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Abstract: The evaluation of peritoneal dialysis (PD) programmes requires the use of statistical
methods that suit the complexity of such programmes. Multi-state regression models taking competing
risks into account are a good example of suitable approaches. In this work, multi-state structured
additive regression (STAR) models combined with penalized splines (P-splines) are proposed to
evaluate peritoneal dialysis programmes. These models are very flexible since they may consider
smooth estimates of baseline transition intensities and the inclusion of time-varying and smooth
covariate effects at each transition. A key issue in survival analysis is the quantification of the
time-dependent predictive accuracy of a given regression model, which is typically assessed using
receiver operating characteristic (ROC)-based methodologies. The main objective of the present study
is to adapt the concept of time-dependent ROC curve, and their corresponding area under the curve
(AUC), to a multi-state competing risks framework. All statistical methodologies discussed in this
work were applied to PD survival data. Using a multi-state competing risks framework, this study
explored the effects of major clinical covariates on survival such as age, sex, diabetes and previous renal
replacement therapy. Such multi-state model was composed of one transient state (peritonitis) and
several absorbing states (death, transfer to haemodialysis and renal transplantation). The application
of STAR models combined with time-dependent ROC curves revealed important conclusions not
previously reported in the nephrology literature when using standard statistical methodologies. For
practical application, all the statistical methods proposed in this article were implemented in R and
we wrote and made available a script named as NestedCompRisks.
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1 Introduction

End-stage renal disease is becoming a major public health problem with a growing
number of patients in need of replacement therapies, namely renal transplant,
haemodialysis and peritoneal dialysis (Levey et al., 2007). Similarly to patients
suffering from other chronic diseases, renal patients under peritoneal dialysis (PD)
are periodically monitored and relevant clinical data such as the presence/absence
of comorbidities and the occurrence of peritonitis or hospitalizations are often
collected (Davenport, 2009; Martins et al., 2013; Rocha et al., 2012; Teixeira
et al., 2013). The competing events—death, transfer to haemodialysis and renal
transplantation—are the main causes of dropout of patients from a PD programme,
leading to the definition of the following indicators to evaluate such PD programmes:
patient survival (considering death as the endpoint of interest) and technique survival
(considering transfer to haemodialysis as the endpoint of interest).

Given the complexity of the disease evolution and the available relevant clinical
information, the evaluation of a PD programme requires, from a statistical point of
view, a suitable approach, such as a multi-state approach taking competing risks into
account. Several competing risks definitions have been proposed and the definition
proposed by Gooley et al. (1999) was adopted in the present study: a competing
risk is ‘... an event whose occurrence either precludes the occurrence of another
event under examination or fundamentally alters the probability of occurrence of
this other event’. Multi-state modelling is an adequate alternative approach to the
classical survival models and presents several advantages. One of these advantages is
the possibility of evaluating how specific prognostic factors may influence different
phases of the disease progression, which is usually ignored in classical approach of
survival analysis (de Wreede et al., 2011; Hougaard, 1999; Meira-Machado et al.,
2009). The multi-state approach allows a more detailed description of the patient
trajectory, enabling a better biological knowledge about the disease/recovery process.

Although increasing importance has been given to the competing risk and
multi-state approaches in clinical and epidemiological research (see, e.g., Andersen
and Keiding, 2012), the majority of the literature on PD depicts only classic
survival methods being used (Perl et al., 2012; Yang et al., 2013). Therefore, further
developments are needed to account for the complexity of this clinical setting. In
recent years, a variety of flexible survival regression methods based on various
statistical models have been proposed when a set of covariates is present: the additive
hazards approach of Aalen (Martinussen and Scheike, 2010), Additive Cox regression
models (Hastie and Tibshirani, 1990a,b), and structured additive regression (STAR)
models to the analysis of survival data (Brezger and Lang, 2006; Hennerfeind et al.,
2006; Kneib and Fahrmeir, 2007; Kneib and Hennerfeind, 2008). In this study, we
used the general semiparametric class of multi-state models based on the STAR,
proposed by Kneib and Hennerfeind (2008), using penalized splines (P-splines). These
models allow a flexible modelling of baseline transition intensities in terms of P-splines
and the inclusion of parametric, time-varying and non-parametric covariate effects.

