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Resumo

Sistemas ópticos de captura de movimento são ainda recorrentemente utilizados em diver-
sas áreas de reconstrução do movimento, tal como área militar, cinema, realidade virtual e
aplicações médicas. Eles recriam o movimento do personagem real num avatar facilitando
o seu estudo e/ou projeção em ecrãs virtuais. No entanto, exigem frequentemente um sis-
tema externo complexo, composto por câmaras de infra-vermelho, software específicos
e marcadores em pontos relevantes do objecto/corpo. Embora a precisão destes sistemas
seja inquestionável, essa dificuldade de portabilidade e o custo elevado associado levou
à investigação de alternativas pequenas e móveis, igualmente eficazes mas de manuse-
amento mais simples. Desta forma, recentemente o uso de sistemas inerciais (IMUs)
ganhou grande relevância em diversas áreas da ciência, permitindo avaliar as alterações
das propriedades inerciais de um corpo. Eles resultam da combinação de unidades in-
erciais de acelerómetro e giroscópico que medem respetivamente a aceleração linear e
velocidade angular. Surgem em tamanhos reduzidos e sem necessidade de visibilidade,
o que expande as suas possibilidades de utilização. Embora as medições de orientação
obtidas com IMUs sejam fiáveis, estas tendem a se desviar do valor real quando usadas
por longos períodos de tempo. Para colmatar estas falhas surgiram soluções baseadas em
algoritmos e no uso de sensores adicionais, tal como o magnetómetro, por vezes incorpo-
rado no IMU.

Este projeto investiga a precisão de reconstruir marcha com IMUs colocados nos
membros inferiores e pélvis, contra os habitualmente usados sistemas ópticos. Os IMUs
utilizados são uma linha sem fios da Xsens, o MTw Awinda, baseados em sistemas micro-
eletromecânicos e incluem acelerómetros, giroscópios e magnetometros de 3 eixos. O
sistema óptico é um equipamento da Qualisys, disponível no laboratório de biomecânica
da Universidade do Porto. Foram feitos aqui estudos de marcha em sete voluntários
saudáveis com os dois sistemas a funcionar a 100 Hz. Os dados recolhidos (ópticos e
inerciais) foram convertidos e tratados pelo software proprietário da Kinetikos. Os resul-
tados da comparação entre o sistema ótico e o resultante da Kinetikos são equiparáveis
com a literatura. Obtiveram-se entre 2-3◦de erro médio absoluto e coeficiente de corre-
lação de Pearson de 0.90 (r).

Este documento contém ainda um estudo preliminar que pretende avaliar o quão
promissor é um sistema inercial inovador com dimensões 26.7 x 15 x 4 mm e 2g de
massa. Mencionado aqui de Wear, é também um IMU baseado em sistemas micro-
eletromecânicos, e inclui acelerómetro, giroscópio e magnetómetro de 3 eixos. Recorreu-
se ainda a uma experiência simples onde os dois sistemas inerciais e o sistema óptico
foram gravados simultanemente a 100Hz. O conjunto deslizou repetidamente ao longo de
uma calha e foi feita a comparação das acelerações nos três eixos obtendo-se erros médios
absolutos inferiores a 1 m/s2 com r entre 0.91-0.96.
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Abstract

Optical tracking systems are still frequently used in several areas of motion reconstruc-
tion, such as military, cinema, virtual reality and medical applications. They recreate
the movement of the real character in an avatar easing their study and/or projection onto
virtual screens. However, these methods often require an extensive external system com-
posed of infrared cameras, specific software and markers at relevant points of the ob-
ject/body. Although the accuracy of these systems is extreme, the lack of portability
and the associated high cost has led to the investigation of small and mobile alterna-
tives, equally effective but simpler to handle. In this way, the use of inertial systems
(IMUs) has recently gained great relevance in several areas of science, allowing to eval-
uate the changes in the inertial properties of a body. They result from the combination
of accelerometer and gyroscopic inertial units that respectively measure linear accelera-
tion and angular velocity. They come in small sizes and without the need for visibility,
which expands their possibilities of use. Although orientation measurements obtained
with IMUs are reliable in the short term, they tend to deviate from the real value when
used for long periods of time. To address these shortcomings, solutions have emerged
based on algorithms and the use of additional sensors, such as the magnetometer, some-
times incorporated in the IMU.

This project investigates the accuracy of reconstruct human gait with IMUs placed on
the lower limbs and pelvis, against commonly used optical systems. The inertial systems
used are an Xsens wireless line, the MTw Awinda, consisting of micro-electromechanical
systems based IMUs and include 3-axis accelerometer, 3-axis gyroscope and 3-axis mag-
netometer. The optical system is a Qualysis equipment, available at the Biomechanics
Laboratory of the University of Porto. Gait studies were performed here on seven healthy
volunteers with both systems operating at 100 Hz. The data (optical and inertial) were
converted and treated using a proprietary software, owned by Kinetikos.

