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Summary 

Autism spectrum disorder (ASD) is characterized by persistent deficits in 

social communication and social interaction. ASD may be caused by an array of 

different genes and variants that represent risk for ASD. One of these gene classes 

is chromatin regulators that have shown to be essential for brain development; 

however, the impact of these genes remains unexplored. Therefore, the main goal 

of this project was to functionally explore chromatin remodelers that have been 

previously identified as strong risk factors for ASD and propose a novel system to 

analyze loss-of-function (LoF) mutations of the genes encoding these remodelers, 

in the tissue of interest – neuronal progenitors and mature neurons. 

We start by reporting a unique case of an intragenic microduplication in the 

chromatin remodeler, ARID1B, in a patient with intellectual disability and show that 

this caused haploinsufficiency for the encoded protein, adding further evidence 

that this is a dosage sensitive gene. We also performed proteomic analyses that 

indicated an enrichment of transcription and cell cycle regulation pathways in this 

patient. However, patient blood-derived lymphoblasts may not be the best readout 

to study brain-related phenotypes caused by LoF of the chromatin-remodeling 

genes.  

To overcome this, we propose an improved model to study ASD by using 

CRISPR-edited induced pluripotent stem cells (iPSC), as we are able to drive the 

differentiation of these cells toward our tissue of interest. We created an allelic 

series of isogenic mutants for chromatin remodeling genes (EHMT1, MBD5, 

METTL2A and METTL2B) using CRISPR/Cas9 as a genome editing strategy. 

CRISPR/Cas9 editing was highly precise, and deletions were created within all 

targeted genes, regardless of deletion size. 

We then show an example of an application of our iPSC-derived cellular 

models, driving these into the neuronal lineage, to gain insights into the functional 

role of two distinct regions of the chromatin-remodeling gene MBD5 during 

neurodevelopment. The removal of those regions of MBD5 revealed a short 

alternative non-coding MBD5 transcript with the highest expression in neuronal 

tissue, indicating a promising transcript that may be implicated in 

neurodevelopment and disease. Genome-wide transcriptomic analysis via RNAseq 

allowed the identification of the dysregulated genes upon CRISPR editing such as 

RAB11FIP1, NHLH1-2, PLAUR and CNTNAP2; and pathways such as notch signaling 
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and cell adhesion that gave insight on the protein complexes and pathways that 

are acting downstream of MBD5.  

In this study, we added further insight into the functional roles of ARID1B 

and MBD5 in neurodevelopment and proposed LoF models to study the impact of 

mutations in ASD-related genes in early neurodevelopment. We identified novel 

players (genes and pathways) that may be directly implicated in neuronal 

development and function through the disruption of chromatin remodelers. The 

analysis of many other chromatin remodeling genes through this approach will 

allow testing of the hypothesis that the functional consequences of ASD gene 

defects converge and may identify new avenues of research to ultimately develop 

potential therapies for ASD and other neurodevelopmental disorders.  

 

Keywords 

ASD, CRISPR/Cas9, gene, editing, chromatin, in vitro models, haploinsufficiency, 

ARID1B, MBD5, neurodevelopment.
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Resumo 

As perturbações do espetro do autismo (PEA) são caracterizadas por défices 

persistentes na comunicação e na interação social. As PEA podem ser causadas por 

um conjunto de diferentes genes e variantes que representam risco para as PEA. 

Uma dessas classes de genes são os reguladores de cromatina que se mostraram 

essenciais para o desenvolvimento cerebral, no entanto, o impacto desses genes 

permanece por explorar. Assim, o objetivo principal deste projeto foi explorar 

funcionalmente os remodeladores de cromatina, cujas mutações foram 

previamente identificadas como fortes fatores de risco para as PEA, e propor um 

novo sistema para analisar mutações de perda de função no tecido de interesse – 

os progenitores neuronais e neurónios maduros. 

Esta tese inicia-se com o relato de um caso único de uma microduplicação 

intragénica no gene ARID1B, num paciente com défice intelectual, em que se 

demonstra que esta resultou em haploinsuficiência da proteína codificada, 

adicionando mais evidências de que este é um gene sensível à dosagem. 

Realizámos também análises proteómicas que demonstram uma perturbação das 

vias de regulação da transcrição e do ciclo celular neste paciente. No entanto, os 

linfócitos obtidos a partir do sangue do paciente não são o melhor modelo para 

estudar fenótipos relacionados com o cérebro causados por perda de função dos 

genes de remodelação da cromatina. 

Para ultrapassar essas desvantagens, propomos um modelo melhorado para 

estudar as PEA, usando células estaminais induzidas (iPSC), editadas através do 

sistema de CRISPR/Cas9, uma vez que é depois possível conduzir a diferenciação 

destas células de modo a transformarem-se no nosso tecido de interesse. Criámos 

uma série alélica de mutantes isogénicos para genes de remodelação da cromatina 

(EHMT1, MBD5, METTL2A e METTL2B) usando CRISPR/Cas9 como estratégia de 

edição do genoma e mostramos que as alterações induzidas pelo sistema 

CRISPR/Cas9 são altamente precisas, tendo sido criadas deleções em todos os 

gene-alvo, independentemente do tamanho da deleção. 

 Em seguida, finalizamos mostrando um exemplo de uma aplicação de 

nossos modelos celulares, derivados das iPSC, transformando-as na linhagem 

neuronal, para obter evidências acerca do papel funcional de duas regiões distintas 

do gene de remodelação da cromatina, MBD5, durante o neurodesenvolvimento. A 

remoção dessas regiões do gene MBD5 revelou um transcrito alternativo que não 

codifica proteína (lncRNA) que tinha a maior expressão no tecido neuronal. Assim, 
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o gene MBD5 poderá ter uma função no neurodesenvolvimento através da ação do 

lncRNA, regulando-se a si mesmo ou a outros genes envolvidos no processo. A 

análise transcriptómica de todo o genoma através de RNAseq permitiu a 

identificação de genes desregulados após a edição com CRISPR/Cas9, 

nomeadamente RAB11FIP1, NHLH1-2, PLAUR e CNTNAP2; e também vias como a 

de sinalização de Notch e de adesão celular, que vieram contribuir para uma melhor 

compreensão dos complexos de proteínas e vias que estão a atuar a jusante de 

MBD5. 

Neste estudo, apresentámos mais evidências das funções de ARID1B e MBD5 

no neurodesenvolvimento e propusemos modelos de perda de função de genes 

importantes para as PEA para estudar o impacto destes genes ao longo do 

neurodesenvolvimento. Identificámos novos genes e vias que podem estar 

diretamente implicados no desenvolvimento neuronal e sua função, através da 

disrupção dos remodeladores de cromatina. A análise de muitos outros genes de 

remodelação da cromatina através desta abordagem permitirá testar a hipótese de 

convergência de vias biológicas e identificar possíveis alvos terapêuticos para as 

PEA e outras doenças do neurodesenvolvimento. 

 

 

Palavras-chave 

PEA, CRISPR/Cas9, gene, edição, cromatina, modelos in vitro, haploinsuficiência, 

ARID1B, MBD5, neurodesenvolvimento. 
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This section summarizes the state-of-the-art work published in the field of 

autism spectrum disorder, regarding its characterization and genetic etiology, 

as well as the role of chromatin remodeling and transcriptional regulation in 

neurodevelopment. 
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Autism Spectrum Disorder 

Clinical Phenotype 

Congenital neurodevelopmental disorders are a group of conditions 

which typically manifest early in development and are characterized by 

developmental deficits that produce impairments of personal, social, academic, 

or occupational functioning. Autism spectrum disorder (ASD) is characterized by 

persistent deficits in social communication and social interaction across multiple 

contexts, including deficits in social reciprocity, nonverbal communicative 

behaviors used for social interaction, and skills in developing, maintaining, and 

understanding relationships. In addition to the social communication deficits, 

the diagnosis of ASD requires the presence of restricted, repetitive patterns of 

behavior, interests, or activities Table I. For many individuals the diagnosis of 

ASD is accompanied by intellectual impairment and/or language impairment 

(e.g., slow to talk, language comprehension behind production) (American 

Psychiatric Association 2013). Other common pathological disturbances include 

gait and motor disturbances, anxiety, epilepsy, sensorial abnormalities, sleep 

disturbances and comorbidity with psychiatric disorders such as attention deficit 

hyperactivity disorder, obsessive-compulsive disorder (OCD) and mood 

disorders (Geschwind 2009). 

 

Prevalence 

In recent years, reported frequencies for ASD across U.S. and non- U.S. 

countries have approached 1% of the population and currently it is estimated 

that 1 out of 88 children has an ASD in the U.S., representing a 78% increase 

over the past  years (Berg & Geschwind 2012; ADDM Network 2012; American 

Psychiatric Association 2013). It remains unclear whether higher rates reflect an 

expansion of the diagnostic criteria of DSM-IV to include subthreshold cases 

(such as pervasive developmental disorder - not otherwise specified, autistic 

disorder and Asperger syndrome), increased awareness, differences in study 

methodology, or a true increase in the frequency of ASD (American Psychiatric 

Association 2013). In terms of gender incidence, boys are diagnosed four times 

more often than girls (Abrahams & Geschwind 2008). Females tend to be more 

likely to show accompanying intellectual disability, suggesting that girls with 

ASD without accompanying intellectual impairments or language delays may go 
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unrecognized, perhaps because of subtler manifestation of social and 

communication difficulties (American Psychiatric Association 2013).  

 

 

 

 

Table I - ASD Diagnostic Criteria (American Psychiatric Association 2013). 

 

 

 

A
S
D

 
D

i
a
g
n
o
s
t
i
c
 C

r
i
t
e
r
i
a

A. Persistent deficits in social communication and social

interaction across multiple contexts, as manifested by the

following, currently or by history.

B. Restricted, repetitive patterns of behavior, interests, or

activities, as manifested by at least two of the following,

currently or by history.

C. Symptoms must be present in the early developmental

period (but may not become fully manifest until social

demands exceed limited capacities, or may be masked by

learned strategies in later life).

D. Symptoms cause clinically significant impairment in social,

occupational, or other important areas of current functioning.

E. These disturbances are not better explained by intellectual

disability (intellectual developmental disorder) or global

developmental delay. Intellectual disability and autism

spectrum disorder frequently co-occur; to make comorbid

diagnoses of autism spectrum disorder and intellectual

disability, social communication should be below that

expected for general developmental level.
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Etiology  

A variety of nonspecific risk factors, such as advanced parental age, low 

birth weight, or fetal exposure to valproate, may contribute to the risk of 

developing ASD (American Psychiatric Association 2013). However, several lines 

of evidence support genetic factors as a predominant cause of ASD. 

At least half of ASD is estimated to have its roots in genetic factors (De 

Rubeis & Buxbaum 2015). Estimates of heritability - the portion of variance in a 

phenotypic trait among individuals of a population at a given time that can be 

attributed to genetic differences - have been used to understand the degree to 

which genetic factors contribute to the difference in susceptibility to ASD among 

individuals. The genetic variation observed in individuals with ASD is highly 

heterogeneous and common variants, rare variants, both inherited and de novo, 

can act to increase risk, highlighting the complex risk architecture (De Rubeis & 

Buxbaum 2015; Iossifov, Ronemus, Levy, Wang, Hakker, Rosenbaum, Yamrom, 

Y. Lee, et al. 2012). The relative risk of a child being diagnosed with autism is 

increased at least 25-fold over the population prevalence in families in which a 

sibling is affected (Jorde et al. 1991). Siblings and parents of an affected child 

are more likely than controls to show subtle cognitive or behavioral features that 

are qualitatively similar to those observed in probands (Bolton et al. 1994; 

Bishop et al. 2004). Indeed, a recent twin study in the UK showed that on all ASD 

measures, the concordance rates among monozygotic twins (77% - 99%) was 

significantly higher than those for dizygotic twins (22 – 65%) (Colvert et al. 2015). 

Several research groups have combined efforts in the recent decades to unravel 

the genetic factors underlying autism risk and explain its heterogeneity in 

phenotypical outcomes. 
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Genetics of Autism Spectrum Disorder 

Initial Steps of Genetic Findings in ASD 

Before the 1970s, autism was not widely appreciated to have a strong 

biological basis. Instead, various psychodynamic interpretations, including the 

role of a cold or aloof style of mothering, were invoked as potential causes 

(Kanner 1943). The importance of genetic contributions became clear in the 

1980s, when the co-occurrence of chromosomal disorders and rare syndromes 

with ASD was noted (Blomquist et al. 1985). Subsequent twin and family studies 

provided additional support for a complex genetic etiology, but these were 

limited by the lack of uniform diagnostic criteria. The development of validated 

diagnostic and assessment tools in the early 1990s, most notably the Autism 

Diagnostic Interview - Revised (ADI-R) and the Autism Diagnostic Observation 

Schedule (ADOS), addressed these concerns and these tools have proved crucial 

to the advancement of international research into the ASDs. This work, together 

with important technical advances, made it possible to carry out the first 

candidate gene association studies and resequencing efforts in the late 1990s. 

Whole genome linkage studies followed, and were used to identify additional loci 

of potential interest (depicted in Figure 1) (Abrahams & Geschwind 2008).  

 

  

Figure 1 – Methodological changes have revolutionized gene discovery in ASD (adapted from 

Amaral et al. 2011). 
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Association Studies and Replication Issues 

Genome-wide association studies (GWAS) and linkage analysis have been 

used to explore the genetic landscape of ASD. These are typically focused on the 

examination of single-nucleotide polymorphisms (SNPs) and have been 

estimated to explain 20–50% of the variance in the accountability for ASD (Cross-

Disorder Group of the Psychiatric Genomics Consortium et al. 2013; Gaugler et 

al. 2014; Klei et al. 2012; Devlin & Scherer 2012). 

In recent years, six GWAS have been performed for ASD (Anney et al. 

2010a; Hussman et al. 2011; Salyakina et al. 2010; Ma et al. 2009; Wang et al. 

2009; Weiss et al. 2009). The three largest international studies used family 

based approaches, each of them pinpointing a promising candidate gene for the 

disorder: SEMA5A at 5p15 (Weiss et al. 2009), MACROD2 at 20p12.1(Anney et 

al. 2010) and CHD10 and CHD9 (Wang et al. 2009). A common limitation arising 

from these association studies, as with the linkage analyses, is a lack of 

replication between studies. Indeed, several research groups have attempted to 

replicate the association findings of these SNPs that represent the most 

consistent evidence for association with ASD (Curran et al. 2011; Jonsson et al. 

2014; Prandini et al. 2012), but none of them was sufficiently powered to 

robustly confirm or discard the previous GWAS findings.  

Lack of replication in these studies may be due to several reasons, 

including: (i) genetic and phenotypic heterogeneity between samples due to 

ascertainment differences and suboptimal sampling that may account for the 

existence of different pools of common risk variants; (ii) heterogeneity in subject 

exposure to environmental influences; (iii) data overinterpretation, since the first 

published study likely represents an overestimate of the true effect size due to 

a phenomena known as the “winner’s curse”, suggesting that replication of both 

association and linkage studies will require larger sample sizes than the initial 

detection study (Trikalinos et al. 2004; Zollner & Pritchard 2007); and (iv) 

disparity in sample sizes between research groups leading to false-positive or 

false-negative results because of differing power to detect real effects (Torrico 

et al. 2016; Zondervan & Cardon 2004; Meyer et al. 2012). 

International collaborative efforts in schizophrenia research made it 

possible to perform a GWAS study with 36,989 cases that identified 108 

significant risk loci for the disorder (Ripke et al. 2014). Similar large-scale 

projects in ASD would shed light on the contribution of common variants to 
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autism, confirming or excluding already identified risk alleles and possibly 

pointing at novel susceptibility loci.  

 

Genotyping Arrays and Massive Parallel Sequencing 

Recent advances, including genome-wide copy number arrays and 

massive parallel sequencing have begun to unravel the genetic complexity in 

ASD, ranging from large genomic regions to individual nucleotides.  Arrays make 

it possible to detect relative DNA dosage changes (Pinto et al. 2010; Pinto et al. 

2014) and whole exome sequencing (WES) can thoroughly survey 1% of the 

genome comprising the known protein-coding sequences (Iossifov, Ronemus, 

Levy, Wang, Hakker, Rosenbaum, Yamrom, Y.-H. Lee, et al. 2012; De Rubeis, He, 

Arthur P Goldberg, et al. 2014). This improved technology, allied with new 

analysis paradigms and innovative cohorts, is revolutionizing the era of 

discovery of genomics variants that represent a risk for ASD. 

Rare copy-number variation (CNV) is an important source of risk for ASD. 

CNV examples include de novo events observed in 5–10% of ASD cases (Sebat et 

al. 2007; Christian R. Marshall et al. 2008; Autism Genome Project Consortium 

et al. 2007), de novo or inherited hemizygous deletions and duplications of 

16p11.2 (Weiss et al. 2008; Kumar et al. 2007), and exceptionally rare inherited 

homozygous deletions in consanguineous families (Morrow et al. 2008). Exomes 

have revealed an excess of genic deletions and duplications in affected patients 

and an increase in affected subjects carrying exonic pathogenic CNVs 

overlapping known loci associated with dominant or X-linked ASD and 

intellectual disability (Pinto et al. 2010; Pinto et al. 2014). Pathogenic CNVs are 

often associated with variable expressivity, implicating ASD-associated genes 

previously linked to other neurodevelopmental disorders, as well as novel genes. 

Consistent with hypothesized gender-specific modulators, females with ASD are 

more likely to have highly penetrant CNVs (Pinto et al. 2014). 

CNV studies allow the identification of novel genes and also the 

identification of potential biological pathways in the pathogenesis of ASD. 

Indeed, enrichments have been observed for gene-sets related to cellular 

proliferation, projection and motility, GTPase/Ras signaling (Pinto et al. 2010), 

neuronal signaling and development, synapse function, and chromatin 

regulation (Pinto et al. 2014) 
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De novo CNVs and large events spanning multiple genes, have been 

identified as conferring high risk for ASD (Pinto et al. 2014). Although these 

CNVs provide important leads to underlying biology, they rarely implicate single 

genes, are rarely fully penetrant, and many confer risk to a broad range of 

conditions including intellectual disability, epilepsy and schizophrenia (Cross-

Disorder Group of the Psychiatric Genomics Consortium et al. 2013). De novo 

coding mutations, being less frequent and potentially more deleterious, could 

offer insights into risk-determining genes. 

 Starting in 2009, the technology to selectively sequence all of the protein-

coding regions of the genome became widely available. The sequencing of the 

coding portion of the genome, termed “whole exome sequencing” (WES), allowed 

for unbiased genome-wide discovery of coding variants or mutations 

contributing to a disorder’s risk at single-base resolution. Several groups began 

piloting WES in different neurodevelopmental disorders using a trio (father, 

mother, affected child) or other family design, specifically in families with no 

previous family history of the disorder, also called simplex or sporadic families 

(O’Roak et al. 2011; Vissers et al. 2010; Xu et al. 2012). The working hypothesis 

of these studies was that, in some fraction of these simplex families, there may 

be a de novo mutation (not present in either parent) that coappeared with the 

disorder in the affected child. These studies showed the feasibility of this 

approach to detect true de novo mutations and a large fraction of possible 

candidate gene mutations (Veltman & Brunner 2012).  

Following those initial studies, large WES studies have taken place 

(Iossifov, Ronemus, Levy, Wang, Hakker, Rosenbaum, Yamrom, Y. Lee, et al. 

2012; Neale et al. 2012; Sanders et al. 2012; O’Roak, Vives, Girirajan, et al. 

2012), culminating in two large-scale studies, including 4000 affected children 

(De Rubeis, He, Arthur P Goldberg, et al. 2014; Iossifov et al. 2014). Data from 

the family-based Simons Simplex Collection suggests that 30% of all probands 

have a de novo mutation of major effect that contributes to their diagnosis, 

which may be up to 50% of the girls (Iossifov et al. 2014).  

Exome sequencing projects have suggested that severe cases of ASD 

reveal a higher number of truncating mutations (De Rubeis, He, Arthur P 

Goldberg, et al. 2014; Iossifov et al. 2014; Krumm et al. 2015; Toma et al. 2014). 

Thus, it is possible that penetrant rare mutations have a major role in severe 

ASD phenotypes, whereas common variants may be mainly involved in high 

functioning autism (Torrico et al. 2016). However, in addition to rare de novo 
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mutations, recent WES studies have also identified a role for rare inherited 

variants in ASD risk; including maternally transmitted predicted loss-of-function 

(LoF) variants and recessive/hemizygous LoF variants (Chahrour et al. 2012; 

Novarino et al. 2012; Lim et al. 2013; Yu et al. 2013). The overall impact of 

inherited variants on ASD risk will likely be higher when as it does not currently 

take into account missense variants, whose possible impact is difficult to 

quantify.  

Whole genome sequencing (WGS) provided another major boost to our 

ability to ascertain point mutations and CNVs (Talkowski et al. 2012; Talkowski, 

Ernst, et al. 2011; Redin et al. 2017; Brand et al. 2015; Yuen et al. 2015; 

Michaelson et al. 2012). WGS is an important and efficient tool for the 

identification of structural variation, particularly balanced chromosomal 

abnormalities (BCAs). This class of variation includes inversions, translocations, 

deletions/insertions, and more complex rearrangements consisting of 

combinations of such events (Redin et al. 2017). Cytogenetic studies estimate a 

prevalence of 0.2–0.5% for BCAs in the general population (Ravel et al. 2006; 

Nielsen & Wohlert 1991; Jacobs et al. 1974) and an approximate fivefold increase 

in the prevalence of BCAs detected by karyotyping has been reported among 

subjects with neurodevelopmental disorders, particularly for ASD (1.3%) 

(Christian R Marshall et al. 2008), suggesting that BCAs may represent highly 

penetrant mutations in these subjects. BCAs might not result in large gains or 

losses of genetic material at the breakpoint, and therefore they remain 

undetected by microarray-based genome-wide surveys of genetic variation 

commonly used in association studies of complex diseases (Talkowski, Ernst, et 

al. 2011)  

The improvement in mutation discovery by WGS comes at a relatively 

modest increase in sequencing cost since innovative methods such as the 

“jumping library” strategy developed for WGS which allows for cost-efficient 

multiplexing of samples and provides a very high yield of fragments with large 

inserts (Hanscom & Talkowski 2014). Indeed, the degree of resolution that can 

be obtained through this and other approaches of WGS has enabled the 

elucidation of the precise breakpoints of BCAs and has facilitated the discovery 

of numerous pathogenic loci and disrupted genes that represent a risk for ASD 

(Talkowski et al. 2012). 

In summary, the results of all these technologies – from GWAS to WGS -  

support an extreme polygenicity underlying ASD and the existence of a pool of 
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risk variants with a wide range of effect sizes. It is now well understood that the 

genetic contribution to ASD comprises a diversity of sources, including rare de 

novo single-nucleotide variants, common polymorphic variation, CNVs and 

structural rearrangements, summarized in Table II below. 

 

 

Table II - List of major studies of ASD genetics, types of variants identified and genes highlighted. 

(Abbreviations: GWAS – Genome-wide association studies; BCA- Balanced chromosomal 

abnormalities.) 

(Weiss et al. 2009) Common Variants 1553 SEMA5A 

(Wang et al. 2009) Common Variants 4305 CHD10, CHD9 

(Ma et al. 2009) Common Variants 438 families 5p14.1 locus 

(Anney et al. 2010) Common Variants 
1,558 

families 
MACROD2 

(Salyakina et al. 2010) Common Variants 234 families 3p14.2, 3q25-26, 3p23 

(Hussman et al. 2011) Common Variants 
1293 

families 

860 genes - CDH8, SEMA5A, 

CACNA1G, PTEN, NRXN1, 

NRP2, CNTNAP2, ZFHX1B 

(Curran et al. 2011) Common Variants 1,170 no replication 

(Klei et al. 2012) Common Variants 
3,157 

families 
- 

(Prandini et al. 2012) Common Variants 746 CDH9, CDH10, ATP2B2 

(Gaugler et al. 2014) Common Variants 466 - 

(Jonsson et al. 2014) Common Variants 

12,416 + 

4,287 twin 

pairs 

no replication 

(Torrico et al. 2016) Common Variants 7,106 no replication 

(Pinto et al. 2010) 
Rare CNV 

Inherited CNV 
996 

SHANK2, SYNGAP1, DLGAP2, 

DDX53-PTCHD1 locus 

(Sebat et al. 2007) Rare De Novo CNV 
118 + 47 

families 
- 

(Christian R. Marshall 

et al. 2008) 
Structural Variation 427 

SHANK3-NLGN4-NRXN1, 

DPP6-DPP10-PCDH9, 

ANKRD11, DPYD, PTCHD1 

(Glessner et al. 2009) CNV 859 

NRXN1, CNTN4, NLGN1, 

ASTN2, UBE3A, PARK2, 

RFWD2, FBXO40 

(Pinto et al. 2014) 
Rare CNV 

Inherited CNV 
9,050 

CHD2, HDAC4, GDI, SETD5, 

MIR137, HDAC9 

(O’Roak et al. 2011) De Novo Mutations 20 
FOXP1, GRIN2B, SCN1A, 

LAMC3 

(Iossifov, Ronemus, 

Levy, Wang, Hakker, 

Rosenbaum, Yamrom, 

Y. Lee, et al. 2012) 

De Novo Mutations 343 750 genes 

(Neale et al. 2012) De Novo Mutations 175 CHD8, KATNAL2 

(Sanders et al. 2012) De Novo Mutations 238 SCN2A 

(O’Roak, Vives, 

Girirajan, et al. 2012) 
De Novo Mutations 209 

CHD8, NTNG1, GRIN2B, 

LAMC3, SCN1A 

(Chahrour et al. 2012) 
Rare Inherited 

Mutations 
19 

UBE3B, CLTCL1, NCKAP5L, 

ZNF18 

(Yu et al. 2013) 
Rare Inherited 

Mutations 
277 

AMT, PEX7, SYNE1, VPS13B, 

PAH, POMGNT1 

(Lim et al. 2013) 
Rare Inherited 

Mutations 
933 

USH2A, IFIH1, PKHD1L1, 

TMLHE, PCDH11X, 
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SLC22A14, LUZP4, DGAT2L6, 

KIAA2022, SRPX2 

(Toma et al. 2014) 
Rare Inherited 

Mutations 
21 

COL4A3-MFF, FHIT, 

MRPL36-NDUFS6, CTNND2, 

GRM1, ASAH1 

(De Rubeis et al. 

2014) 

Rare Coding 

Variation 
3,871 129 genes 

(Iossifov et al. 2014) De Novo Mutations 2,508 27 genes 

(Krumm et al. 2015) 
Rare, Disruptive 

SNV and CNV 
2,377 IMS1, CUL7, LZTR1 

(Talkowski et al. 

2012) 
BCA 38 

AUTS2, FOXP1, CDKL5, 

MBD5, SATB2, EHMT1, 

SNURF-SNRPN, CHD8, 

KIRREL3, and ZNF507, TCF4, 

ZNF804A, PDE10A, GRIN2B, 

ANK3 

(Michaelson et al. 

2012) 
De Novo Mutations 

10 twin 

pairs 
GPR98, KIRREL3, TCF4 

(Yuen et al. 2015) 

De Novo Mutations 

Rare Inherited 

Mutations 

Structural Variation 

170 
SCN2A, PTCHD1, SHANK3, 

DMD, STXBP1 

(Brand et al. 2015) Structural Variation 259 - 

(Redin et al. 2017) BCA 273 MEF2C 

(C Yuen et al. 2017) De Novo Mutations 2,620 18 genes 

    

(O’Roak, Vives, Fu, et 

al. 2012) 
De Novo Mutations 2,446 

CHD8, DYRK1A, GRIN2B, 

TBR1, PTEN, TBL1XR1 

 

 

Missing Heritability 

The SFARI Gene Database (Basu et al. 2009), an evolving database for the 

autism research community that is centered on genes implicated in autism 

susceptibility, contains a total of 725 genes associated with ASD to date. Besides, 

a massive sequencing study spanning seven countries linked 38 additional 

genes to autism or developmental delay and intellectual disability (Stessman et 

al. 2017), expanding the list to close to 1000 genes with evidence of risk for 

ASD. These known mutations, genetic syndromes, and de novo copy number 

variation probably account for about 10-20% of cases and none of these causes 

alone accounts for more than 1–2% of ASD cases (Walsh et al. 2008). Despite the 

great number of genes associated with ASD, there is still a large percentage of 

idiopathic cases (~70%) for which a genetic source has yet to be assigned, 

reflecting the missing heritability of complex disorders (Schaaf & Zoghbi 2011). 

Several explanations for this missing heritability have been suggested, 

including: much larger numbers of variants of smaller effect yet to be found; 

rarer variants (possibly with larger effects) that are poorly detected by available 

genotyping arrays that focus on variants present in 5% or more of the population; 
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and structural variants poorly captured by existing arrays (Manolio et al. 2009). 

WES and WGS projects in ASD have been successfully contributing to uncovering 

some of the missing heritability of the disorder and novel candidate genes with 

robust evidence have been proposed (De Rubeis, He, Arthur P. Goldberg, et al. 

2014; Iossifov et al. 2014; Krumm et al. 2015; Neale et al. 2012; Sanders et al. 

2012; Talkowski et al. 2012; Brand et al. 2015; Redin et al. 2017). 

The remaining missing heritability may be due in significant part to 

genetic interactions (Zuk et al. 2012) as many cases of ASD may result from 

more complex genetic mechanisms, including co-inheritance of multiple risk 

alleles or epigenetic modifications (Gupta & State 2007). Understanding how 

multiple variants act together in a single individual, the risk from noncoding 

variation and gene vs. environment interactions could shed light on the 

unexplained portion of ASD cases. The next necessary step is to develop 

functional validation assays to evaluate the impact of the known variants on their 

protein function and on neuronal development. Functional validation is 

especially important for the missense variants that are currently largely ignored 

unless they occur in known disease-causing genes. Several bioinformatic tools 

that predict the deleteriousness of genomic variants have been developed, such 

as SIFT and PolyPhen-2 (Kumar et al. 2009; Adzhubei et al. 2010), however 

functional validation remains essential to test the biological impact of identified 

variants in the disease pathogenesis. 
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Chromatin and Neurodevelopment  

Convergence of Biological Pathways in ASD 

ASD was thought to be a disorder of the synapse due to the high burden of 

mutations occurring in synaptic genes. Neuronal development defects include 

general abnormalities in axon or dendrite growth, synaptogenesis, action potential 

initiation or propagation, or myelination. It is not known whether these types of 

abnormalities are found in autism, although there is evidence for connectivity 

defects from functional imaging studies  (Kana et al. 2006; Geschwind & Levitt 

2007). Some ASD-associated genes are indeed involved directly in synaptic function 

as showed by nominal enrichment for postsynaptic density proteins as GRIN2B, 

GABRB3 and SHANK3 (Iossifov, Ronemus, Levy, Wang, Hakker, Rosenbaum, 

Yamrom, Y. Lee, et al. 2012; Ben-David & Shifman 2012; Peça et al. 2011). However, 

recent studies have pointed in a new direction, genes with de novo mutations have 

shown enrichment for multiple molecular functions as global regulation of 

transcript expression and chromatin modifiers as CHD8, CHD2 and ARID1B 

(O’Roak, Vives, Girirajan, et al. 2012; O’Roak, Vives, Fu, et al. 2012; Ben-David & 

Shifman 2013; Talkowski et al. 2012; De Rubeis, He, Arthur P. Goldberg, et al. 

Figure 2 - Network of genes affected by rare de novo CNVs in affected subjects (from Pinto et 

al., 2014). This network demonstrates that genes involved in ASD participate in a wide array of 

processes, from neuronal development and axon guidance to chromatin modification and 

transcription regulation. 
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2014). Therefore, it seems that translational control and chromatin regulation are 

key players that converge on common downstream biological pathways or brain 

circuits to give rise to ASD, as confirmed by networks (Figure 2) constructed using 

these high-confidence ASD risk genes as seeds (O’Roak, Vives, Girirajan, et al. 

2012; Parikshak et al. 2015; Willsey et al. 2013; Pinto et al. 2014). 

 

Epigenetic Modifications and Chromatin Remodeling  

The chromosomes of eukaryotic cells have the ability to condense and 

organize their genetic material and control access to genetic information. 

Chromosomes are comprised of chromatin, a multifaceted and hierarchical 

nucleoprotein complex containing both histones and non-histone proteins. (Liu et 

al. 2011). The primary structural unit of chromatin is the nucleosome, which 

consists of a nucleosome core and linker DNA. The nucleosome core is comprised 

of ~147 bp of DNA wrapped around a octameric structure containing two molecules 

each of the core histones H2A, H2B, H3, and H4 (Luger et al. 1997).  

The packaging of DNA has a repressive effect on a variety of cellular 

processes such as gene transcription due to the reduced access of transcription 

factors to DNA. To overcome this, cells have devised several strategies to modify 

Figure 3 - Chromatin Remodeling. Simplified representation of closed (Repression) and open 

(Activation) chromatin states.  

Top - A closed chromatin state, heterochromatin, is associated with lack of histone acetylation 

removed by histone deacetylases (HDAC), DNA methylation (Me) by DNA methyltransferases 

(DNMT), association of methyl binding proteins (MBD) and no gene transcription.  

Bottom - The open conformation state, euchromatin, is usually associated with histone acetylation 

by histone acetyltases (HAT), lack of DNA methylation removed by histone demethylases (HDM), 

binding of transcription factors (TF) and RNA polymerases (RNA Pol) that define active gene 

transcription. The interchange between these two DNA states is described as chromatin 

remodeling.  
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chromatin structure. These include incorporation of histone post-translational 

modifications to allow the modification of chromatin structure (Liu et al. 2011; 

Santos et al. 2006). Indeed, the lysine residues of the core histones are targets for 

numerous post-translational modifications, by enzymes responsible for 

acetylation, methylation, phosphorylation, and ubiquitylation, many of which have 

been directly linked with specific chromatin states (depicted in Figure 3) (Wolffe & 

Hayes 1999). Closed chromatin, heterochromatin, associated with transcriptional 

silencing, involves the activity of histone deacetylases (HDACs) that remove acetyl 

groups from histones and the methylation of histones by histone methyltransferase 

(HMTs) (Grafodatskaya et al. 2010; Nakao 2001). DNA methylation, the only known 

modification of DNA itself, also occurs in this state at cytosines followed by 

guanines (CpG sites) by enzymes of the DNA methyltransferase (DNMT) gene family 

(Grafodatskaya et al. 2010; Nakao 2001). Open and accessible chromatin, 

euchromatin, associated with active transcription, is due to the activity of histone 

acetyltransferases (HATs) that are responsible for histone acetylation and of 

histone demethylases (HDMs) (Grafodatskaya et al. 2010; Liu et al. 2011; Nakao 

2001).  

Along with the intrinsic DNA and histone modification, eukaryotic cells also 

harbor chromatin-remodeling complexes that disrupt chromatin structure to 

increase access to the underlying DNA. These complexes are typically comprised 

of multiple subunits and use energy derived from ATP hydrolysis to distort 

nucleosome structure, mobilize nucleosomes, and possibly to alter higher-order 

structures. Whereas some remodelers alter chromatin structure to make specific 

genes more accessible for transcription machinery, others play a role in 

transcriptional repression. There are 4 classes of ATP-dependent chromatin 

remodeling complexes that have been described: SWI/SNF, ISWI, CHD and INO80 

(Clapier & Cairns 2009). 

As supported by the convergence of ASD genes in chromatin regulators, 

there have been a great number of genes involved in epigenetic modifications 

identified in ASD cases. These include genes encoding for proteins of all classes of 

regulation, such as enzymes that affect histone methylation and acetylation, DNA 

methyltransferases, methyl-binding proteins, as well as genes encoding for 

members of transcription activation and repression complexes, and are listed in 

Table III below.  
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Table III – List of chromatin remodeling genes associated to ASD, to date. Adapted from the Simons 

Foundation Autism Research Initiative (SFARI) Gene Database, filtered for: ASD, chromatin, histone, 

transcription. SFARI Db contains a total of 725 genes associated with ASD. Genes with evidence for a 

certain role but with unknown activity, were placed under a general nomenclature. 

MBD4 3q21.3 603574 
Rare Single Gene variant, 

Genetic Association 
(Cukier et al. 2010) 

MBD6 12q13.3 
 

Rare single gene variant (Cukier et al. 2010) 

Histone Acetyltransferase 

ELP4 11p13 606985 Multigenic CNV (Addis et al. 2015) 

EP300 22q13.2 602700 Syndromic (Vaags et al. 2012) 

EP400 12q24.33 606265 Rare single gene variant (Chahrour et al. 2012) 

KAT2B 3p24.3 602303 Rare single gene variant (Sanders et al. 2015) 

KAT6A 8p11.21 601408 Rare single gene variant (Arboleda et al. 2015) 

Histone Deacetylase 

HDAC4 2q37.3 605314 Genetic Association 
(Stephen R. Williams et al. 

2010) 

HDAC6 Xp11.23 300272 Rare Single Gene variant (Piton et al. 2013) 

Histone Demethylase 

KDM4B 19p13.3 609765 Rare single gene variant (De Rubeis et al. 2014) 

KDM5B 1q32.1 605393 Rare single gene variant (Iossifov et al. 2014) 

KDM5C Xp11.22 314690 Syndromic (Adegbola et al. 2008) 

KDM6B 17p13.1 611577 Rare single gene variant 

(Iossifov, Ronemus, Levy, 

Wang, Hakker, Rosenbaum, 

Yamrom, Y. Lee, et al. 2012) 

PHF2 9q22.31 604351 Rare single gene variant 

(Iossifov, Ronemus, Levy, 

Wang, Hakker, Rosenbaum, 

Yamrom, Y. Lee, et al. 2012) 

PHF8 Xp11.22 300560 Syndromic (Nava et al. 2012) 

Histone Methyltransferase 

EHMT1 9q34.3 607001 Syndromic (Talkowski et al. 2012) 

KMT2A 11q23.3 159555 Syndromic (De Rubeis et al. 2014) 

KMT2C 7q36.1 606833 Rare single gene variant (De Rubeis et al. 2014) 

KMT2E 7q22.3 608444 Rare single gene variant (Dong et al. 2014) 

KMT5B 11q13.2 610881 Rare Single Gene variant (Sanders et al. 2012) 

SETD2 3p21.31 612778 Rare Single Gene variant 
(O’Roak, Vives, Girirajan, et al. 

