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ABSTRACT 

 

Titanium dioxide nanoparticles (TiO2 NPs) are the most extensively studied metal 

oxide nanoparticle worldwide. Despite the inconsistency of biological effects observed in 

vitro after exposure to TiO2 NPs, many studies have demonstrated their capacity to induce 

cytotoxicity and genotoxicity in various cultured cell lines.  

Nanoparticle toxicity has been associated to their small size and consequent high 

surface area and reactivity. In an attempt to overcome this issue and maintain the 

advantages of nanoparticles, immobilization of nanoparticles on the surface of inorganic 

supports has been recently performed, in particular on clays minerals, resulting in the 

creation of nanocomposites. 

Taking all into account, the main goal of the present work was to evaluate in vitro 

toxicity of rutile TiO2 NPs immobilized in high purity kaolinite clay (C-TiO2), in a 

hepatocellular carcinoma human cell line (HepG2). For a full understanding of the effects 

of this nanocomposite and its single elements, a primary characterization was performed 

using field emission scanning electron microscope and dynamic light scattering. 

Nanomaterials uptake by HepG2 was also analyzed by means of flow cytometry. For the 

cytotoxicity evaluation it was initially established to use the MTT, Alamar blue, Neutral red 

uptake and LDH assays, however, after interference analysis, only MTT and Alamar blue 

were found to be suitable assays for the present materials. Cytotoxicity was evaluated after 

exposure to different concentrations of the three materials prepared in complete and serum 

free media for three exposure times (3, 6 and 24 hours). The comet assay was further used 

for the genotoxicity assessment (non-cytotoxic concentrations for 3 and 24 hours).  

Results show that all studied materials were internalized by HepG2 cells in both 

media types (complete and serum free) and for both periods of exposure. In addition, 

analyzed materials induced significant mitochondrial and potential redox dysfunction of the 

hepatocytes in a dose-dependent manner. TiO2 NPs preferentially induced decrease in 

viability after 24 hours of exposure in serum free medium and in almost all periods of 

exposure in complete medium; both nanokaolin and C-TiO2 nanocomposite could 

significantly decrease the HepG2 viability for both media and also in almost all periods of 

treatment. Furthermore, TiO2 NPs, nanokaolin and C-TiO2 nanocomposites also affected 

DNA integrity in a dose-dependent manner both after 3 and 24 hours of exposure. 

Thereby, the present results suggest that kaolinite mineral is not a desirable 

substrate for the immobilization of nanoparticles and that, in accordance to what has been 
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previously stated by other authors, rutile TiO2 NPs may present cytotoxic and genotoxic 

effects. 

To overcome the toxic effects observed, other organically modified kaolinite clays 

must be studied in order to find a suitable substrate for nanoparticle immobilization; this will 

be essential for the development of biocompatible and safe nanocomposites. 

 

Keywords: nanocomposites, nanoparticles, TiO2, kaolinite, cytotoxicity, genotoxicity, 

HepG2 cell line 
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RESUMO 

 

Entre as nanopartículas de óxido de metal mais estudadas em todo o mundo estão 

as nanopartículas de dióxido de titânio (NPs TiO2). Muitos estudos in vitro têm demonstrado 

que estas nanopartículas são capazes de induzir citotoxicidade e genotoxicidade em várias 

linhas celulares, embora exista alguma inconsistência relativamente aos efeitos biológicos 

observados. 

A toxicidade das nanopartículas tem sido associada ao seu tamanho reduzido e 

consequente elevada área de superfície e reatividade. Na tentativa de superar este 

problema e manter as vantagens das nanopartículas, foi recentemente desenvolvida a 

técnica de imobilização de nanopartículas na superfície de suportes inorgânicos, em 

particular em minerais de argilas, resultando na criação de nanocompósitos. 

Neste contexto, o principal objetivo do presente trabalho foi avaliar in vitro a 

toxicidade das NPs TiO2 de rútilo imobilizadas em argila de caulinite de elevada pureza (C-

TiO2), numa linha hepatocelular de carcinoma humano (HepG2). Para compreender os 

efeitos destes nanocompósitos e dos seus elementos individuais, realizou-se uma 

caracterização primária usando as técnicas microscópio eletrónico de varredura de 

emissão de campo e dispersão dinâmica de luz. A internalização dos nanomateriais pelas 

células HepG2 foi analisada por citometria de fluxo. Para a avaliação da citotoxicidade, foi 

inicialmente estabelecido o uso dos ensaios MTT, Alamar Blue, internalização do vermelho 

neutro e LDH, mas a análise das interferências revelou que apenas os ensaios MTT e 

Alamar Blue seriam adequados para os materiais em estudo. A citotoxicidade foi avaliada 

após a exposição a diferentes concentrações dos três materiais preparados em meio 

completo e incompleto em três períodos de exposição (3, 6 e 24 horas). O ensaio cometa 

foi utilizado para a avaliação de genotoxicidade (concentrações não citotóxicas para 3 e 24 

horas).  

Os resultados mostram que todos os materiais estudados foram internalizados 

pelas células HepG2 em ambos os tipos de meio (completo e incompleto) e nos dois 

períodos de exposição. Além disso, todos os materiais analisados foram capazes de alterar 

significativamente a atividade mitocondrial e o potencial redox dos hepatócitos de uma 

forma dependente da dose. As NPs TiO2 induziram preferencialmente uma diminuição da 

viabilidade após 24 horas de exposição em meio incompleto e em quase todos os períodos 

de exposição em meio completo; tanto a nanocaulinite como os nanocompósitos C-TiO2 

foram capazes de diminuir significativamente a viabilidade das HepG2 em ambos os meios 

e também em quase todos os períodos de tratamento. Adicionalmente, as NPs TiO2, 
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nanocaulinite e os nanocompósitos C-TiO2 também afetaram a integridade do DNA de uma 

forma dose-dependente após 3 e 24 horas de exposição. 

Deste modo, estes resultados sugerem que o mineral caulinite não é um substrato 

adequado para a imobilização de nanopartículas e que, à semelhança do que já foi descrito 

por outros autores, as NPs TiO2 de rútilo podem ser citotóxicas e genotóxicas. 

Para superar os efeitos tóxicos observados, devem ser estudadas outras argilas de 

caulinite organicamente modificadas, de forma a identificar um substrato adequado para a 

imobilização de nanopartículas; isto será essencial para o desenvolvimento de 

nanocompósitos biocompatíveis e seguros. 

 

Palavras-chave: nanocompósitos, nanopartículas, TiO2, caulinite, citotoxicidade, 

genotoxicidade, linha celular HepG2 
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1. Statement of the problem 

In recent times, nanotechnology is growing in rapid pace, discovering innovative and 

attractive nanomaterials with specific properties for several applications (Iavicoli et al., 2011; 

Savolainen et al., 2013). Within the existing nanomaterials, the most used are the metal 

oxide nanoparticles (Djurisic et al., 2014), being the titanium dioxide nanoparticles (TiO2 

NPs) the most extensively studied (both on material characterization and toxic properties) 

due to its low cost production and unique properties, including small size, large surface 

area, high stability, anticorrosive, excellent optical and electrical properties and 

photocatalytic activity (Gupta and Tripathi, 2011; Menard et al., 2011; Fresegna et al., 

2014). Textile industries, biotechnology, pharmaceutical and cosmetics are prominent 

areas of TiO2 NPs applications, leading to the increasing worldwide distribution of these 

nanoparticles (Gupta and Tripathi, 2011; Marquez-Ramirez et al., 2012; Botelho et al., 

2014). However, the available studies on the toxicity of TiO2 NPs show contradictory results 

(Shi et al., 2013; Iavicoli et al., 2011; Iavicoli et al., 2012a). 

Owing to the distinctive properties derived by the nano-sized particles, some reports 

have been demonstrating that nanoparticles are more toxic when compared to larger micro-

sized particles (Kocbek et al., 2010; Roy et al., 2014). Recent advances in the production 

of nanomaterials lead to the development of new structures, namely of nanoparticles 

immobilized in microstructures that, by presenting new physico-chemical features, must be 

test in regards to their toxic potential (Aono et al., 2012). Concerning TiO2 NPs, these have 

already been developed in conjugation with modified clays, but to our knowledge there are 

no earlier toxicological studies on these novel nanocomposites (Aranda et al., 2008; 

Manova et al., 2010). In this way, in vitro studies are required to evaluate the biological 

effects of these nanostructures in order to understand if they present increased toxicity or 

biocompatibility as compared to TiO2 NPs alone.  

2. Research questions 

In this context, the main goal of the present work was to evaluate in vitro cytotoxicity 

and genotoxicity of a nanocomposite (here designed C-TiO2) constituted by TiO2 NPs (NM-

104 rutile obtained from the European Commission's Joint Research Centre (JRC) 

(Rasmussen et al., 2014)) and high purity kaolinite clay in a hepatocellular carcinoma 

human cell line (HepG2). For a matter of comparison, both TiO2 and kaolinite single particles 

were also studied. 
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Thus, to achieve this main objective, the following specific goals were established: 

1. Nanomaterial characterization: Characterization of primary particle size, size 

distribution and particle morphology using field emission scanning electron 

microscope (FE-SEM), as well as the evaluation of the hydrodynamic particle 

size, polydispersity -  via dynamic light scattering (DLS) - and zeta-potential (by 

laser Doppler velocimetry – LDV) of the nanomaterials under evaluation (TiO2 

NPs, kaolinite clay and C-TiO2 nanocomposites); 

2. Nanomaterial uptake: Exploratory analysis of nanomaterials internalization on 

HepG2 cells after exposure to different concentrations and time periods by 

means of flow cytometry; 

3. Interferences studies: Evaluation of the possible interferences between 

nanomaterials and the cytotoxicity (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl 

tetrazolium bromide (MTT), neutral red uptake (NRU) and Alamar blue (AB) and 

lactate dehydrogenase (LDH) activity assays) and genotoxicity assays under 

evaluation. This stage was essential to identify which of them were suitable for 

toxicity assessment of the studied materials, and to obviate possible interference 

between materials and assay reading by introducing alterations to assay 

protocols; 

4. In vitro cytotoxicity and genotoxicity of C-TiO2, kaolinite and TiO2 nanomaterials 

on HepG2 cell line: Assessment of the cytotoxic and genotoxic effects of the 

different nanomaterials on HepG2 cell line. Cell viability was evaluated after cell 

exposure to different concentrations (and time periods) of the studied materials, 

by employing MTT and AB cytotoxicity assays. Additionally, for the genotoxicity 

assessment, comet assay was performed after cell exposure for the different 

nanomaterials non-cytotoxic concentrations and time periods. 

3. Organization of the dissertation 

The dissertation is constituted by the following topics: 

1. State of the art, presents general concepts on nanotechnology and 

nanotoxicology, a literature review of the nanomaterials under study and their 

possible related effects as well as innovative aspects of the research; 

2. Methodology, provides a detailed explanation of the methods used for the 

nanomaterial characterization, and the methodologies used for each cytotoxic 

and genotoxic assays under evaluation, after a full study of the possible 

nanomaterial interference on the assays; 



5 

 

3. Results and Discussion, debates the results obtained with basis on knowledge 

described in the scientific literature; 

4. Conclusions and future perspectives, summarizes the main results and 

conclusions discussed in the previous section, presents suggestions for future 

work and appreciations of the work developed. 

This dissertation also includes appendices with supplementary data. 
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1. The Nano World 

Nanotechnology is an interdisciplinary field of science that is considered as a 

fundamental technology of the 21st century (Frohlich, 2013; Laroui et al., 2013). The 

interconnection of different fields of knowledge integrating physics, chemistry, engineering, 

biology and medicine, allows nanotechnology to study and manipulate materials at nano 

scale, producing innovative structures, materials and/or devices with distinctive properties 

and functionalities (Laroui et al., 2013; OCDE, 2014).  

The industry of nanotechnology is in global expansion (Baker et al., 2014; Djurisic 

et al., 2014), being estimated that, by now, in 2015, there would be around 2 million 

nanotechnology workers worldwide, and the value of products incorporating 

nanotechnology as a key component would reach around 1 trillion dollars (Roco, 2011). 

With the systematic introduction of new products, the nanotechnology market is doubling 

every 3 years. The same author has extrapolated that, by the year of 2020, the number of 

nanotechnology workers worldwide and product market value will increase to 6 million 

people and 3 trillion dollars, respectively. 

In the last years, several sectors such as electronics, textiles, food, agriculture, 

environmental protection, cosmetics and healthcare (including drug delivery systems, 

regenerative medicine and diagnostics) have been revolutionized with the introduction of 

different types of engineered nanomaterials (ENMs) (SCENIHR, 2007; Conde et al., 2014). 

The European Union defines ENMs as structures, agglomerates or aggregates, where 50% 

or more of the particles have at least one dimension, in the size range 1-100 nm (EPC, 

2011; Lin et al., 2014). In addition, there is a specific definition of particle at a nano scale 

which includes a piece of matter with demarcated physical boundaries with the same size 

range as defined earlier, commonly defined as nanoparticles. The European Commission 

also recommends that these broad definitions should include any material with natural (e.g. 

forest fires, mineral composites, volcanic ash, viruses), incident (e.g. cooking smoke, diesel 

exhaust, industrial effluents) or engineered (quantum dots, carbon nanotubes, lipid and 

metallic nanoparticles) origin (Lidén, 2011). Generally, engineered nanoparticles are better 

characterized than the environmental nanoparticles, allowing a better correlation between 

their physicochemical properties and their effects in biological systems (Frohlich, 2013).  

Despite the implementation of ENMs being a sustainable and profitable alternative 

to traditional materials, it is important to consider the possible impact on environmental and 

human health (Mitrano et al., 2015; Martirosyan and Schneider, 2014). The large scale 

applications of ENMs increases the extension of exposure, influencing the life cycle of these 

nanomaterials. Nanomaterials can be released into the environment during different stages: 
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production process and manufacture, usage, recycling or disposal (Djurisic et al., 2014). 

While the manufacturing of these materials is performed in controlled conditions, the use 

and disposal of these products by the consumer are life cycle stages that cannot yet be 

controlled (Mitrano et al., 2015). Once in the environment, ENMs experience different 

transformations (e.g., deposition, adsorption, agglomeration, aggregation, redox reactions) 

that possibly interfere with their reactivity and toxicity (Martirosyan and Schneider, 2014). 

As such, it is necessary to conduct a complete risk assessment of these nanomaterials, 

which must include their entire life cycle, in order to understand their biological impact and 

fate in the environment (Piccinno et al., 2012; Martirosyan and Schneider, 2014). 

2. Nanotoxicology: looking at the risks of TiO2 NPs exposure to human health 

Nanotoxicology is a branch of bionanoscience which evaluates the potential toxic 

impact of nanomaterials on human and environmental health, resulting from the interaction 

of these materials with biological and ecological systems (Ai et al., 2011; Love et al., 2012; 

Sarkar et al., 2014). Some materials, harmless in its bulk form, become cytotoxic when 

presented at the nano scale. This adverse phenomenon is related to the high surface to 

volume ratio and consequent increase surface reactivity of the nanoparticles (Frohlich, 

2013). One key goal of nanotoxicology is to understand the impact of existing nanoparticles 

in different biological systems and ultimately to help scientists to synthetize safer 

nanoparticles, or at least understand the impact of existing nanoparticles in different 

biological systems. For this purpose, the physicochemical properties of nanomaterials must 

be well characterized, and the analysis of its effects on biological systems must be carried 

out using appropriate models (Love et al., 2012). 

2.1. What are TiO2 NPs? 

Metal oxide nanoparticles (MONPs) are the group of ENMs with the largest share of 

manufacture and application worldwide (Djurisic et al., 2014). These nanoparticles offer 

unique optical and magnetic functionalities, and are therefore appealing for several 

applications, including material science, engineering and biomedical applications (Falugi et 

al., 2012; Teske and Detweiler, 2015).  

