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Abstract

Program errors are sometimes hard to find and program debugging is now a significant part of
the program development cycle, leading to an increase of time and cost of program development.
Several verification techniques were defined in the past, mostly for imperative and object-
oriented programming languages. For pure functional programming languages, verification is
apparently not so crucial, because programs tend to be more correct by design and by using
the highly expressive type systems of these languages. However, exactly these declarative
features of pure functional programming open the way to the verification of more sophisticated
properties. In this thesis, we first give a short overview of two main verification frameworks for
the Haskell programming language: Liquid Types and Contract Checking. We then describe one
implementation of a static property checker based on program transformation. Thus, we have
implemented in Haskell:

• A program transformation algorithm which enables to check if a program respects a given
specification

• A parser for a contract language, using monadic parsing

• An inlining and simplification algorithm, which is based on beta-reduction

• A module which enables our system to interface with external theorem provers

In this framework, to tackle higher-order program verification, we use program inlining until
properties are easily checked by several automatic theorem provers.
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Resumo

Por vezes, erros em programas são difíceis de encontrar, e debugging de programas é uma
parte fulcral do desenvolvimento de software, levando a um aumento do tempo e custo do
desenvolvimento em si. No passado, estruturaram-se várias técnicas de verificação, quase todas
para linguagens imperativas ou orientadas a objetos. Para programação funcional pura, não
há uma preocupação tão grande, uma vez que normalmente os programas são correctamente
escritos, auxiliados por sistemas de tipos altamente expressivos. Contudo, é a declaratividade
da programação funcional pura que dá azo à possibilidade de verificação de propriedades mais
sofisticadas sobre os programas. Nesta tese, efetuamos uma revisão e estudo de duas abordagens
principais: Liquid Types e Verificação de Contratos. De seguida, descrevemos uma implementação
de um sistema de verificação estática de propriedades baseado em transformação de programas.
Em resultado do estudo, implementámos em Haskell:

• Um algoritmo de transformação de programas que permite verificar se um programa respeita
a sua especificação

• Um parser para uma linguagem de contratos, baseado em parsing monádico

• Um algoritmo de inlining e simplificação, baseado em beta-redução

• Um módulo que permite ao nosso sistema comunicar com theorem provers externos

Este sistema faz uso de inlining de funções para que as propriedades sejam verificadas com ajuda
de theorem provers externos, com vista a abordar o problema da verificação de programas de
ordem superior.
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Chapter 1

Introduction

Program verification is an important area in programming, with applications to simpler and
more accurate debugging techniques, and easier bug fixing.

It is somewhat common to see developers implement assertions [1] as a method for checking
whether a computing state is valid, however these do not suffice for certain cases.

It is possible to go a step further in program safety testing, with the help of contracts. These
are based on boolean assertions and allow for defining more complex tests over the program state
and for detailed blame assignments [2].

There are many areas where it is critical that code does not unexpectedly fail, including
medicine or some real-time systems. Moreover, being able to understand where the fault is
actually occurring and what part of the code is responsible for it, will surely make it simpler to
correct problems and to write cleaner, more sound code as a result.

This thesis focuses on contract checking for functional programming, more specifically Haskell.

Certain aspects of functional programming languages make it harder to implement the most
obvious verification techniques. For example, one could be tempted to merely test every argument
passed to a function, but this could be a troublesome strategy when we have higher-order partially
applied functions. Lazy evaluation can also be difficult to handle, in particular when we have
recursive function calls or when the result is potentially diverging (e.g. an infinite list).

In this work, we implement a system for contract verification in Haskell and apply it to some
program examples. We show how our approach allows for efficient and conclusive detection of
potential faults in Haskell code.

Initially, we will survey existing solutions for program verification in functional languages,
including static and dynamic contract verification and type-based verification.

After being aware of current developments in this area, we will select a subset of Haskell and
extend it with contracts, through implementation of a compiler that transforms and simplifies
programs, focusing on operational semantics derivations that would make them violate their
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contracts. We have properties expressed in Haskell, so as to not force a developer to learn and
use a different language, and to verify them with the help of external theorem provers.

Finally, we will test our proposed system with real Haskell programs and modules, drawing
conclusions from the results we obtain.

Our contribution is a practical implementation of a verification system for Haskell based
on previous work described in [3][4], ready for usage with examples that clearly illustrate its
usefulness. The system has the following original contributions:

• Our transformation technique stops earlier than the system described in [3], producing
more expressive verification conditions which are then sent to a theorem prover. In [3],
properties are sent during the simplification process. Our approach is, therefore, more
compositional, having the proving and simplification modules separate.

• We use more than one theorem prover, which can be useful for instances where satisfiability
is not provable with certain approaches. In [3], Simplify [5] is used, but we also use Z3 [6].

• Our system is able to handle recursive functions in contracts, analyzing function calls to
check if their arguments are constructors, and unrolling them in separate in that case.
In [3], these programs are tested by hand, but our system can deal with them.

This thesis reports an implementation work. Formal correctness of the algorithms implemented
here was presented in [3]. Our original extensions to that work are easily shown to be sound with
respect to the original work, because we always use semantics-preservation program transformation
techniques, such as inlining.

We assume that the reader is familiar with the Haskell programming language. Good
references for Haskell include the textbook Haskell: The Craft Of Functional Programming by
Simon Thompson [7] and the website http://www.haskell.org.

Our system allows a developer to test their code with minimal changes to it, mostly related
to having to express which properties should hold at every given stage of a program. The
implementation is available in https://github.com/randrade23/sccHaskell. The main
results of this thesis were reported in [8].

In the next chapter, we describe the current state of the art in this area, detailing existing
approaches to this problem. In chapter 3, we explain how we implement a verification system,
including what is supported and how the system does its work. In chapter 3.2, we detail how
program transformation is essential to performing verification. In chapter 4, we show how
external theorem provers are used to aid in proving the safety of a program. In chapter 5 we
present examples of verification done with the implemented system. Finally, we conclude and
point some future lines of research.

http://www.haskell.org
https://github.com/randrade23/sccHaskell


Chapter 2

State of the art

Some previous approaches have been taken to program verification for functional languages, with
certain ones more complete than others.

A first example of a static strategy to ensure that written code is adequate is the language’s
type system. ML and Haskell use Damas-Milner type inference [9], which refers only to the types
of function arguments and not to the functions themselves. This prevents errors such as 1 +
True, but will not detect unsafe calculations such as division by zero, since it is only concerned
with the types of values themselves. The type inference algorithm can be extended easily to test
values with some arithmetic, as the work described in section 2.1 does.

Another approach which extends the previous one is dependent types [10]. Dependent types
allow to parameterize a type according to a value – for example, the length of a list could be
specified directly in the type, allowing for more restricted and effective type checking. Some
functional programming languages implement dependent types as their type system, including
IDRIS [11] and Agda [12] (see figure 2.1). Interactive theorem provers Coq [13] and Isabelle [14]
also implement dependent type theory, allowing for verification based on such specifications. In
this thesis, we opted to describe in more detail two approaches to functional program verification:
liquid types and systems that are based on program transformations.

data _X_ (A B : Set) : Set where

<_,_> : A -> B -> A X B

zip : {A B : Set} -> List A -> List B -> List (A X B)

zip [] [] = []

zip (x :: xs) (y :: ys) = < x , y > :: zip xs ys

zip _ _ = []

Figure 2.1: Expressing the Cartesian product with dependent types in Agda, and typing the zip
function with it

4



2.1. Verification using refinement types 5

Adrion et al. [15] divide program testing techniques into two categories: static and dynamic
– verifying at compile-time or at run-time. Static verification can capture a great amount of
potential errors, however, as we will see, it is not a complete solution. Dynamic verification has
the advantage of being able to test with real program executions, but it makes programs take
longer to execute, by actively testing them during their execution and it restricts itself to certain
data flows only, which means it is also not a general purpose approach.

2.1 Verification using refinement types

Refinement types [16] allow us to define restrictions over a type using logical predicates. Testing
whether or not a value is admissible in a refinement type is usually done by converting the
restrictions to verification conditions, which are then passed on to a Satisfiability Modulo Theory
(SMT) solver [17] that determines whether they are compatible with each other. However, this
verification strategy is not sufficient on its own for what we intend to verify – as we will show,
we also need to focus on the definition of the programs themselves.

Vazou et al. defined a type system – liquid types – which enables refinement types with
automatic type checking and partial type inference from a set of initial refinement annotations.
Liquid types were implemented as LiquidHaskell [18], which verifies the safety of Haskell code.