2012) 

SETD5 3p25.3 
 

Rare Single Gene variant (Grozeva et al. 2014) 

SETDB1 1q21.3 604396 Rare single gene variant (Cukier et al. 2012) 

SETDB2 13q14.2 607865 Syndromic (Cukier et al. 2012) 

Chromatin Remodeling 

ARID1B 6q25.3 614556 Rare single gene variant 

(Nord et al. 2011; Hoyer et al. 

2012; Yu et al. 2015; Halgren 

et al. 2012) 

ATRX Xq21.1 300032 Syndromic (Gibbons 2006) 

CECR2 
22q11.1-

q11.21 
607576 Rare single gene variant (Prasad et al. 2012) 

CHD2 15q26.1 602119 Multigenic CNV (Carvill et al. 2013) 

CHD7 8q12.2 608892 Syndromic (Vissers et al. 2004) 

CTCF 16q22.1 604167 Functional (Gregor et al. 2013) 

HMGN1 21q22.2 163920 Genetic Association (Abuhatzira et al. 2011) 
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MBD3 19p13.3 603573 
Rare Single Gene variant, 

Genetic Association 
(Cukier et al. 2010) 

TET2 4q24 612839 Rare single gene variant 
(Iossifov et al. 2014; Krumm et 

al. 2015) 

TLK2 17q23.2 608439 Rare Single Gene variant (O’Roak et al. 2011) 

Transcription Regulators 

ERG 21q22.2 165080 Genetic association (Anney et al. 2012) 

SATB2 2q33.1 608148 Syndromic (Talkowski et al. 2012) 

WAC 10p12.1 615049 Rare single gene variant (Iossifov et al. 2014) 

Transcription Activators 

AFF2 Xq28 300806 Syndromic (Abrams et al. 1997) 

CREBBP 16p13.3 600140 Syndromic (Barnby et al. 2005) 

MBD5 2q23.1 611472 Rare single gene variant 

(Wagenstaller et al. 2007; 

Jaillard et al. 2009; Williams et 

al. 2010; Talkowski, 

Mullegama, et al. 2011; 

Talkowski et al. 2012) 

SMARCA2 9p24.3 600014 
Genetic 

association/functional 
(Wolff et al. 2012) 

SMARCC2 12q13.2 601734 Functional (Neale et al. 2012) 

Transcription Repressors 

ASXL3 18q12.1 615115 Syndromic (Dinwiddie et al. 2013) 

C11orf30 11q13.5 608574 Rare single gene variant (De Rubeis et al. 2014) 

CHD8 14q11.2 610528 Rare Single Gene variant 
(O’Roak, Vives, Girirajan, et al. 

2012; Talkowski et al. 2012) 

MBD1 18q21.1 156535 Rare Single Gene variant (Cukier et al. 2010) 

MECP2 Xq28 300005 Syndromic (Zoghbi et al. 1999) 

NCOR1 17p12-p11.2 600849 Rare single gene variant 

(Iossifov, Ronemus, Levy, 

Wang, Hakker, Rosenbaum, 

Yamrom, Y. Lee, et al. 2012) 

ZMYND11 10p15.3 608668 Rare single gene variant 

(Iossifov, Ronemus, Levy, 

Wang, Hakker, Rosenbaum, 

Yamrom, Y. Lee, et al. 2012) 
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Functional Assessment of Chromatin Remodelers in ASD 

Examples of chromatin-related genes that have been followed up and 

functionally proven to affect neurodevelopment include CHD8, ARID1B, SMARCA4, 

ANKRD11, and EHMT1. The chromodomain helicase DNA-binding protein 8 (CHD8) 

is an ATP-dependent chromatin remodeler of the SNF2 family (Sugathan et al. 

2014). CHD8 was identified as one of the genes in the minimal region of overlap 

of de novo 14q11.2 microdeletions in two children with developmental delay and 

cognitive impairment (Zahir et al. 2007). The first robust hint of CHD8’s importance 

for autism came in 2012, when a study found that people with autism are more 

than twice as likely to have a harmful spontaneous mutation in CHD8 than in any 

other gene (O’Roak, Vives, Fu, et al. 2012). Other studies have shown that 

mutations in CHD8 are indeed highly penetrant, leading to ASD (Bernier et al. 2014) 

and that CHD8 regulates many functionally distinct genes associated with ASD and 

members of pathways important to neurodevelopment and Wnt/β-catenin signaling 

(Wang et al. 2015; Sugathan et al. 2014; Cotney et al. 2015), implicating key 

pathways in the disorder.  

Mutations in the ARID1B gene encoding AT-rich interactive domain-

containing protein 1B were recently associated with multiple syndromes 

characterized by developmental delay and intellectual disability, in addition to non-

syndromic intellectual disability. While the majority of ARID1B mutations identified 

to date are predicted to result in haploinsufficiency, the underlying pathogenic 

mechanisms have yet to be fully understood. ARID1B is a DNA- binding subunit of 

the Brahma-associated factor (BAF) chromatin remodeling complexes, which play a 

key role in the regulation of gene activity (Sim et al. 2015). There is now evidence 

that ARID1B is a repressor of Wnt/β-catenin signaling (Vasileiou et al. 2015). 

ARID1B was able to associate with β-catenin and repress Wnt/β-catenin-mediated 

transcription through the BAF core subunit BRG1 (Vasileiou et al. 2015). 

In turn, transcription activator Brg1 also known as ATP-dependent helicase 

SMARCA4, was shown to play an important role in both synapse development and 

maturation and MEF2-mediated synapse remodeling in mice (Zhang et al. 2016). 

Indeed, the deletion of Brg1 in early postnatal hippocampal mouse neurons 

resulted in reduced dendritic spine density and maturation and impaired synapse 

activities (Zhang et al. 2016). Additionally, gene expression analyses indicated that 

Brg1 regulates a significant number of genes known to be involved in synapse 
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function and implicated in ASD, as seen in CHD8 knockdown experiments 

(Sugathan et al. 2014; Zhang et al. 2016). 

By playing a role in histone acetylation, Ankyrin repeat domain containing 

protein 11 (ANKRD11) has shown to be crucial for neurodevelopment as deletions 

or mutation in one allele of ANKRD11 cause cognitive dysfunction and ASD 

(Christian R. Marshall et al. 2008; Lo-Castro et al. 2013; Sirmaci et al. 2011). A 

recent study showed that the knockdown of Ankrd11 in developing murine or 

human cortical neural precursors caused decreased proliferation, reduced 

neurogenesis, and aberrant neuronal positioning. Consistent with a role for 

Ankrd11 in histone acetylation, Ankrd11 was associated with chromatin and 

colocalized with HDAC3, and expression and histone acetylation of Ankrd11 target 

genes were altered in neural precursors with point mutations in the Ankrd11 HDAC-

binding domain. Thus, Ankrd11 is a crucial chromatin regulator that controls 

histone acetylation and gene expression during neural development, thereby 

providing a likely explanation for its association with cognitive dysfunction and 

ASD (Gallagher et al. 2015). 

On the other hand, euchromatin histone methyltransferase 1 (EHMT1) is a 

histone methyltransferase that is part of the E2F6 complex, capable of histone 3 

lysine 9 dimethylation (H3K9me2) in euchromatic regions of the genome, which 

represses transcription. H3K9 methylation has a fundamental role in 

heterochromatin formation, transcriptional silencing, X-chromosome inactivation, 

and DNA methylation. Defects in EHMT1 are associated with intellectual disability 

(Bessa et al. 2007) and with 9q subtelomeric deletion syndrome which is due to 

haploinsufficiency for EHMT1 (Kleefstra et al. 2006; Kleefstra et al. 2012). EHMT1 

has shown to play a critical and cell-autonomous role in synaptic scaling by 

responding to attenuated neuronal firing or sensory drive, suggesting that 

H3K9me2-mediated changes in chromatin structure govern a repressive program 

that controls synaptic scaling (Benevento et al. 2016). 

 Apart from the well described and studied genes, there are still several 

chromatin regulators for which the specific neurobiological function remains 

unexplained. MBD5 (methyl-CpG binding domain protein 5) encodes a member of 

the methyl-CpG-binding domain (MBD) family that has been implicated as the 

critical gene responsible for the 2q23.1 deletion syndrome (Talkowski, Mullegama, 

et al. 2011). Haploinsufficiency of this gene is associated with a syndrome involving 

microcephaly, intellectual disabilities, severe speech impairment, and seizures. The 

features associated with a deletion, mutation or duplication of MBD5 and the gene 
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expression changes observed support MBD5 as a dosage-sensitive gene critical for 

normal development (Mullegama et al. 2013). Classical methyl-CpG binding 

proteins contain the conserved DNA binding motif methyl-cytosine binding domain 

(MBD), which preferentially binds to methylated CpG dinucleotides. These proteins 

serve as transcriptional repressors, mediating gene silencing via DNA cytosine 

methylation. Mutations in methyl-CpG binding protein 2 (MeCP2) have been linked 

to the human mental retardation disorder Rett syndrome, suggesting an important 

role for methyl-CpG binding proteins in brain development and function (Fan & 

Hutnick 2005). In contrast, MBD3, MBD5 and MBD6 do not bind methylated DNA, 

either due to amino acid alterations at critical positions or deletion of key DNA 

inter- acting residues in the MBD (Laget et al. 2010). 

Methyltransferase-like 2B (METTL2B) is a protein of unknown function that 

is a member of a family of methyltransferases that share homology with the UbiE 

family of methyltransferases. The METTL2B gene which is highly homologous to 

METTL2A (also of unknown function), was identified as disrupted by the breakpoint 

of a balanced chromosomal translocation in an ASD subject with a severe 

phenotype (Talkowski et al. 2012). The patient presented with neuromuscular 

hypotonia, developmental delay, dysmorphism and previous MRI of brain revealed 

delayed myelination. Given the severity of the phenotype in the patient bearing no 

other genetic defects, this gene is also a potential candidate that requires further 

investigation to pinpoint its role in neurodevelopment and ASD. 

In summary, as described throughout this chapter, ASD may be caused by 

an array of different genes and variants that represent risk for ASD. While this poses 

a huge problem for understanding and treating ASD, it does suggest a convergence 

of the developmental and neuronal pathways (anatomical, cellular and molecular) 

which tie together the known molecular defects causing ASD. Along with this 

paradigm, it is imperative to further explore the functional roles of the causal 

variants and genes on protein and cellular function and its impact on phenotype 

development. Functional validation is essential to test the biological impact of 

identified genes and will be the focus of this work.  
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Goals 

Chromatin regulators have been shown to be essential for brain 

development, by controlling processes as neurogenesis and neural 

differentiation and rely on epigenetic marks such as post-translational 

modifications of histones and transcriptional regulation of downstream players 

involved in synaptic function. However, there is a panoply of genes that remain 

unexplored that can contribute to the theory of convergence of biological 

pathways in ASD or could reveal downstream players in neurodevelopment. In 

order to understand this, it is important to first generate models that allow the 

investigation of the contribution of individual genes to neurodevelopment.  

This project will explore chromatin-related genes that were previously 

identified as strong risk factors for ASD - EHMT1, MBD5, METTL2B and ARID1B - 

to explore the functional impact of their disruption, either through in vitro 

models or patient samples. This thesis was divided into three chapters where 

each chapter will address a specific goal. The main goals were to:  

 

Chapter 1. Characterize a unique microduplication of the chromatin regulator 

ARID1B in a patient with intellectual disability and identify the 

dysregulated pathways contributing to the phenotype. 

 

Chapter 2. Create models of loss-of-function of chromatin-related genes 

(EHMT1, MBD5, METTL2A and METTL2B) using CRISPR/Cas9 

genome editing technology in an isogenic cell line of induced 

pluripotent stem cells to study ASD pathogenesis. 

 

 

Chapter 3. Generate iPSC-derived neuronal progenitor and mature neuronal 

cells to investigate the impact of perturbing the chromatin 

remodeler MBD5 during neurodevelopment, in terms of genome-

wide transcriptomic alterations. 

 

 

 





General Introduction 

43 

 

References 

Abrahams, B.S. & Geschwind, D.H., 2008. Advances in autism genetics: on the 

threshold of a new neurobiology. Nature Reviews. Genetics, 9(5), pp.341–

355. 

Abrams, M.T. et al., 1997. Cognitive, behavioral, and neuroanatomical 

assessment of two unrelated male children expressing FRAXE. American 

Journal of Medical Genetics, 74(1), pp.73–81. 

Abuhatzira, L. et al., 2011. The chromatin-binding protein HMGN1 regulates the 

expression of methyl CpG-binding protein 2 (MECP2) and affects the 

behavior of mice. The Journal of Biological Chemistry, 286(49), pp.42051–

62. 

Addis, L. et al., 2015. Microdeletions of ELP4 Are Associated with Language 

Impairment, Autism Spectrum Disorder, and Mental Retardation. Human 

Mutation, 36(9), pp.842–50. 

ADDM Network, 2012. ADDM Network Community Report 2012. Available at: 

http://www.cdc.gov/ncbddd/autism/documents/addm-2012-community-

report.pdf. 

Adegbola, A. et al., 2008. A novel mutation inJARID1C/SMCX in a patient with 

autism spectrum disorder (ASD). American Journal of Medical Genetics Part 

A, 146A(4), pp.505–511. 

Adzhubei, I.A. et al., 2010. A method and server for predicting damaging 

missense mutations. Nature Methods, 7(4), pp.248–9. 

Amaral, D.G., Dawson, G. & Geschwind, D.H., 2011. Autism Spectrum Disorders, 

American Psychiatric Association, 2013. Diagnostic and Statistical Manual of 

Mental Disorders (DSM-5) 5th ed., 

Anney, R. et al., 2010. A genome-wide scan for common alleles affecting risk for 

autism. Human molecular genetics, 19(20), pp.4072–82. 

Anney, R. et al., 2012. Individual common variants exert weak effects on the risk 

for autism spectrum disorders. Human Molecular Genetics, 21(21), 

pp.4781–4792. 

Arboleda, V.A. et al., 2015. De novo nonsense mutations in KAT6A, a lysine 

acetyl-transferase gene, cause a syndrome including microcephaly and 

global developmental delay. American Journal of Human Genetics, 96(3), 

pp.498–506. 

Autism Genome Project Consortium, P. et al., 2007. Mapping autism risk loci 



 

44 

 

using genetic linkage and chromosomal rearrangements. Nature Genetics, 

39(3), pp.319–28. 

Barnby, G. et al., 2005. Candidate-Gene Screening and Association Analysis at 

the Autism-Susceptibility Locus on Chromosome 16p: Evidence of 

Association at GRIN2A and ABAT. The American Journal of Human Genetics, 

76(6), pp.950–966. 

Basu, S.N., Kollu, R. & Banerjee-Basu, S., 2009. AutDB: a gene reference resource 

for autism research. Nucleic Acids Research, 37(Database), pp.D832–D836. 

Ben-David, E. & Shifman, S., 2013. Combined analysis of exome sequencing 

points toward a major role for transcription regulation during brain 

development in autism. Molecular Psychiatry, 18(10), pp.1054–1056. 

Ben-David, E. & Shifman, S., 2012. Networks of neuronal genes affected by 

common and rare variants in autism spectrum disorders. G. Gibson, ed. 

PLoS genetics, 8(3), p.e1002556. 

Benevento, M. et al., 2016. Histone Methylation by the Kleefstra Syndrome 

Protein EHMT1 Mediates Homeostatic Synaptic Scaling. Neuron, 91(2), 

pp.341–355. 

Berg, J.M. & Geschwind, D.H., 2012. Autism genetics: searching for specificity 

and convergence. Genome Biology, 13(7), p.247. 

Bernier, R. et al., 2014. Disruptive CHD8 Mutations Define a Subtype of Autism 

Early in Development. Cell, 158(2), pp.263–276. 

Bessa, C., Lopes, F. & Maciel, P., 2007. Molecular Genetics of Intellectual 

Disability. 

Bishop, D.V.M. et al., 2004. Using self-report to identify the broad phenotype in 

parents of children with autistic spectrum disorders: a study using the 

Autism-Spectrum Quotient. Journal of Child Psychology and Psychiatry, 

45(8), pp.1431–1436. 

Blomquist, H.Ks. et al., 1985. Frequency of the fragile X syndrome in infantile 

autism. Clinical Genetics, 27(2), pp.113–117. 

Bolton, P. et al., 1994. A Case-Control Family History Study of Autism. Journal of 

Child Psychology and Psychiatry, 35(5), pp.877–900. 

Brand, H. et al., 2015. Paired-Duplication Signatures Mark Cryptic Inversions and 

Other Complex Structural Variation, 

C Yuen, R.K. et al., 2017. Whole genome sequencing resource identifies 18 new 

candidate genes for autism spectrum disorder. Nature Neuroscience. 

Carvill, G.L. et al., 2013. Targeted resequencing in epileptic encephalopathies 



General Introduction 

45 

 

identifies de novo mutations in CHD2 and SYNGAP1. Nature Genetics, 45(7), 

pp.825–830. 

Chahrour, M.H. et al., 2012. Whole-Exome Sequencing and Homozygosity 

Analysis Implicate Depolarization-Regulated Neuronal Genes in Autism D. 

H. Geschwind, ed. PLoS Genetics, 8(4), p.e1002635. 

Clapier, C.R. & Cairns, B.R., 2009. The biology of chromatin remodeling 

complexes. Annual review of biochemistry, 78(1), pp.273–304. 

Colvert, E. et al., 2015. Heritability of Autism Spectrum Disorder in a UK 

Population-Based Twin Sample. JAMA psychiatry, 72(5), pp.415–23. 

Cotney, J. et al., 2015. The autism-associated chromatin modifier CHD8 

regulates other autism risk genes during human neurodevelopment. Nature 

Communications, 6, p.6404. 

Cross-Disorder Group of the Psychiatric Genomics Consortium, C.-D.G. of the 

P.G. et al., 2013. Genetic relationship between five psychiatric disorders 

estimated from genome-wide SNPs. Nature Genetics, 45(9), pp.984–94. 

Cukier, H.N. et al., 2010. Novel variants identified in methyl-CpG-binding domain 

genes in autistic individuals. Neurogenetics, 11(3), pp.291–303. 

Cukier, H.N. et al., 2012. The expanding role of MBD genes in autism: 

identification of a MECP2 duplication and novel alterations in MBD5, MBD6, 

and SETDB1. Autism Research, 5(6), pp.385–97. 

Curran, S. et al., 2011. No association between a common single nucleotide 

polymorphism, rs4141463, in the MACROD2 gene and autism spectrum 

disorder. American Journal of Medical Genetics Part B: Neuropsychiatric 

Genetics, 156(6), pp.633–639. 

Devlin, B. & Scherer, S.W., 2012. Genetic architecture in autism spectrum 

disorder. Current Opinion in Genetics & Development, 22(3), pp.229–237. 

Dinwiddie, D.L. et al., 2013. De novoframeshift mutation in ASXL3 in a patient 

with global developmental delay, microcephaly, and craniofacial anomalies. 

BMC Medical Genomics, 6(1), p.32. 

Dong, S. et al., 2014. De Novo Insertions and Deletions of Predominantly 

Paternal Origin Are Associated with Autism Spectrum Disorder. Cell Reports, 

9(1), pp.16–23. 

Fan, G. & Hutnick, L., 2005. Methyl-CpG binding proteins in the nervous system. 

Cell research, 15(4), pp.255–61. 

Gallagher, D. et al., 2015. Ankrd11 Is a Chromatin Regulator Involved in Autism 

that Is Essential for Neural Development. Developmental Cell, 32(1), pp.31–



 

46 

 

42. 

Gaugler, T. et al., 2014. Most genetic risk for autism resides with common 

variation. Nature genetics, 46(8), pp.881–5. 

Geschwind, D.H., 2009. Advances in Autism. Annual review of medicine, 60, 

pp.367–80. 

Geschwind, D.H. & Levitt, P., 2007. Autism spectrum disorders: developmental 

disconnection syndromes. Current Opinion in Neurobiology, 17(1), pp.103–

111. 

Gibbons, R., 2006. Alpha thalassaemia-mental retardation, X linked. Orphanet 

Journal of Rare Diseases, 1(1), p.15. 

Glessner, J.T. et al., 2009. Autism genome-wide copy number variation reveals 

ubiquitin and neuronal genes. Nature, 459(7246), pp.569–73. 

Grafodatskaya, D. et al., 2010. Autism spectrum disorders and epigenetics. 

Journal of the American Academy of Child and Adolescent Psychiatry, 49(8), 

pp.794–809. 

Gregor, A. et al., 2013. De novo mutations in the genome organizer CTCF cause 

intellectual disability. American Journal of Human Genetics, 93(1), pp.124–

31. 

Grozeva, D. et al., 2014. De Novo Loss-of-Function Mutations in SETD5, Encoding 

a Methyltransferase in a 3p25 Microdeletion Syndrome Critical Region, 

Cause Intellectual Disability. The American Journal of Human Genetics, 

94(4), pp.618–624. 

Gupta, A.R. & State, M.W., 2007. Recent Advances in the Genetics of Autism. 

Biological Psychiatry, 61(4), pp.429–437. 

Halgren, C. et al., 2012. Corpus callosum abnormalities, intellectual disability, 

speech impairment, and autism in patients with haploinsufficiency of 

ARID1B. Clinical Genetics, 82(3), pp.248–55. 

Hanscom, C. & Talkowski, M., 2014. Design of large-insert jumping libraries for 

structural variant detection using Illumina sequencing. Current Protocols in 

Human Genetics, 80, pp.7.22.1–9. 

Hoyer, J. et al., 2012. Haploinsufficiency of ARID1B, a member of the SWI/SNF-a 

chromatin-remodeling complex, is a frequent cause of intellectual disability. 

American Journal of Human Genetics, 90(3), pp.565–72. 

Hussman, J.P. et al., 2011. A noise-reduction GWAS analysis implicates altered 

regulation of neurite outgrowth and guidance in autism. Molecular Autism, 

2(1), p.1. 



General Introduction 

47 

 

Iossifov, I., Ronemus, M., Levy, D., Wang, Z., Hakker, I., Rosenbaum, J., Yamrom, 

B., Lee, Y., et al., 2012. De Novo Gene Disruptions in Children on the Autistic 

Spectrum. Neuron, 74(2), pp.285–299. 

Iossifov, I., Ronemus, M., Levy, D., Wang, Z., Hakker, I., Rosenbaum, J., Yamrom, 

B., Lee, Y.-H., et al., 2012. De novo gene disruptions in children on the 

autistic spectrum. Neuron, 74(2), pp.285–99. 

Iossifov, I. et al., 2014. The contribution of de novo coding mutations to autism 

spectrum disorder. Nature, 515(7526), pp.216–221. 

Jacobs, P.A. et al., 1974. A cytogenetic survey of 11,680 newborn infants. Annals 

of Human Genetics, 37(4), pp.359–76. 

Jaillard, S. et al., 2009. 2q23.1 microdeletion identified by array comparative 

genomic hybridisation: an emerging phenotype with Angelman-like 

features? Journal of Medical Genetics, 46(12), pp.847–55. 

Jonsson, L. et al., 2014. Association study between autistic-like traits and 

polymorphisms in the autism candidate regions RELN, CNTNAP2, SHANK3, 

and CDH9/10. Molecular Autism, 5(1), p.55. 

Jorde, L.B. et al., 1991. Complex segregation analysis of autism. American 

Journal of Human Genetics, 49(5), pp.932–8. 

Kana, R.K. et al., 2006. Sentence comprehension in autism: thinking in pictures 

with decreased functional connectivity. Brain, 129(9), pp.2484–2493. 

Kanner, L., 1943. Autistic Disturbances of Affective Contact. Pathology. 

Kleefstra, T. et al., 2012. Disruption of an EHMT1-associated chromatin-

modification module causes intellectual disability. American Journal of 

Human Genetics, 91(1), pp.73–82. 

Kleefstra, T. et al., 2006. Loss-of-function mutations in euchromatin histone 

methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion 

syndrome. American Journal of Human Genetics, 79(2), pp.370–7. 

Klei, L. et al., 2012. Common genetic variants, acting additively, are a major 

source of risk for autism. Molecular Autism, 3(1), p.9. 

Krumm, N. et al., 2015. Excess of rare, inherited truncating mutations in autism. 

Nature Genetics, 47(6), pp.582–8. 

Kumar, P., Henikoff, S. & Ng, P.C., 2009. Predicting the effects of coding non-

synonymous variants on protein function using the SIFT algorithm. Nature 

Protocols, 4(7), pp.1073–81. 

Kumar, R.A. et al., 2007. Recurrent 16p11.2 microdeletions in autism. Human 

Molecular Genetics, 17(4), pp.628–638. 



 

48 

 

Laget, S. et al., 2010. The human proteins MBD5 and MBD6 associate with 

heterochromatin but they do not bind methylated DNA. S. D. Fugmann, ed. 

PloS One, 5(8), p.e11982. 

Lim, E.T. et al., 2013. Rare complete knockouts in humans: population 

distribution and significant role in autism spectrum disorders. Neuron, 

77(2), pp.235–42. 

Liu, N., Balliano, A. & Hayes, J.J., 2011. Mechanism(s) of SWI/SNF-induced 

nucleosome mobilization. Chembiochem, 12(2), pp.196–204. 

Lo-Castro, A. et al., 2013. Neurobehavioral phenotype observed in KBG 

syndrome caused by ANKRD11 mutations. American journal of medical 

genetics. Part B, Neuropsychiatric Genetics, 162B(1), pp.17–23. 

Luger, K. et al., 1997. Crystal structure of the nucleosome core particle at 2.8 A 

resolution. Nature, 389(6648), pp.251–60. 

Ma, D. et al., 2009. A genome-wide association study of autism reveals a 

common novel risk locus at 5p14.1. Annals of Human Genetics, 73(Pt 3), 

pp.263–73. 

Manolio, T.A. et al., 2009. Finding the missing heritability of complex diseases. 

Nature, 461(7265), pp.747–53. 

Marshall, C.R. et al., 2008. Structural Variation of Chromosomes in Autism 

Spectrum Disorder. The American Journal of Human Genetics, 82(2), 

pp.477–488. 

Marshall, C.R. et al., 2008. Structural variation of chromosomes in autism 

spectrum disorder. American journal of human genetics, 82(2), pp.477–88. 

Meyer, W.K. et al., 2012. Evaluating the Evidence for Transmission Distortion in 

Human Pedigrees. Genetics, 191(1), pp.215–232. 

Michaelson, J.J. et al., 2012. Whole-genome sequencing in autism identifies hot 

spots for de novo germline mutation. Cell, 151(7), pp.1431–42. 

Morrow, E.M. et al., 2008. Identifying autism loci and genes by tracing recent 

shared ancestry. Science (New York, N.Y.), 321(5886), pp.218–23. 

Mullegama, S. V et al., 2013. Reciprocal deletion and duplication at 2q23.1 

indicates a role for MBD5 in autism spectrum disorder. European Journal of 

Human Genetics : EJHG, (November 2012), pp.1–7. 

Nakao, M., 2001. Epigenetics: interaction of DNA methylation and chromatin. 

Gene, 278(1-2), pp.25–31. 

Nava, C. et al., 2012. Analysis of the chromosome X exome in patients with 

autism spectrum disorders identified novel candidate genes, including 



General Introduction 

49 

 

TMLHE. Translational Psychiatry, 2(10), p.e179. 

Neale, B.M. et al., 2012. Patterns and rates of exonic de novo mutations in autism 

spectrum disorders. Nature, 485. 

Nielsen, J. & Wohlert, M., 1991. Chromosome abnormalities found among 

34,910 newborn children: results from a 13-year incidence study in Arhus, 

Denmark. Human Genetics, 87(1), pp.81–3. 

Nord, A.S. et al., 2011. Reduced transcript expression of genes affected by 

inherited and de novo CNVs in autism. European Journal of Human 

Genetics : EJHG, 19(6), pp.727–31. 

Novarino, G. et al., 2012. Mutations in BCKD-kinase lead to a potentially treatable 

form of autism with epilepsy. Science (New York, N.Y.), 338(6105), pp.394–

7. 

O’Roak, B.J. et al., 2011. Exome sequencing in sporadic autism spectrum 

disorders identifies severe de novo mutations. Nature Genetics, 43(6), 

pp.585–9. 

O’Roak, B.J., Vives, L., Fu, W., et al., 2012. Multiplex Targeted Sequencing 

Identifies Recurrently Mutated Genes in Autism Spectrum Disorders. 

Science. 

O’Roak, B.J., Vives, L., Girirajan, S., et al., 2012. Sporadic autism exomes reveal 

a highly interconnected protein network of de novo mutations. Nature, 

485(7397), pp.246–250. 

Parikshak, N.N., Gandal, M.J. & Geschwind, D.H., 2015. Systems biology and 

gene networks in neurodevelopmental and neurodegenerative disorders. 

Nature Reviews Genetics. 

Peça, J. et al., 2011. Shank3 mutant mice display autistic-like behaviours and 

striatal dysfunction. Nature, 472(7344), pp.437–442. 

Pinto, D. et al., 2014. Convergence of Genes and Cellular Pathways Dysregulated 

in Autism Spectrum Disorders. The American Journal of Human Genetics. 

Pinto, D. et al., 2010. Functional impact of global rare copy number variation in 

autism spectrum disorders. Nature, 466(7304), pp.368–72. 

Piton, A. et al., 2013. Analysis of the effects of rare variants on splicing identifies 

alterations in GABAA receptor genes in autism spectrum disorder 

individuals. European Journal of Human Genetics, 21(7), pp.749–756. 

Prandini, P. et al., 2012. The association of rs4307059 and rs35678 markers 

with autism spectrum disorders is replicated in Italian families. Psychiatric 

Genetics, 22(4), pp.177–181. 



 

50 

 

Prasad, A. et al., 2012. A Discovery Resource of Rare Copy Number Variations in 

Individuals with Autism Spectrum Disorder. G3&amp;#58; 

Genes|Genomes|Genetics, 2(12), pp.1665–1685. 

Ravel, C. et al., 2006. Prevalence of chromosomal abnormalities in 

phenotypically normal and fertile adult males: large-scale survey of over 

10,000 sperm donor karyotypes. Human Reproduction (Oxford, England), 

21(6), pp.1484–9. 

Redin, C. et al., 2017. The genomic landscape of balanced cytogenetic 

abnormalities associated with human congenital anomalies. Nature 

Genetics, 49(1), pp.36–45. 

Ripke, S. et al., 2014. Biological insights from 108 schizophrenia-associated 

genetic loci. Nature, 511(7510), pp.421–427. 

De Rubeis, S., He, X., Goldberg, A.P., et al., 2014. Synaptic, transcriptional and 

chromatin genes disrupted in autism. Nature, 515(7526), pp.209–215. 

De Rubeis, S., He, X., Goldberg, A.P., et al., 2014. Synaptic, transcriptional and 

chromatin genes disrupted in autism. Nature, 515(7526), pp.209–15. 

De Rubeis, S. & Buxbaum, J.D., 2015. Recent advances in the genetics of autism 

spectrum disorder. Current Neurology and Neuroscience Reports, 15(6), 

p.553. 

Salyakina, D. et al., 2010. Variants in several genomic regions associated with 

asperger disorder. Autism Research, 3(6), pp.303–10. 

Sanders, S.J. et al., 2012. De novo mutations revealed by whole-exome 

sequencing are strongly associated with autism. Nature, 485. 

Sanders, S.J. et al., 2015. Insights into Autism Spectrum Disorder Genomic 

Architecture and Biology from 71 Risk Loci. Neuron, 87(6), pp.1215–1233. 

Santos, M., Coelho, P.A. & Maciel, P., 2006. Chromatin remodeling and neuronal 

function: exciting links. Genes, Brain and Behavior, 5, pp.80–91. 

Schaaf, C.P. & Zoghbi, H.Y., 2011. Solving the autism puzzle a few pieces at a 

time. Neuron, 70(5), pp.806–8. 

Sebat, J. et al., 2007. Strong association of de novo copy number mutations with 

autism. Science (New York, N.Y.), 316(5823), pp.445–9. 

Sim, J.C.H., White, S.M. & Lockhart, P.J., 2015. ARID1B-mediated disorders: 

Mutations and possible mechanisms. Intractable & Rare Diseases Research, 

4(1), pp.17–23. 

Sirmaci, A. et al., 2011. Mutations in ANKRD11 Cause KBG Syndrome, 

Characterized by Intellectual Disability, Skeletal Malformations, and 



General Introduction 

51 

 

Macrodontia. The American Journal of Human Genetics, 89(2), pp.289–294. 

Stessman, H.A.F. et al., 2017. Targeted sequencing identifies 91 

neurodevelopmental-disorder risk genes with autism and developmental-

disability biases. Nature Genetics. 

Sugathan, A. et al., 2014. CHD8 regulates neurodevelopmental pathways 

associated with autism spectrum disorder in neural progenitors. 

Proceedings of the National Academy of Sciences, 111(42), pp.E4468–

E4477. 

Talkowski, M.E., Mullegama, S. V, et al., 2011. Assessment of 2q23 . 1 

Microdeletion Syndrome Implicates MBD5 as a Single Causal Locus of 

Intellectual Disability , Epilepsy , and Autism Spectrum Disorder. The 

American Journal of Human Genetics, pp.551–563. 

Talkowski, M.E., Ernst, C., et al., 2011. Next-Generation Sequencing Strategies 

Enable Routine Detection of Balanced Chromosome Rearrangements for 

Clinical Diagnostics and Genetic Research. The American Journal of Human 

Genetics, pp.469–481. 

Talkowski, M.E. et al., 2012. Sequencing chromosomal abnormalities reveals 

neurodevelopmental loci that confer risk across diagnostic boundaries. Cell, 

149(3), pp.525–37. 

Toma, C. et al., 2014. Exome sequencing in multiplex autism families suggests 

a major role for heterozygous truncating mutations. Molecular Psychiatry, 

19(7), pp.784–790. 

Torrico, B. et al., 2016. Lack of replication of previous autism spectrum disorder 

GWAS hits in European populations. Autism Research. 

Trikalinos, T.A. et al., 2004. Establishment of genetic associations for complex 

diseases is independent of early study findings. European Journal of Human 

Genetics, 12(9), pp.762–769. 

Vaags, A.K. et al., 2012. Rare deletions at the neurexin 3 locus in autism 

spectrum disorder. American Journal of Human Genetics, 90(1), pp.133–41. 

Vasileiou, G. et al., 2015. Chromatin-Remodeling-Factor ARID1B Represses 

Wnt/β-Catenin Signaling. The American Journal of Human Genetics, 97(3), 

pp.445–456. 

Veltman, J.A. & Brunner, H.G., 2012. De novo mutations in human genetic 

disease. Nature Reviews Genetics, 13(8), pp.565–575. 

Vissers, L.E.L.M. et al., 2010. A de novo paradigm for mental retardation. Nature 

Genetics, 42(12), pp.1109–1112. 



 

52 

 

Vissers, L.E.L.M. et al., 2004. Mutations in a new member of the chromodomain 

gene family cause CHARGE syndrome. Nature Genetics, 36(9), pp.955–957. 

Wagenstaller, J. et al., 2007. Copy-Number Variations Measured by Single-

Nucleotide–Polymorphism Oligonucleotide Arrays in Patients with Mental 

Retardation. The American Journal of Human Genetics, 81(4), pp.768–779. 

Walsh, C.A., Morrow, E.M. & Rubenstein, J.L.R., 2008. Autism and brain 

development. Cell, 135(3), pp.396–400. 

Wang, K. et al., 2009. Common genetic variants on 5p14.1 associate with autism 

spectrum disorders. Nature, 459(7246), pp.528–33. 

Wang, P. et al., 2015. CRISPR/Cas9-mediated heterozygous knockout of the 

autism gene CHD8 and characterization of its transcriptional networks in 

neurodevelopment. Molecular Autism, 6, p.55. 

Weiss, L.A. et al., 2009. A genome-wide linkage and association scan reveals 

novel loci for autism. Nature, 461(7265), pp.802–808. 

Weiss, L.A. et al., 2009. A genome-wide linkage and association scan reveals 

novel loci for autism. Nature, 461(7265), pp.802–8. 

Weiss, L.A. et al., 2008. Association between Microdeletion and Microduplication 

at 16p11.2 and Autism. New England Journal of Medicine, 358(7), pp.667–

675. 

Williams, S.R. et al., 2010. Haploinsufficiency of HDAC4 Causes Brachydactyly 

Mental Retardation Syndrome, with Brachydactyly Type E, Developmental 

Delays, and Behavioral Problems. The American Journal of Human Genetics, 

87(2), pp.219–228. 

Williams, S.R. et al., 2010. Haploinsufficiency of MBD5 associated with a 

syndrome involving microcephaly, intellectual disabilities, severe speech 

impairment, and seizures. European Journal of Human Genetics : EJHG, 

18(4), pp.436–41. 

Willsey, A.J. et al., 2013. Coexpression Networks Implicate Human Midfetal Deep 

Cortical Projection Neurons in the Pathogenesis of Autism. Cell, 155(5), 

pp.997–1007. 

Wolff, D. et al., 2012. In-Frame Deletion and Missense Mutations of the C-

Terminal Helicase Domain of SMARCA2 in Three Patients with Nicolaides-

Baraitser Syndrome. Molecular Syndromology, 2(6), pp.237–244. 

Wolffe, A.P. & Hayes, J.J., 1999. Chromatin disruption and modification. Nucleic 

Acids Research, 27(3), pp.711–20. 

Xu, L.-M. et al., 2012. AutismKB: an evidence-based knowledgebase of autism 



General Introduction 

53 

 

genetics. Nucleic Acids Research, 40(D1), pp.D1016–D1022. 

Yu, T.W. et al., 2013. Using Whole-Exome Sequencing to Identify Inherited 

Causes of Autism. Neuron, 77(2), pp.259–273. 

Yu, Y. et al., 2015. De novo mutations in ARID1B associated with both syndromic 

and non-syndromic short stature. BMC genomics, 16(1), p.701. 

Yuen, R.K.C. et al., 2015. Whole-genome sequencing of quartet families with 

autism spectrum disorder. Nature Medicine, 21(2), pp.185–191. 