The evaluation of the predictive accuracy of a survival model is one of the
most important considerations in the development of a prediction model (Chen
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et al., 2012). In a multi-state framework, this aspect is crucial since it allows the
identification of different prognostic factors for each transition that composes a
multi-state model. One of the most popular methods to evaluate the prognostic
ability of a survival regression model is the analysis of classification measures such
as sensitivity and specificity through receiver operating characteristic (ROC) curves
(Pepe, 2004; Swets and Pickett, 1982; Zhou et al., 2011), taking a model score as the
diagnostic marker. In the last years, there has been an increasing interest in extending
the standard binary classification accuracy measures—like sensitivity, specificity,
true-positive and false-positive—to the survival context (see, e.g., Etzioni et al.,
1999; Heagerty et al., 2000; Heagerty and Zheng, 2005; Pepe et al., 2008). These
proposed methodologies lead to time-dependent definitions, resulting in the so-called
time-dependent ROC curves. Two different extensions for classification measures are
proposed in the literature, both corresponding to the consideration of cumulative
(prevalent) cases recruited over a fixed period (Heagerty et al., 2000) or alternatively,
to incident cases that are observed for any selected time t (Etzioni et al., 1999;
Heagerty and Zheng, 2005). To evaluate the predictive accuracy of the multi-state
model, we will follow the definition of Heagerty et al. (2000) for the time-dependent
ROC curve, adapting their methodology to the multi-state framework in the presence
of competing risks. This way, a different ROC curve is obtained for each transition,
which allows us to compare the prognostic capability of the model for each transition.

The main objectives of this study are: (a) to adapt the definition of the
time-dependent ROC curve in order to evaluate the predictive accuracy of STAR
models in a multi-state competing risks framework (Kneib and Hennerfeind, 2008)
and (b) to show the relevance of this approach in the analysis of a PD programme.

The article is organized as follows: After this introduction, in Section 2, we describe
a multi-state model as a succession of nested competing risks models. We also define
the STAR model and flexible hazard ratio (HR) curves for continuous covariates.
Time-dependent ROC curves to assess the predictive accuracy of the STAR models are
described in Section 3. The application of the proposed methodologies in PD patients
is discussed in Section 4. Finally, a general discussion is presented in Section 5.

2 Semiparametric competing risks multi-state models

A multi-state process with several absorbing states is a stochastic process (X(t), t ∈ T)
in continuous time with a finite space of states S = {1, . . . , K} where T represents
survival time. This model is completely characterized by the transition intensity
between two states h1 and h2 (h1, h2 = 1, · · · , K). The transition will be designated
from now on by h.

The transition intensity (or transition hazard) between the states h1 and h2, �h, is
given by the cause-specific hazard function:

�h(t) = lim
�t→0

P(X(t + �t) = h2|X(t) = h1)
�t (2.1)
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A basic competing risks model is a model composed by k+ 1 states, that is one
initial state and k absorbing states that represent k endpoints. All transitions (state
changes) start in the state 0 (initial state) until one of the k absorbing states (Andersen
and Keiding, 2012; de Wreede et al., 2011; Meira-Machado et al., 2009; Putter et al.,
2007). These competing risks models are also characterized by the fact that only the
initial state is not an absorbing state, that is, absence of transient states (Hougaard,
1999). However, in some situations the clinical trajectories of the patients are complex
and cannot be explained using a basic competing risks model. In these situations, it
is necessary to use more complex models, such as a multi-state model composed
by one (or more) initial states, one (or more) transient states and two (or more)
absorbing states. This situation is observed in the context of PD, where patients
may experience a non-absorbing event (e.g., peritonitis) before the observation of
an absorbing event (death, transfer to haemodialysis or renal transplantation). For a
multi-state model with several absorbing states—that is, in the presence of competing
risks—Beyersmann et al. (2012) proposed an algorithm that describes a multi-state
model through a succession of nested competing risks models. The main advantage
of this approach is the use of the methodology of competing risks in multi-state
models.

As already referred to in the Introduction, it is quite common to include a set of
covariates in the multi-state model (2.1). Quite often, it is assumed that the effects
of continuous covariates have a linear functional form in all transitions. However,
this assumption may not be appropriate for real data applications, in which the
effects of continuous covariates are generally unknown (Cadarso-Suárez et al., 2010;
Meira-Machado et al., 2013). Based on the STAR models, Kneib and Hennerfeind
(2008) proposed a general semiparametric class of multi-state models.