Example 2.1. A type for positive integers may be defined as such:

type Pos = {v:Int | v > 0}

Example 2.2. Defining a data structure for a CSV file, restricting the columns on each row to
be the same as the number of columns defined in the header:

data CSV a = CSV { cols :: [String]

, rows :: [ListL a cols] }

type ListL a X = {v:[a]| len v = len X}

Predicates can be defined with constants, variables, expressions, comparisons and measures.
Measures are Haskell functions that represent inductive properties and they are defined from
a limited subset of the language, since we are concerned with termination and restricted to
the expressivity of the SMT solver. It is clear that it is not possible to decide whether or not
a program terminates, so care is taken in how Haskell code can be used to define properties.
However, divergence can still occur in the code we are testing for safety, in particular when we
have recursive functions. It is expected that recursive or looping functions have some termination
metric associated to them, which allows LiquidHaskell to assume whether or not a function
is approaching a final state. The usage of termination metrics is important, since it makes
LiquidHaskell into a verifier of total correction. It becomes clear that this approach shares some
similarities to a generic static verification approach, with some extensions, namely the concern
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for termination. While termination checking is a big advantage of this approach, it is also less
expressive in the definition of properties, given how the definition of measures is more restricted
than, for example, the approach described in section 2.3.

2.1.1 Termination metrics

Termination metrics help a verifier deduce whether a function terminates or not. In our case,
they are defined with measures, which represent natural numbers. The measure of arguments
passed to a function must be smaller in every subsequent call to that function. Since measures
are decreasing consistently, they are a particular case of the well-defined relation (N, <) meaning
that they will decrease towards 0 – once this happens, the verifier knows that recursion has
ended.

Example 2.3. Defining a measure for the length of a list:

len [] = 0

len (x:xs) = 1 + len xs

Example 2.4. Using the list length measure to type the map function:

map :: (a -> b) -> xs:[a] -> [b] / [len xs]

map f [] = []

map f (x:xs) = f x : map f xs

In the case of the map function, we use the length of the source list as the termination metric.
The function will be called with lists of decreasing size, eventually reaching an empty list. In
addition to the metric being well-defined, the base case does not make another recursive call, so
it becomes clear that the function does terminate.

2.2 Dynamic verification

As discussed earlier, we can take an alternative approach to program verification by using a
dynamic strategy, running during the execution of the program itself. Findler & Felleisen [19]
defined an assertion-based contract verification system which supports higher-order functions and
values, holding on to them until first-order values are produced and then testing them accordingly.
The system was devised in the form of a typed lambda calculus, which wraps code in a recursive
testing function that also assigns blame to the function caller or to the callee, depending on who
produced the erroneous value.

An implementation of this system has been produced in Scheme, a strict functional pro-
gramming language, with support for writing contracts in Scheme itself. During program
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wrap :: Contract -> a -> Function -> Function -> a

wrap p e f f’ = case flatContract p of

True -> if p e then e else error f

False ->

let

d = dom p

r = rng p

in

\y -> wrap r (e (wrap d y f’ f)) f f’

Figure 2.2: Pseudocode for the wrapping algorithm, as described by Findler & Felleisen

transformation, contracts are classified into two categories – flat contracts and function contracts.
Flat contracts correspond to conditions over a first-order value and are tested by simply running
the condition, eventually blaming who provided it – for example, if main called a function with
an inadequate argument, the blame would lie with main. Function contracts result in another
wrapping of the function, splitting the contract in two: one contract for the argument (the
domain of the contract), which is verified as a flat contract, and another one for the result (the
range of the contract), but also alternating the blame adequately – if testing the result fails, the
blame lies with the function itself, instead of its caller. The following program gets the head of a
list and prints it, with a contract for the head function to check whether the list is empty or not.
The original program and the result of the transformation are presented below.

Example 2.5. Defining head with a contract for safety:

main = putStrLn $ show $ head [1,2,3]

{-@ head :: (not . null) -> ok @-}

head :: [a] -> a

head (x:xs) = x

Adding dynamic checks for whether head’s contract is violated or not:

main = putStrLn $ show $ head’ [1,2,3]

head’ :: [a] -> a

head’

= \ y0

-> (head (if (not . null) y0 then y0 else error "caller"))

head :: [a] -> a

head (x:xs) = x
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The result of this transformation produces code which preserves type signatures for the
original functions and that are executable without any need for the developer to change function
calls or anything related to contracted functions. This sort of approach could be implemented in
Haskell with the help of Template Haskell [20], a metaprogramming extension which allows for
the generation of type-safe code on-the-fly.

Example 2.6. As another example, we present a definition of the Quicksort algorithm and
its contract, as well as a possible redefinition with checking for contract violations and blame
assignments.

{-@ quicksort :: ok -> sorted @-}

quicksort :: [Int] -> [Int]

quicksort [] = []

quicksort (x:xs) = quicksort [y | y <- xs, y <= x] ++ [x] ++

quicksort [y | y <- xs, y > x]

quicksort’

= \ y0

-> if sorted

(quicksort (if ok y0 then y0 else error

"caller")) then

quicksort (if ok y0 then y0 else error "caller")

else

error "callee"

where

quicksort [] = []

quicksort (x : xs)

= (quicksort [y | y <- xs, y <= x]) ++ [x]

++ quicksort [y | y <- xs, y > x]

The quicksort function is wrapped inside another function, which checks for condition
violations. The ok function is a function that accepts any argument, thus representing that we
do not have a condition to enforce. As such, the redefined function will not run any checks on
the argument, but it will check if applying quicksort to a list does, indeed, produce a sorted
list, throwing an error if not. This redefinition will blame itself if a postcondition violation is
detected, meaning that it would be incorrectly defined. The original definition is preserved and
used internally in this new function.

2.3 Static verification using program transformations

Inspired by the lack of verification tools for lazy functional languages, Xu et al. [4] developed a
static verification system for Haskell which bases itself on the contracts provided to each function
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and that uses Haskell to write those contracts. This work focused on as much of the language as
possible, including higher-order functions or custom data structures, and integrated directly with
GHC, testing intermediate code and stopping at that stage if any potential unsafety is detected.
This strategy serves as a foundation for the system that we implement in this dissertation and
has been proven to be sound [3].

For this approach, programs are transformed to include code that aids us in testing whether
or not code should be considered safe. These transformations are then simplified and analyzed,
to check whether the programs conform with their specifications. This means that the result of
testing relies mostly with Haskell’s semantics, with the exception being when we have arithmetic
conditions – these are passed on to an SMT solver, similarly to the strategy described in
section 2.1. In contrast to LiquidHaskell, however, conditions can be expressed with nearly
as much expressivity as standard Haskell code, not being restricted in number of arguments,
equations or even recursion.

Example 2.7. Given the definitions of noA2, yesA2, h1 and g1, and as a result of inlining and
simplification, h1 and test are proven safe, since they conform to their contracts or make safe
function calls.

data A = A1 | A2

noA2 A1 = True

noA2 A2 = False

yesA2 A1 = False

yesA2 A2 = True

g1 :: A -> A

g1 A1 = A1

g1 A2 = A1

{- CONTRACT h1 :: x | noA2 x -> z | yesA2 z -}

h1 :: A -> A

h1 A1 = A2

test = h1 (g1 A2)

As for termination, functions are called with a limited "fuel", which represents how many
times we inline the definition of a function until we take it as final. This also means that
diverging functions could, ultimately, be considered safe, which is arguable, but also a reasonable
enough solution for a problem that is undecidable. While this serves as a reminder that contract
verification is, in general, an undecidable problem, we can use certain heuristics to estimate, to
some degree of certainty, whether or not a program should be considered safe. If we take, as an
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example, the function length, it would be inlined infinitely if there were no such limit, since it
is recursive. With this approach, it would branch out into two possibilities: 0 or 1 + lengthl,
which can be inlined as many times as it is necessary to get enough detail about the code we are
analyzing. This strategy is explained and used in detail in some examples of chapter 5.

This is, indeed, sufficient for testing programs for partial correctness, which is the goal of
this approach. For deciding if programs are safe, one technique used by Xu is checking, after
simplification, whether or not a program is syntatically safe, meaning that it does not call directly
a term that we know will fail.

One important contribution that we will make in this thesis, described in detail in the next
chapters, is the possibility of inlining and taking advantage of the definition of recursive contracts.
In the implementation detailed in [3], certain properties over functions that work with lists, such
as append, are not proven safe or unsafe, due to the recursion in its specification. Rather, those
properties are only proven manually – we aim to make sure that they can be proven automatically.
We introduce what could be called selective inlining – in some cases, as we will show, not all
functions should be inlined at the same time, at the risk of losing important information about
the terms that we are checking, and they can be inlined in separate, adding essential details to
the terms being verified.