Zahir, F. et al., 2007. Novel deletions of 14q11.2 associated with developmental 

delay, cognitive impairment and similar minor anomalies in three children. 

Journal of Medical Genetics, 44(9), pp.556–61. 

Zhang, Z. et al., 2016. Autism-Associated Chromatin Regulator Brg1/SmarcA4 Is 

Required for Synapse Development and Myocyte Enhancer Factor 2-

Mediated Synapse Remodeling. Molecular and Cellular Biology, 36(1), 

pp.70–83. 

Zoghbi, H.Y. et al., 1999. Rett syndrome is caused by mutations in X-linked 

MECP2, encoding methyl-CpG-binding protein 2. Nature Genetics, 23(2), 

pp.185–188. 

Zollner, S. & Pritchard, J.K., 2007. Overcoming the winner’s curse: estimating 

penetrance parameters from case-control data. American journal of human 

genetics, 80(4), pp.605–15. 

Zondervan, K.T. & Cardon, L.R., 2004. The complex interplay among factors that 

influence allelic association. Nature Reviews Genetics, 5(2), pp.89–100. 

Zuk, O. et al., 2012. The mystery of missing heritability: Genetic interactions 

create phantom heritability. Proceedings of the National Academy of 

Sciences of the United States of America, 109(4), pp.1193–8. 





Chapter 1 
 

A Novel Microduplication of ARID1B:  
Clinical, Genetic and Proteomic Findings

Highlights 

This chapter focuses on the chromatin remodeler, ARID1B, and the 

characterization of a unique microduplication of this gene found in a patient with 

intellectual disability, and proposes haploinsufficiency as the causal feature 

underlying the phenotype. This chapter was published as a manuscript in Seabra et 

al. 2017, AJMG Part A. The proteomics analyses were performed by collaborators, 

Nicholas Szoko and Marvin Natowicz.  
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Genetic alterations of ARID1B have been recently recognized as one of the 

most common mendelian causes of intellectual disability and are associated with both 

syndromic and non-syndromic phenotypes. The ARID1B protein, a subunit of the 

chromatin remodeling complex SWI/SNF-A, is involved in the regulation of 

transcription and multiple downstream cellular processes. We report here the clinical, 

genetic and proteomic phenotypes of an individual with a unique apparent de novo 

mutation of ARID1B due to an intragenic duplication. His neurodevelopmental 

phenotype includes a severe speech/language disorder with IQ scores within the 

normal range and scattered academic skill levels, expanding the phenotypic spectrum 

of ARID1B mutations.  

Haploinsufficiency of ARID1B was determined both by RNA sequencing and 

quantitative RT-PCR. Fluorescent in situ hybridization analysis supported an 

intragenic localization of the ARID1B copy number gain. Principal component analysis 

revealed marked differentiation of the subject’s lymphoblast proteome from that of 

controls. Of 3427 proteins quantified, 1,014 were significantly up- or down-regulated 

compared to controls (q<0.01).   

Pathway analysis revealed highly significant enrichment for canonical pathways 

of EIF2 signaling, protein ubiquitination, tRNA charging and chromosomal replication, 

among others. Network analyses revealed downregulation of: (1) intracellular 

components involved in organization of membranes, organelles and vesicles; (2) 

aspects of cell cycle control, signal transduction and nuclear protein export; (3) 

ubiquitination and proteosomal function; and (4) aspects of mRNA metabolism. 

Further studies are needed to determine the detailed molecular and cellular 

mechanisms by which constitutional haploinsufficiency of ARID1B causes syndromic 

and non-syndromic developmental disabilities.  

 

 

 

Keywords 

ARID1B, SWI/SNF, SWI/SNF-A, chromatin, regulation, development, intellectual 

disability, proteome, proteomic 
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Introduction 

Intellectual disability is characterized by significant limitations in cognitive 

functioning and adaptive behaviors (American Psychiatric Association, 2013) and 

affects 1–3% of the general population.  Mutations of ARID1B (AT-rich interactive 

domain 1B) are an epidemiologically significant subset of mendelian causes of 

neurodevelopmental disability and are associated with non-syndromic intellectual 

disability as well as syndromic forms of intellectual disability such as Coffin-Siris 

syndrome (Santen and Clayton-Smith, 2014; Sim et al., 2015).  The product of ARID1B 

is a ubiquitous nuclear-localized protein that is a subunit of SWI/SNF-A, a chromatin 

remodeling complex that contains over 25 core subunits and that is involved in the 

regulation of many biological processes, including regulation of transcription 

(Euskirchen et al., 2012). ARID1B  mutations associated with intellectual disability 

include whole gene deletions, intragenic deletions, splice site, nonsense, and 

frameshift mutations, all of which point to haploinsufficiency as the mechanism 

causing the phenotype, as well as rare and less well-studied duplications (reviewed in 

Santen and Clayton-Smith, 2014; Sim et al., 2015). Here, we report the clinical, 

genetic, and proteomic findings of an individual having a unique loss-of-function 

mutation of ARID1B due to an intragenic duplication. 
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Clinical Report 

This study was approved by the Institutional Review Board of the Cleveland 

Clinic. The subject is a 14-year-old male born at 39 weeks of gestation to a healthy 

primagravida 38-year-old mother and unrelated 49-year-old father with non-

contributory family histories. There were no medical concerns during infancy. Early 

developmental milestones were met until 1-year of age but no use of sentences 

occurred until about 2.5-3 years old.  

Physical examinations during early childhood noted language delays, 

borderline macrocephaly, strabismus, dysarthria, mild hypotonia and mild gross and 

fine motor incoordination. Diminished physical endurance was also apparent in early 

childhood and has persisted. He had prolonged recovery times from illnesses, 

including several developmental regressions that lasted two or more months between 

ages 7-9 years, as well as two episodes of difficulty recovering from general 

anesthesia at 3 and 6 years old.  Ophthalmologic exam revealed a right optic nerve 

pit. Growth parameters at 6.5 years included head circumference 54.8 cm (98%), 

weight 22.1 kg (52%) and height 116.9 cm (38%). Physical exam at 12.4 years showed 

a non-dysmorphic male with weight 36.6 kg (18%) and height 140.3 cm (7%); 

neurological exam showed slowed processing to questions or directions, clumsy 

lateral tongue movements, abnormal gait with bilateral intoeing, mild imbalance, mild 

dysmetria, slow rapid alternating movements, clumsy fine motor function, and 

posturing of his arms and hands with stress maneuvers. 

The earliest neuropsychological assessment, at 3.5 years, used the Stanford 

Binet 5 tool and showed full-scale IQ 98, verbal IQ 122 and non-verbal IQ 74. At 5 

years, using the WPPSI-III, he was noted to have a full-scale IQ 83, verbal IQ 78 and 

non-verbal IQ 96, a poor fund of general knowledge and difficulty formulating and 

expressing verbal concepts. At 8 years, using the WISC-4, there was a full-scale IQ 78, 

with verbal comprehension 85, perceptual reasoning 102, working memory 86 and 

processing speed 50. His strongest skills related to nonverbal visual-spatial 

reasoning. There was slow processing of information, deficiency of working memory 

and poor visual/graphomotor skills. He was diagnosed with a severe language 

disorder. Auditory evaluation at 10 years showed an auditory processing disorder 

with severe difficulty in figure-ground discrimination, integration of words and 

sentences, temporal integration and phonological processing, and low average 

auditory comprehension and average auditory short-term memory. At 12.5 years, 
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using the Wide Range Achievement Test-4, he scored 101, 104, 91 and 67 in word 

reading, sentence comprehension, spelling and math computation, respectively.  

Cranial MRIs at 6 months and 7 years of age showed a mildly dysmorphic 

corpus callosum. A 48-hour EEG at 5 years was unremarkable. Routine blood tests 

and urinalysis were normal. Normal metabolic testing included thyroid function tests, 

plasma amino acids, blood ammonia, and urinary organic acids, acylglycines, 

guanidinoacetate and creatine. Newborn screening, including for galactosemia, was 

negative. A fasting global plasma metabolomic analysis was unremarkable. The blood 

lactate and plasma butyrylcarnitine levels were intermittently increased. The 

fibroblast lactate:pyruvate ratio was normal, as were activities of fibroblast electron 

transport chain complexes II, III and IV and pyruvate dehydrogenase. A fibroblast 

loading study for defects of mitochondrial fatty acid beta-oxidation was negative. A 

lymphocyte cytogenetic analysis showed a normal 46,XY karyotype at the 550 band 

resolution. Whole exome sequencing did not reveal pathogenic variants that were 

likely or definitely related to the clinical phenotype.  

Array CGH showed a copy number gain within chromosome band 6q25.3 of 

approximately 0.361 Mb in size, arr (GRCh37) 6q25.3(157133792-157495187)x3 dn. 

The duplication, which was not observed in either parent, involves a segment 

containing exons 2-10 (ENST00000346085) of ARID1B (Figure 4B). Array analysis also 

showed heterozygosity for an approximately 0.003 Mb maternally inherited copy 

number loss, arr (GRCh37) 9p13.3(34647598-34650608)x1 mat, including part of 

GALT. There was no clinical or biochemical evidence for galactosemia, nor was a 

mutation of the other GALT allele detected.  
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Materials and Methods 

Molecular Cytogenomic Analysis 

Array CGH was performed on a 400K oligonucleotide microarray (version 10.2) 

designed by the Medical Genetics Laboratories at Baylor College of Medicine and 

manufactured by Agilent Technologies (Santa Clara, CA).  It includes exonic coverage 

of over 4000 candidate and disease genes at an average resolution of 30 kb with 

60,000 SNP probes and 670 probes for the mitochondrial genome. Data was 

extracted using Agilent’s Feature Extraction software (version 9.5.3.1) and was 

analyzed using a web-based software platform (Cheung et al., 2005; Lu et al., 2007). 

 

Transcriptome Analysis 

Gene expression was measured by RNAseq and quantitative RT-PCR. Total RNA 

was extracted from patient-derived EBV-transformed lymphoblastoid cell line (LCL), 

obtained at nearly 14 years of age, using TRIzol® (Invitrogen) followed by RNeasy Mini 

Kit (Qiagen) column purification. cDNA was synthetized from 1µg of extracted RNA 

using SuperScript® II Reverse Transcriptase (ThermoFisher Scientific) with oligo(dT), 

random hexamers, and RNase inhibitor. The RNAseq library was prepared using the 

Illumina TruSeq kit and manufacturer’s instructions. Libraries were multiplexed, 

pooled and sequenced on multiple lanes of an Illumina HiSeq2500, generating an 

average of 30 million paired-end reads of 76 bp. Quality assessment of sequence 

reads was performed using fastQC (v. 0.10.1) 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequence reads were 

then aligned to human reference genome Ensembl GRCh37 (v. 71) using GSNAP (v. 

12-19-2014) (Wu and Nacu, 2010) at its default parameter setting. Quality checking 

of alignments was assessed by a custom script utilizing Picard Tools 

(http://broadinstitute.github.io/picard/), RNASeQC (DeLuca et al., 2012), RSeQC 

(Wang et al., 2012) and SamTools (Li et al., 2009). Novel transcript analysis was 

performed using Cufflinks, and visualized on Integrative Genomics Viewer (Robinson 

et al., 2011; Thorvaldsdóttir et al., 2013). Counts per Million, generated from gene 

level counts which were tabulated using BedTools’s multibamcov algorithm (v. 

2.17.0) (Quinlan and Hall, 2010) on unique alignments for each library at all Ensembl 

genes (GRCh37 v.71), were calculated to compare expression levels with control 

samples from six healthy individuals.   
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Quantitative RT-PCR  

qRT-PCR was performed for ARID1B using custom designed primers and ACTB, 

GAPDH and POLR2A were used as endogenous controls. Primers were as described: 

ARID1B (forward - tgcgtcccctcatctctcca, reverse - aggcatctgactacctggga), ACTB 

(forward - tgaagtgtgacgtggacatc, reverse - ggaggagcaatgatcttgat), GAPDH (forward - 

ggacctgacctgccgtctag, reverse - gtagcccaggatgcccttga), POLR2A (forward - 

gcaccacgtccaatgacat, reverse - gtgcggctgcttccataa). Primers (0.75 µM final), cDNA 

(1:100 final) and nuclease-free water were added to the LightCycler® 480 SYBR Green 

I Master Mix (Roche) for a final 10µL reaction volume. A LightCycler® 480 (Roche) was 

used for data acquisition. Values for each subject or control were obtained in at least 

three technical replicates. Results of technical replicates for the gene of interest were 

normalized against the average of the three endogenous gene controls. Normalized 

expression levels were set in relation to seven age- and gender-matched controls, 

using the ΔΔCt method (Livak & Schmittgen 2001). Results are expressed as fold-

change relative to the averaged control individuals. A two-tailed T-test was used to 

assess statistical significance. 

 

Fluorescent in situ hybridization 

Peripheral blood from the proband was collected in a sodium heparin 

vacutainer tube, cultured for 72 hours with the mitogen phytohemagglutinin, and 

harvested by standard cytogenetic methods. Slides containing both interphase and 

metaphase cells were hybridized according to standard protocol with fluorescently 

labeled BAC clones, RP11-680A17 and RP11-719E16, localized to 6q25.3 and 6q13, 

respectively. The BAC clones had been grown in broth medium with 20 µg/mL of 

chloramphenicol followed by DNA extraction using a Plasmid Miniprep kit (Qiagen). 

The target clone, RP11-680A17, was labeled directly with Spectrum GreenTM dUTP 

by nick translation with the Abbott Molecular kit. After hybridization and in 

accordance with the laboratory’s standard confirmation protocol for duplications less 

than 1 Mb, 50 interphase cells were manually scored using a fluorescent microscope 

to confirm the presence of the duplication and a metaphase cell was examined to 

confirm the localization of the duplicated segment. 
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Proteome Analysis 

LCLs from the subject, obtained at nearly 14 years of age, and 5 male controls 

ages 31-40 years were used. 15 μg of protein from each sample was digested with 

LysC for 1 hour and trypsin overnight at 37°C. Reverse phase LC-MS/MS was 

performed as described (Tomechko et al., 2015), except that 600 ng of peptide 

digests was loaded on the HPLC column and the gradient of solvent B ranged from 2 

to 40% over 210 min.  

Raw LC-MS/MS data files for each sample were processed using Rosetta 

Elucidator (Rosetta Biosoftware, Seattle, WA) (Version 3.3.01 SP4 25). Automated 

differential quantification of peptides was performed as previously described 

(Neubert et al., 2008; Schlatzer et al., 2012; Azzam et al., 2016). Briefly, LC-MS/MS 

raw data were imported, and for each MS spectrum profile of each LC-MS/MS run, 

chromatographic peaks and monoisotopic masses were extracted and aligned. 

Chromatographic peaks were first aligned by retention time and monoisotopic mass. 

Peaklists with the monoisotopic mass and corresponding MS/MS data were then 

generated for each sample and searched using Mascot. Resultant peptide 

identifications were imported into Elucidator and monoisotopic masses annotated 

with peptide identifications. The false discovery rate for protein identifications was 

calculated to be 0.02%. The MS/MS peak lists were searched by Mascot (version 2.4.1) 

(Matrix Science, London, UK) using the human UniProt database. Search settings were 

as follows: trypsin enzyme specificity; mass accuracy window for precursor ion, 25 

ppm; mass accuracy window for fragment ions, 0.8Da; variable modifications 

including carbamidomethlylation of cysteines, 1 missed cleavage and oxidation of 

methionine.  

 

Statistical Methods and Bioinformatic Analyses 

Raw MS data were obtained for each region in a .csv file; this file contained 

intensity values, with rows corresponding to peptides and columns corresponding to 

the sample. Missing values were imputed using a weighted k-nearest neighbors 

algorithm (Troyanskaya et al., 2001). Next, data were log2-transformed to achieve 

normality. Data were visualized with principal component analysis and complete 

linkage hierarchical clustering. These preprocessing steps were performed using 

InfernoRDN (formerly DanTE) (Polpitiya et al., 2008). Data were imported into the R 

statistical programming environment for subsequent analyses. 
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Because there was one case and multiple controls, we treated individual 

peptides as observations of a given protein. Therefore, proteins with only one 

quantified peptide were excluded from our analysis. To compare protein abundance 

between the case and controls, we constructed a linear mixed effects model that 

adjusted for subject to account for the non-independence of peptides derived from 

the same sample.  Proteins with q < 0.01 were imported into 

DAVID (https://david.ncifcrf.gov/tools.jsp) for ontology analysis. EASE score 

threshold was set at a value of 1.0 and minimum count for an annotation term was 

set to 3. The entire set of proteins with more than one peptide (n = 2,351) was used 

as background for enrichment analysis. Network and pathway analyses were 

performed in Ingenuity Pathway Analysis (IPA
®

, www.qiagen.com/ingenuity). Proteins 

with q-value < 0.01 were used for enrichment analysis. Network connections were 

curated based on data from all species and all cell lines and tissues. Enrichment 

scores and p-values for canonical pathway and network analysis were determined by 

a one-tailed Fisher’s exact test.  

https://david.ncifcrf.gov/tools.jsp
http://www.qiagen.com/ingenuity
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Results 

Measurement of ARID1B expression by quantitative RT-PCR showed a 

significant decrease of mRNA levels in the patient in comparison to control subjects 

(p-value 0,02) and the same trend was observed from the RNAseq dataset (Figure 4E). 

Allele-specific expression could not be assessed since the subject was not 

heterozygous for SNPs located in coding exons or in the untranslated regions. The 

most abundant mRNA transcript observed in the RNAseq dataset was 

ENST00000414678, consistent with the GTEx database for EBV-transformed 

lymphoblasts; ENST00000350026 and ENST00000346085 were also detected in the 

patient sample (Figure 4E). IGV Sashimi plots did not reveal novel junctions or 

transcripts for this gene (Figure 4C), providing no evidence that duplication of this 

exonic region resulted in alterations in splicing.  

Follow-up fluorescent in situ hybridization analyses showed the presence of 

duplicated ARID1B genome in interphase cells (Figure 4D). The latter, in turn, was 

localized to chromosome 6q25.3 on analysis of a metaphase cell, the site of the 

ARID1B gene (Figure 4D), confirming that the microduplication occurred within the 

same chromosome and excluded the hypothesis of complex rearrangements.  

Proteomic analyses of the LCLs resulted in the quantification of 15,792 peptides, 

corresponding to 3,427 proteins. There were 1,014 proteins that were differentially 

expressed between the case and controls (q < 0.01). The differentially expressed 

proteins and related data are noted in Table IV. Principal component analysis and 

hierarchical clustering analysis revealed marked separation of the subject’s proteome 

from that of controls (Figure 5). 

Ontologic analysis in DAVID revealed enrichment of several annotation clusters 

with terms relating to ATP binding, mitochondrion and flavin adenine dinucleotide 

(Supplementary Table 1). Bioinformatic analysis with IPA
®

 revealed enrichment for 

canonical pathways of EIF2 signaling (p-value 6.43 E-17), protein ubiquitination (p-

value 1.61 E-16), regulation of eIF4 and p70S6K signaling (p-value 1.04 E-14), tRNA 

charging (p-value 4.93 E-13) and cell cycle control of chromosomal replication (p-

value 6.63 E-11) Table V). Downregulation of: (1) intracellular components involved 

in intracellular organization of membranes, organelles and vesicles; (2) aspects of 

cell cycle control, signal transduction and nuclear protein export; (3) ubiquitination 

and proteosomal function; and (4) aspects of mRNA metabolism are noted in IPA
®

 

network analyses (Supplementary Figure 1). 



 

70 

 

 

Figure 4 - Molecular and genetic characterization of the ARID1B microduplication.  

A – Representation of the ARID1B transcripts expressed in the patient with exon numbering based on ENST00000346085. 

B – Array CGH shows the duplicated region within the vertical lines comprising exons 2 to 10. (Green dots represent probes with log ratio above 0.2 and red 

dots those with log ratio below -0.2. Duplication or deletion is considered when probes are ≥ 0.5 or ≤ -0.5, respectively.) 

C – Sashimi plots generated from the RNAseq datasets depict the splice junctions that have a minimum of 3 reads supporting each junction. No novel junctions 

are observed in the patient. 

D – FISH confirms the duplication in interphase and metaphase cells, showing the duplication on chromosome 6 (as indicated by the white arrow) and not 

inserted into another chromosome.  

E – (left to right) Decreased expression levels of ARID1B measured by qRT-PCR (using primers on exon 9 and on the junction of exons 10 and 11), in comparison 

to 7 age and gender-matched controls (pval < 0,05) and by RNAseq in comparison to 5 age-matched controls. Error bars represent standard deviation. Transcript 

abundance analysis in the patient shows the 3 ARID1B expressed transcripts, measured from the RNAseq dataset using Cufflinks. 
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Table IV - Bioinformatics analysis of differentially expressed proteins. 

UNIPROT ID GENE NAME PERCENT EXPRESSION  

(ARID1B VS. CONTROL) 

QVAL 

A8MWD9 SNRPGP15 4 9.6E-06 

Q6YP21 KYAT3 11 9.6E-06 

Q5SRE5 NUP188 < 1 1.53E-05 

O75915 ARL6IP5 9 3.08E-05 

Q9UBW8 COPS7A 4 4.35E-05 

O15260 SURF4 6 5.42E-05 

P00395 MT-CO1 < 1 5.42E-05 

Q9H061 TMEM126A 6 5.42E-05 

P57772 EEFSEC 7 6.94E-05 

P22392 NME2 2 8.92E-05 

O75607 NPM3 6 9.37E-05 

P25787 PSMA2 5 9.37E-05 

P49643 PRIM2 4 9.37E-05 

P60228 EIF3E 9 9.37E-05 

Q00610 CLTC 16 9.37E-05 

Q6L8Q7 PDE12 29 9.37E-05 

Q8WWC4 C2orf47 9 9.37E-05 

Q92616 GCN1 17 9.37E-05 

 
 

Figure 5 - Three-dimensional principal component analysis (left) and complete linkage 

hierarchical clustering showing c lear  separation of ARID1B sample from  
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Table V – Most significant pathways identified by Ingenuity Pathway Analysis (top 20 pathways). 

INGENUITY CANONICAL PATHWAYS P-VALUE 

EIF2 Signaling 6.31E-17 

Protein Ubiquitination Pathway 1.58E-16 

Regulation of eIF4 and p70S6K Signaling 1.00E-14 

tRNA Charging 5.01E-13 

Cell Cycle Control of Chromosomal Replication 6.31E-11 

RAN Signaling 3.31E-10 

Remodeling of Epithelial Adherens Junctions 1.62E-09 

Phagosome Maturation 3.55E-09 

Mitochondrial Dysfunction 8.71E-09 

mTOR Signaling 1.86E-08 

TCA Cycle II (Eukaryotic) 5.13E-07 

Apoptosis Signaling 7.76E-07 

Oxidative Phosphorylation 3.39E-06 

Granzyme B Signaling 4.07E-06 

Purine Nucleotides De Novo Biosynthesis II 4.17E-06 

VEGF Signaling 6.31E-06 

FcÎ³ Receptor-mediated Phagocytosis in Macrophages and Monocytes 6.92E-06 

Valine Degradation I 1.05E-05 

Fatty Acid beta-oxidation I 1.20E-05 

NA Double-Strand Break Repair by Non-Homologous End Joining 2.40E-05 
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Discussion 

The subject has a unique ARID1B mutation, a copy number gain involving part 

of that gene that was initially determined by a chromosomal microarray analysis and 

which was thought to likely cause a pathologic reduction of ARID1B gene expression. 

Subsequent gene expression data, by both qRT-PCR and RNAseq, indicated 

haploinsufficiency of ARID1B and was consistent with localization of the duplication 

within the ARID1B gene, disrupting expression of the affected allele. Confirmation 

that there is a large intragenic ARID1B duplication was established by a fluorescent 

in situ hybridization analysis (Figure 1). Haploinsufficiency for ARID1B is likely to be 

the cause of developmental delay in this individual as no additional genetic or 

metabolic defects were identified. While the measurement of RNA in LCLs does not 

necessarily reflect the effect of the genetic lesion in the brain, the association of 

heterozygous inactivating mutations in ARID1B with neurodevelopmental phenotypes 

in other subjects suggests that reduced gene expression also occurs in the central 

nervous system.  As ARID1B is expressed at different levels in the brain, namely 

higher in the cerebellum than in many peripheral tissues and other measured areas 

of the brain (http://www.gtexportal.org/), the consequences of its reduced 

expression may be even more pronounced there, possibly accounting for aspects of 

subject’s phenotype.  

There are two reports of smaller microduplications of ARID1B. The clinical and 

genetic phenotypes of these two individuals and our case are summarized in 

Supplementary Table 2. Our case has several relatively unique aspects to his 

phenotype. Few individuals with ARIB1B haploinsufficiency are reported with low-

normal intellectual function (Santen et al., 2014). Our patient, while having a 

significant speech/language disorder and cognitive disability, has had several IQ 

determinations within the normal range but there was considerable (and 

reproducible) variability in selected skills. In addition, his clinical course has been 

characterized by easy fatigability and episodes of developmental regression, 

prompting evaluation for a possible metabolic underpinning of these clinical 

concerns. Apart from intermittent elevated blood lactate levels, extensive metabolic 

testing was unrevealing. To our knowledge, other cases of individuals with ARID1B 

haploinsufficiency do not have histories of episodic regression, although the episodic 

memory dysfunction in one case may be relevant (Yu et al., 2015).   

Our results support the view that ARID1B is a dosage sensitive gene whose 

expression can be affected by deletions or duplications. Indeed, the evolutionary 
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constraint on this gene shows that it is highly intolerant to loss-of-function mutations 

according to its ExAC pLI score of 1.00 (http://exac.broadinstitute.org/). As we did 

not identify novel transcripts, the duplicated allele probably resulted in premature 

termination of transcription. Indeed, if the duplicated exons 2-10 were spliced into 

the mRNA downstream of the original exon 10, the resultant frameshift after codon 

1,008 would add 19 novel amino acids, followed by a premature stop codon, to 

produce a truncated protein of 1,027 amino acids, that would explain the observed 

haploinsufficiency. Other chromatin regulators have also been noted to be dosage 

sensitive causes of neurodevelopmental phenotypes, including MBD5, EHMT1, CHD8 

and SATB2 (Talkowski et al., 2012). 

The lymphoblast proteomic data are striking and consistent with known roles 

of ARID1B and the SWI/SNF-A chromatin remodeling complex. Statistically highly 

significant dysregulation of pathways related to gene transcription were noted, in 

addition to dysregulation of pathways and networks relating to protein 

ubiquitination, mTOR signaling, signaling of apoptosis, major metabolic pathways 

(TCA cycle, mitochondrial oxidative phosphorylation), cell cycle control, mRNA 

metabolism and intracellular vesicular transport and show considerable overlap with 

ARID1B-regulated pathways (such as the transcription and cell cycle regulation 

pathways) and genes noted by others (Euskirchen et al., 2011; Sim et al., 2014; Raab 

et al., 2015). Yet, although our proteomic analysis indicates widespread and marked 

differential expression of proteins in the ARIDIB haploinsufficient lymphoblasts and 

the data are consistent with ARID1B-associated observations noted in other systems, 

there are three important potential limitations of our proteomic findings: first, one 

cannot generalize these results until similar proteomic analysis of additional cases of 

ARID1B haploinsufficiency are carried out; second, the proteomic findings, while 

predictive of marked dysregulation of multiple pathways and networks does not 

reveal which dysregulated pathways are of greatest pathophysiological significance; 

and, third, the relevance of lymphoblast findings to brain biology is uncertain. 

The roles of ARID1B in brain development are starting to be understood. 

Recent in vitro studies also support the fact that this protein may be critical in cell 

proliferation and differentiation and in dendritic arborization and synapse formation 

(Nagl et al., 2007; Yan et al., 2008; Tuoc et al., 2013; Harmacek et al., 2014). 

Therefore, ARID1B deficiency may lead to neurodevelopmental defects through the 

defective differentiation of mature neurons (Ka et al., 2016). This report added further 

insight on the role of ARID1B haploinsufficiency in the establishment of intellectual 

disability, yet further studies are required to uncover the precise mechanisms 
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whereby altered transcriptional and cell cycle regulation pathways lead to impaired 

brain development and cognitive function.  
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Supplementary Table 1 - DAVID Analysis. 

Annotation Cluster 1 Enrichment Score: 2.97 

Category Term p-value 

UP_KEYWORDS ATP-binding 3.16E-05 

GOTERM_MF_DIRECT GO:0005524~ATP binding 8.14E-05 

UP_SEQ_FEATURE nucleotide phosphate-binding region:ATP 0.001131 

UP_KEYWORDS Nucleotide-binding 0.00171 

INTERPRO IPR027417:P-loop containing nucleoside triphosphate hydrolase 0.285095 

Annotation Cluster 2 Enrichment Score: 2.47 

Category Term p-value 

GOTERM_CC_DIRECT GO:0005739~mitochondrion 7.51E-05 

UP_SEQ_FEATURE transit peptide:Mitochondrion 0.004258 

UP_KEYWORDS Transit peptide 0.005554 

UP_KEYWORDS Mitochondrion 0.008822 

GOTERM_CC_DIRECT GO:0005759~mitochondrial matrix 0.029901 

Annotation Cluster 3 Enrichment Score: 1.82 

Category Term p-value 

UP_KEYWORDS FAD 0.011293 

UP_KEYWORDS Flavoprotein 0.012159 

GOTERM_MF_DIRECT GO:0050660~flavin adenine dinucleotide binding 0.018069 

UP_SEQ_FEATURE nucleotide phosphate-binding region:FAD 0.020543 
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Supplementary Table 2 - Clinical findings in cases having an exonic duplication of ARID1B. 

 THIS STUDY 

HOYER ET AL 

2012 

YU ET AL 

2015 

GENDER Male Female Female 

INHERITANCE De novo De novo Maternal 

DUP LOCATION 

(ENST00000346085) 

Exons 2 to 10 Exons 5 and 6 Exons 5 to 9 

ARID1B EXPRESSION Decreased Monoallelic Not assessed 

ID/DD + + + 

AUTISM - - - 

SPEECH DELAY + + + 

SEIZURES - - - 

HYPOTONIA + + + 

OTHER NEUROLOGICAL Gross fine and motor 

incoordination, 

imbalance, strabismus 

Ataxic gait Esotropia, episodic 

memory lapse 

CRANIAL MRI Dysmorphic corpus 

callosum 

Delayed myelination Normal corpus callosum 

CRANIOFACIAL Borderline macrocephaly Microcephaly, 

plagiocephaly, frontal 

bossing, high palate 

Macrocephaly 

OTHER FEATURES Optic nerve pit Heart malformation, 

sparse hair, 

brachydactyly 

hemangiomas, sacral 

dimple 

Short stature, 

kyphoscoliosis, 
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CRISPR-edited iPSC models of neurodevelopment 

 
 

 
 

 

 

 

 

 

In the second chapter, we highlight the need to develop accurate models to 

study neurodevelopmental disorders. Using the novel CRISPR/Cas9 genome 

engineering technology we sought to solve this issue by generating in vitro models of 

loss-of-function of genes involved in chromatin remodeling that confer substantial risk 

for autism spectrum disorder and other neurodevelopmental anomalies.   
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Abstract 

Given the rapid pace of discoveries showing that de novo loss-of-function (LoF) 

mutations in highly conserved genes that are evolutionarily constrained, or intolerant 

to LoF mutations, represent penetrant sources of genetic risk in autism spectrum 

disorder (ASD), it is imperative to generate robust models that recreate the human 

cellular landscape. This is particularly relevant for neurological disorders where brain 

tissue is not readily available and the relevance of lymphoblast findings (from blood 

samples) to brain biology is uncertain. Given the limited number of available subjects 

in most studies, genetic background can introduce significant confounding effects in 

interpretation. To overcome these barriers, we developed an isogenic in vitro 

modeling approach using an induced pluripotent stem cell (iPSC) line from a healthy 

male subject to perform precise dual-guide CRISPR/Cas9 gene editing of four 

independent genes for which LoF mutations represent strong risk factors for ASD 

(EHMT1, MBD5, METTL2A and METTL2B). This will allow the investigation of the role 

of haploinsufficiency of these chromatin remodelers in the etiology of ASD. 

The efficiency of 10 dual guide-RNA combinations to generate deletions was 

assessed using FACS sorting. Dual guide CRISPR successfully generated deletions in 

all genes; however, the efficiency varied widely by guide-RNA combination. The overall 

efficiency of the FACS method was 2,8% to generate predicted ablations, out of 1002 

colonies screened (range = 0% - 10.6%). This systematic survey of genome editing 

approaches suggests that dual-guide deletion generation varies widely by guide-pair.  

We also found that the increased certainty of deriving a single cell from FACS sorting 

comes at a significant cost in terms of efficiency and cell viability. 

 

 

 

 

Keywords: 

CRISPR, Cas9, models, neurodevelopment, loss-of-function, efficiency, iPSC.  





Chapter 2 - CRISPR-edited iPSC models of neurodevelopment 

89 
 

Introduction 

The prevailing hypothesis of autism spectrum disorder (ASD) pathology has 

historically focused on defective synaptic pathways and neuronal circuits. Recently, 

autism genes that confer substantial risk for ASD have been identified by sequencing 

the breakpoints of balanced chromosome exchanges in ASD subjects and the coding 

sequencing in ASD families, pointing the field in a novel direction as they revealed 

highly penetrant genes involved in chromatin remodeling and transcriptional 

regulation (Talkowski et al. 2012; O’Roak et al. 2011; Sanders et al. 2012). Indeed, a 

growing number of transcription factors have been implicated in neurodevelopmental 

disorders, either through specific syndromes or based on rare mutations in idiopathic 

cases of common disorders such as ASD. Some of their neural effects may occur from 

dysregulation of genes controlling early neurodevelopmental processes such as cell 

migration, axon guidance, or synapse formation, but several also play roles in activity-

dependent gene expression and synaptic plasticity. It is now clear that, in addition to 

direct synaptic disruption, the genetic contribution to ASD acts through alterations in 

chromatin regulatory mechanisms in human brain development and function (Krumm 

et al. 2014; De Rubeis et al. 2014; Pinto et al. 2014). 

Most of the knowledge about the central nervous system (CNS) and neural 

function in patients with neurological diseases has been obtained from postmortem 

tissues that often represent the end stage of the disease. The inability to sample live 

CNS tissues impedes our progress to understand aspects of the neuropathological 

abnormalities that develop during the course of diseases. Animal models can mimic 

genetic forms of human neurological diseases, and our understanding of the 

mechanisms of neurological diseases has been significantly advanced with transgenic 

technologies to interrogate synaptic circuits and behavior (Shinoda et al. 2013). 

Invertebrate models then appeared to provide a more straightforward alternative, due 

to their rapid generation time, low maintenance cost, simplified genetic manipulation 

when compared to vertebrates, such as Xenopus (Pratt & Khakhalin 2013), C. elegans 

(Bessa et al. 2013), D. melanogaster (Furukubo-Tokunaga 2009) 

In many cases of neurological disorders with a defined causal gene(s), however, 

modeling with animal transgenic technology is inadequate due to species differences, 

genetic backgrounds, or other technical challenges (Cundiff & Anderson 2011; Mattis 

& Svendsen 2011; Wichterle & Przedborski 2010). The failure of translation to the 

clinic stems from the complexity of the human brain and the difficulty to model 

disease specific phenotypes in non-human systems (Wichterle & Przedborski 2010). 



 

90 

 

This situation indicates that an advancement towards more human relevant models is 

required to accurately study neurogenetic disorders. 

Given the rapid pace of discoveries showing that de novo LoF mutations in 

highly conserved genes represent penetrant sources of genetic risk in ASD, it is 

imperative to generate robust models that recreate the human cellular landscape. This 

is particularly relevant as ASD are neurological disorders where brain tissue is not 

readily available and the relevance of lymphoblast findings (from blood samples) to 

brain biology is uncertain, it is necessary to eliminate the confounding effect of 

different genetic backgrounds from patient cell lines. In order to address this issue, 

efforts have been made towards generating human iPSC models bearing the desired 

mutations that will allow multiple comparisons, and the contribution of single genes 

to the pathogenesis of ASD (Wang & Doering 2012). 

Seminal work by Takahashi and Yamanaka  showed that retroviral expression 

of a set of four genes (Oct4, Sox2, Klf4, and c-Myc) can convert somatic cells into a 

pluripotent state (Takahashi et al. 2007). Induced pluripotent stem cells (iPSCs) can 

be driven to differentiate into neurons and glial cells, as well as other terminally 

differentiated cell types by exposure to a combination of growth factors and cell 

culture conditions (Denham & Dottori 2011; Dhara & Stice 2008). Therefore, human 

iPSCs make it possible to study human CNS neuronal lineages. Indeed, disease-specific 

iPSC lines have been generated from patients with neurodevelopmental diseases 

including Rett syndrome, Fragile X syndrome, Down syndrome, Angelman syndrome, 

Prader-Willi syndrome, and Timothy syndrome. The iPSC based models of 

neurodevelopmental disorders recapitulate the early steps in neural development 

allowing for isogenic backgrounds that may help to identify the contribution of a 

single mutation or gene to the underlying neurobiological pathways affected. 

Haploinsufficiency of dosage-sensitive chromatin remodelers, as CHD8 

(Sugathan et al. 2014) and ARID1B (Sim et al. 2015) and MBD5 (Talkowski et al. 2011) 

has been pinpointed as a causal mechanism of the pathogenesis of some cases of 

ASD. To model loss-of-function (LoF) mutations of chromatin remodelers, it is possible 

to perform genome editing on iPSC to obtain allelic series of LoF mutations in 

candidate genes. Gene targeting in human iPSC has been proven to be a challenge 

(Zwaka & Thomson 2003). Zinc-finger nucleases (ZFNs) and transcription activator-

like endonucleases (TALENs) have been applied to gene manipulation of human iPSC 

(Hockemeyer et al. 2009; Hockemeyer et al. 2011; Zou et al. 2009), however, both 

technologies require the design of proteins and intricate construction of plasmids for 

expression of those proteins. These methods were time-consuming and labor-
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intensive. The CRISPR/Cas9 gene editing system has shown to be a promising and 

highly effective technique for modifying the genome of higher eukaryotes, particularly 

of mammalian cells that have not been readily amenable to gene editing, as human 

stem cells (Mandal et al. 2014).  