This document also contains a small preliminary study that intends to evaluate how
promising an innovative inertial system is with dimensions 26.7 x 15 x 4 mm and 2g of
mass. Mentioned here as Wear, it is also a micro-electromechanical based IMU including
3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer. A low-tech method-
ology was used in which the two inertial systems and the optical system were recorded
simultaneously at 100 Hz. The set of systems slid repeatedly along a gutter and it was
compared the accelerations of the three axes. The results of the tests with volunteers are
comparable with the literature with an absolute mean error about 2-3◦and the Pearson
correlation coefficient of 0.90 (r). Regarding the sliding test, the absolute mean errors
were less than 1 m/s2 with r between 0.91-0.96.
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"The greatest good you can do for another is not just share your riches,
but to reveal to him his own”

- Benjamin Disraeli
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Chapter 1

Introduction

1.1 Context

There are few things more impacting than life. One of them may be to capture life itself. The

human status, the activities we perform, how our connected parts move and how they are not able

to move make us an interesting machine of study. Understanding the human movement and its

constraints and interactions with the surrounding environment enables the progress in several ar-

eas such as health care, sports, robotics, engineering, gaming and cinema. Have you ever wonder

how and how much you need to move your arm and eventually standing on your tiptoes to get a

glass of water on the shelf? Well, looking at those actions through a perspective of recognizing

the mechanics behind them is known as biomechanics [2] and it is quantitatively and qualitatively

achieved by instrumenting the movement. Biomechanical insight of the movement without refer-

ence to the forces that cause motion entails its kinematic analysis.

One may consider that movement analysis began way back in 1870s with Étienne-Jules Marey

and Eadweard Muybridge studying animals and human figure in motion through chronophotog-

raphy and multiple cameras photographing the movement in a sequence of shots, respectively.

However, was in 1915 that Max Fleisher and his ‘Rotoscoping’ technique made cartoon char-

acters perform like a human, such as Betty Boop. But only later, in 1969 a group of engineers

known as Polhemus actually studied human kinematics, using a proprietary electromagnetic mo-

tion capture system [3]. Electromagnetic systems use a magnetic transmitter to generate an elec-

tromagnetic field and measure sensors’ orientation and position relative to that electromagnetic

field. Therefore, when nearby metallic instruments they can present considerable error. Also, due

to the magnetic field variations within the same room, the capture volume is very small and they

require a very careful and frequent magnetic calibration. Latter on, to overcome these magnetic

interference, optical marker-based systems have emerged. These lead to very accurate measure-

ments but are confined to a space volume and have marker -occlusion, -detachment and -crossover

issues associated. Eager for freedom of movement and natural environment testing, have appeared

the professional optical markerless or computer vision based methods. Here the subjects can be

studied in real context without all the preparation time, using one single camera, such as Kinect,

1



2 Introduction

to measure a wide range of parameters. However, the 3D reconstruction is computationally de-

manding and the field of view and depth range may be too short [4]. So, in the latter years Inertial

Measurement Units (IMUs) have been largely explored in motion tracking as a free marker al-

ternative which additionally enables applications in uncontrolled environments and more freedom

of the movement. These units include on-body gyroscopes, accelerometers, and eventually mag-

netometers. However, these sensors do not measure position directly and when coupled with

magnetometers, may be vulnerable to metal interference. Also, the gyroscope bias (drift) leads

to long term instability which may introduce orientation and integration errors in the estimations.

Still, when combined with sensor fusion algorithms (a process that combines the three sources of

information to improve the estimate of IMU output, e.g. Kalman filters) this can be surpassed. If

the accuracy of these systems is proved to be comparable with gold standard approaches, we may

witness a huge positive step in motion reconstruction.

Inspired on [5], it was created the comparative Table 1.1 of the aforementioned alternative

systems to human motion capture.

Table 1.1: General advantages and disadvantages of most significant motion capture systems in-
spired on [5].

Apparatus Advantages Disadvantages Cost

Magnetic
Wearable

Exoskeletons;
Portability;
Small size

Magnetic and Electrical
Interference;

Attachment to the
body segment of interest;

Frequent calibration;
Small capture area

∼ 40e
(as unit)

∼ 10ke
(integrated systems)

Optical
Cameras

and markers
Wireless;

High Accuracy

Multicamera;
Occlusion problems;

Time-consuming;
Interference of
light sources;

Small capture area

∼ 130ke

Computer based 1 Camera

Free movement;
No subject

preparation required;
Natural Environment

3-D structure
reconstruction

may be
computationally

demanding
and require different
software for different

applications

∼ 1000e

Inertial
Wearable

Exoskeletons;

