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Abstract
Oxidative stress and nitric oxide (NO) appear to represent important links between obesity and cardiovascular, metabolic and/or
renal disease. We investigated whether oxidative stress and NO production/metabolism are increased in overweight and obese prepubertal
children and correlate with cardiometabolic risk and renal function. We performed a cross-sectional evaluation of 313 children aged 8–9 years.
Anthropometrics, 24-h ambulatory blood pressure, pulse wave velocity (PWV), insulin resistance (homoeostasis model assessment
index (HOMA-IR)), inflammatory/metabolic biomarkers, estimated glomerular filtration rate (eGFR), plasma total antioxidant status (TAS),
plasma and urinary isoprostanes (P-Isop, U-Isop), urinary hydrogen peroxide (U-H2O2), and plasma and urinary nitrates and nitrites (P-NOx,
U-NOx) were compared among normal weight, overweight and obese groups, according to WHO BMI z-score reference. U-Isop
were increased in the obese group, whereas U-NOx were increased in both overweight and obese children. U-Isop were positively correlated
with U-H2O2, myeloperoxidase (MPO), high-sensitivity C-reactive protein, HOMA-IR and TAG. TAS correlated negatively with U-Isop
and MPO and positively with PWV. HOMA-IR and U-H2O2 were associated with higher U-Isop, independently of BMI and eGFR,
and total cholesterol and U-H2O2 were associated with U-NOx, independently of BMI, eGFR values and P-NOx concentration. In overweight
and obese children, eGFR decreased across P-NOx tertiles (median: 139·3 (25th, 75th percentile 128·0, 146·5), 128·0 (25th, 75th percentile
121·5, 140·4), 129·5 (25th, 75th percentile 119·4, 138·3), Pfor linear trend= 0·003). We conclude that oxidant status and NO are increased

Abbreviations: ABPM, ambulatory blood pressure monitoring; eGFR, estimated glomerular filtration rate; HOMA-IR, homoeostasis model assessment of insulin
resistance; hs-CRP, high-sensitivity C-reactive protein; MAP, mean arterial pressure; MPO, myeloperoxidase; NO, nitric oxide; NOS, NO synthase; P-Isop,
plasma isoprostanes; P-NOx, plasma nitrates and nitrites; PWV, pulse wave velocity; ROS, reactive oxygen species; TAS, total antioxidant status; U-H2O2,
urinary hydrogen peroxide; U-Isop, urinary isoprostanes; U-NOx, urinary nitrates and nitrites; WHtR, waist:height ratio.
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in relation to fat accumulation and, even in young children, they translate into higher values of cardiometabolic risk markers and affect
renal function.

Key words: Paediatric obesity: Oxidative stress: Nitric oxide: Risk factors: Glomerular filtration rate

Oxidative stress is an imbalance between the production of
reactive oxygen species (ROS) and their elimination by antioxidant
defences, which favours a pro-oxidant state potentially leading to
damage(1). In obesity, there is evidence of increased production of
free radicals and reactive substances, leading to damage of lipids,
proteins and DNA, as well as alterations in cellular functions
and signalling. In fact, oxidative stress, along with a low-grade
inflammatory state, is thought to represent an important
mechanism determining the association between obesity and
vascular dysfunction, CVD and altered metabolic states(2).
Nitric oxide (NO) is an important regulator of cardiovascular

and renal function, synthesised under normal conditions by
endothelial and neuronal NO synthase (NOS)(3). The over-
production of NO and other reactive nitrogen species is termed
nitrative/nitrosative stress and may also lead to cell damage and
changes in signalling(1,3). In oxidant and inflammatory states, such
as obesity, inducible NOS can produce a great amount of NO,
stimulated by inflammatory cytokines, but NO is very sensitive to
ROS and combines to generate other reactive compounds. The
resulting reduced NO bioavailability is believed to lead to endo-
thelial dysfunction and loss of vasodilatation(3).
In 2011, a review of paediatric studies summarised evidence

demonstrating that obese children already present a pro-
oxidant milieu and decreased levels of antioxidant
enzymes(2). More recently, studies in children have shown that
8-isoprostane levels, both in plasma (P-Isop) and urine
(U-Isop), besides being positively correlated with measures of
obesity(4,5), are also associated with blood lipids(4) and insulin-
resistance levels(4). Moreover, the total antioxidant status (TAS)
has also been shown to be decreased in obese children(6),
especially in the presence of other components of the metabolic
syndrome(7). However, some studies have found contradictory
results, hypothesising that a regulatory increase of the anti-
oxidant system could be in motion, in early phases of obesity, to
compensate the higher oxidative stress levels(8).
Nitrative/nitrosative stress, known to be associated with

oxidative stress(3,9), has been evaluated in some studies by
measuring systemic 3-nitrotyrosine, a marker of tyrosine nitra-
tion by peroxynitrite(3,9), and also by quantification of markers
of NO formation and metabolism, such as plasmatic and urinary
nitrates and nitrites (P-NOx or U-NOx)(9,10), but contradictory
results have been reported concerning whether obese children
present increased or decreased levels of these markers(9–11). In
two studies of Codoñer-Franch et al., obese children, with an
age range from 7 to 14 years, exhibited higher levels of plasma
and/urinary NO markers, whereas a reduction in serum nitrate
and nitrite concentrations was observed in another study
involving adolescents with a mean age of 14 years(9–11).
The association of oxidative and/or nitrative/nitrosative stress