In the short period since the initial discovery of efficacy in mammalian cells 

(Cong et al. 2013; Mali et al. 2013; Jinek et al. 2013; Ran et al. 2013), there have been 

numerous studies that demonstrate the utility of the CRISPR/Cas9 system for genome 

engineering, from performing whole-genome-scale knockout screens elucidating gene 

function in cell culture (Shalem et al. 2014; Wang et al. 2014) and creating mutations 

in the brains of adult mice (Swiech et al. 2015). The CRISPR system requires the Cas9 

nuclease along with two short RNA molecules, the guiding CRISPR RNA (crRNA) and 

the trans-activating crRNA (tracrRNA), that hybridize to each other and direct Cas9 to 

the target location for cleavage based on sequence complementarity to the crRNA as 

well as proximity of the DNA target to a protospacer adjacent motif (PAM), NGG (Figure 

6). In 2012, Jinek et al. demonstrated that the two small RNAs, crRNA and tracrRNA, 

Figure 6 – CRISPR/Cas9 gene editing technology. The Cas9 nuclease introduces double stranded breaks 

at the target sequence that is located near a PAM motif.  The break is repaired by one of two 

mechanisms: Left) Non-homologous end joining (NHEJ) which creates random insertions or deletions 

(indels) at the targeted site; Right) Homologous recombination which creates precise changes based on 

template DNA.     

http://www.sciencedirect.com/science/article/pii/S0168165615300419#bib0060
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can be combined into a single guide RNA (guideRNA) that can be expressed in 

mammalian cells. The ability of any given guideRNA to efficiently create a double 

strand break (DSB) in the target DNA can vary based on the guide RNA sequence and 

the position in the targeted gene (Shalem et al. 2014; Wang et al. 2014; Koike-Yusa 

et al. 2014). Besides, the use of small guide RNAs for gene editing makes the CRISPR 

system attractive, because there is no requirement for protein design or construction 

of expression plasmids. 

Haploinsufficiency, a feature by which chromatin regulators have been found 

to cause ASD, is often caused by a loss-of-function mutation, in which having only one 

copy of the wild-type allele is not sufficient to produce enough protein to display the 

wild type's phenotypic characteristics. To mimic the haploinsufficiency found in ASD 

patients, we will generate LoF mutations in chromatin-related genes that confer risk 

for ASD: EHMT1, MBD5, METTL2A and METTL2B, by knocking down one of the alleles 

of each gene in induced pluripotent stem cells using CRISPR/Cas9 technology. This 

approach will allow the investigation of the mechanisms through which these 

chromatin remodelers lead to ASD pathogenesis. We show the efficiency and the 

overall performance of CRISPR in these in vitro human cell models. Indeed, the iPSC 

technology has opened new windows for modeling human diseases, identifying 

therapeutic targets, developing drug screening systems, and providing continuous 

autologous cell sources with potential for cell therapies. 
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Methods 

GuideRNA Design and Preparation 

The CRISPR/Cas9 gene editing system was used to create iPSC lines with 

mutations in 4 independent genes for which LoF mutations represent strong risk 

factors for ASD (EHMT1, MBD5, METTL2A and METTL2B). We used a dual-guideRNA 

strategy for excision of a DNA fragment as this can be easily screened via standard 

PCR. The guideRNAs were designed, based on genome assembly GRCh37, either 

outside the exon boundaries in order to excise the entirety of the exon, or within the 

exon itself to create frameshift or truncating mutations (Figure 8).  The exon to target 

was selected based on proximity to the transcriptional start site. This is expected to 

prevent any transcription from that allele by disrupting the initial region of the gene, 

and this would ultimately lead to haploinsufficiency of the chromatin regulators, as 

observed in ASD patients. 

To assure highly specific and effective guideRNAs, online tools were 

considered: (i) CRISPR design tool (http://tools.genome-engineering.org/) that takes 

into account off-target predicted sites and gives a score inversely correlated with the 

number of off-target matches; (ii) sgRNA Designer 

(http://www.broadinstitute.org/rnai/public/analysis-tools/sgrna-design) which 

accounts for on-target efficiency (Doench et al. 2014) and (iii) BLAST (NCBI) to query 

for the guide sequences, including the PAM motif, to determine whether the 

sequences target uniquely to the desired regions or if there are any potential off-

targets (Supplementary Table 3). The position of the guideRNAs designed are 

represented in Figure 7. 

For subsequent transfection in human embryonic kidney cells (HEK293T) and 

nucleofection in iPSC cells, guideRNAs were cloned into the guideRNA cloning vector 

pGuide (Addgene plasmid 41824), using a BbsI restriction site (Ran et al. 2013). To 

confirm the correct sequence of the guides within the vectors DNA was isolated using 

the Miniprep Kit (Qiagen), and the guides were Sanger sequenced, using a T7 primer. 

To obtain transfection-grade DNA, all plasmids were purified from Plasmid Plus Midi 

Kit according to the manufacturer’s instruction (Qiagen), using One Shot® Stbl3™ 

Chemically Competent E. coli. 

 

 

http://tools.genome-engineering.org/
http://www.broadinstitute.org/rnai/public/analysis-tools/sgrna-design
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Transfection in Human Embryonic Kidney Cells  

HEK293T cells were maintained, following standard protocols, with 

supplemented DMEM medium (Dulbecco’s modified Eagle’s medium, 10% Fetal bovine 

serum, 100 units/mL Penicillin G, 100 μg/mL Streptomycin) and incubated at 37 °C in 

a humidified atmosphere with 5% CO2. Cells were plated at a density of 1 – 1.25 x 10
5

 

cells per well in a 24-well cell culture plate to obtain a 90% confluency after 24 hours. 

Lipofectamine® 3000 was used for transfection of the guideRNAs inserted onto 

pGuide along with pCas9_GFP (Addgene 44719), according to the manufacturer’s 

Figure 8 - GuideRNA design strategy – A) outside the exon boundaries in order to excise the entirety 

of the exon, or B) within the exon itself to create frameshift or truncating mutations. Scissors 

represent each Cas9+guideRNA complex that will cleave the DNA in the desired location. 

 
 

  

Figure 7 - guideRNA location for each target gene. 



Chapter 2 - CRISPR-edited iPSC models of neurodevelopment 

95 
 

instructions (1 µL of each vector 250 ng/μL) to have a total of 750 ng of DNA per well). 

Having independent guideRNA cloned onto pGuide, allowed for the combination of 

different guides, without increasing the DNA load, as the pCas9_GFP vector (9271 bp) 

is much larger than the pGuide (3915 bp).  After 48 hours, the cells were observed 

under a fluorescence microscope to detect GFP fluorescence (indicative of Cas9-GFP 

expression) and the medium was supplemented with 3 μg/mL of puromycin for 

another 48h, after which the medium was switched back to mTeSR1 and DNA was 

harvested. Puromycin concentration was determined by calculating the puromycin 

viability curve for HEK293T cells and the optimal concentration at which there was 

most cell death post-48h was at 3μg/mL (Supplementary Figure 2). Genomic DNA from 

the pool of cells was extracted using a rapid DNA extraction method (McClive & 

Sinclair 2001). Briefly, cells were lysed by adding DNA extraction buffer containing 

Proteinase K (0.2 mg/ml). Samples were digested at 55 °C for at least 1 hour followed 

by Proteinase K inactivation at 95 °C for 10 min. Surveyor® Mutation Detection assay 

(IDTdna) was then used, on the first subset of guideRNAs (indicated on Table VI), 

following manufacturer’s instructions. Both uncut and cut products were ran in an 

agarose gel to determine the guideRNAs with highest efficiency (Supplementary Figure 

3). Band intensity was analyzed using ImageJ Software (http://imagej.nih.gov/ij/).  

 

Nucleofection in Human Induced Pluripotent Stem Cells  

Human induced pluripotent stem cells (iPSCs), derived from fibroblasts from a 

healthy male individual, identified as 8330-8 cells, were generated using standard 

retroviral vectors and the Yamanaka factors OCT3/4, SOX2, KLF4, and c-

MYC (Sheridan et al. 2011). The iPSCs were maintained on Corning® Matrigel® hESC-

qualified Matrix-coated dishes with mTeSR™1 medium (STEMCELL Technologies), 

supplemented with 1% of Penicillin and Streptomycin and incubated at 37 °C in a 

humidified atmosphere with 5% CO2. The iPSCs (1 × 10
6

cells) were transfected with 1 

µg total DNA plasmid, Cas9 expression vector pX459 (pSpCas9(BB)-2A-Puro plasmid 

Addgene 48139) along with the chosen guideRNAs (inserted into pGuide - Addgene 

plasmid 41824) and an external EGFP (enhanced green fluorescent protein) vector 

(Figure 9). For nucleofection of the guideRNAs into the iPSC, the Human Stem Cell 

Nucleofector Kit 1 (Lonza) and Amaxa Nucleofection II device (Lonza) were used with 

program B-016, according to the manufacturer’s instructions. After nucleofection, the 

iPSCs were cultured on Matrigel-coated wells using conditioned mTeSR medium 

supplemented with 10 µM ROCK inhibitor (Y-27632 dihydrochloride, Santa Cruz 
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Biotech) and 10 ng/ml bFGF (R&D). Treatment with ROCK inhibitor blocks apoptosis 

of dissociated cultured iPSC, increases survival and cloning efficiency of iPSC, without 

affecting their pluripotency. 

 

 

 

Single-cell isolation by fluorescence-activated cell sorting (FACS) 

To obtain isogenic iPSC colonies following CRISPR/Cas9 treatment, single cells 

were isolated by FACS. Around 72 hours post-nucleofection, cells were treated with 

ROCK inhibitor (Y-27632 dihydrochloride, Santa Cruz Biotech) for 2h and then the 

iPSCs were dissociated into a single-cell suspension with Accutase and re-suspended 

in PBS with 10 µM ROCK inhibitor. All samples were filtered through 5-mL polystyrene 

tubes with 35-µm mesh cell strainer caps (BD Falcon 352235) immediately before 

being sorted. After adding the viability dye TO-PRO-3 (Invitrogen), the GFP
+

TO-PRO-3
–

 

iPSCs were sorted using a gate for high level of GFP expression. The sorted cells were 

plated either i) with one cell placed in each well of Matrigel-coated 96-well plates by a 

BD FACSAriaII sorter with a 100-µm nozzle under sterile conditions or ii) onto a 10cm 

cell culture dish, at a low density allowing colonies to form apart. Cells recovered in 

conditioned mTeSR medium. Once multicellular colonies from the 10cm dish were 

clearly visible (2–3 d after sorting), they were collected into individual wells of 

Matrigel-coated 96-well plates by manual picking. About 14 days after sorting, 

genomic DNA from all colonies was harvested and used for subsequent validation 

analyses. 

 

Screening of individual iPSC colonies 

To isolate genomic DNA from the iPSC colonies, iPSCs were detached with 

ReLeSR (STEMCELL Technologies) and then extracted by the Rapid DNA extraction 

Figure 9 - Workflow of genome engineering and screening in the iPSCs.  
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method described above. For detection of the deletion, the genomic region flanking 

the CRISPR target site was amplified via standard PCR. Primers were designed using 

Geneious software and synthesized by Integrated DNA Technologies (IDTdna) 

(Supplementary Table 3). PCR reactions were performed using 2µl of genomic DNA 

and Phusion High Fidelity Master Mix (NEB), with the following cycling conditions: 98 

°C for 2 min and 30 seconds; 98 °C for 10 s, 62-64 °C for 30 s, 72 °C for 30 seconds - 

1 min (35-45 cycles); 72 °C for 10 min. PCR products were visualized in a 1-2% agarose 

gel, followed by either gel extraction of the amplicon (QIAquick Gel Extraction Kit, 

Qiagen) or purification of the PCR product with Illustra ExoProStar (GE Life Sciences) 

for final Sanger sequencing to determine the exact genomic modifications that 

occurred via CRISPR/Cas9. In the case of small indels, the PCR amplicons were cloned 

onto a pCR-Blunt vector (Zero Blunt® PCR Cloning Kit, ThermoFisher Scientific) in order 

to distinguish each individual allele, according to manufacturer instructions, followed 

by Sanger sequencing. CRISPR efficiency was then calculated as the sum of 

heterozygous and homozygous deletions obtained, divided by the total number of 

colonies screened, for each guide-pair combination. 
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Results 

GuideRNA sequences were confirmed to be correctly inserted onto the pGuide 

vectors, through Sanger Sequencing (Figure 10) prior to transfection. An initial 

screening using SURVEYOR assay in HEK293T cells to test the efficiency of a subset of 

individual guideRNAs, showed that the majority of guideRNAs had an efficiency of 

cutting above 50% (Supplementary Figure 3). This indicates that HEK293T cells are 

quite tolerant to CRISPR gene-editing. As the indel efficiency shown by this assay was 

consistent across all guideRNAs in HEK293Tcells, we immediately moved on to 

transfection in our cells of interest, iPSC, and did not test for the later designed guides 

in this cell line. This initial analysis gave us confidence for the selection of further 

guides to use.  

Upon dual-guide CRISPR transfection in HEK293T cells, GFP could be visualized 

post 48h, via fluorescence microscope, indicating that the cells were successfully 

permeated to the entrance of the pCas9_GFP vector containing GFP signal and 

suggestive that they also incorporated the other vectors, containing the guideRNAs 

(Figure 10). Similarly, after 72h post nucleofection, iPSCs were submitted to cell 

sorting based on their emission of GFP signal coming from the EGFP vector, also 

indicative of positive electroporation and high probability of incorporation of pX459 

(Cas9) and pGuide vectors (containing guideRNAs) (Figure 10).  

 

Figure 10 – A) Example of guideRNA 4a inserted onto pGuide; 

B) GFP signal indicating successful transfection in HEK293T 

cells via fluorescence microscopy (left) and iPSC via FACS 

sorting (right). 
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Interestingly, for two highly homologous genes targeted (98,41% homology), 

METTL2A and METTL2B, CRISPR was able to ablate these genes with specificity to each 

target. The guideRNAs targeting these genes differed at only 1bp at the 3’ end of the 

first guide and 2bp at the 5’ and 3’ ends of the second guideRNA (Figure 11).  

Dual guideRNA CRISPR successfully generated deletions in all four genes 

targeted in iPSC (EHMT1, MBD5, METTL2A and METTL2B; Figure 12), however the 

efficiency varied by guideRNA combination. The average efficiency using the FACS 

method was of 2,8% to generate the predicted ablations, out of the total 1002 iPSC 

colonies screened. The minimum efficiency was of 0% for 5 guideRNA combinations 

and a maximum of 10.6% (Table VI). For those combinations where there were no 

deletions detected by PCR, Sanger sequencing was used to determine if either of the 

individual guides were able to generate indels. In fact, in 3 of these combinations 

indels were identified. In terms of deletion size, we found no correlation between the 

deletion sizes (ranged from 13bp to 2200bp) and the efficiency in generating 

predicted deletions. Although there seemed to be a trend towards a decrease of 

efficiency with deletion size, it was not significant (R
2

=0,951 see in Figure 12). 

 

 

 

Figure 11 - CRISPR was highly specific for two homologous genes, targeting either one or the other. 
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Table VI – List of genes targeted with CRISPR/Cas9 in iPSCs. 

Gene 
Guide-pair 

combination 
Exon 

targeted 
Strategy 

8330-8 
Passage 
number 

Deletion 
Size (bp) 

Colonies 
screened 

Homozygous 
deletion 

Heterozygous 
deletion 

Deletion 
Efficiency 

Screen 
indels 

EHMT1 2a, 2b* 2 whole exon 44 112 95 0 6 6.3% NA 

MBD5 4a, 4b* 4 whole exon 40 278 11 0 0 0.0% 2 

MBD5 4.3, 4. 6 4 frameshift 47 23 48 0 0 0.0% 0 

MBD5 4.2, 4. 6 4 frameshift 47 20 72 0 0 0.0% 12 

MBD5 4a, 6.2 4 to 6 truncation 47 22000 32 1 0 3.1% NA 

MBD5 6.8, 6.3 6 truncation 48 40 264 11 17 10.6% NA 

MBD5 6.8, 6.5 6 frameshift 48 13 96 0 0 0.0% 5 

MBD5 7a, 7b 7 frameshift 38 568 192 0 0 0.0% NA 

METTL2A a1, a2* 1 frameshift 40 100 96 3 2 5.2% NA 

METTL2B b1, b2* 1 frameshift 40 100 96 3 0 3.1% NA 

NA - not assessed. *Tested using SURVEYOR assay. 

  

Figure 12 – Top – PCR Screening shows successful deletions in all genes 

targeted. Top bands – WT allele. Lower bands – homozygous deletions. 

Double bands – heterozygous deletion.  

Bottom - Graph showing the relation between deletion size and CRISPR 

efficiency shows no correlation. 
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Discussion and Conclusions 

HEK293T cells have shown to be tolerant to gene modification, induced by 

CRISPR/Cas9, or other previous technologies as shRNA or TALENs. This human cell 

type is among the most used in CRISPR reports, due to this facility in transfection and 

in generating indels (Ran et al. 2013; Mali et al. 2013; Jinek et al. 2013; Cong et al. 

2013) and thus is mostly used as a test cell-type to perform experiments prior to the 

cells of interest. Indeed, different cell types have shown different efficiencies: Mali et 

al. 2013 performed an experiment of transfecting the same guides in different cell 

types and showed that in HEK293T, the maximum efficiency of CRISPR-edited indels 

was of 38% in K562 (myelogenous leukemia cell line), 23% in HEK293T and 4% in iPSC. 

This difference may be explained due to their different chromatin states and structure 

and their tolerance to repair double-strand breaks, making some more suitable than 

others for gene editing.   

In this study, CRISPR showed efficiencies in iPSC ranging from 0% to 10,6%. In 

the case where no deletions occurred, it is possible that either the endogenous cell 

repair mechanisms corrected the excision in both target sites and did not lead to 

NHEJ, or the target of the guideRNA combination was deleterious for cell survival. 

Besides, 4 guideRNAs were electroporated simultaneously (2 pGuides with guideRNAs, 

pX459 with Cas9, and the EGFP vector) and this could have led to a low probability of 

internalization of all necessary vectors for correct gene editing and posterior 

selection. Indeed, it is possible to design a single vector (as pX459) and include all 

guideRNAs in this vector, which could be an approach to decrease the DNA load and 

increase the probability of gene editing, although the size of this single vector would 

increase greatly and complicate its entrance in the cell.  

After transfection, each cell can be edited differently, depending on its repair 

mechanisms. Thus, to guarantee an isogenic background within each iPSC colony, 

without admixture of other edited or wild type cells, FACS was used as an approach 

to assure the growth of colonies coming from a single cell. However, the increased 

certainty of deriving a single cell from FACS sorting comes at a significant cost in 

terms of efficiency and cell viability, as they are removed from their optimal 

environment and submitted to pressure from the equipment. In order to increase the 

number of edited cells recovered we could combine an initial puromycin selection 

followed by FACS sorting based on GFP signal (Tai et al. 2016); however, the use of 

both selection methods could be even harsher for the stem cells.   
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It is likely the underlying chromatin structure and epigenetic state of the 

genomic target loci will impact the efficiency of genome editing in eukaryotic cells. In 

our study, there was no effect of deletion size on CRISPR efficiency. This might be 

explained by the 3D structure of chromatin within the nucleus, which can bring in 

close proximity pieces of DNA that are many base pairs apart, as shown by the 

formation of chromatin loops and topologically associating domains (TADs) (Rao et 

al. 2014; Ji et al. 2016).TADs are regions of chromosomes that show evidence of 

relatively high DNA interaction frequencies based on Hi-C chromosome conformation 

capture data (Dixon et al. 2015; Dixon et al. 2012; Phillips-Cremins et al. 2013). This 

proximity could aid in the occurrence of non-homologous end joining (NHEJ) after the 

double-strand breaks are formed. Chromatin state also is a critical factor in the 

efficacy of CRISPR, whether it is in a heterochromatin or euchromatin state. In the case 

of iPSC, this is not as critical, as they are actively proliferating and DNA should be 

available to the nuclease during replication. However, for post-mitotic cells, it might 

be more advantageous in some cases when the target is not available to use shRNA 

instead of CRISPR. In terms of knockdown stability, CRISPR has the advantage of 

creating permanent alterations which are passed onto the next generation of cells in 

all divisions with minimal off-target effects and consistent activity (Evers et al. 2016). 

CRISPR/Cas9 editing proved to be highly specific for two highly homologous 

genes (METTL2A and METTL2B) with the guideRNA sequences differing only by one or 

two bases. Indeed, studies of CRISPR specificity (Jinek et al. 2012) suggest that target 

sites must perfectly match the 8-12 base “seed sequence” at the 3′ end of the 

guideRNA. Cas9 will tolerate single mismatches at the 5′ end in bacteria and in vitro, 

suggesting that the 5′ G is not required (Doench et al. 2014; Mali et al. 2013).  

Off-target effects were not directly assessed, however guideRNAs were 

designed based on off-target prediction software, and also by BLAST of the guideRNA 

sequence along with the PAM, required for recognition of the Cas9, to rule out 

homology to other locations in the genome (especially towards the 3’ end of the 

guideRNA). A study in hematopoietic stem cells showed that there were no significant 

off-target effects by sequencing the bioinformatically predicted sites (Mandal et al. 

2014). However, there are reports showing that the off-target prediction tools do not 

reflect the modification that occur in vivo in the cells, and suggest the use additional 

methods such as Guide-seq (Tsai et al. 2015), which integrates double-stranded DNA 

oligos whenever there is a double strand break, to address this issue. We sought to 

solve this problem by targeting each gene with more than one guide-pair combination. 

This will indicate that there are no off-targets by measuring a readout, such as overall 
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transcriptional changes (via RNAseq), that should be comparable for all the guideRNA 

combinations targeting a same locus or gene. Another strategy to minimize the off-

target effects would be to use paired Cas9 nickases (Shen et al. 2014), as they only 

generate nicks in the DNA that will be repaired by endogenous mechanisms unless 

two Cas9 nickases are brought to close proximity by guideRNAs, and will generate a 

double strand break. However, using this approach, we would require a total of four 

guideRNAs to create a double strand break on either side of the target, and this would 

increase the DNA load at the moment of transfection into the cells, potentially 

increasing the toxicity. 

This systematic survey of genome editing approaches suggests that dual-guide 

deletion generation varies widely by guideRNA-pair combination and genomic target.  

The CRISPR-edited human iPSC models have innumerous potential downstream 

applications and have the ability to be differentiated into the tissue of interest of the 

disease studied. In our case, we are interested in differentiating these models into the 

neuronal lineage in order to explore the consequences of LoF of chromatin remodelers 

in neurodevelopmental disorders, such as ASD. Indeed, this model of human induced 

pluripotent stem cell will help fill the current knowledge gap in the cellular biology of 

ASD and can lead to further insights into the molecular mechanisms underlying the 

disorder. 

 

 

 

Acknowledgements 

Funding was provided by FCT Fellowship SFRH/BD/52049/2012 to CMS, NIH 

grant GM061354 to JFG and MET, SFARI grant 308955 to JFG and R00MH095867 to 

MET. 
  





Chapter 2 - CRISPR-edited iPSC models of neurodevelopment 

107 
 

Supplementary Data 

 

 

Supplementary Table 3 - Oligos used as guideRNAs and PCR primers for screening. 

Type Gene Exon Oligo ID Sequence (5' to 3') 

guideRNAs 

MBD5 

exon 4  

sgRNA_ex4_a_sense CAAAATTGGTAAATTCACCC 

sgRNA_ex4_b_sense ATGCATACATAAATTCCTAC 

MBD5sg_ex4.6_sense TTTAGTTCCATCAAACACAG 

MBD5sg_ex4.3_sense ATGGAACTAAAGAAGCATTA 

MBD5sg_ex4.2_sense GGAATGACCACCATGGCAGA 

sgRNA_ex6.2_sense TACAACTTTGCAGGTACCAC 

MBD5sg_ex6.8_sense CCAGCTATACAAGTTCCTGT 

MBD5sg_ex6.5_sense GTGGGTTGGCAGCGTCGTGT 

MBD5sg_ex6.3_sense GAGGCAAAGAGTGTGACGGA 

exon 7  
MBD5sg_ex7a _sense AAGAAACCTGTTTTTACATA 

MBD5sg_ex7b_sense TGCATGTTCCATCAGTAAGC 

EHMT1 

exon 2 
sgRNA_ex2_1_sense GAGAAACAACAGCCGTCAGC 

sgRNA_ex2_2_sense GGCGGTGTGCACCGAGGGAC 

exon 3 
sgRNA_ex3_1_sense ACTCGGATAGCGGAAAATG 

sgRNA_ex3_2_sense CTTAAATAAGCCGGCCCTAC 

METTL2A exon 1 
sgRNA_1A_sense AAGCCGGTTCCTGAGAGATC 

sgRNA_2A_sense CTCACGTCCTGGCTGCGGGC 

METTL2B exon 1 
sgRNA_1B_sense AAGCCGGTTCCTGAGCGATC 

sgRNA_2B_sense TTCACGTCCTGGCTGCGAGC 

PCR primers 

MBD5 

exon 4  

ex4_fwd_svy ATCTCCGATCTGCCACTGAC 

ex4_rev_svy AGGAAAAATGCTGGGCTACC 

MBD5 ex4_rev_seq GAGAGATATGAAAAAGCCCTGCT 

ex4_fwd_seq ACAAGCCCTTTCTGTTAGAGTC 

exon 6 

ex6_fwd ACCCCCACTTCAGACAGGTA 

ex6_rev_svy GCAGAGCCTTCTCCATGACT 

MBD5 ex6_fwd_seq_ TCAGAAGCACTCATTTTTACCC 

ex6_rev_seq GCCATCAGTCACCATGCTT 

exon 7 
mbd5_7fwd CGATTATTAGCCCGAAGACC 

mbd5_7rev GGAGGGTTCAGTTTTGTGATTT 

EHMT1 exon 2 
ex2_fwd TCTGCTGGAGGCGACTGTAA 

ex2_rev_2 GAGAGGAAGAGCAGCAGGTTT 

METTL2A exon 1 
fwd_out_A CTATTAAGAGCTGAATATAG 

intron_rev_A CTACTAAACATAATTAAAGACAAC 

METTL2B exon 1 
fwd_out_B CTATGAAGAGCTGACTATAG 

intron_rev_B CTACTCAACATAATTAAAGACAAA 
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Supplementary Figure 2 - Puromycin Viability curve for HEK293T cells shows 3µg/mL as the optimal 

concentration to use to obtain the least number of cells after 48h. 

Supplementary Figure 3 – Indel efficiency of individual guideRNAs detected by 

SURVEYOR assay for a subset of guideRNAs, indicated in Table I. In each image, the 

band on the left represents the uncut fragment, whilst the band on the right is the one 

treated by the SURVEYOR assay. The difference of the intensities of the two bands 

yields the indel percentage, calculated with ImageJ Software. 
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Chapter 3 
 

Disruption of chromatin remodeler MBD5 
results in dysregulated neuronal-related genes 

and pathways 
 

 

 

 

 

Highlights 

The third chapter focuses on a chromatin remodeler, MBD5, and the 

differentiation of CRISPR-edited iPSC to mature neuronal cells. We investigated 

the modifications of the transcriptome architecture upon ablating an exon in the 

5’ UTR and in the MBD Domain, that will give insights on the role of MBD5 during 

neurodevelopment. The RNAseq analyses of this section were performed in 

conjunction with bioinformatician Tatsiana Aneichyk. 
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Abstract 

MBD5, encoding the methyl-CpG-binding domain 5 protein, has been 

implicated as the causal locus within the 2q23.1 microdeletion syndrome and 

represents a significant contributor to the genetic etiology of autism spectrum 

disorder (ASD) (Talkowski et al. 2011). MBD5 is a dosage sensitive gene, and 

haploinsufficiency of MBD5 mRNA in patients supports it as the major driver 

gene for phenotypes observed with 2q23.1 microdeletion as well as 

microduplication syndrome (Mullegama et al. 2013).  

In this study, we generated human iPSC-derived neuronal models of 

CRISPR/Cas9 genome edited iPSC lines bearing mutations in two different 

regions of the MBD5 gene, namely exon 4 localized in the 5’ UTR and the MBD 

domain containing exon 6. We ascertained the consequences for local transcript 

abundance of independent perturbations of these two regions. The canonical 

transcript MBD5-001 was not the predominantly expressed isoform responsible 

for MBD5 expression in the differentiated cell lines. Surprisingly, the transcript 

that exhibited highest expression overall was a non-protein coding transcript 

MBD5-010 that comprises only 5‘ UTR exons 1 and 2. This is a promising non-

coding transcript that may be implicated in neuronal development and disease 

and should be further investigated to determine its potential as a regulatory 

lncRNA. One transcript, MBD5-014, showed NPC-specific expression, being 

observed uniquely in the NPC population and absent in the neurons, suggesting 

a developmental state preference. Genome-wide transcriptomic analysis via 

RNAseq allowed the identification of the dysregulated genes upon CRISPR editing 

such as RAB11FIP1, NHLH1-2, PLAUR and CNTNAP2; and pathways such as notch 

signaling and cell adhesion that gave insight on the protein complexes and 

pathways that are acting downstream of MBD5.  

In conclusion, we demonstrated that we could generate human loss-of-

function neuronal cell lines to study ASD. These indicated genes and pathways 

that may be directly implicated in neuronal development and function and thus 

represent promising targets for ASD therapeutics. 

 

Keywords - MBD5, CRISPR, differentiation, MBD, neuronal progenitor, neuron, 

transcript, expression.  





  

Introduction 

The 2q23.1 microdeletion syndrome is a previously described genomic 

disorder that comprises intellectual disability, severe speech impairment, 

seizures, behavioral problems, microcephaly, mild craniofacial dysmorphism, 

small hands and feet, short stature, and broad-based ataxic gait. MBD5 (MIM 

611472), encoding the methyl-CpG-binding domain 5 protein, has now been 

implicated as the causal locus within the 2q23.1 deletion region (see Figure 15A) 

and represents a previously unrecognized contributor to the genetic etiology of 

autism spectrum disorder (ASD) (Talkowski et al. 2011). MBD5 is a dosage 

sensitive gene, and haploinsufficiency of MBD5 in patients supports it as the 

major causative gene for the 2q23.1 microdeletion syndrome, as well as the 

reciprocal microduplication syndrome (Mullegama et al. 2013). Indeed, MBD5 

has been pinpointed as the single contributor of the 2q23.1 microdeletion 

syndrome since cases only with MBD5 deletions presented similar phenotype in 

comparison to the patients with 2q23.1microdeletion syndrome. Besides 

deletions, a few coding variants, mostly missense, have been reported in ASD 

patients (see Figure 15B). 

MBD5 belongs to the family of the methyl-CpG-binding domain (MBD) 

family of proteins, which includes MBD1, MBD2, MBD3, MBD4, MBD5, MBD6, 

SETDB1, SETDB2 and MECP2, the causative gene for Rett syndrome. The MBD 

family members have key roles in regulating gene transcription and in vitro 

Figure 13 – Top – MBD5 gene structure of 492 467 bp of length (Refseq NM_018328.4). Coding 

exons of human MBD5 (exons 6–15) are shown in blue. Middle - Translation of all these exons yields 

protein isoform 1, through the canonical transcript MBD5-001 (ENST00000407073). Bottom - 

Protein isoform 1, the main described isoform, is composed of a conserved MBD, a proline-rich 

segment (P-rich), a PWWP domain, and putative nuclear localization signals (NLS). 
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experiments have led to a model in which MBD1, MBD2, MBD4, and MECP2 

recruit chromatin remodelers, histone deacetylases, and methylases to 

methylated DNA, leading to transcriptional repression (Nan & Bird 2001; Ng et 

al. 1999). Indeed, their MBD allows the specific recognition of DNA containing 

methylated cytosine and as a consequence, the proteins serve as interpreters of 

DNA methylation (Laget et al. 2010). The MBD family members are involved in a 

variety of functions including DNA damage repair (MBD4), histone methylation 

(SETBD1 and SETDB2), and X chromosome inactivation (MBD2) (Bogdanović & 

Veenstra 2009; Roloff et al. 2003), transcript splicing and also gene activation 

(Young et al. 2005; Yasui et al. 2007; Chahrour et al. 2008). 

Immunocytochemistry experiments showed that MBD5 localizes in the nucleus 

to non-heterochromatin regions, which suggests that MBD5 acts as a 

transcriptional activator (Camarena et al. 2014), and it has been demonstrated 

that it does not have the ability to bind methylated DNA in vitro (Laget et al. 

2010).  

The MBD5 gene is composed by 15 exons, of which exons 1 through 5 

are part of the 5’UTR, leaving exons 6 through 15 as the coding portion of MBD5. 

In fact, 90% of this gene’s length is composed of the 5’ UTR alone (~436 kb of 

the ~492kb total). In terms of transcription, the MBD5 gene can be transcribed 

into a total of 33 transcripts (annotated in the Ensembl database), of which 7 are 

predicted to be protein coding (Supplementary Table 5). The translation of the 

canonical transcript MBD5-001 (ENST00000407073) leads to the production of 

the main MBD5 protein isoform reported to date, isoform 1 (UniProtKB ID 

Q9P267), that has 1494 amino acids and is encoded by exons 6 through15 

(Figure 13). This protein has two conserved domains, a MBD and a PWWP 

(proline-tryptophan-tryptophan-proline) 

domain, both of which may be found in 

chromatin-associated proteins. The MBD5 

protein isoform 2 (of 851 amino acids) has 

also been reported and is a shorter version 

of isoform 1 that excludes the PWWP domain 

(Laget et al. 2010). Expression studies have 

shown that isoform 1 is expressed in all 

tissues but highly expressed in brain and 

testis, while isoform 2 is expressed in all 

tissues but highly expressed in brain and 

Figure 14 – Interaction nodes with 

MBD5 (from SFARI Gene Db). Green lines 

indicate protein binding. Red dots are 

ASD-related genes.  
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ovaries (Laget et al. 2010). Although its role is poorly understood, protein-

protein interaction studies have shown association of MBD5 protein with 

products of other ASD genes (Figure 14), indicating it may interact with those 

via the same pathways. 

Mouse models have been effective tools to understand the pathogenesis 

of 2q23.1 deletion syndrome and will be the key tools in future to aid in 

designing therapeutic strategies. Several different models alter or abolish Mbd5 

expression in mice and include an Mbd5 knockout (Mbd5
−/−

), a brain-specific 

Mbd5 conditional knockout (Mbd5
f/−

, NestinCre) (Du et al. 2012), and a 

heterozygous hypomorph (Mbd5
+/GT

) (Camarena et al. 2014). The mouse models 

and more specifically, Mbd5
+/GT

, recapitulate aspects of the human condition. The 

Mbd5
GT/GT

 mice exhibit perinatal lethality (Camarena et al. 2014), in contrast to 

the heterozygous Mbd5 hypomorphic mouse, Mbd5
+/GT

, which was viable. The 

Mbd5
+/GT

 mice exhibited behavioral abnormalities with neuronal function deficits, 

consistent with the 2q23.1 deletion syndrome human phenotype. Mbd5
+/GT

 mice 

are smaller than wild-type, have abnormal nasal bone development, and exhibit 

motor coordination impairment, which are present in children with 2q23.1 

deletion syndrome. In addition, supporting the theory that MBD5 has a role in 

autism and ID, Mbd5
+/GT

 mice exhibited abnormal social behaviors and clear 

indication of learning deficits and memory impairment (Camarena et al. 2014). 

Other models to study MBD5 haploinsufficiency or specific genomic variants 

have not been described so far. 

In this study, we aim to explore one of the iPSC CRISPR-edited models 

described in the previous chapter and this way we will show an example of an 

application of those models. To do so, we pursued the iPSC CRISPR-edited 

models harboring mutations in MBD5, as this gene is a compelling candidate 

whose mutations confer high risk for ASD. Besides, its molecular function 

remains poorly understood and characterized. Therefore, we will drive the 

previously described iPSC models into the terminally differentiated neuronal 

lineage, as this represents the tissue of interest when studying ASD. We are 

interested in looking at the consequences that occur genome-wide at the 

transcriptomic level, via RNAseq, upon the perturbation of 2 independent 

regions of MBD5.   

The regions individually targeted by CRISPR/Cas9 were the 5’UTR exon 4 

of MBD5 and the MBD-bearing exon 6. These exons were chosen based on 

previous evidence of their relevance for possible gene function and clinical 
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reports. Exon 4 is located within the 5’ untranslated region of the MBD5 gene 

and despite being non-coding, there have been several reports of anomalies in 

the 5’UTR region in ASD patients  that confer disease (Figure 3). Although it 

represents 90% of the gene’s total length, the significance of the 5’ UTR is yet 

unknown.  

On the other hand, exon 6 was targeted as is it represents the first coding 

exon of the canonical transcript MBD5-001 (ENST00000407073) that is the most 

reported to date. This transcript encodes the MBD5 protein isoform 1 (Q9P267). 

Therefore, by disrupting this exon, we expected to prevent the transcription of 

the canonical transcript and, consequently, of the protein isoform 1. This would 

result in haploinsufficiency of MBD5 when observed in heterozygosity, 

mimicking what occurs in patients. Additionally, exon 6 contains the initial 

portion of the MBD domain of MBD5, that is thought to play a role in its function 

as a chromatin remodeler as this is observed in the other MBD family members.  

This strategy will give insights both into the requirement of these 2 

regions of MBD5 during neurodevelopment and also into the transcriptomic 

impact of ablating these regions during this process. A greater understanding 

of the role of MBD5 in neurodevelopment will unveil the mechanism by which its 

mutations confer risk for ASD and may open new avenues of research to 

ultimately develop potential therapies for neurodevelopmental disorders. 
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Figure 15 - A) 2q23.1 microdeletion syndrome region was narrowed down to MBD5 as a single 

causal locus. (patients’ deletions represented as red bars); B) MBD5 coding variants (represented 

in red and MBD Domain in orange). (Adapted from Mullegama & Elsea 2016 and Talkowski et al. 

2011.) 