Chapter 3

Static Contract Verification

In this section, we will give a detailed explanation of our system, including how a developer’s
code is processed and how contract definitions are used.

A developer may write code and properties in Haskell. The formal specification for the input
language may be found in figure 3.2. This code will be transformed to make clear in what
ways it can fail, and with the aid of simplification algorithms and eventually theorem provers –
for arithmetic, in particular –, we will check if it is possible that, given the code itself and its
properties, we could or not reach an invalid, failing state. Proving that a program cannot reach
a failing state is sufficient to prove its safety.

Haskell code 
and properties 

Parsing 
GHC API 

Transformation 
and inlining 

Simplification 
Analyze code to 

deduce conditions 
for failure 

Check if failure 
conditions are 

admissible 

Figure 3.1: The verification module

In order to accept Haskell as input, we need to parse it into a structure over which we can
implement the transformation algorithm. We opted to parse Haskell using the GHC API[21],
since it allows for access to the same parser as GHC uses, therefore guaranteeing that we get a
correct representation of code. The GHC API also enables us to get information about types
and returns a representation of optimized and desugared code. This code is represented as Core,
an intermediate processing language used by GHC and whose expressions are based on nine
constructors, shown in figure 3.3. We manipulate Core into our own language, so that we can
apply the transformation and simplification algorithms for checking.

11
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〈program〉 ::= 〈definition〉

〈definition〉 ::= 〈contract〉 〈function〉
| 〈function〉

〈contract〉 ::= 〈property〉
| 〈contract〉 ‘->’ 〈property〉

〈property〉 ::= ‘{’ 〈identifier〉 ‘‖’ 〈expression〉 ‘}’

〈function〉 ::= 〈identifier〉 ‘=’ 〈expression〉

〈expression〉 ::= 〈identifier〉 〈expression〉*
| 〈arithmetic, booleans, ...〉
| ‘case’ 〈expression〉 ‘of’ 〈alt〉+

〈alt〉 ::= 〈pat〉 ‘->’ 〈expression〉

〈pat〉 ::= 〈constructor〉 〈expression〉*
| ‘_’

Figure 3.2: Formal specification of the input language

type CoreExpr = Expr Var

data Expr b = Var Id -- "b" for the type of binders,

| Lit Literal

| App (Expr b) (Arg b)

| Lam b (Expr b)

| Let (Bind b) (Expr b)

| Case (Expr b) b Type [Alt b]

| Cast (Expr b) Coercion

| Tick (Tickish Id) (Expr b)

| Type Type

type Arg b = Expr b

type Alt b = (AltCon, [b], Expr b)

data AltCon = DataAlt DataCon | LitAlt Literal | DEFAULT

data Bind b = NonRec b (Expr b) | Rec [(b, (Expr b))]

Figure 3.3: Constructors for the Core language
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Example 3.1. The following example shows Haskell code for the factorial function, followed by
its representation in Core.

module Fa c t o r i a l where

f a c t : : Int −> Int
f a c t 0 = 1
f a c t n = n ∗ f a c t (n−1)

[ $trModule : : Module
[ LclIdX ]
$trModule = Module (TrNameS "main " ) (TrNameS " Fac t o r i a l " ) ,
f a c t [ Occ=LoopBreaker ] : : Int −> Int
[ LclIdX ]
f a c t
= \ ( ds_dIfO : : Int ) −>

case ds_dIfO o f { I ∗ ds_dIfQ −>
case ds_dIfQ o f {
__DEFAULT −>
∗ @ Int $fNumInt ds_dIfO ( f a c t (− @ Int $fNumInt ds_dIfO ( I ∗

1∗) ) ) ;
0 −> I ∗ 1∗

}
} ; ]

Given that Core is an explicitly-typed language, when analyzing it, we will find type
annotations for all variables that are instantiated by the compiler. A module definition is
represented by a constructor which takes a package name and the name of the module itself.

During compilation, GHC may perform inlining for code optimization – for example,
typeclasses such as Show are transformed into dictionary-passing style –, however this could lead
to diverging when we have recursive functions. For this reason, the fact function is tagged with
a LoopBreaker, meaning that the compiler will not inline its definition, at risk of looping. Since
the function has two equations, it is made into a case expression, with the compiler performing
various sanity checks during this procedure, such as verifying if the cases do not overlap or if
there are missing patterns. This case expression is inside a lambda expression, which takes as
many arguments as the original function uses in its own definition – any unused arguments are
removed during optimization. Variables are instantiated with a random Unique code which serves
as their key for comparison. This helps in avoiding variable capture, which can occur when we
have two variables with the same identifier.

Another step taken by the compiler in processing this function to Core is handling primitive
types. Int is a primitive type, so it is explicitly represented as such by the I* constructor – any
value with suffix * is a primitive value. The fact function, as defined in Core, will require that
its argument is an Int, and will extract it from its I* constructor before doing anything with it.
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In the recursive case, more instances of explicit typing occur. With @ Int, the minus and times
operators – which are polymorphic – are specialized to work with Int. Their definition for Int
comes from the Num typeclass’s dictionary, represented by $fNumInt.

3.1 Internal Language

3.1.1 Program language

After we have processed Haskell code into Core, we transform it into our own representation. Its
formal specification may be found in figure 3.4. This is important so that we can distinguish
relevant expressions, such as primitive operations, the usage of data constructors and function
calls. Our representation is aided by certain information supplied by GHC, such as Name, which
carries an unique identifier given by the compiler, or AltCon, which has information about a
Case alternative, specifying whether it represents a data constructor, for example.

〈program〉 ::= 〈decl〉+

〈decl〉 ::= 〈contract〉 〈function〉

〈contract〉 ::= 〈exp〉

〈function〉 ::= 〈id〉 ‘=’ 〈exp〉

〈exp〉 ::= 〈id〉
| 〈literal〉
| ‘λ’ 〈id〉 〈exp〉
| 〈op〉 〈exp〉+
| 〈constructor〉 〈exp〉*
| 〈exp〉 〈exp〉
| ‘case’ 〈exp〉 ‘of’ 〈alt〉+
| ‘let’ 〈id〉 ‘=’ 〈exp〉 ‘in’ 〈exp〉
| 〈exp〉 ‘/’ 〈exp〉
| 〈exp〉 ‘.’ 〈exp〉
| ‘BAD’
| ‘UNR’

Figure 3.4: Specification for the inter-
mediate language

data ADecl = ADef Name AExp
(Maybe AExp)

data AExp
= AVar Name
| AGlobal Id
| ALit L i t e r a l
| AApp AExp AExp
| ALam Name AExp
| APrimOp PrimOp [AExp ]
| AConApp DataCon [AExp ]
| ACase AExp Name [ AAlt ]
| ALet Name AExp AExp
| ARequires Name AExp AExp
| AEnsures AExp AExp
| AUnr Blame
| ABad Blame

type AAlt = (AltCon , [Name ] , AExp)

data Blame = Me | Cal lOf Name

Figure 3.5: Constructors for our representation
of Haskell code

An ADecl represents a top-level declaration for a function, carrying its identifier, the
corresponding expression and possibly a contract. An AExp represents an expression, with
the obvious constructors for the most common expressions, but also support for expressing
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conditions, with the ARequires and AEnsures constructors, or for attributing blame in case of
a failure. Blame is attributed with the AUnr and ABad constructors, which represent either
unreachable code (due to a precondition violation) or bad code (a failure due to a postcondition
violation), respectively. These allow us to express whether a function should return a value
according to its properties, or whether it should be given an argument that respects a given
property. This strategy is explained in more detail in the next section, being formalized in
definition 3.1. The constructors for this language are detailed in figure 3.5.

This transformation to the ADecl representation is done twice – the first time allows us
to get the Name from each function, which is important for contract parsing, and the second
time actually binds each contract to its function. We need the Name constructors in order to
recognize when a function call occurs in contract definitions. These constructors are supplied by
GHC directly and cannot be manually generated, since each Name carries an unique identifier as
previously described.

The most challenging part with transforming into the intermediate representation is being
aware of the fact that a Core Var does not always represent a variable stricto sensu – the
identifier associated with each Var may represent one of the following:

• A data constructor

• A primary operation – arithmetic and boolean operators

• A global variable – function call

• A local variable

This information is essential to correctly transform expressions to their adequate AExp
constructor, making it easier, but not absolutely necessary, to implement simplification rules.