markers with blood pressure levels or vascular dysfunction
has rarely been assessed in obese children(9,12,13). Moreover,
oxidative and/or nitrative/nitrosative stress might contribute to

the negative impact of obesity on renal function(3,14), which is
believed to start early in childhood(14). Therefore, the transla-
tion of higher values of oxidative and/or nitrative/nitrosative
stress markers into relevant clinical findings needs to be further
explored, in order to clarify some of the contradictory evidence
reported in young children. Thus, in the present study, we
aimed to test the hypothesis that the values of several oxidative
stress and NO production/metabolism markers are increased in
overweight and obese prepubertal children, and that they cor-
relate with each other and are related to various cardiometa-
bolic risk factors. In addition, we also aimed to assess the
association of these markers with renal function.

Methods

Study design and sample

We studied children aged 8–9 years who have been followed-up
since birth in a previously established cohort study
(Generation XXI)(15). The children included in this cohort are
believed to be representative of the population of Northern
Portugal, as a very broad catchment area was included and the
participation proportion was high (92% of the mothers invited
accepted to participate). From the original cohort (n 8647), 4590
children attended a face-to-face follow-up visit at 7 years of age,
including anthropometric evaluation and blood sample collec-
tion, thus being eligible for the ObiKid project – a specific
project aiming to clarify the impact of childhood obesity and
associated co-morbidities on the kidney(16). At a significance
level of 0·05 and considering a power of 85% to detect a dif-
ference of at least 8ml/min per 1·73m2 in the value of estimated
glomerular filtration rate (eGFR) between normal weight and
overweight/obese children, and assuming standard deviations
of 24 and 22ml/min per 1·73m2 in each group, respectively(17),
we estimated that a minimum sample size of 300 children (150
in each group of normal weight and overweight/obese chil-
dren) would be needed. Assuming that about 35% would be
excluded because of refusal to participate, exclusion criteria or
incomplete information, 463 children were preselected to be
consecutively screened according to the date of their 7-year-old
evaluation: sixteen could not be contacted, thirty-two refused to
participate, twenty-three, although willing to participate, were
unable to schedule the study visits during the recruitment
period and sixty-eight met exclusion criteria (four chronic
diseases (genetic, renal or metabolic), one chronic usage of
medication (affecting blood pressure or glucose or lipid
metabolism), fifty-one with residence >30 km away from the
study site and six pairs of twins). We enrolled 324 participants,
between August 2013 and August 2014; however, for the pre-
sent analysis, we additionally excluded eleven children because
of incomplete evaluation, such as absence of blood or urine
samples for oxidative stress and NO production markers
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determination. Children included in the final analysis (n 313)
were fairly representative of the eligible children with respect to
length at birth, distribution in small-for-gestational age or large-
for-gestational age classes, the child’s sex, parents’ number of
schooling years, and children’s weight, height and systolic or
diastolic blood pressure at the follow-up visit at 7 years of age.

Data collection and variables definition

The study visits took place at the Department of Clinical
Epidemiology, Predictive Medicine and Public Health, Faculty
of Medicine, University of Porto. Anthropometric and general
physical examinations were performed according to standard
procedures and as previously reported(18). Waist circumference
was indexed to height (waist:height ratio (WHtR, cm/m)). BMI
was calculated, and BMI-for-age values were classified
according to the WHO reference data for BMI z-score into the
following categories: normal weight (≤+1 SD, including only
one child with thinness), overweight (>1 SD and ≤+2 SD) and
obesity (>2 SD)(19). Body fat percentage was assessed by foot-
to-foot bioelectrical impedance analysis (model TBF-300; Tanita).
Ambulatory blood pressure monitoring (ABPM) for 24h was

performed on all children with a portable, non-invasive, oscillo-
metric blood pressure recorder (model 90 207; Spacelabs
Healthcare). The non-dominant arm was used in all children with
a cuff size appropriate to the child’s arm circumference.
Blood pressure measurements were taken automatically at
20-min intervals during the daytime and at 30-min intervals during
the night-time. A minimum monitoring duration of 24h with gaps
of <2h was required for acceptance; five exams were excluded of
the ABPM analysis because of insufficient readings. All readings
were used to calculate mean 24h, day and night mean arterial
pressure (MAP) and systolic and diastolic blood pressures by
SpaceLabs software. Sustained hypertension(20) was defined as an
average systolic and/or diastolic blood pressure measurement
≥95th percentile, during the day or the night on ABPM, according
to the reference values(20), a systolic or diastolic blood pressure
load ≥25%, during the day or the night, and an office systolic
and/or diastolic blood pressure ≥95th percentile, according to the
American Academy of Pediatrics criteria(21). When office blood
pressure values were below the 95th percentile, but the remain-
ing criteria were verified, the children were classified as pre-
senting masked hypertension(20). The absence of dipping was
considered as a fall in the MAP during night-time of <10% of the
corresponding daytime MAP. Carotid–femoral pulse wave velo-
city (PWV) analysis was performed by a trained cardiopneumol-
ogy technician with a portable device (Micro Medical PulseTrace
PWV PT4000; Kent); digital volume pulse waveform had to fill
two-thirds of the display with little or no noise and artifact to be
considered, and three measurements of PWV were obtained and
averaged for the analysis.