  

Methods

GuideRNA Design and Strategy 

The CRISPR/Cas9 gene editing system was used to create iPSC lines with 

mutations in the MBD5 gene. We used a dual-guideRNA strategy for the excision 

of a DNA fragment, as this can be readily screened via standard PCR. GuideRNAs 

for MBD5 were designed, based on genome assembly GRCh37, and integrated 

onto pGuide vector (Addgene plasmid 41824) as described previously (Chapter 

1, Supplementary Table 1). GuideRNAs were designed to either ablate the entire 

exons or excise a fragment within them. The sequences of guideRNAs are 

included in Table I of Chapter 1.  

 

Germ Layer Differentiation of iPSC  

The germ layer experiment was performed to detect the ability of the iPSC 

to differentiate into the three germ layers (Itskovitz-Eldor et al. 2000). iPSC were 

grown under standard conditions and for each line select 2 wells from a 6-wells 

plate to continue with Detach colonies with 1x Collagenase (1ml; 1mg/ml) for 1 

hour at 37ºC. Then transfer the colony pieces to a 6-well low-binding plate 

(NUNC). In one well for ectodermal differentiation we placed 1/3rd of the pieces 

in EB medium (conventional iPSC medium without bFGF) supplemented with 

10µM SB431542. In a different well, for meso/endodermal differentiation, we 

put 2/3rd of the pieces in EB medium and added ROCK inhibitor to the medium 

(for both conditions). The medium was changed every 48 hours, without ROCK 

Figure 16 - Guide design strategy, targeting the 5’ UTR exon 4 and MBD Domain portion of 

exon 6 (based on transcript MBD5-001).
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inhibitor. After ~6 days we plated 5 EBs per well for mesoderm, 20 EBs per well 

for endoderm and 10 EBs per well for ectoderm, using 12-well plates coated with 

gelatin for Endoderm and Mesoderm, or 12-well plates coated with Matrigel for 

Ectoderm. From this point on, the medium used for each layer were the 

following: i) Endodermal – RPMI 1640, 20% FBS, 1x PSG, -thioglycerol; ii) 

Mesodermal – DMEM low glucose, 15% FBS, 1x PSG, 1x NEAA; iii) Ectodermal – 

Neurobasal medium, DMEM/F12, 1x PSG, 1x NEAA, 7,5% BSA, N2, B27 without 

Vitamin A, SB431542.  

Cells were fixed on day 14 with 4% PFA, followed by primary incubation 

with mouse anti-human -tubulin III (TUBB3, 1:200 Sigma Aldrich T8578), mouse 

anti-human smooth muscle α-2 actin (ACTA2, 1:50 DAKO M0851), rabbit anti-

human -fetoprotein (AFP, 1:200, DAKO A0008) and subsequent appropriate 

fluorochrome conjugated secondary antibodies (1:400 dilution) for microscopic 

evaluation. 

 

Nucleofection in Human Induced Pluripotent Stem Cells  

Human induced pluripotent stem cells (iPSCs), derived from fibroblasts 

from a healthy male individual, identified as 8330-8 cells, were previously 

generated using standard retroviral vectors and the Yamanaka factors OCT3/4, 

SOX2, KLF4, and c-MYC (Sheridan et al. 2011). The iPSCs maintenance and 

nucleofection were performed as described in Chapter 2.  Briefly, iPSCs (1 × 10
6 

cells) were transfected with 1 µg total DNA plasmid, Cas9 expression vector 

pX459 (pSpCas9(BB)-2A-Puro plasmid Addgene 48139) along with the chosen 

gRNAs (inserted into pGuide - Addgene plasmid 41824) and an external EGFP 

(enhanced green fluorescent protein) vector. For nucleofection of the gRNAs into 

the iPSC, the Human Stem Cell Nucleofector Kit 1 (Lonza) and Amaxa 

Nucleofection II device (Lonza) were used with program B-016, according to the 

manufacturer’s instructions. After nucleofection, the iPSCs were cultured on 

Matrigel-coated wells using conditioned mTeSR medium supplemented with 10 

µM ROCK inhibitor (Y-27632 dihydrochloride, Santa Cruz Biotech) and 10 ng/ml 

bFGF (R&D). Single cell FACS sorting and individual colony screening were 

performed as described in Chapter 1. 
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Measuring Gene Expression by qRT-PCR 

To determine whether MBD5 transcription levels were affected upon 

CRISPR editing, quantitative real-time polymerase chain reaction (qRT-PCR) was 

used to measure MBD5 mRNA fold-change relative to housekeeping genes. RNA 

was obtained by lysing 1-2 million cells using 1mL of Trizol (Invitrogen) then 

mixed with 1/5th volume of chloroform and centrifuged at 200xg for 5 minutes. 

The aqueous phase was collected and processed using an RNeasy Mini column 

(Qiagen). cDNA was synthetized from 1µg of extracted RNA using SuperScript® 

III Reverse Transcriptase (ThermoFisher Scientific) with oligo(dT), random 

hexamers, and RNase inhibitor. Quantitative RT-PCR was performed for the 

target genes using custom designed primers and ACTB, GAPDH and POLR2A 

were used as endogenous controls (Supplementary Table 4). Primer melting 

curves and efficiency were verified and only optimal primers were considered. 

Primers (0.75 µM final), cDNA (1:100 final) and nuclease-free water were added 

to the LightCycler® 480 SYBR Green I Master Mix (Roche) for a final 10 µL reaction 

volume. LightCycler® 480 (Roche) was used for data acquisition. Values of 

expression for each cell line (treated or control) were obtained in at least three 

technical replicates. Normalized expression levels were set as fold-change in 

comparison to control cell lines (Table VII), using the ΔΔCt method (Livak & 

Schmittgen 2001). One-way ANOVA and Tukey post-hoc test was used to assess 

statistical significance, using IBM SPSS Statistics 24. 

 

iPSC-derived Neuronal Progenitor Differentiation 

Expandable neuronal progenitor cells were generated from iPSCs through 

differentiation by the embryoid body (EB) protocol using STEMdiff™ Neural 

Induction Medium (STEMCELL Technologies), following the manufacturer’s 

instructions.  Briefly, 3 × 10
6

 iPSC were transferred to a micro-patterned culture 

surface well (AggreWell™800) using centrifugal force, resulting in 10,000 cells 

per micro-well that would then form embryoid bodies (EBs, day 0). EBs were 

plated on day 5 onto Corning® Matrigel®-coated plates and expanded for the 

following days. Around day 12, neural rosette structures were visible (Figure 17) 

and were manually collected using DMEM-F12 medium and collected into a 15mL 

tube and plated onto poly-ornithine (PLO, Sigma)/laminin (Sigma) coated culture 

plates.  
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PLO was used at a final concentration of 20µg/mL and laminin at 5µg/mL. 

Isolated cells were expanded in neural expansion medium (70% DMEM 

(Invitrogen), 30% Ham's F-12 (Mediatech) supplemented with B-27 (Invitrogen), 

heparin and mitogens EGF (20 ng/mL, Sigma) and bFGF (R&D Systems). After ten 

passages, cells were collected for subsequent experiments and analyzed for 

expression of NPC-specific markers.  

Immunofluorescence staining was performed after fixation in 4% 

paraformaldehyde, followed by primary antibody incubation with rabbit anti-

human NESTIN (1:500 dilution, Millipore ABD69), mouse anti-human SOX1 

(1:200 dilution, Millipore AB15766), rabbit anti-SOX2 (1:200 dilution, Abcam 

AB59776) and rabbit anti-human PAX6 (1:200 dilution Covance PRB278P) and 

subsequent appropriate fluorochrome conjugated secondary antibodies (1:400 

dilution) for microscopic evaluation. Fluorescence intensity was normalized for 

the 8330-8 non-treated control sample. 

 

Cell Cycle Analysis 

Cell cycle of NPCs was analyzed by propidium iodide (PI) staining that 

allows the identification of the proportion of cells from a whole cell population 

that are in one of the three interphase stages (G0/G1, S and G2/M phase) of the 

cell cycle. Briefly, 1 - 2 × 10
6

 cells from each cell line were harvested in 1x PBS 

and fixed in 70% ethanol for 30min on ice. The pellet was washed twice with PBS 

and treated with 50µL of Ribonuclease A solution (100µg/mL in 1x PBS) and 

400µL of PI solution (50µg/mL in 1x PBS) was added.  PI fluorescence of the cells 

at room temperature was analyzed by flow cytometry by the BD FACSAria II sorter 

with a 100-µm nozzle under sterile conditions. To determine the cell cycle phase 

curves the FACSAria Software was used for each cell line. 
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Neuronal Differentiation 

Terminal neuronal differentiation was achieved by plating expanded 

neural progenitor cells at a seeding density of 2 × 10
6

 cells per well on poly-

ornithine/laminin-coated plates (coated together overnight) in NPC expansion 

medium lacking both growth factors EGF and bFGF and heparin, with medium 

replacement every 3–5 days for 30 days. This will generate a mixed population 

neuronal subtypes (excitatory and inhibitory). Immunofluorescence staining was 

performed as described above for neuronal-specific markers, using chicken anti-

human MAP2 (1:2500 dilution, EnCor Biotechnology Inc CPCA-MAP2), a 

microtubule-associated protein, and mouse anti-human SMI312 (1:1000 

dilution, Biolegend 837901), a neurofilament axonal marker. Fluorescence 

intensity was normalized for the 8330-8 non-treated control sample. 

 

Whole Transcriptome Sequencing (RNAseq) and Analyses 

RNAseq libraries were prepared using the Illumina TruSeq kit and 

manufacturer’s instructions. Libraries were multiplexed, pooled and sequenced 

on multiple lanes of an Illumina HiSeq2500, generating an average of 26.67 

million paired-end reads of 75 bp.  

Quality assessment of sequence reads was performed using fastQC (v. 

0.10.1 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequence 

reads were then aligned to human reference genome Ensembl GRCh37 (v. 75) 

using and gene counts were generated using STAR (v. 2.4.2) (Dobin et al., 2013) 

Figure 17 - Differentiation workflow of iPSC into NPC and finally into mature neurons. The 

medium used in each step is indicated in the figure, along with the timeline required to complete 

each phase of differentiation. 
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with following options different from default: --outFilterMultimapNmax 1 --

outFilterMismatchNoverLmax 0.1. Quality checking of alignments was assessed 

by a custom script utilizing Picard Tools 

(http://broadinstitute.github.io/picard/), RNASeQC (DeLuca et al., 2012), RSeQC 

(Wang et al., 2012) and SamTools (Li et al., 2009). Differential MBD5 transcript 

expression was assessed using RSEM and Bowtie2, and visualized on Integrative 

Genomics Viewer (Robinson et al., 2011; Thorvaldsdóttir et al., 2013).  

 

Differential Expression Analysis  

To account for factors influencing gene counts in each cell type, surrogate 

variable analyses (SVA) (Leek et al. 2007) were performed detecting two 

surrogate variables in each cell type. To estimate log2 foldchanges in CRISPR-

edited samples vs. control samples, generalized linear models were used to 

model counts by negative binomial distribution using R package DESeq2 (v 

1.10.1) (Love et al. 2014). Estimated log2 foldchanges were tested for 

significance using Wald test, and corresponding p-values were adjusted for 

multiple hypothesis testing using Benjamini-Hochberg adjustment method (p-

adj).  

 

Network and Enrichment Analyses 

Significantly perturbed KEGG pathways and gene ontologies (GO) were 

analyzed using R package gage (Luo et al. 2009), using log2 foldchanges 

estimates as gene effects. Differentially expressed genes were tested for 

enrichment of gene ontologies using package topGO (Alexa & Rahnenfuhrer 

2016), with only curated evidence for association of the genes to ontologies, 

which takes into account a structure of gene ontology tree. 

  



  

Results

8330-8 iPSC were able to differentiate into all three germ layers 

The parental 8330-8 cell line was tested to determine its pluripotency 

potential of differentiating into all three germ layers. Indeed, the 8330-8 iPSC 

were able to maturate into the three germ layers, as shown by the expression of 

relevant markers specific to each embryonic layer. The ectodermal layer-driven 

cells, stained positively for β-tubulin III (TUBB3); the mesodermal layer-driven 

cells contained smooth muscle α-2 actin (ACTA2), and finally the endodermal 

layer-driven cells express -fetal protein (AFP) as represented in Figure 18. This 

assay confirms the potential of this cell line to differentiate into our cell line of 

interest, namely the ectoderm-derived neuronal progenitor cells and subsequent 

mature neurons, and therefore was chosen as the cell line to pursue for this 

study. 

 

 

 

Edited iPSC showed a range of MBD5 mRNA expression assessed by 

qRT-PCR  

To understand how the perturbation of certain gene regions affects the 

local transcript architecture of MBD5, iPSC were edited using CRISPR/Cas9 

technology. Either the 5’UTR exon 4 or the MBD-containing exon 6 was targeted. 

Upon CRISPR-editing of the cell lines, an initial screening with standard PCR was 

used to select edited cell lines, based on the edited amplicon size (shown in 

Chapter 1). Afterwards, total RNA was extracted from those cell lines in order to 

assess whether the MBD5 mRNA levels were affected, via qRT-PCR. The screened 

iPSC lines showed a decrease in MBD5 expression ranging from 0% to about 70% 

(Figure 19). To further pursue differentiation of these models into the neuronal 

Figure 18 - Germ layer differentiation of the 8330-8 iPSC line shows successful differentiation 

into all three germ layers. 
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pathway, we selected the edited cell lines that exhibited the greatest decrease 

in MBD5 expression (names shown in boxes in Figure 19). The exon 4 edited 

cells lines selected were: 4i H6, 4i H7 and 4i AIID6. The exon 6-edited cell lines 

selected were: 6het AIIIB5, 6het AIVG12 and 6hom AIID2.

Figure 19 - MBD5 exon mRNA expression in iPSC. Fold-changes were calculated relative to the 

housekeeping gene ACTB and normalized to the 8330-8 treated control sample. 



  

Sanger sequencing of CRISPR/Cas9-induced mutations indicated 

repair via non-homologous end joining 

To have a complete view of the alterations that occurred in the selected 

CRISPR-edited cell lines, DNA was extracted for Sanger sequencing of the 

targeted region. After CRISPR/Cas-9 genome editing the endogenous cell repair 

mechanisms come into action to repair the double strand breaks induced by this 

technology, mostly resulting in non-homologous end joining (NHEJ) when using 

the dual-guideRNA strategy. However, in some cases additional editing can occur 

in the repaired region by the insertion or deletion of several nucleotides. Indeed, 

the Sanger sequencing revealed further editing besides NHEJ in some cell lines. 

The detailed description of each selected cell lined for further differentiation, 

the mutations occurred in the CRISPR-edited cell lines and their translational 

consequences are included in Table VII. 

The CRISPR lines targeting exon 4, were all heterozygous lines for the 

mutations induced and there were no complete dual-guide deletions. In these 

cell lines, only one of the guideRNAs of the pair used for transfection was able 

to induce a mutation in the genomic DNA. This may be explained either due to 

a quick repair on the other guideRNA location, that prevented end joining or 

either because a full exon 4 excision was not tolerated by the iPSC and cells with 

that mutation were not viable.  Therefore, we ended up with 2 cell lines with 

mutations upstream of exon 4 (4i H6 and 4i H7) and 1 cell line with a mutation 

within the exon 4 (4i AIID6) (Figure 20). Cell line 4i H6 contains a 3bp insertion 

(AAA) and 1bp substitution C>A, while 4i H7 presents a 19bp deletion. Despite 

having mutated the intron upstream of exon 4, these two lines were kept for 

follow-up as they showed decreased levels of MBD5 expression in the qRT-PCR 

and also as previous reports of MBD5 mutations in intronic regions have 

occurred in patients (Talkowski et al. 2011). On the other hand, cell line 4i AIID6 

contains a 9bp insertion and G>T substitution within exon 4. As these 

modifications in the exon 4-targeted cell lines are located upstream of MBD5 

coding sequence, these are not predicted to have a translational consequence, 

as confirmed by nucleotide-to-protein translation tools as ExPASy Translate Tool 

(http://web.expasy.org/translate/). 

http://web.expasy.org/translate/
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The selected exon 6-targeted cell lines present modifications within the 

coding sequence, affecting the MBD domain (Figure 20). Cell line 6het AIVG12 is 

a compound heterozygote, as it contains a mutation in each of its alleles. On 

allele 1 this cell line presents a 4bp deletion and a 16bp insertion, leading to a 

Figure 20 – Characterization of the selected CRISPR-edited cell lines. 

A) Scheme of the location of the mutations within the CRISPR-edited cell lines from the intron 

upstream of exon 4 to exon 6 of the MBD5 gene. 

B) Sanger traces of the CRISPR-edited cell lines targeting Exon 4. Top sequence is the reference MBD5 

sequence to which the CRISPR-edited sequences were aligned (RefSeq NG_017003). Red – deletion. 

Blue – insertions. Orange – substitution. Gray – guideRNA sequences. Yellow – exon 4. The two 

parallel gray lines represent a gap in the sequence to allow the visualization of all modifications. 

C) Sanger traces of the CRISPR-edited cell lines targeting Exon 6. Top sequence is the reference MBD5 

sequence to which the CRISPR-edited sequences were aligned (RefSeq NG_017003). Red – deletion. 

Blue – insertions. Orange – substitution. Gray – guideRNA sequences. Yellow – MBD domain. 
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total gain of 12bp, which makes this modification in-frame. This in-frame 

mutation leads to a 4 aminoacid insertion and to a 1 aminoacid substitution in 

the canonical MBD5 protein isoform 1 (Q9P267), and is thus predicted to 

generate a novel protein of 1498 aminoacids of length. Allele 2 contains only 

the 4bp deletion, that is predicted to lead to a prematurely truncated peptide of 

80 aminoacids of length. 

Cell lines 6het AIIIB5 and 6hom AIID2 were edited heterozygously and 

homozygously, respectively, by NHEJ perfectly repairing cuts at the locations 

predicted by the guideRNA sequences without additional modifications (Figure 

20).  This mutation led to the excision of 41bp within exon 6, removing the 

initial portion of the MBD domain. As this modification causes a frameshift of 

the open reading frame, it is predicted to result in a premature truncation and 

generate a 38 amino-acid peptide, when considering the canonical MBD5 protein 

isoform 1 (Q9P267) (MBD5 protein levels could not be assessed as no suitable 

antibodies were found upon stringent testing of commercially available 

reagents). 

In summary, of the selected CRISPR-edited cell lines, 2 of them show 

indels within the intron upstream of exon 4 and therefore are not expected to 

have a functional impact in MBD5 usual transcription. Regarding the other 4 cell 

lines, they harbor mutations in coding regions that may impact MBD5 

transcription and/or translation. 
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Table VII - CRISPR lines and description. 

Cell line ID 

CRISPR 

vs 

Control 

gRNAs 

Used 

FACS 

method 

Mutation 

Type 

Mutation Description 

Predicted Translational 

Consequence 

(ExPASy) 

8330-8  

Non-Treated 

Non-

treated 

Control 

- 10cm dish - - - 

8330-8 Treated 

GM 

Treated 

Control 

- 10cm dish - - - 

H8- 

Negative 

Control* 

4a, 4b 96w - - - 

4i H6 

CRISPR 

Exon 4 

4a, 4b 96w Heterozygous 

3 bp insertion and 1 bp 

substitution C>A in intron 

upstream of exon 4 

None (intronic) 

4i H7 

CRISPR 

Exon 4 

4a, 4b 96w Heterozygous 

19 bp deletion in intron 

upstream of exon 4 

None (intronic) 

4i AIID6 

CRISPR 

Exon 4 

2, 6 10cm dish Heterozygous 

9bp insertion and G>T 

substitution in exon 

None (5’ UTR exon) 

6het AIVG12 

CRISPR 

Exon 6 

8, 5 10cm dish 

Compound 

Heterozygote 

Mutation 1:  

4bp deletion + 16bp insertion 

In-frame mutation with 4 

aa insertion and 1 aa 

substitution  

(1498 aa protein) 

Mutation 2:  

4bp deletion 

Premature Truncation  

(80 aa peptide) 

6het AIIIB5 

CRISPR 

Exon 6 

8, 3 10cm dish Heterozygous 41bp deletion in exon 

Premature Truncation  

(38 aa peptide) 

6hom AIID2 

CRISPR 

Exon 6 

8, 3 10cm dish Homozygous 41bp deletion in exon 

Premature Truncation  

(38 aa peptide) 

*treated with CRISPR but did not make a mutation (confirmed by Sanger). aa- aminoacid.  
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Differentiated NPC showed typical morphology during differentiation 

and expressed NPC-specific markers 

To gain further insight into ASD pathophysiology in cell populations such 

as neurons, we generated and characterized iPSC-derived NPC. These were 

generated by first differentiating the iPSCs into embryoid bodies (EBs), followed 

by dissociation, isolation and expansion of neural rosettes in the presence of the 

mitogens EGF and bFGF (Figure 17). The morphology of EBs was evaluated using 

light microscopy. EBs exhibited the typical spherical and well-limited appearance 

of EBs formed from embryonic stem cells (Figure 17). The neural rosettes derived 

from iPSC properly mimicked the apicobasal organization, forming a radially 

organized pattern in 2D, much like the neural tube epithelium (Figure 17). Neural 

rosettes recapitulate many aspects of brain development, including proper 

lineage progression and timed neuronal specification. 

To confirm that the decrease in MBD5 mRNA levels in CRISPR-edited cell 

lines was maintained after differentiation into NPCS, we performed qRT-PCR 

analysis (Figure 21). This analysis revealed the decreased level was maintained 

in cell lines 4i AIID6 and 4i H7, showing levels similar to those seen in 

haploinsufficient patients (~50% reduction, in comparison to controls).  The exon 

6-targeted cell lines along with cell line 4i H6 showed less decrease of MBD5 

expression, in comparison to that seen in iPSC.  Primer pair targeting exon 6 to 

7 confirms the deletions are present in exon 6-targeted cell lines, as the forward 

primer sits within the deleted regions. Indeed, this shows that the mRNA 

expression in that region is of about 50% of the controls in the heterozygous 

Figure 21 - MBD5 exon mRNA expression in iPSC-derived NPC. Fold-changes were calculated 

relative to housekeeping genes ACTB, GAPDH and POLR2A and normalized to the three 

control samples (see Table I). *pval<0,05. **pval<0,01. 



 

138 

 

cell line 6het AIIIB5 and is essentially null both in the homozygous line 6hom 

AIID2 and compound heterozygote 6het AIVG12, as expected.  

To test for cell cycle impairments, since MBD proteins have been 

described to regulate this process and also as some cell lines seemed to 

proliferate at different rates, a cell cycle assay using propidium iodide to stain 

nuclear DNA was used to assess differences in cell proliferation induced upon 

differentiation of the CRISPR-edited cell lines in comparison to the control cell 

lines (Figure 22). Indeed, there seemed to be a trend towards decreased 

proliferation in the treated vs. un-treated cell lines as there was a longer G0/G1 

phase. However, the differences were not statistically significant. 

The presence of NPC-specific markers NESTIN, PAX6 and SOX1and SOX2 

in the differentiated cell lines indicates the differentiation efficiency. The 

immunocytochemical analysis of the NPC-specific markers in the expanded 

neuronal progenitor cells showed positive expression all cell lines, with the 

exception of the SOX2 marker in the compound heterozygote cell line 6het 

AIVG12 (Figure 23).  This indicates that this cell line did not complete the 

differentiation process entirely. 

 

 

Figure 22 - Cell cycle assay using propidium iodide as a reference of DNA 

doubling. The treated cell lines show a trend of a larger G0/G1 phase. 
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Figure 23 - Immunocytochemical analysis of NESTIN, PAX6, SOX2 (green, nuclei DNA staining 

overlaid in blue) and SOX1 (red, nuclei DNA staining overlaid in blue) expression in expanded 

neuronal progenitor cells from iPSC lines expanded in the presence of mitogens EGF and bFGF. 
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CRISPR-edited neurons displayed typical morphology, expressed 

terminally differentiated markers and near-regular levels of MBD5  

Neurons are of great interest as they represent the primary cell type that 

is thought to be affected in ASD as well as in other neurodevelopmental 

disorders. We analyzed the differentiated iPSC-derived neuronal progenitor cells 

after withdrawal of mitogenic factors (EGF, bFGF) for 30 days to guide them into 

the terminally differentiated neuronal lineage. To assess the MBD5 mRNA levels 

in CRISPR-edited neuronal cells after complete differentiation, we performed 

qRT-PCR analysis (Figure 24). Upon differentiation, all CRISPR-edited cell lines 

show MBD5 expression levels similar to the controls. In fact, in exon 4-targeted 

cell line 4i H7, the expression is even higher than that observed in controls. Once 

more, the primer pair targeting exon 6 to 7 confirms the deletions in exon 6-

targeted cell lines, indicating there is no mixture with other cells (such as wild-

type).   

 

Immunocytochemistry for neuron-specific markers MAP2 and SMI312 was 

positive for all cell lines with the exception of the compound heterozygote cell 

line 6het AIVG12 (Figure 25). In fact, this cell line, exhibited neither a neuronal-

like morphology nor the specific markers, indicating that it failed to differentiate 

into neurons. All other cell lines exhibited both expression of neuronal markers 

and neuronal-like morphology. MAP2 is a dendrite marker while SMI312 is a 

neurofilament marker of axons. Neurofilaments are a major component of the 

neuronal cytoskeleton whose function is to provide structural support for the 

Figure 24 - MBD5 exon mRNA expression in NPC-derived Neurons. Fold-changes were 

calculated relative to housekeeping genes ACTB, GAPDH and POLR2A and normalized to 

the three control samples (see Table I). *pval<0,05. **pval<0,01. 
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axon and to regulate axon diameter. The presence of these markers in the 

differentiated cell lines are an indicator of success during the maturation 

process. 

 

 

  

Figure 25 - Immunofluorescence staining for neuronal-specific markers, MAP2, a microtubule-

associated protein (green, nuclei DNA staining overlaid in blue), and SMI312 (red), a neurofilament 

axonal marker in NPC-derived neuronal cells grown in the absence of mitogens EGF and bFGF. 
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The neuronal differentiation process generated a pool of cellular 

subtypes  

 The expression of embryonic, progenitor and neuronal markers and other 

lineage-specific markers to rule out possible aberrant differentiation were 

studied by RNAseq. The gene expression is presented in Figure 26 as the 

logarithmic transformation of counts normalized to library size and gives insight 

into the cellular maturation during the differentiation process. The results 

showed that both NPCs and neurons lacked expression of the pluripotency 

markers, indicating that the iPSC were capable of exiting a stem cell-like state 

by being induced towards differentiation. NPCs showed expression of NPC-

specific markers as previously observed in the immunostaining experiments: 

Nestin, SOX1, SOX2 and PAX6. The transcriptomic data confirms that NPC cell 

line 6het AIVG12 does not express SOX1 and SOX2 concordant with what was 

observed by cell staining (indicated by the black arrows in the panel). 

Neurons show expression of terminally differentiated neuronal proteins 

as: microtubule-associated protein 2 (MAP2), a neuron-specific protein that 

promotes assembly and stability of the microtubule network; SATB2, FOXG1 and 

CUX1, expressed by cortical neurons; and of a marker of neuronal migration, 

doublecortin (DCX). These data show that this differentiation protocol leads to a 

mixed population of neuronal subtypes such as glutamatergic excitatory 

(SLC17A6) as well as GABA inhibitory (GAD1, GAD2) neurons. 

The growth of glial cells co-occurred along with the neuronal cells. This 

was noted by the presence of GFAP, present in astrocytes and CNP that is 

expressed in oligodendrocytes. Indeed, neurons and glia (oligodendrocytes and 

astrocytes) are originated from the same embryonic ectodermal layer and can 

both derive from neural progenitor cells (Kriegstein & Alvarez-Buylla 2009). Glial 

cells support the neuronal cell and are essential for neuronal signaling. Presence 

of vimentin (VIM), also highlights the presence of these cells. The intermediate 

filament vimentin is a cytoskeletal component of astroglial cells. However, it 

should be noted that it has also been reported to be expressed in neurons during 

developmental periods and under conditions of damage (Tanapat 2013). VIM is 

initially expressed by nearly all neuronal precursors in vivo, and is replaced by 

neurofilaments (NFs) shortly after the immature neurons become post-mitotic 

(Yabe et al. 2003). In our cells, VIM is visibly more elevated within the neuronal 

progenitor cells and not so pronounced in mature neurons. 
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Figure 26 - Heatmap of relative log-

transformed values across samples 

showing expression of selected 

markers to understand the 

maturation process that the cells 

underwent during the 

differentiation process. The scale 

represents the logarithmic 

transformation of the read counts.  
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Principal component analysis revealed the RNAseq dataset 

dimensions  

To measure the transcriptomic changes that occur upon perturbation of 

the 5’ UTR exon 4 and of the first coding exon that contains the initial portion 

of the MBD domain - exon 6, we used whole transcriptome sequencing (RNAseq) 

to sequence all the mature RNA (mRNA) strands present in the cells.  

A first assessment used to explore this data was the hierarchical cluster 

dendrogram. This dendrogram allows us to assess overall similarity between 

samples as the algorithm behind this method successively pairs together 

samples showing the highest degree of similarity. A hierarchical cluster 

dendrogram of this dataset was built and showed that the cell lines cluster into 

their cell-type categories: NPC and neurons (Figure 27). This dendrogram clearly 

separates the transcriptome-wide signatures between cell type - NPCs and 

neurons. Indeed, this is expected as cell types should be clearly demarcated 

from one another by their individuality as a tissue. Besides, as mentioned 

previously, the compound heterozygote 6het AIVG12 cell line did not 

differentiate into the mature neuronal lineage and, indeed, it segregated along 

with the NPC cell lines in terms of their transcriptional profile. This indicates this 

cell line preserved a NPC-like phenotype despite the mitogen withdrawal and 

consequently was excluded from further analyses. Both the non-treated 8330-8 

controls cluster within their cell category, separate from the 8330-8 treated cells, 

indicating the CRISPR treatment induces some level of transcriptomic changes in 

those cells. For this reason, the 8330-8 non-treated cell lines were not 

considered for downstream expression analyses to assure the best matched 

controls.  

We then used a principal component analysis (PCA) to visualize sample-

to-sample distances, in terms of genome-wide transcriptomic landscape, that 

reflect the dataset’s variance. The percentages that each principal component 

explain and the PCA plots combining the several components, are represented 

in Figure 28 for NPCs and Figure 29 for neurons. Principal component 1 (PC1) 

and PC2 are the directions that separate the data points the most and second 

most, respectively, and explain most of the variance found in the RNAseq 

dataset. In this dataset, PC1 explains 35.2% and 46.2% of the variance in NPC 

and neurons, respectively, while PC2 explains 23.8% and 23.4% of the variance 

in NPC and neurons, respectively. The first two components when plotted clearly 
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segregated sample 6het AIVG12 from the remaining cell lines, possibly 

indicating that their differentiation diverged from all other cell lines and did not 

follow the complete neuroectodermal lineage differentiation. Additional 

components individually explain less than 15% of the variance found in the 

dataset, each.  

Overall, the PC analysis did not distinguish between wild-type and CRISPR-

edited cell lines, indicating that their impact on the transcriptome was not 

responsible for the variance found in the first components. Despite not 

identifying differences at a large-scale transcriptomic level, there are possibly 

other features that will be more prevalent in explaining the variation between 

the lines such as a modest number of differentially expressed genes or defects 

concerning specific aspects of neuronal function, e. g. synaptic connectivity. 

Figure 27- Hierarchical cluster dendrogram shows clustering of the cell lines into their respective 

categories: NPC and Neurons (Blue – control samples). Cell lines 6het AIVG12 clustered apart, 

demonstrating its incomplete maturation into the neuronal lineage.  
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Figure 28 - Principal component analysis of the several dimensions of the RNAseq dataset 

allow us to determine the variance explained by each component within the NPC -  wild-type 

(blue) and CRISPR-edited cells (red). 
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Figure 29 - Principal component analysis of the several dimensions of the RNAseq dataset 

allow us to determine the variance explained by each component within the neuronal cells - 

wild-type (blue) and CRISPR-edited cells (red). 
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MBD5 expression in NPC and neurons was consistent in the RNAseq 

dataset and in the qRT-PCR 

Since the PCA showed that genotype did not explain most of the variance 

found, we then looked at the MBD5 mRNA expression levels in the RNAseq 

dataset, both of the NPC and neuronal cell lines, to confirm whether these levels 

were maintained in the biological replicates used to generate the RNAseq data. 

For these analyses, only the exon-targeted cell lines were considered along with 

the treated controls (8330-8 treated control and H8- negative control cell lines), 

using DESeq. We observed that the mRNA expression levels observed in the 

transcriptomic dataset (Figure 30) recapitulate those detected by qRT-PCR 

(Figure 30). Regarding the NPC dataset, the CRISPR-edited cell lines show no 

significant overall difference in MBD5 expression in comparison to the controls. 

In contrast, in the neuronal dataset, the CRISPR-edited cells exhibit a higher level 

of expression of MBD5 mRNA, when compared to the treated controls. These 

results support the previous results obtained via qRT-PCR, ruling out any 

possible technical artifacts and indicating possible compensation mechanisms 

occurring in the edited cells.  

  

Figure 30 – MBD5 mRNA expression in selected cell lines, from the RNAseq dataset obtained using 

DESeq2. The expression levels are similar to those observed in the qRT-PCR assay. 
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Differential MBD5 transcript expression in NPCs and neurons 

suggested that MBD might not be crucial for neurodevelopment 

To determine what occurred locally within the MBD5 gene upon editing, 

the local patterns of MBD5 gene expression were determined to identify possible 

changes in its transcriptional pattern during both stages of differentiation, using 

RSEM and Bowtie2.  

There are 33 MBD5 transcripts annotated in Ensembl, of which 7 are 

predicted to be protein coding (Supplementary Table 5). Within our RNAseq 

dataset, 9 MBD5 transcripts were detected and are listed in Table VIII. Of the 4 

protein-coding transcripts identified, including the canonical transcript MBD5-

001 that gives rise to MBD5 protein isoform 1 (Q9P267), only 2 of them contain 

exon 6 (and thus, the MBD domain), indicating there are at least 2 other 

transcripts that do not require this exon to produce a shorter length protein, not 

previously described in the literature (Figure 31). All exon-exon junctions from 

the alternative transcripts were confirmed to be present in the RNAseq reads, 

using IGV to visualize the individual reads (data not shown). All exonic mutations 

Table VIII - MBD5 transcripts detected in the iPSC-derived NPC and Neurons. 

Figure 31 - Transcripts affected by exon 6- and MBD domain-targeted CRISPR deletions.  

Top: MBD5 gene structure with exons numbered based on transcript MBD5-001. 
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were present in the dataset, with the exception of cell line 4i AIID6, where no 

reads containing the exonic mutation were identified, indicating those 

transcripts underwent nonsense mediated decay.  

 Differential transcript abundance analysis revealed that the canonical 

transcript MBD5-001 was not the most abundant either in the NPC or neuronal 

cell lines, with the exception of the NPC H8- negative control cell line (Figure 32). 

Surprisingly, the transcript showing highest overall expression across neuronal 

cell lines was MBD5-010. This short transcript is comprised of only the 5’UTR 

exons 1 and 2, and is predicted to result in a processed transcript that does not 

encode a functional protein. This is also verified in the GTEx database, as the 

second most expressed transcript in the maority of tissues and may suggest an 

important regulatory role for this transcript in MBD5 function. 

Transcript MBD5-015 was differentially overexpressed in the exon 6- 

targeted CRISPR neurons in comparison to the matched controls and also in 

comparison to NPC exon 6 CRISPR-edited cell lines. Transcript MBD5-010 was 

unaffected by exon 6 CRISPR-targeting in the neuronal cell lines, however it was 

differentially overexpressed in the NPC CRISPR-edited cell lines in comparison to 

the matched controls.  

One transcript showed NPC-specific expression, MBD5-014, that was 

observed uniquely in the NPC population and absent in the neurons, suggesting 

a developmental state preference. 

These results indicate that, the MBD5 ablations had a local effect on the 

transcript isoforms expressed by this gene during the different stages of 

development. This shows that the cells were able to maintain normal levels of 

MBD5 through the expression of non-canonical and even non-coding transcripts, 

suggesting that the MBD domain might not be as crucial for neuronal 

development as previously thought. 



Chapter 3 - Disruption of chromatin remodeler MBD5 results in  

dysregulated neuronal-related genes and pathways 

151 

 

  

Figure 32 – Differential MBD5 Transcript Expression in NPC (top) and neurons (bottom), 

generated using RSEM and Bowtie2 (For normalized transcript expression, TPM was 

multiplied by MBD5 transcript proportions). 
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MBD family expression levels upon MBD5 editing remained unaltered 

 To determine if there was compensation by the MBD family members 

upon MBD5 editing, we looked into the expression levels of the MBD family 

members, in NPC and neurons. Since the MBD proteins share similar roles in 

chromatin remodeling, the lack of a family member could induce the 

overexpression of another member, as seen in other systems (Kong et al. 2007). 

The MBD family gene expression observed in the RNAseq dataset is presented 

in Figure 33 as the logarithmic transformation of counts normalized to library 

size. When observing the expression of the other family members, it is noted 

that there were changes in MBD1 and MECP2 during the transition from NPC to 

neuron. Indeed, MECP2 is known to be crucial for neuronal function (Chahrour 

et al. 2008; Nan & Bird 2001). Although these family members were upregulated 

during differentiation, no meaningful differences were found between controls 

and the CRISPR-edited cells, reinforcing and supporting the results previously 

obtained in the PCA. 

Figure 33 - Heatmap of relative log-transformed values across samples of the MBD family 

expression upon CRISPR editing. 



Chapter 3 - Disruption of chromatin remodeler MBD5 results in  

dysregulated neuronal-related genes and pathways 

153 

 

Genome-wide transcriptomic analyses revealed gene expression 

changes 

The ultimate goal of the whole transcriptome analyses was to determine 

the genes that were differentially expressed between the wild-type and the 

CRISPR-edited cell lines (excluding cell line 6het AIVG12), via quantitative 

statistical analysis using DESeq. The identification of the dysregulated genes can 

bring insight on the protein complexes and pathways that are acting 

downstream of MBD5 and are directly implicated in neuronal development and 

function.  