Currently, one of the most studied and most abundantly produced MONPs around 

the world are TiO2 NPs (Menard et al., 2011; Li et al., 2014). 

In its bulk form, titanium dioxide is frequently characterized as a non-combustible, 

thermally stable, odourless and poorly soluble particulate (Iavicoli et al., 2011; Marquez-

Ramirez et al., 2012). Titanium dioxide is obtained from the iron mineral ilmenite, a naturally 
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occurring crystal that can exist in three major crystalline forms: rutile, anatase and brookite 

(Banerjee, 2011; Park et al., 2014). Despite that, only rutile and anatase are generally used 

in titanium dioxide applications (Iavicoli et al., 2011; Becker et al., 2014). Although both 

rutile and anatase possess a tetragonal crystal system (Figure 1), rutile has a denser 

arrangement of the atoms (Iavicoli et al., 2011). This phase is the most common and stable 

phase in nature, while anatase is metastable at room temperature, exhibiting the highest 

photocatalytic activity and chemical reactivity when compared to rutile form (Menard et al., 

2011; Becker et al., 2014). Commonly, TiO2 NPs are a mixture of both rutile and anatase 

forms (Becker et al., 2014). 

 

Figure 1. Tetragonal crystal strucutre of (A) rutile and (B) anatase TiO2 forms (Banerjee, 2011). 

Due to their unique and distinctive properties, including high stability, anticorrosive, 

biocompatibility, excellent optical performance and electrical properties, photocatalytic 

activity and low cost production, TiO2 NPs are broadly used in a variety of applications 

(Jaeger et al., 2012; Lagopati et al., 2014). These include industry, waste water treatment, 

medicine, pharmaceuticals and cosmetics (Warheit, 2013; Botelho et al., 2014). They are 

also applied in several industrial materials as a white pigment in paints, inks, rubber, 

plastics, car materials, papers and food additives (Horie et al., 2010; Martirosyan and 

Schneider, 2014).  

Cosmetics are the largest application area for TiO2 NPs (Fig. 2.A), representing 

59.4% of the total product application. These nanoparticles are commonly used in 

sunscreens for protecting skin cells from ultraviolet (UV) light damage, as well as white dye 

in toothpastes (Fenoglio et al., 2009; Becker et al., 2014). Additionally, they have been used 

in skin care products to treat some dermatologic diseases such as acne vulgaris, atopic 

dermatitis and hyperpigmented skin lesions, among others (Shi et al., 2013). 
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More recently, TiO2 NPs have been explored in several areas of biomedical research 

including prosthetic implants (e.g. as coating material due to their antimicrobial and 

mechanical properties), photodynamic therapy for cancer, drug delivery systems, cell 

imaging, biosensors and genetic engineering (Marquez-Ramirez et al., 2012; Yin et al., 

2013; Martirosyan and Schneider, 2014).  

 

Figure 2. Percentages of product applications (A) and production quantities of TiO2 NPs (B) (based on data 

presented by Sun et al. (2014) (graph A) and Piccinno et al. (2012) (graph B)). 

With the increased demand for TiO2 NPs among nanotechnology products, the 

amount of production of these ENMs is massive. As represented in the figure 2.B, according 

to Piccinno et al. (2012), around 3000 tons of TiO2 NPs are produced per year worldwide, 

while in Europe, from these quantity, only 550 tons per year are produced. Thereby, a 

significant release of TiO2 NPs into the environment is expected, increasing environmental 

and, consequently, human exposure (Botelho et al., 2014; Djurisic et al., 2014). Individuals 

primarily exposed to TiO2 NPs are not only the consumers of these applications, but also 

the workers who may contact, directly or indirectly, with these nanoparticles during 

research, synthesis or further treatment and application of these materials (Klien and 

Godnic-Cvar, 2012).  

Most of the TiO2 NPs physicochemical properties that make them so valuable for the 

mentioned applications are also related to their bioavailability and toxicity in humans (Shi et 

al., 2013). The main physicochemical properties of particles associated to their toxicity 

include size, shape, surface characteristics and also inner structure (Roy et al., 2014; 

Becker et al., 2014; Park et al., 2014). Besides the reactivity and consequent toxicity which 

may be related to the small size of TiO2 NPs (as also with the majority of nanoparticles, as 

mentioned above) (Wang et al., 2014), is important to consider the influence of the proteins 

with the nanoparticles in biological conditions. Actually, nanoparticles when introduced in 



13 

 

biological medium will unavoidably interact with the human plasma proteins, leading to the 

formation of a protein corona, which result from the adsorption of these proteins to 

nanoparticles surface. Consequently, this protein corona will interfere with the 

physicochemical properties of the nanoparticles (e.g. size, agglomeration state), possibly 

interfering with the cellular uptake of particles (Allouni et al., 2015). Therefore, researchers 

have been concerned about the possible harmful effects derived from TiO2 NPs exposure 

in human health (Shi et al., 2013). 

For several applications such as sunscreens, different authors verified that surface 

modifications of TiO2 NPs leads to an improvement of their properties (e.g. UV attenuation), 

in comparison with uncoated particles (Rahim et al., 2012). Additionally, to prevent 

agglomeration and increase the dispersibility and stability of these nanoparticles in different 

organic solvents, some researchers have been employing different surface coatings (e.g. 

polyethylene glycol) (Rahim et al., 2012; Janer et al., 2014). Depending on the coatings and 

surface modifications applied in different applications, nanoparticles can present higher 

biocompatibility and possibly decrease their acute toxicity (Naqvi et al., 2010). 

2.2. Human Exposure to TiO2 NPs: uptake, biodistribution and accumulation 

Human exposure to TiO2 NPs may occur during both manufacturing and use (Klien 

and Godnic-Cvar, 2012). Although the real effects on human health derived from 

nanoparticles exposure remain unclear, it is important to consider the multiple scenarios of 

uptake and biodistribution of the nanoparticles in the human body, to better evaluate and 

predict the possible toxicological effects (Magdolenova et al., 2012). 

The human body has several portals of entry that protect the organism against 

pathogens and harmful materials from the external environment (Arora et al., 2012). The 

major portals of entry of TiO2 NPs in the human body are the respiratory tract, the skin and 

hair follicles, the gastrointestinal tract and the circulatory system (Wang et al., 2014) (Figure 

3). 

In occupational settings, inhalation is the major route of exposure to TiO2 NPs (Shi 

et al., 2013). The respiratory system is the portal of entry with the largest surface area in 

direct contact with the environment being, in the majority of exposure scenarios, the main 

route of entrance of nanoparticles (Kim et al., 2012). After inhalation, nanoparticles can 

pass through the lung epithelium and reach the blood and lymph systems (Magdolenova et 

al., 2012). In addition, inhalation of TiO2 NPs has been also related to the deposition of 

these particles in the brain, since they can pass through the olfactory bulb (Huerta-Garcia 

et al., 2014). 
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Dermal exposure is related to the use of cosmetics and sunscreens that contain 

these MNOPs (Burnett and Wang, 2011). Skin is considered the first mechanical barrier 

that protects the organism against toxic agents, including nanoparticles (Krug and Wick, 

2011). Depending on the nanoparticle features, they can penetrate into the dermis, enter 

via bloodstream or lymphatic system and reach other organs that can be potentially affected 

(Magdolenova et al., 2012). Nevertheless, several studies demonstrated no evidence of 

TiO2 NPs penetration through the human skin into the body, under normal conditions 

(healthy skin without burns or cuts) (Shi et al., 2013). 

The ingestion of drug carriers, food products, water or beverages containing TiO2 

NPs are examples of sources of exposure to these nanoparticles in the gastrointestinal tract 

(Martirosyan and Schneider, 2014). 

In medical applications, intravenous, intraperitoneal or even subcutaneous injection 

of TiO2 NPs are the main route of entry into the circulatory system (Shi et al., 2013). The 

small size of TiO2 NPs allows internalization by cells and trancytosis across epithelial and 

endothelial cell barriers into the blood and lymph circulation (Huerta-Garcia et al., 2014). 

TiO2 NPs can form a protein corona after interacting with human plasma proteins, 

coagulation factors, platelets and red or white blood cells. This protein corona may interfere 

with the distribution, metabolism and excretion of these nanoparticles and, therefore, with 

their possible toxic effects (Allouni et al., 2015). 

After entering the systemic circulation, TiO2 NPs can be biodistributed and 

bioaccumulated in organs and tissues of the body including liver, lung, spleen, kidney, heart, 

bone marrow and lymph nodes (Becker et al., 2014; Roy et al., 2014). It has also been 

demonstrated that high doses of TiO2 NPs in the circulation are able to cross blood brain 

barrier, blood-testis and also the blood placenta barrier in pregnant women (Martirosyan 

and Schneider, 2014). 

There are two main clearance pathways of TiO2 NPs from the human body: via 

kidneys/urine and bile/faeces. A large fraction of internalized TiO2 NPs can be rapidly 

excreted, however, not all of these nanoparticles will be totally eliminated, since some of 

them may accumulate in some tissues or organs, especially after continuous exposure. The 

physicochemical properties of the particles, dosage, time and route of exposure may 

interfere with the rate of absorption, biodistribution, metabolism and excretion of these 

MNOPs in the human body. Some studies reveal pathological lesions in several organs and 

low clearance of TiO2 NPs after exposure to high doses and for short periods that often 

correspond to unrealistic particle levels of exposure. Therefore, further studies are needed 
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to better understand the effects of the TiO2 NPs exposure in the normal biological function 

and anatomical morphology (Shi et al., 2013). 

 

Figure 3. Toxicokinetics of TiO2 NPs within the human body with indication of possible sources of exposure, 

based on the information reported along the text. 
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The liver is the second largest organ of the human body, playing a critical role in the 

metabolic (e.g. cholesterol and intestinal lipid metabolism) and clearance function (Wallace 

et al., 2008).  

The liver is mainly constituted by parenchymal cells, representing approximately 

80% of the liver volume (Figure 4). About 6.5% of the remaining volume corresponds to 

non-parenchymal cells. Hepatocytes are the major parenchymal cells types in the liver, 

while the hepatic stellate cells (HSCs), liver sinusoidal endothelial cells and Kupffer cells 

(specialized macrophages in the liver) are the main non-parenchymal cell types (Bartneck 

et al., 2014; Wang et al., 2015). All these liver cells are promising targets for nanomedicine 

applications, due to their critical functions in the liver disease progression (Giannitrapani et 

al., 2014).  

This highly vascular and protective organ is involved in the detoxification of the TiO2 

NPs in the body (Roy et al., 2014). Due to its physiological and anatomical characteristics, 

the liver is the major organ of nanoparticle accumulation and TiO2 NPs are no exception 

(Shi et al., 2013).  

One possible reason for the nanoparticle accumulation is the high number of liver 

macrophages, which represents around 80-90% of total macrophages of the body. Once in 

the blood circulation, nanoparticles form a protein corona after interacting non-specifically 

with the serum proteins, which is further recognized by the Kupffer cells on the hepatic 

sinusoid, leading to nanoparticle accumulation. The larger the particle size, the greater the 

uptake by the Kupffer cells, decreasing the circulation time of these nanoparticles (Wang et 

al., 2015). Additionally, there are other factors besides particle size that interfere with the 

cellular uptake of nanoparticles, for instance particles surface charge. Generally, 

hepatocytes are able to internalize positive charged nanoparticles, while Kupffer cells and 

endothelial cells tend to internalize the negative charged ones (Wang et al., 2015). Beyond 

that, the surface charge of nanoparticles also interferes with the extracellular immobilization 

of nanoparticles by immune cells (Bartneck et al., 2014; Giannitrapani et al., 2014). 

To avoid the nanoparticle accumulation on the liver and minimize nanoparticle 

cellular uptake by Kupffer cells, several biodegradable and biocompatible surface coating 

materials (e.g. polyethylene glycol) have been used (Giannitrapani et al., 2014). 

Nonetheless, despite the numerous targeting approaches studied so far, the effect of 

nanoparticle properties at the cellular level in the liver is still uncertain (Wang et al., 2015). 
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Figure 4. Major cells presented in a normal liver. Hepatocytes are parenchymal cells, while the hepatic stellate 

cells (HSCs), liver sinusoidal endothelial cells and Kupffer cells are non-parenchymal cells. HSCs are present 

in the space of Disse, which is a small region between the hepatic sinusoid and hepatocytes (adapted from 

Iredale (2007)). 

Few studies of hepatic toxicity of TiO2 NPs have been performed in the last years. 

According to Iavicoli et al. (2011), four studies made on hepatic cells identified the 

production of reactive oxygen species (ROS) as one of the predominant toxic effects related 

to in vitro TiO2 NPs exposure. More recent studies are in agreement with these results. For 

instance, Shukla et al. (2014) demonstrated that oxidative stress is an important mechanism 

of toxicity after TiO2 NPs exposure, triggering DNA damage mechanisms and initiating the 

expression of apoptotic proteins, resulting in hepatic injury. These confirms the results 

obtained in other studies reporting genotoxic effects (Petković et al., 2011; Kermanizadeh 

et al., 2012) and loss in hepatic functions (Natarajan, 2015). 

It is important to take into account that in vitro hepatic systems might not be the more 

accurate liver model once these cells lose key liver specific functions and are not 

representative of realistic in vivo conditions (Kermanizadeh et al., 2013). Notwithstanding, 

several authors claim that the use of mammalian cell line is the best option to access the 

toxicological effect of a certain engineered nanomaterial in cells and tissues (Suh et al., 

2009). Actually, the cancer cell line demonstrates increased uptake levels of nanoparticles 

and are more sensitive to nanomaterial toxicity, when compared with long-lived cell lines 

and primary cultures (Joris et al., 2013). One of the widely used in vitro hepatic model is the 

HepG2 cell line. It is an extremely well characterized cell line and it is commonly used in 

nanotoxicological studies as a surrogate model of human hepatocytes (Jones and Grainger, 

2009). 
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2.3. TiO2 NPs interaction with biological systems: in vitro and in vivo evidence 

As aforementioned, the unique properties of TiO2 NPs make them an attractive 

option for several everyday nanotechnology-based products and applications, being the 

most vastly manufactured nanoparticle in the world (Liang et al., 2009). Meanwhile, the 

major challenge in using this type of particles is to guarantee their safety to human health 

and environment, after inclusion in consumer products (Djurisic et al., 2014; Lin et al., 2014).  

The main aspects to take into account during the evaluation of nanoparticle 

cytotoxicity and genotoxicity is the proper characterization of these materials, including 

morphology, crystal structure, purity, size distribution, surface area, chemical composition 

(surface chemistry and charge), and the degree of aggregation and agglomeration as well 

as the release of metal ion in biological media (Djurisic et al., 2014). In addition to these, 

the coating and surface modification of the nanoparticle is another important feature to take 

into account (Klien and Godnic-Cvar, 2012). Thereby, a detailed characterization of the 

nanomaterial properties is essential for both in vitro and in vivo studies, to perceive their 

influence in the biological systems.  

One of the major problems associated with in vitro studies with nanoparticles are 

related to the nanoparticles instability and their tendency to form aggregates (non-reversible 

grouping of nanoparticles) and agglomerates (reversible grouping of nanoparticles) in 

biological solutions. The same phenomenon occurs to TiO2 NPs without surface 

modifications, since they tend to form aggregates and agglomerates due to their small size 

and also due to solution properties (e.g. conductivity and ionic strength) (Love et al., 2012). 

Thus, to overcome this issue, is important to perform suitable medium dispersion to 

correctly evaluate the cytotoxic effects of the TiO2 NPs (Fujita et al., 2009). 