The additive regression model can be written as the exponential of the additive
combination of J + 1 components:

�h(t|z) = exp(�h(z)) = exp(gh0(t) +
J∑

j=1

fhj(x)) (2.2)

where �h is the structured additive predictor and z = (t, x1, . . . , xJ)′ is the vector
containing both, the observed time and the vector of J covariates of different types
(continuous and categorical covariates).

In equation (2.2), g0h(t) represents the log-baseline hazard rate (gh0(t) =
log(�h0(t))) and fhj are generic representations of different types of covariate effects:
linear effects of a continuous covariate x, fh(x) = xˇh; categorical effects of a dummy
coding v of a categorical covariate x, fh(x) = v′ˇh; non-parametric, smooth effects
of a continuous covariate x, fh(x) = sh(x); time-varying effects of a categorical or
continuous covariate x, fh(x) = xsh(t).

All the flexible (non-parametric) effects, including the log-baseline hazard, are all
modelled using P-splines (Eilers and Marx, 1996). The general idea is to approximate
the functions gh0 and fhj as linear combinations of basis splines (B-splines)
basis functions:

Statistical Modelling 2016; 16(5): 409–428



Time-dependent ROC methodology to evaluate the predictive accuracy 413

fhj(x) =
dk∑

q=1

ˇhqBhq(x) (2.3)

where vector ˇhj = (ˇh1, . . . , ˇhdk) is the vector of unknown regression coefficients
corresponding to the B-splines basis of degree a and defined over a grid of k knots
lying on the domain of x, with dk = a+ k− 1. Each predictor component can be
expressed as the product of an appropriate design matrix Xhj composed of basis
function evaluations and the vector ˇhj of regression coefficients. Moreover, a penalty
term is added to control the level of smoothness by penalizing wiggly functions
when estimating ˇhj. The most commonly used penalization term is based on the
integral of the second derivative of the smooth functions, fhj. We consider a discrete
approximation of it given by pen(fhj) = �hjˇ

′
hj

Khjˇhj, where the matrix Khj is a positive
semi-definite matrix, that can be written as Khj = D′

hj
Dhj (with Dhj the second order

difference matrix of neighbouring), and �hj ≥ 0 a smoothing parameter (Eilers and
Marx, 1996).

The estimation of the regression effects is based on the penalized log-likelihood
derived from the representation of the smooth effects in terms of P-splines, that is,
each model is fitted by maximizing:

lpen(ˇh) = l(ˇh) −
p∑

j=1

�hjˇ
′
hjKhjˇhj (2.4)

Estimation can be based on a unified Bayesian formulation that incorporates
penalized splines and random effects into one general framework. Different
approaches can be used for Bayesian inference: using Markov Chain Monte Carlo
simulation techniques or using mixed model representations of STAR models for
empirical Bayesian inference. In this work, we use empirical Bayes inference, where
the variance parameters �2 are treated as fixed unknown constants to be estimated
from their marginal posterior (Kneib and Hennerfeind, 2008). The smoothing
parameters are considered as variance components corresponding to the vector
of regression coefficients. This methodology allows the simultaneous estimation
of the regression coefficients and of the smoothing parameters corresponding to
each unknown function gh0 or fhj using restricted maximum likelihood (REML)
estimation. More details can be found in the study of Kneib and Hennerfeind (2008).
The implementation of this approach is available in the software package BayesX
(Belitz et al., 2012).

In order to obtain interpretable results achieved from the application of STAR
models, assuming the semiparametric multi-state model in (2.2), flexible HR curves
can be obtained. These HR curves describe the relationship between each of the
continuous covariates and the outcome in each transition, when a specific value
of the covariate is taken as reference (see Cadarso-Suárez et al., 2010). In the
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multi-state regression framework, it is recommended (Cadarso-Suárez et al., 2010;
Meira-Machado et al., 2013) to take as the reference a common clinical reference
value or some value related to clinical normality. These HR curves—along with
their corresponding pointwise confidence bands—can be obtained using the R-based
package smoothHR (Cadarso-Suárez et al., 2010; Meira-Machado et al., 2013).