3.1.2 Property language

We support contracts with properties written in Haskell. This is useful for the developer, since
it does not require learning a new language and it allows for the definition of more complex
properties, through usage of functions directly in the contract definition. While we allow for
contracts to be expressed directly in Haskell, with intention of supporting verification for the
entire language, it is possible that, due to the inherent nature of static verification, we cannot
verify more complex code. We do not have a formal specification of the limits of our system,
however this could be an interesting exercise for future work.

inc :: a:{x | True} -> {r | r > a}

Figure 3.6: A contract for a function that increments a number



16 Chapter 3. Static Contract Verification

data HsContract

= HsParContract HsContract

-- (contract)

| HsBaseContract String String

-- {x | x > 0}

| HsFunContract (Maybe String) HsContract HsContract

-- x:{x | x > 0} -> {y | y = x + y}

data Contract = C String HsContract

-- Function name & Contract

Figure 3.7: Constructors for contract definitions

Contracts can be divided into two categories: flat contracts and function contracts. Flat
contracts incide over an argument or value, whereas function contracts are composed of several
flat contracts, acting over a function’s arguments and over the value returned by it, with the
possibility of expressing a postcondition based on the function arguments.

Parsing contracts is done in two steps – firstly, we identify whether their definitions relate
to flat or function contracts, and then we work on the expressions themselves, taking care with
binding new variables and with function calls. To handle the first step, we devised a Parsec [22]
specification for it, which can be found in Appendix A.

For the second step, expressions are parsed using the haskell-src-meta package1. This package
parses expressions into Template Haskell [20] format. Template Haskell (TH) is an extension to
Haskell that allows access to the code’s abstract syntax tree, as well as to modify it on-the-fly.

data Exp

= VarE Name

-- ^ @{ x }@

| ConE Name

-- ^ @data T1 = C1 t1 t2; p = {C1} e1 e2 @

| LitE Lit

-- ^ @{ 5 or \’c\’}@

| AppE Exp Exp

-- ^ @{ f x }@

Figure 3.8: Template Haskell constructors which we use

1This package is available at https://hackage.haskell.org/package/haskell-src-meta

https://hackage.haskell.org/package/haskell-src-meta
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Template Haskell The reader is referred to [20] for more details about Template Haskell,
however we give an illustrating example in figure 3.9. The tuple function will take a list of any
length and build a tuple from it. The use of Template Haskell makes it possible that we define
such a function only once for lists of any size, without any type constraints – type checking will
only occur when the Template Haskell code is injected.

tuple :: ExpQ

tuple = [|\list -> $(tupE (exprs [|list|])) |]

where

exprs list = [infixE (Just (list))

(varE "!!")

(Just (litE $ integerL (toInteger num)))

| num <- [0..((length list) - 1)]]

example_usage = $(tuple) [1,2,3,4] -- returns (1,2,3,4)

Figure 3.9: A function which turns a list into a tuple of any length

The use of Oxford brackets delimits an expression which we want to be compiled, resulting
in an abstract syntax tree which can be inserted into code at runtime. In our case, we have a
lambda expression that takes an argument and returns a splicing of tupE over exprs[|list|]. A
splice is the evaluation and injection of abstract code – it is the opposite of using Oxford brackets.
The tupE function returns a constructor which represents a tuple. We can use the tuple function
by splicing it – it is of type ExpQ, which represents an abstract syntax tree for an expression.

Back to our transformation module, we then manipulate the contract expressions into Core
format, to reuse the module which converts Core to ADecl. It may seem redundant to convert
the expressions to Core and only then to our intermediate representation, rather then doing so
directly, but this will allow us to centralize the transformation module of our program, ensuring
that we have less possible failure points in our implementation. It was also not possible to
directly parse the expressions into Core, since the GHC API only supports such parsing during
actual compilation.

During conversion to Core, we take attention to whether variables represent function calls (or
primary operations) or not. This is important in order to create the adequate Core expressions –
as previously mentioned, there are different constructors for either case. Contract definitions
are also made into lambda expressions, like what is shown in definition 3.1. Thus, after their
conversion into the intermediate representation, we only need to apply functions to their respective
contracts in order to obtain a term that we can check for safety. When these lambda expressions
are created, we take care to always create new variables with different identifiers, therefore
avoiding possible variable capturing during simplification.

To verify a function with its contract, we specify that we would like the function to ensure
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the contract – this is represented with the notation e . t. Ensuring a contract means that the
expression e crashes if it does not respect t, or that it loops if the context does not respect the
contract. The context can also be verified, meaning that we want the function to require its
contract – e / t. This term will crash if the context does not satisfy the contract t, i.e. an invalid
argument may be supplied. These terms, based on application of a function to contracts, are
automatically built during program transformation, even considering cases in which a contracted
function is called inside another function (which may not be contracted).

module Inc2 where

inc : : a : { x | x > 0} −> {r | r > a}
inc : : Int −> Int
inc var = var + 1

−−−−>

[ $trModule
=
( (TrNameS "main " ) Module (TrNameS " Inc2 " ) )
|>
Nothing ,
inc
=
\var . (+ var ) 1
|>
Just \e . \b . \u . \v_4GG .
l e t a_4GI = (\e_4Gm. \b_4Go . \u_4Gq . case (\x_4Gk . (x_4Gk > 0) ) e_4Gm

of
Fa l se −> b_4Go
True −> e_4Gm) v_4GG u b

in (\e_4Gu . \b_4Gw. \u_4Gy . case (\ r_4Gs . ( r_4Gs > a_4GI) ) e_4Gu o f
Fa l se −> b_4Gw
True −> e_4Gu) ( e a_4GI) b u ]

Figure 3.10: The result of parsing a function and its contract

After being translated into Core, we need to translate contracts into an expression that we
can apply to what is being checked. We follow the rules in definition 3.1, instantiating new
variables with different identifiers and generating expressions according to the notation. The
contract expression is then attached to the function definition itself, being applied and simplified
during verification, as described in the next section.
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3.2 Verification by program transfomation

In a broader view, we intend to verify programs by transforming them into terms that represent
exactly what should happen depending on their contracts, and then checking if invalid execution
paths are reachable. More specifically, we test the context for inadequacies, as well as check if
certain cases like calls to other functions violate their own contracts during evaluation of another
function. This is based on the ensures/requires notation, which helps us deal with projecting the
properties into a verifiable term.

The ensures/requires notation is only powerful enough to help us verify a program if we
give a comprehensive specification of what it means and how we can use it to handle difficulties
inherent to functional program verification, such as testing higher-order functions.

Definition 3.1 (Ensures/Requires Notation).

e . {x | p } = λe . λb . λu . case (p[e/x]) of {True→ e ; False→ b} (3.1)

e / {x | p } = λe . λb . λu . case (p[e/x]) of {True→ e ; False→ u} (3.2)

e . x : t1 → t2 = λe . λb . λu . λv . (e . t2) ((e / t1) v u b) b u (3.3)

e / x : t1 → t2 = λe . λb . λu . λv . (e / t2) ((e . t1) v u b) b u (3.4)

The b and u represent BAD or UNR branches – postcondition failure or unreachable branch
due to precondition.

After projecting the contracts according to this notation, we can apply them to ABad or
AUnr terms, in order to attribute blame to the function itself or to where the function call
originated, as well as determine whether the failure has to do with the function definition itself
or with the context under which it was called. This notation also allows for the contracts of
other functions to propagate accordingly. If we are verifying a function, we want it to ensure its
contract; whenever we are checking its arguments, we require that they respect a given property.
Let us take as an example a function that takes another one as an argument, with a contract
being enforced for both functions. This will allow us to demonstrate how the system works for
higher-order functions.

f1 :: g:(x:{x | True} -> {y | y >= 0}) -> {r | r >= 0}

f1 :: (Int -> Int) -> Int

f1 g = (g 1) - 1

Figure 3.11: A function that takes another one as an argument and their respective contracts

Following from Definition 3.1:
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(λx . e) . (t1 → t2)→ t3 = λv1 . (((λx . e) (v1 / t1 → t2)) . t3)

= λv1 . (((λx . e) (λv2 .((v1(v2 . t1)) / t2))) . t3)

In the case of f1, this becomes:

λv1 . case (v1 1) >= 0 of

True→ case (v1 1)− 1 >= 0 of

True→ (v1 1)− 1

False→ BAD

False→ UNR

It is clear that the BAD branch represents a failed postcondition for f1, given that it is
its own expression that would violate the property in this case. A failure in the precondition
indicates that an inadequate argument has been supplied. The branch representing this situation
is deemed UNR, since it is a failure that is related to the context in which f1 is called, meaning
that the blame should lie with its caller, rather than with the function itself.
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Property checking

The terms described in the previous section represent the different possibilities for failure in
contract checking. They are built for each function in a given program and are then tested with
relation to the reachability of BAD branches. If we can prove that BAD branches in a function
are unreachable, then we have proven that the function is safe – there is no computation path
that violates its postcondition. This can also depend on any conditions we infer from contracts
to the function itself or to any other function that is called. These conditions will be assumed
true or false, according to the path that would lead to a postcondition failure.