For some researchers, TiO2 NPs are considered to be a nontoxic mineral, being 

even used as negative control in many in vitro and in vivo studies (Liu et al., 2013). However, 

others investigators demonstrated opposite effects, since their studies suggest that TiO2 

NPs may induce higher toxicity potential, especially when compared to their bulk materials 

(Jaeger et al., 2012). 

Due to their small size, TiO2 NPs can penetrate the cells, which may disrupt their 

normal function (Liu et al., 2013). The most studied mechanisms of nanoparticle cell 

internalization include endocytosis, membrane fluidity and direct passage through channels 

or adhesive junctions (e.g. tight junctions) (Roy et al., 2014). Once inside the cells, some 

reports indicate the occurrence of cyto and genotoxic effects, depending on the TiO2 NPs 

concentration and also their exposure time. 
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Despite the inconsistency of biological effects observed in vitro after exposure to 

TiO2 NPs, many studies have demonstrated the capacity of TiO2 NPs to induce cytotoxicity 

and genotoxicity in various cultured cell lines (Shi et al., 2013; Prasad et al., 2014). 

Increased ROS production, reduction in cell viability and proliferation, and DNA damage 

have been frequently related to these nanoparticles in mammalian cells (Huerta-Garcia et 

al., 2014). In fact, the photocatalysis activity of TiO2 NPs conjugated with their reduced size 

has been related to increased ROS production and subsequent biological damage (Fujita 

et al., 2009; Horie et al., 2010). 

Additionally, other studies have reported that exposure to TiO2 NPs leads to lipid 

peroxidation, caspase activation followed by micronuclei formation, DNA damage directly 

or indirectly via oxidative stress, chromatin condensation and inflammatory responses 

(Valdiglesias et al., 2013; Botelho et al., 2014). While some authors reported the occurrence 

of cell death via apoptosis, others have not demonstrated this phenomenon induced by TiO2 

NPs (Jaeger et al., 2012; Roy et al., 2014). Conflicting results have also been described in 

the study of oxidative stress response, mitochondrial dysfunction and plasma membrane 

damage.  

In the same way as in vitro studies, in vivo studies of TiO2 NPs exposure carried out 

on hamsters, rats, and mice also show inconsistent results (Iavicoli et al., 2012b; Prasad et 

al., 2014). One topic that remains controversial is the genotoxicity of TiO2 NPs (Shi et al., 

2013). While some in vivo genotoxicity studies showed that TiO2 NPs increase the 

expression of inflammatory cytokines, mRNA expression of toll like receptors and DNA 

deletions in different organs and also in the reproductive system, other authors does not 

report the same effect (Ursini et al., 2014). These opposite results may be due to different 

TiO2 NPs, exposure times and/or doses applied by the investigators, as previously notice 

for in vitro studies. Therefore, further in vivo studies should be carried out with relevant 

doses (which occur in occupational and environmental exposure conditions) in order to 

understand the real effects of TiO2 NPs exposure (Martirosyan and Schneider, 2014). 

Since most researchers use TiO2 NPs with different crystal phase, size, surface 

coating and dosage, it is difficult to compare and truly understand the predictive value of 

some in vitro and in vivo studies (Janer et al., 2014). As such, only after a proper 

assessment of the TiO2 NPs properties and living models under evaluation, is possible to 

make a precise interpretation of results obtained in the performed studies (Frohlich, 2012; 

Park et al., 2014). Therefore, despite the debatable aspects of TiO2 NPs cytotoxicity and 

genotoxicity, these nanomaterials should be treated as potentially hazardous.  
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3. Moving forward with nanocomposites 

3.1. The need for new materials 

The fact that nanoparticles induce more damage and are more biologically active 

when compared to larger micro-sized particles (Roy et al., 2014; Allouni et al., 2015) 

encouraged the emergence of an innovative area of nanotechnology: nanoarchitectonics. 

Nanoarchitectonics is a technology system which assembles nanostructure units (discrete 

functional parts which have one or more dimensions of the order of 100 nm or less) 

(SCENIHR, 2007) into a novel structure functionality through mutual interactions among 

units (Aono et al., 2012). This field of nanomaterials introduced innovations in the design 

and constructions systems in nanoelectronics, nanomachinery, energy conversion, and 

more recently in nanomedicine (Gonzalez-Alfaro et al., 2011; Kujawa and Winnik, 2013). 

New nanostructured materials have been developed as electro and photocatalysts (e.g. 

removal of non-filterable pollutants and dissolved organic compounds from water such as 

dyes, halogenated organic compounds and pesticides, resulting from industrial and 

agricultural applications), rechargeable batteries, solar cells and fuel cells (Aranda et al., 

2008; Aono et al., 2012). Most of these nano, or even micro scale materials have been 

produced utilizing synthetic techniques based on soft-chemical nanoarchitectonics, 

including colloid chemistry and supermolecular nanoarchitectonic processes (Aono et al., 

2012). Currently, colloidal systems have been studied as new nanostructure complexes for 

therapeutic and diagnostic applications and also for development of new materials for 

regenerative medicine (Kujawa and Winnik, 2013; Kim et al., 2014). 

Composites are materials constituted with two or more components. These can be 

formed through a combination of materials with different physicochemical structures which 

contribute to the appearance of uncommon properties difficult to obtain from the individual 

components. Composite materials present two main phases: continuous matrix phase and 

the filler material embedded to the matrix which corresponds to the dispread phase (Olad, 

2011). 

Nanocomposites are commonly defined as composites materials, where at least one 

of the phase components dimension is at the nanometre range (Jeon and Baek, 2010; 

Wohlleben et al., 2011; Choi et al., 2013). Similarly to the composites, nanocomposites can 

be classified as polymeric, ceramic and metallic, according to the matrix composition 

(Camargo et al., 2009; Choi et al., 2013).  

Recently, the use of biocompatible and antibacterial polymeric nanocomposites in 

several applications has been increasing, for example, for water purification membranes, 
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thin films for wound dressing and biosensors (Santos et al., 2012). Nanocomposites have 

already been considered an attractive option for several biomedical fields including tissue 

engineering, oral implant and orthopaedic applications (Choi et al., 2013).  

The degradation and consequent release of the embedded nanomaterials into the 

environment is a probable ending of nanocomposites life cycle (i.e., since the manufacture, 

consumer product use to disposal and/or recycling), representing a potential hazard aspect 

of these applications (Froggett et al., 2014). Thereby, more studies are required to 

understand the potential toxicological effects derived from exposure to these 

nanocomposites. 

In spite of the numerous advantages and potential applications regarding the 

polymeric nanocomposites, some researchers have identified some disadvantages 

associated to these structures. The main problems arise from the non-homogeneous 

distribution of the particles in the polymer matrix, limited degree of exfoliation and tendency 

to aggregation, especially in nanocomposites containing fibers, tubes or spherical particles 

(Keledi et al., 2012). 

The immobilization of nanoparticles on the surface of inorganic or organic supports 

results in the creation of nanocomposites. These new nanoarchitectonic structures also 

present high surface area as well as increased porosity due to their topochemical 

characteristics (Aranda et al., 2008). The most widely used supports include zeolites, 

activated carbon, silica and also natural or synthetic clay minerals like montmorillonite, 

vermiculite and sepiolite (Aranda et al., 2008; Gonzalez-Alfaro et al., 2011). 

3.2. Clay minerals 

Layered silicates are natural or synthetic minerals characterized by a regular laminar 

structure made of alumina and silica with high surface area (Pavlidou and Papaspyrides, 

2008; Maisanaba et al., 2015). Among the existing layered silicates, the clays are one of 

the most commonly used in the preparation of polymer nanocomposites since they greatly 

improve the polymeric matrix properties, due to their high surface to volume ratio (Arora 

and Padua, 2010; Olad, 2011). Clay minerals are one of the most abundant natural mineral 

at the surface of the earth and is presented as a nanosized layer, with a particle size less 

than 2 nm and layer thickness of 1 nm (Davidovic et al., 2011). The layered structure of 

clays are built from two sheets, tetrahedral (in which a silicon atom is surrounded by four 

oxygen atoms) and octahedral (in which a metal like aluminium or magnesium is surrounded 

by eight oxygen atoms), fused together at the oxygen atoms. The rearrangements of these 

sheets fused together form different types of groups: kaolinite (one tetrahedral fused to one 
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octahedral sheet) and phyllosilicate (two tetrahedral fused to one octahedral sheet) (Table 

1) (Olad, 2011; Dawson and Oreffo, 2013).  

 

Table 1. Types of arrangements of clay layered silicates (based on Dawson and Oreffo (2013) and Maisanaba 

et al. (2015)). 
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Montmorillonite: 

Mx(Al4−xMgx)Si8O20(OH)4 

 

Hectorite: 

Mx(Mg6−xLix)Si8O20(OH)4 

 

Saponite: 

MxMg6(Si8−xAlx)O20(OH)4 

> 1.5 

 

Kaolinite is one relevant class of clay minerals in which the layers are held together 

through hydrogen bonding, as well as dipole-dipole and van der Waals interactions. This 

clay mineral does not tend to expand in water, but certain compounds (e.g. amides, urea), 

induce kaolinite swelling due to the formation of hydrogen bonds with the inter-layer surface. 

The high level of organization and degree of stacking of the layers allows them to be positive 
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charged in acidic conditions and negative charged at pH around 7 (Dawson and Oreffo, 

2013; Maisanaba et al., 2015). 

The basic 2:1 structure without any substitution is named pyrophyllite (Pavlidou and 

Papaspyrides, 2008; Maisanaba et al., 2015). This type of phyllosilicate is electrostatically 

neutral, not showing any ion within the inter layers and neither expanding in water such as 

kaolinite. In its turn, when the aluminium cations are partially substituted by divalent 

magnesium or iron cations in the neutral pyrophyllite, the smectite layered silicate is formed. 

The negative charge originated by this substitution is well balanced with the sodium and 

calcium ions presented in the inter layer (Olad, 2011). Among the different types of 

smectites, montmorillonite, hectorite and saponite are the most commonly used in the 

preparation of polymer nanocomposites (Pavlidou and Papaspyrides, 2008). 

The weak forces holding the clay layers close to each other (e.g. electrostatic and 

van der Waals forces), the charge density and cation radius and the degree of hydration of 

the inter layer influences the distance between the layers, called inter layer spacing (Tang 

et al., 2012; Mittal, 2009). The lateral dimensions of the clay and its capacity to disperse 

into separate layers is crucial for the interactions between the polymer matrix and the clay 

in a nanocomposite. As such, the thickness of the clay layer strongly interferes with the 

polymer properties. Several researchers reports that 1 nm of layer thickness strongly 

improves the polymer properties, however as the dispersing between layers increases, the 

internal forces for agglomeration of individual layers also rises (Olad, 2011).  

3.3. TiO2 NPs-clay nanocomposites 

Titanium dioxide is considered to have excellent resistance to corrosion in different 

environments, a low density and also the highest strength to weight ratio, which allows many 

potential applications, especially for titanium-based nanocomposite materials (Shahadat et 

al., 2015). In fact, titanium-based organic or inorganic matrix materials have been 

considered more advantageous comparing to other materials because of their thermal and 

chemical stability (Aranda et al., 2008; Shahadat et al., 2015). There are several 

applications concerning titanium-based nanocomposites, for example removal and 

recovery of inorganic or organic pollutants, modified electrodes, catalysts, solar and 

microbial fuel cells, adsorbents, gas sensors, biosensors and biomedical applications 

(Mallakpoura and Shahangia, 2012). Older reports have considered titanium based 

nanocomposites, for instance degradable polymer-TiO2 NPs nanocomposites, as 

environment-friendly and safe (Reijnders, 2009).  
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To overcome and even restrain the release of TiO2 NPs into the environment, it has 

been proposed to immobilize them in crystalline substrates, facilitating the manipulation of 

these nanoparticles (Tokarsky et al., 2012). It has been considered that immobilization with 

proper mineral nanomaterials is a good strategy to diminish the possible release of these 

nanoparticles into the environment (Tokarčíková et al., 2014). 

For some applications, such as photocatalytic materials (Stathatos et al., 2012; 

Zhang et al., 2014), TiO2 NPs can be supported on materials that should be chemically inert 

or participate in the chemical processes that help improving the material function. One 

strong example of support material for TiO2 NPs are natural and synthetic clays (Vimonses 

et al., 2010; Tokarčíková et al., 2014). In the last years, a huge attention has been given to 

TiO2 NPs supported on inorganic clay minerals, especially for photocatalysis applications 

(Chong et al., 2009; Vimonses et al., 2010). Several authors claim that the synthesis of TiO2 

NPs embedded in porous clays structures avoid the formation of aggregates (Chen et al., 

2013; Yang et al., 2013). The small size of TiO2 NPs (4–30 nm) leads to the formation of 

aggregates in suspension, decreasing its effective surface area and photocatalytic 

efficiency. Thereby, clay minerals are able to maintain a large surface area and enhance 

the photocatalytic efficiency of the photocatalysts (Chong et al., 2009). Additionally, clay 

minerals are considered to be stable supports, protecting the TiO2 NPs from erosion 

(Kibanova et al., 2009) and they can also act as electron acceptors or donors (Zhang et al., 

2014), as well as, are capable of catalyse several chemical reactions including 

polymerization, reduction, decomposition or acid–base reactions (Mallakpoura and 

Shahangia, 2012). Resulting from its improved properties, studies have been reporting that 

TiO2-clay nanocomposites exhibit more photocatalytic activity than the single TiO2 NPs 

(Belessi et al., 2007; Kibanova et al., 2009).  

Beyond the different types of clay minerals, there are various that have 

demonstrated to be suitable matrix for anchoring of TiO2 NPs. Montmorillonite is the most 

commonly used (Vimonses et al., 2010) comparing to other clay minerals, such as 

vermiculite, kaolinite, saponite and hectorite (Tokarčíková et al., 2014). However, the 

interaction forces of kaolinite minerals makes this a suitable substrates for the 

immobilization and support of TiO2 NPs (Chong et al., 2009; Tokarčíková et al., 2014) (see 

figure 5). It was already mentioned in the literature that this nanocomposite is not dangerous 

either for the environment or human health, however this must be better evaluated and 

clarified.  

In addition to combining the best properties of both components, it has been stated 

that micro-sized particles induce less toxicity than the nano-size ones (Kocbek et al., 2010; 
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Roy et al., 2014). In this context, nanocomposites gain more prominence, since they are 

obviously larger than the single nanoparticles and, consequently, present fewer toxic effects 

that most nanoparticles in biological systems. 

 

Figure 5. (A) Structure of kaolinite. (B) Model of TiO2 nanoparticle anchored in the kaolinite clay structure. The 

upper right corner shows the newly formed Titanium–Oxygen bond between TiO2 nanoparticle and the kaolinite 

mineral (adapted from Tokarčíková et al. (2014)). 

3.4. Toxicity of clay based nanocomposites 

So far, few studies have been made regarding the in vitro characterization of cellular 

responses to clay materials or clay based nanocomposites (Dawson and Oreffo, 2013). 

Generally, available studies demonstrated the occurrence of minimal loss of cell viability or 

proliferation for cells exposed to clays or materials incorporating this mineral. For instance, 

Zhuang et al. (2007) shown normal stromal cells morphology and proliferation after 

exposure to polymeric-clay scaffolds (i.e. gelatin – montmorillonite – chitosan) and Depan 

et al. (2009) observed also normal function of fibroblast after the presence of chitosan g-

lactic acid montmorillonite composites. More recent studies performed by Li et al. (2010) 

verified no genotoxicity of exfoliated montmorillonite in Chinese hamster ovary cells, as well 

as, no long accumulation of this clay in any specific organ, after this being absorbed into 

the body.  