3 Evaluating the predictive accuracy of the multi-state model:
Time-dependent ROC curves

In survival analysis framework, one of the major interests is to predict the outcome
based on various factors. Then, measures of the predictive accuracy of survival
regression models need to be considered. These measures quantify the extent to which
covariates determine an individual outcome (Schemper, 2003). ROC analysis is an
effective method of evaluating the quality or performance of a model. ROC curves
plot the sensitivity (true positive rate) versus the 1-specificity (false positive rate).

In the last few years, several methods have been proposed to characterize the
predictive accuracy of a classical survival regression model when the outcome of
interest is a censored survival time, that is, when the patient’s status changes over time
(see, e.g., Etzioni et al., 1999; Heagerty et al., 2000; Heagerty and Zheng, 2005; Pepe
et al., 2008). Time-dependent ROC curves can be used to summarize the accuracy
of a classical survival model, offering an alternative to the use of, for example, the
proportion of variation explained for censored data models. In this context, several
extensions of time-dependent sensitivity and specificity were proposed (Heagerty and
Zheng, 2005). In competing risks framework, we need to take into account these
concepts (Blanche et al. 2013; Heagerty, 2010; Saha and Zheng et al., 2012).

Let Ti denote failure time and Ci the censoring time. Z∗
i = min(Ti, Ci) represents

the follow-up time and ıi a censoring indicator, ıi = {0,1}. In this work, the
cumulative sensitivity and dynamic specificity definitions used in the setting of
classical survival were adapted to our multi-state modelling approach based on the
definitions proposed by Heagerty et al. (2000). Specifically, by considering a scalar
marker value Zh that represents

∑J
j=1 fhj(z) from the STAR model for the transition

h as represented in expression (2.2), and survival time T represented through the
counting processN∗

h
(t) = 1(T ≤ t), cumulative sensitivity and dynamic specificity for

the transition h are defined as:

sensitivityh(c, t) : P(Zh > c|T ≤ t, ı = h) = P{Zh > c|N∗
h(t) = 1}

specificityh(c, t) : P(Zh ≤ c|T > t) = P{Zh ≤ c|N∗
h(t) = 0} (3.1)

Using these definitions, each person is classified as either a case or a control on
the basis of the transition h at time t, defining the corresponding ROC curve for any
time t, ROC(t) (Heagerty et al., 2000; Heagerty and Zheng, 2005). Considering the
definitions of cumulative sensitivity and dynamic specificity adapted to a multi-state
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framework shown in equations (3.1), ROC curves are defined as:

ROCt(p) = TPt{[FPt]−1(p)} (3.2)

where TPt(c) = P{Zh > c|N∗
h
(t) = 1}, FPt(c) = P{Zh > c|N∗

h
(t) = 0} and

[FPt(p)]−1 = infc{c : FPt(c) ≤ p}. These ROC curves measure the predictive accuracy
of the scalar marker value Zh to distinguish between subjects who experience the
particular transition by time t and those who do not experience such a transition
(Saha and Heagerty, 2010).

In the presence of censored survival times, Heagerty et al. (2000) also developed a
non-parametric estimator of sensitivity and specificity based on the nearest-neighbour
bivariate survival estimator proposed by Akritas (1994). Such estimator can be
adapted to the context of multi-state models. Explicitly, considering the bivariate
distribution function Sh(c, t) at transition h:

Sh(c, t) = P(Zh > c, T > t) =
∫ ∞

c

Sh(t|Zh = s)dFZh(s) (3.3)

where FZh(s) is the distribution function for Zh, the nearest-neighbour estimator
(NNE) is then given by:

Ŝh�n(c, t) = 1
n

∑

i

Ŝh�n(t|Zh = Zhi)1(Zhi > c) (3.4)

where Ŝh�n(t|Zh = Zhi) is an estimator of the conditional survival function with
parameter �n, required to obtain a smooth estimate of S(t|Zh = Zhi). The weighted
KM estimator is defined as:

Ŝh�n(t|Zh = Zhi) =
∏

s∈�n,s≤t

{

1 −
∑

j K�n(Zhj, Zhi)1(Z∗
j = s)ıj

∑
j K�n(Zhj, Zhi)1(Z∗

j ≥ s)

}

(3.5)

where K�n(Zhj, Zhi) is a kernel function that depends on the smoothing parameter
�n, while �n are the unique values of Zi for observed events, ıi = 1. A 0/1
nearest-neighbour kernel was used, K�n(Zhj, Zhi) = 1{−�n < F̂Zh(Zhi) − F̂Zh(Zhj) <
�n}, where 2�n ∈ (0,1) represents the percentage of observations that is included
in each neighbourhood (Akritas, 1994).