4.1 Simplification

Before we can focus on the different possibilities for failure, we must simplify the terms as much
as possible, while keeping all information about preconditions, including some that may have
propagated from function calls. Making sure we do not lose any logical conditions is essential
to conduct a correct proof of what should be assumed under any computation branch, and of
whether or not it is possible to reach it.

In terms of implementation, to ensure that we obtain a term which is simplified as much as
possible, we apply the simplification module until we get a fixed point – i.e, simplify(x) = x.
This relates to simplification only and does not include unrolling. Unrolling is implemented as
a separate function which occurs a limited number of times, and after each unroll, we simplify
terms to a fixed point once again. Once we are done with simplification and unrolling, we inline
any function applications that can be solved according to the definition of functions, such as
lengthNil which can be replaced with 0. An example of this is shown in chapter 5. This is what
we call selective inlining, and it is paramount to our implementation, since it allows for added
detail to the specification of the term we are analyzing, as well as focusing on the definition of
the programs themselves. In general, it is done whenever a function is called with a constructor
as argument.

To ensure we do not miss any important conditions that propagate from other functions,

21
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simplifyF :: AExp -> CEnv -> [ADecl] -> (AExp, CEnv)

simplifyF e c d =

let

(a,b) = simplify e c d

in if a == (fst $ simplify a b d) then (a,b) else simplifyF a

b d

checkAExp :: Name -> [ADecl] -> ContractEnv -> Int -> CEnv ->

AExp -> AExp

checkAExp _ ds _ 0 assume e =

let

k = fst $ simplifyF e assume ds

n = fst $ simplifyF (unrollFactsF ds k) assume ds

n’ = unrollFactsF ds n

in

-- If unrolling complete...

if n == n’ then n

-- Else, a new fact was introduced w/fact unroll

else fst $ simplifyF n’ assume ds

checkAExp f ds cEnv n assume e =

let

(x,ce) = simplifyF e assume ds

unr = unrollCalls [f] cEnv ds x

in

checkAExp f ds cEnv (n-1) ce unr

Figure 4.1: Unrolling and simplifying functions a given number of times

inc :: a:{x | x > 0} -> {r | r > a}

inc var = var + 1

inc =

\v_4GG. case (v_4GG > 0) of

T -> case ((+ v_4GG) 1 > case (v_4GG > 0) of

T -> v_4GG) of

F -> BAD Me

T -> (+ v_4GG) 1

Figure 4.2: The result of applying the previous algorithm to the function in figure 3.10
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we need to replace any function calls with the correct terms, according to the ensures/requires
notation – this guarantees that they are projected correctly. The initial term is wrapped in an
AEnsures constructor, with the absence of a contract meaning that it should respect λ e b u. e – a
dummy contract which is only used for consistency of the implementation. Any function calls
are represented by the ARequires constructor, meaning that any potential violation of those
functions’ contracts will not be represented as a failure of the initial term itself.

inlineContractDef :: ContractEnv -> AExp -> AExp

inlineContractDef cEnv ex =

case ex of

AGlobal i -> case (lookupContractEnv cEnv (idName i)) of

Nothing -> (AGlobal i)

Just c -> (ARequires (idName i) (AGlobal i) (toAExp c))

AVar v -> case (lookupContractEnv cEnv v) of

Nothing -> AVar v

Just c -> (ARequires v (AVar v) (toAExp c))

...

checkAndBuild :: ContractEnv -> Int -> [ADecl] -> [ADecl] ->

[ADecl]

checkAndBuild _ _ _ [] = []

checkAndBuild cEnv n bs ((ADef f e t):ds) =

case t of

Nothing ->

let

fbody = inlineContractDef cEnv e

body2 = AEnsures fbody okContract

a = checkAExp f bs cEnv n [] body2

in

(ADef f a (Just okContract)) : checkAndBuild cEnv n bs ds

Just rt ->

let

fbody = inlineContractDef cEnv e

body2 = AEnsures fbody rt

a = checkAExp f bs cEnv n [] body2

in

(ADef f a t) : checkAndBuild cEnv n bs ds

Figure 4.3: Inlining contract definitions for calls to other functions

Terms are reduced according to standard Haskell semantics. We are only dealing with lambda
expressions, data constructors and case expressions, thus it is simple enough to explain how
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simplification works. Lambda expressions are beta-reduced and case expressions are matched
against the correct case, based on the constructor of the scrutinee. When we do not have enough
information to match in a case expression (e.g. we are scrutinizing a variable), we leave it as it
is, but still simplify its alternatives, considering if we should assume a variable to be of a certain
constructor or not – this depends on the branch that we are currently traversing. Other more
advanced simplifications for case expressions include checking if all branches are the same and
reducing it to that same branch, removing UNR branches to shrink the expression or pushing an
expression into every alternative when the case expression is being applied. The rules used are
formally defined below.

Definition 4.1 (Simplification and transformation rules).

f → λx.e where ∆[f 7→ (λx.e)]

(λx.e1)e2 → e1[e2/x]

caseKi yi of {. . .Kixi → ei . . .} → ei[yi/xi]

caseK . . . of {K ′
i . . .→ ei , . . . , _→ e} → e where ∀i,K 6= K ′

i

caseK . . . of {K ′
i . . .→ ei , . . .} → UNR where ∀i,K 6= K ′

i

case (case e of altsi) of altsj → case e of (pi → case ei of altsj)

where (pi → ei) ∈ altsi

(case e of altsi) a→ case e of (pi → ei a)

where (pi → ei) ∈ altsi

case e of (pi → ei . . . pj → UNR)→ case e of (pi → ei)

case e of (Ki xi → ei)→ case e of (Ki xi → ei[Ki xi/e])

case BAD of . . .→ BAD

case UNR of . . .→ UNR

All rules are applied in the same order as they are presented, except for the first rule (looking
up a function definition), which is applied only during unrolling. Unrolling consists in inlining a
function definition, along with its contract, and we only do so a limited number of times. This
helps to deal with the possibility of non-termination.

One particular case in implementing these rules relates to the expression scrutinization rule.
We need to keep track of the substitutions we are performing, which will be reused for the
expressions in each alternative. This is necessary to keep the substitutions sound. When a
scrutinee appears for the first time, we rebuild the case expression as such:

1. Check which constructors are covered by the alternatives

2. Simplify each alternative:
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• If our alternative is a DEFAULT :
– If the constructors are literals (e.g. numbers), or if we are missing more than one

constructor, we just simplify the right-hand side of the alternative – it means the
DEFAULT branch is, indeed, needed

– If there are no missing constructors, the DEFAULT clause is redundant and is
deemed unreachable (AUnr)

– Otherwise, there is just one constructor missing, and we modify the alternative
from DEFAULT to it, and simplify the right-hand side

• If our alternative is not a DEFAULT, we simplify the right-hand side and add an entry
to our environment, indicating which constructor and variable bindings are valid for
this branch

For this reason, the simplification function returns a tuple with the reduced expression and
with an environment of the choices that have already been made. Let us take the following
expression as an example:

case v of

Nil -> 0

Cons x y -> func v

In this case, any other occurence of v in the Cons x y branch must be substituted by
Cons x y, and any other case which scrutinizes v must follow the Cons . . . branch. All other
case simplification rules apply strictly as defined in definition 4.1, except for whenever we have
arithmetic formulas – we do not touch these case expressions, to preserve the information that
these formulas give us for interfacing with theorem provers. This also allows us to return a more
comprehensive specification of what exactly leads to unsafety in a program.

4.2 Interfacing with provers

After applying the contracts to their respective functions and simplifying the terms, we need to
analyze the resulting code to check if it is safe or not.

For many cases, it is sufficient to check if any BAD branch remains in the code. If it does
not, then we can conclude that a function is safe, according to its contract. If it does, we need to
check if these BAD branches are reachable – in certain cases, preconditions or contracts coming
from calls to other functions can make them unreachable. We should, therefore, traverse the
case expressions to find the BAD terms, and take note of what should be assumed to be true or
false, to reduce the expression to BAD. Sometimes, multiple failure branches appear – we need
to check every single one of them independently.