Regarding NPCs, there were a total of 53 significantly differential 

expressed genes (DEG) (adjusted p-value <0.05) and an additional 529 genes 

that were significant at a nominal level (p-value <0.05). For the neuronal set, 

there were a total of 6 significantly DEG and an additional 161 that were 

nominally significant. Table IX lists the top 15 genes that were significantly 

differentially expressed between control and CRISPR cell lines, both in NPC (top 

panel) and in neurons (bottom panel). All other differentially expressed genes in 

NPC and neurons are listed in Supplementary Table 6 and Supplementary Table 

7, respectively. Volcano plots resultant from the differential expression analyses, 

show the most DEG (Figure 34).  

The most DEG in the NPC dataset was RAB11FIP1, that was found to be 

significantly upregulated. This gene was also upregulated in the neuronal panel, 

at a nominally significant level (pval = 0.0004). RAB11FIP1 is a member of the  

Rab11-family interacting proteins (Rab11-FIPs) that are critical regulators of 

intracellular vesicle trafficking and recycling and has been previously associated 

with axonal development (Eva et al. 2010; Schafer et al. 2016). Indeed, a study 

RAB11FIP1 has been shown to have a role in the recycling of integrins within 

axons during cell migration (Eva et al. 2010). 

The second most DEG in NPC, was NHLH1, of which its family member 

NHLH2 is also found to be upregulated in neurons. Nhlh1 and Nhlh2 are neural 

basic helix-loop-helix (bHLH) genes that have been implicated in mouse 

neurogenesis (Murdoch et al. 1999). Studies of expression in normal tissues 

demonstrated expression of NHLH1 and NHLH2 in the developing central and 

peripheral nervous system, most likely in developing neurons (Lipkowitz et al. 

1992) and maintain migration and survival of neuronal precursor cells (Schmid 

et al. 2007). 
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Additionally, 2 DEG present in Table IX have been previously implicated 

in ASD and are annotated in SFARI Gene Database – PLAUR and CNTNAP2. PLAUR 

is a urokinase plasminogen activator receptor which is thought to modulate 

availability of the MET ligand in the MET signaling pathway and to influence 

interneuron maturation (Eagleson et al. 2011; Campbell et al. 2008). On the 

other hand, CNTNAP2, contactin associated protein-like 2, is a member of the 

neurexins family and was among the first genes with evidence for both rare and 

common variation contributing to ASD (O’Roak et al. 2011; Alarcón et al. 2008). 

The human CNTNAP2 gene is thought to be the largest gene in the genome, 

spanning approximately 2.3 Mb at chromosomal region 7q35–q36. Studies in 

mice show that it is involved in neuron–glia interactions in myelinated axons 

(Poliak et al. 1999) and in the migration of cortical projection neurons 

(Peñagarikano et al. 2011). 

Representations of the gene networks formed by the differentially 

expressed genes in both NPC and neurons are depicted in Figure 36 and Figure 

35, respectively. These networks were generated using the disease association 

protein-protein link evaluator (DAPPLE), that looks for significant physical 

connectivity among proteins encoded for by genes in loci associated to disease 

according to protein-protein interactions reported in the literature (Rossin et al. 

2011).  

Overall, these results suggest downstream players affected by the 

perturbation of MBD5 that might play a role in neuronal development and 

function. These proteins will be interesting targets for ASD therapeutics if found 

to be dysregulated in other ASD knockdown models of chromatin remodelers, 

indicating commonality and convergence of downstream pathways.   
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Table IX - Top 15 differentially expressed genes using SVA analysis for CRISPR cell lines. (Genes 

names marked with ‘*’ represent those that are annotated in the SFARI gene database as ASD-

associated genes.) 

 

 Gene ID Name Foldchange 

(log2) 

P-Value P-Adj. 

NPC 

ENSG00000156675 RAB11FIP1 1.595 1.1527E-10 2.0041E-06 

ENSG00000171786 NHLH1 1.515 5.00303-10 4.3491E-06 

ENSG00000075213 SEMA3A -0.957 1.1685E-08 6.7719E-05 

ENSG00000139370 SLC15A4 -1.148 6.1351E-08 0.0002326 

ENSG00000211896 IGHG1 -1.250 6.6886E-08 0.0002326 

ENSG00000073849 ST6GAL1 0.869 9.9383E-08 0.0002879 

ENSG00000122861 PLAU 1.192 3.1958E-07 0.0007938 

ENSG00000147145 LPAR4 -0.835 4.4449E-07 0.0009660 

ENSG00000136068 FLNB 0.854 9.1171E-07 0.0017612 

ENSG00000211899 IGHM -1.194 1.1323E-06 0.0019686 

ENSG00000131914 LIN28A 1.165 1.6674E-06 0.0026355 

ENSG00000117461 PIK3R3 -0.737 2.1747E-06 0.0029084 

ENSG00000011422 PLAUR* 0.957 2.0136E-06 0.0029084 

ENSG00000104327 CALB1 1.164 2.5617E-06 0.0031735 

ENSG00000150244 TRIM48 -1.038 2.7379E-06 0.0031735 

Neurons 

ENSG00000164093 PITX2 -1.189 3.9039E-07 0.0037424 

ENSG00000197496 SLC2A10 -0.840 3.5661E-07 0.0037424 

ENSG00000224597 PTCHD3P1 -1.039 1.2410E-06 0.0079312 

ENSG00000100884 CPNE6 -1.083 3.2672E-06 0.0156607 

ENSG00000178401 DNAJC22 -1.069 1.0397E-05 0.0398677 

ENSG00000156675 RAB11FIP1 1.076 1.4576E-05 0.0465777 

ENSG00000131094 C1QL1 -0.894 2.216E-05 0.0606964 

ENSG00000177551 NHLH2 0.991 3.5457E-05 0.0841996 

ENSG00000173376 NDNF 1.006 4.4831E-05 0.0841996 

ENSG00000211445 GPX3 -0.819 6.4306E-05 0.0841996 

ENSG00000174469 CNTNAP2* 0.841 6.5552E-05 0.0841996 

ENSG00000147246 HTR2C 1.021 4.6033E-05 0.0841996 

ENSG00000223508 RPL23AP53 -0.832 6.2236E-05 0.0841996 

ENSG00000109991 P2RX3 0.966 5.7608E-05 0.0841996 

 
ENSG00000101098 RIMS4 0.777 6.5874E-05 0.0841996 
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Figure 34 - Volcano Plots 

showing the DEG for NPC 

(top) and neurons 

(bottom). Genes that either 

have absolute log2 

foldchange >1 or p-value 

<0.001 in NPC and 0.01 in 

neurons are represented in 

colored dots (Red dots – 

CRISPR cell lines; Blue dots 

– Controls). On the left side 

of the panels are the 

downregulated genes and 

on the right-hand side are 

the upregulated genes. 
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Figure 35 - Gene network formed by the top 200 nominally differentially expressed genes in NPC. 

Generated using the DAPPLE module within GenePattern. 



 

158 

 

 

  

Figure 36 – Gene network formed by the 167 nominally differentially expressed genes in 

neurons. Generated using the DAPPLE module within GenePattern. 
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Pathway analysis of DEG showed enrichment of neuron, translation, 

and cell adhesion-related terms 

Once the differentially expressed genes have been identified, a gene set 

enrichment analysis (GSEA) was performed to determine whether a priori defined 

gene sets show statistically significant differences between the control and 

CRISPR cell lines.  This will pinpoint the biological significance of the observed 

expression changes using either a gene ontology (GO) or biological pathway-

driven analysis (KEGG - Kyoto Encyclopedia of Genes and Genomes). Gene set 

approaches are based on the idea that complex diseases such as ASD can be 

better understood from the perspective of dysregulated gene sets than at the 

individual gene level. We performed enrichment analysis on all of the 

differentially expressed genes in both the differentiated NPC and neurons sets. 

GO analysis of NPC revealed terms related to neuronal function such as: 

neuron differentiation, neuron fate commitment, dopaminergic synaptic 

transmission, glutamatergic synaptic transmission (p-value <0.05; Figure 37). 

On the other hand, the neuron set also included terms related to brain 

development: telencephalon and hindbrain development, myelination, Schwann 

cell differentiation and beta-catenin binding (p-value <0.05; Figure 37). An 

altered balance between excitation and inhibition has been postulated as a 

biological mechanism for ASD; this imbalance could arise from different risk 

genes differentially affecting either or both elements. Besides those, the most 

significant up-regulated biological processes in NPC were related to translation 

initiation, elongation and termination and ribosome (q-value <0.01). In fact, 

KEGG analysis also identified upregulated pathways involving ribosome and 

oxidative phosphorylation in NPC (q-value <0,01).   

Regarding the neuronal set, some of the nominally significant pathways 

identified in KEGG analysis were the notch signaling pathway, RNA transport and 

cell adhesion (p-value <0.05). Notch is known to be a key regulator of adult 

neural stem cells, and Notch signaling also has a role in the regulation of 

migration, morphology, synaptic plasticity and survival of immature and mature 

neurons (Ables et al. 2011). On the other hand, cell adhesion genes have 

previously been associated with other chromatin remodelers that represent a 

risk for ASD, such as CHD8 (Sugathan et al. 2014). A full listing of GO terms and 

KEGG pathway enrichments are found in Supplementary Table 9 and 

Supplementary Table 8, respectively.  
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Figure 37 - GO terms show enrichment of neuron-related terms (p-value <0.05). 



  

Discussion and Conclusions 

MBD5 is a prominent example among several genes, including other 

chromatin remodelers and transcriptional regulators (ARID1B, CHD8, EHMT1, 

MECP2), that have implicated the disruption of chromatin regulation as a 

precipitating factor in ASD (Sim et al. 2015; Talkowski et al. 2012; Santos et al. 

2007). The MBD5 gene is highly conserved and extremely intolerant to loss-of-

function (LoF) mutations, as indicated by the ExAC browser pLi score of 1.00 

(probability of LoF). Indeed, understanding the role of MBD5 in 

neurodevelopment is of great interest in order to link it to the consequences of 

its haploinsufficiency in ASD patients.  

In this study, we aimed to generate CRISPR/Cas9 genome edited iPSC-

derived neuronal cell lines bearing mutations in different regions of the MBD5 

gene, namely the 5’ UTR exon 4 and the MBD Domain located in exon 6, to 

determine the genome-wide transcriptomic effects that occur upon these 

perturbations. Exon 4 represents a region within the 5’ UTR where several 

mutations have been reported in patients, indicating its role for MBD5 

haploinsufficiency, despite its location in a non-coding region of the gene. Thus, 

the contribution of this region to gene function has not been fully understood 

and might be regulatory, as an enhancer or modulator of gene expression. On 

the other hand, exon 6 was chosen as a target of CRISPR/Cas9 as this represents 

the first coding exon of the canonical and best described transcript of MBD5, 

MBD5-001 and by disrupting the first coding exon we expected to prevent MBD5 

transcription. Exon 6 encodes the MBD domain (shared with exon 7), which has 

been shown to play a role in regulation of transcription through chromatin 

remodeling in the other MBD family members (Roloff et al. 2003; Bogdanović & 

Veenstra 2009), although this has not been proven for MBD5 and MBD6 (Laget 

et al. 2010).  

Initially, we looked at the MBD5 mRNA expression levels found in the iPSC 

after deletion by CRISPR/Cas9 nucleofection that revealed a wide range of MBD5 

mRNA expression levels observed upon CRISPR-editing in iPSC. This may be 

explained due to endogenous cell repair mechanisms subsequent to the ablation 

or to unknown transcript regulatory mechanisms as MBD5 presents several 

alternative transcripts (Supplementary Table 5). On the other hand, RNA levels 

may not reflect the decrease that occurs in protein levels. To test for this, three 

polyclonal antibodies against MBD5 were tested to determine protein levels, 
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however unsuccessfully, due to non-specificity of these antibodies (ab56126 and 

ab103144 Abcam, sc-107722 SantaCruz). Besides, the differentiation protocol 

was not driven towards a specific neuronal subtype and the mRNA levels that 

were assessed are a reflection of the different cell types that can arise from this 

process, as shown in Figure 26. 

The iPSC were successfully driven towards the neuronal lineage, resulting 

in neuronal progenitor cells and mature neurons. In both differentiated cell lines, 

MBD5 expression seemed to be close to normal or even increased in CRISPR-

edited cell lines, when compared to controls. These results were consistent 

between the qRT-PCR and the RNAseq dataset of different biological replicates 

of the same cell lines, reassuring the validity of these data. This increase in 

expression post-perturbation in iPSC may reflect some form of compensation in 

the CRISPR-edited cell lines, as MBD5 seems to be crucial in levels of greater 

differentiation, showing increasing levels of expression from iPSC to mature 

neurons in control cells (Figure 38).  

The deletion of exon 6 and therefore, the MBD domain, generated in our 

CRISPR-edited cells was expected to prevent transcription of the canonical 

transcript MBD5-001. The RNAseq results allowed for a deeper appreciation of 

the intricate nature of MBD5 transcript achitecture and identified alternative 

transcripts. As depicted in Figure 32, MBD5-001 was not the main responsible 

for MBD5 expression, as was initially expected. When looking at the transcripts 

expressed in the differentiated cell lines, we observe that exon 6 ablations affect 

the transcription of five different MBD5 transcripts (Figure 31) and there are 4 

transcripts that remain unaffected by this ablation, as they do not contain exon 

6 and are initiated before or after this region. Two of the unaffected transcripts 

are predicted to be protein coding:  MBD5-005 (from exons 8-15) and MBD5-014 

Figure 38 - MBD5 mRNA expression in control 8330-8 cells, during 

different developmental stages (qRT-PCR, **p-valuel<0,01). 



Chapter 3 - Disruption of chromatin remodeler MBD5 results in  

dysregulated neuronal-related genes and pathways 

163 

 

(exons 12-15), while the other two are predicted to be a processed transcript 

and nonsense mediated decay, respectively: MBD5-010 (exons 1 and 2) and 

MBD5-015 (exons 9-15). Regarding this information, the ablation of the MBD 

domain would not affect the complete expression of MBD5, through the 

expression or compension of alternative transcripts that do not contain this 

domain. Surprisingly, the transcript that exhibited highest expression overall 

was MBD5-010 that only comprises 5‘ UTR exons 1 and 2. This is also verified in 

the GTEx database, as the second most expressed transcript in the maority of 

tissues and may suggest an important regulatory role for this transcript in MBD5 

function. On the other hand, transcript MBD5-014 was observed uniquely in the 

NPC population and absent in the neurons, suggesting a developmental state 

preference for this protein-coding transcript and should be confirmed in vivo to 

determine its relevance in neurodevelopment.  

Although MBD5-001 contains only 5‘ UTR exons 1 and 2, it may be 

relevant for disease. Non-coding RNAs are key regulators of gene expression, 

acting at the individual gene level, regulating cis and trans interactions and 

contributing to control of transcription and translation, and on a genome wide-

scale, regulating accessibility of chromatin and controlling gene pathways 

(Ulitsky & Bartel 2013; Iyer et al. 2015; Barrett et al. 2013). The use of RNA as a 

regulatory element has advantages because it can rapidly be synthesized and 

degraded (Djupedal & Ekwall 2009), has structural plasticity and can modulate 

gene expression in response to external factors (Ansari 2009) and can act 

combinatorially to control complex interactions and regulatory pathways 

(Mattick 2004). Long non-coding RNAs (>200 nucleotides in length) are widely 

transcribed throughout the genome. An example of a long non-coding RNA is 

MSNP1AS, the expression of which was increased in the postmortem cerebral 

cortex of individuals with ASD (DeWitt et al. 2016). Elevated expression of 

MSNP1AS decreased neurite number and neurite length in both human neural 

progenitor cell lines (DeWitt et al. 2016). Previous reports of ASD patient 

deletions restricted to portions of the large noncoding region that contains 

multiple exons 5’ to the canonical translational start site in exon 6 (Figure 3, 

Talkowski et al. 2011; Bonnet et al. 2013; Mullegama & Elsea 2016) and the 

evidence that MBD5-010 was the highest expressing transcript, suggest that the 

5‘UTR region is quite relevant for the neurobiological role of MBD5 in 

development and illustrates the importance of the non-coding network and the 

implications of dysregulation in disease. 
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Several research groups have demonstrated that each of the MBD genes 

is expressed in the brain, highlighting their relevance in this tissue, however 

their specific functions have only been determined for a subset of those genes 

(Bogdanović & Veenstra 2009; Laget et al. 2010; Shahbazian et al. 2002; Jiang et 

al. 2011). Altogether, our data suggest that the MBD domain of MBD5 may not 

be critical for the specific differentiation of neurons as the CRISPR-edited cell 

lines with ablations of this domain were able to successfully differentiate (Figure 

25) while overall MBD5 expression was not affected and even increased in some 

cases, through the expression of alternative non-coding transcripts. However, 

we do not have enough evidence to state that the absence of the MBD domain 

did not affect MBD5 activity within the cell itself. The neuronal models of disease 

generated using CRISPR/Cas9 genome editing can be further exploited through 

a more comprehensive cell biological analysis of the generated neurons, such as 

the morphological analysis of dendrite length, number of spines and synapses, 

network connectivity, although this was not within the scope of this project. 

Considering an alignment of the MBD family MBD regions, the MBD5 MBD has 

two major differences: a deletion of nine amino acids in the first third of the MBD 

and an insertion of six amino acids in the last third of the domain (Laget et al. 

2010). Further functional studies are  be necessary to determine if MBD5 acts as 

its family members and to assess its MBD capacity of inducing transcription or 

binding DNA. There are 2 variants associated with ASD that have been reported 

in the ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/). Although being 

located within the coding portion of exon 6, they are outside of the MBD domain 

and are annotated as likely benign and of uncertain significance. These data 

indicate that the canonical transcript MBD5-001 and the exon 6 portion of the 

MBD domain may not be crucial for the role of MBD5 during neurodevelopment, 

as previously thought.  

Additional studies regarding the other domains in MBD5 such as the 

Proline-rich domain, asociated with protein-protein interactions (Williamson 

1994), and the PWWP domain, would be crucial to understand the role of the 

other regions in its function. The PWWP domain is often found in DNA-binding 

proteins that function as transcription factors regulating developmental 

processes (Stec et al. 2000) and thus may be relevant for MBD5 function. In our 

study, we did not verify compensatory activity from the MBD family members 

upon the perturbations targetting MBD5, that could be due to the maintenance 

of MBD5 normal expression through alternative transcripts.  

https://www.ncbi.nlm.nih.gov/clinvar/
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Whole transcriptome analyses allowed us to determine the genes that 

were differentially expressed between the wild-type and the CRISPR-edited cell 

lines. These genes are affected upon perturbation of MBD5, indicating they are 

acting downstream of MBD5 and may have a direct impact on neuronal growth 

and synapse function. Among those genes, RAB11FIP1, the most significant DEG 

in NPC and also upregulated in neurons, seems like a promising candidate as 

this protein has previously been associated with axonal growth in mice. Other 

genes to pinpoint from the DEG are those that have been previously found to be 

disrupted in ASD patients – PLAUR and CNTNAP2. The fact that genes are 

dysregulated upon MBD5 ablation suggests they might be interacting via similar 

pathways or have common players in different pathways.  

GSEA of the DEG unveiled the gene families and pathways that were 

enriched within the CRISPR dataset. These results supported the hypothesis that 

an imbalance between excitation and inhibition is a biological mechanism for 

ASD; this imbalance may arise from different genes differentially affecting 

elements. Indeed, we found upregulated terms related to dopaminergic synapse 

transmission and downregulated for glutamatergic synapse, indicating a 

possible imbalance of neurotransmitter activity in these neuronal models. In 

addition to neuronal terms, we also found an enrichment for translation-related 

terms that suggest defects in translation of proteins required for normal synaptic 

function or neuronal growth. Supporting this, it has recently been reported that 

altering the neocortical excitation/inhibition balance leads to deficits in social 

behavior and information processing (Yizhar et al. 2011). KEGG pathway analysis 

identified an enrichment of pathways involved in notch signaling, known to be 

involved in brain development; and cell adhesion. Enrichment for cell adhesion 

terms and genes (NCAM1) has previously been observed by the knockdown of 

the ASD-risk gene CHD8 (Sugathan et al. 2014) in neural progenitors, which is 

also a chromatin remodeler as MBD5. This process (cell adhesion) indicates a 

possible mechanism by which chromatin remodelers can be acting and 

impacting neuronal function. 

In conclusion, we demonstrated that we could generate human neuronal 

cell lines to study ASD, from isogenic iPSC models edited using CRISPR/Cas9 

technology to create loss-of-function mutations in a chromatin-related candidate 

ASD gene – MBD5. While the individual ablations of the 5’ UTR exon 4 and the 

MBD domain in exon 6 were not sufficient to show a broad genome-wide impact 

on the PCA, the local investigation of MBD5 transcript patterns during 
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neurodevelopment gave insights into the relevance of the different transcripts. 

We showed that MBD5-010 is a promising non-coding transcript that may be 

implicated in neuronal development and disease and should be further 

investigated to determine its potential as a regulatory lncRNA and to clarify the 

neurobiological role of the MBD5 transcripts that do not include the MBD 

domain. On the other hand, genome-wide transcriptomic analysis allowed the 

identification of the dysregulated genes such as RAB11FIP1, NHLH1-2, PLAUR 

and CNTNAP2; and pathways such as notch signaling and cell adhesion that gave 

insight on the protein complexes and pathways that are acting downstream of 

MBD5 and are directly implicated in neuronal development and function. Those 

represent promising targets for ASD therapeutics to be able to specifically aim 

for common and convergent biological pathways that are affected by MBD5 and 

may be affected by other chromatin remodelers that represent a risk for ASD 

(such as CHD8).  

Future directions of this study will include the transcriptomic analyses of 

the hypomorphic Mbd5
GT/+ 

mouse model (see Additional Preliminary Results in 

the Final Remarks Section) to identify common differentially expressed genes 

and pathways, that will complement the results obtained from the CRISPR-edited 

MBD5 cell models. This combined analysis will allow the interpretation of the 

results in an in vivo context and confirm the role of MBD5 haploinsufficiency in 

ASD etiology. These analyses are currently underway and will be submitted for 

publication, along with the results presented in this Chapter, in the form of an 

original scientific article.
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Supplementary Table 4 - qPCR Primers used in iPSC, NPC and Neuronal cells. 

Gene Target Sequence (5'-3') iPSC NPC Neuron 

ACTB 
Exon 5 TGA AGT GTG ACG TGG ACA TC ✓ ✓ ✓

Exon 6 GGA GGA GCA ATG ATC TTG AT ✓ ✓ ✓

GAPDH 
Exon 8 GGA CCT GAC CTG CCG TCT AG  ✓ ✓

Exons 8/9 GTA GCC CAG GAT GCC CTT GA  ✓ ✓

POLR2A 
Exon 24 GCA CCA CGT CCA ATG ACA T  ✓ ✓

Exon 26 GTG CGG CTG CTT CCA TAA  ✓ ✓

MBD5 
Exon 3 CAG ATG GCA ACA GAG GATG T ✓ ✓ ✓

Exon 4 GCA GTG TAA TGG AGG CAG TT ✓ ✓ ✓

Exon 6 CCA GCT ATA CAA GTT CCT GTG G  ✓ ✓

Exons 6/7 CCA CTG GGA CTG ACA TAA AGC A 


✓ ✓

Exon 7 GTG GCT TGG AAT GTC CTC TT ✓  

Exon 8 TCT GCG GTT CTC TGT TTC AC ✓  

Exon 13 TTT GGA AGC CTA CAG CCG T  ✓ ✓

Exons 14/15 TTG GTG TAC AGT CCC AGA CA  ✓ ✓
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Supplementary Table 5 - MBD5 Transcripts from Ensembl, showing a total of 33 transcripts, of 

which 7 are predicted to be protein coding. 

Ensembl Transcript ID 
Alternative 

Name 
bp Protein  Biotype UniProt ID 

ENST00000407073.5 
MBD5-001 

9512 1494aa Protein coding Q9P267 

ENST00000404807.5 
MBD5-004 

5920 1727aa Protein coding E9PHH0 

ENST00000627651.2 
MBD5-012 

5610 851aa Protein coding Q9P267 

ENST00000416015.2 
MBD5-005 

4343 1064aa Protein coding H7C066 

ENST00000638043.1 
MBD5-025 

3483 696aa Protein coding A0A1B0GW10 

ENST00000637159.1 
MBD5-016 

902 38aa Protein coding A0A1B0GUJ9 

ENST00000630352.1 
MBD5-014 

663 77aa Protein coding A0A0D9SEP6 

ENST00000629878.2 
MBD5-013 

4130 1086aa Nonsense mediated decay A0A0D9SG23 

ENST00000628572.2 
MBD5-015 

3595 910aa Nonsense mediated decay A0A0D9SF16 

ENST00000478190.3 
MBD5-010 

4131 No protein Processed transcript - 

ENST00000638090.1 
MBD5-024 

2039 No protein Processed transcript - 

ENST00000637242.1 
MBD5-021 

1869 No protein Processed transcript - 

ENST00000637997.1 
MBD5-019 

1602 No protein Processed transcript - 

ENST00000635796.1 
MBD5-018 

1371 No protein Processed transcript - 

ENST00000637308.1 
MBD5-020 

1072 No protein Processed transcript - 

ENST00000638130.1 
MBD5-022 

1034 No protein Processed transcript - 

ENST00000637445.1 
MBD5-023 

958 No protein Processed transcript - 

ENST00000478804.3 
MBD5-002 

592 No protein Processed transcript - 

ENST00000488372.5 
MBD5-007 

548 No protein Processed transcript - 

ENST00000496158.5 
MBD5-006 

544 No protein Processed transcript - 

ENST00000473478.5 
MBD5-008 

484 No protein Processed transcript - 

ENST00000636620.1 
MBD5-017 

475 No protein Processed transcript - 

ENST00000470063.5 
MBD5-011 

324 No protein Processed transcript - 

ENST00000469438.1 
MBD5-009 

252 No protein Processed transcript - 

ENST00000636371.1 
MBD5-029 

172 No protein Processed transcript - 

ENST00000637316.1 
MBD5-026 

100 No protein Processed transcript - 

ENST00000637830.1 
MBD5-027 

100 No protein Processed transcript - 

ENST00000636948.1 
MBD5-028 

100 No protein Processed transcript - 

ENST00000637067.1 
MBD5-030 

100 No protein Processed transcript - 

ENST00000637835.1 
MBD5-031 

100 No protein Processed transcript - 

ENST00000637850.1 
MBD5-032 

100 No protein Processed transcript - 

ENST00000637502.1 
MBD5-035 

100 No protein Processed transcript - 

ENST00000496893.3 
MBD5-003 

2788 No protein Retained intron - 
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Supplementary Table 6 - DEG in NPC (P-adj < 0.01) 

Gene ID Name Log2 Foldchange P-value P-adj 

ENSG00000156675 RAB11FIP1 1.595 1.15273E-10 2.00413E-06 

ENSG00000171786 NHLH1 1.515 5.00303E-10 4.34914E-06 

ENSG00000075213 SEMA3A -0.957 1.16851E-08 6.77191E-05 

ENSG00000139370 SLC15A4 -1.148 6.1351E-08 0.000232575 

ENSG00000211896 IGHG1 -1.250 6.68856E-08 0.000232575 

ENSG00000073849 ST6GAL1 0.869 9.93829E-08 0.000287979 

ENSG00000122861 PLAU 1.192 3.196E-07 0.000793796 

ENSG00000147145 LPAR4 -0.835 4.44498E-07 0.000966006 

ENSG00000136068 FLNB 0.854 9.11712E-07 0.001761225 

ENSG00000211899 IGHM -1.194 1.13228E-06 0.00196859 

ENSG00000131914 LIN28A 1.165 1.66745E-06 0.002635483 

ENSG00000117461 PIK3R3 -0.737 2.17471E-06 0.002908425 

ENSG00000011422 PLAUR 0.957 2.01356E-06 0.002908425 

ENSG00000104327 CALB1 1.164 2.5617E-06 0.003173504 

ENSG00000150244 TRIM48 -1.038 2.73798E-06 0.003173504 

ENSG00000250208 FZD10-AS1 -0.832986125 3.07188E-06 0.003337984 

ENSG00000026508 CD44 0.944979857 3.70629E-06 0.003790443 

ENSG00000182752 PAPPA 1.104075125 6.65703E-06 0.006429952 

ENSG00000248485 PCP4L1 -1.120453523 8.63519E-06 0.006718973 

ENSG00000135821 GLUL -0.844857536 8.09164E-06 0.006718973 

ENSG00000145247 OCIAD2 1.108322335 9.0165E-06 0.006718973 

ENSG00000113319 RASGRF2 1.11578902 7.83431E-06 0.006718973 

ENSG00000106483 SFRP4 -1.067984145 9.28329E-06 0.006718973 

ENSG00000139132 FGD4 -0.819710097 9.31688E-06 0.006718973 

ENSG00000198796 ALPK2 1.077566296 9.66147E-06 0.006718973 

ENSG00000122877 EGR2 -1.087153682 1.04606E-05 0.006994909 

ENSG00000136167 LCP1 -1.015496248 1.29416E-05 0.008333453 

ENSG00000049130 KITLG -0.60125141 1.64649E-05 0.010223552 

ENSG00000188641 DPYD 0.999136418 2.19517E-05 0.013160443 

ENSG00000123307 NEUROD4 0.946225265 2.42897E-05 0.014076685 

ENSG00000197747 S100A10 1.047489955 2.57644E-05 0.014449649 

ENSG00000047346 FAM214A -0.691142245 2.67254E-05 0.014520249 

ENSG00000130592 LSP1 -0.915785812 3.57575E-05 0.018838786 

ENSG00000251129 RP11-

734I18.1 

1.008875495 3.74154E-05 0.01913246 

ENSG00000134982 APC -0.832308728 4.25323E-05 0.020818274 

ENSG00000198739 LRRTM3 -0.904918565 4.3107E-05 0.020818274 

ENSG00000183091 NEB -0.934890052 4.66182E-05 0.021905493 

ENSG00000198028 ZNF560 -0.859514674 4.8925E-05 0.022384472 

ENSG00000147571 CRH 0.949918518 5.10329E-05 0.022750211 

ENSG00000177707 PVRL3 0.665060221 5.6269E-05 0.024457329 

ENSG00000106049 HIBADH 0.628338353 6.14492E-05 0.025262695 

ENSG00000147894 C9orf72 -0.707525985 6.07812E-05 0.025262695 

ENSG00000107242 PIP5K1B -0.98917524 6.39341E-05 0.025262695 

ENSG00000104783 KCNN4 0.983081186 6.27864E-05 0.025262695 

ENSG00000196562 SULF2 -0.943987282 6.76207E-05 0.02612564 

ENSG00000185774 KCNIP4 0.99159335 6.93422E-05 0.02620832 

ENSG00000142192 APP 0.441695337 8.35802E-05 0.030917572 

ENSG00000160111 CPAMD8 -0.871854745 8.70648E-05 0.031535598 

ENSG00000260343 LINC01043 -0.699272171 8.89064E-05 0.031545439 

ENSG00000105996 HOXA2 0.902991981 9.38072E-05 0.03261864 

ENSG00000138650 PCDH10 -0.959888842 9.59263E-05 0.032701447 

ENSG00000126803 HSPA2 -0.917529279 0.000141607 0.047345638 
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ENSG00000173208 ABCD2 -0.885879589 0.000144432 0.047379118 

 

Supplementary Table 7 - DEG in Neurons (p-Value <0.01) 

Gene ID Name Log2 Foldchange P-value P-adj 

ENSG00000164093 PITX2 -1.189 3.90387E-07 0.003742448 

ENSG00000197496 SLC2A10 -0.840 3.56613E-07 0.003742448 

ENSG00000224597 PTCHD3P1 -1.039 1.241E-06 0.007931221 

ENSG00000100884 CPNE6 -1.083 3.26724E-06 0.0156607 

ENSG00000178401 DNAJC22 -1.069 1.03968E-05 0.039867745 

ENSG00000156675 RAB11FIP1 1.076 1.4576E-05 0.046577741 

ENSG00000131094 C1QL1 -0.894 2.216E-05 0.060696357 

ENSG00000177551 NHLH2 0.991 3.5457E-05 0.084199568 

ENSG00000173376 NDNF 1.006 4.48261E-05 0.084199568 

ENSG00000211445 GPX3 -0.819 6.43058E-05 0.084199568 

ENSG00000174469 CNTNAP2 0.841 6.55521E-05 0.084199568 

ENSG00000147246 HTR2C 1.021 4.60333E-05 0.084199568 

ENSG00000223508 RPL23AP53 -0.832 6.22362E-05 0.084199568 

ENSG00000109991 P2RX3 0.966 5.76079E-05 0.084199568 

ENSG00000101098 RIMS4 0.777 6.58735E-05 0.084199568 

ENSG00000066248 NGEF 0.983570256 8.21308E-05 0.098418389 

ENSG00000078328 RBFOX1 0.877295573 8.80731E-05 0.099330885 

ENSG00000184221 OLIG1 -0.968603937 0.000111278 0.118529824 

ENSG00000116741 RGS2 0.676090164 0.000195811 0.187713957 

ENSG00000170485 NPAS2 0.922083949 0.000195014 0.187713957 

ENSG00000250049 RP11-348J24.2 -0.692328363 0.000208869 0.190697725 

ENSG00000251129 RP11-734I18.1 0.826114073 0.000233119 0.203163395 

ENSG00000180875 GREM2 0.903533937 0.000250536 0.208849065 

ENSG00000133110 POSTN 0.8902025 0.000273909 0.218819181 

ENSG00000171951 SCG2 0.725038582 0.000375723 0.27341359 

ENSG00000048540 LMO3 0.559768429 0.000383548 0.27341359 

ENSG00000101400 SNTA1 -0.52936662 0.000385029 0.27341359 

ENSG00000180616 SSTR2 0.882635754 0.000404466 0.27695819 

ENSG00000173210 ABLIM3 0.810706528 0.000450524 0.29785867 

ENSG00000189229 AC069277.2 -0.635005317 0.000514746 0.318361922 

ENSG00000074211 PPP2R2C 0.85553226 0.000505476 0.318361922 

ENSG00000196533 C1orf186 0.69976501 0.000594233 0.340042766 

ENSG00000145451 GLRA3 0.847308627 0.000577916 0.340042766 

ENSG00000185666 SYN3 0.84478075 0.000603007 0.340042766 

ENSG00000215912 TTC34 -0.603470406 0.000681677 0.373422849 

ENSG00000134709 HOOK1 0.802164676 0.000824996 0.416903595 

ENSG00000254369 HOXA-AS3 0.733814673 0.000828365 0.416903595 

ENSG00000075223 SEMA3C 0.805703341 0.000913261 0.416903595 

ENSG00000231725 VN1R110P 0.792853406 0.000897912 0.416903595 

ENSG00000198739 LRRTM3 -0.610107081 0.000875612 0.416903595 

ENSG00000167281 RBFOX3 0.83381186 0.000837112 0.416903595 

ENSG00000176533 GNG7 -0.531997102 0.000875025 0.416903595 

ENSG00000116014 KISS1R -0.715924978 0.001034364 0.450723914 

ENSG00000126243 LRFN3 -0.553765899 0.001023089 0.450723914 

ENSG00000218336 TENM3 0.687982637 0.001106723 0.451472283 

ENSG00000011677 GABRA3 0.801969855 0.001065018 0.451472283 

ENSG00000171222 SCAND1 -0.61043684 0.00110462 0.451472283 

ENSG00000243449 C4orf48 -0.65508796 0.001174989 0.469334581 

ENSG00000152969 JAKMIP1 0.799577553 0.001200531 0.469750634 
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ENSG00000112541 PDE10A 0.432171618 0.001265723 0.469935328 

ENSG00000157570 TSPAN18 0.797023991 0.001273121 0.469935328 

ENSG00000182809 CRIP2 -0.40323275 0.001274534 0.469935328 

ENSG00000144227 NXPH2 0.79038291 0.001391163 0.494320735 

ENSG00000180938 ZNF572 -0.597864459 0.001392235 0.494320735 

ENSG00000261786 RP4-555D20.2 0.777446109 0.001461467 0.500369812 

ENSG00000152578 GRIA4 -0.622282572 0.001444507 0.500369812 

ENSG00000186446 ZNF501 0.778655936 0.00157311 0.50268735 

ENSG00000181195 PENK 0.676091776 0.001497472 0.50268735 

ENSG00000130720 FIBCD1 0.781855433 0.001554856 0.50268735 

ENSG00000260248 RP11-

143K11.1 

0.791487987 0.001553447 0.50268735 

ENSG00000177468 OLIG3 0.648570252 0.001725811 0.525221813 

ENSG00000184344 GDF3 0.684874393 0.001723348 0.525221813 

ENSG00000166426 CRABP1 0.674274423 0.001672879 0.525221813 

ENSG00000249803 RP11-

114H21.2 

-0.61287651 0.001809645 0.538157125 

ENSG00000124212 PTGIS 0.749932495 0.001824452 0.538157125 

ENSG00000204175 GPRIN2 0.750802605 0.001914801 0.54794752 

ENSG00000172725 CORO1B -0.425542184 0.001911085 0.54794752 

ENSG00000119888 EPCAM 0.763151376 0.002174456 0.595583603 

ENSG00000180900 SCRIB -0.451899451 0.002163002 0.595583603 

ENSG00000250654 RP11-

834C11.7 

0.62497773 0.002162141 0.595583603 

ENSG00000115380 EFEMP1 0.763540975 0.002222993 0.600302099 

ENSG00000198216 CACNA1E 0.756997478 0.00233739 0.613901061 

ENSG00000144583 MARCH4 0.628744193 0.002330902 0.613901061 

ENSG00000197106 SLC6A17 0.73907441 0.002423615 0.615440368 

ENSG00000147256 ARHGAP36 0.639727359 0.002402537 0.615440368 

ENSG00000099256 PRTFDC1 -0.67617607 0.002439549 0.615440368 

ENSG00000218739 CEBPZ-AS1 -0.679913973 0.002587856 0.64437622 

ENSG00000145391 SETD7 0.548390758 0.002791037 0.660997407 

ENSG00000124785 NRN1 0.741459549 0.002743742 0.660997407 

ENSG00000118407 FILIP1 0.740030509 0.002741034 0.660997407 

ENSG00000100767 PAPLN -0.723649932 0.00279251 0.660997407 

ENSG00000113248 PCDHB15 0.684138896 0.00285125 0.666670997 

ENSG00000159208 C1orf51 0.638754421 0.003184106 0.701216581 

ENSG00000136205 TNS3 -0.614497055 0.003073771 0.701216581 

ENSG00000231764 DLX6-AS1 0.722584229 0.003248191 0.701216581 

ENSG00000173275 ZNF449 0.509328812 0.003255008 0.701216581 

ENSG00000168447 SCNN1B -0.609018052 0.003216454 0.701216581 

ENSG00000132386 SERPINF1 0.725561135 0.003044602 0.701216581 

ENSG00000157557 ETS2 0.709191374 0.003174585 0.701216581 

ENSG00000249992 TMEM158 0.551739561 0.003381986 0.714189946 

ENSG00000211829 TRDC 0.626572013 0.00338973 0.714189946 

ENSG00000175221 MED16 -0.391612211 0.003453585 0.719734717 

ENSG00000144821 MYH15 -0.721122425 0.00359239 0.733763019 

ENSG00000140945 CDH13 0.712319698 0.00359744 0.733763019 

ENSG00000138798 EGF 0.664431138 0.003848212 0.776650188 

ENSG00000152137 HSPB8 -0.724659422 0.003941408 0.787173107 

ENSG00000134121 CHL1 0.621268916 0.004179473 0.814437073 

ENSG00000250682 LINC00491 0.624129062 0.004322807 0.814437073 

ENSG00000172748 ZNF596 -0.603318464 0.004371646 0.814437073 

ENSG00000227896 RP11-77P6.2 0.707585769 0.004213454 0.814437073 

ENSG00000165868 HSPA12A 0.70818392 0.004375268 0.814437073 

ENSG00000198732 SMOC1 -0.681377808 0.004178712 0.814437073 

ENSG00000205922 ONECUT3 -0.657801707 0.004357137 0.814437073 
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ENSG00000075426 FOSL2 0.70382411 0.004744819 0.820643411 

