . . . , Gt), 1 ≤ t ≤ T (3.11)

where each time point is a graph Gt = (Vt, Et, wt), Vt is the set of nodes, Et is the
set of edges and wt is the function giving the weight of the relation at time t. The
graph-based time series are as long as the matrix-based time seriesM(t) from which
we derive returns and correlations.
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Once again, G(t) meets the criteria de�ned by Datar et al. (2002) for a data
stream, so we handle it as such. We build one graph-based stream for each possible
combination of a window model (landmark, gradual forgetting and sliding windows)
with a threshold �lter (positive and absolute) and consume it one network at a time,
collecting several metrics along the way.

3.5.1 Measuring the evolution of the network measures

The density of a network is an important measure that explains the general level
of connectedness of a network. Being a ratio between the existing and the possible
maximum number of of edges in the network, density is minimal when the network
has no edges and maximal when the network is perfectly connected. In simple terms,
high density values are associated with dense networks, whilst low density values
are associated with sparse networks (Oliveira and Gama, 2012b). The value of the
density of a network is given by

ρ(G) =
m

mmax

, 0 < ρ < 1 (3.12)

where m and mmax denote respectively the number of existing and all possible edges
in G; mmax is n(n− 1)/2 for undirected graphs and and n(n− 1) for directed ones.

The average degree is the mean of the degrees of all nodes in a network; it is a
measure of the global connectivity of the network (Costa et al., 2011) and a powerful
indicator of the network's density (Lima, 2015). The average degree is given by

k̄ =
1

n

n∑
j=1

ki (3.13)

3.5.2 Measuring the evolution of communities

Modularity, as de�ned by Blondel et al. (2008), is a measure for the quality of the
division of a network into communities. It is given by

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
δ(ci, cj) (3.14)

where m is the number of edges, ki and kj are respectively the degree of nodes i and
j, Aij is the cell of the adjacency matrix A holding the number of edges between i
and j, kikj

2m
is the expected number of edges falling between i and j, ci and cj denote

the groups to which nodes i and j belong and δ(ci, cj) is the Kronecker delta. The
observed values for Q help us assess the presence of meaningful communities; in
particular, we're looking for values within [0.3, 0.7] (Newman and Girvan, 2004).
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Figure 3.4: Example of survival transitions with τ = 0.5.

Alongside with the modularity value, we capture comprehensive lists of com-
munities' members, known as enumerations or extensional de�nition of clusters.
According to Oliveira and Gama (2012a), a cluster can be represented as

Ck(t) = {x1, . . . , xn} (3.15)

where k is the index of the cluster, xi(1 ≤ i ≤ n) is an observation assigned to
cluster k and t = 1 . . . T is the last analysed timestamp. In our case, xi is a merely
the stock i's ticker name.

We use the Louvain algorithm to compute modularity and stock membership in
the di�erent communities emerging over time.

We adopt the MEC framework (Oliveira and Gama, 2012a) to study the evolu-
tion of communities. We therefore need de�ne the number of transitions to study.
Depending on the size of the studied dataset, the analysis evolution of communities
might be cumbersome. For large datasets, we turn to sampling to reduce the num-
ber of studied networks. We take n snapshots from the enumerations obtained by
Louvain, corresponding to n − 1 time intervals [ti, ti+∆t], where 1 ≤ i ≤ n− 1 and
∆t = T/n. Then, and for each snapshot, we build a bipartite graph G = (U, V,E)
where U is the set of clusters at time ti, V is the set of clusters at time ti+∆t and
E is the set of weighted edges connecting pairs of clusters (Cu(ti), Cv(ti+∆t)). The
weight function is given by

weight(Cu(ti), Cv(ti+∆t)) = P (S ∈ Cv(ti+∆t)|S ∈ Cu(ti))

=

∑
P (s ∈ Cu(ti) ∩ Cv(ti+∆t))∑

P (s ∈ Cu(ti))
(3.16)

where S are sets of stocks found in cluster Cu(ti) and P (S ∈ Cv(ti+∆t)|S ∈ Cu(ti)) is
the conditional probability of S belonging to cluster Cv(ti+∆t) given that S belongs
to Cu(ti). Figure 3.4 illustrates a survival transition between communities.

We study Birth, Merge, Split, Survival and Death events and set appropriate
values for the survival (τ) and split (λ) thresholds. The events are de�ned as follows:

Birth
0 < weight(Cu(ti), Cv(ti+∆t)) < τ, ∀u (3.17)
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Merge
weight(Cu(ti), Cv(ti+∆t)) ≥ τ ∧

∃ Cw 6= Cu : weight(Cw(ti), Cv(ti+∆t)) ≥ τ
(3.18)

Split
∃ Cv 6= Cw : weight(Cu(ti), Cv(ti+∆t)) ≥ λ ∧

weight(Cu(ti), Cw(ti+∆t)) ≥ λ ∧
n∑
k=1

weight(Cu(ti), Ck(ti+∆t)) ≥ τ

(3.19)

Survival
weight(Cu(ti), Cv(ti+∆t)) ≥ τ ∧

@ Cw 6= Cu : weight(Cw(ti), Cv(ti+∆t)) ≥ τ
(3.20)

Death
weight(Cu(ti), Cv(ti+∆t)) < λ, ∀v (3.21)

3.5.3 Measuring the evolution of node centralities

Centrality is a measure an actor's position within a social network Oliveira and
Gama (2012b). Centrality metrics such as degree, betweenness, closeness (Freeman,
1978) and eigenvector centralities (Bonacich, 1987) are used to establish the social
rank of each actor in terms of involvement, control and reachability (Freeman,
1978). High centrality values are usually associated with powerful actors that have
easy access other actors and/or control the �ow of information between the other
actors in the social network.

We study the evolution of eigenvalue centrality as a means to establish both
the quantity and the quality of a stock's correlations. Eigenvalue centrality can be
computed by

xi =
1

λ

n∑
j=1

aijxj (3.22)

where xi and xj are respectively the centrality of stocks i and j, aij is the a cell in
the (binary) adjacency matrix A and λ is the �rst (or largest) eigenvector of A.

We also study node betweenness to assert which stocks lie in the paths between
other stocks more often, thus controlling the propagation of trends between com-
munities. Node betweenness is given by

bk =
∑

i,j∈V \{k}

σij(k)

σij
(3.23)
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where σij(k) is the number of shortest paths between stocks i and j passing through
stock k and σij(k) is the total number of shortest paths between stocks i and j.

Finally, we study closeness to determine how fast a given stock can reach every
other stock in the network. Formally, the closeness of stock i to all other stocks
j 6= i is given by

Ci =
n− 1∑
j∈V \{i} dij

(3.24)

where dij is the length of the shortest path between stocks i and j.

3.5.4 Determining frequent stock-sets

To determine the most common associations of stocks, we turn to the discovery of
frequent items-sets and associations rules as described by Agrawal et al. (1993); we
freely adapt the work of the authors to meet our purposes.

Let us consider the sets SM of stocks traded in a stock market M and CM of
communities discover in SM over time. One can regard CM as a set of transactions
in M , since every community in ck ∈ CM is comprised of stocks si ∈ SM . Given a
threshold σmin ∈ ]0, 1], the frequent stock-sets are given by

{ck ⊆ SM |P (ck ⊆ CM) ≥ σmin} (3.25)

where P (ck ⊆ CM) is the probability of ck occurring in CM , also known as the
support of ck. The support can be used to measure of frequency of speci�c
stocks-sets in the communities disclosed over time, complementing the information
produced by the MEC framework.

Given the stock-sets, one can derive association rules from them. An association
rule is an implication

ck ⇒ {si} (3.26)

where ck and si are subsets of SM and; ck is called the antecedent and {si} is called
the consequent of the rule. It means that, whenever ck is part of a community, si is
also found in that community.

The quality of a rule can be assessed by measures. To select the most interesting
rules, one can set thresholds over those measures. The support of the rule is the
probability of �nding communities that contains both the ck and {si}

support(ck ⇒ {si}) = P (ck ∩ {si})
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The con�dence of the rule is the probability of �nding communities that con-
taining ck also contain {si}

confidence(ck ⇒ {si}) = P ({si}|ck) =
P (ck ∩ {si})

P (ck)

Finally, the lift (Brin et al., 1997) of the rule measures the deviation of the rule
from the statistical independence of ck and {si}

lift(ck ⇒ {si}) =
confidence(ck ⇒ {si})

support({si})
=

P (ck ∩ {si})
P (ck) · P ({si})

Lift takes values in [0,+∞[. If lift = 1, ck and {si} are independent. If lift < 1,
ck and {si} are negatively correlated. If lift > 1, ck and {si} are positively corre-
lated.

3.6 Experimental system

The experimental system is implemented as a �ve-tier architecture, illustrated in
Figure 3.5:

Input data collectors (web-crawlers, web-scrapers and parsers);

Transformation stream producers, transformers and consumers;.handles all busi-
ness logic, such as computation of correlation between stocks, threshold-based
�ltering, the conversion to network format and network analysis tools;

Transport media for data streams; handles message transport between all compo-
nents in the transformation tier;

Persistence persist data passing through the data streams in collections; intro-
duces the ability to replay data streams;

Output data publishers.

Data �ow

In what follows, we describe the �ow of data from end to end. For simplicity, we
describe a simpli�ed version of the system where only one component of each type
exists and a single stock market is studied.

For any given stock market, �nancial data enters the system through a collector,
a component that reads stock quotes by some means (screen-scraping, API, web-
socket, etc). The collector gathers data tuples as described in equation 3.2, one
k-tuple for each stock si (1 ≤ i ≤ n) in the market's portfolio. The tuples are passed
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Figure 3.5: Conceptual architecture

on to the stream producer, whose function is to aggregate all tuples relative at a
given time point t in a k × n table Mi(t) and publish a message m = {t,Mi} to the
data matrix (dm) topic.

The stream transformer picks up and parses message m. For each stock si, it
computes the return values ri,t and immediately adds them to the su�cient statistics
of the stock. It then computes a n× n correlation matrix P, �lters it according to
the prede�ned threshold θ and publishes a message m′ = {t,Pθ} to the market's
correlation matrix (cm) topic.

The stream consumer picks up and parses message m′. It �rst builds the undi-
rected weighed graph G = (V,E,w) out of Pθ. The graph is the passed on to the
publisher, that decorates each node with labels indicating the stock ticker symbol
and activity sector before sending it to the visualizer through a specialized web API.

At start-up time, each topic is attached to a data sink that traps each transported
message and persists it within a speci�c database collection; the collection bear the
same name as the topic.

3.7 Summary

In this chapter, we present the pre-processing method used to produce streams of
stock return values. We describe how to compute statistics over that stream using
three window models, how to build the correlation networks and how to measure the
evolution node centralities, communities and the networks themselves. We conclude
with an overview of the experimental system implementing the methodology. To
validate our methodology, we apply it over a data set of �nancial data regarding the
Dow Jones Industrial Index. The outcome is presented in the next chapter.
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Chapter 4

Study of the Evolution of a Stock

Market

In this chapter we present and discuss the experimental evaluation of our method-
ology over a data set of �nancial data regarding a major Unites States index. We
motivate and describe di�erent experimental settings, interpret and compare re-
sults, discuss the adherence of our �ndings to the reality of the studied index and
the applicability of the methodology in portfolio management.

4.1 Data

We collect our data from www.investing.com, a global �nancial portal that provides
news and analysis, streaming quotes and charts, historical data and other useful
information about global �nancial markets.

Among other major world indices, investing.com o�ers information about the
Dow Jones Industrial (DJI) average, an index created by Charles Dow and Edward
Jones in May 26, 1896 (Shoven and Sialm, 2000). The index is comprised of 30
blue-chip stocks, of large publicly owned American companies, traded in the New
York Stock Exchange (NYSE) and the National Association of Securities Dealers
Automated Quotations (NASDAQ) stock exchange. Table A.1 contains the list of
DJI components by December 29th 2017, their ticker names, industries and sectors
of activity. Figure A.1 shows the distribution of these stocks by sector of activity.

We study DJI's historical data regarding the period from January 2, 1997
to December 29, 2017, a total of 5285 trading days and 158550 closing quotes
illustrated in Figure A.3. We convert this data set into a data stream, producing
one complete trading day (30 quotes) every ∆t = 300 seconds. We keep our focus
on the daily closing quotes despite the availability of several items of �nancial data,
such minimum and maximum quotes or traded volume. Future work can study
networks obtained from correlation between other, and perhaps several, variables.
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Two notes are in order regarding the collected historical data:

• Goldman Sach and Visa time series are missing data. Goldman's initial public
o�ering (IPO) took place in May 1999, Visa went through a merger and became
a publicly traded company in October 2006. As such, we are only able to collect
data for 4696 trading days for GS and 2464 trading days for Visa;

• Apple, Cisco Systems, Intel and Microsoft time series have closing quotes
for February 27, 2016. This is due to the fact that these stocks are traded in
NASDAQ whereas all others are traded in NYSE, which operate in di�erent
trading days. The additional values are discarded.

Historical versus online data

We choose to study the time period from 1997 through 2017 due to the richness of
�nancial, economical and historical events that have take place then. Given that this
historical data is no longer available as a data stream, we simulate one resorting to
a mock web-server that publishes tables in the exact same format of investing.com,
illustrated in Figure A.2. This way, we can change our data source seamlessly.

Let us assume that we use the actual online source and con�gure the collector
with a sampling rate of ∆t = 300 seconds. DJI trades from Monday through Friday,
from 9:30 to 16:00 Eastern Standard Time (4:30 to 11:00 Coordinated Universal
Time), 5 days a week. With the de�ned sampling rate, we are able to scrape 78
matrices M30×8 a day, for a total of 2340 quotes. If we keep the system running for
13 weeks (one quarter), we are able to consume a 5070 matrix-value data points, for
a total of 152100 quotes. This volume of data is roughly equivalent to that of the
mocked stream of historical data.

4.2 Experimental Evaluation

We conduct a series of experiments to assess the di�erences between two window
models when applied to the DJI data stream: gradual forgetting over landmark
windows and exponential histograms over sliding windows, henceforth referred to as
gradual forgetting and sliding windows respectively. We also use a plain landmark
window as baseline. Our goal is to monitor the way in which stocks cluster within
the social network over time, to determine the most in�uential stock in communities
and possibly in the entire network.

Throughout the chapter, we often refer to the cross-correlation coe�cient ρ, a
value with continuous distribution in [−1, 1]. For commodity, we split it into three
discrete categories. Table 4.1 illustrates the distribution of correlation coe�cients
over the de�ned categories. We also refer often to the size of communities. For
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ρ
strength − +
weak ]−0.3, 0.0[ ]0.0, 0.3[

moderate ]−0.5,−0.3] [0.3, 0.5[
strong [−1.0,−0.5] [0.5, 1.0]

Table 4.1: Cross-correlation categories

Type Size

very small 1− 4
small 5− 10

medium 11− 20
big 21− 26

very big 27− 30

Table 4.2: Community size categories

commodity, we split communities by size into �ve categories. Table 4.2 illustrates
the distribution of community sizes over the de�ned categories.

4.2.1 First experience: De�ning a correlation level

We start by familiarizing ourselves with data, studying the distribution of correla-
tions between return values for the three window types and exploring towards a good
correlation threshold to use while constructing the networks. For this experience,
the following parameters are de�ned:

• The baseline landmark window spans the entire period of 20 years, with a data
point acquired every t = 1 trading days;

• To study the impact of gradual forgetting, a fading factor of α = 0.996 is
imposed over the data items in a landmark window matching the baseline;

• Exponential histograms with a admissible relative error ε ≤ 0.02 are built over
sliding windows of ω = 252 trading days, displaced every ∆t = 1 trading days.

Results

The distributions of correlations between return values are illustrated by the
histograms in Figure 4.1. For landmark windows, most correlations are moder-
ate ([0.3, 0.4[), whereas for other two models correlations are moderate-strong
([0.3, 0.6[). There are few correlations above 0.8 and, most interesting, values are
mostly positive. For gradual forgetting and sliding windows, there are less that
1% of negative correlation values, for landmark windows, there are no negative
correlations at all.

45



Figure 4.1: Cross-correlation distributions for landmark windows, gradual forgetting
and sliding windows of one year

Let us take a look to the evolution of the network and community measures over
the entire studied period. Table 4.3 shows the mean and standard deviation (within
round brackets) for density, average degree, modularity and number of communities
from January 1997 through December 2017. Table 4.4 shows the relative frequency,
mean and standard deviation (within round brackets) of the size of communities
larger than two members.

Interpretation of results

The following facts emerge from this experience:

• Density and average degree decrease as the correlation threshold θ increases.
This is expected. Both measures are related to the number of edges and edges
represent correlations that match or exceeds a given threshold. The higher the
threshold value, the fewer edges.

• Modularity and the number of communities rise with the value of the threshold
θ. This is also expected. As the threshold increases, the intra-community edges
are more likely to be kept than the inter-community ones. The division of the
network into modules is then clearer and thus modularity rises. The number
of communities rises because many nodes become isolated.

46



ρ ≥ θ
Landmark window Landmark window Sliding window

α = 0.996 ω = 252 ε ≤ 0.02
θ Density Av.Deg. Density Av.Deg. Density Av.Deg.

0.2 0.76 (0.11) 21.65 (3.32) 0.84 (0.19) 23.86 (6.73) 0.82 (0.20) 23.26 (5.90)
0.3 0.47 (0.18) 13.37 (5.18) 0.65 (0.26) 18.48 (7.77) 0.64 (0.27) 18.13 (7.90)
0.4 0.17 (0.07) 4.87 (1.99) 0.41 (0.29) 11.85 (8.59) 0.42 (0.29) 12.09 (8.57)
0.5 0.05 (0.03) 1.47 (0.76) 0.21 (0.24) 6.16 (7.08) 0.24 (0.26) 6.81 (7.51)
0.6 0.01 (0.01) 0.32 (0.37) 0.08 (0.12) 2.23 (3.57) 0.11 (0.18) 3.19 (5.35)
0.7 0.01 (0.03) 0.41 (0.80) 0.04 (0.10) 1.14 (2.93) 0.03 (0.06) 0.78 (1.66)
θ Modular. #Comm. Modular. #Comm. Modular. #Comm.