Statistical Modelling 2016; 16(5): 409–428
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The estimates of sensitivity and specificity here proposed for the context of
multi-state models are given by:

P̂h�n

{
Zh > c|N∗

h(t) = 1
}

=
{
1 − F̂Zh(c)

}
− Ŝh�n(c, t)

1 − Ŝh�n(t)

P̂h�n

{
Zh ≤ c|N∗

h(t) = 0
}

= 1 − Ŝh�n(c, t)

Ŝh�n(t)

(3.6)

where Ŝh�n(t) = Ŝh�n(−∞, t).
Considering these two estimators in (3.6), the estimated ROCt curve is given by:

ˆROCt(p) = T̂Pt
{
[F̂Pt]−1(p)

}
(3.7)

Several summary indices are associated with the time-dependent ROC curve (3.2).
One of the most popular measures is the time-varying area under the ROC curve
(AUC(t)) that measures, at each time t, the probability that the marker value for
a randomly selected case exceeds the marker value for a randomly selected control
(Zhou et al., 2011). Explicitly, the AUC(t) is given by AUC(t) = ∫ 1

0 ROCt(p)dp. Using
ˆ(ROC)t(p) in (3.7), AUC(t) can be estimated by ˆAUC(t) = ∫ 1

0
ˆROCt(p)dp.

For each t, a 95% confidence interval (CI) for the AUC(t) can be obtained using
resampling methods dealing with censored data (Davison and Hinkley, 1997; Efron,
1981). In this work, Cox model-based bootstrap procedures (see Davison and Hinkley
(1997), pp. 351–58) were used as the resampling technique. The simplest type of
resampling was used which resamples with replacement from the observations, using
the R-based package censboot.

4 Analysis of the peritoneal dialysis programme

Patients with chronic kidney disease in the PD programme are periodically monitored
during the follow-up time. As recovery of renal function is very rare, patients can
transit only to one of the following absorbing states: death, transfer to haemodialysis
or renal transplantation. To analyze the clinical trajectory of these patients, it is
necessary to use a competing risks approach.

We consider a model with the structure schematically presented in Figure 1(a).
The initial state (state 0) corresponds to the moment when the patient enters the PD
programme. After the beginning of the programme, the patients can transit to one of
the three absorbing events. The model also includes a transient state, which represents
the occurrence of at least one episode of peritonitis during the PD programme.
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(a)

Entrance in 
Peritoneal

Dialysis Program

Peritonitis

Death

Transfer to
haemodialysis

Renal 
transplantation

(b)

Entrance  in Peritoneal
Dialysis Program

Death 
(n=47)

Transfer to 
haemodialysis

(n=56)

Renal 
transplantation

(n=67)

Peritonitis 
(n=214)

Death 
(n=47)

Transfer to 
haemodialysis

(n=93)

Renal 
transplantation

(n=48)

Figure 1 (a) Multi-state model with a transient state (peritonitis) for PD patients; (b) Representation of nested
competing risks models.

In order to apply the techniques used in the competing risks approach, the model
presented in Figure 1(a) was decomposed in nested competing risks models as shown
in Figure 1(b), using the approach proposed by Beyersmann et al. (2012). Specifically,
this model is composed of an initial state (entrance in the PD programme), a transient
state (occurrence of at least one episode of peritonitis) and several absorbing states
(death, transfer to haemodialysis and renal transplant, without and with a peritonitis
episode).

This study considered all patients (n = 427) with chronic kidney disease included
in the PD programme of the Peritoneal Dialysis Unit of the Nephrology Department,
Hospital Geral de Santo António—Centro Hospital do Porto (Portugal) between
January 1980 and July 2011. The patients under study who experienced an event
are distributed according to the states as represented in Figure 1(b). In addition,
socio-demographic and clinical characteristics were considered: age, gender, diabetes
and previous renal replacement therapy (PRRT) (yes/no, i.e., some patients could
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previously use another renal replacement therapy before PD, such as haemodialysis
or renal transplantation).