The toBAD function takes a case expression and analyzes it recursively, in order to extract
the formulas that are scrutinized in the expression. Once a formula is found, we can assume it to
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toBAD :: AExp -> [[AExp]]

toBAD tree@(ACase _ _ _) = map reverse $ traverse [] tree

where

traverse path (ACase sc v ps) =

concat $

map (\(c, _, r) ->

if c == DataAlt trueDataCon then

(traverse (sc:path) r) else

if c == DataAlt falseDataCon then

(traverse ((APrimOp NotOp [sc]):path) r)

else (traverse path r)) ps

traverse path (AApp _ a2) = traverse path a2

traverse path (APrimOp _ es) = concatMap (traverse path) es

traverse path (AConApp _ es) = concatMap (traverse path) es

traverse path (ABad _) = [path]

traverse _ _ = []

toBAD (ALam x e) = toBAD e

toBAD _ = [[]]

Figure 4.4: The function that returns a list of conditions that lead to each failure possibility

be true or false, depending on the branch that we follow next – if, however, the scrutinee is not
a formula (e.g. a function call), then we ignore it, but continue following through the various
alternatives. Once we reach a BAD term, we have a path to failure. This function is applied to
all functions that have been declared in the developer’s code.

Let us now take the following example to show how a contract is inlined and which conditions
we should pass to a prover for checking.

The precondition x > 0 is violated if an argument is less or equal to 0. However, we can
discard this branch using simplification rules – and for safety checking purposes, we can assume
that preconditions will not be violated.

In general, and as previously mentioned, we assume conditions true or false according to what
path we are following, since we could need them to help prove the truthness of a postcondition.
These assumptions can then be pushed onto the stack of any prover that supports truth stacks,
such as Z3 [6] or Simplify [5].

The postcondition x+ 1 > x is, obviously, never violated, which shows that this function is
safe – the False branch is unreachable and should be discarded, leaving the term with no BAD.
For the purposes of this implementation, we would need to have the prover assume that x > 0,
since we followed the True branch on that condition. This assumption extends to the inner case
in the postcondition – case x > 0 of True→ x is reduced to x, according to the conditions we



4.2. Interfacing with provers 27

inc :: a:{x | x > 0} -> {r | r > a}

inc x = x + 1

This function becomes:

\x . case x > 0 of

T -> case x + 1 > (case x > 0 of

T -> x

F -> UNR) of

T -> x + 1

F -> BAD Me

F -> UNR

Figure 4.5: A function, its contract and its inlining

(inc, [[(x > 0),

(not (x + 1) > case (x > 0) of

T -> x))]])

Figure 4.6: Possibilities for failure of inc, as given by toBAD

collected in this path. This special reduction ensures that, right before we send any expressions
to a theorem prover, we are only left with first-order formulas. In figure 4.7, we may find the
main functions for interfacing with some theorem prover.

The checkProver function receives a Prover (which contains input and output handles to
communicate with the theorem prover process), a list of assumptions and a list of expressions
which represent the conditions for a failing branch.

Given a condition, we check if it is made of integers only, and verify it immediately and
independently of other assumptions – being made solely of integers and boolean operators, it
will not depend on any other condition. We then store the result that we read from the theorem
prover – valid or invalid – in an environment, which we will use to propagate any intermediate
proofs such as this one. The result comes from parsing the output from the prover. (As an
example, a parser for Simplify’s output may be found in appendix B.) If it is not an integer-only
condition, we check if there are any case expressions left over, such as case x > 0 of True→ x in
the previous example. We solve these expressions based on assumptions that have already been
made, checking the assumption environment for this. These assumptions are propagated across
expressions using the solveCase function.

Once an expression is only a simple formula, devoid of any case expressions, we push it onto
the prover’s truth stack. After we are only left with one last expression, we check if it is valid
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data Prover = P { inH, outH :: Handle }

checkProver :: Prover -> [(AExp, Bool)] -> [AExp] -> IO ()

checkProver p ass [x] = do

let e = (solveCase ass x)

send p (formulaToString (toFormula e))

printLines p

checkProver p ass (x:xs) = do

case intsOnly x of

True -> do

send p (formulaToString (toFormula x))

val <- findResponse p validOrInvalid

checkProver p ((x, val):ass) xs

False -> do

let iN = isNot x

let iC = hasCase x

case iC of

True -> do

checkProver p ass ((solveCase ass x) : xs)

False -> do

pushProver p x

checkProver p ((x,not $ iN):ass) xs

solveCase ass (APrimOp o es) = (APrimOp o (propagate ass es))

propagate _ [] = []

propagate ass (e@(APrimOp o es):x) = solveCase ass e : propagate

ass x

propagate ass ((ACase sc var ps):x) = (case lookup sc ass of

Just True -> find (DataAlt trueDataCon) ps

Just False -> find (DataAlt falseDataCon) ps) : propagate ass x

propagate ass (e:es) = e : propagate ass es

Figure 4.7: Interfacing with a theorem prover, taking advantage of assumptions

or not, according to the assumptions we have pushed – we are verifying if all these conditions
imply that the final one will have a truth value that makes its case expression reduce to BAD. If
this implication is satisfiable, then BAD is reachable, otherwise, BAD is unreachable, since the
assumptions are incompatible with a postcondition failure, and it can be discarded. If we prove
that all implications are unsatisfiable, then the function is safe.
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In order to send expressions to a prover, they need to be converted to SMT-LIB syntax,
which is the input language used by Z3 and Simplify. The SMT-LIB Standard [23] has been
defined as the most common language for an SMT solver to take as input, having been created
with the help of the developers of theorem provers. In this language, arithmetic and relational
formulas are always presented in prefix notation – for example, 1 + len xs→ (+ 1 (len xs)).

~$ z3 -in

(declare-const x Int)

(assert (> x 0))

(assert (not (> (+ x 1) x)))

(check-sat)

unsat

Figure 4.8: Using Z3 to prove that BAD is not reachable

Thus, our system transforms code in order to make it clearer how it could fail, and analyzes
the output of that transformation in order to check how the code itself or its preconditions can
imply failure. Finally, it checks if the conditions that lead to errors are, indeed, admissible.
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Working Examples

In this section, we give a better explanation of what our system can do in terms of verification,
starting with smaller programs over simple arithmetic and finishing with programs that have
recursion over data structures.

Example 5.1 (Analyzing function calls and detecting invalid contexts). Let us take an example
to illustrate how an inadequate context is detected by this system. Taking the function in
figure 4.2, let us assume we have another function that simply calls inc with argument 1 – i.e.
f = inc 1. In our system, this call would be transformed and inlined as follows:

case (1 > 0) of

F -> BAD Me

T -> case ((inc 1) > case (1 > 0) of

F -> BAD Me

T -> 1) of

T -> case (1 > 0) of

F -> BAD Me

T -> case (((+ 1) 1) > case (1 > 0) of

F -> BAD Me

T -> 1) of

T -> (+ 1) 1

Figure 5.1: Checking the call inc 1

As far as the system is concerned, when checking f , we will only be focusing on it potentially
violating inc’s precondition – after all, it is the only violation it could make, given that it has
no contract, but it is calling a function that has one. This means that the only possible failure
would have to do with 1 being lesser than 0, violating the precondition x > 0. A theorem prover
concludes that this is false, and therefore the BAD branches are unreachable, proving that this
call to inc is safe.

30
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Example 5.2 (Ensuring a function will not fail with preconditions). To show how important
preconditions are, we can also take as an example the verification of the head function for lists.
This function is undefined for empty lists, since we have no element to return, and a call to head
with an empty list will throw an exception. Therefore, an adequate precondition is ensuring that
the list is not empty.

data List a = Cons a (List a) | Nil

not’ :: Bool -> Bool

not’ False = True

not’ True = False

null’ :: List a -> Bool

null’ Nil = True

null’ (Cons _ _) = False

head’ :: a:{x | not’ (null’ x)} -> {r | True}

head’ :: List Int -> Int

head’ (Cons n _) = n

Figure 5.2: Verifying the head function for lists

Applying the contract to the function and inlining function calls, we obtain the following
term:

\v. case (\ds_D. case ds_D of

F -> T

T -> F) ((\ds_t. case ds_t of

Cons _ _ -> F

Nil -> T) v) of

F -> (\ds_l. case ds_l of

Nil -> patError

Cons n _ -> n) (UNR Me)

T -> (\ds_l. case ds_l of

Nil -> patError

Cons n l -> n) v

Figure 5.3: Paths for verification of head
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Applying simplification rules, we obtain the following case expression:

\v. case v of

Cons n l -> n

Nil -> UNR Me

Figure 5.4: Simplified version of head

Under the simplification rules for cases, we can discard the Nil branch. Therefore, the
precondition is strong enough to ensure we do not reach an error branch, and the function is
safe. Any wrongful call to it will also be caught by this system, similarly to the first example.