Laboratory procedures

A venous blood sample was collected after an overnight fast of at
least 8 h and analysed for creatinine, cystatin C, uric acid, glucose,
insulin, lipids, high-sensitivity C-reactive protein (hs-CRP), IL-6,
myeloperoxidase (MPO), P-Isop, P-NOx and TAS. Insulin

resistance was determined using the homoeostasis model
assessment index (HOMA-IR). All participants collected a 24-h
urine sample, which was analysed for creatinine, U-Isop, urinary
hydrogen peroxide (U-H2O2) and U-NOx. All the parents
received information on the correct methods of 24-h urine col-
lection and, upon sample delivery, compliance was rechecked by
a brief questionnaire. The samples were considered valid if
urinary creatinine was within the range of 11·3–28·0mg/kg per d
(according to age- and sex-specific reference values(22)) and if the
urinary volume was over 300ml; on the basis of these criteria,
fifteen urine samples were excluded from the analysis.

All the standard laboratory analyses were performed in the
Clinical Pathology Department of Centro Hospitalar São João,
Porto, Portugal. Serum creatinine assay was based on the Jaffé
compensated traceable to an isotope dilution MS method
(Olympus AU 5400 automated analyzer; Beckman-Coulter). Serum
cystatin C was assayed using a particle-enhanced immunonephe-
lometric assay (N latex Cystatin C; Siemens). Serum uric acid was
evaluated by a kinetic uricase–peroxidase assay in an automated
analyzer (Olympus AU 5400 automated analyzer). The Zappitelli
combined formula was used to estimate eGFR(23). hs-CRP was
tested by immunonephelometric assay with CardioPhase hs-CRP
(Siemens Healthcare Diagnostics®), and IL-6 was tested by
immunoassay (Cobas Integra 700 Autoanalyzer; Roche). Urinary
creatinine was determined by a standard automated clinical
chemistry analyzer (Olympus AU 5400 automated analyzer).
All the plasma, serum and urine samples used for the
determination of inflammatory and oxidative stress biomarkers
were stored at −80°C until assayed. MPO and oxidative stress and
NO production/metabolism markers were assessed at the
Department of Pharmacology and Therapeutics of the Faculty of
Medicine, University of Porto, using commercial kits and by
following the manufacturer’s specific instructions. In brief, serum
MPO was quantified by an immunoenzymatic assay (BioCheck,
MPO Enzyme Immunoassay Test Kit; Oxis International Inc.).
Plasma TAS was evaluated by a spectrophotometric assay
(Antioxidant Assay Kit; Cayman Chemical Company) that
measures the combined antioxidant activities of water- and lipid-
soluble antioxidants, including vitamins, glutathione, uric acid,
bilirubin, albumin, etc. This assay depends on the ability of the
antioxidants present in the sample to inhibit the absorbance of
the radical cations of 2,2'-azino-bis(3-ethylbenzothiazoline-
6-sulphonic acid). The antioxidant capacity of the sample is
compared with that of Trolox, a water-soluble tocopherol
analogue, and is expressed as mM Trolox equivalents. Free
isoprostanes were quantified in plasma (P-Isop) containing the
preservatives butylated hydroxy toluene (BHT, 0·005%, w/v)
and indomethacin (10μM), which were added before storage.
Solid-phase extraction was performed before the measurement of
P-Isop by a competitive enzyme immunoassay (15-Isoprostane
F2t ELISA Kit; Oxford Biomedical Research, Inc.). U-Isop were
quantified by a competitive enzyme immunoassay (Urinary
Isoprostane ELISA Kit; Oxford Biomedical Research, Inc.) in non-
extracted urine containing BHT (0·005%, w/v) added before
storage and incubated with β-glucuronidase before the assay, as a
significant amount of isoprostanes is excreted in urine conjugated
with glucuronide(24). Total nitrates and nitrites (NOx) were
evaluated in P-NOx and U-NOx by a colourimetric assay
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(Nitrate/Nitrite Colorimetric Assay Kit; Cayman Chemical Com-
pany). Plasma samples were ultrafiltered before assay using
30-kDa filters. Urinary excretion of H2O2 (U-H2O2) was evaluated
by a microplate fluorimetric assay (Amplex Red Hydrogen
Peroxide/Peroxidase Assay Kit; Molecular Probes, AlfaGene).
The intra- and inter-assay CV (%) for oxidative stress and

proinflammatory biomarkers determined at the Department
of Pharmacology and Therapeutics, Faculty of Medicine,
University of Porto, were as follows: 7·23 and 9·76% (TAS); 3·58
and 13·32% (U-H2O2); 5·76 and 9·54% (U-Isop); 2·49 and
9·62% (P-Isop); 5·06 and 9·31% (U-NOx); 3·21 and 6·26%
(P-NOx); and 2·35 and 9·38% (MPO).
The intra-assay CV (for lower and higher concentrations) of

standard blood analyses performed at the Clinical Pathology
Department of Centro Hospitalar São João were determined by
the manufacturers of the kits: 1·06–1·13% (total cholesterol);
1·92–1·33% (HDL-cholesterol); 1·76–1·46% (TAG); 1·71–1·12%
(uric acid); 5·76–1·50% (hs-CRP); 3·10–1·10% (IL-6); 1·25–1·11%
(glucose); 2·48–1·31% (creatinine); 2·6–2·5% (insulin); and
3·5–4·2% (cystatin C).