0.2 0.06 (0.04) 3.46 (0.59) 0.05 (0.07) 2.60 (0.91) 0.06 (0.07) 2.62 (0.94)
0.3 0.15 (0.09) 5.82 (1.17) 0.10 (0.12) 4.15 (2.58) 0.10 (0.12) 3.92 (2.31)
0.4 0.33 (0.14) 10.81 (1.99) 0.19 (0.17) 7.26 (4.34) 0.18 (0.18) 7.16 (4.30)
0.5 0.61 (0.15) 17.22 (3.10) 0.33 (0.23) 13.26 (6.55) 0.29 (0.22) 12.36 (6.79)
0.6 0.61 (0.07) 25.37 (1.55) 0.42 (0.24) 20.41 (6.76) 0.36 (0.22) 18.53 (7.38)
0.7 0.22 (0.23) 26.08 (3.79) 0.25 (0.25) 24.32 (5.89) 0.21 (0.23) 24.99 (5.40)

Table 4.3: Mean and standard deviation of measures observed in networks of di�er-
ent correlation levels

ρ ≥ θ
Landmark window Landmark window Sliding window

α = 0.04 ω = 252 ε ≤ 0.02
θ Rel.freq. |Comm.| Rel.freq. |Comm.| Rel.freq. |Comm.|
0.2 0.67 12.18 (3.65) 0.92 12.17 (4.66) 0.94 11.89 (5.10)
0.3 0.56 8.24 (2.90) 0.68 9.87 (4.93) 0.75 9.67 (5.09)
0.4 0.39 5.42 (2.59) 0.48 7.31 (4.54) 0.49 7.31 (4.70)
0.5 0.30 3.34 (1.51) 0.29 5.20 (3.77) 0.31 5.61 (3.90)
0.6 0.12 2.30 (0.55) 0.16 3.70 (2.47) 0.31 5.49 (3.75)
0.7 0.03 2.04 (0.51) 0.06 2.94 (1.63) 0.08 3.32 (2.15)

Table 4.4: Relative frequency, mean (and standard deviation) of sizes for communi-
ties larger than two stocks in networks of di�erent correlations levels

• Networks obtained from correlations ρ ≥ {0.2, 0.3} are too dense and show low
values of modularity. As such, there is too much noise in the networks and
the found communities are of little interest to the study.

• Modularity value drops in all window models for correlation values ρ ≥ 0.7.
Setting a large threshold θ removes many edges, both intra or inter-community.
Therefore, modularity drops.

• Modularity in [0.3, 0.7] (Newman and Girvan, 2004) appear in correlation val-
ues ρ ≥ {0.5, 0.6}. However, the number of communities for those thresholds
levels is high relatively to the number of stocks represented in DJI, meaning
that most of those communities have a single stock and are not interesting. The
number of relevant communities, as well as their sizes, is higher for ρ ≥ 0.5.

All these facts, corroborated by similar �ndings over di�erent window sizes and
forgetting factors (Appendix B), lead us to peek a correlation threshold of 0.5 to
built the networks.
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(a) (b) (c)

Figure 4.2: Correlation networks for landmark window (a), gradual forgetting (b)
and sliding windows (c) by the end of 2003

4.2.2 Second experience: Communities and centralities

The goal of this experience is to assess how communities and centralities evolve
throughout the studied time period. Our goal is to study the birth, merge, split,
survival and death of communities and determine their most relevant stocks. For
this experience, the following parameters are de�ned:

• The baseline landmark window spans the entire period of 20 years, with a data
point acquired every t = 1 trading days;

• A fading factor α = 0.996 is imposed over a landmark window similar to the
baseline;

• Exponential histograms with a admissible relative error ε ≤ 0.02 are built over
sliding windows of ω = 252 trading days, displaced every ∆t = 1 trading days;

• A positive thresholds θ = 0.5 is used to �lter noise out of networks;

• The survival threshold τ is set to 0.5, the split threshold λ is set to 0.4;

• Communities with a single member are disregarded while building the MEC
graphs;

• To study the dynamics of eigenvalue centrality, we impose a threshold of 1;

• To study the dynamics of betweenness centrality, we impose a threshold of 0.1;

• To study the dynamics of closeness centrality, we pick the top 10% values.
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Figure 4.3: Average degree, density, modularity and number of communities for all
window models, annual values from 1997 through 2017

Results

Figure 4.3 illustrates the evolution of the average degree, density, modularity and the
number of communities by the end of each year. Table B.3 holds the data relative
to the charts.

The behaviour of the landmark window is relatively stable. The average degree is
low in the �rst decade, picking up after 2007. Density follow the exact same pattern.
This indicates smooth transitions in network con�gurations, with few connections
between nodes and few neighbours for each node. Modularity quickly rises until
2000, keeping above 0.7 until 2007, when it starts to slowly drop until 2011, where
it stabilizes. All values are above 0.3, indicating well-established communities. The
number of communities rises until 2002, oscillating between 5 and 6 communities
thereafter.

The behaviour of the other two models is far from stable and similar to a certain
extent, despite the quicker reaction of sliding windows to concept change. The
average degree moves up and down moderately in the �rst decade, soars between
2007 and 2011, then plummets to a more moderate range with the exception of the
peak in 2015. Once again, density follows the pattern of average degree. Modularity
shows a similar behaviour of inverse direction; when density rises, modularity drops
and vice versa. In the �rst decade, networks are generally stable and well de�ned,
with modularity values over 0.3. Then, in 2008, modularity plummets, hinting high
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Figure 4.4: MEC graph for landmark window, annual snapshots from 1997 though
2017.

instability and fast changing networks; the turmoil lasts until 2015. The number of
communities shows trends similar to modularity.

We now turn to the MEC framework to analyse communities evolution. For each
window model, we take a snaphot of the network every 252 trading days, at the last
day of trading in each year, for a total of 20 snapshots from 1997 through 2017. We
use the snapshots to plot the MEC graph, gauging the evolution of communities
in consecutive years. We also take samples of the centrality measures. Sampling
intervals are chosen to match the length of the sliding windows; this rationale is
applied in this and in the following experiences.

Communities, centralities and landmark window Figure 4.4 illustrates the
evolution of detected communities; members are listed in Table C.1. This is a
picture of high stability with a high survival rate. The edges's weights are in general
very high. Communities form in early years and survive for a long time. A few
merges take place and only one death occurs. The vast majority of communities is
very small, with 2 to 4 elements; this trend spans the entire studied period.

Figure 4.5 illustrates the centrality measures. Four stocks feature in the eigen-
value chart: Cisco, Microsoft, American Express and General Electric. While
the technological stocks play a major role in the early years of the XXI century, the
services stocks assume a predominant place by 2006 that spans the following decade.
Regarding betweenness, one can observe that General Electric is predominant
until the turn of the century. A period of low values follows, hinting a highly dis-
connected network comprised of small communities. By 2008, three stocks assume
alternately roles of gate-keeping, with particular relevance to American Express.
General Electric, among others, sees its initial high closeness drop until 2000.
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Figure 4.5: Centrality measures for most relevant stocks for networks obtained by
the landmark window, annual snapshots from 1997 through 2017.

Births Merges Splits Survivals Deaths

1997-2007 10 1 0 36 7
2008-2012 2 2 0 6 0
2013-2017 11 1 2 9 5
Total 23 4 2 51 12

Figure 4.6: MEC graph for gradual forgetting, annual snapshots from 1997 though
2017.

From that moment on, a period of low values extends for several years as nodes
grow apart. By the end of 2007, the closeness of American Express and General

Electric grows to medium values.
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Figure 4.7: Centrality measures for most relevant stocks for networks obtained by
gradual forgetting, annual snapshots from 1997 through 2017.

Communities, centralities and gradual forgetting Figure 4.6 illustrates the
evolution of communities; members listed in Table C.2. The scenario is di�erent
from the baseline. Some merges and splits take place, the number of births and
deaths increases considerably. There is still a sense of stability, but three distinct
cycles are visible. The �rst, ranging from 1997 through 2007, exhibits communities
with distinct life spans. Edges's weights prove high overlapping. The number of
members is usually small (2-5), despite the existence of some larger ones. The
second cycle, from 2008 through 2012, exhibits two communities that traverse the
entire cycle and grow to a large number of members (13-15). The overlapping
probabilities remain generally high. The third and last cycle, from 2013 onwards,
is one of short lived, small communities (3-6 members). The weights of edges are
usually near the survival threshold τ = 0.5.

Centrality wise, the scenario in Figure 4.7 is also distinct from that of the base-
line. The eigenvalue centrality is irregular, with several stocks reaching the highest
value. General Electric keeps its initial in�uence and extends it into 2005, al-
ternating with Cisco and Microsoft circa 2000 and American Express and J.P.

Morgan from 2001 through 2005. The period between 2008 and 2014 is lead by
United Technologies, 3M and Exxon. The last years witness the comeback of �-
nancial companies, especially J.P. Morgan. Betweenness is simpler to interpret.
Two stock clearly stand out: General Electric in the late nineties and circa 2007

52



Births Merges Splits Survivals Deaths

1997-2007 15 5 1 20 9
2008-2012 2 2 2 4 0
2013-2017 13 1 3 6 7
Total 30 8 6 30 16

Figure 4.8: MEC graph for sliding windows, annual snapshots from 1997 though
2017.

and 3M in the 2015-2017 period. In between, American Express, Exxon, Goldman
Sachs, Disney and Home Depot play important but more discrete roles. Closeness
centrality decreases until 1999. Intel and Microsoft share a leading role between
2001 and 2005. In 2006, closeness soars for all stocks, staying high until 2011 and
plummeting afterwards. By 2014, only Merck and Pfizer have some degree of close-
ness to the remaining stocks. A new peak takes place in 2015, lead by McDonalds

and Home Depot.

Communities, centralities and sliding windows Figure 4.8 illustrates the
evolution of communities; members listed in Table C.3. It is the least stable
scenario in terms of community survival. Three cycles are again visible. In the �rst
cycle, from 1997 through 2007, communities are generally small (2-6 members) and
short-lived. The overlap probability is usually near the survival threshold τ = 0.5,
but increases towards the end. The second cycle, from 2008 through 2012, shows
communities merging into large structures (10-16 members) with high overlap
probability. The third cycle, from 2013 through 2017, is highly unstable. With few
exceptions, communities' birth and death occurs within the same year; exception
are short-lived. Communities are general small (3-7) and get smaller towards the
end.

The centrality measures are illustrated by Figure 4.9. Eigenvalue centrality re-
mains unstable, with predominance of a few stocks: General Electric in the late
nineties and early two-thousands, J.P. Morgan and Goldman Sachs between 2000
and 2007, and United Technologies and 3M between 2008 and 2015. General

Electric shows high betweenness until 1999, then fades away to make a moder-
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Figure 4.9: Centrality measures for most relevant stocks for networks obtained by
sliding windows, annual snapshots from 1997 through 2017.

ate come back by 2015. Other important gatekeepers are J.P. Morgan by 2003,
Pfizer and United Technologies by 2007, Exxon by 2009 and 2012 and 3M by
2016. Four closeness peaks are visible. The �rst occurs during 2002-2003, spear-
headed by Pfizer, Intel, Cisco and Walmart. Another peak takes place by 2008,
with seven stocks reaching the top value; a plateaux of two years follows. A new
peak occurs in 2011, followed by a general drop, interrupted by the last peak in
2015.

Interpretation of results

The results of the experience show that gradual forgetting and sliding windows come
to similar results:

• The overall trends for networks measures are similar. Average degree and
density show similar patterns, with very high values between 2007 and 2012.
Modularity generally oscillates between 0.3 and 0.7 during the �rst decade but
drops considerably from 2008 through 2012 to recover by 2015;

• Both MEC charts detect three distinct economical cycles that generally co-
incide in the start and end years. The �rst cycle, from 1997 through 2007,
exhibits many communities, small and long-lived. The second, from 2008
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through 2011, exhibits few communities, large and long-lived. The third, from
2012 through 2017, exhibits many communities, small and short-lived;

• The number of stock to which both models agree to assign relevant centrality
values is signi�cant. A comparison using the Jaccard index �nds similarities
of 0.62, 0.55 and 0.5 for eigenvalue, betweenness and closeness centrality sets.

4.2.3 Third experience: Remembering statistics for longer

The goal of this experience is to study the in�uence of a longer retention in memory
of statistics over communities and centralities. To this purpose, we increase the
fading factor and the size of the sliding windows. The sampling rate is adjusted
to match the size of the sliding windows. Henceforth, we refer to these settings as
longer memory. For this experience, the following parameters are de�ned:

• The baseline landmark window spans the entire period of 20 years, with a data
point acquired every t = 1 trading days;

• A fading factor of α = 0.998 is imposed over a landmark window similar to
the baseline;

• Exponential histograms with admissible relative error ε ≤ 0.02 are built on top
of sliding windows of ω = 504 trading days, displaced every ∆t = 1 trading
days;

• A positive thresholds θ = 0.5 such that ρ ≥ θ is used to �lter noise out of
networks;

• The survival threshold τ is set to 0.5, the split threshold λ is set to 0.4;

• Communities with a single member are disregarded while building the MEC
graphs;

• To study the dynamics of eigenvalue centrality, we impose a threshold of 1;

• To study the dynamics of betweenness centrality, we impose a threshold of 0.1;

• To study the dynamics of closeness centrality, we pick the top 10% higher
values.

Results

Figure 4.10 illustrates the evolution of the average degree, density, modularity and
the number of communities by the end of every second year. For reference, we
show the measures obtained in section 4.2.2, exhibited as dimmed lines. Table

55



Figure 4.10: Average degree, density, modularity and number of communities for all
window models, biennual values from 1997 through 2017

B.4 holds the data relative to the charts. Overall, the values obtained for all
measures, in all window models, are similar those found in previous experience.
Trends are in general smooth. The di�erence between gradual forgetting and
sliding windows in terms of concept change detection is very pronounced, espe-
cially in the �rst decade, where the reaction of gradual forgetting is evidently slower.

For each window model, we take a snapshot every 504 days, at the end of ev-
ery second year, for a total of 10 snapshots in the period between 1997 and 2017.
The snapshots are used to build the MEC graphs. We also collect samples of the
centrality measures at those instants.

Communities, centralities and landmark window Figure 4.11 illustrates
the evolution of communities; members listed in Table C.4. One can observe stable
and long-lived communities, with high overlapping probabilities, and very small
number of members (2-4) throughout the entire period.

Figure 4.12 illustrates the centrality measures. The eigenvalue centrality charts
shows three in�uential stocks: General Electric until 1999 and after 2011,
Microsoft by 2001, and American Express from 2003 through 2009. Between-
ness is shared by General Electric (GE) and American Express: the �rst leads
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Births Merges Splits Survivals Deaths
7 1 0 45 1

Figure 4.11: MEC graph for landmark window, biennual snapshots from 1997 though
2017.

Figure 4.12: Centrality measures for most relevant stocks for networks obtained by
landmark window, biennual snapshots from 1997 through 2017.

until 2001, the second predominates from 2009 onwards. Overall, closeness drops
until 2001; General Electric having the highest values. A period of low closeness
follows until 2007, when Pfizer and General Electric make a strong comeback.
By 2015, these stocks begin to slowly drift away again.
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Births Merges Splits Survivals Deaths

1997-2007 5 2 3 16 2
2009-2011 3 2 2 2 0
2013-2017 6 0 1 3 3
Total 14 4 6 21 5

Figure 4.13: MEC graph for gradual forgetting, biennual snapshots from 1997
though 2017.

d

Figure 4.14: Centrality measures for most relevant stocks for networks obtained by
gradual forgetting, biennual snapshots from 1997 through 2017.

Communities, centralities and gradual forgetting The MEC graph in
Figure 4.13 illustrates the evolution of communities; members listed in Table C.5.
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Births Merges Splits Survivals Deaths

1997-2007 8 1 1 11 6
2009-2011 3 2 2 2 2
2013-2017 7 1 0 3 4
Total 18 4 3 16 12

Figure 4.15: MEC graph for sliding windows, biennual snapshots from 1997 though
2017.

There are three distinct cycles, with some splits and merges taking place. The
�rst cycle, from 1997 through 2007, exhibits small communities (2-7 members)
with distinct life cycles, the edges' weights showing high overlap probability. The
second cycle, from 2009 through 2011, sees the merging of communities into
two large structures (12-16 members) with high overlap probabilities. The third
cycle, from 2013 through 2017, is comprised of short-lived, small communities (2-7
members), with overlap probabilities below the survival threshold most of the times.

Figure ?? shows the evolution of centrality metrics. During the �rst decade,
eigenvalue centrality alternates between General Electric, American Express

and J.P. Morgan. By 2009, 3M and United Technologies assume command
until 2015. The �nal years witness a comeback of �nancial companies, par-
ticularly of J.P. Morgan. Three stocks exhibit high betweenness: General

Electric until 1999 and by 2003, United Technologies by 2013 and 3M by
2015; Johnson & Johnson has a discrete contribution by 2015. The closeness of
Proctor & Gamble, Johnson & Johnson, Intel and Home Depot drops until 2001.
Intel manages to recover its position up until 2005. Closeness soars in the 2007-
2009 period due to high connectivity and short paths in the network. The high
values smoothly build to a peak in 2011 and then plummet to new lows until 2017,
with a small in�exion by 2015.

Communities, centralities and sliding windows Figure 4.15 illustrates the
evolution of communities; members listed in Table C.6. Once again, three cycles
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Figure 4.16: Centrality measures for most relevant stocks for networks obtained by
sliding windows, biennual snapshots from 1997 through 2017.

occur. From 1997 through 2007, communities are small (2-5 members), long-lived
and have moderate/high overlap probability. The second cycle, from 2009 up to
2011, is comprised of medium sized communities (14-15); the overlap probability is
high throughout the entire cycle. The third cycle, from 2013 through 2017, shows
small (2-7) short-lived communities, getting smaller towards the end of the cycle.

The centrality measures for this memory model are illustrated by Figure 4.16.
Several stocks take turns in terms of in�uence. Circa 2001, General Electric

gives place to American Express and brie�y to J.P. Morgan. In 2003, Home Depot

assumes leadership brie�y. Financial stocks come bake strong between 2005 and
2007, but lose in�uence to United Technologies by 2009 and General Electric

by mid 2011. By 2015, J.P. Morgan and Goldman Sachs assume leadership again.
General Electric shows high betweenness until 2001. Circa 2003, several stocks
lead by Exxon exhibit high betweenness. Minimum values are hit between 2005
and 2011, when Johnson & Johnson, American Express and General Electric

make a comeback; the �rst peaking by 2015. The closeness chart shows three peaks
of di�erent intensity. The �rst occurs in 2002-2003, when American Express and
Microsoft, closely followed by Pfizer have the highest closeness in the network. In
2008, another peak takes place with several stocks reaching high value. A smooth in-
crease follows until 2011, when general closeness starts to drop until 2017, exception
made for the in�exion lead by 3M by 2015.
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Interpretation of results

The results of the experience show that gradual forgetting and sliding windows come
to similar results:

• The overall trends for networks measures are similar but the di�erence in
concept change detection is very pronounced, especially in the �rst decade,
where the reaction of gradual forgetting is evidently slower. Average degree
and density show similar patterns, with very high values between 2007 and
2013. Modularity generally oscillates between 0.3 and 0.7 during the �rst
decade but drops considerably from 2008 through 2012 to recover by 2015;

• Both MEC charts detect three distinct economical cycles that generally co-
incide in the start and end years. The �rst cycle, from 1997 through 2007,
exhibits many communities, small and long-lived. The second, from 2009
through 2011, exhibits few communities, large and long-lived. The third, from
2013 through 2017, exhibits many communities, small and short-lived;

• The number of stock to which both models agree to assign relevant eigenvalue
centrality values is signi�cant. A comparison using the Jaccard index �nds
similarities of 0.57. The same does not happen for betweenness and closeness
sets, whose Jaccard indices are 0.29 and 0.20 respectively.