Example 5.3 (Checking a recursive arithmetic function). Recursion is at the heart of nearly
every functional program, being essential to express certain concepts clearly. One example of this
is with the factorial function, which is only defined for numbers greater or equal to zero. Our
system can handle this kind of functions easily. The definition of fact and its contract follows
below.

fact :: a:{x | x >= 0} -> {r | r >= 1}

fact :: Int -> Int

fact x = case x == 0 of

T -> 1

F -> case x > 0 of

T -> x * fact (x-1)

F -> error "Invalid argument"

Figure 5.5: The factorial function and its contract

It is important to mention that the error call is made into a BAD term. Other than that,
simplification follows as usual, producing the failing branches listed in figure 5.6.
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[(v_4GG >= 0), (not (v_4GG == 0)),

(not (v_4GG >= 0))]

[(v_4GG >= 0), (not (v_4GG == 0)),

(v_4GG > 0),

(not (v_4GG - 1 >= 0))]

[(v_4GG >= 0), (not (v_4GG == 0)),

(v_4GG > 0), (v_4GG - 1 >= 0),

(fact (v_4GG - 1) >= 1),

(not (v_4GG * (fact (v_4GG - 1)) >= 1))]

[(v_4GG >= 0), (v_4GG == 0),

(not (1 >= 1))]

Figure 5.6: Possibilities of failure for fact

The first possibility is for whenever a top-level call to fact happens with a number which is
strictly lesser than zero. This violates fact’s precondition. The second possibility relates to a
case in which the recursive call could violate fact’s precondition, if x− 1 < 0 – the assumptions,
however, make this case unreachable as well. The third possibility assumes that fact(x− 1) >= 1
and would fail if x ∗ fact(x− 1) < 1 – violating fact’s postcondition, which is proven impossible.
The recursive call is, at this point, proven to be correctly defined according to the function’s
specification. The final possibility would fail if 1 < 1, which is obviously false, thus proving that
fact’s base case conforms to its contract and that the function is safe.

Example 5.4 (Verifying programs that work over lists). This system can also deal with more
advanced programs, including those with recursion. As an example, let us consider the append
function, which takes two lists and returns their concatenation. One condition that should be
verified relates to the length of the resulting list – it should be the same as the sum of the lengths
of the input lists.

append’ :: a:{x | True} -> b:{y | True} -> {r | len r == len a +

len b}

append’ :: List Int -> List Int -> List Int

append’ Nil ys = ys

append’ (Cons x xs) ys = Cons x (append’ xs ys)

Figure 5.7: Defining append and its contract

After applying the contract to the function, we get two BAD branches – one for each definition
of append, considering whether the first list is empty or not.
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\v1 v2 . c a s e v1 o f
Cons x xs −> c a s e ( l e n ( Cons x ( c a s e ( l e n ( append ’ xs v2 ) == ( l e n xs + l e n v2 ) )

T −> append ’ xs v2 ) ) == ( l e n ( Cons x xs ) + l e n v2 ) )
F −> BAD Me
T −> Cons x ( c a s e ( l e n ( append ’ xs v2 ) == ( l e n xs + l e n v2 ) )

T −> append ’ xs v2 )
N i l −> c a s e ( l e n v2 == ( l e n ( N i l ) + l e n v2 ) )

F −> BAD Me
T −> Cons x ( c a s e ( l e n ( append ’ xs v2 ) == ( l e n xs + l e n v2 ) )

T −> append ’ xs v2 )

Figure 5.8: append’s contract helps understand how it could fail

The system will then apply the definition of len to the calls lenNil and len (Cons . . .), giving
us something much more expressive to work with. This is an example of the selective inlining
mentioned in section 2.3.

\v1 v2 . c a s e v1
Cons x xs −> c a s e ( l e n ( append ’ xs v2 ) == ( l e n xs + l e n v2 ) )

T −> c a s e (1 + l e n ( append ’ xs v2 ) == (1 + l e n xs + l e n v2 ) )
F −> BAD Me
T −> Cons x ( c a s e ( l e n ( append ’ xs v2 ) == ( l e n xs + l e n v2 ) )

T −> append ’ xs v2 )
N i l −> c a s e ( l e n v2 == 0 + l e n v2 ) )

F −> BAD Me
T −> Cons x ( c a s e ( l e n ( append ’ xs v2 ) == ( l e n xs + l e n v2 ) )

T −> append ’ xs v2 )

Figure 5.9: The definition of len is essential to prove the safety of append

In order to prove that append is correctly defined for the case in which the first list is empty,
it suffices to show that len v2 = 0 + len v2, as expected. To show that append is properly
defined for the case where the first list is not empty, we need to assume that its postcondition
len (append′ xs v2) == (len xs+ len v2) will hold for the recursive case, as described in [7]. After
one step of execution of append, the result will be Cons x (append′ xs v2), which has length
1 + len (append′ xs v2). We want this length to be equal to 1 + len xs + len v2, due to append’s
precondition. This is proven true due to the assumption we made, proving both BAD branches
are unreachable and that append is safely defined.

The append function is the backbone of most functions that work over lists. We can use it
to define other predicates that perform certain operations with them, including reverse, which
returns a reversed list. We will impose that the returned list must have the same length as the
input list.

reverse’ :: a:{x | True} -> {r | len’ r == len’ a}

reverse’ :: List Int -> List Int

reverse’ Nil = Nil

reverse’ (Cons x xs) = append’ (reverse’ xs) (Cons x Nil)

Figure 5.10: Defining reverse, with the help of append, and its contract
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We then apply the contract to the function, leaving us with two possibilities for failure, one
for each definition of the function. The conditions for either possibility are shown below.

[(not (0 == 0))]

[(len (reverse’ xs) == len xs),

(len (append’ (reverse’ xs) (Cons x Nil)) == len (reverse’ xs)

+ 1 + len Nil),

(not (len (append’ (reverse’ xs) (Cons x Nil))) == 1 + (len

xs))]

Figure 5.11: The possibilities for reverse to fail

The first case refers to when we are trying to reverse an empty list. The function would fail
if its returned list had a length different than the length of the first list, meaning that, in this
case, it would fail if 0 were different from 0. This is deduced from the definition of reverseNil.
This, obviously, does not hold, so reverse is safe for its base case.

The second case, which uses recursion, has two conditions that hold before we can look
at a possible postcondition failure. The first condition refers to the inductive property of the
postcondition – we should assume that it holds for the recursive case. The second condition
is derived from append’s contract – we can assume its postcondition to hold, since we are not
concerned with verifying append itself at this point. The final condition is reverse’s postcondition,
and for reverse to be deemed unsafe, it cannot hold. However, based on the other two conditions,
it is impossible for reverse’s postcondition to be false, as a theorem prover shows. reverse is
proven safe, with the help of conditions derived from the functions we called.

Example 5.5 (Verifying programs that work over arbitrary data structures). Our implementation
is capable of handling programs with arbitrary data structures, such as trees, and prove properties
over them. As an example, let us take a function that gives us the depth of a tree.

data Tree a = Node a (Tree a) (Tree a)

| Leaf

depth :: a:{x | True} -> {r | r >= 0}

depth :: Tree Int -> Int

depth Leaf = 0

depth (Node _ a b) = 1 + (if (depth a) > (depth b) then depth a

else depth b)

Figure 5.12: Defining depth and its contract
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Applying the contract to the function definition, we get a term with three possibilities for
failure – one for when we are taking the depth of a tree which just has a leaf, and two depending
on which branch goes deeper.

\v . case v o f
Node _ a b −>
case ( depth a >= 0) o f
T −> case ( depth b >= 0) o f

T −> case depth a > depth b o f
F −> case ( depth b >= 0) o f

T −> case (1 + depth b >= 0) o f
F −> BAD Me
T −> case ( depth a >= 0) o f

T −> case ( depth b >= 0) o f
T −> case ( depth b >= 0) o f

T −> 1 + depth b
T −> case ( depth a >= 0) o f

T −> case (1 + depth a >= 0) o f
F −> BAD Me
T −> case ( depth a >= 0) o f

T −> case ( depth b >= 0) o f
T −> case ( depth b >= 0) o f

T −> 1 + depth b
Leaf −>
case (0 >= 0) o f
F −> BAD Me
T −> case ( depth a >= 0) o f

T −> case ( depth b >= 0) o f
T −> case depth a > depth b o f

F −> case ( depth b >= 0) o f
T −> 1 + depth b

T −> case ( depth a >= 0) o f
T −> 1 + depth a

Figure 5.13: Applying depth’s contract
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Analyzing this term according to our strategy, we extract the conditions that lead to each
possible failure.