ENSG00000145247 OCIAD2 0.690787898 0.004647874 0.820643411 

ENSG00000183166 CALN1 0.69141052 0.004696038 0.820643411 

ENSG00000178209 PLEC -0.561189879 0.004523053 0.820643411 

ENSG00000180806 HOXC9 0.573749 0.004751026 0.820643411 

ENSG00000115266 APC2 -0.581569257 0.004733156 0.820643411 

ENSG00000267481 CTC-559E9.5 0.687619577 0.00459481 0.820643411 

ENSG00000268041 CTD-

2575K13.6 

-0.664694636 0.004535632 0.820643411 

ENSG00000124074 ENKD1 -0.523406005 0.004850165 0.822939947 

ENSG00000269067 ZNF728 -0.46749907 0.004841869 0.822939947 

ENSG00000178038 ALS2CL 0.689564258 0.004893218 0.82296207 

ENSG00000139517 LNX2 0.480949118 0.005010339 0.835332448 

ENSG00000168490 PHYHIP 0.692869412 0.005102174 0.843310215 

ENSG00000077616 NAALAD2 0.689526935 0.005253289 0.86086588 

ENSG00000229847 EMX2OS 0.69748128 0.00530059 0.861256103 

ENSG00000044524 EPHA3 -0.573058962 0.005377662 0.863636653 

ENSG00000166900 STX3 0.691690421 0.005450375 0.863636653 

ENSG00000226741 CTA-929C8.6 -0.605948668 0.005428733 0.863636653 

ENSG00000142327 RNPEPL1 -0.450374374 0.00565056 0.885296152 

ENSG00000103260 METRN -0.513422407 0.005679415 0.885296152 

ENSG00000272455 RP4-758J18.13 0.660449375 0.005863358 0.896839765 

ENSG00000185818 NAT8L -0.440189394 0.005987351 0.896839765 

ENSG00000145358 DDIT4L 0.679361736 0.005894421 0.896839765 

ENSG00000110841 PPFIBP1 0.635468059 0.00596454 0.896839765 

ENSG00000230148 HOXB-AS1 0.561979211 0.005975609 0.896839765 

ENSG00000114698 PLSCR4 -0.585302604 0.006037879 0.897397335 

ENSG00000115194 SLC30A3 0.581688147 0.006334102 0.934182566 

ENSG00000110090 CPT1A 0.675857903 0.006664283 0.94370853 

ENSG00000135423 GLS2 0.660816757 0.00646727 0.94370853 

ENSG00000066629 EML1 0.445362974 0.006652648 0.94370853 

ENSG00000259905 PWRN1 -0.668029421 0.006694016 0.94370853 

ENSG00000007516 BAIAP3 -0.623642975 0.006503279 0.94370853 

ENSG00000141837 CACNA1A 0.667565584 0.006693819 0.94370853 

ENSG00000143190 POU2F1 0.343952317 0.007173111 0.955067524 

ENSG00000145390 USP53 0.575812776 0.006964324 0.955067524 

ENSG00000147869 CER1 -0.616404745 0.007028336 0.955067524 

ENSG00000157637 SLC38A10 -0.526820887 0.007222907 0.955067524 

ENSG00000166603 MC4R 0.595445691 0.007086435 0.955067524 

ENSG00000142303 ADAMTS10 -0.411235242 0.007172589 0.955067524 

ENSG00000123159 GIPC1 -0.361543105 0.007192519 0.955067524 

ENSG00000160321 ZNF208 -0.400387055 0.007218015 0.955067524 

ENSG00000099889 ARVCF -0.398059803 0.006938433 0.955067524 

ENSG00000107731 UNC5B 0.665711763 0.007479013 0.982158313 

ENSG00000168993 CPLX1 -0.665126755 0.007628681 0.987026666 

ENSG00000197757 HOXC6 0.522803648 0.007722005 0.987026666 

ENSG00000159648 TEPP 0.556755164 0.007607685 0.987026666 

ENSG00000156413 FUT6 0.52745303 0.007704833 0.987026666 

ENSG00000117115 PADI2 0.614925942 0.008327638 0.99041131 

ENSG00000188641 DPYD 0.621622411 0.008334159 0.99041131 

ENSG00000152061 RABGAP1L 0.372244531 0.00802787 0.99041131 

ENSG00000128652 HOXD3 0.637652021 0.007922412 0.99041131 

ENSG00000225138 CTD-2228K2.7 -0.428466465 0.008038132 0.99041131 

ENSG00000135318 NT5E -0.602545447 0.008241872 0.99041131 

ENSG00000074706 IPCEF1 0.653303468 0.008298918 0.99041131 
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ENSG00000104725 NEFL 0.655675848 0.008368363 0.99041131 

ENSG00000155158 TTC39B 0.576952127 0.008093035 0.99041131 

ENSG00000136160 EDNRB 0.391540031 0.008316234 0.99041131 

ENSG00000127585 FBXL16 -0.486003399 0.007844801 0.99041131 

ENSG00000081665 ZNF506 0.640262244 0.007905841 0.99041131 

ENSG00000175445 LPL 0.655136253 0.008645346 0.992558238 

ENSG00000269962 RP13-

238F13.5 

-0.547249228 0.00857762 0.992558238 

ENSG00000010278 CD9 0.652628826 0.008542816 0.992558238 

ENSG00000137872 SEMA6D -0.466803556 0.008532825 0.992558238 

ENSG00000006015 C19orf60 -0.484351891 0.008616771 0.992558238 
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Supplementary Table 8 - GO Terms for NPC and Neurons (top 100 terms for each category). 

Ontology P-value Q-value 

NPC Upregulated Terms 

  

GO:0003735 structural constituent of ribosome 5.02E-11 3.50E-07 

GO:0006415 translational termination 4.59E-10 1.60E-06 

GO:0006414 translational elongation 2.22E-09 5.17E-06 

GO:0006413 translational initiation 3.94E-09 6.87E-06 

GO:0044391 ribosomal subunit 8.46E-09 1.18E-05 

GO:0005840 ribosome 4.56E-08 4.80E-05 

GO:0005743 mitochondrial inner membrane 4.81E-08 4.80E-05 

GO:0019866 organelle inner membrane 9.92E-08 8.65E-05 

GO:0006614 SRP-dependent cotranslational protein targeting to 

membrane 

1.25E-07 9.38E-05 

GO:0022626 cytosolic ribosome 1.34E-07 9.38E-05 

GO:0006613 cotranslational protein targeting to membrane 3.18E-07 0.000201582 

GO:0005759 mitochondrial matrix 7.15E-07 0.000415683 

GO:0015934 large ribosomal subunit 1.19E-06 0.00063858 

GO:0045047 protein targeting to ER 1.90E-06 0.000947616 

GO:0022625 cytosolic large ribosomal subunit 5.06E-06 0.002351211 

GO:0034660 ncRNA metabolic process 7.35E-06 0.003206579 

GO:0005925 focal adhesion 8.61E-06 0.003534648 

GO:0030055 cell-substrate junction 9.50E-06 0.003549294 

GO:0072599 establishment of protein localization to endoplasmic 

reticulum 

9.67E-06 0.003549294 

GO:0005924 cell-substrate adherens junction 1.10E-05 0.00383592 

GO:0006520 cellular amino acid metabolic process 2.03E-05 0.006736453 

GO:0070972 protein localization to endoplasmic reticulum 2.37E-05 0.007387419 

GO:0043624 cellular protein complex disassembly 2.51E-05 0.007387419 

GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-

mediated decay 

2.54E-05 0.007387419 

GO:0032984 macromolecular complex disassembly 3.35E-05 0.009343132 

GO:0006399 tRNA metabolic process 4.18E-05 0.011209947 

GO:0098800 inner mitochondrial membrane protein complex 4.64E-05 0.011582824 

GO:0032543 mitochondrial translation 4.65E-05 0.011582824 

GO:0019080 viral gene expression 5.60E-05 0.013036855 

GO:0043241 protein complex disassembly 5.61E-05 0.013036855 

GO:0045333 cellular respiration 6.46E-05 0.014527403 

GO:0042254 ribosome biogenesis 6.72E-05 0.014646788 

GO:0044455 mitochondrial membrane part 7.78E-05 0.016452523 

GO:0044445 cytosolic part 8.25E-05 0.016929174 

GO:0044033 multi-organism metabolic process 9.98E-05 0.019899839 

GO:0098798 mitochondrial protein complex 0.000108493 0.020633093 

GO:0034470 ncRNA processing 0.000109436 0.020633093 

GO:0070125 mitochondrial translational elongation 0.000120001 0.021939713 

GO:0019083 viral transcription 0.000122656 0.021939713 

GO:0070161 anchoring junction 0.000138399 0.024136742 

GO:0022900 electron transport chain 0.000142971 0.024326013 
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Ontology P-value Q-value 

GO:0070126 mitochondrial translational termination 0.000179078 0.029744018 

GO:0005912 adherens junction 0.000221176 0.035881871 

GO:0022904 respiratory electron transport chain 0.000229135 0.036328241 

GO:0070124 mitochondrial translational initiation 0.000247901 0.038430168 

GO:0006839 mitochondrial transport 0.000293337 0.044485159 

GO:0022613 ribonucleoprotein complex biogenesis 0.000421383 0.062544031 

GO:0006418 tRNA aminoacylation for protein translation 0.000450852 0.065523809 

GO:0043038 amino acid activation 0.000641703 0.089530417 

GO:0043039 tRNA aminoacylation 0.000641703 0.089530417 

GO:0008652 cellular amino acid biosynthetic process 0.00066475 0.090166608 

GO:0042470 melanosome 0.000685039 0.090166608 

GO:0048770 pigment granule 0.000685039 0.090166608 

GO:0070469 respiratory chain 0.000703469 0.090877772 

GO:0051186 cofactor metabolic process 0.000768522 0.097476493 

GO:0015935 small ribosomal subunit 0.00081736 0.101819666 

GO:0006612 protein targeting to membrane 0.000938556 0.11426018 

GO:0006364 rRNA processing 0.000952993 0.11426018 

GO:1901607 alpha-amino acid biosynthetic process 0.000966363 0.11426018 

GO:0090150 establishment of protein localization to membrane 0.001078963 0.125447395 

GO:0005746 mitochondrial respiratory chain 0.001167387 0.133503133 

GO:0016072 rRNA metabolic process 0.001259747 0.141741862 

GO:0009141 nucleoside triphosphate metabolic process 0.001466731 0.161605232 

GO:0000313 organellar ribosome 0.001507892 0.161605232 

GO:0005761 mitochondrial ribosome 0.001507892 0.161605232 

GO:1902742 apoptotic process involved in development 0.001545928 0.161605232 

GO:0070585 protein localization to mitochondrion 0.001552114 0.161605232 

GO:0072655 establishment of protein localization to mitochondrion 0.001712655 0.172401382 

GO:0004812 aminoacyl-tRNA ligase activity 0.001754659 0.172401382 

GO:0016875 ligase activity, forming carbon-oxygen bonds 0.001754659 0.172401382 

GO:0016876 ligase activity, forming aminoacyl-tRNA and related 

compounds 

0.001754659 0.172401382 

GO:0042273 ribosomal large subunit biogenesis 0.002013632 0.195098603 

GO:0009116 nucleoside metabolic process 0.002169965 0.20736539 

GO:0098803 respiratory chain complex 0.002503647 0.235646246 

GO:0022627 cytosolic small ribosomal subunit 0.002533467 0.235646246 

GO:0019058 viral life cycle 0.002607138 0.239307787 

GO:0009112 nucleobase metabolic process 0.002721463 0.246557446 

GO:0009144 purine nucleoside triphosphate metabolic process 0.002810539 0.251363063 

GO:0008033 tRNA processing 0.002858996 0.25209835 

GO:0009156 ribonucleoside monophosphate biosynthetic process 0.002891036 0.25209835 

GO:0009124 nucleoside monophosphate biosynthetic process 0.002932264 0.252536704 

GO:0051084 'de novo' posttranslational protein folding 0.003107197 0.262156924 

GO:0009123 nucleoside monophosphate metabolic process 0.003119126 0.262156924 

GO:0009161 ribonucleoside monophosphate metabolic process 0.00322715 0.268007114 

GO:1901657 glycosyl compound metabolic process 0.003381474 0.277519595 

GO:0006144 purine nucleobase metabolic process 0.003517676 0.2853408 
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Ontology P-value Q-value 

GO:0033173 calcineurin-NFAT signaling cascade 0.003639622 0.291839103 

GO:0009199 ribonucleoside triphosphate metabolic process 0.003833274 0.303874048 

GO:0006626 protein targeting to mitochondrion 0.003994046 0.311152937 

GO:0072657 protein localization to membrane 0.004062077 0.311152937 

GO:0016655 oxidoreductase activity, acting on NAD(P)H, quinone or 

similar compound as acceptor 

0.004089182 0.311152937 

GO:0010821 regulation of mitochondrion organization 0.004103508 0.311152937 

GO:0006575 cellular modified amino acid metabolic process 0.004228565 0.314843885 

GO:0034976 response to endoplasmic reticulum stress 0.004242449 0.314843885 

GO:0016741 transferase activity, transferring one-carbon groups 0.004298807 0.31566821 

GO:0006091 generation of precursor metabolites and energy 0.00435595 0.316532361 

GO:0044452 nucleolar part 0.004480479 0.322224935 

GO:0015036 disulfide oxidoreductase activity 0.004684943 0.33349143 

GO:0009205 purine ribonucleoside triphosphate metabolic process 0.00486034 0.341881088 

GO:0046112 nucleobase biosynthetic process 0.004900818 0.341881088 

NPC Downregulated Terms 

  

GO:0042129 regulation of T cell proliferation 0.001497439 1 

GO:0070663 regulation of leukocyte proliferation 0.002037693 1 

GO:0010518 positive regulation of phospholipase activity 0.002282749 1 

GO:0042102 positive regulation of T cell proliferation 0.003086179 1 

GO:0032944 regulation of mononuclear cell proliferation 0.003109151 1 

GO:0050670 regulation of lymphocyte proliferation 0.003271006 1 

GO:0060193 positive regulation of lipase activity 0.003345664 1 

GO:0050865 regulation of cell activation 0.003402878 1 

GO:1900274 regulation of phospholipase C activity 0.003588929 1 

GO:0010863 positive regulation of phospholipase C activity 0.003594592 1 

GO:0098644 complex of collagen trimers 0.004002092 1 

GO:0050870 positive regulation of T cell activation 0.004269975 1 

GO:0002694 regulation of leukocyte activation 0.004420835 1 

GO:0050853 B cell receptor signaling pathway 0.004548778 1 

GO:0070665 positive regulation of leukocyte proliferation 0.005422314 1 

GO:0051249 regulation of lymphocyte activation 0.00576641 1 

GO:0050863 regulation of T cell activation 0.006192526 1 

GO:0051251 positive regulation of lymphocyte activation 0.006545198 1 

GO:0019783 ubiquitin-like protein-specific protease activity 0.007582867 1 

GO:0032946 positive regulation of mononuclear cell proliferation 0.007846317 1 

GO:0050671 positive regulation of lymphocyte proliferation 0.008307522 1 

GO:0042098 T cell proliferation 0.008313131 1 

GO:0007156 homophilic cell adhesion via plasma membrane adhesion 

molecules 

0.008585307 1 

GO:1903039 positive regulation of leukocyte cell-cell adhesion 0.010376615 1 

GO:0007202 activation of phospholipase C activity 0.01172011 1 

GO:0022843 voltage-gated cation channel activity 0.01209884 1 

GO:0010517 regulation of phospholipase activity 0.012110645 1 

GO:0016339 calcium-dependent cell-cell adhesion via plasma 

membrane cell adhesion molecules 

0.012663064 1 

GO:0016605 PML body 0.013393155 1 

GO:0045582 positive regulation of T cell differentiation 0.014164163 1 
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Ontology P-value Q-value 

GO:0070661 leukocyte proliferation 0.014407385 1 

GO:0050867 positive regulation of cell activation 0.014693324 1 

GO:0036459 ubiquitinyl hydrolase activity 0.014904336 1 

GO:0046638 positive regulation of alpha-beta T cell differentiation 0.015067895 1 

GO:0002696 positive regulation of leukocyte activation 0.015116582 1 

GO:0042611 MHC protein complex 0.0151697 1 

GO:0004843 ubiquitin-specific protease activity 0.015286868 1 

GO:0070646 protein modification by small protein removal 0.015322416 1 

GO:0008066 glutamate receptor activity 0.015438112 1 

GO:0032943 mononuclear cell proliferation 0.015618872 1 

GO:0060191 regulation of lipase activity 0.015649386 1 

GO:0048407 platelet-derived growth factor binding 0.015975824 1 

GO:0046651 lymphocyte proliferation 0.016233284 1 

GO:0043550 regulation of lipid kinase activity 0.017085852 1 

GO:0034112 positive regulation of homotypic cell-cell adhesion 0.017332032 1 

GO:1903037 regulation of leukocyte cell-cell adhesion 0.017513779 1 

GO:0036314 response to sterol 0.01796228 1 

GO:0004702 receptor signaling protein serine/threonine kinase 

activity 

0.018232999 1 

GO:0016579 protein deubiquitination 0.018408833 1 

GO:0009214 cyclic nucleotide catabolic process 0.019796997 1 

GO:1902107 positive regulation of leukocyte differentiation 0.020571606 1 

GO:0010225 response to UV-C 0.020784272 1 

GO:1902105 regulation of leukocyte differentiation 0.02176659 1 

GO:0004112 cyclic-nucleotide phosphodiesterase activity 0.022104412 1 

GO:0000910 cytokinesis 0.022232068 1 

GO:0032809 neuronal cell body membrane 0.022497945 1 

GO:0044298 cell body membrane 0.022497945 1 

GO:0098742 cell-cell adhesion via plasma-membrane adhesion 

molecules 

0.023498445 1 

GO:0042393 histone binding 0.023647987 1 

GO:0043372 positive regulation of CD4-positive, alpha-beta T cell 

differentiation 

0.023954234 1 

GO:0004114 3',5'-cyclic-nucleotide phosphodiesterase activity 0.024117709 1 

GO:0034110 regulation of homotypic cell-cell adhesion 0.024909213 1 

GO:0070723 response to cholesterol 0.026687237 1 

GO:0035235 ionotropic glutamate receptor signaling pathway 0.026744711 1 

GO:0045670 regulation of osteoclast differentiation 0.026914498 1 

GO:0005249 voltage-gated potassium channel activity 0.027453598 1 

GO:0051302 regulation of cell division 0.02773917 1 

GO:0004385 guanylate kinase activity 0.027816465 1 

GO:0005216 ion channel activity 0.027860068 1 

GO:0007064 mitotic sister chromatid cohesion 0.028574679 1 

GO:0005085 guanyl-nucleotide exchange factor activity 0.029213352 1 

GO:1990266 neutrophil migration 0.029275894 1 

GO:0019838 growth factor binding 0.029739481 1 

GO:0035091 phosphatidylinositol binding 0.03074735 1 

GO:0030551 cyclic nucleotide binding 0.031645138 1 
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Ontology P-value Q-value 

GO:0000819 sister chromatid segregation 0.031908202 1 

GO:0022838 substrate-specific channel activity 0.032575287 1 

GO:0043217 myelin maintenance 0.032690795 1 

GO:0043551 regulation of phosphatidylinositol 3-kinase activity 0.032760548 1 

GO:0035064 methylated histone binding 0.033774253 1 

GO:0004970 ionotropic glutamate receptor activity 0.033937331 1 

GO:0006198 cAMP catabolic process 0.034194816 1 

GO:0004709 MAP kinase kinase kinase activity 0.03580754 1 

GO:0046710 GDP metabolic process 0.035903292 1 

GO:0015267 channel activity 0.03615124 1 

GO:0022803 passive transmembrane transporter activity 0.03615124 1 

GO:0016604 nuclear body 0.036177898 1 

GO:0042110 T cell activation 0.036343949 1 

GO:0070489 T cell aggregation 0.036343949 1 

GO:0010738 regulation of protein kinase A signaling 0.036999136 1 

GO:0010737 protein kinase A signaling 0.037732322 1 

GO:0071599 otic vesicle development 0.037801391 1 

GO:0030593 neutrophil chemotaxis 0.038055149 1 

GO:0044381 glucose import in response to insulin stimulus 0.038441978 1 

GO:2001273 regulation of glucose import in response to insulin 

stimulus 

0.038441978 1 

GO:0007062 sister chromatid cohesion 0.038501184 1 

GO:0071600 otic vesicle morphogenesis 0.038581266 1 

GO:0006670 sphingosine metabolic process 0.039047895 1 

GO:0042613 MHC class II protein complex 0.039056197 1 

GO:0050995 negative regulation of lipid catabolic process 0.03925002 1 

Neuron Upregulated Terms 

  

GO:0021537 telencephalon development 0.000257256 0.484733828 

GO:0044708 single-organism behavior 0.000299334 0.484733828 

GO:0030902 hindbrain development 0.000352632 0.484733828 

GO:0034109 homotypic cell-cell adhesion 0.000772096 0.484733828 

GO:0000793 condensed chromosome 0.000801169 0.484733828 

GO:0002250 adaptive immune response 0.000828314 0.484733828 

GO:0044057 regulation of system process 0.000876665 0.484733828 

GO:0007059 chromosome segregation 0.000899364 0.484733828 

GO:0000779 condensed chromosome, centromeric region 0.001035558 0.484733828 

GO:0007159 leukocyte cell-cell adhesion 0.001120123 0.484733828 

GO:0098632 protein binding involved in cell-cell adhesion 0.001153061 0.484733828 

GO:0042110 T cell activation 0.001235867 0.484733828 

GO:0070489 T cell aggregation 0.001235867 0.484733828 

GO:0022613 ribonucleoprotein complex biogenesis 0.001326102 0.484733828 

GO:0051302 regulation of cell division 0.001422182 0.484733828 

GO:0071593 lymphocyte aggregation 0.001481958 0.484733828 

GO:0030003 cellular cation homeostasis 0.001581459 0.484733828 

GO:0072503 cellular divalent inorganic cation homeostasis 0.001597257 0.484733828 

GO:0007626 locomotory behavior 0.001655805 0.484733828 
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Ontology P-value Q-value 

GO:0000777 condensed chromosome kinetochore 0.001688641 0.484733828 

GO:0070486 leukocyte aggregation 0.00175109 0.484733828 

GO:0072507 divalent inorganic cation homeostasis 0.001759642 0.484733828 

GO:0010817 regulation of hormone levels 0.001796708 0.484733828 

GO:0000775 chromosome, centromeric region 0.001850978 0.484733828 

GO:0023061 signal release 0.00190392 0.484733828 

GO:0006873 cellular ion homeostasis 0.001915827 0.484733828 

GO:0098813 nuclear chromosome segregation 0.001918494 0.484733828 

GO:0045785 positive regulation of cell adhesion 0.001967784 0.484733828 

GO:0032844 regulation of homeostatic process 0.00200675 0.484733828 

GO:0045787 positive regulation of cell cycle 0.002151859 0.486771055 

GO:0006875 cellular metal ion homeostasis 0.002154162 0.486771055 

GO:0021543 pallium development 0.002233501 0.488927321 

GO:0030098 lymphocyte differentiation 0.00258379 0.548468191 

GO:0032609 interferon-gamma production 0.003087322 0.627084092 

GO:0002460 adaptive immune response based on somatic 

recombination of immune receptors built from immunoglobulin 

superfamily domains 

0.003272777 0.627084092 

GO:0006874 cellular calcium ion homeostasis 0.003308973 0.627084092 

GO:0007218 neuropeptide signaling pathway 0.003747538 0.627084092 

GO:0000776 kinetochore 0.003753359 0.627084092 

GO:0019221 cytokine-mediated signaling pathway 0.003798056 0.627084092 

GO:0055074 calcium ion homeostasis 0.003819457 0.627084092 

GO:0051781 positive regulation of cell division 0.003819937 0.627084092 

GO:0042254 ribosome biogenesis 0.003847852 0.627084092 

GO:0021892 cerebral cortex GABAergic interneuron differentiation 0.003995847 0.627084092 

GO:0051233 spindle midzone 0.004132507 0.627084092 

GO:0090068 positive regulation of cell cycle process 0.004255859 0.627084092 

GO:0070838 divalent metal ion transport 0.004262185 0.627084092 

GO:0009612 response to mechanical stimulus 0.004350164 0.627084092 

GO:0035637 multicellular organismal signaling 0.004703176 0.627084092 

GO:0031123 RNA 3'-end processing 0.004767731 0.627084092 

GO:0000070 mitotic sister chromatid segregation 0.004811391 0.627084092 

GO:0097154 GABAergic neuron differentiation 0.005194752 0.627084092 

GO:0072511 divalent inorganic cation transport 0.005290332 0.627084092 

GO:0007093 mitotic cell cycle checkpoint 0.005300104 0.627084092 

GO:0006401 RNA catabolic process 0.005378556 0.627084092 

GO:0030900 forebrain development 0.005424072 0.627084092 

GO:0005179 hormone activity 0.006004623 0.627084092 

GO:0021877 forebrain neuron fate commitment 0.006128252 0.627084092 

GO:0098687 chromosomal region 0.006210592 0.627084092 

GO:0042493 response to drug 0.006297133 0.627084092 

GO:0042611 MHC protein complex 0.006721848 0.627084092 

GO:0048167 regulation of synaptic plasticity 0.006783476 0.627084092 

GO:0016072 rRNA metabolic process 0.007048525 0.627084092 

GO:0021766 hippocampus development 0.007195134 0.627084092 

GO:0008201 heparin binding 0.007219967 0.627084092 
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GO:0000075 cell cycle checkpoint 0.007251193 0.627084092 

GO:0002521 leukocyte differentiation 0.007360891 0.627084092 

GO:0000819 sister chromatid segregation 0.007796558 0.627084092 

GO:0021542 dentate gyrus development 0.007804275 0.627084092 

GO:0051480 cytosolic calcium ion homeostasis 0.008034365 0.627084092 

GO:0006397 mRNA processing 0.008182842 0.627084092 

GO:0048706 embryonic skeletal system development 0.00824401 0.627084092 

GO:0051321 meiotic cell cycle 0.00825006 0.627084092 

GO:0031124 mRNA 3'-end processing 0.008535111 0.627084092 

GO:0009897 external side of plasma membrane 0.008551188 0.627084092 

GO:0042613 MHC class II protein complex 0.008585498 0.627084092 

GO:0006364 rRNA processing 0.008601257 0.627084092 

GO:0051983 regulation of chromosome segregation 0.008787114 0.627084092 

GO:0046651 lymphocyte proliferation 0.008967986 0.627084092 

GO:0000956 nuclear-transcribed mRNA catabolic process 0.009027525 0.627084092 

GO:0007204 positive regulation of cytosolic calcium ion concentration 0.009056776 0.627084092 

GO:0022407 regulation of cell-cell adhesion 0.009566128 0.627084092 

GO:0006402 mRNA catabolic process 0.009633908 0.627084092 

GO:0006836 neurotransmitter transport 0.009961799 0.627084092 

GO:0007596 blood coagulation 0.010002437 0.627084092 

GO:0032649 regulation of interferon-gamma production 0.010015952 0.627084092 

GO:0021895 cerebral cortex neuron differentiation 0.01019311 0.627084092 

GO:0007611 learning or memory 0.010273824 0.627084092 

GO:0070661 leukocyte proliferation 0.010327784 0.627084092 

GO:0043090 amino acid import 0.010364372 0.627084092 

GO:1903037 regulation of leukocyte cell-cell adhesion 0.010495701 0.627084092 

GO:0001824 blastocyst development 0.010509038 0.627084092 

GO:1903039 positive regulation of leukocyte cell-cell adhesion 0.010560181 0.627084092 

GO:0007599 hemostasis 0.010767125 0.627084092 

GO:0043092 L-amino acid import 0.010780442 0.627084092 

GO:0036464 cytoplasmic ribonucleoprotein granule 0.010811483 0.627084092 

GO:0030217 T cell differentiation 0.010846338 0.627084092 

GO:0007631 feeding behavior 0.010889989 0.627084092 

GO:0046883 regulation of hormone secretion 0.011008784 0.627084092 

GO:0009306 protein secretion 0.011023138 0.627084092 

GO:0009914 hormone transport 0.0110372 0.627084092 

Neuron Downregulated Terms   

GO:0016054 organic acid catabolic process 0.00233247 0.999656023 

GO:0046395 carboxylic acid catabolic process 0.00233247 0.999656023 

GO:0060271 cilium morphogenesis 0.00273151 0.999656023 

GO:0072329 monocarboxylic acid catabolic process 0.002999731 0.999656023 

GO:0009062 fatty acid catabolic process 0.00368891 0.999656023 

GO:0019048 modulation by virus of host morphology or physiology 0.004177237 0.999656023 

GO:0044782 cilium organization 0.006003419 0.999656023 

GO:0003995 acyl-CoA dehydrogenase activity 0.006398074 0.999656023 
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GO:0052890 oxidoreductase activity, acting on the CH-CH group of 

donors, with a flavin as acceptor 

0.006398074 0.999656023 

GO:0006635 fatty acid beta-oxidation 0.007834562 0.999656023 

GO:0001578 microtubule bundle formation 0.008083997 0.999656023 

GO:0042384 cilium assembly 0.009618991 0.999656023 

GO:0005930 axoneme 0.010010733 0.999656023 

GO:0097014 ciliary cytoplasm 0.010010733 0.999656023 

GO:0044282 small molecule catabolic process 0.01001128 0.999656023 

GO:0000062 fatty-acyl-CoA binding 0.010525073 0.999656023 

GO:0044003 modification by symbiont of host morphology or 

physiology 

0.010569707 0.999656023 

GO:0033539 fatty acid beta-oxidation using acyl-CoA dehydrogenase 0.011325057 0.999656023 

GO:0005929 cilium 0.013352073 0.999656023 

GO:1901565 organonitrogen compound catabolic process 0.013448626 0.999656023 

GO:0050662 coenzyme binding 0.014843757 0.999656023 

GO:0050660 flavin adenine dinucleotide binding 0.014924624 0.999656023 

GO:0016197 endosomal transport 0.014990647 0.999656023 

GO:0000038 very long-chain fatty acid metabolic process 0.015126668 0.999656023 

GO:0007034 vacuolar transport 0.016028281 0.999656023 

GO:0035082 axoneme assembly 0.01611148 0.999656023 

GO:0009145 purine nucleoside triphosphate biosynthetic process 0.01650754 0.999656023 

GO:0042073 intraciliary transport 0.019351803 0.999656023 

GO:0009251 glucan catabolic process 0.022396989 0.999656023 

GO:0016798 hydrolase activity, acting on glycosyl bonds 0.022462738 0.999656023 

GO:0034260 negative regulation of GTPase activity 0.022484344 0.999656023 

GO:0004602 glutathione peroxidase activity 0.022761779 0.999656023 

GO:0007041 lysosomal transport 0.022854901 0.999656023 

GO:0009206 purine ribonucleoside triphosphate biosynthetic process 0.023021107 0.999656023 

GO:0044247 cellular polysaccharide catabolic process 0.024175032 0.999656023 

GO:0036159 inner dynein arm assembly 0.024270533 0.999656023 

GO:0005980 glycogen catabolic process 0.02495463 0.999656023 

GO:0046039 GTP metabolic process 0.026022687 0.999656023 

GO:0048037 cofactor binding 0.026939554 0.999656023 

GO:0016790 thiolester hydrolase activity 0.027023183 0.999656023 

GO:0015929 hexosaminidase activity 0.027060434 0.999656023 

GO:0090314 positive regulation of protein targeting to membrane 0.028033678 0.999656023 

GO:0030118 clathrin coat 0.028156937 0.999656023 

GO:0009201 ribonucleoside triphosphate biosynthetic process 0.028250164 0.999656023 

GO:0030031 cell projection assembly 0.030092229 0.999656023 

GO:0030132 clathrin coat of coated pit 0.03021197 0.999656023 

GO:0000272 polysaccharide catabolic process 0.031437833 0.999656023 

GO:0044437 vacuolar part 0.031550553 0.999656023 

GO:0031146 SCF-dependent proteasomal ubiquitin-dependent protein 

catabolic process 

0.032074914 0.999656023 

GO:0060972 left/right pattern formation 0.0320859 0.999656023 

GO:0018345 protein palmitoylation 0.032252619 0.999656023 

GO:0046134 pyrimidine nucleoside biosynthetic process 0.032792513 0.999656023 

GO:0033540 fatty acid beta-oxidation using acyl-CoA oxidase 0.033337789 0.999656023 
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GO:0009142 nucleoside triphosphate biosynthetic process 0.034176726 0.999656023 

GO:0090311 regulation of protein deacetylation 0.034603562 0.999656023 

GO:0046835 carbohydrate phosphorylation 0.035064691 0.999656023 

GO:0061371 determination of heart left/right asymmetry 0.035230821 0.999656023 

GO:0014044 Schwann cell development 0.03542371 0.999656023 

GO:0006241 CTP biosynthetic process 0.035706696 0.999656023 

GO:0046036 CTP metabolic process 0.035706696 0.999656023 

GO:0001738 morphogenesis of a polarized epithelium 0.036313377 0.999656023 

GO:1903010 regulation of bone development 0.03743552 0.999656023 

GO:0007031 peroxisome organization 0.037448749 0.999656023 

GO:0097576 vacuole fusion 0.037766478 0.999656023 

GO:0008093 cytoskeletal adaptor activity 0.039635874 0.999656023 

GO:0042147 retrograde transport, endosome to Golgi 0.042188453 0.999656023 

GO:0030119 AP-type membrane coat adaptor complex 0.042253215 0.999656023 

GO:0044441 ciliary part 0.042460124 0.999656023 

GO:0071276 cellular response to cadmium ion 0.042689966 0.999656023 

GO:0006623 protein targeting to vacuole 0.043183933 0.999656023 

GO:0022011 myelination in peripheral nervous system 0.043242223 0.999656023 

GO:0032292 peripheral nervous system axon ensheathment 0.043242223 0.999656023 

GO:0017015 regulation of transforming growth factor beta receptor 

signaling pathway 

0.044575622 0.999656023 

GO:1903844 regulation of cellular response to transforming growth 

factor beta stimulus 

0.044575622 0.999656023 

GO:0005905 coated pit 0.044648145 0.999656023 

GO:0008013 beta-catenin binding 0.045614297 0.999656023 

GO:0051817 modification of morphology or physiology of other 

organism involved in symbiotic interaction 

0.045637413 0.999656023 

GO:0031063 regulation of histone deacetylation 0.045815612 0.999656023 

GO:0007033 vacuole organization 0.046043574 0.999656023 

GO:0014037 Schwann cell differentiation 0.046390538 0.999656023 

GO:0032456 endocytic recycling 0.046496909 0.999656023 

GO:0007368 determination of left/right symmetry 0.046570039 0.999656023 

GO:0070286 axonemal dynein complex assembly 0.048454895 0.999656023 

GO:0055064 chloride ion homeostasis 0.048711802 0.999656023 

GO:0009063 cellular amino acid catabolic process 0.049864337 0.999656023 

GO:0050431 transforming growth factor beta binding 0.04997413 0.999656023 

GO:0005779 integral component of peroxisomal membrane 0.05030793 0.999656023 

GO:0031231 intrinsic component of peroxisomal membrane 0.05030793 0.999656023 

GO:0097502 mannosylation 0.052018383 0.999656023 

GO:0032266 phosphatidylinositol-3-phosphate binding 0.05229823 0.999656023 

GO:0004029 aldehyde dehydrogenase (NAD) activity 0.052499884 0.999656023 

GO:0030122 AP-2 adaptor complex 0.05273994 0.999656023 

GO:0030128 clathrin coat of endocytic vesicle 0.05273994 0.999656023 

GO:0009070 serine family amino acid biosynthetic process 0.053077779 0.999656023 

GO:0097352 autophagosome maturation 0.053896412 0.999656023 

GO:0005759 mitochondrial matrix 0.054383864 0.999656023 

GO:0046132 pyrimidine ribonucleoside biosynthetic process 0.054986163 0.999656023 

GO:0019054 modulation by virus of host process 0.055006647 0.999656023 
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GO:0051917 regulation of fibrinolysis 0.055262077 0.999656023 

GO:0005777 peroxisome 0.055710631 0.999656023 
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Supplementary Table 9 - KEGG Pathways for NPC and Neurons (top 50). 