4.2.4 Forth experience: Forgetting statistics faster

The goal of this experience is to study the in�uence of a shorter retention in memory
of statistics over communities and centralities. To this purpose, we decrease the
fading factor and the size of the sliding windows. The sampling rate is adjusted
to match the size of the sliding windows. Henceforth, we refer to these settings as
shorter memory. For this experience, the following parameters are de�ned:

• The landmark window spans the entire period of 20 years, with a data point
acquired every t = 1 trading days;

• A fading factor of α = 0.992 is imposed over a similar landmark window;

• Exponential histograms with admissible relative error ε ≤ 0.02 are built on top
of sliding windows of ω = 126 trading days, displaced every ∆t = 1 trading
days;

• A positive thresholds θ = 0.5 such that ρ ≥ θ is used to �lter noise out of
networks;

• The survival threshold τ is set to 0.5, the split threshold λ is set to 0.4;
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Figure 4.17: Average degree, density, modularity and number of communities for all
window models, semestral values from 1997 through 2017

• Communities with a single member are disregarded while building the MEC
graph;

• To study the dynamics of eigenvalue centrality, we impose a threshold of 1;

• To study the dynamics of betweenness centrality, we impose a threshold of 0.1;

• To study the dynamics of closeness centrality, we pick the top 10% values.

Results

Figure 4.17 illustrates the evolution of the average degree, density, modularity and
the number of communities by the end of every semester. For reference, we keep
the measures obtained in section 4.2.2, exhibited as dimmed lines. Table B.5 holds
the data relative to the charts. Overall, the values obtained for all measures, in
all window models, are similar to those found in previous experiences. The lines
also appear more jagged, as the response to changes in market dynamics is faster.
The di�erence between gradual forgetting and sliding windows in concept change
detection is still evident but less intense than ever.
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Births Merges Splits Survivals Deaths
15 7 1 196 3

Figure 4.18: MEC graph for landmark window, semestral snapshots from 1997
though 2017.

Figure 4.19: Centrality measures for most relevant stocks for networks obtained by
landmark window, semestral snapshots from 1997 through 2017.

For each window model, we take a snapshot every 126 days, at the end of every
semester, for a total of 40 snapshots in the period between 1997 and 2017. The snap-
shots are used to build the MEC graphs. We also collect samples of the centrality
measures at those instants.

Communities, centralities and landmark window Figure 4.18 illustrates the
evolution of communities; members listed in Table C.7. To no surprise, one �nds
stable and long-lived communities, with high overlap probability, and generally a
very small number of members (2-4) throughout the entire period.
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Births Merges Splits Survivals Deaths

1997-2007 29 10 5 59 12
2008-2012 6 2 1 11 1
2013-2017 16 2 3 22 11
Total 51 14 9 92 24

Figure 4.20: MEC graph for gradual forgetting, semestral snapshots from 1997
though 2017.

Figure 4.19 illustrates the centrality measures. The eigenvalue centrality lead is
shared by four stocks. General Electric is the most in�uential stock until mid
2000 and after 2011, Cisco and Microsoft take turns during 2001, and American

Express leads from mid 2005 through 2011 with a small meddling by General

Electric. Betweenness is lead by General Electric until mid 2000 and American

Express from mid 2010 onwards, with a brief help of United Technologies from
2009 through 2011. General Electric exhibit the highest values of closeness until
2001. A period of low closeness follows until mid 2008, when American Express

and General Electric start a strong recovery that stabilizes by June 2011 and
shows a small decline again by 2016.

Communities, centralities and gradual forgetting Figure 4.20 illustrates
the evolution of communities; members listed in C.8. Three distinct cycles are
visible. The �rst cycle, from 1997 through mid 2008, exhibits small communities
(2-6 members) with mixed life cycles and medium/high overlap probabilities.
The second cycle, from late 2008 through late 2011 exhibits long-lasting, large
communities (9-14 members); overlap probabilities stays high. The third cycle,
from mid 2012 through late 2017, is comprised of short-lived, small communities
(3-7 members), with medium overlap probabilities.

Figure 4.21 shows the evolution of centrality measures. Several stocks exhibit
high eigenvalue centrality simultaneously throughout the entire period, exception
made for General Electric until 1999 and during 2000-2001. Betweenness highest
value is shared by General Electric, 3M, ExxonJ.P. Morgan in several distinct
occasions. The closeness chart exhibits 9 di�erent stocks peaking simultaneously for
7 times, three of those time by the end of 1997, 1998 and mid 2003. Closeness soars
in the period of 2007-2010, drops in early 2011 to soar again by the end of that year
and plummet again from 2012 through 2013, exception made for Goldman Sachs
that drops slower than other. A last peak is visible by late 2015.
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Figure 4.21: Centrality measures for most relevant stocks for networks obtained by
gradual forgetting, semestral snapshots from 1997 through 2017.

Births Merges Splits Survivals Deaths

1997-2007 44 13 10 41 24
2008-2012 9 2 1 5 3
2013-2017 17 8 1 14 6
Total 70 23 12 60 33

Figure 4.22: MEC graph for sliding windows, semestral snapshots from 1997 though
2017.

Communities, centralities and sliding windows Figure 4.22 illustrates the
evolution of communities; members listed in Table C.9. The usual three cycles
occur. The �rst cycle, from 1997 through mid 2008, is comprised of short-lived,
small communities (2-6 members) with medium/high overlap probability. The
second cycle, from 2009 through 2011, is comprised of medium sizes communities
(8-14) with high overlap probabilities. The third cycle, from 2013 through 2017,
shows unstable, small communities (3-8 members) with a very high frequency
of births and deaths; the overlap probability is generally small and gets smaller
towards the end.
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Figure 4.23: Centrality measures for most relevant stocks for networks obtained by
sliding windows, semestral snapshots from 1997 through 2017.

The centrality measures are illustrated by Figure 4.9. The eigenvalue centrality
chart depicts a scenario of high instability, exceptions made for General Electric

until 1999 and J.P.Morgan from mid 2006 through 2007. Betweenness is also very
unstable, with many stocks becoming important gatekeepers in the studied period.
Two stocks stand out: General Electric and American Express. Closeness cen-
trality is no di�erent from the other two measures, with several peaks between 1997
and 2017, none lasting more than a quarter. Two stocks appear frequently in the
top values: Intel and Goldman Sachs.

Interpretation of results

The results of the experience show that gradual forgetting and sliding windows come
to similar results:

• The overall trends for networks measures are similar.The di�erence in concept
change detection is less pronounced, despite the slower reaction of gradual
forgetting. Average degree and density show similar patterns, with very high
values by 2002, 2008, 2010, 2011 and 2015. Modularity generally stays above
0.3 during the �rst decade but lower values are often observed in that period,
especially in 2002-2003. Modularity also drops considerably from 2008 through
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2012 to recover by 2015. The reaction to market changes is fast and charts
show jagged lines;

• Both MEC charts detect three distinct economical cycles that generally coin-
cide in the start and end years. The �rst cycle, from 1997 up to 2007, exhibits
many communities small and long-lived. The second, from 2008 up to 2011,
exhibits few communities, large and long-lived communities. The third, from
2012 up to 2017, exhibits many communities, small and short-lived;

• The number of stock to which both models agree to assign relevant eigenvalue
centrality values is signi�cant. A comparison using the Jaccard index �nds
similarities of 0.79. The same does not happen for betweenness and closeness
sets, whose Jaccard index is 0.30 and 0.09 respectively.

4.3 Discussion

We move to the discussion of the obtained results, comparison the di�erent memory
settings, making a parallel with major economical, �nancial and historical events
taking place during the studied period. Additionally, we disclose the frequent com-
munities, which in�uential stocks take place in those clusters and how does this
relate to DJI's performance from 1997 through 2017.

4.3.1 Comparison of the di�erent memory settings

We elaborate on the advantages and disadvantages of keeping statistics in memory
for di�erent time spans. A proper setting of this parameter, one that best �ts the
natural evolution of market dynamics while keeping the analysis of result easy to
understand ans assimilate, is of paramount importance.

A comparison of the results collected from the di�erent settings reveals a com-
mon trend that comes across in all tables and charts: the capacity to retain events
in memory for longer periods induces a simpli�cation of scenarios for all window
models. The overall tendencies in the MEC graphs, node centrality, community and
network measures are similar but the level of detail increases proportionally to the
forgetting capacity. Longer memory prompts smoother charts and more stable com-
munities, shorter memory prompts jagged charts and more instability in the MEC
graphs. Other than this, one can draw the following conclusions:

• The landmark window is the least a�ected of all. Since it keeps all events
in memory, correlations converge to the population value as the sample size
increases (Cohen, 1977; Schönbrodt and Perugini, 2013). Therefore, the evo-
lution of the network and the formed communities are similar enough to say
that no major gain in information is attainable by probing the network more
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frequently. There is, however, some gain in detail on the study of in�uential
stocks, as the number of stock and richness in patterns of interaction increase
in direct proportion to the sampling rate;

• The MEC graphs produced out of networks based on gradual forgetting exhibit
similar enough shapes for all three fading factors. There are always evidences
of three distinct cycles: 1997-2007, 2008-2012, 2013-2017. In general, the
number of communities in the second cycle is smaller than in the other two;
often there are only 2 communities during this time period. Merging and
splitting phenomena are common. The overlap probability drops in the third
cycle;

• Similar evidences are visible in the MEC graph of sliding windows. The pro-
duced MEG graphs exhibit similar enough shapes for all three window sizes.
There are also evidences of three distinct cycles: 1997-2007, 2008-2012, 2013-
2017. In general, the number of communities in the second cycle is smaller;
often there are only 2 communities during this time period and, exceptionally,
a single community is detected by the smallest window model by the end of
2011. Merging and splitting phenomena are common as well. The overlap
probability also drops in the third cycle;

• Longer memory produces a shorter number of stocks with high eigenvalue
centrality. No correlation is observed for other centralities;

• All models, in all memory settings, assign high eigenvalue centrality to
American Express and General Electric. Gradual forgetting and sliding
windows agree to highlight J.P. Morgan and United Technologies. Land-
mark window always highlights Microsoft, gradual forgetting always high-
lights 3M, sliding windows always highlight Goldman Sachs;

• All models, in all memory settings, assign high betweenness centrality to
General Electric. Landmark windows and sliding windows agree to high-
light American Express. Gradual forgetting always highlights 3M and United

Technologies;

• All models, in all memory settings, assign high closeness centrality to Intel.
Gradual forgetting always highlights Home Depot. Landmark window always
highlights Pfizer, American Express, General Electric, Coca-Cola and
Proctor & Gamble;

• Overall, the same essential information about market dynamics is kept. A
shorter memory reveals more detail, but make the overall tendencies harder to
determine and interpret. A longer memory promotes generalization and loss
of information.
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Figure 4.24: Communities detected in correlation networks built using the landmark
window

4.3.2 Frequent communities, its members and sectors of ac-

tivity

The MEC framework helps us to understand how communities are born, evolve and
die, how members join, stay and leave di�erent communities over time. However,
it is not as helpful in determining the most common associations of stocks, either
as communities or its sub-components. Moreover, gives little information on how
many times a community is reborn; to obtain such information, one must observe
every new-born community and try to match its members to a dying community in
a previous (possibly remote) snapshot.

We seek to know how frequently do communities or its sub components occur and
if there are common patterns emerging in the networks generated resorting to the
di�erent window models. To that purpose, we we apply a technique called frequent
pattern mining (Agrawal et al., 1993) over the communities described in Tables C.1
to C.6. We address each community as a single transaction and determine frequent
stock-sets. We then cross this information with the paths in MEC graphs to learn
the history of the most common stock-sets. We focus on the communities obtained
in the experiment described in Section 4.2.2. The full lists of frequent stock-sets
presented in Appendix D.

Frequent communities and landmark windows

The landmark window helps to detect mostly small, stable, sector-based communi-
ties; examples are illustrated in Figure 4.24.

Technological stocks Cisco, Intel and Microsoft are in the same community
for the entire period; IBM is also a member, but leaves during during short periods.

Two other stock-sets are also common: one is Home Depot and Walmart (ser-
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(a) (b) (c)

Figure 4.25: Communities detected in correlation networks built using gradual for-
getting, during the �rst (a), second (b) and third (c) cycles

vices), the other is General Electric (cap. goods) and American Express and
J.P. Morgan (�nancial). The two groups, initially together in the same community,
split and evolve separately most of the time, merge again during the period of 2010
up to 2015. During this period, they are joined by Disney (services) and Travelers

(�nancial).
Chevron and Exxon, both in energy, come together for 20 years. Merck, Pfizer

and Johnson & Johnson (healthcare) join for 19 years; the last leaving for 4 years.
Both energy and healthcare communities evolve alone, despite the fact that its
members are initially together.

Dupont and 3M, frequently together with Caterpillar, form a recurrent commu-
nity, joined by Boeing and United Technologies join for half the studied period.
All companies operate in the capital goods and basic materials sectors.

Frequent communities and gradual forgetting

Gradual Forgetting show mixed trends, framed within the three detected cycles as
illustrated by Figure 4.25.

In the �rst cycle, Technological stocks Cisco and Intel are always together,
occasionally joined by IBM, Microsoft and Apple; no other stocks join the cluster.
Chevron and Exxon (energy) are also always together, with no other partners other
than Dupont and Proctor & Gamble in the �rst year.

Two multi-sector communities form at �rst: one comprises Johnson & Johnson,
Merck and Pfizer (healthcare), Coca-Cola (consumer/non-cyclical) and Disney

(services), the other comprises Home Depot and Walmart (services - retail) and
Boeing, United Technologies and General Electric (cap. goods). As the
communities break up, the healthcare and retail companies form communities of
their own; the �nancial cluster is often joined by General Electric and United
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(a) (b) (c)

Figure 4.26: Communities detected in correlation networks built using sliding win-
dows, during the �rst (a), second (b) and third (c) cycles

Technologies, among others.

Two large communities during the second cycle. The �rst is centred around
Cisco, IBM, Intel and Apple (technological), American Express, J.P. Morgan and
Goldman Sachs (Financial), Boeing, United Technologies, 3M and Caterpillar

(cap. goods) and Dupont (bas. materials).
The second's core is formed by Pfizer, Proctor & Gamble, Johnson & Johnson

and Merck (healthcare), Chevron and Exxon (energy) and Coca-Cola

(consumer/non-cyclical), McDonalds and Verizon (services).

The third cycle is marked by a mixed tendency between medium and small
communities, mostly short-lived. American Express, J.P. Morgan and Goldman

Sachs (Financial) keep together for some time, attracting several other companies
along the way. Chevron and Exxon (energy), General Electric and Caterpillar

(cap. goods) come together, brie�y joined by the �nancial cluster.
Boeing, United Technologies and 3M (cap. goods) brie�y merge with

the �nancial cluster, occasionally attracting Intel and IBM (technological).
Johnson & Johnson, Merck and Pfizer (healthcare) regroup, occasionally joined
by Proctor & Gamble and other companies in assorted sectors. By the end of the
cycle, Intel, Microsoft and Cisco (technological) also regroup, joined by Visa

(�nancial).

Frequent communities and gradual forgetting

Sliding windows exhibit the less stable patterns, framed in three cycles as illustrated
in Figure 4.26.

In the �rst cycle, Cisco, Intel and Microsoft (technological) form a community
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joined by Apple and IBM most of times; Goldman Sachs, J.P. Morgan, American
Express (�nancial) and General Electric (cap. goods) brie�y join in di�erent
occasions.

American Express and J.P. Morgan (�nancial) also come together in the �rst
half of the cycle, joined at times by Goldman Sachs and General Electric, Home
Depot and Walmart (cap. goods). American Express, J.P. Morgan and Goldman

Sachs rejoin by the end of the cycle.
Home Depot and Walmart (cap. goods) form a community during the �rst and

last thirds of the cycle; they are joined by American Express, Goldman Sachs and
J.P. Morgan (�nancial) occasionally.

Boeing, Caterpillar, United Technologies and (cap. goods) come together
episodically, joined by the pair Dupont (bas. materials) and Walmart (services), 3M
and General Electric (cap. goods).

Johnson& Johnson, Merck and Pfizer (healthcare) are together for most of the
cycle, occasionally joined by Proctor & Gamble (healthcare), Chevron and Exxon

(energy) and Coca-Cola (Consumer/Non-cyclical).
Chevron and Exxon (energy) form a community that lasts the entire cycle, brie�y

merging with the healthcare cluster and General Electric (cap. goods) mid-cycle.

The second cycle is again de�ned by two large communities. The �rst is
formed by Johnson & Johnson, Merck, Pfizer and Proctor & Gamble (health-
care), Coca-Cola (consumer/non-cyclical), McDonalds and Verizon (Services) and
Chevron and Exxon (energy).

The second is formed by Apple, Cisco and Intel (technological), American
Express, Goldman Sachs and J.P. Morgan (�nancial), Caterpillar and General

Electric (cap. goods); it is joined by IBM and Microsoft occasionally, and
Chevron, Exxon, Dupont and 3M by the end.

By the end of the cycle, the communities slit in three, as technological and �-
nancial stocks drift apart; capital goods companies stay together with �nancial ones.

In the third cycle, patterns seldom apply, with the exception of Chevron and
Exxon, joined by Caterpillar at a given time. Boeing and United Technologies

(services) are together at times in an aerospace cluster.
Goldman Sachs and J.P. Morgan (�nancial) are are also together sometimes,

joined brie�y by the aerospace cluster, American Express (�nancial), Disney (ser-
vices), IBM and Intel (technological), Chevron and Exxon (energy) and Dupont and
3M (bas. materials and cap. goods).

Another community congregates Johnson & Johnson and Pfizer (healthcare)
for in the �rst half of the cycle; they are commonly joined by Proctor & Gamble

(healthcare) and brie�y by Coca-Cola (consumer/non-cyclical), McDonalds, Home
Depot and Walmart (services).