Portability;
Small size;

Lightweight;
Unlimited

capture volume

Noise and
bias errors;
Frequent

calibration;
Attachment

to the
body segment

of interest

∼ 40e
(as unit)

∼ 10ke
(integrated systems)
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As the use of IMUs does not require external cameras or any visibility, they enable more

discrete measurements. Also, because these innovative devices are lightweight and cheaper than

optical alternatives and continue to be a viable option with relatively accurate results. They are

becoming widely marketed (e.g. Xsens Technologies B.V., Synertial and Opal APDM wearable

technologies) [6, 7, 8]. Xsens distinguishes itself from the competition because they produce high-

end commercial IMUs and are the leading innovator in 3D motion tracking technology [9, 10],

even being used as providers of gold standard data [11]. Contrary to optical systems, they also

offer out-of-laboratory testing, which is the potential reason why only few studies have examined

kicking biomechanics outside the laboratory environment [12].

1.2 Motivation

Regarding the magnetic issues of IMUs some companies such as Xsens (Xsens Technologies B.B,

Enschede,The Netherlands) already developed a software that has been validated in magnetically

challenging environments. Therefore, these issues can, in one way or another, be eliminated in

a wide range of applications. Xsens MVN Analyze Engine is a full-body human measurement

system optimized with full magnetic immunity for use in research, sport science, ergonomics

and rehabilitation [13]. It is based on inertial sensors, biomechanical models, and sensor fusion

algorithms, and can be easily used anywhere.

The usage of IMUs is not restricted as they can be incorporated in a lycra suit (e.g Xsens

MVN link) with sixteen inertial sensors connected by wires (Figure 1.1) or using IMU sensors

individually and/or through wearable straps like MTw Awinda in Figure 1.2.

In this thesis, we will use the wireless motion tracker version of Xsens: MTw Awinda. It

provides 3D angular velocity using rate gyroscopes, 3D linear acceleration using accelerometers

and 3D earth magnetic field using magnetometers.

Some applications of the above systems are estimation of spinal loading during manual mate-

rials handling and evaluation of amputees walking kinematics (see Figure 1.3) on uneven terrains

[15].

Additionally, Inertial Non-Optical Motion Capture technology offers a less intrusive measure-

ment method, being increasingly explored in human performance assessment with application in

cinema using virtual characters (see Figure 1.1)

IMUs performance has been matched against to that of optoelectronic tracking systems [10]

obtaining encouraging results [8, 9], and even studies with patients with neurodegenerative condi-

tions revealed effectiveness in identifying a range of static physical postures [6]. Although IMUs

are small, lightweight and portable, their automated measurements calls for a pre-configuration of

the markers and later sensor fusion algorithms implementation (described in section 3.2). Also,

the fact they lack of an external visual system, the capture area is smaller compared with optical

systems and the sampling rate is below that achieved by the cameras [17].

Several companies invest in developing and selling IMUs and IMU-based systems as Xsens

(Xsens Technologies B.B, Enschede,The Netherlands), Invensense (Invensense, San Jose, CA,
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Figure 1.1: Xsens MVN Link. The recorded motion capture data is mapped on a digital model in
a 3D software which will move like the human actor [14].

Figure 1.2: Xsens MVN Awinda product line. Retrieved from [14].

USA), Trivisio (Trivisio, Trier, Germany) and Microstrain (Lord Microstrain, Willistone, VT,

USA). On the other hand, the growing range of IMUs’ application also led start-ups to create their

own hardware targeting IMU-based systems [10] (see Figure 1.4 for distinct IMU’s applications).
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Figure 1.3: Xsens MVN BIOMECH motion capture system where transfemoral amputees walked
on uneven terrains with a powered prosthesis [16].

Figure 1.4: Examples of devices containing inertial sensors. Retrieved from [18].
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In spite of promising results, the use of inertial sensors has until now failed to demonstrate such

a good accuracy like, for instance, OMC systems. Therefore, the motivation for this thesis was to

contribute to the body of literature concerning concurrent validity of IMU-based applications in

human motion reconstruction.

1.3 Goals

The aim of this dissertation is to assess the accuracy of reconstructing motion with Kinetikos

software from multi-planar activities from the daily living based on body-worn inertial sensors.

The recordings occurred in Porto Biomechanics Laboratory, LABIOMEP in Porto, Portugal in

partnership with Kinetikos team, in Lisboa, Portugal.

For the purpose, derived kinematics from Xsens’ IMUs will be compared with Qualisys marker-

based system. It is expected to obtain errors between 2◦ and 3◦ within the range described in

literature [10]. we hypothesize that by combining Kinetikos physics-based models of human

biomechanics with measurements of movement from body worn inertial sensors we can achieve

an accuracy (+ sensors dynamic accuracy) that equals optical motion-capture data. Additionally,

it will be conducted a preliminary test to evaluate the biomechanical potential of a smaller, and

still under development, IMU.