In addition, other authors have demonstrated normal cellular responses and also 

cell adhesion and proliferation enhancements dependent on the clay concentration on 

polymeric substrates (Dawson and Oreffo, 2013). Studies performed in several cell lines 

including HepG2, human umbilical vein endothelial cells and skin fibroblasts cultured on the 

surface of poly-N-isopropylacrylamide hydrogels with certain specific clay concentrations, 

shown that the cellular adhesion and proliferation was strongly dependent on the clay 

content in the hydrogel, up to a critical concentration (Haraguchi et al., 2006). Moreover, 

Zia et al. (2011) also evaluated the cytotoxicity of chitin based polyurethane bio-

nanocomposites with different bentonite nanoclay (clay consisting mostly of 
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montmorillonite) concentrations, and realized that polymers with 2% of clay content were 

the preferred candidate for the surgical materials that were developing. The addition of the 

nanoclay drastically improved the tensile strength and also decreased the elongation at 

break of the biomaterial. 

Most of the studies that look at clay induced-cytotoxicity found that significant effects 

were only observed after exposure to high concentrations of this mineral. For example, Han 

et al. (2011a) verified moderate cytotoxicity of clay minerals modified with an amine 

functional group in different cell types only at 1000 μg/mL. However, there are authors that 

described significant loss of A549 lung epithelial cells viability at much lower concentrations 

(25 μg/mL) after 24 hours of exposure to other nanoclays (Verma et al., 2012). Another 

study observed both decrease of cell viability and ROS generation but at even lower 

concentrations of nanoclay (1 μg/mL) in HepG2 liver cell line (Lordan et al., 2011). These 

authors also mentioned that the nanoclays tended to aggregate in the cell culture medium, 

which appeared to be correlated to the toxicity mechanisms observed (Lordan et al., 2011). 

In view of this, more studies are required to elucidate the potential mechanisms of 

cytotoxicity of certain clay formulations and their biocompatibility in living systems. One 

important aspect to take into account is the possible clay interactions with the components 

of the cell culture media, which may interfere with cell-clay interaction, influencing the cell 

viability (Dawson and Oreffo, 2013). Besides, is also needed to understand what are the 

possible pathways of biodistribution, bioaccumulation and cellular uptake of clay minerals 

particles in the human organism, and also their real impact on the environment (Reijnders, 

2009; Dawson and Oreffo, 2013). 
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1. Chemicals 

MTT (CAS No. 298-93-1), neutral red dye (CAS No. 553-24-2), rezasurin (CAS No. 

62758-13-8), Triton X-100 (CAS No. 9002-93-1), 2-mercaptoethanol (CAS No. 60-24-2), 

low melting point (LMP) agarose (CAS No. 39346-81-1), Tris-HCl (CAS No. 1185-53-1), 4-

(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (CAS No. 7365-45-9), methyl 

methanesulfonate (MMS) 99% (CAS No. 66-27-3) and bovine serum albumin (BSA) (CAS 

No. 9048-46-8) were purchased from Sigma-Aldrich Co. Dimethyl sulfoxide (DMSO) (CAS 

No. 37-68-5), acetic acid (glacial) 100% (CAS No. 64-19-7), ethanol absolute (CAS No. 64-

17-5), NaOH (CAS No. 1310-73-2), NaCl (CAS No. 7647-14-5) and KOH (CAS No. 105033) 

were bought from Merck KGaA. Cell culture media components and SyberGold were all 

InvitrogenTM and purchased from Thermo Fisher Scientific Inc. LDH protein from rabbit 

muscle (CAS No. 9001-60-9) and Tris base (CAS No. 77-86-1) were purchased from 

Calbiochem, while KCl (CAS No. 7447-40-7) and Na2EDTA (CAS No. 6381-92-6) were 

purchased from Prolab. Finally, high purity 2-(4-Iodphenyl)-3-(4-nitrophenyl)-5-

phenyltetrazoliumchlorid (INT) (CAS No. 146-68-9), phosphate-buffered saline (PBS) buffer 

(CAS No. 10049-21-5) and normal melting point (NMP) agarose were supplied from VWR 

chemicals, Lonza Group AG and Bioline, respectively. 

2. Nanomaterial preparation and characterization 

Nanomaterials suspensions under study (rutile TiO2 NPs (NM-104)), high purity 

kaolinite clay and TiO2 NPs immobilized in high purity kaolinite clay (C-TiO2)) were supplied 

by the Ceramic for Smart System Group of the Electroceramic Department, Instituto de 

Ceramica y Vidrio, CSIC, Madrid, Spain. The C-TiO2 nanocomposite was prepared in 

accordance with the method previously described in the patent “Procedimiento para la 

dispersión de nanopartículas en seco y la obtención de estructuras jerárquicas y 

recubrimientos” (Fernandez et al., 2010).  

For the nanomaterial preparation, these were suspended in incomplete (serum-free 

media) and complete HepG2 cell culture media (300 µg/mL for TiO2 NPs, 2700 µg/mL for 

kaolinite clay and 3000 µg/mL for C-TiO2 nanocomposite). Afterwards, the suspensions 

were homogenized in a microfluidizer (Model LM10, Microfluidics International Corporation) 

at 12500 Psi, for three times, in order to obtain a correct homogenization. This procedure 

was performed in an interaction chamber with Y geometry (single-slotted) with suspensions 

placed in an ice-water bath. 

Primary particle size, size distribution and particle morphology were characterized 

by Field-Emission Scanning Electron Microscopy (FE-SEM) with a resolution of 1.5 nm, 



30 
 

working at 20 kV with a current intensity of 10 µA (Model S-4700, Hitachi Ltd. Corporation). 

Information on size distribution was calculated from measuring over 100 nanoparticles in 

random fields of view in addition to images that show general morphology of the 

nanoparticles. 

Average hydrodynamic size and polydispersity index (PDI) of suspensions were 

measured by DLS, while zeta potential was determined by Laser Doppler Velocimetry (LDV) 

configuration, using a Zetasizer Nano-ZS equipped with 4.0 mW, 633 nm laser (Model ZEN 

3600, Malvern Instruments Ltd.). For this evaluation, the nanomaterials suspensions were 

diluted into a 0.01 µg/mL concentration. 

Prior to each toxicity treatment and interference analysis, nanomaterials 

suspensions were sonicated in water bath for 5 min. Serial dilutions were carried out to 

obtain the different nanomaterial concentrations tested and sonicated in water bath for an 

additional 5 min prior to testing. 

3. Cell culture 

Hepatocellular carcinoma human cell line (HepG2) is a continuous cell line derived 

from a 15 years old Caucasian male who presented a well differentiated hepatocellular 

carcinoma. This cell line was obtained from the European Collection of Cell Cultures and 

was cultured in nutrient mixture DMEM (Dulbecco’s modified Eagle’s medium) medium with 

L-Glutamine (1%), antibiotic and antimycotic solution (1%), supplemented with 10% heat-

inactivated fetal bovine serum (FBS). 

Once cells reached 80% confluence in the T-flasks, they were transfer to new flasks 

with fresh medium. For that, culture medium was removed and the cell layer was washed 

with PBS. After this procedure, the confluent monolayer of cells was tripsinized (Trypsin 

0.25%/EDTA 0.02% in PBS without Ca2+, Mg2+) and incubated at 37 ºC for approximately 1 

min. After cell detachment, trypsin was inactivated with cell culture media and the 

suspension was transferred to a conic tube and centrifuged for 5 min at 365 x g. The 

supernatant was discarded and the pellet resuspended in cell culture medium. The 

suspension was transferred to new T-flasks, and fresh new complete medium was added 

(subcultivation ratio of 1:3). Cells were incubated in a humidified atmosphere with 5% CO2 

and 37 ºC. 

All these procedures were performed in a laminar-flow chamber to ensure sterile 

conditions. All materials were manipulated using appropriate procedures in order to prevent 

external contamination. 
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3.1. Exposure conditions 

To study nanoparticle uptake, cells were seeded at 2.5x104 cells per well in 96-well 

plates and allowed to adhere for 24 h at 37 ºC. For the cellular internalization of the 

nanomaterials, 100 μL of different suspensions of nanomaterials (25 and 300 μg/mL for 

TiO2 NPs; 225 and 2700 μg/mL for kaolinite clay and 250 and 3000 μg/mL for C-TiO2 

nanocomposite), both in complete (supplemented with FBS) and incomplete (without FBS) 

media, were incubated with cells for two periods of time (3 and 24 h). Cells not exposed to 

nanomaterials were used as negative control, for both media types. After the incubation 

period, treatment was removed from wells and cells detached with trypsin (1 min at 37 ºC). 

Cell culture media was used to inactivate the trypsin and, subsequently, the content of each 

well was collected into microtubes and centrifuged (5 min at 3200 x g). The resulting pellet 

was resuspended in PBS for cytometry for final analysis in the flow cytometer.  

For cytotoxicity assessment, cells were seeded at 2.5x104 cells per well in 96-well 

plates and allowed to adhere for 24 h at 37 ºC. For each assay and each nanomaterial, 100 

μL of different suspensions of nanomaterials (5, 25, 50, 100, 200 and 300 μg/mL for TiO2 

NPs; 45, 225, 445, 900, 1800 and 2700 μg/mL for kaolinite clay and 50, 250, 500, 1000, 

2000 and 3000 μg/mL for C-TiO2 nanocomposite), both in complete and incomplete 

medium, for different periods of time (3, 6 and 24 h) were evaluated. Complete or incomplete 

media was used as negative control and Triton X-100 (1%) in complete/incomplete media 

was used as positive control. 

For genotoxicity assessment, cells were seeded at 2x105 cells per well in 12-well 

plates and then incubated for 24 h at 37 ºC. For each nanomaterials, different 

concentrations were tested (5, 25 and 50 μg/mL for TiO2 NPs; 45, 225 and 445 μg/mL for 

kaolinite clay and 50, 250 and 500 μg/mL for C-TiO2 nanocomposite) in both complete and 

incomplete medium, for two periods of exposure (3 and 24 h). Complete/incomplete media 

was used as negative control and MMS 100 μM in complete/incomplete medium was used 

as positive control. Afterwards, the medium was removed from the wells, followed by 

washing the wells with PBS and finally cells were detached with trypsin (1 min at 37 ºC). 

After inactivating the trypsin with cell culture media, the content of each well was collected 

into microtubes and three successive centrifugations were performed (3 min at 7500 x g). 

Between the 1st and 2nd centrifugations the pellet was resuspended in PBS and cell density 

was calculated in a neubauer improved counting chamber (BLAUBRAND® Neubauer 

improved by BRAND®). The calculated volume with 2.5x104 cell/mL was transferred to a 

microtube with PBS and centrifuged to pellet cells. 
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4. Nanomaterial uptake 

Cellular uptake of nanomaterials in HepG2 cells was evaluated by means of flow 

cytometry using a BD Accuri™ C6 Flow Cytometer equipped with BD Accuri C6 software 

(BD Biosciences). The analysis was carried out on the basis of the size and the complexity 

of the cells by measuring the forward scatter (FSC) and the side scatter (SSC). Figure 6 

represents an exemplificative SSC-FSC plot; two regions were established for analysis (R4 

and R5): events in R5 stand for cells that have incorporated the nanomaterials while events 

in R4 correspond to cells with normal inner complexity (without internalized materials). 

 

Figure 6. Plots obtained from the flow cytometry analysis: (A) Control sample (cells not exposed to 

nanomaterials); (B) HepG2 cells exposed to 25 μg/mL of TiO2 NPs in incomplete medium. R4: HepG2 cells with 

no nanomaterial uptake; R5: HepG2 cells with internalized nanomaterials. 

The percentage of cells with nanomaterials was calculated according to the following 

formula: 

%Cells with Nanomaterials=
Counts of events on the R5 gate

Total counts of events on both R4 and R5 gates 
×100 

 

5. Cellular viability and membrane integrity 

In the present work, the cytotoxic effects of the different nanomaterials under study 

(TiO2 NPs, kaolinite clay and C-TiO2) were evaluated on HepG2 cell line. For the cell viability 

analysis it was proposed to employ MTT (Mosmann, 1983), NRU (Borenfreund and 

Puerner, 1985) and AB (Borra et al., 2009) assays and for membrane integrity evaluation 

the LDH cytotoxicity assay. To evaluate if these assays were appropriate for the evaluation 

of nanoparticle toxicity, several interference studies were performed prior to cytotoxicity 

assessment. 
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5.1. Interference studies 

To reveal possible interferences between nanomaterials and cytotoxicity assays 

experimental procedures, two main sets of experiments were conducted: (1) to analyze the 

influence of materials presence on optical measurements (light-absorption interference) 

and (2) to address possible nanomaterials reactivity with assay components (catalytic 

interference).  

5.1.1. Optical interference: Evaluation of the nanomaterials interference with the 

light-adsorption 

An exploratory analysis of nanomaterials absorbance spectrum was performed prior 

to the analysis of interference with early and final products of the cytotoxicity assays. 

Nanomaterials suspensions were prepared in water at different concentrations (0, 5, 25, 50, 

100, 200 and 300 μg/mL for TiO2 NPs; 0, 45, 225, 445, 900, 1800 and 2700 μg/mL for 

kaolinite clay and 0, 50, 250, 500, 1000, 2000 and 3000 μg/mL for C-TiO2 nanocomposite) 

and analyzed by UV-Visible spectroscopy (ATi Unicam UV2 UV/Vis Spectrometer). 

For MTT and NRU assays, light absorption interference was analyzed in the 

presence of dissolving agents (DMSO and fixative solution, for MTT and NRU assay, 

respectively) and reaction end-products (formazan dissolved in DMSO and neutral red 

dissolved in fixative solution). End-products were obtained by incubating live cells with MTT 

and NRU dyes. The nanomaterials suspensions were prepared in solvents and end-

products at different concentrations (0, 25, 100 and 300 μg/mL for TiO2 NPs; 0, 225, 900 

and 2700 μg/mL for kaolinite clay and 0, 250, 1000 and 3000 μg/mL for C-TiO2 

nanocomposite). In turn, for the AB assay, the nanomaterials suspensions were prepared 

in both resazurin and resorufin (obtained after reduction with formic acid until obtain a pink 

colour).  

The interference of the nanomaterials dispersions with the optical detection of the 

INT reduction during the LDH assay was performed by using oxidized and reduced INT. 

The reduced INT was obtained by adding 2-mercaptoethanol until obtain a red colour. To 

verify that the INT was entirely reduced, cells were exposed to Triton-X100 (1%) for 10 min 

and LDH assay was performed in the presence of reduced INT, prepared previously; light 

absorption was measured continuously at 492 nm using a Cambrex ELx808 microplate 

reader (Biotek, KC4) for 30 min at 37 ºC, to observe a possible increase in absorbance due 

to INT reduction. The nanomaterials suspensions (0, 25, 100 and 300 μg/mL for TiO2 NPs; 

0, 225, 900 and 2700 μg/mL for kaolinite clay and 0, 250, 1000 and 3000 μg/mL for C-TiO2 

nanocomposite) were prepared by serial dilution in reduced and oxidized INT.  
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Absorbance was measured at 570 nm and 540 nm for MTT and NRU, respectively, 

at 570 nm with a reference wavelength of 630 nm for the AB assay, and at 490 nm for the 

LDH assay using a Cambrex ELx808 microplate reader (Biotek, KC4). 