By the end of this cycle, Intel, Microsoft, Apple, Cisco and IBM (technologi-
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cal) join together in two small communities that quickly converge, attracting Nike

(consumer/cyclical), Disney (services) and Visa (�nancial) in the process.

Interpretation

Landmark windows often discloses stable communities of companies that have the
same sector of activity, common interests or long-lasting commercial relationships.
Conversely, gradual forgetting and sliding windows disclose a more dynamic scenario,
with members shifting communities many times and frequent relationships between
companies working in di�erent sectors. Nevertheless, all models disclose a tendency
for companies of the same sector to walk side-by-side, either as communities of their
own or as as subcomponents of larger communities.

We illustrate these �ndings with associations rules derived from com-
munities discovered in networks generated using landmark window (4.1),
gradual forgetting (4.2) and sliding windows (4.3). The support, con�dence
and lift are presented within round brackets. The �rst rule shows the association
of companies in the technological sector, the second shows the association of
3M and Boeing (commercial relationship) and the third shows the association of
Coca-Cola (consumer/non-cyclical), Pfizer and Johnson & Johnson (healthcare).
All examples come from the experience described in Section 4.2.2. Additional rules
and items-sets are presented in Appendix D.

CSCO, IBM, MSFT ⇒ INTC (supp : 0.24, conf : 1.00, lift : 3.00) (4.1)

MMM ⇒ BA (supp : 0.18, conf : 0.77, lift : 3.37) (4.2)

KO, PFE ⇒ JNJ (supp : 0.15, conf : 1.00, lift : 4.54) (4.3)

4.3.3 Adherence to �nancial market dynamics

We wish to validate whether our �ndings relate to the major economical, �nancial
and political events that took place from 1997 through 2017. Figure 4.27 illustrates
the evolution of density, average degree, modularity and number of communities for
networks of correlations ρ ≥ 0.5 enhanced with a time line of some important events.

Figure 4.27 shows that density and average degree raise in periods of great tur-
bulence whereas modularity and the number of communities decrease in such times.
Four clear cases of such behaviours are evident during the 2003 stock market panic,
the 2008 stock market crash and U.S. banking crisis, the 2011 European sovereign
debts crises and the 2015 Chinese stock market slowdown.

These results consistent with previous cases in the reviewed literature: cor-
relation between �nancial turmoil and network's measures is reported in Onnela
et al. (2003), Tse et al. (2010), Roy and Sarkar (2011), Heiberger (2014), Dim-
itrios and Vasileios (2015) and Vodenska et al. (2016). Authors refer to small,
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Time Event

Jun 1997 Asian �nancial crisis
Oct 1997 Hang Seng Index downturn
Aug 1998 Ecuador and Russia �nancial crisis
Feb 1999 Brasil samba e�ect
Apr 2000 DotCom bubble burst
Sep 2001 September 11 attacks
Sep 2002 02 stock market downturn
Dec 2002 Venezuelan oil strike
Jul 2003 03 stock market panic
Mar 2007 US subprime loan meltdown
Jan 2008 08 stock market downturn
Sep 2008 Stock Market crash
Oct 2008 US Banking Crisis
Feb 2009 Congress Economic Stimulus Plan
Apr 2009 Greece IMF/EU Intervention
Sep 2009 ObamaCare
Oct 2009 Bank of America loan program
Nov 2010 Ireland IMF/EU Intervention
Apr 2011 Portugal IMF/EU Intervention
Aug 2011 August 2011 stock markets fall
Oct 2012 Spannish banking bailout
Jul 2015 Chinese stock market turbulence
Jul 2016 Brexit referendum

Figure 4.27: Density, average degree, modularity and communities for networks of
correlation levels ρ ≥ 0.5 enhanced with the timeline of major economical, �nancial
and political events.

stable communities in times of �nancial stability and economical growth. By
contrast, the authors suggest contractions in stock networks, with increased correla-
tion between stocks of di�erent sectors, and fast changing communities taking shape.

The identi�cation of in�uential stocks is of paramount importance (Roy and
Sarkar, 2011; Heiberger, 2014), as their performance de�nes trends that propagate
throughout the entire market. One can understand their contribution to market dy-
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Figure 4.28: Comparing the logarithmic returns of DJI to the individual logarithmic
returns of high eigenvalue centrality stocks

namics by comparing their performance to that of the market. Centrality measures
are useful tools when it comes to the identi�cation of in�uential stocks. Eigenvalue
centrality in particular is very useful, since it measures both the quantity and quality
of connections in the network.

The charts in Figure 4.28 compare the logarithmic returns of DJI and the stocks
with higher eigenvalues centrality in the networks obtained from the three window
model, using the settings used in subsection 4.2.2; the values within round brackets
are the correlation coe�cient with DJI return value. One can observe that the
returns values of all stocks are correlated to those of the market, but none are
capable of fully match it. However, if one computes the average return value of
these stocks and compare it to the return value of the market, one �nds that this
average has a correlation level of over 90%; the charts in Figure 4.29 illustrate
this result. Similar result are empirically con�rmed in all window models, with all
memory settings.

4.3.4 Applicability to portfolio management

Markowitz (1952) proposes diversi�cation in portfolio to mitigate risk and optimize
return. The author proposes investors to hold securities in considerable number, to
peek stocks from companies operating in several industries, and (most important)
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Figure 4.29: Comparing the logarithmic returns of DJI to the average logarithmic
returns of high eigenvalue centrality stocks

to avoid highly correlated assets.
The goal of this work is to establish a methodology that investors can use to

build themselves acceptable investment portfolios. The online tracking of evolving
networks and active communities helps the investor many di�erent ways.

The status of the correlation network, in particular, the values of density, average
degree and modularity can help in the identi�cation of the market cycle. Low density
and average degree, together with high modularity are a sign of a stable, mature
market. Conversely, high density/average degree and low modularity are frequently
associated with a shallow, unstable market.

The study of communities and their members, of the most frequent stock-sets
and association rules, complemented with the temporal perspective of longevity and
churn rate given by MEC chats, helps in the identi�cation of recurring patterns
that must be avoided to guarantee the de�nition of heterogeneous portfolios both
in terms of correlation and diversity of activity sector.

The quality and quantity of each stock neighbours (eigenvalue), links to other
members of other communities (betweenness) and the distance to all other members
(closeness) can help to determine both the ability and speed of in�uence in price
and return value volatility.

A well-balanced use of the information disclosed by the three window models
can help in the discrimination of small market disturbances from long-term trends.
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Landmark windows disclose long-term, stable patterns that occur over a long pe-
riod of time, being helpful for historical perspective. The introduction of gradual
forgetting enables the detection of changes in concept, while retaining the capacity
to recall old patterns of stability, thus providing milder responses in troubled times.
Sliding windows are excellent in terms of change detection. They can be very helpful
in times of turmoil, prompting quick warning signs at the smallest perturbation in
the network. Used together, the three models produce richer results.

4.4 Summary

In this chapter we present and discuss the experimental evaluation of the devised
methodology over a data set of �nancial data regarding the Dow Jones Industrial
index. We motivate and describe experiences devised to study the application of
di�erent memory models, with di�erent lengths, to the target data, comparing and
drawing conclusions on results. We discuss the adherence of our �ndings to the per-
formance of the studied index and the applicability of the methodology in portfolio
management. The �nal conclusions regarding this work are presented on the next
chapter.
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Chapter 5

Conclusion

In this chapter, we present our closing remarks and discuss the limitations of our
work, as well as some recommendations for future lines of investigation.

5.1 Closing remarks

In this work, we address the problem of determining which communities develop in
a stock market, how do those communities evolve over time, which stocks are most
in�uential and how is that in�uence exerted over the remaining stocks according
to investors' reactions to economical, �nancial and political stimuli. The goal is to
establish a methodology that investors can use in the analysis of streaming �nancial
data relative to stock markets to improve decision making in portfolios management.

We present a methodology inspired in Social Network Analysis (SNA). The
method produces series of return values out of streams of stock quotes, computes
correlations between those returns and produces weighted undirected correlation
networks from which metrics are taken that gauge the evolution of communities,
node centralities and the networks themselves. Di�erent window models are avail-
able to hold the statistics in memory: landmark window, gradual forgetting and
sliding windows. Snapshots are used to track of changes in networks topologies.

The experimental evaluation of the methodology, conducted over �nancial data
regarding the daily prices of stock in the portfolio of the Dow Jones Industrial index
from 1997 through 2017, leads to interesting conclusions. Landmark windows de�ne
relatively sparse and small networks, comprised of medium-small communities whose
members usually have long-term commercial relations, share common interests or are
in the same sector of activity. Gradual forgetting and sliding windows detect three
distinct network dynamics before, during and after the 2008-2012 period. Before
the 2008 crisis, networks are sparse and communities are medium-small and mostly
industry based, with a high survival rate and medium churn rate. The crisis period
prompts highly dense networks where communities collapse to big, diverse, fast-
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changing structures. In the aftermath of the 2012 sovereign debts crises, networks
regain some sparsity, but the life span of communities of stocks remains low while
the diversity stays high. The results are corroborated by the literature and show
adherence to historical, �nancial and economic events.

We discuss the applicability of the methodology in portfolio management. It
is our �rm conviction that the devised methodology is capable of providing solid,
constantly evolving evidence. The status of the correlation network can help in the
identi�cation of the market cycle. The study of communities and their members
can help in diversi�cation. Centrality measures can help to determine the both the
ability and speed of in�uence in stock prices and return values volatilities. The use
of di�erent window models at once produces richer results, with each model show-
ing helpful insights in di�erent contexts. The combination of all this information,
together with each stock's expected return values and the risk pro�le of the investor
may produce interesting and appealing results in terms of portfolio management.

5.2 Limitations and Future Work

One limitation of this work regards the need to �ne tune data sampling. Computing
frequent stock-sets and plotting the MEC graphs comes with a heavy price in terms
time and computational power. Without appropriate sampling, one risks either
stalling the system or loosing vital information. Ideally, all the tasks should be
ful�lled by streaming counterparts of the algorithms.

Another limitation is the naïve approach of dropping the sets of summaries
when stock is missing in a given time point. This may lead to loss of important
information in cases where the index components are traded in di�erent stock
exchange markets. A possible and more robust approach is to mark those sets as
idle and start a countdown by the end of which the sets are dropped if no update
is received in the meantime.

Future work should include the online study of other stock markets with larger
sets of components.

The analysis of other stock attributes such as traded volume and stock volatility
should be used to compute correlation alongside with return values. The introduc-
tion multi-dimensional variables might produce more interesting results.

Another interesting evolution would the use of the mean-variance model with
the network-�ltered correlation matrices (Tola et al., 2008). This could lead to a
practical portfolio recommendation system.
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Appendix A

Dow Jones Industrial components,

prices and returns

Company Symbol Industry Sector Exchange

3M MMM Constr. - Supplies & Fixtures Capital Goods NYSE
American Express AXP Consumer Financial Services Financial NYSE
Apple AAPL Communications Equipment Technology NASDAQ
Boeing BA Aerospace & Defense Capital Goods NYSE
Caterpillar CAT Constr. & Agric. Machinery Capital Goods NYSE
Chevron CVX Oil & Gas - Integrated Energy NYSE
Cisco Systems CSCO Communications Equipment Technology NASDAQ
Coca-Cola KO Beverages (Nonalcoholic) Consumer/Non-Cyclical NYSE
Dupont DWDP Chemical Manufacturing Basic Materials NYSE
Exxon Mobil XOM Oil & Gas Operations Energy NYSE
General Electric GE Aerospace & Defense Capital Goods NYSE
Goldman Sachs GS Investment Services Financial NYSE
Home Depot HD Retail (Home Improvement) Services NYSE
IBM IBM Computer Services Technology NYSE
Intel INTC Semiconductors Technology NASDAQ
Johnson & Johnson JNJ Biotechnology & Drugs Healthcare NYSE
J.P. Morgan Chase JPM Investment Services Financial NYSE
McDonalds MCD Restaurants Services NYSE
Merck MRK Biotechnology & Drugs Healthcare NYSE
Microsoft MSFT Software & Programming Technology NASDAQ
Nike NKE Footwear Consumer Cyclical NYSE
P�zer PFE Biotechnology & Drugs Healthcare NYSE
Proctor & Gamble PG Personal & Household Prods. Consumer/Non-Cyclical NYSE
Travelers TRV Insurance (Prop. & Casualty) Financial NYSE
United Technologies UTX Aerospace & Defense Capital Goods NYSE
United Health Group UNH Insurance (Accident & Health) Financial NYSE
Verizon VZ Communications Services Services NYSE
Visa V Business Services Services NYSE
Walmart WMT Retail (Grocery) Services NYSE
Walt Disney DIS Broadcasting & Cable TV Services NYSE

Table A.1: DJI components by December 29th, 2017.
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Figure A.1: Activity sectors for DJI components by December 29th, 2017.

Figure A.2: DJI components page with ongoing trade
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Figure A.3: Daily closing prices for DJI components from January 1st, 1997 through
December 29th, 2017.

Figure A.4: Daily logarithmic returns for DJI components from January 1st, 1997
through December 29th, 2017.
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Appendix B

Correlation distributions, network

and community measures

Figure B.1: Cross-correlation distributions for landmark window, gradual forgetting
and sliding windows of six months

Figure B.2: Cross-correlation distributions for landmark window, gradual forgetting
and sliding windows of two years
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ρ ≥ θ
Landmark window Sliding window

α = 0.992 ω = 126 ε ≤ 0.02
θ Density Av.Deg. Density Av.Deg.

0.2 0.82 (0.20) 23.35 (5.98) 0.79 (0.20) 22.44 (5.96)
0.3 0.63 (0.27) 18.09 (7.90) 0.61 (0.26) 17.44 (7.64)
0.4 0.41 (0.29) 11.87 (8.47) 0.24 (0.25) 6.94 (7.31)
0.5 0.22 (0.24) 6.41 (7.11) 0.24 (0.25) 6.93 (7.33)
0.6 0.09 (0.16) 2.65 (4.53) 0.12 (0.19) 3.35 (5.59)
0.7 0.02 (0.05) 0.66 (1.59) 0.04 (0.10) 1.19 (2.95)

θ Modular. #Comm. Modular. #Comm.

0.2 0.06 (0.07) 2.64 (1.04) 0.07 (0.08) 2.73 (0.91)
0.3 0.10 (0.12) 3.97 (2.42) 0.11 (0.12) 3.79 (2.02)
0.4 0.19 (0.18) 7.34 (4.53) 0.28 (0.22) 11.78 (6.47)
0.5 0.31 (0.23) 12.84 (6.91) 0.28 (0.22) 11.83 (6.47)
0.6 0.38 (0.24) 19.78 (7.11) 0.36 (0.21) 18.24 (7.57)
0.7 0.22 (0.24) 25.53 (4.76) 0.27 (0.26) 24.03 (6.21)

Table B.1: Mean and standard deviation of measures observed in networks of dif-
ferent correlation levels obtained from six-month windows

ρ ≥ θ
Landmark window Sliding window

α = 0.998 ω = 126 ε ≤ 0.02
θ Density Av.Deg. Density Av.Deg.

0.2 0.83 (0.18) 23.55 (5.27) 0.85 (0.19) 24.08 (5.58)
0.3 0.63 (0.28) 18.08 (8.15) 0.67 (0.27) 18.98 (7.91)
0.4 0.41 (0.31) 11.91 (8.99) 0.44 (0.31) 12.56 (8.98)
0.5 0.20 (0.21) 5.72 (6.25) 0.24 (0.26) 6.84 (7.61)
0.6 0.06 (0.07) 1.64 (2.15) 0.09 (0.14) 2.73 (3.97)
0.7 0.01 (0.01) 0.22 (0.41) 0.02 (0.03) 0.57 (0.95)

θ Modular. #Comm. Modular. #Comm.

0.2 0.05 (0.06) 2.68 (0.88) 0.05 (0.07) 2.58 (0.96)
0.3 0.10 (0.11) 4.53 (2.32) 0.09 (0.11) 4.02 (2.52)
0.4 0.20 (0.18) 7.71 (4.16) 0.17 (0.17) 7.06 (4.21)
0.5 0.38 (0.25) 13.22 (6.39) 0.30 (0.23) 12.50 (7.11)
0.6 0.47 (0.20) 20.10 (5.89) 0.39 (0.25) 19.55 (7.39)
0.7 0.27 (0.28) 26.77 (2.36) 0.25 (0.23) 25.36 (4.39)

Table B.2: Mean and standard deviation of measures observed in networks of dif-
ferent correlation levels obtained from two-year windows
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Year
Landmark window Landmark window Sliding Window

α = 0.996 ω = 252 ε ≤ 0.02
Density Av.Deg. Mod. #Comm. Density Av.Deg. Mod. #Comm. Density Av.Deg. Mod. #Comm.

1997 0.10 2.71 0.29 3 0.13 3.43 0.26 4 0.10 2.71 0.29 3
1998 0.07 1.86 0.35 4 0.10 2.71 0.35 5 0.09 2.43 0.38 6
1999 0.04 1.24 0.55 4 0.03 0.76 0.69 5 0.03 0.76 0.72 4
2000 0.02 0.62 0.77 5 0.02 0.62 0.77 5 0.02 0.62 0.77 5
2001 0.02 0.69 0.76 5 0.04 1.03 0.70 6 0.14 3.79 0.36 5
2002 0.03 0.76 0.79 6 0.11 3.03 0.33 5 0.29 8.21 0.17 4
2003 0.03 0.90 0.78 6 0.12 3.45 0.30 5 0.28 7.72 0.18 3
2004 0.03 0.76 0.76 6 0.05 1.52 0.45 4 0.03 0.76 0.57 4
2005 0.02 0.69 0.78 6 0.02 0.48 0.64 4 0.02 0.48 0.51 3
2006 0.02 0.62 0.74 5 0.01 0.28 0.45 2 0.01 0.41 0.55 3
2007 0.02 0.62 0.74 5 0.11 3.17 0.26 4 0.26 7.38 0.16 4
2008 0.05 1.33 0.68 6 0.85 24.73 0.02 2 0.83 23.93 0.03 2
2009 0.06 1.67 0.62 6 0.63 18.27 0.08 2 0.47 13.60 0.08 2
2010 0.07 1.93 0.59 5 0.55 15.93 0.09 2 0.54 15.53 0.08 2
2011 0.08 2.20 0.51 5 0.86 24.93 0.02 2 0.93 26.93 0.01 2
2012 0.08 2.20 0.51 5 0.47 13.67 0.09 2 0.20 5.93 0.13 3
2013 0.08 2.20 0.51 5 0.20 5.87 0.11 3 0.10 2.93 0.22 3
2014 0.08 2.20 0.51 5 0.13 3.73 0.18 3 0.11 3.33 0.18 4
2015 0.08 2.20 0.51 5 0.29 8.40 0.15 5 0.48 13.80 0.09 4
2016 0.07 2.07 0.54 6 0.11 3.13 0.39 6 0.13 3.87 0.24 4
2017 0.07 1.93 0.55 6 0.02 0.47 0.69 4 0.01 0.33 0.54 3

Table B.3: Density, average degree, modularity and number of communities for all
window models, annual values from 1997 through 2017

Year
Landmark window Landmark window Sliding Window

α = 0.998 ω = 504 ε ≤ 0.02
Density Av.Deg. Mod. #Comm. Density Av.Deg. Mod. #Comm. Density Av.Deg. Mod. #Comm.