Ethics

The ObiKid study was approved by the Ethics Committee of
Centro Hospitalar São João, Entidade Pública Empresarial (E.P.E.)
and Faculty of Medicine, University of Porto, and complies with
the Helsinki Declaration, the guidelines for the ethical conduct of
medical research involving children(25) and the current national
legislation. Written informed consent from parents (or their legal
substitute) and verbal assent from children were obtained
regarding information and biological samples gathering.

Statistical analysis

Statistical analysis was performed using IBM SPSS Statistics for
Windows, version 20.0. The distribution of oxidative stress and
NO production/metabolism markers by classes of BMI (normal
weight, overweight and obesity) is shown in box plot graphs and
compared using Kruskal–Wallis and Dunn’s post hoc tests.
Spearman’s correlations were used to test bivariate associations
between oxidative stress and NO production/metabolism mar-
kers and between those and obesity indices, cardiovascular risk
factors and renal function. Linear multivariate regression models
were fitted to identify variables independently associated with
oxidative/NO production markers (only for oxidative/NO pro-
duction markers presenting significantly different values in
overweight and obese children). The oxidative stress and NO
production/metabolism markers had an asymmetric distribution,
and therefore those included in the regression models as
dependent variables were logarithmised (base 10), allowing us to
obtain a normal distribution. Variables with significant correla-
tions were included in the linear regression models, except for
those expected to introduce collinearity – for example, among
anthropometric variables, BMI z-score was preferred. All models
were adjusted for sex and age (months) as well as for eGFR, as
urinary excretion of biomarkers might be affected by different
values of glomerular filtration. Regarding the remaining variables,
a backward, stepwise approach was used to fit the final models.
P values were considered statistically significant if <0·05.

Although for the majority of parameters we had a final number
of 313 blood samples and 298 urine samples (after the exclusion
of fifteen non-valid urine samples), there were some missing
values in the following biomarkers due to insufficient volume of
samples or reagents to perform sample processing, dilution tests
and to run the assays in duplicate: P-Isop (n 288), U-Isop (n 297),
U-H2O2 (n 295), P-TAS (n 312) and serum MPO (n 309).

Results

General characteristics and cardiovascular and biochemical
parameters by classes of BMI

Obese children presented higher night-time MAP and PWV
values, higher insulin resistance and higher concentrations of
TAG, non-HDL-cholesterol and uric acid (Table 1). Overweight
and obese children also had significantly higher hs-CRP and
MPO concentrations and lower eGFR values (Table 1).

Biomarkers of oxidative stress and nitric oxide production/
metabolism across BMI classes

In Fig. 1, the distribution of oxidative stress and NO synthesis
markers by classes of BMI is depicted. The plasma values of
TAS were not significantly different across BMI classes.

The median values of U-Isop were higher in the obese group.
No significant difference was found in P-NOx concentration
across BMI groups, but significantly higher values of U-NOx
were found in overweight and obese children. No differences
were observed in U-H2O2 median values between the normal
weight, overweight and obese groups.

Correlations between biomarkers of oxidative stress and
nitric oxide production/metabolism

As shown in Table 2, TAS was negatively correlated with
U-Isop. P-NOx was positively correlated with U-NOx, but
P-Isop and U-Isop presented no correlation. U-H2O2 was
positively correlated with U-Isop and U-NOx.

Correlations of obesity indices, metabolic parameters and
inflammatory markers with biomarkers of oxidative stress
and nitric oxide production/metabolism

Both BMI z-score and WHtR were positively associated with
P-Isop, U-Isop and U-NOx. Body fat mass was negatively
correlated with U-H2O2 and positively correlated with U-Isop
(Table 3).

Total cholesterol and non-HDL-cholesterol levels were
negatively correlated with U-NOx, and TAG levels were posi-
tively correlated with U-Isop. The HOMA-IR values were posi-
tively correlated with U-Isop. Uric acid concentrations were
positively correlated with P-NOx (Table 3).

MPO concentrations were negatively correlated with TAS
values. Both U-Isop and P-Isop values were positively corre-
lated with MPO, and U-Isop was also positively correlated with
hs-CRP (Table 3).
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Correlations of cardiovascular and renal function indices
with biomarkers of oxidative stress and nitric oxide
production/metabolism

PWV was positively correlated with TAS. Daytime and
night-time MAP values were not correlated with oxidative
stress or NO production/metabolism markers. Renal function
(eGFR) was negatively correlated with P-NOx, but no
association was found with U-NOx or oxidative stress markers
(Table 3).

Multivariate regression models for urinary isoprostanes and
urinary nitrates and nitrites

In the multivariate models fitted (Table 4), HOMA-IR and
U-H2O2 were associated with higher U-Isop values,

independently of the BMI and eGFR (r2 0·27). Total cholesterol
and U-H2O2 values were associated with U-NOx, indepen-
dently of the BMI, eGFR and P-NOx concentration (r2 0·17).