[(depth a >= 0), (depth b >= 0),

((depth a) > (depth b)), (depth a >= 0),

(not (1 + (depth a) >= 0))]

[(depth a >= 0), (depth b >= 0),

(not ((depth a) > (depth b))), (depth b >= 0),

(not (1 + (depth b) >= 0))]

[(not (0 >= 0))]

Figure 5.14: Possibilities for depth to fail

The first case relates to when the left branch goes deeper – depth a > depth b. We assume
either branch to have depth >= 0 – it is our inductive property – and this case would only fail if
depth a+ 1 <= 0, which is obviously false, given our assumptions. The second case is analogous
to the first, but with the right branch going deeper. The last case refers to when we are taking
the depth of a tree with just a leaf, and it is clear that this case respects the specification for the
depth function.

Example 5.6 (Recursion with two different data structures and multiple function calls). Let
us now verify a function that converts between two different data structures. We will convert a
tree to its flattened representation (a list) and check if we have the same number of nodes as
elements in the new list. This means that we will also have to define a function for counting
nodes, and its respective contract. Both definitions can be found below.

collapse :: a:{x | True} -> {r | len r == count a}

collapse :: Tree Int -> List Int

collapse Leaf = Nil

collapse (Node n a b) = append’ (append’ (collapse a) (Cons n

Nil)) (collapse b)

count :: a:{x | True} -> {r | r >= 0}

count :: Tree Int -> Int

count Leaf = 0

count (Node _ a b) = 1 + count a + count b

Figure 5.15: Definition of collapse and count and their contracts

Verifying count follows analogously to the verification of depth. The verification of collapse is,
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however, slightly more complex – it depends on the definitions of three other functions: append,
length and count. This is evidenced by the conditions that we infer from applying collapse’s
contract to itself.

[(not (0 == 0))]

[(len (collapse a) == count a),

(len (append’ (collapse a) (Cons n Nil)) == (len (collapse a) +

1 + 0)),

(len (collapse b) == count b),

(len (append’ (append’ (collapse a) (Cons n Nil)) (collapse b))

== (len (append’ (collapse a) (Cons n Nil)) + len (collapse

b))),

(not (len (append’ (append’ (collapse a) (Cons n Nil))

(collapse b)) == (1 + (count a) (count b)))]

Figure 5.16: The cases in which collapse could fail

The base case is proven directly. For the inductive case, we need to assume four conditions:

• The length of collapsing the left branch is the same as the left branch’s node count

• The length of collapsing the right branch is the same as the right branch’s node count

• The length of appending the left list to a list with the current node’s value equals the
length of the left list plus one (follows from the definitions of append and length)

• The length of appending the left list and the current node to the right list equals the
length of the left list and the current node plus the length of the right list (follows from
the definitions of append and length)

Given these conditions, collapse would only fail if the length of the lists on the left and right
sides, plus the current node, were different from the node counts on both sides plus one (the
current node). This is not possible due to the assumptions we made, so collapse is proven safe.
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Profiling Below, we show some statistics about verifying the aforementioned examples,
including time, number of verification conditions generated and memory usage. We grouped the
example functions into four modules, as shown below.

The modules shown in table 5.1 contain the following functions and contracts:

• Inc (inc):

inc :: a:{x | True} -> {r | r > a}

• Fact (fact):

fact :: a:{x | x >= 0} -> {r | r >= 1}

• Cons (head, length, append, reverse, map):

head’ :: a:{x | not’ (null’ x)} -> {r | True}

length’ :: a:{x | True} -> {r | r >= 0}

append’ :: a:{x | True} -> b:{y | True} -> {r | length’ r ==

(length’ a + length’ b)}

reverse’ :: a:{x | True} -> {r | length’ r == length’ a}

map’ :: a:{x | True} -> l:{y | True} -> {r | length’ r ==

length’ l}

• Tree (depth, count, mapTree, collapse, length, append):

depth :: a:{x | True} -> {r | r >= 0}

count :: a:{x | True} -> {r | r >= 0}

mapTree :: a:{x | True} -> b:{y | True} -> {r | count r ==

count b}

collapse :: a:{x | True} -> {r | length’ r == count a}

length’ :: a:{x | True} -> {r | r >= 0}

append’ :: a:{x | True} -> b:{y | True} -> {r | length’ r ==

(length’ a + length’ b)}

Module # Functions Time (s) Memory (kB) # VCs
Inc 1 3,20 33,9 2
Fact 1 12,15 48,8 16
Cons 5 24,18 42,5 13
Tree 6 39,37 59,2 31

Table 5.1: Time, memory and number of verification conditions generated for each module
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Analyzing the results, we note that time is not an issue for these examples, being verified
quickly enough. It is also noticeable that the number of generated verification conditions is not
linear to the number of functions in each module, and can indeed be much larger when we have
functions that return recursive function calls, like fact. Finally, we realized that memory usage
escalates with the number of verification conditions that are generated.
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Conclusion and Future Work

Static contract checking is an important concept in the area of software verification, since it
allows checking code for safety without running it, therefore allowing a programmer to find
defects earlier in development. It is also important for functional languages, even considering
that their use often results in safer, better designed code. It could also be argued that it actually
becomes even more important when we are dealing with functional programming, in spite of a
tendency to produce more correct code, since languages like Haskell allow for easier checking of
more complex properties over software, given their declarative properties. In this dissertation,
we focused on a theoretical model for static contract checking and implemented it in practice,
with clear, reasonable examples of how useful it can be to ensure that code is adequately written.
Contracts also force the developer to think in a different way: they lead to a greater focus on
what properties should code have. This implementation extends the one described in the original
work, enhancing support for recursion and arbitrary data structures, making it more suitable for
real-life programs.

6.1 Future Work

Future work includes interfacing with interactive theorem provers such as Coq, and implementing
a dynamic contract checking module, thus creating a hybrid contract checking system with
greater coverage. As evidenced in chapter 1, dynamic verification has advantages over static
verification, particularly due to the fact that we can test programs against real execution traces,
and a hybrid system would be able to take advantage of each approach’s positives.

6.2 Final Remarks

This is a step forward in functional program verification, since the produced work is capable of
detecting faults in a very expressive subset of Haskell and it can easily be adapted to verify other
functional programming languages. The main difficulties with this implementation were handling

41
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certain details in the Core specification, as well as dealing with the possibility of non-termination.
At the end of the work described in this thesis, we think that the result is a step forward in
contract verification, which is important on its own, given how it helps developers write better,
more correct code. Given Haskell’s declarative style, it is also a perfect fit for the development of
tools that parse and analyze code, and that has been evidenced throughout this dissertation.
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Appendix A

Parser for contracts

type P = Parser

lexer = Token.makeTokenParser emptyDef

identifier = Token.identifier lexer

whiteSpace = Token.whiteSpace lexer

contracts :: P [Contract]

contracts = many $ do

fname <- identifier

whiteSpace

string "::"

whiteSpace

cont <- hsContract

whiteSpace

return $ C fname cont

hsContract :: P HsContract

hsContract = (try funContract) <|> baseContract

baseContract :: P HsContract

baseContract = try (do

char ’{’

whiteSpace

var <- identifier

whiteSpace

exp <- between (char ’|’) (char ’}’) (many1 $ noneOf ("}"))

return $ HsBaseContract var exp) <|> parContract
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46 Appendix A. Parser for contracts

parContract :: P HsContract

parContract = do

char ’(’

whiteSpace

h <- hsContract

whiteSpace

char ’)’

return $ HsParContract h

funContract :: P HsContract

funContract = do

n <- optionMaybe (do {var <- identifier; char ’:’; return var})

l <- baseContract

whiteSpace

string "->"

whiteSpace

r <- hsContract

return $ HsFunContract n l r

unVar (HsBaseContract v _) = v

parseString :: String -> [Contract]

parseString str =

case parse contracts "" str of

Left e -> error $ show e

Right r -> r

Figure A.1: Parsec specification of a parser for different types of contracts



Appendix B

Parser for Simplify’s output

simplifyDef :: LanguageDef st

simplifyDef = emptyDef { P.reservedNames = ["Valid", "Invalid"] }

lexer :: P.TokenParser ()

lexer = P.makeTokenParser simplifyDef

reserved :: String -> Parser ()

reserved = P.reserved Prover.lexer

int :: Parser Integer

int = P.integer Prover.lexer

whiteSpace :: Parser ()

whiteSpace = P.whiteSpace Prover.lexer

validOrInvalid :: Parser Bool

validOrInvalid = do

optional (PC.char ’>’)

Prover.whiteSpace

Prover.int

PC.char ’:’

Prover.whiteSpace

choice [ do { reserved "Valid"; return True }, do { reserved

"Invalid"; return False } ]

findResponse :: Show a => Prover -> Parser a -> IO a

findResponse prover parser = do

line <- hGetLine (outH prover)
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48 Appendix B. Parser for Simplify’s output

case parse parser "" line of

Right b -> return b

Left _ -> findResponse prover parser

Figure B.1: Parsec specification of a parser for Simplify’s responses
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