1997 0.10 2.71 0.29 3 0.11 3.07 0.24 4 0.10 2.71 0.29 3
1999 0.04 1.24 0.55 4 0.03 0.90 0.67 4 0.04 1.03 0.54 4
2001 0.02 0.69 0.76 5 0.03 0.76 0.81 7 0.03 0.90 0.77 6
2003 0.03 0.90 0.78 6 0.07 1.93 0.55 6 0.27 7.66 0.18 4
2005 0.02 0.69 0.78 6 0.03 0.76 0.70 5 0.01 0.28 0.74 4
2007 0.02 0.62 0.74 5 0.03 0.83 0.58 5 0.05 1.31 0.33 5
2009 0.06 1.67 0.62 6 0.54 15.67 0.09 2 0.74 21.47 0.06 2
2011 0.08 2.20 0.51 5 0.72 20.80 0.06 2 0.79 22.80 0.04 2
2013 0.08 2.20 0.51 5 0.32 9.20 0.11 3 0.15 4.27 0.13 4
2015 0.08 2.20 0.51 5 0.23 6.80 0.17 4 0.21 6.07 0.19 5
2017 0.07 1.93 0.55 6 0.03 0.93 0.66 6 0.02 0.60 0.72 5

Table B.4: Density, average degree, modularity and number of communities for all
window models, biennual values from 1997 through 2017
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Year
Landmark window Landmark window Sliding Window

α = 0.992 ω = 126 ε ≤ 0.02
Density Av.Deg. Mod. #Comm. Density Av.Deg. Mod. #Comm. Density Av.Deg. Mod. #Comm.

Jun 1997 0.07 1.93 0.25 4 0.08 2.14 0.24 4 0.07 1.93 0.25 4
Dec 1997 0.10 2.71 0.29 3 0.19 5.00 0.21 3 0.28 7.50 0.14 4
Jun 1998 0.06 1.57 0.41 4 0.04 1.07 0.50 4 0.03 0.93 0.64 5
Dec 1998 0.07 1.86 0.35 4 0.13 3.43 0.29 5 0.22 5.93 0.16 5
Jun 1999 0.05 1.52 0.43 5 0.06 1.59 0.36 4 0.06 1.66 0.36 6
Dec 1999 0.04 1.24 0.55 4 0.02 0.48 0.78 5 0.02 0.69 0.64 4
Jun 2000 0.03 0.90 0.68 4 0.03 0.90 0.75 5 0.04 1.24 0.76 5
Dec 2000 0.02 0.62 0.77 5 0.02 0.55 0.76 5 0.01 0.41 0.74 4
Jun 2001 0.02 0.69 0.77 5 0.02 0.69 0.77 6 0.10 2.76 0.45 6
Dec 2001 0.02 0.69 0.76 5 0.08 2.14 0.44 4 0.24 6.62 0.16 4
Jun 2002 0.02 0.69 0.76 5 0.06 1.79 0.63 6 0.11 3.10 0.40 6
Dec 2002 0.03 0.76 0.79 6 0.27 7.66 0.17 3 0.47 13.10 0.10 3
Jun 2003 0.03 0.83 0.78 6 0.34 9.52 0.14 4 0.56 15.79 0.07 2
Dec 2003 0.03 0.90 0.78 6 0.16 4.41 0.24 4 0.08 2.14 0.30 3
Jun 2004 0.03 0.90 0.78 6 0.06 1.79 0.59 6 0.05 1.31 0.61 5
Dec 2004 0.03 0.76 0.76 6 0.03 0.97 0.50 5 0.03 0.90 0.37 4
Jun 2005 0.02 0.69 0.78 6 0.04 1.24 0.42 4 0.06 1.79 0.44 5
Dec 2005 0.02 0.69 0.78 6 0.01 0.34 0.73 4 0.02 0.55 0.68 4
Jun 2006 0.02 0.69 0.78 6 0.02 0.48 0.49 3 0.05 1.31 0.42 4
Dec 2006 0.02 0.62 0.74 5 0.01 0.34 0.41 2 0.03 0.97 0.32 4
Jun 2007 0.02 0.62 0.74 5 0.02 0.69 0.36 3 0.12 3.38 0.27 4
Dec 2007 0.02 0.62 0.74 5 0.28 7.79 0.18 3 0.44 12.34 0.10 4
Jun 2008 0.02 0.67 0.78 6 0.27 7.93 0.15 4 0.30 8.80 0.15 4
Dec 2008 0.05 1.33 0.68 6 0.89 25.93 0.01 2 0.97 28.07 0.01 2
Jun 2009 0.06 1.60 0.66 6 0.73 21.27 0.08 2 0.56 16.13 0.09 2
Dec 2009 0.06 1.67 0.62 6 0.53 15.27 0.09 3 0.24 7.00 0.15 3
Jun 2010 0.06 1.87 0.60 6 0.62 18.00 0.06 2 0.66 19.00 0.05 2
Dec 2010 0.07 1.93 0.59 5 0.45 13.00 0.10 3 0.38 11.13 0.11 3
Jun 2011 0.06 1.87 0.60 6 0.23 6.53 0.09 4 0.12 3.60 0.24 3
Dec 2011 0.08 2.20 0.51 5 0.97 28.20 0.00 2 1.00 28.87 0.00 1
Jun 2012 0.08 2.20 0.51 5 0.63 18.27 0.05 2 0.29 8.53 0.08 4
Dec 2012 0.08 2.20 0.51 5 0.37 10.80 0.12 3 0.23 6.73 0.20 3
Jun 2013 0.08 2.20 0.51 5 0.22 6.27 0.14 3 0.18 5.20 0.16 3
Dec 2013 0.08 2.20 0.51 5 0.11 3.13 0.18 3 0.05 1.40 0.45 3
Jun 2014 0.08 2.20 0.51 5 0.07 2.13 0.20 4 0.11 3.07 0.18 3
Dec 2014 0.08 2.20 0.51 5 0.12 3.53 0.27 4 0.18 5.13 0.23 4
Jun 2015 0.08 2.20 0.51 5 0.15 4.33 0.22 4 0.24 7.07 0.16 4
Dec 2015 0.08 2.20 0.51 5 0.48 13.87 0.08 4 0.64 18.67 0.06 2
Jun 2016 0.07 2.13 0.53 5 0.36 10.53 0.15 4 0.29 8.53 0.18 4
Dec 2016 0.07 2.07 0.54 6 0.08 2.40 0.46 6 0.06 1.73 0.56 5
Jun 2017 0.07 2.00 0.56 6 0.02 0.60 0.76 5 0.01 0.40 0.59 3
Dec 2017 0.07 1.93 0.55 6 0.01 0.40 0.60 4 0.01 0.40 0.62 3

Table B.5: Density, average degree, modularity and number of communities for all
window models, semestral values from 1997 through 2017
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Appendix C

Community members

Year
Communities

1 2 3 4 5 6

1997 CSCO, IBM, INTC, MSFT AXP, BA, DIS, DWDP, GE,
HD, JPM, WMT

CVX, JNJ, KO, MRK, PFE,
PG, XOM

1998 CSCO, IBM, INTC, MSFT AXP, DIS, GE, HD, JPM,
MRK, PFE, WMT

JNJ, KO, PG CVX, XOM

1999 CSCO, IBM, INTC, MSFT JNJ, MRK, PFE AXP, GE, HD, JPM, KO,
PG, WMT

CVX, XOM

2000 CSCO, INTC, MSFT AXP, GE, JPM JNJ, MRK, PFE HD, WMT CVX, XOM
2001 CSCO, INTC, MSFT AXP, GE, JPM JNJ, MRK, PFE HD, WMT CVX, XOM
2002 CSCO, INTC, MSFT AXP, GE, JPM DWDP, MMM JNJ, MRK,

PFE
HD, WMT CVX, XOM

2003 AXP, GE, JPM DWDP, MMM CSCO, IBM, INTC, MSFT JNJ, MRK,
PFE

HD, WMT CVX, XOM

2004 AXP, GE, JPM DWDP, MMM CSCO, IBM, INTC, MSFT MRK, PFE HD, WMT CVX, XOM
2005 CSCO, INTC, MSFT AXP, GE, JPM DWDP, MMM MRK, PFE HD, WMT CVX, XOM
2006 CSCO, INTC, MSFT AXP, GE, JPM MRK, PFE HD, WMT CVX, XOM
2007 CSCO, INTC, MSFT AXP, GE, JPM MRK, PFE HD, WMT CVX, XOM
2008 CSCO, IBM, INTC, MSFT AXP, GE, HD, JPM, TRV,

WMT
CAT, DWDP, MMM JNJ, MRK,

PFE
BA, UTX CVX, XOM

2009 CSCO, IBM, INTC, MSFT AXP, GE, JPM, TRV BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

HD, WMT CVX, XOM

2010 CSCO, IBM, INTC, MSFT AXP, DIS, GE, HD, JPM,
TRV, WMT

BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

CVX, XOM

2011 CSCO, IBM, INTC, MSFT AXP, DIS, GE, HD, JPM,
TRV, WMT

BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

CVX, XOM

2012 CSCO, IBM, INTC, MSFT AXP, DIS, GE, HD, JPM,
TRV, WMT

BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

CVX, XOM

2013 CSCO, IBM, INTC, MSFT AXP, DIS, GE, HD, JPM,
TRV, WMT

BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

CVX, XOM

2014 CSCO, IBM, INTC, MSFT AXP, DIS, GE, HD, JPM,
TRV, WMT

BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

CVX, XOM

2015 CSCO, IBM, INTC, MSFT AXP, DIS, GE, HD, JPM,
TRV, WMT

BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

CVX, XOM

2016 CSCO, IBM, INTC, MSFT AXP, DIS, GE, JPM, TRV BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

HD, WMT CVX, XOM

2017 AXP, DIS, GE, JPM, TRV BA, CAT, DWDP, MMM,
UTX

CSCO, IBM, INTC, MSFT JNJ, MRK,
PFE

HD, WMT CVX, XOM

Table C.1: Communities disclosed by landmark window, annual snapshots from 1997
through 2017.
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Year
Communities

1 2 3 4 5 6

1997 CSCO, IBM, INTC, MSFT AXP, DIS, JNJ, JPM, KO,
MRK, PFE

BA, GE, HD, UTX, WMT CVX,
DWDP, PG,
XOM

1998 CSCO, IBM, INTC, MSFT DWDP, MMM DIS, GE, JNJ, KO, MCD,
MRK, PFE, PG

AXP, HD,
JPM, TRV,
UTX, WMT

CVX, XOM

1999 AXP, JPM CSCO, INTC, MSFT JNJ, MRK, PFE GE, HD,
WMT

CVX, XOM

2000 CSCO, INTC, MSFT AXP, GE, JPM JNJ, MRK, PFE HD, WMT CVX, XOM
2001 AAPL, CSCO, INTC, MSFT CAT, DWDP, MMM MRK, PFE AXP, BA,

GE, JPM,
UTX

HD, WMT CVX, XOM

2002 AAPL, CSCO, IBM, INTC,
JPM, MSFT

JNJ, MRK, PFE AXP, BA, CAT, DIS,
DWDP, GE, MMM, TRV,
UTX

HD, WMT CVX, XOM

2003 AAPL, CSCO, IBM, INTC,
MSFT

AXP, BA, CAT, DIS,
DWDP, GE, JPM, MMM,
TRV, UTX

JNJ, MRK, PFE HD, WMT CVX, XOM

2004 CSCO, IBM, INTC, MSFT AXP, BA, CAT, DIS,
DWDP, GE, JPM, UTX

HD, WMT CVX, XOM

2005 CSCO, INTC AXP, GE, JPM, UTX HD, WMT CVX, XOM
2006 AXP, GE, GS, JPM CVX, XOM
2007 AXP, DIS, DWDP, GS, HD,

JPM, TRV, WMT
BA, CAT, CSCO, IBM,
INTC, UTX

GE, MMM, MSFT, PFE, VZ CVX, XOM

2008 AAPL, AXP, CAT, CSCO,
DWDP, GE, GS, HD, IBM,
INTC, JPM, TRV, UTX

BA, CVX, DIS, JNJ, KO,
MCD, MMM, MRK, MSFT,
NKE, PFE, PG, UNH, VZ,
WMT, XOM

2009 AAPL, AXP, BA, CAT,
CSCO, DWDP, GE, GS, HD,
IBM, INTC, JPM, MMM,
NKE

CVX, DIS, JNJ, KO, MCD,
MRK, MSFT, PFE, PG,
TRV, UNH, UTX, VZ,
WMT, XOM

2010 AAPL, AXP, BA, CAT,
CSCO, GE, GS, HD, IBM,
INTC, JPM, MMM, MSFT,
NKE, TRV

CVX, DIS, DWDP, JNJ,
KO, MCD, MRK, PFE, PG,
UTX, VZ, WMT, XOM

2011 AAPL, AXP, BA, CAT,
CSCO, DIS, DWDP, GE,
GS, IBM, INTC, JPM,
MMM, MSFT, NKE, UTX

CVX, HD, JNJ, KO, MCD,
MRK, PFE, PG, TRV, UNH,
VZ, WMT, XOM

2012 AXP, BA, CAT, CSCO, DIS,
DWDP, GS, HD, IBM,
INTC, JPM, MMM, MSFT,
UTX

CVX, GE, JNJ, KO, MCD,
MRK, PFE, PG, TRV, UNH,
VZ, XOM

2013 AXP, CAT, CVX, DWDP,
GE, GS, JPM, TRV, XOM

DIS, HD, JNJ, KO, MRK,
PFE, PG

BA, INTC, MMM, UTX

2014 JNJ, MRK, PFE AXP, BA, DIS, DWDP, GS,
JPM, MMM, TRV, UTX, V

CAT, CVX, GE, XOM

2015 CSCO, INTC, MSFT BA, HD, MMM, NKE, UTX JNJ, KO, MCD, MRK, PFE,
PG, TRV, UNH, VZ

AXP, DIS,
GS, V

CAT, CVX,
GE, IBM,
JPM, XOM

2016 AXP, DIS, GS, JPM, TRV CSCO, HD, INTC, MSFT,
NKE, V

JNJ, MRK, PFE KO, PG BA, GE,
IBM, MMM,
UTX

CAT, CVX,
XOM

2017 AXP, GS, JPM KO, PG INTC, MSFT, V CVX, XOM

Table C.2: Communities disclosed by gradual forgetting, annual snapshots from
1997 through 2017
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Year
Communities

1 2 3 4 5 6

1997 CSCO, IBM, INTC, MSFT AXP, BA, DIS, DWDP, GE,
HD, JPM, WMT

CVX, JNJ, KO, MRK, PFE,
PG, XOM

1998 AXP, JPM, UTX DWDP, MMM AAPL, CSCO, IBM, INTC,
MSFT

DIS, GE,
JNJ, KO,
MCD, MRK,
PFE, PG

HD, TRV,
WMT

CVX, XOM

1999 CSCO, INTC, MSFT JNJ, MRK, PFE AXP, GE, HD, JPM, WMT CVX, XOM
2000 CSCO, INTC, MSFT AXP, GE, GS, JPM JNJ, MRK, PFE HD, WMT CVX, XOM
2001 AXP, DIS, GS, JPM AAPL, CSCO, IBM, INTC,

MSFT
MRK, PFE BA, CAT,

DWDP, GE,
HD, MMM,
UTX, WMT

CVX, XOM

2002 AAPL, CSCO, GS, IBM,
INTC, JPM, MSFT

BA, CAT, DIS, DWDP,
MMM, UTX

AXP, HD, NKE, TRV, WMT CVX, GE,
JNJ, KO,
MRK, PFE,
PG, VZ,
XOM

2003 AAPL, AXP, CSCO, IBM,
INTC, MSFT

BA, CAT, DIS, DWDP, GE,
GS, MMM, NKE, TRV,
UTX, WMT

CVX, HD, JNJ, JPM, MRK,
PFE, PG, VZ, XOM

2004 CSCO, INTC BA, UTX AXP, DIS, GS, HD, JPM,
WMT

CVX, GE,
XOM

2005 AXP, GE, GS, JPM, UTX HD, WMT CVX, XOM
2006 AXP, GS, JPM, TRV MRK, PFE CVX, XOM
2007 JNJ, KO, MRK, PFE CSCO, GE, IBM, INTC,

MSFT
AXP, DIS, GS, HD, JPM,
PG, TRV, VZ, WMT

BA, CAT,
CVX,
DWDP,
MMM, NKE,
UTX, XOM

2008 AAPL, AXP, CAT, CSCO,
DWDP, GE, GS, HD, IBM,
INTC, JPM, TRV

BA, CVX, DIS, JNJ, KO,
MCD, MMM, MRK, MSFT,
NKE, PFE, PG, UNH, UTX,
VZ, WMT, XOM

2009 CVX, JNJ, KO, MCD,
MRK, PFE, PG, TRV, UTX,
VZ, XOM

AAPL, AXP, BA, CAT,
CSCO, DIS, DWDP, GE,
GS, HD, IBM, INTC, JPM,
MMM, MSFT, NKE, V

2010 AAPL, AXP, BA, CAT,
CSCO, DIS, GE, GS, HD,
INTC, JPM, MMM, MSFT,
NKE, TRV

CVX, DWDP, IBM, JNJ,
KO, MCD, MRK, PFE, PG,
UNH, UTX, VZ, XOM

2011 AAPL, AXP, BA, CAT,
CSCO, CVX, DIS, DWDP,
GE, GS, IBM, INTC, JPM,
MMM, MSFT, NKE, UNH,
UTX, V, XOM

HD, JNJ, KO, MCD, MRK,
PFE, PG, TRV, VZ, WMT

2012 CVX, DIS, GE, HD, JNJ,
KO, MMM, MRK, PFE,
TRV

AXP, BA, CAT, DWDP, GS,
JPM, UTX, V

CSCO, IBM, INTC, MSFT,
XOM

2013 DIS, JNJ, KO, PFE, PG AXP, BA, CAT, UTX CVX, DWDP, GE, GS, JPM,
MMM, TRV, XOM

2014 INTC, MSFT DIS, DWDP, GS, JPM, NKE AXP, BA, CSCO, JNJ,
MMM, PFE, TRV, UTX, V

CAT, CVX,
GE, XOM

2015 AXP, DIS, GS, V AAPL, CSCO, IBM, INTC,
MSFT

BA, HD, JNJ, KO, MCD,
MMM, MRK, NKE, PFE,
PG, TRV, UNH, WMT

CAT, CVX,
GE, JPM,
UTX, VZ,
XOM

2016 BA, DWDP, GE, GS, IBM,
INTC, JPM, TRV, UTX

MRK, PFE AAPL, CSCO, DIS, HD,
MSFT, NKE, V

CAT, CVX,
JNJ, KO,
MMM, PG,
XOM

2017 AXP, GS, JPM MSFT, V CVX, XOM

Table C.3: Communities disclosed by sliding windows, annual snapshots from 1997
through 2017.
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Year
Communities

1 2 3 4 5 6

1997 CSCO, IBM, INTC, MSFT AXP, BA, DIS, DWDP, GE,
HD, JPM, WMT

CVX, JNJ, KO, MRK, PFE,
PG, XOM

1999 CSCO, IBM, INTC, MSFT JNJ, MRK, PFE AXP, GE, HD, JPM, KO,
PG, WMT

CVX, XOM

2001 CSCO, INTC, MSFT AXP, GE, JPM JNJ, MRK, PFE HD, WMT CVX, XOM
2003 AXP, GE, JPM DWDP, MMM CSCO, IBM, INTC, MSFT JNJ, MRK,

PFE
HD, WMT CVX, XOM

2005 CSCO, INTC, MSFT AXP, GE, JPM DWDP, MMM MRK, PFE HD, WMT CVX, XOM
2007 CSCO, INTC, MSFT AXP, GE, JPM MRK, PFE HD, WMT CVX, XOM
2009 CSCO, IBM, INTC, MSFT AXP, GE, JPM, TRV BA, CAT, DWDP, MMM,

UTX
JNJ, MRK,
PFE

HD, WMT CVX, XOM

2011 CSCO, IBM, INTC, MSFT AXP, DIS, GE, HD, JPM,
TRV, WMT

BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

CVX, XOM

2013 CSCO, IBM, INTC, MSFT AXP, DIS, GE, HD, JPM,
TRV, WMT

BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

CVX, XOM

2015 CSCO, IBM, INTC, MSFT AXP, DIS, GE, HD, JPM,
TRV, WMT

BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

CVX, XOM

2017 AXP, DIS, GE, JPM, TRV BA, CAT, DWDP, MMM,
UTX

CSCO, IBM, INTC, MSFT JNJ, MRK,
PFE

HD, WMT CVX, XOM

Table C.4: Communities disclosed by landmark window, biennual snapshots from
1997 through 2017.