Influence of plasma nitrates and nitrites on renal function in
normal weight and overweight/obese children

In Fig. 2, the distribution of eGFR by tertiles of P-NOx
concentration, in normal weight and in overweight/obese
children, is shown. Although all children had normal renal
function, in overweight/obese children, the eGFR values
decreased across tertiles of P-NOx (median: 139·3 (25th, 75th
percentile 128·0, 146·5), 128·0 (25th, 75th percentile 121·5,
140·4), 129·5 (25th, 75th percentile 119·4, 138·3), age- and
sex-adjusted Pfor linear trend= 0·003).

Table 1. General characteristics of the study subjects by BMI z-score classes
(Mean values and standard deviations; numbers and percentages; medians and 25th, 75th percentiles)

WHO BMI z-score classification

Normal weight (n 163) Overweight (n 89) Obese (n 61)

Mean SD Mean SD Mean SD P

Demography and anthropometry
Age (years) 8·8 0·2 8·8 0·2 8·8 0·2 0·452
Sex (male) 0·085
n 83 43 40
% 51 48 66

BMI z-score −0·03 0·74 1·56 0·30 2·65 0·48 <0·001
WHtR (cm/m) 44·7 2·5 50·2 3·3 56·6 4·5 <0·001
Percentage of body fat mass 10·7 7·2 20·1 7·9 28·0 9·4 <0·001

24-h ambulatory blood pressure and PWV
Daytime MAP (mmHg) 84·7 4·6 85·7 5·7 86·0 6·5 0·183
Night-time MAP (mmHg) 73·3 4·8 74·7 5·1 75·4 6·4 0·017
Sustained hypertension/masked hypertension*
n 1/9 3/5 4/6 –

% 0·6/5·5 3·4/5·6 6·6/9·8
Absence of dipping
n 35 30 17 0·128
% 22 34 28

PWV (m/s) 4·97 0·49 5·04 0·52 5·20 0·51 0·012
Biochemical parameters

Total cholesterol (mmol/l) 4·0 0·6 4·2 0·7 4·2 0·6 0·131
HDL-cholesterol (mmol/l) 1·4 0·3 1·4 0·3 1·3 0·2 0·203
Non-HDL-cholesterol (mmol/l) 2·6 0·6 2·8 0·7 2·8 0·6 0·017
TAG (mmol/l) 0·6 0·2 0·7 0·3 0·8 0·4 <0·001
HOMA-IR
Median 1·13 1·46 1·68 <0·001
25th, 75th percentile 0·83, 1·38 1·07, 1·84 1·28, 2·64

Uric acid (μmol/l) 208·2 41·6 226·0 41·6 237·9 47·6 <0·001
hs-CRP (mg/l)
Median 0·0 0·5 0·75 <0·001
25th, 75th percentile 0·0, 0·4 0·2, 1·2 0·3, 1·9

IL-6 (pg/ml)
Median 0·75 1·59 1·98
25th, 75th percentile 0·75, 2·42 0·75, 3·32 0·75, 3·02 0·097

MPO (ng/ml)†
Median 42·3 72·3 82·4
25th, 75th percentile 26·7, 62·6 52·2, 106·7 48·9, 105·4 <0·001

eGFR (ml/min per 1·73m2) 138·5 15·7 132·3 16·2 135·5 15·6 0·002

WHtR, waist:height ratio; MAP, mean arterial pressure; PWV, pulse wave velocity; HOMA-IR, homoeostasis model assessment of insulin resistance; hs-CRP, high-sensitivity
C-reactive protein; MPO, myeloperoxidase; eGFR, estimated glomerular filtration rate by Zappitelli combined formula.

* Sustained hypertension and masked hypertension were defined according to the revised American Heart Association criteria for ambulatory blood pressure monitoring
interpretation(20).

† The sample size for MPO was 161 normal weight, eighty-eight overweight and sixty obese children.
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Discussion

The results of our study show that obese children presented
significantly higher values of U-Isop and U-NOx. It is note-
worthy that U-Isop were associated with several cardiometa-
bolic risk factors such as HOMA-IR, MPO, hs-CRP and TAG. In

addition, in overweight and obese children, we found a strong
negative association between eGFR values and P-NOx
concentrations.

The direct measurement of free radicals and reactive mole-
cules is difficult to achieve, and several methods have been
developed to indirectly infer the levels of oxidative stress, both
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Fig. 1. Distribution of oxidative stress and nitric oxide (NO) production/metabolism markers by classes of BMI (normal weight, overweight and obesity). The normal
weight, overweight and obese group classification is according to the WHO classification for BMI z-score values(19). The oxidative stress markers data are expressed
as medians and 25th, 75th percentiles. Median values between groups were compared with Kruskal–Wallis tests; pairwise significant differences according to Dunn’s
tests are presented. Panels (a)–(f) depict the distribution of oxidative stress and NO production/metabolism markers by classes of BMI: (a) total antioxidant status (TAS,
mM Trolox equivalents) (163 normal weight; eighty-nine overweight and sixty obese); (b) urinary hydrogen peroxide (U-H2O2, nmol/d) (154 normal weight; eighty-four
overweight and fifty-seven obese); (c) plasma isoprostanes (P-Isop, ng/ml) (151 normal weight; seventy-eight overweight and fifty-nine obese); (d) urinary isoprostanes
(U-Isop, ng/d) (154 normal weight; eighty-six overweight and fifty-seven obese); (e) plasma nitrates and nitrites (P-NOx, nmol/ml) (163 normal weight; eighty-nine
overweight and sixty-one obese); (f) urinary nitrates and nitrites (U-NOx, µmol/d) (154 normal weight; eighty-seven overweight and fifty-seven obese). * P< 0·05,
*** P< 0·001.
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through the measurement of antioxidant capacity and through
the quantification of oxidatively damaged biomolecules. Our
results showed that the plasma antioxidant capacity did not