5.1.2. Catalytic interference: reactivity of the nanomaterials with the assay 

components 

Nanomaterials reactivity with dyes was determined by incubating 100 μL of 

nanomaterials suspensions 0, 25, 100 and 300 μg/mL for TiO2 NPs; 0, 225, 900 and 2700 

μg/mL for kaolinite clay and 0, 250, 1000 and 3000 μg/mL for C-TiO2 nanocomposite) 

prepared in complete and incomplete media with MTT, NRU and AB assays reagents in the 

absence of cells (4 h of incubation for MTT and AB, and 3 h for NRU). The absorbance was 

measured at the end of the incubation.  

In case of LDH assay, positive control wells with only 100 mU of LDH protein (from 

rabbit muscle) were also included. The assay was carried according to the kit 

manufacturer´s instructions (Cytotoxicity Detection Kit LDH, Cat. no. 11644793001, Roche 

Diagnostics Corp). Light absorption was measured continuously at 490 nm with a reference 

wavelength of 655 nm using a Cambrex ELx808 microplate reader (Biotek, KC4) for 1 h at 

37 ºC. 

5.1.3. Interference on the enzymatic activity of LDH 

For the LDH assay, an additional experiment was carried out to understand the 

possible interference of nanomaterials on the enzymatic activity of LDH, by either 

inactivating or adsorbing the LDH protein. Four concentrations of nanomaterials 

suspensions were tested (0, 25, 100 and 300 μg/mL for TiO2 NPs; 0, 225, 900 and 2700 

μg/mL for kaolinite clay and 0, 250, 1000 and 3000 μg/mL for C-TiO2 nanocomposite). For 

each concentration different units of LDH protein from rabbit muscle (20, 50, 100 and 500 

mU) were tested in a 96-well plate and four periods of exposure were assessed (0, 15 min, 

60 min, 3 and 24 h). After these time periods, 100 μL of the kit reaction buffer was added 

and the remaining assay was carried according to the kit manufacturer´s instructions 

(Cytotoxicity Detection Kit LDH, Cat. no. 11644793001, Roche Diagnostics Corp). 

Spectrophotometric absorption was taken at 490 nm with a reference wavelength of 655 

nm using a Cambrex ELx808 microplate reader (Biotek, KC4).  
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6. Cytotoxicity assessment protocols 

6.1. MTT 

At the end of the exposure period, the treatment was removed and 100 μL of MTT 

reagent, prepared in incomplete medium (0.5 mg/mL), was added to the treated 96-well 

plates and incubated for 4 h at 37 ºC in the dark. After removing the MTT, the formazan 

was solubilized with 200 μL DMSO. Thereafter, the plates were centrifuged (Universal 320, 

Hettich) at 4000 x g for 10 min and 100 μL of the supernatant were transferred to a new 

plate for the final reading. Absorbance was measured at 570 nm (MTT) using a Cambrex 

ELx808 microplate reader (Biotek, KC4). 

6.2. Alamar Blue 

The Alamar Blue reagent (200 μL), prepared in incomplete medium (20 μg/mL), was 

added to the treated 96-well plates after removing the treatment at the end of the exposure 

period and then incubated for 4 h at 37 ºC in the dark. Similarly to MTT, the plates were 

centrifuged (Universal 320, Hettich) at 4000 x g for 10 min and 100 μL of the supernatant 

were transferred to a new plate for the final reading. Spectrophotometric absorbance was 

taken at 570 nm with a reference wavelength of 630, using a Cambrex ELx808 microplate 

reader (Biotek, KC4). 

7. DNA integrity 

7.1. Interference studies 

To evaluate the possible interactions of nanomaterials with alkaline comet assay, 

two conditions were tested for each type of medium (complete or incomplete) and each type 

of nanomaterial (TiO2 NPs, kaolinite clay or C-TiO2 nanocomposite): (1) negative control 

(cells in cell culture medium); (2) lysis test (100 μL of nanomaterials at the highest 

concentrations under evaluation (300, 2700 and 3000 μg/mL for TiO2 NPs, kaolinite clay 

and C-TiO2 nanocomposite, respectively) added just before running the assay). 

7.2. Genotoxicity assessment protocol: Alkaline Comet Assay 

Cells (in pellet) were embedded in 200 μL 0.6% LMP agarose gel (for the lysis test 

in the interferences assay, 100 μL of LMP agarose at 1.2% was used as it was added 100 

μL of nanomaterials) and 5 μL drops were placed on microscope slides precoated with 1% 

agarose (the technique was carried out using a medium throughput system 12 gel comet 

assay unit, Severn Biotech Ltd®). After gel solidification, the slides were placed in a coplin 
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jar and immersed in lysis solution (NaCl 2.5 M, Na2EDTA 100 mM, Tris-base 10 mM, NaOH 

10 M, pH 10, supplemented with Triton-X 100 1%) during 1 h, to lyse the cells and separate 

DNA from histones. For unwinding of DNA, all slides were immersed in electrophoresis 

solution (Na2EDTA 1 mM, and NaOH 0.3 M) in the electrophoresis platform for 40 min (with 

a cooler underneath the platform), followed by electrophoresis for 20 min (1.15 V/cm). 

Neutralization was performed with cold PBS (pH 7.2) for 10 min and cold deionized water 

for 10 min. Slides were fixed with ethanol 70% and 96% for 15 min each at room 

temperature and gels were dried overnight. As represented in figure 7, just before analysis, 

slides were stained with SyberGold in TE buffer (Tris-HCl 10 mM and EDTA 1 mM). Slides 

were visualized with a Nikon Eclipse E400 microscope attached to an epi-fluorescence 

illuminator Nikon C-SHG1 power supply for HG 100 W, with 250x magnification (Filter G-

2A). Slides were analyzed using the Comet Assay IV Software (Perceptive Instruments). At 

least 100 cells were scored (50 for each replicate gel). The percentage of DNA in the comet 

tail (% tDNA) was used as DNA damage parameter.  

 

Figure 7. General procedure of the comet assay, based on the protocol described in the text. 

 

8. Statistical analysis 

Statistical analyzes were performed using SPSS for Windows statistical package 

(version 23.0). Non-parametric tests, Mann–Whitney U-test (differences among groups) 

and Spearman's correlation (associations between two variables) were used for the 

statistical analysis of data. A minimum of three independent experiments (in viability assays, 

three replicated were analyzed in each experiment) were performed for each experimental 

condition tested. Experimental data were expressed as mean ± standard error and a p-

value of 0.05 was considered significant. 
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IV. RESULTS AND DISCUSSION 
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1. Nanomaterial characterization 

With the development of nanotoxicology it has become clear that the 

physicochemical characterization of nanosized materials is an essential step for the risk 

assessment of these materials on environment and human health. A proper evaluation of 

the nanomaterials properties is a basic stage for screening of the mechanisms of toxicity 

derived from exposure to these materials (Lopez-Serrano et al., 2014; Guadagnini et al., 

2013). 

In this work, a primary characterization of C-TiO2 nanocomposite was performed, as 

well as of their individual constituents: TiO2 NPs and kaolinite mineral. Those materials were 

characterized after dispersion in water and biological media to understand their behaviour 

in the conditions as these are presented to cells. Besides, dispersion in culture media may 

alter original physico-chemical properties. In these conditions, nanomaterials may suffer 

several alterations regarding the size (e.g. altered aggregation or agglomeration state, 

adsorbed proteins), the particle charge, among others (Oh and Park, 2014).  

The particle size is the most basic characteristic of nano-sized materials and is 

crucial to understand the possible mechanisms of distribution and retention of the particles 

in living tissues (Cho et al., 2013). The most common methods for size determination are 

microscopy (for instance, transmission electron microscopy (TEM) and scanning electron 

microscopy (SEM)) and light scattering techniques, such as dynamic light scattering (DLS). 

While microscopy techniques allow an accurate assessment of size and morphology of the 

particle by image analysis, DLS measures the size and size distribution but in relevant 

aqueous or biological solutions (Dhawan et al., 2009). 

Figure 8 presents four FE-SEM micrographs of different scale magnifications of the 

TiO2 NPs under evaluation. Although most existing TiO2 NPs are a mixture of rutile anatase 

forms (Becker et al., 2014), the present nanoparticles were only constituted by the rutile 

form. These nanoparticles were obtained from the JRC repository (NM-104) and are 

characterized as being thermal and hydrophilic. As represented in figure 8.C, these rutile 

TiO2 NPs were found to be nearly spherical agglomerates with different particle size. 
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Figure 8. FE-SEM micrographs from TiO2 NPs in four magnification scales: (A) 20.0 µm; (B) 2.0 µm; (C) 1.0 

µm; and (D) 500 nm. Particles were supplied by the Ceramic for Smart System Group of the Electroceramic 

Department, Instituto de Ceramica y Vidrio, Madrid, Spain. 

 

Regarding the clay mineral, it was a high purity kaolinite mineral with laminar 

structure of alumina and silica with a general formula of Al2Si2O5(OH)5, as already 

mentioned in previous sections. Kaolinite is a 1:1 clay mineral structure with layer thickness 

of 0.7 nm and its layers are held together by weak hydrogen bonding along with dipole-

dipole and van der Waals interactions (Maisanaba et al., 2015).  

Layered silicate structures generally crystallizes into micro and nano-sized particles 

(Dawson and Oreffo, 2013), as was also noted in this work. The studied kaolinite clay 

presented agglomerates of particles with a spherical morphology and with irregular laminar 

shape (Fig. 9.A and 9.B). The agglomerates were formed by plates of nano-sized kaolinite 

(Fig. 9.C and 9.D). 
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Figure 9. FE-SEM micrographs from kaolinite agglomerate particles in four magnification scales: (A) 50.0 µm; 

(B) 5.0 µm; (C) 2.0 µm; and (D) 1.0 µm. Particles were supplied by the Ceramic for Smart System Group of the 

Electroceramic Department, Instituto de Ceramica y Vidrio, Madrid, Spain. 

 

The nanokaolin layered silicates represented 90% of the C-TiO2 nanocomposite 

constitution. The remaining 10% were for the rutile TiO2 NPs, immobilized on the nanokaolin 

for the formation of these nanocomposites. Figure 10 illustrates the FE-SEM images 

obtained from the C-TiO2 nanocomposites. Through the magnifications of the figures 10.B 

and 10.C it is possible to distinguish the nanokaolin clay (Fig. 10.B.2) from the TiO2 NPs 

(Fig.10.B.1), as well as the TiO2 NPs immobilized on the kaolinite laminar structures 

(Fig.10.B.1 and Fig.10.C.1). These micrographs show that these nanocomposites were not 

spherical. 
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Figure 10. FE-SEM micrographs from C-TiO2 nanocomposites in four magnification scales: (A) 50.0 µm; (B) 

20.0 µm; and (C) 2.0 µm. Composites were supplied by the Ceramic for Smart System Group of the 

Electroceramic Department, Instituto de Ceramica y Vidrio, Madrid, Spain. 

 

From the TiO2 NPs and kaolinite micrographs (Figures 8 and 9) it was also possible 

to determine their size distribution, as represented in the figure 11. The TiO2 NPs presented 

a size range from 0.01 to 0.1 µm, being the 0.04, 0.05 and 0.06 µm the most prevalent sizes 

(Fig. 11.A). This size range is coincident with the one reported by the JRC, that characterize 

the NM-104 nanoparticles with a particle size from 0.01 to 0.03 µm (Rasmussen et al., 

2014). The present analysis also confirms that this examined material is qualified as an 

ENM according to the European Commission definition (EPC, 2011). 

On the other hand, the kaolinite particle agglomerates exhibited a superior size 

range between 0.1 to 1.4 µm, with most of them showing a predominant size 0.6 and 0.7 

µm (Fig. 11.B). 
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Figure 11. Size distribution of (A) TiO2 NPs and (B) kaolinite mineral obtained from image analysis of FE-SEM 

micrographs. 

The primary particle size is sometimes a misleading parameter particularly when 

considering the aggregation and/or agglomeration propensity of most nanomaterials in 

biological medium (due to the salts and proteins in their constitution) (Verma et al., 2012). 

Therefore, the hydrodynamic size, polyspersity index (PDI) and zeta-potential of the C-TiO2 

nanocomposite and its individual components were evaluated by DLS to understand the 

nanomaterials behaviour and aggregation after dispersion in liquids. 

DLS measures the Brownian motion which determines the hydrodynamic diameter 

of particles. The Brownian motion is defined as “the random movement of particles in a 

liquid due to the bombardment by molecules that surround them” (Malvern, 2004). It is the 

speed of particles movements into the liquid that enables the determination of size 

(Appendix A; Fig. A 1). While small particles move quickly, the large ones move slowly in 

the liquid (Malvern, 2004). As particles tend to aggregate in aqueous state, DLS size 

measurements show higher size than individual particles (Dhawan et al., 2009). Another 

parameter given by the DLS technique is the PDI, that indicates if a nanoparticle sample is 
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monodisperse (small PDI values) or polydisperse (high PDI values) in the liquid solution 

(Appendix A; Fig. A 2). 

Several studies demonstrate that nanoparticles stability varies in different liquid 

media, depending on the ionic strength and protein composition of the solution. For 

instance, nanoparticles stable in water can form large aggregates in physiological solutions 

or similar conditions, reducing their stability (Pavlin and Bregar, 2012). For this reason, 

nanomaterials characterization in relevant media is essential for toxicity evaluation, since 

interaction with biological fluids components may influence nanomaterial behaviour and 

communication with cells (Balog et al., 2015; Allouni et al., 2015). Culture media or FBS 

contain simple ions and peptides that can exhibit different charge groups at physiological 

conditions, contributing to a formation of a transient or permanent protein corona (Pavlin 

and Bregar, 2012). Pavlin and Bregar (2012) and his co-workers establish that proteins from 

the media strongly affects the stability of the nanoparticles, i.e., the protein corona formation 

and opsonisation around nanoparticles may destabilized the nanoparticles suspensions 

and contribute to a certain degree of flocculation and sedimentation of the nanoparticles. 

In this regard, the DLS is a useful technique to evaluate the nanomaterials properties 

in relevant biological media, giving more “realistic” information of the nanomaterials 

behaviour than others techniques, for example TEM or SEM (Balog et al., 2015).  

In addition to hydrodynamic size, Zetasizer Nano-ZS also provides the value of zeta 

potential in solutions with different pH and ionic strength measured by the LDV 

configuration. Zeta potential plays an important role in the nanoparticle characterization 

since it delivers an indirect measure of the net charge of the particle and is also a parameter 

of particle diffusion degree in the medium (Dukhovich, 2004). In fact, the zeta potential is 

defined as the existing potential between particle surface and the dispersing liquid, giving 

the potential stability of the colloidal system (Malvern, 2004; Salgın et al., 2012) (Appendix 

A; Fig. A 3). The larger the absolute values of zeta, the greater the ability of nano-sized 

particles to disperse; conversely, as the zeta potential is close to zero, the particles become 

unstable and tend to aggregate (Murdock et al., 2008). Basically, the high absolute value of 

zeta potential enables a stable suspension of the materials due to the strength derived from 

the electrostatic repulsion force (Verma et al., 2012). 

The studied nanomaterials were characterized after dispersion in water, the cell 

culture media supplemented with bovine serum and also in serum-free cell culture media. 

In all aqueous solutions, TiO2 NPs exhibited the smallest hydrodynamic size, when 

compared to the remaining materials (Table 2). As expected, C-TiO2 nanocomposite 

presented higher size than the TiO2 NPs and nanokaolin. 
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Curiously, the C-TiO2 nanocomposite tended to agglomerate more in water than in 

the both tested biological media, presenting the size of 7289 nm and a PDI of 1, which 

means that, in water, the C-TiO2 nanomaterials are strongly polydispersed. In cell culture 

media, it presented higher size in serum free medium (2419 nm) than in complete media 

(470 nm); however the PDI was very similar in both media.  