Year
Communities

1 2 3 4 5 6 7

1997 CSCO, IBM, INTC,
MSFT

AXP, DIS, JNJ,
JPM, KO, MRK,
PFE

BA, GE, HD, WMT CVX, DWDP, PG,
XOM

1999 CSCO, IBM, INTC,
MSFT

JNJ, MRK, PFE AXP, GE, HD, JPM,
WMT

CVX, XOM

2001 CSCO, INTC, MSFT AXP, GE, JPM DWDP, MMM MRK, PFE BA, UTX HD, WMT CVX, XOM
2003 CSCO, IBM, INTC,

MSFT
AXP, DIS, GE, JPM BA, CAT, DWDP,

MMM, UTX
JNJ, MRK, PFE HD, WMT CVX, XOM

2005 CSCO, INTC, MSFT DWDP, MMM AXP, BA, GE, JPM,
UTX

HD, WMT CVX, XOM

2007 CSCO, IBM, INTC AXP, DWDP, GE,
JPM, TRV

BA, UTX HD, WMT CVX, XOM

2009 AAPL, AXP, BA,
CAT, CSCO, DWDP,
GE, GS, HD, IBM,
INTC, JPM, MMM,
MSFT, NKE, VZ

CVX, DIS, JNJ, KO,
MCD, MRK, PFE,
PG, TRV, UTX,
WMT, XOM

2011 AAPL, AXP, BA,
CAT, CSCO, DWDP,
GE, GS, IBM, INTC,
JPM, MSFT, NKE,
UTX

CVX, DIS, HD, JNJ,
KO, MCD, MMM,
MRK, PFE, PG,
TRV, UNH, VZ,
WMT, XOM

2013 AXP, BA, CAT, DIS,
DWDP, GE, GS, HD,
JPM, MMM, TRV

CVX, JNJ, KO,
MRK, PFE, PG,
XOM

CSCO, IBM, INTC,
MSFT, NKE, UTX

2015 AXP, BA, CAT,
CVX, DIS, DWDP,
GE, GS, JPM, UTX,
XOM

CSCO, IBM, INTC,
MMM, MSFT

HD, NKE JNJ, KO, MCD,
MRK, PFE, PG,
TRV, VZ

2017 AXP, CAT, GS,
JPM, TRV

INTC, MSFT JNJ, MRK, PFE KO, PG BA, MMM,
UTX

CVX, XOM

Table C.5: Communities disclosed by gradual forgetting, biennual snapshots from
1997 through 2017.
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Year
Communities

1 2 3 4 5 6

1997 CSCO, IBM, INTC, MSFT AXP, BA, DIS, DWDP, GE,
HD, JPM, WMT

CVX, JNJ, KO, MRK, PFE,
PG, XOM

1999 CSCO, IBM, INTC, MSFT JNJ, MRK, PFE AXP, GE, HD, JPM, WMT CVX, XOM
2001 AXP, GE, GS, JPM CSCO, INTC, MSFT CAT, DWDP, MMM JNJ, MRK,

PFE
HD, WMT CVX ,XOM

2003 AAPL, CSCO, GS, IBM,
INTC, JPM, MSFT

AXP, CVX, JNJ, KO, MRK,
NKE, PFE, PG, XOM

HD, WMT BA, CAT,
DIS, DWDP,
GE, MMM,
TRV, UTX,
VZ

2005 CSCO, INTC GS, JPM HD, WMT CVX, XOM
2007 MRK, PFE AXP, DWDP, GE, GS, JPM,

TRV
BA, UTX HD, WMT CVX, XOM

2009 AAPL, AXP, BA, CAT,
CSCO, DWDP, GE, GS, HD,
IBM, INTC, JPM, MMM,
MSFT, NKE, TRV

CVX, DIS, JNJ, KO, MCD,
MRK, PFE, PG, UNH,
UTX, VZ, WMT, XOM

2011 AAPL, AXP, BA, CAT,
CSCO, DIS, DWDP, GE,
GS, INTC, JPM, MMM,
MSFT, NKE, UTX, V

CVX, HD, IBM, JNJ, KO,
MCD, MRK, PFE, PG,
TRV, UNH, VZ, WMT,
XOM

2013 AXP, DWDP, GE, GS, JPM,
V

DIS, KO, TRV, XOM BA, CAT, CVX, INTC,
MMM, UTX

JNJ, MRK,
PFE, PG

2015 CSCO, INTC, MSFT JNJ, KO, MRK, PFE, PG,
TRV, UNH

HD, MCD, MMM, NKE AXP, BA,
DIS, GS,
IBM, JPM,
UTX, V

CAT, CVX,
GE, XOM

2017 CAT, DWDP, GS, JPM MRK, PFE KO, PG INTC,
MSFT, V

CVX, XOM

Table C.6: Communities disclosed by sliding windows, biennual snapshots from 1997
through 2017.
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Year
Communities

1 2 3 4 5 6

Jun 1997 AXP, DWDP, GE, JPM,
MMM

CSCO, INTC, MSFT JNJ, KO, MRK, PFE, PG CVX, XOM

Dec 1997 CSCO, IBM, INTC, MSFT AXP, BA, DIS, DWDP, GE,
HD, JPM, WMT

CVX, JNJ, KO, MRK, PFE,
PG, XOM

Jun 1998 AXP, JPM CSCO, IBM, INTC, MSFT DIS, GE, JNJ, KO, MRK,
PFE, PG, WMT

CVX, XOM

Dec 1998 CSCO, IBM, INTC, MSFT AXP, DIS, GE, HD, JPM,
MRK, PFE, WMT

JNJ, KO, PG CVX, XOM

Jun 1999 JNJ, MRK, PFE CSCO, IBM, INTC, MSFT AXP, JPM GE, HD,
KO, PG,
WMT

CVX, XOM

Dec 1999 CSCO, IBM, INTC, MSFT JNJ, MRK, PFE AXP, GE, HD, JPM, KO,
PG, WMT

CVX, XOM

Jun 2000 CSCO, INTC, MSFT JNJ, MRK, PFE AXP, GE, HD, JPM, WMT CVX, XOM
Dec 2000 CSCO, INTC, MSFT AXP, GE, JPM JNJ, MRK, PFE HD, WMT CVX, XOM
Jun 2001 CSCO, INTC, MSFT AXP, GE, JPM JNJ, MRK, PFE HD, WMT CVX, XOM
Dec 2001 CSCO, INTC, MSFT AXP, GE, JPM JNJ, MRK, PFE HD, WMT CVX, XOM
Jun 2002 CSCO, INTC, MSFT AXP, GE, JPM JNJ, MRK, PFE HD, WMT CVX, XOM
Dec 2002 CSCO, INTC, MSFT AXP, GE, JPM DWDP, MMM JNJ, MRK,

PFE
HD, WMT CVX, XOM

Jun 2003 AXP, GE, JPM DWDP, MMM CSCO, IBM, INTC, MSFT JNJ, MRK,
PFE

HD, WMT CVX, XOM

Dec 2003 AXP, GE, JPM DWDP, MMM CSCO, IBM, INTC, MSFT JNJ, MRK,
PFE

HD, WMT CVX, XOM

Jun 2004 AXP, GE, JPM DWDP, MMM CSCO, IBM, INTC, MSFT JNJ, MRK,
PFE

HD, WMT CVX, XOM

Dec 2004 AXP, GE, JPM DWDP, MMM CSCO, IBM, INTC, MSFT MRK, PFE HD, WMT CVX, XOM
Jun 2005 CSCO, INTC, MSFT AXP, GE, JPM DWDP, MMM MRK, PFE HD, WMT CVX, XOM
Dec 2005 CSCO, INTC, MSFT AXP, GE, JPM DWDP, MMM MRK, PFE HD, WMT CVX, XOM
Jun 2006 CSCO, INTC, MSFT AXP, GE, JPM DWDP, MMM MRK, PFE HD, WMT CVX, XOM
Dec 2006 CSCO, INTC, MSFT AXP, GE, JPM MRK, PFE HD, WMT CVX, XOM
Jun 2007 CSCO, INTC, MSFT AXP, GE, JPM MRK, PFE HD, WMT CVX, XOM
Dec 2007 CSCO, INTC, MSFT AXP, GE, JPM MRK, PFE HD, WMT CVX, XOM
Jun 2008 CSCO, INTC, MSFT AXP, GE, JPM DWDP, MMM MRK, PFE HD, WMT CVX, XOM
Dec 2008 CSCO, IBM, INTC, MSFT AXP, GE, HD, JPM, TRV,

WMT
CAT, DWDP, MMM JNJ, MRK,

PFE
BA, UTX CVX, XOM

Jun 2009 CSCO, IBM, INTC, MSFT AXP, GE, JPM, TRV BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

HD, WMT CVX, XOM

Dec 2009 CSCO, IBM, INTC, MSFT AXP, GE, JPM, TRV BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

HD, WMT CVX, XOM

Jun 2010 CSCO, IBM, INTC, MSFT AXP, DIS, GE, JPM, TRV BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

HD, WMT CVX, XOM

Dec 2010 CSCO, IBM, INTC, MSFT AXP, DIS, GE, HD, JPM,
TRV, WMT

BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

CVX, XOM

Jun 2011 CSCO, IBM, INTC, MSFT AXP, DIS, GE, JPM, TRV BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

HD, WMT CVX, XOM

Dec 2011 CSCO, IBM, INTC, MSFT AXP, DIS, GE, HD, JPM,
TRV, WMT

BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

CVX, XOM

Jun 2012 CSCO, IBM, INTC, MSFT AXP, DIS, GE, HD, JPM,
TRV, WMT

BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

CVX, XOM

Dec 2012 CSCO, IBM, INTC, MSFT AXP, DIS, GE, HD, JPM,
TRV, WMT

BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

CVX, XOM

Jun 2013 CSCO, IBM, INTC, MSFT AXP, DIS, GE, HD, JPM,
TRV, WMT

BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

CVX, XOM

Dec 2013 CSCO, IBM, INTC, MSFT AXP, DIS, GE, HD, JPM,
TRV, WMT

BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

CVX, XOM

Jun 2014 CSCO, IBM, INTC, MSFT AXP, DIS, GE, HD, JPM,
TRV, WMT

BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

CVX, XOM

Dec 2014 CSCO, IBM, INTC, MSFT AXP, DIS, GE, HD, JPM,
TRV, WMT

BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

CVX, XOM

Jun 2015 CSCO, IBM, INTC, MSFT AXP, DIS, GE, HD, JPM,
TRV, WMT

BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

CVX, XOM

Dec 2015 CSCO, IBM, INTC, MSFT AXP, DIS, GE, HD, JPM,
TRV, WMT

BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

CVX, XOM

Jun 2016 CSCO, IBM, INTC, MSFT AXP, DIS, GE, HD, JPM,
TRV, WMT

BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

CVX, XOM

Dec 2016 CSCO, IBM, INTC, MSFT AXP, DIS, GE, JPM, TRV BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

HD, WMT CVX, XOM

Jun 2017 CSCO, IBM, INTC, MSFT AXP, DIS, GE, JPM, TRV BA, CAT, DWDP, MMM,
UTX

JNJ, MRK,
PFE

HD, WMT CVX, XOM

Dec 2017 AXP, DIS, GE, JPM, TRV BA, CAT, DWDP, MMM,
UTX

CSCO, IBM, INTC, MSFT JNJ, MRK,
PFE

HD, WMT CVX, XOM

Table C.7: Communities disclosed by landmark window, semestral snapshots from
1997 through 2017.
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Year
Communities

1 2 3 4 5 6

Jun 1997 AXP, DIS, GE, JPM, MMM CSCO, INTC, MSFT DWDP, JNJ, KO, MRK,
PFE, PG

CVX, XOM

Dec 1997 CSCO, IBM, INTC, MSFT AXP, DIS, JNJ, JPM, KO,
MRK, PFE, UTX

BA, CVX, DWDP, GE, HD,
MCD, PG, WMT, XOM

Jun 1998 CSCO, INTC, MSFT AXP, JPM GE, JNJ, KO, MRK, PFE,
PG, WMT

CVX, XOM

Dec 1998 DWDP, MMM CSCO, IBM, INTC, MSFT,
PFE

GE, JNJ, KO, MCD, MRK,
PG

AXP, HD,
JPM, TRV,
UTX, WMT

CVX, XOM

Jun 1999 CSCO, IBM, INTC, MSFT GE, JNJ, MRK, PFE AXP, HD, JPM, WMT CVX, XOM
Dec 1999 AXP, GE, JPM INTC, MSFT JNJ, MRK, PFE HD, WMT CVX, XOM
Jun 2000 AAPL, CSCO, INTC, MSFT DWDP, MMM JNJ, MRK, PFE AXP, GE,

HD, JPM,
WMT

CVX, XOM

Dec 2000 CSCO, INTC, MSFT AXP, GE, JPM JNJ, MRK HD, WMT CVX, XOM
Jun 2001 CAT, DWDP AAPL, CSCO, INTC, MSFT AXP, GE, JPM MRK, PFE HD, WMT CVX, XOM
Dec 2001 AAPL, CSCO, IBM, INTC,

MSFT
AXP, BA, CAT, DIS,
DWDP, GE, JPM, MMM,
UTX

HD, WMT CVX, XOM

Jun 2002 AXP, DIS, GE, GS, JPM BA, CAT, DWDP, MMM,
UTX

AAPL, CSCO, IBM, INTC,
MSFT

MRK, PFE HD, WMT CVX, XOM

Dec 2002 AAPL, CSCO, DIS, GS,
IBM, INTC, JPM, MSFT

AXP, BA, CAT, DWDP,
MMM, NKE, TRV, UTX

CVX, GE, HD, JNJ, MRK,
PFE, VZ, WMT, XOM

Jun 2003 AAPL, CSCO, GE, GS,
IBM, INTC, MSFT

BA, CAT, DIS, DWDP,
JPM, TRV, UTX, VZ

HD, KO, MMM, NKE, PG,
WMT

AXP, CVX,
JNJ, MRK,
PFE, XOM

Dec 2003 AAPL, CSCO, GS, IBM,
INTC, JPM, MSFT, TRV

JNJ, MRK, PFE HD, WMT AXP, BA,
CAT, CVX,
DIS, DWDP,
GE, MMM,
UTX, XOM

Jun 2004 CSCO, IBM, INTC, MSFT AXP, CAT, DIS, DWDP,
GE, GS, JPM, MMM, TRV

JNJ, MRK, PFE BA, UTX HD, WMT CVX, XOM

Dec 2004 CSCO, INTC AXP, DIS, DWDP, GE, GS,
JPM

BA, UTX HD, WMT CVX, XOM

Jun 2005 HD, IBM, NKE, WMT CSCO, INTC AXP, DWDP, GE, GS, JPM,
MMM, UTX

CVX, XOM

Dec 2005 AXP, GS, JPM CAT, UTX HD, WMT CVX, XOM
Jun 2006 AXP, GE, GS, JPM, KO HD, WMT CVX, XOM
Dec 2006 AXP, GS, JPM, TRV CVX, XOM
Jun 2007 AXP, DIS, VZ DWDP, GS, JPM, TRV,