differ across BMI classes. Unaltered plasma TAS has also been
described in other studies related to childhood obesity. In obese
children without the metabolic syndrome, plasma TAS values
were similar to those found in the control group(7,8). In addition,
in a study evaluating children with type 2 diabetes mellitus, as
well as age-, sex- and BMI-matched controls (obese group) and
unmatched controls, TAS values were not different between the
three groups(26). Nonetheless, several methods of TAS deter-
mination exist that are not necessarily correlated with one
another(2), and contradictory findings concerning the values of
this parameter in association with obesity have been repor-
ted(6,8). Despite the absence of differences in plasma anti-
oxidant capacity across BMI classes, we found that TAS was
inversely correlated with markers of pro-oxidant/proin-
flammatory status, such as U-Isop and serum MPO. Indeed,
under conditions of elevated ROS production, the need for
neutralisation of these species implies a higher consumption of
systemic antioxidants(27).

Quantification of lipid peroxidation markers constitutes the
most used approach for the evaluation of oxidative stress. Iso-
prostanes are primarily derived from the free radical-catalysed
peroxidation of arachidonic acid and represent a reliable bio-
marker of endogenous lipid peroxidation(24,27). In our study, we
measured free isoprostanes in plasma and urine. It is known

Table 2. Spearman’s correlations between oxidative stress and nitric oxide production/metabolism markers†

TAS (mM Trolox equivalents) U-H2O2 (nmol/d) P-Isop (ng/ml) U-Isop (ng/d) P-NOx (nmol/ml) U-NOx (μmol/d)

TAS (mM Trolox equivalents) – 0·018 −0·087 −0·228*** 0·010 0·033
U-H2O2 (nmol/d) – – 0·038 0·193*** −0·012 0·240***
P-Isop (ng/ml) – – – 0·103 0·031 −0·041
U-Isop (ng/d) – – – – 0·041 0·065
P-NOx (nmol/ml) – – – – – 0·314***
U-NOx (μmol/d) – – – – – –

TAS, total antioxidant status; U-H2O2, urinary hydrogen peroxide; P-Isop, plasma isoprostanes; U-Isop, urinary isoprostanes; P-NOx, plasma nitrates and nitrites; U-NOx, urinary
nitrates and nitrites.

*** P< 0·001.
† The final sample size for each parameter was 312 (TAS), 295 (U-H2O2), 288 (P-Isop), 297 (U-Isop), 313 (P-NOx) and 298 (U-NOx).

Table 3. Spearman’s correlations of oxidative stress and nitric oxide production/metabolism markers with anthropometry and cardiovascular and
biochemical parameters†

TAS (mM Trolox equivalents) U-H2O2 (nmol/d) P-Isop (ng/ml) U-Isop (ng/d) P-NOx (nmol/ml) U-NOx (μmol/d)

BMI z-score −0·043 0·014 0·141** 0·272*** 0·019 0·177**
WHtR (cm/m) −0·067 −0·069 0·117* 0·184** − 0·002 0·136*
Percentage of body fat mass −0·081 −0·182** 0·068 0·175** − 0·043 0·033
Daytime MAP (mmHg) −0·059 0·054 −0·014 0·026 0·045 0·042
Night-time MAP (mmHg) −0·102 0·011 0·031 0·108 0·018 0·038
PWV (m/s) 0·146* −0·049 −0·048 −0·049 − 0·028 0·046
Total cholesterol (mmol/l) 0·033 −0·088 0·021 −0·031 − 0·016 −0·174**
HDL-cholesterol (mmol/l) −0·024 0·031 0·005 −0·003 − 0·014 −0·035
Non-HDL-cholesterol (mmol/l) 0·052 −0·091 0·010 −0·048 0·015 −0·150**
TAG (mmol/l) −0·049 0·049 −0·017 0·124* 0·062 0·075
HOMA-IR −0·072 −0·037 0·025 0·204*** − 0·082 −0·016
Uric acid (μmol/l) 0·052 0·074 0·067 0·106 0·278*** 0·101
hs-CRP (mg/l) −0·068 −0·050 0·046 0·179** 0·031 0·048
IL-6 (pg/ml) −0·063 0·012 0·093 0·082 0·031 −0·012
MPO (ng/ml) −0·152** −0·008 0·196** 0·167** 0·061 0·111
eGFR (ml/min per 1·73m2) 0·063 −0·043 −0·089 0·006 0·212*** −0·031

TAS, total antioxidant status; U-H2O2, urinary hydrogen peroxide; P-Isop, plasma isoprostanes; U-Isop, urinary isoprostanes; P-NOx, plasma nitrates and nitrites; U-NOx, urinary
nitrates and nitrites; WHtR, waist:height ratio; MAP, mean arterial pressure; PWV, pulse wave velocity; HOMA-IR, homoeostasis model assessment of insulin resistance; hs-CRP,
high-sensitivity C-reactive protein; MPO, myeloperoxidase; eGFR, estimated glomerular filtration rate by Zappitelli combined formula.