STAR models were fitted using the BayesX software (Belitz et al., 2012). All other
analyses were performed with R (RCoreTeam, 2013) software. We offer a script
which we named as NestedCompRisks to perform a similar analysis on any data set,
requiring only the specification of the number of transitions of the data set at hand and
considering some additional features of the data: to create a dummy variable for each
transition and a state variable indicating the state from which the transition begins.
This script is composed of the following three functions: (a) Expl NCR: to perform
the exploratory analysis, including, for example, Nelson–Aalen and Aalen–Johansen
estimators; (b) Mult NCR: to give results obtained from fitting semiparametric
multi-state models in the presence of competing risks. The output includes flexible
hazard rate curves and their confidence bands and (c) AUC NCR: to calculate the
time-dependent predictive accuracy of the fitted model through time-dependent ROC
curves, and the time-varying AUCs, together with their corresponding bootstrap
confidence intervals. The script can be obtained from the first author.

4.1 Structured additive multi-state modelling

With the purpose of obtaining a valid description of the trajectory of PD patients
according to some patients’ characteristics, a STAR model was implemented,
considering the model described in Section 2.2, expression (2.2).

Based on the model structure represented in Figure 1, a STAR model using the
BayesX software was considered:

�h(z) = g0h(t) + sh(age) + fh1(gender) + fh2(diabetes) + fh3(PRRT) (4.1)

In our analyses, we considered B-spline of degree 3 and a grid of 20 equidistant
knots (ensuring enough flexibility for the time-varying functions), taking the median
as reference of the follow-up time for each transition, and a value of 55 years as the
reference for the covariate age (Kotsanas et al., 2007).

Parametric effects of the covariates gender, diabetes and PRRT are presented in
Table 1. By analyzing the table, we find that diabetes is a significant predictor for
the transitions Entrance → Death and Peritonitis → Death. Patients with diabetes,
without or with experiencing a peritonitis episode, have a higher risk of death,
compared to those patients without diabetes (HR = 2.42, 95% CI 1.29 – 4.51 and
HR = 2.41, 95% CI 1.27 – 4.57, respectively). Previous renal replacement therapy is a
significant predictor for the transitions Entrance → Death and Entrance → Peritonitis.
Patients with a previous renal replacement therapy have a higher risk of death without
peritonitis (HR = 1.93, 95% CI 1.05 – 3.53) and a higher risk of peritonitis (HR =
1.33, 95% CI 1.01 – 1.76) when compared with those patients without a previous
renal replacement therapy.

To better understand the effects of age at each transition, we used HR curves and
their confidence intervals and graphical results are shown in Figure 2. Patients older
than 55 years have a significantly higher risk of death (without and with peritonitis)
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and a significantly lower risk of transplant (without and with peritonitis) than those
with 55 years (reference value). There is no evidence of statistical differences in the
risk of transfer to haemodialysis (without and with peritonitis) for patients older than
55 years when compared to those under 55 years (Figure 2). Considering flexible
log-baseline effects, only the transitions Entrance → Death and Peritonitis → Death
showed a statistically significance effect (Table 1), that is, the transition rates for all
the other transitions remained constant along the follow-up period time.

Given the relevance of presence of diabetes along follow-up, time-varying effects of
diabetes were also tested and the graphical output of time-varying effects of diabetes
for the transition entrance → death is shown in Figure 3. As it can be seen in this
figure, diabetes has a statistically significant increasing time-varying effect at this
transition, indicating that patients with diabetes present an increasing higher risk of
death. For the other transitions, the risk remains constant over follow-up time.