Similarly to the nanocomposite, both TiO2 NPs and kaolinite clay presented higher 

hydrodynamic sizes in incomplete medium than in complete medium. These results suggest 

that the absence of serum leads to an increase in the agglomeration state, i.e., serum 

proteins allowed a better dispersion of these materials, which can be proven by the obtained 

PDI for each material. Actually, they appeared to be more stable and monodispersed in 

complete medium than in serum free medium. 

Table 2. TiO2 NPs, kaolinite mineral and C-TiO2 nanomaterial characterization. Average hydrodynamic size and 

polydispersity index (PDI) of particles in suspension in water, incomplete and complete HepG2 culture media 

were determined by dynamic light scattering (DLS), while ζ – potential was measured by laser Doppler 

velocimetry (LDV) configuration. 

 

DLS  LDV 

Average 

hydrodynamic 

size (nm) 

PDI ζ – potential pH 

TiO2 NPs 

H2O* 196.7 0.308 41.6 6.63 

HepG2 incomplete medium* 447.2 0.635 ** 7.58 

HepG2 complete medium* 236.6 0.223 ** 7.80 

Kaolinite 

H2O* 508.4 0.244 -39.0 6.86 

HepG2 incomplete medium* 2675.0 0.617 ** 7.72 

HepG2 complete medium* 447.5 0.474 ** 7.91 

C-TiO2 

H2O* 7289.0 1.000 10.4 6.56 

HepG2 incomplete medium* 2419.0 0.433 ** 7.62 

HepG2 complete medium* 470.0 0.471 ** 7.82 

* measured at 0.01 µg/mL 

** media components did not allow a correct assessment of the ζ – potential of the materials 

 

As reported in the literature, proteins adsorbed by nanomaterials to their surface 

may influence key parameters such as their hydrodynamic size and, sometimes, colloid 

stability (Baalousha, 2009). As observed in the present work, other previously published 

studies have demonstrated that TiO2 NPs create larger agglomerates in cell culture medium 

than in water, which result in increased hydrodynamic size (Valdiglesias et al., 2013; Wang 

et al., 2014). Adsorption of proteins may, on one hand, increase the size of nanoparticles 
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but also contribute to the stability of the dispersion as observed in this work, since the TiO2 

NPs presented lower values in complete medium than in incomplete medium. 

Regarding the zeta potential in water, the TiO2 NPs showed the largest absolute 

value (ζ – potential of 41.6) and, therefore, were found to be the most stable suspension, 

while the C-TiO2 nanocomposite were the less stable (ζ – potential of 10.4). 

When attempting to perform zeta potential measurements in the LDV configuration, 

it was found that the ionic strength of the solution impacted measurement reproducibility as 

the high salt content would interfere with the electrodes in the capillary tube. Additionally, 

when other media components, such as fetal bovine serum, were present, it would give a 

very broad distribution of charges with a peak close to 0 mV due to the wide distribution of 

charges from both particles and proteins (Murdock et al., 2008). 

2. Nanomaterial uptake 

An exploratory analysis of the uptake of studied nanomaterials by HepG2 was 

performed to better understand the possible cytotoxic effect assessed further on. Two 

periods of exposure (3 and 24 h) and two media types (serum free and FBS supplemented) 

were evaluated to clarify the influence of serum proteins on nanomaterial internalization by 

hepatocytes over time. 

Results obtained show that after 3 hours of exposure to TiO2 NPs, these were able 

to be internalized by HepG2 cells in both media (Figs. 12.A and 12.B). However, in 

incomplete medium it was observed a significantly higher percentage of material uptake for 

the lowest concentration (~75%) than the one observed for the same conditions in complete 

medium (~10%) suggesting that the presence of FBS strongly interferes with TiO2 NPs 

internalization by preventing it when nanoparticles are present in small amounts.  

Additionally, for incomplete medium (and 300 µg/mL in complete medium) it was 

observed higher TiO2 NPs uptake after 3 hours of exposure than after 24 hours period. This 

can be either due the fact that HepG2 cells started to identify these nanoparticles, avoiding 

their internalization or due to a dynamic equilibrium that has been reached after this period 

of exposure (Murugan et al., 2015; Oh and Park, 2014). 

Cell internalization of TiO2 NPs has been described in different human cell lines 

(Valdiglesias et al., 2013; Jaeger et al., 2012), namely HepG2 (Shukla et al., 2013; Petković 

et al., 2011). Some authors support that internalization of TiO2 NPs with different range of 

primary sizes, shapes or crystal phases (anatase, rutile or both forms), may occur in several 

mammalian cells (Janer et al., 2014). These previous publications describe concentration 
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dependent increase of TiO2 NPs cellular internalization over time (after 3 and 6 h) in 

complete medium (Valdiglesias et al., 2013; Shukla et al., 2013); yet, none of these authors 

performed an analysis of the internalization pattern in complete and incomplete media. 

Regarding the nanokaolin, it was observed increased cellular uptake in complete 

medium than in serum free medium (Figs. 12.C and 12.D), suggesting that the presence of 

serum proteins improves kaolinite internalization by HepG2.  

Results obtained for the internalization of C-TiO2 nanocomposites in complete 

medium were very similar to the ones observed for the nanokaolin (Figs. 12.D and 12.F). 

Once these nanocomposites are mostly constituted by kaolinite, it is in fact expected that 

these behave similarly. 

However, in incomplete medium, increased uptake of C-TiO2 nanomaterials in 

HepG2 was observed when compared to what was seen for kaolinite. This can be related 

to differences in size and stability of the nanocomposite in complete and incomplete media. 

In fact, the size of the nanomaterial is an important parameter for the uptake (Tenzer 

et al., 2011). Usually smaller particles sizes or even smaller agglomerates have higher 

cellular uptake than larger agglomerates (Prasad et al., 2014). 

In addition to the size parameter, the real influence of the protein corona in the 

cellular internalization mechanism of nanomaterials is not fully understood. Human serum 

albumin and γ-globulins included in FBS used to supplement the complete medium often 

coat micro-sized materials forming a protein corona, modifying the size, agglomeration 

state, surface charge of the nanomaterials, potentially interfering with their cellular uptake 

(Allouni et al., 2015). These proteins are recognized as safe by the HepG2 cells, simplifying 

the entrance of nano and micro-sized particles. In this context, some authors report that 

nanoparticles suspended in the presence of serum proteins show higher uptake while 

others observed the same phenomenon but in serum free biological solution (Allouni et al., 

2015). In the present work, this same singularity was found: TiO2 NPs were better 

internalized by HepG2 cells in incomplete medium while for nanokaolin and C-TiO2 

nanocomposite the opposite was observed. 

Protein adsorption to nanomaterials is a dynamic process that tends to increase over 

time of exposure. In in vitro systems models, as used herein, cells are attached to the 

bottom of the well, which leads to less contact of the adsorbed materials with cells since 

increased protein adsorption retains the particle in the biological suspensions for longer 

periods. Thereby, serum free medium will increase the fast sedimentation of the 

nanomaterials, providing an early cell-nanomaterial contact (Allouni et al., 2015). In the 
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absence of serum proteins, the cellular uptake may be resultant from direct recognition of 

the materials at the cell surface instead of the recognition of the protein corona in media 

supplemented with serum proteins (Allouni et al., 2015), as possibly happened with the TiO2 

NPs for shorter times of exposure. 

  

  

  

Figure 12. Cellular uptake of TiO2 NPs, nanokaolin and C-TiO2 nanocomposites by HepG2 cells as analyzed 

by flow cytometry. (A) TiO2 NPs in incomplete medium; (B) TiO2 NPs in complete medium; (C) Nanokaolin in 

incomplete medium; (D) Nanokaolin in complete medium; (E) C-TiO2 nanocomposite in incomplete medium; (F) 

C-TiO2 nanocomposite in complete medium. 

Still, concerning the kaolinite mineral, possibly due to their constitution, this material 

could induce more protein adsorption than the TiO2 NPs, which can be related to their 

increase cellular uptake by the HepG2 cells in FBS supplemented medium. This explains 

why the C-TiO2 nanocomposite, mostly constituted by kaolinite, were better internalized in 

complete medium.  
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3. In vitro cytotoxicity of the nanomaterials in the HepG2 cell line 

In the present work, it was intended to evaluate the cytotoxic effects of different 

nanomaterials (TiO2 NPs, nanokaolin and C-TiO2 nanocomposite) on hepatocellular 

carcinoma human cell line. For this purpose, four cytotoxic assays were chosen: MTT, NRU 

and AB assays for cellular viability and LDH assay for membrane integrity evaluation.  

The most common method for cell viability determination is the MTT assay (Love et 

al., 2012). MTT is a sensitive, quantitative and reliable colorimetric assay (Vega-Avila and 

Pugsley, 2011) that allows the detection of mitochondrial activity (Kroll et al., 2009). 

Dehydrogenase is a mitochondrial enzyme capable to reduce the water soluble MTT 

reagent (yellow) into formazan (dark purple) crystals, which are subsequently solubilized by 

DMSO and quantitated by colorimetry (Takhar and Mahant, 2011) (schematic 

representation of the MTT principle presented in appendix B, Fig. B 1). 

Another assay also widely used for measure the cellular viability is the AB assay 

(Love et al., 2012). Alamar Blue is a cell viability indicator of the redox potential of cells 

(Takhar and Mahant, 2011). The main reagent of this technique is resazurin (7-hydroxy-10-

oxidophenoxazin-10-ium-3-one). Resazurin is water soluble, non-toxic and stable in culture 

medium and that easily crosses the cell membrane (Rampersad, 2012). Viable cells reduce 

resazurin (blue) into resorufin (red), generating a quantitative measure for cytotoxicity of the 

cells (Takhar and Mahant, 2011) (see schematic representation of the AB principle in the 

appendix B, Fig. B 2).  

AB works similarly as MTT since it is based on the conversion of resazurin to 

resorufin by mitochondrial enzymes (e.g. NADPH, NADH and cytochromes). Nonetheless, 

in addition to mitochondrial reductases, other enzymes (e.g. diaphorases, flavin reductase, 

among others) located in the cytoplasm and the mitochondria may also be able to reduce 

resazurin. Thereby, AB assay may imply an impairment of cellular metabolism but it is not 

necessarily related to mitochondrial dysfunction (Rampersad, 2012). 

Since nanoparticles are frequently internalized and stored inside the lysosomes, this 

organelle is, consequently, one main target for nanoparticle accumulation possibly leading 

to lysosomal dysfunction. This possible destabilization of the lysosome membrane can 

induce oxidative stress through ROS generation, mitochondria damage and cell death 

(Frohlich, 2013). As such, lysosome dysfunction is often evaluated using the NRU 

cytotoxicity assay.  

Neutral red (3-amino-7-dimethylamino-2-methylphenazine hydrochloride) is a weak 

cationic dye that evaluates the integrity of the lysosomes (Kroll et al., 2009; Takhar and 
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Mahant, 2011). Neutral red is able to enter in the cells by non-ionic diffusion and accumulate 

in the lysosomes of viable cells (Kroll et al., 2009; Takhar and Mahant, 2011), where it 

becomes positively charge and is thus retained inside these organelles. When the integrity 

of the lysosome membrane is changed, it loses the ability to retain the dye inside (see 

schematic representation of the NRU principle in the appendix B, Fig. B 3). Therefore, this 

sensitive assay evaluates cytotoxicity through neutral red reduction, evaluating the cell 

integrity and growth inhibition, providing an estimation of the number of viable cells in culture 

(Repetto et al., 2008). 

The determination of total LDH content in the extracellular medium is the principle 

of the LDH assay and intends to evaluate the cytoplasmic membrane integrity of cells and, 

subsequently, is an indicator of apoptosis and/or necrosis though physical damage of the 

cell membrane (Love et al., 2012). This colorimetric and enzymatic assay measures the 

level of LDH released from damaged cells (Han et al., 2011b) that catalyse the reaction 

represented in the appendix B Fig. B 4. NAD+ is reduced to NADH/H+ catalysed by the 

LDH conversion of lactate to pyruvate. Secondly, H/H+ from NADH/H+ is transferred to the 

INT yellow salt which is oxidized to a red formazan (Kroll et al., 2009; Takhar and Mahant, 

2011). 

Most of the cytotoxic assays were developed for the evaluation of conventional drug 

compounds in vitro. In fact, researchers have realized that not all cytotoxicity assays are 

appropriate for the evaluation of nanoparticle toxicity (Frohlich, 2013) as several 

nanoparticles are capable to interfere with these methods (Love et al., 2012). For instance, 

the binding and possible inactivation of assay components involved and the interference 

with colorimetric detection are examples of nanoparticle interference on the cytotoxic 

assays (Frohlich, 2013). For a correct assessment of the cytotoxicity of the nanoparticles 

under evaluation, possible nanoparticle-assay interactions need to be identified. 

3.1. Interference studies 

To reveal possible interferences between materials and cytotoxicity assays 

experimental procedure, three sets of experiments were conducted: (1) light-absorption 

interference of the nanomaterials in water; (2) light absorption interference with the early 

and final assay components; and (3) interference on the catalytic activity of the assay (Wang 

et al., 2012; Guadagnini et al., 2013). The first two experiments intended to analyze the 

influence of materials presence on absorbance measurements while the third addressed 

possible nanomaterials reactivity with assay components. For the LDH assay, an additional 

experiment was conducted, evaluating the interference of nanomaterials on the enzymatic 

activity of LDH (Han et al., 2011b; Kroll et al., 2012; Holder et al., 2012). 
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In this first set of experiments, all nanomaterials seemed to interfere with light-

absorption when suspended in water, as the absorbance increased with the increase of 

nanomaterial concentration (Figure 13). However, for nanokaolin and C-TiO2, this tendency 

is observed only up to the 4th concentration for nanokaolin (900 µg/mL) and the 3th 

concentration for C-TiO2 (500 µg/mL); at higher concentrations the signal decreases or 

stabilizes. This exploratory analysis suggested that both nanokaolin and C-TiO2 

nanomaterials interfere with light-absorption in a concentration dependent manner at the 

lower tested concentrations. Light absorption of rutile TiO2 NPs was also concentration 

dependent but was found to be lower than the observed for the remaining nanomaterials 

under evaluation (with the exception of the highest tested concentration, in which the signal 

was similar to the other nanomaterials). 

 

Figure 13. Evaluation of the nanomaterials interference with the light-adsorption in water. Concentrations 

(µg/mL): TiO2 NPs: C1 – 5, C2 – 25, C3 – 50, C4 – 100, C5 – 200, C6 – 300; Nanokaolin: C1 – 45, C2 – 225, 

C3 – 450, C4 – 900, C5 – 1800, C6 – 2700; C-TiO2: C1 – 50, C2 – 250, C3 – 500, C4 – 1000, C5 – 2000, C6 – 

3000. 

The remaining interferences studies were carried out separately for the cellular 

viability and the membrane integrity assays. 

In all viability assays under evaluation (MTT, AB and NRU), the tested materials 

were capable to interfere with both early and final products of the respective assays (Figure 

14) introducing bias in the final result.  
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Figure 14. Schematic representation of the cellular viability (MTT, AB and NRU assays) interference studies. 

*As results were found to be similar in early and final products, only MTT results for the final product (DMSO) 

are presented; **Since the results in incomplete and complete medium were similar, only results in complete 

media were presented; ***Only MTT results in complete media are shown since results for MTT and AB catalytic 

interference were found to be similar. 
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To obviate this interference due to nanomaterial presence in assay reading, the 

plates were centrifuged before absorbance measurements. This procedure was enough to 

diminish or completely eliminate the optical interference of these nanomaterials since, after 

centrifugation, the absorbance obtained was similar to the one of negative controls (without 

nanomaterials in the early and final products of the assays).  