* P<0·05, ** P<0·01, *** P<0·001.
† The final sample size was 313 with the exceptions of MPO (309), TAS (312), U-H2O2 (295), P-Isop (288), U-Isop (297) and U-NOx (298).

Table 4. Multivariate linear regression models for urinary isoprostanes
and urinary nitrates and nitrites*
(Adjusted linear regression coefficients (β) and 95% confidence intervals,
estimated by linear regression models with log U-Isop or log U-NOx as the
dependent variable (adjusted for all variables in the table and additionally
for sex, age (months) and eGFR by Zappitelli combined formula))

Adjusted β 95% CI P

Log U-Isop (ng/d)
BMI z-score (per 1 SD) 0·026 0·005, 0·046 0·014
HOMA-IR (per 1 unit) 0·035 0·002, 0·068 0·040
U-H2O2 (per nmol/d × 10−3) 0·031 0·015, 0·047 <0·001

Log U-NOx (µmol/d)
BMI z-score (per 1 SD) 0·044 0·017, 0·070 0·001
Total cholesterol (per mmol/l) − 0·064 −0·112, −0·017 0·008
P-NOx (per nmol/ml) 0·009 0·006, 0·012 <0·001
U-H2O2 (per nmol/d) 0·005 0·001, 0·009 <0·001

Log U-Isop, urinary isoprostanes (logarithm base 10); Log U-NOx, urinary nitrates
and nitrites (logarithm base 10); HOMA-IR, homoeostasis model assessment of
insulin resistance; U-H2O2, urinary hydrogen peroxide; P-NOx, plasma nitrates and
nitrites.

* The final sample size was 297 for U-Isop, 298 for U-NOx, 295 for U-H2O2 and 313
for P-NOx, BMI z-score, HOMA-IR and total cholesterol.
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that both free and esterified (bound) isoprostanes can be
measured in plasma or serum samples(28). We opted to quantify
only free isoprostanes in plasma, because in many samples it
was not possible to obtain a complete separation of phases
during the procedure recommended for the hydrolysis of
esterified isoprostanes and further analysis of total isoprostanes.
Nevertheless, other authors have not found advantage in the
measurement of total isoprostanes rather than free isoprostanes
in plasma(28). We reported that P-Isop and U-Isop levels
were positively correlated with measures of obesity, which is
in line with previous studies in children(2,4,5,12,13,29). Similar
to some studies(4,29), we also found that isoprostanes were
associated with insulin resistance. Of note, our findings also
indicate that this association is independent of BMI. This is in
line with a recent study where the authors also found increased
lipid peroxidation in association with insulin resistance, inde-
pendently of adiposity, thus hypothesising that the degree of
insulin resistance is the major determinant of the oxidative
stress found in the obese, which may further impair pancreatic
function and amplify the metabolic and cardiovascular
complications(30).
Isoprostanes are not only markers of oxidative stress but

also exert several actions relevant to the pathogenesis of
vascular dysfunction, as they are potent vasoconstrictors in
most vascular beds, induce platelet aggregation, and enhance
the adhesion of neutrophils and monocytes to endothelial
cells, thus contributing to atherosclerosis(24). These effects
and the positive association of U-Isop with HOMA-IR,
proinflammatory markers and TAG observed in our study
suggest that the increased oxidative stress found in obese
children might already be causing injury to the arterial wall,
even in the absence of established hypertension. Furthermore,
U-Isop may represent an early marker of cardiometabolic
dysfunction.
Obese children exhibit worse profiles of carotid intima-media

thickness, PWV and flow-mediated dilatation, reflecting vas-
cular damage(31,32), and several clinical and experimental

obesity-related studies have found that oxidative stress is sig-
nificantly associated with changes in these vascular para-
meters(33–36). Interestingly, in our sample, we found an
unexpected positive correlation between PWV and TAS values.
This finding might indicate that an increase in PWV triggers the
activation of antioxidant defences. As alterations in PWV appear
to be consistently associated with arterial diameter(37), we
hypothesise that a decrease in vasodilator tone might be a
stimulus for the activation of nuclear factor E2-related factor 2,
a key transcription factor that regulates the expression of
antioxidant genes and appears to play a major role in the
regulation of vascular function(38,39).