4.2 Predictive accuracy of the STAR model—time-dependent ROC curves

In order to analyze the predictive accuracy of the model (4.1) time-dependent ROC
curves were constructed at each transition (see Section 3). In all cases, a span of
0.05 was used in the NNE estimates of the bivariate survival function in (3.4). The
time-varying AUCs for the ROC curves were then obtained, and their corresponding
bootstrap 95% CIs were calculated, taking R = 1000 as the number of bootstrap
replicates. Considering as long-term survival PD patients those who stay three or more
years in the programme (Abraham et al., 2010), Figure 4 presents the ROC curve for
all transitions at t = 36 months. The AUC was higher for the transition Entrance →
Death (AUC(36) = 0.795, 95% CI 0.715 – 0.878), followed by transition Peritonitis
→ Renal transplant (AUC(36) = 0.752, 95% CI 0.690 – 0.814) and Entrance → Renal
transplant (AUC(36) = 0.709, 95% CI 0.634 – 0.792). For the transitions Entrance →
Peritonitis and Entrance → Transfer to haemodialysis, the values of AUC(36) were
very close to 0.50, thus indicating poor discriminative power for the corresponding
models. Comparing the ROC curves for the three possible outcomes (death, transfer
to haemodialysis and renal transplantation), differences were found considering the
occurrence (or not) of a peritonitis episode. When at least one peritonitis episode was
observed, renal transplant presented a larger AUC, indicating better discriminative
power for the model. However, when no peritonitis was observed, death presented
a larger AUC. In both situations, the outcome transfer to haemodialysis was the
outcome with the smallest AUC associated, thus indicating poor discriminative power
for the corresponding fitted models.

The discrimination ability of the model (4.1) was assessed by comparing the
time-varying AUCs for the ROC curves that were generated for all transitions
(Figure 5). First, notice that the accuracy of the model score remains good for
the transitions with absorbing states death and renal transplant (Entrance →
Death, Entrance → Renal transplant, Peritonitis → Death and Peritonitis → Renal
transplant), with estimates of time-varying AUC between 0.6 and 0.8 over the
follow-up period. Second, the discriminatory ability of the model remains constant
for all transitions, with the exception of the transition Entrance → Death. For
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Figure 3 Time-varying effect of diabetes for transition Entrance → Death with reference value 13 months
(HR(male) = 0.70, 95% CI 0.37 – 1.29; HR(PRRT) = 1.93, 95% CI 1.05 – 3.53; ps(age, df = 2.09); ps(baseline, df =
4.75); diabetes*ps(baseline, df = 1.02)).

this transition, the discriminatory ability of the model declines over time until 36
months. Finally, for the transition Entrance → Transfer to haemodialysis, estimates
of time-varying AUC approach 0.50 and increase slightly after approximately 36
months.
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Figure 4 Estimated ROC curves ROC(t ) at t = 36 months; (a) for transitions Entrance → Death, Entrance →
Transfer to haemodialysis and Entrance → Renal transplant; (b) for transitions Entrance → Peritonitis,
Peritonitis → Death, Peritonitis → Transfer to haemodialysis and Peritonitis → Renal transplant.
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5 Discussion

In this article, we analyze the use of time-dependent ROC methodology to evaluate the
predictive accuracy of semiparametric multi-state models in the presence of competing
risks. This analysis was performed to evaluate the trajectory of PD patients between
the entrance in the PD programme until the occurrence of one of the following events:
death, transfer to haemodialysis or renal transplantation. Since we have more than
one absorbing event, we are in the presence of a competing risks problem.

When in the PD programme, a patient can experience one or more peritonitis
episodes. Though we chose this transient state due to its clinical relevance and
its high frequent occurrence, other relevant transient states could have also been
analyzed, pointing to the relevance of the multi-state analysis approach in this context.
For example, hospitalization, anuria or other major complications, that condition
patient outcomes, could have also been considered. Given the complexity of these
data structures, we considered the final model representation as a nested series of
competing risks experiments (Beyersmann et al., 2012), thus benefiting from the
advantages of these models, including the Markov assumption.

In this study, we performed a Cox-type structured hazard multi-state regression
model in order to identify factors associated with the different hazards transitions. In
this methodology, the transition intensities were specified in a multiplicative manner
allowing the inclusion of flexible non-parametric effects and also time-varying effects
of categorical covariates, which are both main advantages of this method. Flexible
HR curves allowed a simple and intuitive interpretation of results obtained with STAR
models, particularly time-varying and non-parametric effects of some categorical
covariates along transitions. We studied one model including the parametric effects
of gender, diabetes and previous renal replacement therapy and the non-parametric
effects of age and the (log) baseline hazard rate. Both diabetes and previous renal
replacement therapy (non-naive PD status) impact significantly on the hazard of
death but not on the hazard of transition to haemodialysis. When a first peritonitis
occurs, results remain similar. All covariates considered in this study were available
for the total sample. More covariates could not be used because of many missing
values. For this reason, it is necessary to alert clinicians for the implications and
advantages of a proper data collection to perform a correct and detailed data
analysis.