UTX
CVX, XOM

Dec 2007 AAPL, CSCO, GE, IBM,
INTC, MSFT, PG

BA, CAT, CVX, DIS,
DWDP, KO, MMM, NKE,
UTX, XOM

AXP, GS, HD, JPM, MRK,
PFE, TRV, VZ, WMT

Jun 2008 CSCO, IBM, INTC, MSFT GE, JNJ, KO, PFE, PG, VZ AXP, DIS, GS, HD, JPM,
NKE, TRV, WMT

BA, CAT,
CVX,
DWDP,
MMM, UTX,
XOM

Dec 2008 AAPL, AXP, CAT, CSCO,
DWDP, GE, GS, HD, IBM,
INTC, JPM, NKE, TRV, VZ

BA, CVX, DIS, JNJ, KO,
MCD, MMM, MRK, MSFT,
PFE, PG, UNH, UTX,
WMT, XOM

Jun 2009 AAPL, AXP, BA, CAT,
CSCO, DWDP, GE, GS, HD,
IBM, INTC, JPM, MMM,
MSFT, NKE, UTX

CVX, DIS, JNJ, KO, MCD,
MRK, PFE, PG, TRV, UNH,
VZ, WMT, XOM

Dec 2009 AAPL, AXP, CAT, CSCO,
DWDP, GE, GS, IBM,
INTC, JPM, MMM, MSFT

CVX, DIS, JNJ, KO, MRK,
PFE, PG, TRV, VZ, XOM

BA, HD, MCD, NKE, UTX,
WMT

Jun 2010 CVX, DIS, DWDP, JNJ,
KO, MCD, MRK, PG, VZ,
WMT, XOM

AAPL, AXP, BA, CAT,
CSCO, GE, GS, HD, IBM,
INTC, JPM, MMM, MSFT,
NKE, PFE, TRV, UTX

Dec 2010 GE, GS, JPM, TRV CSCO, CVX, DWDP, JNJ,
KO, MCD, MRK, PFE, PG,
UNH, UTX, VZ, XOM

AAPL, AXP, BA, CAT, DIS,
HD, IBM, INTC, MMM,
MSFT, NKE

Jun 2011 INTC, JNJ, MMM, TRV,
UTX

MRK, PFE AXP, GE, GS, HD, JPM, VZ AAPL, BA,
CAT, CVX,
DIS, DWDP,
IBM, KO,
MSFT, XOM

Dec 2011 CVX, HD, JNJ, KO, MCD,
MRK, NKE, PFE, PG, TRV,
UNH, VZ, WMT, XOM

AAPL, AXP, BA, CAT,
CSCO, DIS, DWDP, GE,
GS, IBM, INTC, JPM,
MMM, MSFT, UTX, V

Continued on next page

Table C.8: Communities disclosed by gradual forgetting, semestral snapshots from
1997 through 2017.
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Continued from previous page

Year
Communities

1 2 3 4 5 6

Jun 2012 CVX, GE, JNJ, KO, MCD,
MMM, MRK, PFE, PG,
TRV, UNH, VZ, XOM

AAPL, AXP, BA, CAT,
CSCO, DIS, DWDP, GS,
HD, IBM, INTC, JPM,
MSFT, UTX, V

Dec 2012 CAT, CSCO, GE, HD, IBM,
INTC, MMM, MSFT, UTX,
V

AXP, BA, DIS, DWDP, GS,
JPM, TRV

CVX, JNJ, KO, MRK, PFE,
PG, UNH, VZ, XOM

Jun 2013 AXP, CAT, CVX, DWDP,
GE, GS, IBM, JPM, TRV,
XOM

DIS, JNJ, KO, MRK, PFE,
PG

BA, HD, INTC, MMM,
MSFT, UTX, V

Dec 2013 JNJ, KO, PFE, PG AXP, BA, GS, JPM, UTX CAT, CVX, DIS, DWDP,
GE, MMM, TRV, XOM

Jun 2014 AXP, GE, GS, JPM, V DIS, NKE DWDP, MMM, TRV BA, CAT,
CVX, JNJ,
UTX, XOM

Dec 2014 JNJ, MRK, PFE, UNH BA, CSCO, INTC, MMM,
MSFT, TRV, UTX

AXP, DIS, DWDP, GS, HD,
JPM, V

CAT, CVX,
GE, XOM

Jun 2015 BA, CSCO, IBM, JNJ, KO,
MMM, MRK, PFE, PG,
TRV, UNH

AXP, DIS, GS, UTX, V HD, NKE, WMT CAT, CVX,
GE, JPM,
XOM

Dec 2015 AXP, DIS, JNJ, JPM, PFE,
TRV, UNH

AAPL, BA, CSCO, KO,
MCD, MMM, MRK, MSFT,
PG, UTX, V, VZ

HD, NKE, WMT CAT, CVX,
GE, GS,
IBM, INTC,
XOM

Jun 2016 AXP, BA, CAT, CVX,
DWDP, GE, GS, IBM, JPM,
MMM, UTX, XOM

AAPL, CSCO, DIS, HD,
INTC, MSFT, NKE, V

MRK, PFE, UNH JNJ, KO,
MCD, PG,
TRV, VZ

Dec 2016 CSCO, INTC, MSFT, V JNJ, MRK, PFE KO, PG GE, HD,
IBM, MMM,
NKE, TRV,
UTX

AXP, BA,
CAT, GS,
JPM

CVX, XOM

Jun 2017 AXP, GS, JPM MRK, PFE BA, MMM, UTX INTC,
MSFT, V

CVX, XOM

Dec 2017 AXP, GS, JPM INTC, MSFT, V CVX, XOM

Table C.8 (cont): Communities disclosed by gradual forgetting, semestral snapshots
from 1997 through 2017.
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Year
Communities

1 2 3 4 5 6

Jun 1997 AXP, DWDP, GE, JPM,
MMM

CSCO, INTC, MSFT JNJ, KO, MRK, PFE, PG CVX, XOM

Dec 1997 BA, CSCO, GE, IBM,
INTC, KO, MCD, MSFT

JNJ, MRK, PFE, TRV AXP, CAT, HD, JPM, UTX,
WMT

CVX, DIS,
DWDP, PG,
XOM

Jun 1998 AXP, JPM CSCO, INTC, MSFT GE, JNJ, KO, MRK, PG,
WMT

BA, UTX CVX, XOM

Dec 1998 AAPL, CSCO, IBM, INTC,
MSFT, UTX

DIS, HD, JPM, MCD AXP, DWDP, MMM, TRV GE, JNJ,
KO, MRK,
PFE, PG,
WMT

CVX, XOM

Jun 1999 CAT, DWDP AXP, IBM, JPM GE, JNJ, MRK, PFE CSCO,
INTC,
MSFT

HD, WMT CVX, XOM

Dec 1999 AXP, GE, GS, HD, JPM INTC, MSFT JNJ, MRK, PFE CVX, XOM
Jun 2000 CAT, DWDP, MMM AAPL, CSCO, IBM, INTC,

MSFT
JNJ, MRK, PFE AXP, GE,

HD, JPM,
WMT

CVX, XOM

Dec 2000 CSCO, INTC, MSFT AXP, GE, JPM JNJ, MRK CVX, XOM
Jun 2001 BA, CAT, DWDP, MMM,

UTX
AAPL, CSCO, IBM, INTC,
MSFT

AXP, DIS, GE, GS, JPM MRK, PFE HD, WMT CVX, XOM

Dec 2001 AAPL, CAT, CSCO, GS,
IBM, INTC, JPM, MMM,
MSFT, WMT

MRK, PFE AXP, BA, DIS, DWDP, GE,
HD, NKE, TRV, UTX

CVX, XOM

Jun 2002 AAPL, CSCO, IBM, INTC,
MSFT

BA, CAT, DWDP, MMM,
UTX

KO, PG DIS, VZ HD, PFE,
WMT

AXP, CVX,
GE, GS,
JPM, XOM

Dec 2002 AAPL, CSCO, DIS, GS,
IBM, INTC, JPM, MSFT,
VZ

AXP, BA, CAT, CVX,
DWDP, GE, MRK, NKE,
PFE, TRV, UTX, XOM

HD, JNJ, KO, MMM, PG,
WMT

Jun 2003 AAPL, CAT, CSCO, GE,
GS, HD, IBM, INTC, MMM,
MSFT, NKE, WMT

AXP, BA, CVX, DIS,
DWDP, JNJ, JPM, KO,
MRK, PFE, PG, TRV, UNH,
UTX, VZ, XOM

Dec 2003 JNJ, MRK, PFE AAPL, CAT, CSCO, GS,
IBM, INTC, MSFT, UTX,
WMT

AXP, CVX, DWDP, GE,
JPM, XOM

Jun 2004 AXP, DIS, GS, HD, JPM,
WMT

CSCO, INTC, MSFT JNJ, MRK, PFE BA, UTX CAT, CVX,
GE, MMM,
XOM

Dec 2004 CSCO, DWDP, GE, GS,
JPM

AXP, DIS, VZ HD, WMT CVX, XOM

Jun 2005 DWDP, GS, HD, IBM, JPM,
MMM, NKE, UTX

AXP, CSCO, DIS, GE,
INTC, JNJ, MSFT

MRK, PFE TRV, VZ CVX, XOM

Dec 2005 AXP, GS, JPM CAT, GE, KO, MMM, UTX HD, WMT CVX, XOM
Jun 2006 GE, JNJ AXP, CAT, DWDP, GS,

JPM, MMM
CSCO, KO, MRK, PFE, PG,
VZ

CVX, XOM

Dec 2006 GE, IBM, INTC AXP, TRV GS, JPM, UTX, WMT CVX, XOM
Jun 2007 CSCO, INTC HD, JNJ, JPM, KO, PFE,

TRV, WMT
AXP, BA, DWDP, GS, UTX,
VZ

CAT, CVX,
DIS, GE,
MSFT, PG,
XOM

Dec 2007 AAPL, CSCO, DIS, IBM,
INTC, MMM, MSFT, PFE

AXP, GE, GS, HD, JNJ,
JPM, MRK, NKE, TRV,
WMT

CVX, KO, PG, VZ, XOM BA, CAT,
DWDP,
MCD, UTX

Jun 2008 CSCO, DIS, IBM, INTC,
MCD, MSFT

JNJ, KO, MMM, PFE, PG,
TRV, VZ

AXP, GE, GS, HD, JPM,
NKE, WMT

BA, CAT,
CVX,
DWDP,
UTX, XOM

Dec 2008 AAPL, AXP, CAT, CSCO,
DWDP, GE, GS, HD, IBM,
INTC, JPM, TRV, V

BA, CVX, DIS, JNJ, KO,
MCD, MMM, MRK, MSFT,
NKE, PFE, PG, UNH, UTX,
VZ, WMT, XOM

Jun 2009 CVX, DIS, JNJ, KO, MCD,
MRK, PFE, PG, TRV, UNH,
XOM

AAPL, AXP, BA, CAT,
CSCO, DWDP, GE, GS, HD,
IBM, INTC, JPM, MMM,
MSFT, NKE, UTX, V, VZ

Dec 2009 AAPL, AXP, CSCO, GS,
IBM, INTC, JPM, TRV

CVX, JNJ, MRK, PFE, PG,
VZ, XOM

BA, CAT, DIS, DWDP, GE,
HD, MMM, MSFT, UTX

Jun 2010 CVX, IBM, JNJ, KO, MCD,
MSFT, PG, TRV, UTX, VZ,
WMT, XOM

AAPL, AXP, BA, CAT,
CSCO, DIS, DWDP, GE,
GS, HD, INTC, JPM, MMM,
MRK, NKE, PFE, V

Dec 2010 AXP, CSCO, DIS, GE, GS,
IBM, INTC, JPM, MSFT,
TRV

CVX, JNJ, MCD, MRK,
PFE, PG, UNH, XOM

AAPL, BA, CAT, DWDP,
HD, KO, MMM, NKE, UTX,
VZ, WMT

Jun 2011 BA, HD, IBM, INTC, KO,
MSFT, UTX, WMT

AXP, DIS, GE, GS, JPM,
VZ

CAT, CVX, DWDP, JNJ,
MMM, TRV, XOM

Dec 2011 AAPL, AXP, BA, CAT,
CSCO, CVX, DIS, DWDP,
GE, GS, HD, IBM, INTC,
JNJ, JPM, KO, MCD,
MMM, MRK, MSFT, NKE,
PFE, PG, TRV, UNH, UTX,
V, VZ, WMT, XOM

Continued on next page

Table C.9: Communities disclosed by sliding windows, semestral snapshots from
1997 through 2017.
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Continued from previous page

Year
Communities

1 2 3 4 5 6

Jun 2012 AAPL, BA, V AXP, CAT, DIS, DWDP,
GS, HD, JPM, UTX

CSCO, CVX, IBM, INTC,
JNJ, KO, MSFT, XOM

GE, MMM,
MRK, PFE,
TRV

Dec 2012 JNJ, KO, MCD, MRK, PFE,
PG, TRV, VZ

BA, CAT, CSCO, CVX,
DIS, DWDP, IBM, INTC,
MMM, MSFT, UTX, XOM

AXP, GE, GS, HD, JPM, V

Jun 2013 AXP, BA, CAT, CVX,
DWDP, GS, JPM, MMM,
TRV, UTX, V, XOM

GE, IBM DIS, HD, JNJ, KO, PFE, PG

Dec 2013 GE, JNJ, KO, PFE, PG,
WMT

AXP, BA, DIS, DWDP, GS,
JPM, MMM, TRV, UTX

CVX, XOM

Jun 2014 BA, CAT, UTX AXP, DIS, GS, JPM, NKE,
V

CVX, DWDP, GE, JNJ,
MMM, TRV, WMT, XOM

Dec 2014 AXP, DWDP, HD, NKE,
PG, V, VZ, WMT

CSCO, INTC, MMM, MSFT DIS, GS, JNJ, MRK, PFE,
UNH

BA, CAT,
CVX, GE,
JPM, TRV,
UTX, XOM

Jun 2015 CSCO, IBM, JNJ, KO,
MCD, MMM, MRK, MSFT,
NKE, PG

DIS, GS, PFE, TRV, UTX,
V, VZ

AAPL, BA, HD, UNH,
WMT

CAT, CVX,
JPM, XOM

Dec 2015 AXP, BA, DIS, GS, HD,
JNJ, JPM, NKE, PFE, TRV,
UNH, V, WMT

AAPL, CAT, CSCO, CVX,
DWDP, GE, IBM, INTC,
KO, MCD, MMM, MRK,
MSFT, PG, UTX, VZ, XOM

Jun 2016 BA, CAT, DIS, DWDP, GE,
IBM, MMM, UTX

AAPL, GS, HD, INTC,
JPM, MCD, MRK, MSFT,
NKE, PFE, UNH, V

KO, PG, TRV, VZ CSCO, CVX,
JNJ, XOM

Dec 2016 JNJ, MRK, PFE KO, PG, VZ AXP, CAT, GS, JPM CSCO, IBM,
INTC,
MSFT, V

BA, CVX,
GE, HD,
MMM, UTX,
XOM

Jun 2017 AXP, GS, JPM INTC, MSFT, V CVX, XOM
Dec 2017 AAPL, INTC, MSFT, V CVX, XOM

Table C.9 (cont): Communities disclosed by sliding windows, semestral snapshots
from 1997 through 2017.
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Appendix D

Frequent item sets and association

rules in communities

stock-set Support

CSCO,INTC,MSFT 0.33
AXP,GE,JPM 0.33
CSCO,IBM,INTC,MSFT 0.24
DWDP,MMM 0.22
CAT,DWDP,MMM 0.16
BA,DWDP 0.16
AXP,GE,JPM,TRV 0.16
AXP,DIS,GE,JPM 0.16
AXP,GE,HD,JPM,WMT 0.16

Table D.1: Frequent stock-sets in communities disclosed by landmark window, an-
nual snapshots from 1997 through 2017.

Rule Support Con�dence Lift

AXP,GE,JPM,WMT ⇒ HD 0.16 1.00 6.30
AXP,GE,HD,JPM ⇒ WMT 0.16 1.00 6.30
CAT,DWDP ⇒ MMM 0.16 1.00 4.50
DWDP,MMM ⇒ CAT 0.16 0.71 4.50
BA ⇒ DWDP 0.16 1.00 4.20
DWDP ⇒ BA 0.16 0.67 4.20
CAT,MMM ⇒ DWDP 0.16 1.00 4.20
CSCO,IBM,MSFT ⇒ INTC 0.24 1.00 3.00
CSCO,IBM,INTC ⇒ MSFT 0.24 1.00 3.00
IBM,INTC,MSFT ⇒ CSCO 0.24 1.00 3.00
CSCO,INTC,MSFT ⇒ IBM 0.24 0.71 3.00
GE,JPM,TRV ⇒ AXP 0.16 1.00 3.00
AXP,JPM,TRV ⇒ GE 0.16 1.00 3.00
AXP,GE,TRV ⇒ JPM 0.16 1.00 3.00
DIS,GE,JPM ⇒ AXP 0.16 1.00 3.00
AXP,DIS,JPM ⇒ GE 0.16 1.00 3.00
AXP,DIS,GE ⇒ JPM 0.16 1.00 3.00
GE,HD,JPM,WMT ⇒ AXP 0.16 1.00 3.00
AXP,HD,JPM,WMT ⇒ GE 0.16 1.00 3.00
AXP,GE,HD,WMT ⇒ JPM 0.16 1.00 3.00

Table D.2: Association rules in communities disclosed by the landmark window,
annual snapshots from 1997 through 2017.

104



stock-set Support

CSCO,INTC 0.30
AXP,JPM 0.30
MRK,PFE 0.28
JNJ,MRK,PFE 0.26
INTC,MSFT 0.25
CSCO,INTC,MSFT 0.23
CSCO,IBM,INTC 0.19
AXP,GS,JPM 0.19
AXP,GE 0.19
BA,MMM 0.18
AXP,DWDP 0.18
BA,UTX 0.18
AXP,GE,JPM 0.18
KO,PG 0.16
JNJ,KO,MRK,PFE 0.16
AXP,CAT 0.16
CAT,GE 0.16
CAT,DWDP 0.16
AXP,DWDP,JPM 0.16
AXP,DIS 0.16

Table D.3: Frequent stock-sets in communities disclosed by gradual forgetting, an-
nual snapshots from 1997 through 2017.