Regarding the markers of NO production/metabolism, we
found that P-NOx and U-NOx were positively correlated with
each other, but only the U-NOx values were significantly and
positively associated with BMI z-score. Some studies reported
lower concentrations of NOx in obese children as reflecting a
decreased NO bioavailability(11), whereas other authors repor-
ted findings similar to ours, with obese children presenting
higher U-NOx values(10). Although it is not possible to differ-
entiate between NO production from constitutive or inducible
NOS isoforms, we believe that the higher values of U-NOx
observed in overweight and obese children of our study reflect
a higher excretion of systemic NO metabolites due to increased
NO biosynthesis by the inducible NOS. Indeed, several studies
in experimental models of obesity have reported an
up-regulation of inducible NOS expression and decreased or
unaltered endothelial NOS. Obese Zucker rats exhibited
increased mRNA and protein expressions of vascular inducible
NOS and unaltered expression of vascular endothelial NOS,
compared with the group of lean Zucker rats(40). Moreover, the
administration of a high-fat diet to C57BL/6j mice induced the
mRNA expression of inducible NOS but not of the other two
isoforms in white adipose tissue and skeletal muscle(41). Fur-
thermore, endothelial NOS protein expression was shown to be
decreased in the adipose tissue from db/db mice and high-fat
diet-fed, wild-type C57BL/6j mice(42).
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Of note, in our study, P-NOx was positively correlated with
uric acid, a product of xanthine oxidase, which suggests that
both inducible NOS and the pro-oxidant xanthine oxidase are
activated in parallel, exacerbating the systemic proin-
flammatory/pro-oxidant status.
Importantly, we detected a significant negative association

between P-NOx and eGFR in overweight and obese children.
The high amounts of NO and peroxynitrite formed in
proinflammatory conditions could inhibit endothelial NOS
activity(3,43), and the reduced endothelial-derived NO produc-
tion in the kidney vascular tree would result in an imbalance
towards higher vasoconstriction(43), decreasing eGFR or,
at least, preventing hyperfiltration to be evident. Overall, in
obesity, the higher values of NO metabolites probably result in
more deleterious than beneficial effects on the vascular bed,
due to the loss of endothelial NO and its biological effects.
A negative correlation between P-NOx and eGFR was also
found in adults with normal and mildly impaired renal func-
tion(44). Nonetheless, very few studies have addressed this
association in children. Savino et al. (45) reported significantly
higher values of both plasmatic and urinary NOx in diabetic
children and a positive correlation between these markers and
renal resistive indices, hypothesising that increased NO produc-
tion might contribute to intrarenal haemodynamic abnormalities
in diabetic patients. Another study involving children with
hypertension and normal controls also reported a negative cor-
relation between P-NOx and eGFR(46). We cannot exclude the
possibility that a reduced GFR per se might have increased the
systemic concentration of NO metabolites. However, if this was
the case, then it would be expected that U-NOx values presented
a positive correlation with eGFR and/or a negative correlation
with P-NOx. Contrary to this hypothesis, in our study, U-NOx
values were positively correlated with P-NOx concentrations and
were significantly increased in overweight and obese children.
In addition to the proinflammatory mechanisms described,

there are other pathways whereby NO production in the kidney
might also be affected. We detected an inverse association
between U-NOx levels and total cholesterol or non-HDL-
cholesterol, which reinforces previous experimental findings of
hypercholesterolaemia causing a decrease in NO synthesis
in the kidney(47,48) and might represent another mechanism
contributing to renal impairment in obesity. Other factors such
as insulin resistance, diabetes, arterial hypertension, oxidative
stress and hyperleptinaemia are also known to affect NO
bioavailability and activity and to contribute to renal function
decline in obesity(49–53).
We did not observe significant changes in urinary excretion

of H2O2, a non-radical ROS that has been highlighted as a
paracrine mediator of cardiovascular and renal dysfunc-
tion(27,54). Although we did not find any association between
H2O2 and the cardiovascular and renal parameters analysed,
H2O2 was positively correlated with other oxidative stress
(U-Isop) and NO production markers (U-NOx). Furthermore,
we detected an inverse correlation between H2O2 and per-
centage of body fat mass, which was enhanced in normal
weight children and lost in the overweight/obese group, when
these groups were analysed separately (data not shown). These
results might be related to the concentration of adiponectin, an

adipose tissue-derived hormone that reduces ROS values and
whose synthesis has been shown to be down-regulated in
obesity(55), although this hypothesis requires further testing.

This study has some limitations. First, we did not recommend
any dietary restrictions for the 48 h before sample collection,
and we did not consider the eating and exercise habits of the
children in our analysis. Second, as in every cross-sectional
evaluation, the associations found are of interest but should
naturally be interpreted with caution, especially regarding
causality inferences. We acknowledge that most of the eva-
luations performed should ideally be repeated throughout the
children’s development until adulthood, only then allowing us
to clarify thresholds of risk and the clinical relevance of the
chronic elevation of oxidative or nitrative/nitrosative stress
markers in the long term. Nevertheless, the performance of this
cross-sectional broad evaluation of oxidative stress markers and
NO metabolism markers in the setting of a birth cohort sample
is a major strength of our study, assuring the possibility of fur-
ther evaluations. The fact that we were able to include a large
and homogeneous sample of healthy prepubertal children, with
a detailed characterisation of cardiometabolic risk factors,
including 24-h ABPM, and renal function, constitutes another
important strength of our study.

Conclusions

Our results show that oxidant status and NO are increased in
relation to fat accumulation and that oxidative stress and NO
biomarkers correlate with each other. Furthermore, increased
oxidant status translates into higher cardiometabolic risk, and
higher NO concentrations have a negative impact on renal
function in overweight and obese children. Nevertheless, it
would be important to assure the follow-up of these children,
aiming to define markers for early identification of subjects at
risk and to clarify the impact of the chronic elevation of these
parameters in the long term.
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