Pathway P-Value Q-Value 

NPC Upregulated Pathways 

hsa03010 Ribosome 3.51E-08 5.69E-06 

hsa00190 Oxidative phosphorylation 6.75E-05 0.005465069 

hsa03013 RNA transport 0.003534145 0.145950205 

hsa00970 Aminoacyl-tRNA biosynthesis 0.004496138 0.145950205 

hsa04260 Cardiac muscle contraction 0.005551884 0.145950205 

hsa03008 Ribosome biogenesis in eukaryotes 0.005881066 0.145950205 

hsa00620 Pyruvate metabolism 0.00630649 0.145950205 

hsa00240 Pyrimidine metabolism 0.010096882 0.189929902 

hsa00290 Valine, leucine and isoleucine biosynthesis 0.010551661 0.189929902 

hsa00010 Glycolysis / Gluconeogenesis 0.018615854 0.287481947 

hsa03410 Base excision repair 0.019520379 0.287481947 

hsa00520 Amino sugar and nucleotide sugar metabolism 0.024195142 0.31141154 

hsa00020 Citrate cycle (TCA cycle) 0.026230268 0.31141154 

hsa00670 One carbon pool by folate 0.026983303 0.31141154 

hsa00480 Glutathione metabolism 0.028834402 0.31141154 

hsa04141 Protein processing in endoplasmic reticulum 0.030865342 0.312511584 

hsa03020 RNA polymerase 0.034264977 0.326525074 

hsa00860 Porphyrin and chlorophyll metabolism 0.042570351 0.373536562 

hsa00330 Arginine and proline metabolism 0.043809844 0.373536562 

hsa00030 Pentose phosphate pathway 0.050583485 0.403614665 

hsa04360 Axon guidance 0.05232042 0.403614665 

hsa04920 Adipocytokine signaling pathway 0.059142705 0.425897118 

hsa03050 Proteasome 0.060466875 0.425897118 

hsa04610 Complement and coagulation cascades 0.069263348 0.467527599 

hsa04964 Proximal tubule bicarbonate reclamation 0.074554069 0.483110365 

hsa00510 N-Glycan biosynthesis 0.089528502 0.557831434 

hsa00270 Cysteine and methionine metabolism 0.093331237 0.559987422 

hsa00770 Pantothenate and CoA biosynthesis 0.097709398 0.564588026 

hsa00230 Purine metabolism 0.101068227 0.564588026 

hsa00531 Glycosaminoglycan degradation 0.109280663 0.590115579 

hsa03030 DNA replication 0.121535515 0.635121076 

hsa00052 Galactose metabolism 0.139937373 0.693133743 

hsa04142 Lysosome 0.15870345 0.693133743 

hsa03060 Protein export 0.164711918 0.693133743 

hsa00760 Nicotinate and nicotinamide metabolism 0.166908368 0.693133743 

hsa00910 Nitrogen metabolism 0.176969993 0.693133743 

hsa04110 Cell cycle 0.181048242 0.693133743 

hsa04340 Hedgehog signaling pathway 0.189493085 0.693133743 

hsa00563 Glycosylphosphatidylinositol(GPI)-anchor biosynthesis 0.190808193 0.693133743 

hsa04744 Phototransduction 0.199144227 0.693133743 

hsa00561 Glycerolipid metabolism 0.200805782 0.693133743 

hsa00590 Arachidonic acid metabolism 0.205718011 0.693133743 

hsa00565 Ether lipid metabolism 0.208266459 0.693133743 



Chapter 3 - Disruption of chromatin remodeler MBD5 results in  

dysregulated neuronal-related genes and pathways 

185 

 

Pathway P-Value Q-Value 

hsa04120 Ubiquitin mediated proteolysis 0.217458434 0.693133743 

hsa00250 Alanine, aspartate and glutamate metabolism 0.218238658 0.693133743 

hsa00980 Metabolism of xenobiotics by cytochrome P450 0.218568686 0.693133743 

hsa00630 Glyoxylate and dicarboxylate metabolism 0.226273578 0.693133743 

hsa03320 PPAR signaling pathway 0.228736383 0.693133743 

hsa00051 Fructose and mannose metabolism 0.23006482 0.693133743 

hsa00260 Glycine, serine and threonine metabolism 0.233193758 0.693133743 

NPC Downregulated Pathways 

hsa04062 Chemokine signaling pathway 0.018736484 0.999999965 

hsa04672 Intestinal immune network for IgA production 0.030820842 0.999999965 

hsa04270 Vascular smooth muscle contraction 0.0322204 0.999999965 

hsa04622 RIG-I-like receptor signaling pathway 0.055023791 0.999999965 

hsa04070 Phosphatidylinositol signaling system 0.073187515 0.999999965 

hsa04620 Toll-like receptor signaling pathway 0.112457876 0.999999965 

hsa02010 ABC transporters 0.129526953 0.999999965 

hsa04912 GnRH signaling pathway 0.135090757 0.999999965 

hsa04720 Long-term potentiation 0.159622722 0.999999965 

hsa00650 Butanoate metabolism 0.161641392 0.999999965 

hsa00900 Terpenoid backbone biosynthesis 0.166424526 0.999999965 

hsa04630 Jak-STAT signaling pathway 0.176390209 0.999999965 

hsa00920 Sulfur metabolism 0.183843172 0.999999965 

hsa04614 Renin-angiotensin system 0.185026984 0.999999965 

hsa04670 Leukocyte transendothelial migration 0.185285847 0.999999965 

hsa04710 Circadian rhythm - mammal 0.21462873 0.999999965 

hsa00360 Phenylalanine metabolism 0.217925714 0.999999965 

hsa04664 Fc epsilon RI signaling pathway 0.22136683 0.999999965 

hsa04730 Long-term depression 0.235143127 0.999999965 

hsa00790 Folate biosynthesis 0.23862334 0.999999965 

hsa04971 Gastric acid secretion 0.247418808 0.999999965 

hsa04973 Carbohydrate digestion and absorption 0.25023419 0.999999965 

hsa00120 Primary bile acid biosynthesis 0.251132438 0.999999965 

hsa04974 Protein digestion and absorption 0.256454445 0.999999965 

hsa04810 Regulation of actin cytoskeleton 0.260235872 0.999999965 

hsa03450 Non-homologous end-joining 0.260988769 0.999999965 

hsa00562 Inositol phosphate metabolism 0.266288626 0.999999965 

hsa00350 Tyrosine metabolism 0.266347389 0.999999965 

hsa00450 Selenocompound metabolism 0.270896305 0.999999965 

hsa04621 NOD-like receptor signaling pathway 0.271710617 0.999999965 

hsa04020 Calcium signaling pathway 0.273437534 0.999999965 

hsa04150 mTOR signaling pathway 0.276501168 0.999999965 

hsa00340 Histidine metabolism 0.285595258 0.999999965 

hsa04650 Natural killer cell mediated cytotoxicity 0.296274389 0.999999965 

hsa04742 Taste transduction 0.302343615 0.999999965 

hsa04146 Peroxisome 0.311406551 0.999999965 

hsa04612 Antigen processing and presentation 0.320327886 0.999999965 
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hsa04514 Cell adhesion molecules (CAMs) 0.327895166 0.999999965 

hsa04660 T cell receptor signaling pathway 0.330689012 0.999999965 

hsa04140 Regulation of autophagy 0.337050871 0.999999965 

hsa04666 Fc gamma R-mediated phagocytosis 0.338445174 0.999999965 

hsa00140 Steroid hormone biosynthesis 0.343615017 0.999999965 

hsa04144 Endocytosis 0.362313529 0.999999965 

hsa04623 Cytosolic DNA-sensing pathway 0.364144373 0.999999965 

hsa04976 Bile secretion 0.366232824 0.999999965 

hsa00603 Glycosphingolipid biosynthesis - globo series 0.373172941 0.999999965 

hsa04540 Gap junction 0.377741591 0.999999965 

hsa04966 Collecting duct acid secretion 0.400340328 0.999999965 

hsa03440 Homologous recombination 0.406079611 0.999999965 

hsa04970 Salivary secretion 0.417848438 0.999999965 

Neuron Upregulated Pathways 

hsa04514 Cell adhesion molecules (CAMs) 0.001633059 0.264555532 

hsa03013 RNA transport 0.004261611 0.34519049 

hsa03018 RNA degradation 0.010434594 0.400975865 

hsa04540 Gap junction 0.012197712 0.400975865 

hsa03015 mRNA surveillance pathway 0.014913783 0.400975865 

hsa04662 B cell receptor signaling pathway 0.01849575 0.400975865 

hsa04020 Calcium signaling pathway 0.02490763 0.400975865 

hsa04964 Proximal tubule bicarbonate reclamation 0.026963391 0.400975865 

hsa03010 Ribosome 0.027756869 0.400975865 

hsa04640 Hematopoietic cell lineage 0.033107754 0.400975865 

hsa04971 Gastric acid secretion 0.033307244 0.400975865 

hsa03008 Ribosome biogenesis in eukaryotes 0.033879545 0.400975865 

hsa04110 Cell cycle 0.034103384 0.400975865 

hsa04973 Carbohydrate digestion and absorption 0.036684548 0.400975865 

hsa04664 Fc epsilon RI signaling pathway 0.037876024 0.400975865 

hsa04974 Protein digestion and absorption 0.039602555 0.400975865 

hsa03040 Spliceosome 0.042524335 0.4052319 

hsa04976 Bile secretion 0.052726927 0.455684141 

hsa04920 Adipocytokine signaling pathway 0.059075542 0.455684141 

hsa00100 Steroid biosynthesis 0.060259726 0.455684141 

hsa04672 Intestinal immune network for IgA production 0.062006864 0.455684141 

hsa04260 Cardiac muscle contraction 0.063999191 0.455684141 

hsa04730 Long-term depression 0.064695897 0.455684141 

hsa04010 MAPK signaling pathway 0.072151616 0.487023407 

hsa04360 Axon guidance 0.080518523 0.49687329 

hsa00980 Metabolism of xenobiotics by cytochrome P450 0.082618534 0.49687329 

hsa04970 Salivary secretion 0.082812215 0.49687329 

hsa04972 Pancreatic secretion 0.088766521 0.513577729 

hsa00601 Glycosphingolipid biosynthesis - lacto and neolacto 

series 

0.092441916 0.516399668 

hsa04510 Focal adhesion 0.097325721 0.525558894 

hsa04114 Oocyte meiosis 0.102064768 0.533370723 
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Pathway P-Value Q-Value 

hsa04710 Circadian rhythm - mammal 0.117580896 0.572147256 

hsa00910 Nitrogen metabolism 0.118628206 0.572147256 

hsa04145 Phagosome 0.120080288 0.572147256 

hsa04660 T cell receptor signaling pathway 0.132673619 0.601019785 

hsa00970 Aminoacyl-tRNA biosynthesis 0.135368041 0.601019785 

hsa04612 Antigen processing and presentation 0.138097073 0.601019785 

hsa00450 Selenocompound metabolism 0.14462952 0.601019785 

hsa04270 Vascular smooth muscle contraction 0.154504986 0.601019785 

hsa04740 Olfactory transduction 0.155568248 0.601019785 

hsa03420 Nucleotide excision repair 0.157860281 0.601019785 

hsa04370 VEGF signaling pathway 0.163198571 0.601019785 

hsa04916 Melanogenesis 0.163204823 0.601019785 

hsa04914 Progesterone-mediated oocyte maturation 0.163239942 0.601019785 

hsa04720 Long-term potentiation 0.18888646 0.630323316 

hsa04650 Natural killer cell mediated cytotoxicity 0.190373361 0.630323316 

hsa04630 Jak-STAT signaling pathway 0.193548581 0.630323316 

hsa00230 Purine metabolism 0.19587644 0.630323316 

hsa00670 One carbon pool by folate 0.196263511 0.630323316 

hsa03430 Mismatch repair 0.19741609 0.630323316 

Neuron Downregulated Pathways 

hsa04330 Notch signaling pathway 0.00530333 0.859139457 

hsa04146 Peroxisome 0.011293301 0.914757359 

hsa04122 Sulfur relay system 0.042563429 0.998366941 

hsa00280 Valine, leucine and isoleucine degradation 0.04957277 0.998366941 

hsa04142 Lysosome 0.055124171 0.998366941 

hsa00511 Other glycan degradation 0.056881333 0.998366941 

hsa00650 Butanoate metabolism 0.062478675 0.998366941 

hsa00532 Glycosaminoglycan biosynthesis - chondroitin sulfate 0.082769677 0.998366941 

hsa01040 Biosynthesis of unsaturated fatty acids 0.09707081 0.998366941 

hsa00531 Glycosaminoglycan degradation 0.1342438 0.998366941 

hsa00120 Primary bile acid biosynthesis 0.141214948 0.998366941 

hsa00071 Fatty acid metabolism 0.146152746 0.998366941 

hsa04622 RIG-I-like receptor signaling pathway 0.159044888 0.998366941 

hsa00260 Glycine, serine and threonine metabolism 0.163450192 0.998366941 

hsa04810 Regulation of actin cytoskeleton 0.169079929 0.998366941 

hsa00350 Tyrosine metabolism 0.17549272 0.998366941 

hsa00920 Sulfur metabolism 0.185477031 0.998366941 

hsa04962 Vasopressin-regulated water reabsorption 0.187123211 0.998366941 

hsa00562 Inositol phosphate metabolism 0.190781867 0.998366941 

hsa00040 Pentose and glucuronate interconversions 0.211686661 0.998366941 

hsa00640 Propanoate metabolism 0.215599728 0.998366941 

hsa00340 Histidine metabolism 0.218486432 0.998366941 

hsa00760 Nicotinate and nicotinamide metabolism 0.219732886 0.998366941 

hsa00380 Tryptophan metabolism 0.22322052 0.998366941 

hsa00563 Glycosylphosphatidylinositol(GPI)-anchor biosynthesis 0.244735229 0.998366941 
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Pathway P-Value Q-Value 

hsa03320 PPAR signaling pathway 0.252866447 0.998366941 

hsa00240 Pyrimidine metabolism 0.255568234 0.998366941 

hsa00310 Lysine degradation 0.255972541 0.998366941 

hsa04910 Insulin signaling pathway 0.273937805 0.998366941 

hsa00053 Ascorbate and aldarate metabolism 0.280365518 0.998366941 

hsa00564 Glycerophospholipid metabolism 0.280613642 0.998366941 

hsa04722 Neurotrophin signaling pathway 0.292352051 0.998366941 

hsa04140 Regulation of autophagy 0.297520886 0.998366941 

hsa00620 Pyruvate metabolism 0.30713467 0.998366941 

hsa04070 Phosphatidylinositol signaling system 0.314148488 0.998366941 

hsa00360 Phenylalanine metabolism 0.317153198 0.998366941 

hsa04210 Apoptosis 0.33431982 0.998366941 

hsa04120 Ubiquitin mediated proteolysis 0.336112862 0.998366941 

hsa04610 Complement and coagulation cascades 0.344875128 0.998366941 

hsa00020 Citrate cycle (TCA cycle) 0.351172329 0.998366941 

hsa00790 Folate biosynthesis 0.353175206 0.998366941 

hsa00500 Starch and sucrose metabolism 0.37634617 0.998366941 

hsa04620 Toll-like receptor signaling pathway 0.376471046 0.998366941 

hsa00603 Glycosphingolipid biosynthesis - globo series 0.379499709 0.998366941 

hsa03020 RNA polymerase 0.389236331 0.998366941 

hsa00982 Drug metabolism - cytochrome P450 0.405226905 0.998366941 

hsa00480 Glutathione metabolism 0.424305621 0.998366941 

hsa04144 Endocytosis 0.427287288 0.998366941 

hsa03410 Base excision repair 0.428277406 0.998366941 

hsa00270 Cysteine and methionine metabolism 0.453400034 0.998366941 
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Highlights 

 This section summarizes the results obtained in this study, and 

approaches the limitations of the experimental setup, the main conclusions 

obtained thus far, and also includes additional preliminary results. 
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Final Remarks 

Summary of Findings 

Chapter 1 focuses on a patient with intellectual disability bearing a unique 

apparent de novo mutation of ARID1B due to an intragenic duplication. Array 

CGH showed a copy number gain of chromosome band 6q25.3 of approximately 

0.361 Mb in size, arr 6q25.3(157133792-157495187)x3 dn, that involved 

duplication of a segment containing exons 2-10 (ENST00000346085) of 

ARID1B.   Haploinsufficiency of ARID1B was determined both by RNA sequencing 

and quantitative RT-PCR indicating that haploinsufficiency for ARID1B is likely to 

be the cause of developmental delay in this individual, as no additional genetic 

or metabolic defects were identified. The most abundant ARID1B mRNA 

transcript observed in the patient was ENST00000414678, consistent with the 

GTEx database for EBV-transformed lymphoblasts and IGV Sashimi plots did not 

reveal novel junctions or transcripts for this gene in the patient, providing no 

evidence that duplication of this exonic region resulted in alterations in splicing. 

Our results support the view that ARID1B is a dosage sensitive gene whose 

expression can be affected by deletions or duplications with impact on 

phenotype. Other chromatin regulators have also been noted to be dosage 

sensitive causes of neurodevelopmental phenotypes, including MECP2 (Temudo 

& Maciel 2002), MBD5, EHMT1, CHD8 and SATB2 (Talkowski et al., 2012).  

Principal component analysis revealed marked differentiation of the 

subject’s lymphoblast proteome from that of controls. Of 3427 proteins 

quantified, 1,014 were significantly up- or downregulated compared to controls 

(q<0.01).  While the measurement of RNA in LCLs does not necessarily reflect 

the effect of the genetic lesion in the brain, the association of heterozygous 

inactivating mutations in ARID1B with neurodevelopmental phenotypes in other 

subjects suggests that reduced gene expression also occurs in the central 

nervous system.  Pathway analysis revealed highly significant enrichment for 

canonical pathways of EIF2 signaling, protein ubiquitination, tRNA charging and 

chromosomal replication, among others. Network analyses revealed 

downregulation of: (1) intracellular components involved in organization of 

membranes, organelles and vesicles; (2) aspects of cell cycle control, signal 

transduction and nuclear protein export; (3) ubiquitination and proteosomal 

function; and (4) aspects of mRNA metabolism. This report added further insight 

on the role of ARID1B haploinsufficiency in the establishment of intellectual 
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disability, yet further studies are required to uncover the precise mechanisms 

whereby altered transcriptional and cell cycle regulation pathways lead to 

impaired brain development and cognitive function. 

In Chapter 2, we explore the creation of isogenic cellular models to study 

ASD, as neuronal tissue is not readily available and lymphoblastoid cell lines 

(generated from blood samples) may not represent the true landscape of the 

affected cells and additionally, the different patients’ genetic background 

introduces noise in the analyses. Therefore, we show that through dual-guide 

CRISPR/Cas9 genome editing technology we were able to generate deletions in 

four ASD candidate chromatin-related genes (EHMT1, MBD5, METTL2A and 

METTL2B) in an iPSC line from a healthy individual. CRISPR/Cas9 showed deletion 

efficiencies in iPSC ranging from 0% to 10,6%, suggesting that dual-guide 

deletion strategy efficiency varies widely by guideRNA-pair combination and 

genomic target. Interestingly, for two highly homologous genes targeted (that 

share 98,41% homology), METTL2A and METTL2B, CRISPR was able to ablate 

these genes with specificity to each target. We found no correlation between the 

deletion sizes (range from 13bp to 2200bp) and the efficiency in generating the 

predicted deletions. Although there seemed to be a trend towards a decrease of 

efficiency with deletion size, it is not significant (R
2

=0,0951). These human iPSC 

models have the potential to be differentiated towards the tissue of interest of 

the researcher and can represent more comparable models of human disease. 

In Chapter 3, we explored the transcriptomic consequences of ablating 

two different regions in the chromatin-related gene, MBD5. We targeted the 5’ 

UTR exon 4 and the MBD domain in exon 6 of MBD5 to understand the impact 

of these regions in the role of this protein during neurodevelopment. For this, 

we were able to differentiate the edited iPSC into the presumed tissue of interest 

in ASD - neuronal progenitors and mature neurons. The CRISPR-edited MBD5 

mutated iPSC-derived models were described and functionally characterized. The 

different edited iPSC lines showed MBD5 mRNA decrease in expression ranging 

from 0% to 70%. The predicted CRISPR-induced cuts seemed to be repaired via 

NHEJ, and in some cell lines there were additional insertions or deletions of a 

few base pairs at the CRISPR-cutting site. As mentioned above, the CRISPR-edited 

iPSC were successfully differentiated into NPC, followed by withdrawal of 

mitogenic factors (EGF, bFGF) for 30 days to guide them into the terminally 

differentiated mature neuronal lineage. Upon differentiation, all CRISPR-edited 

cell lines showed MBD5 mRNA expression levels similar to the controls. In fact, 
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in exon 4-targeted cell line 4i H7, the expression was even higher than that 

observed in controls.  

We used whole transcriptome sequencing (RNAseq) to determine the 

genome-wide transcriptomic effects caused upon the perturbation of MBD5 in 

both the targeted regions by CRISPR/Cas9. Principal component analysis was 

used to compare the transcriptomic landscape of the cell lines, based on their 

principal components. PC1 explained most of the variance found in the RNAseq 

dataset, ~23%. This PC clearly separated the transcriptome-wide signatures 

between cell type (NPCs and neurons). Transcriptome sequencing allowed a 

deeper appreciation of the intricate nature of MBD5 transcript architecture by 

identifying alternative transcripts during both stages of differentiation. 

Transcript MBD5-001 was not the main product of MBD5 expression in the 

differentiated cells, as was previously thought. There are 4 transcripts that 

remain unaffected by this ablation, as they do not contain exon 6, and are 

initiated before or after this region. Surprisingly, the transcript that exhibited 

highest expression overall in the neuronal cells was MBD5-010, which only 

comprises 5‘UTR exons 1 and 2, and may represent a regulatory RNA that should 

be further investigated to elucidate its role in transcriptional regulation. On the 

other hand, transcript MBD5-014 was observed uniquely in the NPC population 

and was absent in the neurons, suggesting a developmental state preference for 

this protein-coding transcript. Altogether, these data suggest that the MBD5 may 

be relevant for neurodevelopment through the action of alternative non-coding 

transcripts that do not depend on the presence of the MBD domain. It is also 

conceivable that the pathogenic effect of MBD5 haploinsufficiency on 

neurodevelopment occurs outside the neuronal lineage per se or is non-cell 

autonomous. The role neurobiological of the MBD5 non-coding transcripts of 

MBD5 should be further investigated to understand the importance of the non-

coding network and the implications of dysregulation in disease. 

Besides the local effects, whole transcriptome analyses allowed us to 

determine the genes that were differentially expressed between the wild-type 

and the CRISPR-edited cell lines. Among those genes, RAB11FIP1, the most 

significant DEG in NPC and also upregulated in neurons, seems like a promising 

candidate as this protein has previously been associated with axonal growth in 

mice. Other genes to pinpoint from the DEG are those that have been previously 

found to be disrupted in ASD patients – PLAUR and CNTNAP2. GSEA of the DEG 

unveiled the gene families and pathways that were enriched within the CRISPR 
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dataset. We found upregulated terms related to dopaminergic synapse 

transmission and downregulated for glutamatergic synapse, indicating a 

possible imbalance of neurotransmitter activity in these neuronal models. In 

addition to neuronal terms, we also found an enrichment for translation-related 

terms that suggest defects in translation of proteins required for normal 

synaptic function or neuronal growth. KEGG pathway analysis identified an 

enrichment of pathways involved in notch signaling, known to be involved in 

brain development; and cell adhesion. Enrichment for cell adhesion terms and 

genes (NCAM1) has previously been observed by the knockdown of the ASD-risk 

gene CHD8 (Sugathan et al. 2014) in neural progenitors, which is also a 

chromatin remodeler as MBD5. This process (cell adhesion) indicates a possible 

mechanism by which chromatin remodelers can be acting and impacting 

neuronal function. 

 

 

Limitations 

In Chapter 1, we analyzed lymphoblastoid cell lines from blood samples 

donated by the patient. Lymphoblasts, that arise embryonically from the 

endoderm, do not originate from the same embryonic germ layer as neurons 

(ectoderm). Thus, these tissues have divergent maturation processes and 

mutations in certain genes may not have the same impact on both tissues, and 

this should be noted when considering transcriptomic and proteomic analyses 

to identify deregulated pathways of neurodevelopment disorders. To overcome 

this issue, we felt the need to create human neuronal models harboring LoF 

mutations of chromatin-related genes. These models solved some of the caveats 

of analyzing patient blood samples and will allow the direct comparison of the 

LoF models, without genetic background confounders and allow the analysis of 

the tissue of interest. While these 2D models do not recapitulate critical features 

of brain development, as neuronal migration, there has been recent effort in 

developing iPSC-derived 3D cerebral organoid models (Chailangkarn et al. 2016; 

Lancaster & Knoblich 2014) that will fill the gap left by 2D models. These 

organoids, that self-organize through cell sorting and spatially restricted lineage 

commitment, recapitulate some of the robust regulatory systems of 

organogenesis in terms of not only cell differentiation, but also spatial 

patterning and morphogenesis (Eiraku & Sasai 2012).  
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In Chapter 2 we generate in isogenic series of allelic mutants derived from 

an iPSC line that was reprogrammed using with retroviral integration (Sheridan 

et al. 2011). This approach of reprogramming can affect the expression of 

certain genes if the reprogramming cassettes are integrated within actively 

transcribed genes or gene promoters, and can ultimately influence RNAseq 

results in those cases. Alternatives to avoid integrating reprogramming methods 

have been proposed (reviewed in Malik & Rao 2013), such as adenovirus, Sendai 

virus as well as non-viral methods such as mRNA or miRNA transfection.  

Another important point to consider, from Chapter 3, is that the neuronal 

maturation protocol used in this work drove the cells into a mixed neuronal 

population of excitatory and inhibitory neurons. Consequently, we are 

interpreting events (as the transcriptomic signature) coming from different cell 

types and might not be targeting the most affected population of neurons in 

ASD. Despite the fact that the type of neurons that are mostly affected in ASD 

have yet to be determined, it is believed that a disturbance in the central nervous 

system excitation and inhibition balance between the glutamatergic and 

GABAergic systems could underlie the etiology of ASD (Rubenstein & Merzenich 

2003), and this is consistent with the observed high comorbidity with 

epilepsy.  The animal model research suggests the primary factor in the 

excitation/inhibition imbalance is loss of GABAergic inhibitory control over 

excitatory neurons. This loss of inhibition appears to occur one of two ways: 

either disruption in GABAergic neurotransmission at the synaptic level or 

aberrant organization or loss of GABAergic neurons during development. 

Mutations in several synaptic genes, such as those encoding neuroligins, 

members of the SHANK family of proteins located at the synaptic density, give 

rise to ASD-relevant phenotypes in mouse models (Peça et al. 2011), supporting 

the hypothesis of altered synaptic communication in ASD etiology. Therefore, 

our model of a mixed population of neurons could mimic the ASD landscape to 

a certain extent, however, it would be beneficial to distinguish the effects of 

disrupting the chromatin-related genes separately in each category of neuron – 

excitatory/glutamatergic and inhibitory/GABAergic – using protocols to drive the 

differentiation process of iPSC into these cell types (Vazin et al. 2014; Liu et al. 

2013; Lin et al. 2015).   
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Conclusions 

As the efforts in ASD research grows, so does the list of genes and 

chromosomal regions that represent risk factors for ASD and other 

neurodevelopmental disorders. This project had the goal of exploring functional 

aspects of genes that have been previously identified to be relevant for ASD risk, 

as the role of most of the annotated genes remains unknown and could 

potentially help understand the missing heritability that may involve gene-gene 

interactions and epigenetics mechanisms.  

We characterized a novel unique intragenic microduplication of the 

chromatin regulator ARID1B in an adolescent male with intellectual disability. 

Previously, duplications of ARID1B had been scarcely described. With this case, 

we increased the list of ARID1B duplications to a total of 3 cases reported thus 

far, where haploinsufficiency of this gene is thought to be the causal mechanism 

underlying the phenotype. This reinforces that ARID1B is dosage sensitive gene, 

highly constrained that does not tolerate loss-of-function mutations and its 

haploinsufficiency lead to an enrichment of transcription and cell cycle 

regulation pathways. 

Here, we also demonstrated that it is possible to generate an allelic series 

of isogenic mutant iPSC from human-derived cells using CRISPR/Cas9 

technology, to be able to assess the individual contribution of individual genes 

for ASD. These cells have the potential to be used in a number of downstream 

functional analyses, through the differentiation into the tissue of interest, that 

in our case is the neuronal lineage, to explore the role of those chromatin genes 

Figure 39 - Summary of this project, featuring current and future work. 
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(EHMT1, MBD5, METTL2B) in neurodevelopment. Indeed, we were able to pursue 

the MBD5 cell lines and drove their differentiation into the intermediate 

neurodevelopmental stage of NPC and also into terminally differentiated mature 

neurons. We found that removing the 5’ UTR exon 4 and the MBD domain in 

exon 6 did not affect the cells’ ability to develop into mature neurons. We 

inspected the local MBD5 transcript pattern upon the removal of both regions 

and found that the highest expressing transcripts did not only lack the MBD 

domain but contained only non-coding exons. This brings potential insight into 

the mechanism of action of MBD5 in neurodevelopment, suggesting that it may 

not involve the MBD domain, in contrast to what has been seen in the other MBD 

family members, and instead may rely on non-coding regulatory RNAs to 

regulate its own activity or that of other proteins.  

On the other hand, genome-wide transcriptomic analysis allowed the 

identification of the dysregulated genes such as RAB11FIP1, NHLH1-2, PLAUR 

and CNTNAP2; and pathways such as notch signaling and cell adhesion that gave 

insight on the protein complexes and pathways that are acting downstream of 

MBD5 and are directly implicated in neuronal development and function. Those 

represent promising targets for ASD therapeutics to be able to specifically aim 

for common and convergent biological pathways that are affected by MBD5 and 

may be affected by other chromatin remodelers that represent a risk for ASD 

(such as CHD8). 

In conclusion, this study was essential to add additional evidence to the 

functional roles of chromatin-remodeling genes previously associated with ASD 

and intellectual disability - ARID1B and MBD5 - and to show the potential of 

human cellular models to study neurodevelopmental disorders. It is possible that 

the different chromatin-related genes studied are all be related through 

functional overlap and that would explain how the wide array of the chromatin-

related ASD genes can trigger a set of symptoms with a high degree of 

phenotypic similarity, as found in patients with ASD. Using the cellular models 

we here propose, in additional studies in this direction, will be crucial to uncover 

the role of the remaining long list of genes associated with ASD. This way, we 

have contributed to the ASD field and proposed models to pursue in order to 

unveil details of the mechanisms by which chromatin remodelers confer risk for 

ASD that will ultimately lead to broadly effective therapeutic targets for ASD and 

other neurodevelopmental disorders.
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Additional Preliminary Results 

Mbd5
GT/+

 Mouse Model 

The generation of the Mbd5
GT/+

 mouse model confirmed the causal role of 

MBD5 in the 2q23.1 microdeletion syndrome and indicated that neuronal 

dysfunction is responsible for the observed phenotype (Camarena et al. 2014). 

This murine model carries an insertional mutation in intron 2 of Mbd5 generated 

through gene-trap mutagenesis (Figure 40). This heterozygous hypomorph 

model recapitulates cardinal phenotypes of 2q23.1 microdeletion carriers 

including abnormal social behavior, cognitive impairment, and motor and 

craniofacial abnormalities (abnormal nasal bone).  They are small, with reduced 

body weight, reduced neuromuscular strength and show motor deficits. In 

addition, neuronal cultures uncovered a deficiency in neurite outgrowth 

(Camarena et al. 2014). To compare the genome-wide expression changes of 

MBD5 haploinsufficiency in an animal model organism and in the human-derived 

CRISPR cellular models,  we established a collaboration with the authors of the 

study Camarena et al., 2014. Tissue samples from cortex, cerebellum and 

striatum of the heterozygous Mbd5
GT/+

 mice at 8-weeks were collected for 

subsequent RNA extraction (Table X). 

The tissues to analyze were selected based on their potential relevance 

for ASD and the presence of MBD5 expression. Mbd5 expression in Mbd5
GT/+

 mice 

was observed throughout the brain in high levels, but predominantly in some 

structures as the cortex, cerebellum and striatum (Camarena et al. 2014). A 

variety of clinical studies have reported cerebellar abnormalities in the brains of 

individuals with ASD, such as increased cerebellar activation during a motor task 

(Allen et al. 2004) and cerebellar hypoplasia in individuals (Courchesne et al. 

1988). The most often reported cerebellar abnormality is a reduction in Purkinje 

cells, as demonstrated by post-mortem studies (Ritvo et al. 1986; Wegiel et al. 

2013). Additionally, according to the GTEx database of human postmortem 

tissues (http://www.gtexportal.org/), MBD5 shows the highest mRNA 

expression levels in cerebellum.  

Regarding the striatum, several ASD risk genes have enriched expression 

in the striatum and have been shown to be important for striatal function. These 

include the forkhead box transcription factors FOXP1 (Ferland et al. 2003; 

Tamura et al. 2004) and FOXP2 (Takahashi et al. 2003) and the post-synaptic 

density scaffolding protein, SHANK3 (Peça et al. 2011). The analysis of MBD5 
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knockdown in these tissues could elucidate upon its role in this structure that is 

mainly composed of GABAergic medium spiny neurons. 

 

Methods 

We thawed the tissues, that were previously frozen at -80ºC, overnight at 

-20ºC submerged in RNAlater®-ICE Frozen Tissue Transition Solution 

(ThermoFisher Scientific) in order to transition the frozen tissues to a state 

enabling easy cutting and extraction of high-quality RNA. RNA was obtained by 

lysing the tissue in 1mL of Trizol (Invitrogen) using metallic pellets (Qiagen) and 

a tissue lyser, then mixed with 1/5
th

 volume of chloroform and centrifuged at 

200xg for 5 minutes. The aqueous phase was collected and mixed with 

isopropanol and centrifuged to obtain a pellet that was then washed with 75% 

ethanol and then air dried and resuspended in RNAse-free water. Each tissue 

type was collected on the same day, to avoid batch effects. The RNAseq library 

was prepared using the Illumina TruSeq kit and manufacturer’s instructions. 

Libraries were multiplexed, pooled and sequenced on multiple lanes of an 

Illumina HiSeq2500, generating an average of 30 million paired-end reads of 70 

bp.  

Quality assessment of sequence reads was performed using fastQC (v. 

0.10.1 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequence 

reads were then aligned to human reference genome Ensembl GRCh37 (v. 71) 

using GSNAP (v. 12-19-2014) (Wu and Nacu, 2010) at its default parameter 

setting. Quality checking of alignments was assessed by a custom script utilizing 

Picard Tools (http://broadinstitute.github.io/picard/), RNASeQC (DeLuca et al., 

2012), RSeQC (Wang et al., 2012) and SamTools (Li et al., 2009). Counts per 

Figure 40 - Mbd5 mouse model characterization. Left - schematic of the brain regions collected 

for RNAseq analysis. Right - Mbd5 gene structure of 17 exons indicating the gene-trap cassette 

inserted within intron 2 (adapted from Camarena et al., 2014). 
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million (CPM) were generated from gene level counts which were tabulated using 

BedTools’ multibamcov algorithm at all Ensembl genes (GRCh37 v.71) and HTseq 

(Anders et al. 2015) and normalization of counts with DESeq2 (Love et al. 2014) 

and by housekeeping genes (ACTB and GAPDH). Differential Mbd5 transcript 

expression was assessed using RSEM & Bowtie2. 

 

Preliminary Results 

A PCA analysis of the RNAseq mouse dataset revealed that the two 

principal components that explain most variance separate the cerebellar 

samples from the remaining brain areas – striatum and cortex, which in turn 

cluster together. At this point, there is no visible segregation by genotype (Figure 

41). Reduction in Mbd5 expression, shown in the Camarena et al., 2014 et al 

paper, was recapitulated in all tissues, in variable expression ranges. The tissue 

showing the greatest difference in Mbd5 expression in heterozygous mice in 

comparison to controls was the cortex, followed by cerebellum and striatum 

(Figure 42).  

Figure 41 - PCA analysis of Mbd5
GT/+ 

mouse tissues. 
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Cell models lack circuitry organization and, therefore, converging lines of 

evidence, from mouse models and the cellular human models will help to define 

the cell types and brain regions that are critical in ASD. The joint analyses of this 

mouse model along with the human-derived CRISPR cell lines will also allow the 

comparison of the DEG and pathways to confirm the biological mechanisms 

involved in the pathogenesis of ASD by haploinsufficiency of Mbd5. A manuscript 

containing these and future results is currently under preparation.  

 

 

  

Figure 42 – Mbd5 expression assessed by DESeq2 in mouse samples. 
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Table X – Information of mouse samples collected. 

 

 

 

 

 

 

 

  

ID Genotype Gender Litter DOB 

M753 Mbd5
GT/+

 M 1 12/31/2015 

M764 Mbd5
GT/+

 M 2 12/26/2016 

M766 Mbd5
GT/+

 M 2 12/26/2016 

M767 Mbd5
GT/+

 M 2 12/26/2016 

M768 Mbd5
GT/+

 M 2 12/26/2016 

M755 Mbd5
GT/+

 F 1 12/31/2015 

M756 Mbd5
GT/+

 F 1 12/31/2015 

M758 Mbd5
GT/+

 F 3 12/14/2015 

M760 Mbd5
GT/+

 F 3 12/14/2015 

M763 Mbd5
GT/+

 F 3 12/14/2015 

M751 Wild-type M 1 12/31/2015 

M752 Wild-type M 1 12/31/2015 

M765 Wild-type M 2 12/26/2016 

M754 Wild-type F 1 12/31/2015 

M757 Wild-type F 1 12/31/2015 

M759 Wild-type F 3 12/14/2015 

M761 Wild-type F 3 12/14/2015 

M762 Wild-type F 3 12/14/2015 
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