Regarding the nanomaterials reactivity with the assay components, all 

nanomaterials concentrations exhibited a similar signal compared to the negative control 

for the MTT and AB assays in both media, which attested that no catalytic interference was 

found for all nanomaterials under evaluation. In opposition, for the NRU assay, the 

nanokaolin and C-TiO2 nanocomposite could react with the NRU assays components, 

possibly adsorbing to them, leading to a decrease in signal. Since there is no possible 

alteration of the protocol to eliminate the catalytic interference, the NRU assay could not be 

applied to evaluate cell viability of HepG2 cells when exposed to the nanomaterials under 

evaluation. 

Concerning the LDH assay, no optical interference was found for the TiO2 NPs when 

suspended in both oxidized and reduced INT (early and final components of the LDH assay) 

(see figure 15). However, kaolinite layered silicate and C-TiO2 nanocomposite were capable 

of interfere with light absorbance measurements. Similarly to the previous studies for the 

viability assays, to overcome such interferences, a centrifugation step was added before 

absorbance measurements. Despite the signal lowered tremendously, the centrifugation 

was not enough to eliminate the nanokaolin and C-TiO2 light interference with this 

cytotoxicity assay as a decrease in absorbance was still observed with the increase in 

nanomaterial concentrations.  

None of the presented materials shown catalytic interferences with the LDH assays 

over an hour of continuous measurements.  

As this is an enzymatic assay, it was also evaluated if the nanomaterials could 

inactivate or adsorb the LDH protein present in the supernatant, decreasing the final 

measured absorbance. To do so, nanomaterials were suspended in incomplete and 

complete media and different units of LDH protein from rabbit muscle were added to the 

suspensions and absorbance was measured over time. In the absence of serum proteins, 

all nanomaterials were capable of interfering with enzymatic activity of the LDH protein over 

time, decreasing its signal, irrespective of the units of LDH protein present on the media 

tested. Possibly, LDH proteins were adsorbed to materials surface and ceased to be able 

to reduce the INT compound, inducing false negatives, i.e., the assay would indicate that 

the integrity of the cellular membrane was not damaged when, in the reality, the LDH was   
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Figure 15. Schematic representation of the membrane integrity (LDH assay) interference studies. *,** As results 

were found to be similar in early and final products, only reduced INT results are presented; ***Only TiO2 NPs 

results in complete media are shown since all nanomaterials exhibited similar catalytic interference; †,‡ Since 

the results were similar for all nanomaterials and mU of LDH protein, only some results were presented.  
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simply not available to convert lactate to pyruvate due to nanomaterials adsorption. In 

complete medium (with FBS proteins) this effect was not observed, possibly due to the 

presence of a protein corona formed by the FBS proteins around the materials that avoided 

LDH adsorption. 

Results obtained in interference studies suggest that nanokaolin and C-TiO2 

nanocomposites were able to adsorb NRU and LDH assay components, decreasing the 

signal in both assays with the increase of particles concentrations. As these interferences 

could not be eliminated by protocol alterations, only MTT and AB assays were found to be 

suitable for further in vitro cytotoxicity study. 

Current reports specify that MONPs interact with assay components or dyes or even 

with optical readouts due to the high adsorption or scattering of nanoparticles, distorting the 

assay outcome on the viability assessment (Kroll et al., 2012). Different factors such as 

size, shape, crystallinity and concentration of the nanomaterial might influence the light 

detection of the colorimetric assays, owing to the nanomaterial interaction with the dyes, 

modifying their emission intensity. Generally, optical interference depends on the particle 

composition and also with its concentrations (the higher the concentration, the greater the 

interference) (Kroll et al., 2012; Guadagnini et al., 2013). These sort of interference has 

already been stated for TiO2 NPs. A recent work reported that TiO2 NPs could interfere with 

the NRU and MTT assays, increasing the signal reading for these dyes, which could be 

related to the light-absorbing properties of this nanoparticle (Guadagnini et al., 2013). 

Some authors demonstrated that LDH could be adsorbed and even inactivated for 

different metal nanoparticles, with special emphasis on TiO2 NPs (Han et al., 2011b; 

Guadagnini et al., 2013). Nanoparticles may interact with proteins present on the biological 

solutions which may allow an increased reactivity with cytokines or enzymes form the 

cytotoxic assays, such as the LDH. With regard to metal based nanoparticles, they could 

induce a metal-catalysed oxidation of the LDH protein, non-specifically inactivating this 

molecule (Han et al., 2011b). This occurrence may impair the correct evaluation of the 

membrane integrity assessment after nanomaterial exposure (Guadagnini et al., 2013). 

In respect of nanokaolin or even TiO2 NPs immobilized in clay minerals, in 

accordance with the found literature, no interference studies regarding the toxicity assays 

have been made so far for these materials. Hence, the present work presents innovative 

results regarding the nanokaolin and nanocomposite interference on the proposed 

cytotoxicity assays (MTT, AB, NRU and LDH assays). 

Is of paramount importance to assess possible nanomaterial interference with the 

toxicity assays methods prior to analysis of cellular responses in mammalian cell lines such 
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as the HepG2. The necessary protocol modifications must be introduced to eliminate or 

reduce the observed interferences in order to obtain a correct toxicological evaluation 

(Guadagnini et al., 2013). 

3.2. Cellular viability 

After studying the nanomaterial capacity to interfere with the assays, a deeper 

analysis was carried out concerning the mitochondrial activity and potential redox of HepG2 

hepatocytes after exposure to rutile TiO2 NPs, nanokaolin clay and C-TiO2 nanocomposite. 

The purpose of the present dissertation was to apprehend if the C-TiO2 was a biocompatible 

nanomaterial for human and environmental applications. In addition, this study also 

evaluated toxicity of kaolinite mineral and TiO2 NPs.  

TiO2 NPs induced a significant dose-dependent decrease in viability of the liver cells 

only after 24 hours of exposure to these nanoparticles (p<0.014) in incomplete medium, 

measured by the MTT assay (Fig. 16.A).  

In complete medium, a significant dose-dependent decrease in viability of HepG2 

cells was observed in all studied periods of exposure to TiO2 NPs (p<0.001) (Fig. 16.B). 

This means that, the presence of FBS proteins in the medium was associated to more 

evident alterations in the mitochondrial activity and, consequently, lower viability of these 

hepatic cells.  

Regarding the obtained results in AB assay (Figure 17), TiO2 NPs induced a 

significant dose-dependent decrease in HepG2 viability only after 24 hours of treatment in 

incomplete medium (r= -0.563; p<0.001), consistent with the results obtained on the MTT 

assay. 

In complete medium, a decrease in viability was observed only for the first two 

periods of exposure (p<0.001 and p=0.002 for 3 and 6 h, respectively). These results 

suggest that the hepatic cells could possibly recover their redox potential functionality after 

a 24 hours period, in the presence of FBS proteins. However, as previously observed, the 

mitochondrial activity was still compromised. 

Despite the inconsistent in vitro biological effects related to TiO2 NPs, many studies 

have demonstrated the capacity of TiO2 NPs to induce cytotoxicity in various cultured cell 

lines (Shi et al., 2013; Prasad et al., 2014).  

Towards the toxicity evaluation on hepatocytes cells, Gaiser et al. (2013) found no 

cytotoxic on C3A hepatocytes after exposure to rutile with minor anatase TiO2 NPs up to 

625 μg/cm2, using the Alamar Blue and LDH assays. Decrease in the cell viability was only 
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detected for high concentrations. These authors concluded that these TiO2 NPs were non 

cytotoxic for C3A hepatocytes up to high doses (Gaiser et al., 2013). These results were 

consistent with the ones obtained by Kermanizadeh et al. (2013) for the same cell line and 

using exclusively mitochondrial activity assays.  

 

 
Figure 16. MTT assay performed in HepG2 cells after exposure to TiO2 NPs suspended in (A) incomplete and 

(B) complete media. PC: Positive control (Triton X-100 1%). Bars present standard error of the mean. Values 

were normalized considering negative control as 100%. * p <0.05, significant difference with regard to the 

corresponding negative control. For each period was performed a correlation analysis between TiO2 NPs 

concentrations and cellular viability were r value represent the correlation coefficient and p value the statistical 

significance of the correlation. 

With respect to studies performed on HepG2 cell line, some demonstrated that TiO2 

NPs (mainly constituted with anatase) did not induce significant decrease in cell viability in 

medium supplemented with FBS in any concentration tested (until 100 µg/mL) after 24 

hours of exposure (Prasad et al., 2014). Others demonstrated negligible loss in the HepG2 

viability after 6 hours of exposure while, for longer time periods (24 and 48 h) only 

concentrations of 20 to 80 µg/mL induce significant cytotoxicity through MTT and NRU 
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assays assessment (Shukla et al., 2013). However, previous reports showed opposite 

results relating no reduced viability of HepG2 cells for either anatase or rutile TiO2 NPs 

(Petkovic et al., 2011). 

 

 
Figure 17. AB assay performed in HepG2 cells after exposure to TiO2 NPs suspended in (A) incomplete and 

(B) complete media. PC: Positive control (Triton X-100 1%). Bars present standard error of the mean. Values 

were normalized considering negative control as 100%. * p <0.05, significant difference with regard to the 

corresponding negative control. For each period was performed a correlation analysis between TiO2 NPs 

concentrations and cellular viability were r value represent the correlation coefficient and p value the statistical 

significance of the correlation. 

As far as it is known, there are not many papers reporting cytotoxic studies with rutile 

TiO2 NPs on hepatic cell lines. According to the previous papers, TiO2 NPs with a mixture 

of both rutile and anatase presented some similar results to the ones observed on this work, 

i.e., for longer periods of exposure and for high doses these nanoparticles could induce in 

vitro damage on hepatic cells. However, the rutile TiO2 NPs used here also exhibited 

adverse effects on the mitochondrial activity for short periods of exposure and in several 
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cases low concentrations of these nanoparticles could induce damage for both 

mitochondrial and potential redox activities. 

Differences between human cell lines plays an important part in TiO2 NPs toxicity 

assessment (Prasad et al., 2014). While studies performed on A549 lung cell line shown 

lack of cytotoxic effects regarding the cell viability and membrane damage, other studies on 

BEAS-2B bronchial epithelial cell line found high cytotoxicity also in cell viability reduction 

and membrane integrity after exposure to TiO2 NPs (mainly constituted by anatase) (Ursini 

et al., 2014). These results were coherent with the ones obtained by Ekstrand-

Hammarstrom et al. (2012) that obtained lower toxicity on five different types of TiO2 NPs 

(either anatase or rutile), and also with Moschini et al. (2013) for MTT and NRU analysis, 

despite the efficient internalization in A549 in both studies. 

In neuronal cell lines, such as SHSY5Y, no effect on viability was also measured by 

MTT and NRU assays after exposure to two types of TiO2 NPs (Valdiglesias et al., 2013).  

The differences between studies can be related to the variation on the production 

and preparation of the TiO2 NPs, as well as the comparison of nanoparticle’s toxicity with 

different particle size, degree of aggregation, incubation and/or exposure conditions (i.e. 

dosage and periods of treatment) (Iavicoli et al., 2011). The conjugation of the mention 

factors may lead to contradictory results. Therefore, the knowledge concerning the toxicity 

of TiO2 NPs is still far for been completely understood. 

Taking into consideration the results obtained in the present work, and despite some 

reports that did not observe cytotoxic effects derived from TiO2 NPs exposure, results here 

obtained suggest that these nanoparticles should not be considered as negative controls in 

nanotoxicological studies, as some authors have suggested (Liu et al., 2013).  

In relation to the clay mineral under evaluation, nanokaolin induced a significant 

dose-dependent decrease in viability of HepG2 cells (assessed by MTT assay), in all 

studied periods of exposure in incomplete medium (p<0.001), in contrast to the observed 

for TiO2 NPs exposure (Fig. 18.A). These results advocate that kaolinite clay is able to alter 

mitochondrial activity rapidly (just after 3 h of exposure) and continuously. 

A similar tendency was observed in complete medium, with the exception of the 6 

hours of kaolinite exposure (Fig. 18.B).  
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Figure 18. MTT assay performed in HepG2 cells after exposure to nanokaolin suspended in (A) incomplete and 

(B) complete media. PC: Positive control (Triton X-100 1%). Bars present standard error of the mean. Values 

were normalized considering negative control as 100%. * p <0.05, significant difference with regard to the 

corresponding negative control. For each period was performed a correlation analysis between nanokaolin 

concentrations and cellular viability were r value represent the correlation coefficient and p value the statistical 

significance of the correlation. 

In respect to the AB assay, kaolinite induced a dose-dependent decrease in the cell 

viability (measured by the redox potential of the HepG2 cells) in both incomplete (Fig. 19.A) 

and complete medium (Fig. 19.B), which, along with the results obtain for the MTT assay, 

corroborates that these particles are cytotoxic to HepG2 cells. 

Despite the multiple functionalities of the clay minerals, the use of nanoclays raises 

some concerns since there is still few information about the toxicity that these nanomaterials 

can induce (Jones and Grainger, 2009).  
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Figure 19. AB assay performed in HepG2 cells after exposure to nanokaolin suspended in (A) incomplete and 

(B) complete media. PC: Positive control (Triton X-100 1%). Bars present standard error of the mean. Values 

were normalized considering negative control as 100%. * p <0.05, significant difference with regard to the 

corresponding negative control. For each period was performed a correlation analysis between nanokaolin 

concentrations and cellular viability were r value represent the correlation coefficient and p value the statistical 

significance of the correlation. 

Several studies already demonstrated that some types of clays are able to cause 

cytotoxicity in different cell lines, and even induce cell death. Most of the studies show that 

clay induces cytotoxicity only at high concentrations. For example, Han et al. (2011a) 

verified moderate cytotoxicity of clay minerals modified with an amine functional group in 

different cell types only at 1000 μg/mL (Han et al., 2011a). However, other authors have 

described significant loss of A549 lung epithelial viability after 24 hours of exposure to 

different nanoclays at lower concentrations (25 μg/mL) (Verma et al., 2012). Another study 

observed the same effect but in even inferior concentrations of nanoclay (1 μg/mL), in 

HepG2 liver cell line, as well as the significant generation of ROS (Lordan et al., 2011). 

These authors also mentioned that the ultra-small sized clays particles tended to aggregate 

in the cell culture medium, which appeared to be correlated with the observed toxicity 



62 
 

mechanisms. In spite of this data, there are still few toxicological studies in the literature 

about clays in HepG2 cell line (Abdel-Wahhab et al., 2015). 

Recent reports illustrated no significant cytotoxic effect in intestinal Caco-2 cell line 

after being exposed to selected concentrations of a specific type of modified montmorillonite 

clay after 24 and 48 hours of exposure. However, the same group shown the opposite 

results on the same type of clay but with different organic modification, for relatively low 

concentrations (Maisanaba et al., 2014). The same author studied the same clay particles 

in the HepG2 liver cell line and observed similar effects (Maisanaba et al., 2013). 

After evaluating the cytotoxicity of their single components, the impact of C-TiO2 

nanocomposite on the cellular viability of hepatocytes was also analyzed using the MTT 

and AB assays. 

Results of MTT assay (Figure 20) show that C-TiO2 induced mitochondrial 

imbalance for increased concentrations of these material, regardless of the presence of 

serum proteins in the biological media. 

In the case of AB assay (Figure 21), it was demonstrated that C-TiO2 nanocomposite 

lowered the cell viability of the hepatic cell line under study also in a dose-dependent way, 

with the exception for the shorter treatment period in complete medium. Possibly the FBS 

proteins have some positive influence on the redox potential of the liver cells in the first 

hours of exposure. 