The results produce new information about the PD programme. For instance, the
clear evidence that diabetes has a significant time-varying effect being associated
with a significantly higher hazard of transition to death state with higher time
under therapy, and that age is not associated with higher hazard of transition to
haemodialysis whether peritonitis occurs or not. These are clinically relevant inputs
that stress the relevance of the statistical methodologies here discussed. It should
be noticed, however, that other data structures and covariates must be evaluated
in order to obtain more accurate knowledge about the trajectory of PD patients,
since a first peritonitis event might not be as clinically relevant as the cumulative
number of peritonitis, peritonitis severity or other metabolic complications more
hardly quantifiable.
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Time-dependent ROC curves (and corresponding AUCs) proved to be useful
tools in analyzing the predictive accuracy of multi-state analysis in the presence of
competing risks. A key advantage of the ROC curve is that changing the units in which
a marker is measured has no impact on it. So, in the multi-state framework, the ROC
curve provides a natural common scale for comparing different risk scores among
different transitions, even when they are measured in completely different units.

Thus, the analysis of time-varying AUC allowed us to conclude that the considered
STAR model presents a high degree of validity for some transitions, namely: Entrance
→ Death, Entrance → Renal transplant, Peritonitis → Death and Peritonitis →
Renal transplant. The decline of the discriminatory ability of the model over time
for the transition Entrance → Death may be related to the increase of comorbidities
associated with disease and therapy, which were not considered in this model. Then,
these facts suggest that other predictive factors, such as cardiovascular comorbidities,
loss of residual renal function, volemic control or systematic inflammation, which
may be evaluated by continuous clinical parameters, need to be considered in future
studies, specifically when the analysis of technique survival is concerned (i.e., when
the final endpoint is transfer to haemodialysis).

In this article, we adopted the definition of the time-dependent ROC proposed by
Heagerty et al. (2000). This definition (see Section 3) refers to the evaluation of the
prediction accuracy of a model score (based on covariates measured at baseline) to
distinguish between subjects having an event before time t, from those who do not.
As already commented in the Introduction, an alternative definition might have been
used as well. Such an alternative scenario arises when clinical interest focuses on the
correct classification of subjects at time t among those who are still at risk (Heagerty
and Zheng, 2005). Though it is outside the scope of this article, it could be worth
extending such definition to the multi-state framework.

Also, it should be noted that other approaches using ROC curves have been
proposed very recently to evaluate the predictive accuracy of regression models in
the presence of competing risks (Blanche et al., 2013; Saha and Heagerty, 2010;
Zheng et al., 2012). However, these approaches appear to be more appropriate in
the classical survival analysis in the presence of competing risks, for example when
Cox cause-specific hazard regression model (Prentice et al., 1978) and Fine and Gray
regression model (Fine and Gray, 1999) are considered.

It is noteworthy that in medical practice, more general specifications of the
predictor are needed in the structured Cox-type hazard multi-state regression
framework. Such specifications are related to the inclusion of interactions between
continuous covariates, and by extension of time-varying effects of continuous
covariates, which allow relaxing the proportional hazards assumption at each
transition. A possible solution to this problem would be based on the equivalence
in terms of likelihood between piecewise exponential models obtained via data
augmentation and STAR models or a flexible alternative based on P-spline such as
generalized linear additive smooth structures (GLASS) model (Eilers and Marx, 2002)
with Poisson error structure (Fahrmeir and Kneib, 2011; Rodriguez-Girondo et al.,
2013). In this case, the time axis is partitioned and the hazard is assumed to be
constant over each interval. In this way, the estimation algorithm allows for all types

Statistical Modelling 2016; 16(5): 409–428
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of effects, including combinations of non-linear and time-varying effects, and hence,
HR surfaces can be derived. We are currently researching such possible extensions.
In summary, our model is an informative tool for the medical decision process and
evaluation of the patients in PD. The use of STAR models complemented with the use
of time-dependent ROC curves in this context allows the identification of relevant
factors associated with specific transitions. The identification of these factors, which
could not have been obtained with standard survival models, contributes to a better
knowledge of patients’ trajectories, and consequently, in better management of the
treatment programme.
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