Rule Support Con�dence Lift

PG ⇒ KO 0.16 1.00 5.70
KO ⇒ PG 0.16 0.90 5.70
KO,MRK,PFE ⇒ JNJ 0.16 1.00 3.80
JNJ,KO,PFE ⇒ MRK 0.16 1.00 3.56
JNJ,MRK,PFE ⇒ KO 0.16 0.60 3.42
MMM ⇒ BA 0.18 0.77 3.37
BA ⇒ MMM 0.18 0.77 3.37
IBM,INTC ⇒ CSCO 0.19 1.00 3.35
CSCO,INTC ⇒ IBM 0.19 0.65 3.35
AXP,JPM ⇒ GS 0.19 0.65 3.35
JNJ,KO,MRK ⇒ PFE 0.16 1.00 3.35
CAT ⇒ DWDP 0.16 0.75 3.29
DWDP ⇒ CAT 0.16 0.69 3.29
GS,JPM ⇒ AXP 0.19 1.00 3.17
AXP,GS ⇒ JPM 0.19 1.00 3.17
DWDP,JPM ⇒ AXP 0.16 1.00 3.17
GE,JPM ⇒ AXP 0.18 1.00 3.17
BA ⇒ UTX 0.18 0.77 3.13
UTX ⇒ BA 0.18 0.71 3.13
INTC,MSFT ⇒ CSCO 0.23 0.93 3.11
CSCO,IBM ⇒ INTC 0.19 1.00 3.00
CSCO,MSFT ⇒ INTC 0.23 1.00 3.00
AXP,GE ⇒ JPM 0.18 0.91 2.88
AXP,DWDP ⇒ JPM 0.16 0.90 2.85
CAT ⇒ GE 0.16 0.75 2.67
GE ⇒ CAT 0.16 0.56 2.67
CSCO,INTC ⇒ MSFT 0.23 0.76 2.56
CAT ⇒ AXP 0.16 0.75 2.38
AXP ⇒ CAT 0.16 0.50 2.38
AXP,JPM ⇒ DWDP 0.16 0.53 2.32
AXP,JPM ⇒ GE 0.18 0.59 2.10
DIS ⇒ AXP 0.16 0.64 2.04
AXP ⇒ DIS 0.16 0.50 2.04

Table D.4: Association rules in communities disclosed by gradual forgetting, annual
snapshots from 1997 through 2017.
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stock-set Support

GS,JPM 0.27
CSCO,INTC 0.25
AXP,JPM 0.25
MRK,PFE 0.24
INTC,MSFT 0.24
CSCO,MSFT 0.24
JNJ,PFE 0.22
CSCO,INTC,MSFT 0.22
AXP,GS 0.22
IBM,INTC 0.20
AXP,GS,JPM 0.20
JNJ,MRK,PFE 0.19
CSCO,IBM,INTC 0.19
CVX,XOM 0.17
AAPL,CSCO 0.17
CSCO,IBM,INTC,MSFT 0.17
GE,JPM 0.17
JNJ,KO,PFE 0.15
AAPL,CSCO,INTC 0.15
AAPL,CSCO,MSFT 0.15
BA,UTX 0.15
GE,GS 0.15
DIS,GS 0.15

Table D.5: Frequent stock-sets in communities disclosed by sliding windows, annual
snapshots from 1997 through 2017.

Rule Support Con�dence Lift

XOM ⇒ CVX 0.17 0.91 4.88
CVX ⇒ XOM 0.17 0.91 4.88
KO,PFE ⇒ JNJ 0.15 1.00 4.54
JNJ,PFE ⇒ KO 0.15 0.69 4.54
CSCO,MSFT ⇒ AAPL 0.15 0.64 3.79
JNJ,KO ⇒ PFE 0.15 1.00 3.69
JNJ,MRK ⇒ PFE 0.19 1.00 3.69
MRK,PFE ⇒ JNJ 0.19 0.79 3.57
JNJ,PFE ⇒ MRK 0.19 0.85 3.57
CSCO,INTC ⇒ AAPL 0.15 0.60 3.54
CSCO,INTC,MSFT ⇒ IBM 0.17 0.77 3.49
AAPL,INTC ⇒ CSCO 0.15 1.00 3.47
AAPL,MSFT ⇒ CSCO 0.15 1.00 3.47
IBM,INTC,MSFT ⇒ CSCO 0.17 1.00 3.47
CSCO,IBM,MSFT ⇒ INTC 0.17 1.00 3.47
CSCO,IBM,INTC ⇒ MSFT 0.17 0.91 3.16
UTX ⇒ BA 0.15 0.69 3.14
BA ⇒ UTX 0.15 0.69 3.14
AAPL,CSCO ⇒ INTC 0.15 0.90 3.12
AAPL,CSCO ⇒ MSFT 0.15 0.90 3.12
AXP,GS ⇒ JPM 0.20 0.92 2.72
AXP,JPM ⇒ GS 0.20 0.80 2.62
GE ⇒ GS 0.15 0.69 2.27
GS ⇒ GE 0.15 0.50 2.27
GE ⇒ JPM 0.17 0.77 2.27
JPM ⇒ GE 0.17 0.50 2.27
GS,JPM ⇒ AXP 0.20 0.75 2.21
DIS ⇒ GS 0.15 0.60 1.97
GS ⇒ DIS 0.15 0.50 1.97

Table D.6: Association rules in communities disclosed by sliding windows, annual
snapshots from 1997 through 2017.

stock-set Support

CSCO,INTC,MSFT 0.33
AXP,GE,JPM 0.33
CSCO,IBM,INTC,MSFT 0.24
DWDP,MMM 0.21
BA,DWDP 0.18
BA,CAT,DWDP,MMM,UTX 0.15
AXP,GE,JPM,TRV 0.15
AXP,DIS,GE,JPM 0.15
AXP,GE,HD,JPM,WMT 0.15

Table D.7: Frequent stock-sets in communities disclosed by landmark window, bi-
ennual snapshots from 1997 through 2017.
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Rule Support Con�dence Lift

BA,DWDP,MMM,UTX ⇒ CAT 0.15 1.00 6.60
BA,CAT,DWDP,MMM ⇒ UTX 0.15 1.00 6.60
AXP,GE,JPM,WMT ⇒ HD 0.15 1.00 6.60
AXP,GE,HD,JPM ⇒ WMT 0.15 1.00 6.60
CAT,DWDP,MMM,UTX ⇒ BA 0.15 1.00 5.50
BA,CAT,DWDP,UTX ⇒ MMM 0.15 1.00 4.71
BA,CAT,MMM,UTX ⇒ DWDP 0.15 1.00 4.13
GE,JPM,TRV ⇒ AXP 0.15 1.00 3.00
AXP,JPM,TRV ⇒ GE 0.15 1.00 3.00
AXP,GE,TRV ⇒ JPM 0.15 1.00 3.00
CSCO,IBM,MSFT ⇒ INTC 0.24 1.00 3.00
CSCO,IBM,INTC ⇒ MSFT 0.24 1.00 3.00
IBM,INTC,MSFT ⇒ CSCO 0.24 1.00 3.00
CSCO,INTC,MSFT ⇒ IBM 0.24 0.73 3.00
DIS,GE,JPM ⇒ AXP 0.15 1.00 3.00
AXP,DIS,JPM ⇒ GE 0.15 1.00 3.00
AXP,DIS,GE ⇒ JPM 0.15 1.00 3.00
GE,HD,JPM,WMT ⇒ AXP 0.15 1.00 3.00
AXP,HD,JPM,WMT ⇒ GE 0.15 1.00 3.00
AXP,GE,HD,WMT ⇒ JPM 0.15 1.00 3.00

Table D.8: Association rules in communities disclosed by the landmark window,
biennual snapshots from 1997 through 2017.

stock-set Support

AXP,JPM 0.35
INTC,MSFT 0.32
CSCO,INTC 0.32
CSCO,INTC,MSFT 0.29
AXP,GE,JPM 0.29
CSCO,IBM,INTC 0.26
CSCO,IBM,INTC,MSFT 0.23
JNJ,MRK,PFE 0.19
BA,GE 0.19
BA,UTX 0.16
DWDP,MMM 0.16
AXP,CAT,GS,JPM 0.16
BA,CAT,DWDP 0.16
AXP,DWDP,GE,JPM 0.16
AXP,BA,GE,JPM 0.16

Table D.9: Frequent stock-sets in communities disclosed by gradual forgetting, bi-
ennual snapshots from 1997 through 2017.

Rule Support Con�dence Lift

AXP,CAT,JPM ⇒ GS 0.16 1.00 6.20
JNJ,MRK ⇒ PFE 0.19 1.00 5.17
JNJ,PFE ⇒ MRK 0.19 1.00 5.17
MRK,PFE ⇒ JNJ 0.19 1.00 5.17
BA,DWDP ⇒ CAT 0.16 1.00 5.17
AXP,GS,JPM ⇒ CAT 0.16 1.00 5.17
CAT,DWDP ⇒ BA 0.16 1.00 3.88
BA,CAT ⇒ DWDP 0.16 1.00 3.88
IBM,INTC,MSFT ⇒ CSCO 0.23 1.00 3.10
AXP,DWDP,JPM ⇒ GE 0.16 1.00 3.10
AXP,BA,JPM ⇒ GE 0.16 1.00 3.10
CSCO,INTC,MSFT ⇒ IBM 0.23 0.78 3.01
CSCO,IBM,MSFT ⇒ INTC 0.23 1.00 2.82
CAT,GS,JPM ⇒ AXP 0.16 1.00 2.82
AXP,CAT,GS ⇒ JPM 0.16 1.00 2.82
DWDP,GE,JPM ⇒ AXP 0.16 1.00 2.82
AXP,DWDP,GE ⇒ JPM 0.16 1.00 2.82
BA,GE,JPM ⇒ AXP 0.16 1.00 2.82
AXP,BA,GE ⇒ JPM 0.16 1.00 2.82
UTX ⇒ BA 0.16 0.71 2.77
BA ⇒ UTX 0.16 0.63 2.77
MMM ⇒ DWDP 0.16 0.71 2.77
DWDP ⇒ MMM 0.16 0.63 2.77
CSCO,IBM,INTC ⇒ MSFT 0.23 0.88 2.71
AXP,GE,JPM ⇒ DWDP 0.16 0.56 2.15
AXP,GE,JPM ⇒ BA 0.16 0.56 2.15

Table D.10: Association rules in communities disclosed by gradual forgetting, bien-
nual snapshots from 1997 through 2017.
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stock-set Support

CSCO,INTC 0.26
MRK,PFE 0.26
GS,JPM 0.26
CSCO,INTC,MSFT 0.23
AXP,GE,JPM 0.23
KO,PG 0.19
JNJ,MRK,PFE 0.19
DWDP,JPM 0.19
HD,WMT 0.16
KO,XOM 0.16
JNJ,KO,MRK,PFE,PG 0.16
DWDP,GS,JPM 0.16
AXP,DWDP,GE,JPM 0.16
AXP,GE,GS,JPM 0.16

Table D.11: Frequent stock-sets in communities disclosed by sliding windows, bien-
nual snapshots from 1997 through 2017.

Rule Support Con�dence Lift

KO,MRK,PFE,PG ⇒ JNJ 0.16 1.00 5.17
JNJ,KO,MRK,PFE ⇒ PG 0.16 1.00 5.17
XOM ⇒ KO 0.16 1.00 4.43
KO ⇒ XOM 0.16 0.71 4.43
AXP,DWDP,JPM ⇒ GE 0.16 1.00 4.43
AXP,GS,JPM ⇒ GE 0.16 1.00 4.43
JNJ,MRK,PFE,PG ⇒ KO 0.16 1.00 4.43
INTC,MSFT ⇒ CSCO 0.23 1.00 3.88
CSCO,INTC ⇒ MSFT 0.23 0.88 3.88
DWDP,GE,JPM ⇒ AXP 0.16 1.00 3.88
GE,GS,JPM ⇒ AXP 0.16 1.00 3.88
JNJ,KO,PFE,PG ⇒ MRK 0.16 1.00 3.88
JNJ,KO,MRK,PG ⇒ PFE 0.16 1.00 3.88
WMT ⇒ HD 0.16 0.83 3.69
HD ⇒ WMT 0.16 0.71 3.69
CSCO,MSFT ⇒ INTC 0.23 1.00 3.44
DWDP,JPM ⇒ GS 0.16 0.83 3.23
AXP,GE,JPM ⇒ DWDP 0.16 0.71 3.16
DWDP,GS ⇒ JPM 0.16 1.00 3.10
AXP,DWDP,GE ⇒ JPM 0.16 1.00 3.10
AXP,GE,GS ⇒ JPM 0.16 1.00 3.10
GS,JPM ⇒ DWDP 0.16 0.63 2.77
AXP,GE,JPM ⇒ GS 0.16 0.71 2.77

Table D.12: Association rules in communities disclosed by sliding windows, biennual
snapshots from 1997 through 2017.

stock-set Support

CSCO,INTC,MSFT 0.33
AXP,JPM 0.33
AXP,GE,JPM 0.32
DWDP,MMM 0.23
CSCO,IBM,INTC,MSFT 0.22
CAT,DWDP,MMM 0.15
BA,DWDP 0.15
AXP,GE,JPM,TRV 0.15
DIS,GE 0.15

Table D.13: Frequent stock-sets in communities disclosed by landmark window,
semestral snapshots from 1997 through 2017.
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Rule Support Con�dence Lift

CAT,DWDP ⇒ MMM 0.15 1.00 4.34
DWDP,MMM ⇒ CAT 0.15 0.66 4.34
BA ⇒ DWDP 0.15 1.00 4.20
DWDP ⇒ BA 0.15 0.63 4.20
CAT,MMM ⇒ DWDP 0.15 1.00 4.20
DIS GE⇒ 0.15 1.00 3.07
AXP,JPM,TRV ⇒ GE 0.15 1.00 3.07
IBM,INTC,MSFT ⇒ CSCO 0.22 1.00 3.00
CSCO,IBM,MSFT ⇒ INTC 0.22 1.00 3.00
CSCO,IBM,INTC ⇒ MSFT 0.22 1.00 3.00
CSCO,INTC,MSFT ⇒ IBM 0.22 0.67 3.00
GE,JPM,TRV ⇒ AXP 0.15 1.00 3.00
AXP,GE,TRV ⇒ JPM 0.15 1.00 3.00

Table D.14: Association rules in communities disclosed by the landmark window,
semestral snapshots from 1997 through 2017.

stock-set Support

AXP,JPM 0.28
INTC,MSFT 0.24
CSCO,INTC 0.23
GS,JPM 0.23
CSCO,MSFT 0.22
CSCO,INTC,MSFT 0.21
AXP,GS 0.21
MRK,PFE 0.20
AXP,GS,JPM 0.20
JNJ,PFE 0.19
JNJ,MRK 0.19
JNJ,MRK,PFE 0.17
GE,JPM 0.17
CSCO,IBM 0.16
IBM,INTC 0.16
AXP,GE,JPM 0.16
CVX,XOM 0.15
KO,PG 0.15
CSCO,IBM,INTC 0.15
IBM,INTC,MSFT 0.15
BA,UTX 0.15

Table D.15: Frequent stock-sets in communities disclosed by gradual forgetting,
semestral snapshots from 1997 through 2017.

Rule Support Con�dence Lift

CVX ⇒ XOM 0.15 1.00 6.67
XOM ⇒ CVX 0.15 1.00 6.67
PG ⇒ KO 0.15 0.90 5.14
KO ⇒ PG 0.15 0.86 5.14
BA ⇒ UTX 0.15 0.82 3.78
UTX ⇒ BA 0.15 0.69 3.78
JNJ,PFE ⇒ MRK 0.17 0.87 3.73
MRK,PFE ⇒ JNJ 0.17 0.83 3.70
IBM,INTC ⇒ MSFT 0.15 0.95 3.67
IBM,INTC ⇒ CSCO 0.15 0.95 3.67
IBM,MSFT ⇒ INTC 0.15 1.00 3.64
JNJ,MRK ⇒ PFE 0.17 0.87 3.60
CSCO,MSFT ⇒ INTC 0.21 0.96 3.50
CSCO,INTC ⇒ MSFT 0.21 0.89 3.46
CSCO,IBM ⇒ INTC 0.15 0.95 3.44
CSCO,INTC ⇒ IBM 0.15 0.64 3.35
INTC,MSFT ⇒ CSCO 0.21 0.86 3.34
INTC,MSFT ⇒ IBM 0.15 0.62 3.24
AXP,GE ⇒ JPM 0.16 1.00 3.16
GE,JPM ⇒ AXP 0.16 0.95 3.08
AXP,GS ⇒ JPM 0.20 0.96 3.03
AXP,JPM ⇒ GS 0.20 0.73 2.91
GS,JPM ⇒ AXP 0.20 0.86 2.78
AXP,JPM ⇒ GE 0.16 0.58 2.23

Table D.16: Association rules in communities disclosed by gradual forgetting, semes-
tral snapshots from 1997 through 2017.
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stock-set Support

AXP,JPM 0.25
GS,JPM 0.24
INTC,MSFT 0.24
CSCO,INTC 0.23
CSCO,MSFT 0.20
AXP,GS 0.20
CSCO,INTC,MSFT 0.19
AXP,GS,JPM 0.19
MRK,PFE 0.18
JNJ,PFE 0.18
IBM,INTC 0.18
JNJ,MRK 0.17
IBM,MSFT 0.17
CSCO,IBM 0.17
CVX,XOM 0.16
KO,PG 0.16
CSCO,IBM,INTC 0.16
DWDP,MMM 0.16
CAT,DWDP 0.15
CSCO,IBM,MSFT 0.15
IBM,INTC,MSFT 0.15

Table D.17: Frequent stock-sets in communities disclosed by sliding windows, semes-
tral snapshots from 1997 through 2017.

Rule Support Con�dence Lift

XOM ⇒ CVX 0.16 1.00 6.26
CVX ⇒ XOM 0.16 1.00 6.26
PG ⇒ KO 0.16 0.86 4.11
KO ⇒ PG 0.16 0.76 4.11
IBM,INTC ⇒ CSCO 0.16 0.90 3.59
IBM,MSFT ⇒ CSCO 0.15 0.90 3.57
CSCO,MSFT ⇒ INTC 0.19 0.96 3.46
CSCO,IBM ⇒ INTC 0.16 0.95 3.43
CSCO,IBM ⇒ MSFT 0.15 0.90 3.35
MRK ⇒ PFE 0.18 0.81 3.34
PFE ⇒ MRK 0.18 0.76 3.34
CSCO,MSFT ⇒ IBM 0.15 0.75 3.31
INTC,MSFT ⇒ CSCO 0.19 0.82 3.26
IBM,MSFT ⇒ INTC 0.15 0.90 3.25
IBM,INTC ⇒ MSFT 0.15 0.86 3.19
CSCO,INTC ⇒ MSFT 0.19 0.85 3.17
CSCO,INTC ⇒ IBM 0.16 0.70 3.10
AXP,GS ⇒ JPM 0.19 0.96 3.00
CAT ⇒ DWDP 0.15 0.72 2.95
DWDP ⇒ CAT 0.15 0.62 2.95
INTC,MSFT ⇒ IBM 0.15 0.64 2.83
MMM ⇒ DWDP 0.16 0.68 2.78
DWDP ⇒ MMM 0.16 0.66 2.78
JNJ ⇒ MRK 0.17 0.63 2.75
MRK ⇒ JNJ 0.17 0.74 2.75
PFE ⇒ JNJ 0.18 0.72 2.69
JNJ ⇒ PFE 0.18 0.66 2.69
AXP,JPM ⇒ GS 0.19 0.77 2.68
GS,JPM ⇒ AXP 0.19 0.79 2.48

Table D.18: Association rules in communities disclosed by sliding windows, semestral
snapshots from 1997 through 2017.

110