As aforementioned, the C-TiO2 nanocomposite was mainly constituted by 

nanokaolin. Probably for this reason, similarly to what was observed for the kaolinite clay 

mineral, the C-TiO2 induced a dose-dependent decrease in the cell viability (in both assays) 

of the HepG2 cell line in both serum supplemented and serum free medium.  

One important aspect to take into account is the possible interactions between clay 

and cell culture media components, including serum (Dawson and Oreffo, 2013). Although 

the uptake results showed that FBS proteins apparently improved kaolinite internalization, 

these proteins did not protect cells from both mitochondrial or redox potential dysfunction 

since both nanokaolin and C-TiO2 nanomaterials could cause cytotoxicity damage on liver 

cells in both biological media tested. 

Altogether, results suggest that kaolinite laminar structure has the biggest 

contribution to the cytotoxicity of C-TiO2 nanocomposites. 

Thereby, these results suggest that kaolinite is not a suitable clay substrate for the 

immobilization of other nanomaterials (for instance the TiO2 NPs), since increased 
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concentrations of kaolinite induce a significant decrease in the cell viability in the HepG2 

cell line, which was also observed on the C-TiO2 nanocomposites.  

 

 

 
Figure 20. MTT assay performed in HepG2 cells after exposure to C-TiO2 nanocomposites suspended in (A) 

incomplete and (B) complete media. PC: Positive control (Triton X-100 1%). Bars present standard error of the 

mean. Values were normalized considering negative control as 100%. * p <0.05, significant difference with 

regard to the corresponding negative control. For each period was performed a correlation analysis between C-

TiO2 concentrations and cellular viability were r value represent the correlation coefficient and p value the 

statistical significance of the correlation. 
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Figure 21. AB assay performed in HepG2 cells after exposure to C-TiO2 nanocomposites suspended in (A) 

incomplete and (B) complete media. PC: Positive control (Triton X-100 1%). Bars present standard error of the 

mean. Values were normalized considering negative control as 100%. * p <0.05, significant difference with 

regard to the corresponding negative control. For each period was performed a correlation analysis between C-

TiO2 concentrations and cellular viability were r value represent the correlation coefficient and p value the 

statistical significance of the correlation. 

 

4. In vitro genotoxicity of the nanomaterials in the HepG2 cell line 

To understand the genotoxic potential of rutile TiO2 NPs, nanokaolin clay and the 

conjugation of both nanomaterials (C-TiO2 nanocomposite), the alkaline comet assay was 

selected.  

Similarly to cytotoxicity assays, interference studies were performed before 

assessing the DNA damage derived from in vitro nanomaterial exposure. The following 

section will describe in detail the observed interferences and also the adopted strategies to 

avert them. 
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4.1. Interference studies 

There are different mechanisms associated to the capacity of the nanomaterials to 

interfere with genotoxic comet assay, by: (1) associating to the DNA nucleoid, affecting its 

performance during electrophoresis and (2) inducing breaks in the naked DNA. Thereby, in 

order to estimate the nanomaterials capacity to damage DNA in cells it is important to 

evaluate the interaction of these with the alkaline comet assay. The presence of 

nanomaterials during the comet assay can interfere with the sensibility of the assay, 

misleading the results (Magdolenova et al., 2012).  

During the lysis step of the alkaline comet assay, cells are embedded in a solution 

with high concentration of NaCl and 1% of Triton X-100, responsible for membrane 

disruption, removing the cytoplasm and nuclear proteins and, therefore, exposing non-

nucleossomal DNA. In this stage, the nanomaterials may interact with the unprotected DNA 

and cause additional DNA damage (Karlsson, 2010).  

As represented in figure 22, when comparing the negative control (cells non-

exposed to nanomaterials) in incomplete medium with the lysis test, all nanomaterials seem 

to cause additional damage on the DNA, interfering with the assay. 

In opposition, in the presence of FBS there were no major differences between the 

lysis test of all materials and the negative control, showing that all tested nanomaterial did 

not to interfere with the alkaline comet assay in complete medium. To reduce the risk of 

interferences observed in serum free medium, extensive washing of the wells was 

performed after the nanomaterials exposure, in order to remove nanomaterials. 

 

Figure 22. Possible interactions of TiO2 NPs, nanokaolin clay and C-TiO2 nanocomposites with alkaline comet 

assay in incomplete and complete media. In the lysis test, nanomaterials were added just before the assay. NC: 

cells non-exposed to nanomaterials; tDNA: tail intensity.  
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4.2. DNA integrity 

The alkaline comet assay is one of the most common test systems to assess 

genotoxicity (Love et al., 2012; Chang et al., 2013). This version of comet assay allows the 

detection of two types of DNA damage: SSBs (single strand breaks) and ALSs (alkali-labile 

sites). As the name implies, SSBs denote single breaks on the DNA strands, while ALSs 

represent a loss of pyrimidine and purines bases from the sugar in the DNA backbone 

(Karlsson, 2010; Kain et al., 2012).  

Comet assay results showed that after exposure to TiO2 NPs, cells presented higher 

levels of tail DNA in complete medium rather than in the absence of serum proteins. 

Regardless, increase in DNA damage with increasing dosage of TiO2 NPs was observed 

for both media and periods of exposure (Figs. 23.A and 23.B). 

 

 
Figure 23. Effect of TiO2 NPs on DNA damage of HepG2 cells analyzed by alkaline comet assay in (A) 

incomplete and (B) complete media. PC: Positive control (MMS 100 µM). Bars present standard error of the 

mean. tDNA: tail intensity. 
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Once again, the physicochemical characterization of the TiO2 NPs plays a crucial 

role on their toxicity but, in this case, on the DNA damage derived from the exposure to 

these nanoparticles. Petkovic et al. (2011) shown in his work that the genotoxic potential of 

TiO2 NPs depends on its particle size and crystalline structure. In fact, anatase TiO2 NPs 

induced stronger DNA damage than the rutile ones in HepG2 cell line. These results were 

confirmed later with the same hepatocyte cell line (Petković et al., 2011). Also using the 

HepG2 cell line, Prasad et al. (2014) observed that increased concentration of TiO2 NPs 

mostly constituted by anatase suspended in medium supplemented with 10% of FBS 

induced increase DNA damage (Prasad et al., 2014).  

Other studies on mammalian cell lines (for instance human gastric epithelial AGS 

cell line, A549 lung cell line, lymphocytes) also observed genotoxic effects for different sized 

anatase and rutile TiO2 NPs by using comet assay (Botelho et al., 2014; Kang et al., 2008; 

Jugan et al., 2012).  

According to the review authored by Karlsson (2010), TiO2 NPs are the most well 

studied metal-based nanoparticle up to date and most studies on their genotoxicity using 

the alkaline comet assay reported an increase in damage compared with non-exposed 

controls, in different cell lines, including A549, lymphocytes, BEAS-2B, Caco-2, among 

others. 

Another study looking at the genotoxicity of the TiO2 NPs studied here (NM-104) 

showed that these did not cause significant DNA damage on intestinal Caco-2 cell line. In 

fact, the same study evaluated other TiO2 NPs with distinct crystal phases and noticed that 

anatase and anatase/rutile (NM-102 and NM-105, respectively) were the most hazardous 

nanoparticles in comparison to NM-104, in accordance with the in vitro comet assay results. 

The only cell line in which was observed DNA damage derived from NM-104 exposure was 

the dermal cell line NHEK (Norppa et al., 2013). 

Concerning nanokaolin and C-TiO2 nanomaterials, both induced similar effects on 

the DNA integrity on the hepatic cells. Similarly to TiO2 NPs, nanokaolin clay and C-TiO2 

nanocomposite induced more damage in complete medium (Figs. 24.B and 25.B). In this 

case, these nanomaterials could induce more SSBs and ALSs breaks on the HepG2 DNA 

even after 3 hours of exposure, in contrary to what was observed in incomplete medium, 

where increase of DNA damage was only detected after 24 hours of exposure (Figs. 24.A 

and 25.A). For both materials, a high correlation coefficient and significant p value was 

obtained for 24 hours of exposure in incomplete medium (r=0.867; p=0.001). 
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Figure 24. Effect of nanokaolin on DNA damage of HepG2 cells analyzed by alkaline comet assay in (A) 

incomplete and (B) complete media. PC: Positive control (MMS 100 µM). Bars present standard error of the 

mean. tDNA: tail intensity. 

Previous studies have already demonstrated that clays commonly found in soils (e.g. 

smectites) can react with pesticides and modify their genotoxicity in mammalian cells; 

pesticides alone did not cause genotoxicity, while, when coupled to redox-modified clays, 

triggered environmental genotoxicity (Sorensen et al., 2005). On the contrary, more recent 

studies performed by Li et al. (2010) showed no genotoxicity of exfoliated montmorillonite 

(a 2:1 clay mineral type). Another study also demonstrated that a chemically modified 

montmorillonite clay mineral (cloisite) could not induce in vitro damage on the DNA of Caco-

2 cell line exposed for more than 24 hours (Sharma et al., 2010); however, other author 

demonstrated the opposite effect on the same cell line (Sharma et al., 2010). Two recent 

studies proved to occur DNA strand break on hepatic HepG2 cells in a time dependent 

manner, also measured by the comet assay, after exposure to organomodified cloisite clays 

(Maisanaba et al., 2013; Houtman et al., 2014).   
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Figure 25. Effect of C-TiO2 nanocomposites on DNA damage of HepG2 cells analyzed by alkaline comet assay 

in (A) incomplete and (B) complete media. PC: Positive control (MMS 100 µM). Bars present standard error of 

the mean. tDNA: tail intensity. 

Results obtained herein indicate, once again, that kaolinite is not a suitable clay 

substrate for the immobilization of other nanomaterials, since, in opposition to what has 

been previously reported, high concentrations of clay induced a significant increase in DNA 

damage of HepG2 cell line. 
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V. CONCLUSIONS AND FUTURE 

PERSPECTIVES 
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One of the main concerns of nanotechnology applications is that nanoparticles might 

be more toxic, and therefore more hazardous than larger particles and bulk materials, due 

to their large surface area and consequent enhanced chemical reactivity and also cellular 

internalization (Tucci et al., 2013). 

In the last years, TiO2 NPs have been extensively studied to investigate their 

potential toxicological effects due to their increased environmental and occupational 

exposure (Tucci et al., 2013). In order to monitor and control the release of TiO2 NPs, it has 

been developed the technique of immobilization of these nanoparticles into crystalline 

substrates, such as inorganic clay minerals, facilitating their manipulation, restraining their 

release and diminishing their threat into the environment and human health (Tokarsky et 

al., 2012; Tokarčíková et al., 2014). Clay minerals have been distinguished as the materials 

of the 21st century due to their relatively low cost, availability and environmental 

sustainability (Maisanaba et al., 2015). Among the existing clay minerals, kaolinite, 

commonly found in soils, has been reported has an excellent substrate for immobilizing 

MONPs (Tokarsky et al., 2012). The formation of the TiO2 NPs supported in kaolinite 

mineral created nanocomposites that combines the properties of both components 

(Tokarsky et al., 2012; Tokarčíková et al., 2014). 

The liver is an organ of nanoparticle accumulation and clearance and, for that 

reason, is susceptible to nanomaterials toxicity (Petkovic et al., 2011; Prasad et al., 2014). 

In addition, the hepatocytes include an abundance of cellular organelles associated with 

metabolic and secretory functions, such as high number of mitochondria that helps 

providing high energy levels to support the numerous metabolic function of the liver (Rolfe, 

2013).  

In the current work it was applied an in vitro model system to surrogate human 

hepatocytes, the HepG2 cell line. In vitro studies constitute an initial stage of the 

toxicological evaluation (Joris et al., 2013) and for each type of nanomaterials is crucial to 

perform cytotoxicity studies because of their distinctive biological response (Lewinski et al., 

2008). Conflicting results found in the literature highlight the need for a greater consistency 

on all experimental procedures such as detailed physicochemical characterization of the 

materials, dispersion protocol, dosage of the materials, periods of exposure, cell culture 

medium constitution, interference assays and cytotoxicity assays protocols.  

In this regard, the present study measured the cellular interaction and biological 

responses of human hepatocytes after exposure to TiO2 NPs immobilized in nanokaolin 

laminar structures. To achieve this main goal, a set of experiments were performed in order 

to evaluate the cellular uptake, viability and DNA damage on hepatic cells. In addition, all 
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proposed assays were tested in regards of the possible interference of this nanocomposite 

and/or its individual components with optical, catalytic and even enzymatic performance.  

To overcome possible interferences of the C-TiO2 nanocomposite and its single 

elements on the cytotoxicity assessment, a set of experiments were performed and, when 

possible, alterations on the classic assays protocols were done. Only the NRU assay was 

not suitable for viability assessment since both nanokaolin clay and C-TiO2 nanocomposite 

exhibited light and catalytic interferences; for membrane integrity assessment, LDH was 

also not adequate since all materials suspended in incomplete medium enzymatically 

interfered with the assay. Thereby, MTT and AB were the only cytotoxic assays compatible 

with the all TiO2 NPs, nanokaolin and C-TiO2 nanocomposite. 

While there is an outlook that the incorporation of single nanoparticles on 

nanocomposites may decrease their biological damage (COST, 2012), the present in vitro 

study suggests that kaolinite is not a suitable substrate for the immobilization of 

nanoparticles, as well as that TiO2 NPs may not be harmless for human applications as 

some previous studies reported. Both cytotoxic and genotoxic effects were observed on the 

HepG2 hepatic cell line after exposure to C-TiO2 nanocomposites and its single elements. 

The figure 26 summarizes the main toxicological mechanisms identified in the present in 

vitro assessment. All nanomaterials could induce mitochondrial and potential redox 

dysfunction of the hepatocytes, after internalization in these hepatic cells. Lastly, the HepG2 

DNA was also affected after longer periods of exposure to TiO2 NPs, nanokaolin clay and 

C-TiO2 nanocomposite even in the presence of serum proteins in the biological media. 

A possible strategy to overcome the cytotoxic and genotoxic effects of naked 

kaolinite observed in this study is to chemically modify the kaolinite particles with organic 

compounds (Maisanaba et al., 2014). Even so, further toxicity studies must be performed 

in organoclay particles to understand if the chemical modification allows the creation of a 

more compatible kaolinite mineral and, therefore, a more convenient material for the 

incorporation of nanoparticles for future and safer nanocomposite applications. 
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Figure 26. General mechanisms of toxicity on the hepatocyte cell line under study (HepG2) caused by TiO2 

NPs, nanokaolin clay and C-TiO2 nanocomposite in the presence or absence of serum proteins in the biological 

medium. 

After selecting the appropriate clay mineral for the immobilization of TiO2 NPs or 

other nanoparticles, the following step is to perform in vivo studies. The first stage for in vivo 

studies is to choose an appropriate animal model with similar metabolic and physiological 

system background to humans in order to evaluate the biological effects of nanoparticles in 

real situations. 

The current innovative study represents a primordial toxicity evaluation of the 

nanocomposites using mineral clays structures on human exposure, moving towards to a 

safer application of these new materials. 
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Appendix A 

 

Figure A 1. Principle of hydrodynamic particle size measured by DLS (from Malvern (2004)). 

 

 

Figure A 2. Principle of polydispersity index (PDI). (A) Monodisperse sample; (B) Polydisperse sample. 
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Figure A 3. Principle of zeta potential (from Malvern (2004)). 
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Appendix B 

 

Figure B 1. Principle of the MTT methodology (from Riss et al. (2004)). 

 

Figure B 2. Principle of the Alamar Blue methodology (from Riss et al. (2004)). 

 

Figure B 3. Principle of the Neutral Red uptake methodology (based on Repetto et al. (2008)). 

 

Figure B 4. Principle of the lactate dehydrogenase (LDH) reaction inside the cell (adapted from Thermo (2015)). 