1.4 Dissertation Outline

Besides this general introduction, this dissertation contains some background in Human Motion

Reconstruction in Chapter 2 and a State of the art on Chapter 3 containing a small review on IMUs’

applications, giving relevance on the techniques most commonly used to retrieve and process

kinematic data. The Materials and Methods used in the walking trials and preliminary study are

described in Chapter 4 and its Results and Discussion are detailed in Chapter 5.

Chapter 6 presents a summary of this dissertation with final remarks, obstacles and future

work. Appendix 1 and Appendix 2 provide a review in what concerns the efficiency of non-optical

methods in motion tracking studies compared with optoelectronic alternatives and some additional

information about the preliminary study.



Chapter 2

Introduction on Human Movement
Reconstruction

2.1 Kinematics

Kinematics examines the movement from a spatio-temporal perspective which involves determin-

ing how quickly an object is moving or how far it reaches. In other words entails parameters as

position, velocity and acceleration of points within the biomechanical system. Therefore, kinemat-

ics perceives the movement without considering the causes and effects of the forces involved. For

instance, the kinematic analysis of a joint includes determining its angle in relation to a reference

system and range of motion (RoM). An example of different kinematic parameters is provided

for hip joint in Figure 2.1, where it is described flexion/extension, abduction/adduction and inter-

nal/external rotation of the hip.

Figure 2.1: Definition of different kinematic parameters for hip joint. Three rotational DoF are
presented – flexion/extension (left), abduction/adduction (middle), and external/internal rotation
(right). Image retrieved from [19].

To describe a body’s position and therefore the position of the human body in space a Cartesian

coordinate system is used to define one or more frames of reference [20]. The first frame to be

7



8 Introduction on Human Movement Reconstruction

defined is known as global coordinate system (GCS), which is a laboratory stationary reference

fixed in position and orientation and refers to the space volume where the 3D motion is captured. In

this project, the GCS is a XYZ right-handed orthogonal system in which the Y-axis corresponds

to the principal horizontal direction of motion and X-axis is orthogonal to Y-axis defining the

horizontal plane. Z-axis points upward vertically and is perpendicular to XY plane.

However, is still necessary a representation in or within each body segment with reference to

that GCS: the relative or local coordinate system (LCS). The definition of that orthogonal frame,

also named bone-embedded frame or anatomical frame, entails each bone as a rigid body and

defines the relative positioning and orientation of the LCS with respect to the GCS. These were

the coordinate systems used in our data, collected at LABIOMEP, and are depicted in Figure 2.2.

Figure 2.2: The global/fixed and local/moving coordinate systems representations. The unit vec-
tors for the GCS are here termed as î, ĵ, k̂ and for the LCS as î′, ĵ′, k̂′ that corresponds, respectively,
to the lateral, anterior and superior directions. Image retrieved from [20]

The unit vectors for the GCS are here termed as î, ĵ, k̂ and for the LCS as î′, ĵ′, k̂′ (see Fig-

ure 2.2). Although in Figure 2.2 both coordinate systems are aligned and rotational transforma-

tions are not required, when a rigid segment is moving the different coordinate systems are related

by means of a rotation matrix:

R =

 î’x î’y î’z

ĵ’x ĵ’y ĵ’z

k̂’x k̂’y k̂’z

 , (2.1)
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where R is the rotation matrix from GCS to LCS and î’, ĵ’, k̂’ are the LCS unit vectors expressed

in GCS.

Taking pelvis segment represented in Figure 2.3, the lateral direction î’ of pelvis’ LCS is de-

fined in the GCS by the vector difference:

î’ =
−→
O PELV IS−

−→
P RASIS∣∣∣−→O PELV IS−
−→
P RASIS

∣∣∣ (2.2)

Figure 2.3: The origin of the pelvis LCS (
−→
O PELV IS) is the central point between the right and left

anterior-superior iliac spines:
−→
P RASIS and

−→
P LASIS, that can be used to derive pelvis LCS. Image

retrieved from [20].

The vector in the superior direction k̂’ is obtained by the cross product between î’ and an

orthogonal unit vector v̂ that connects the midpoint of
−→
P RPSIS and

−→
P LPSIS to

−→
O PELV IS:

v̂ =

−→
O PELV IS−0.5∗ (−→P RPSIS +

−→
P LPSIS)∣∣∣−→O PELV IS−0.5∗ (−→P RPSIS +
−→
P LPSIS)

∣∣∣ (2.3)

k̂’ = î’xv̂ (2.4)
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Figure 2.4: ISB’s global coordinate system convention.

The anterior vector ĵ’ is then obtained by the cross product between the lateral direction vector

and the unit vector normal to the plane (in the superior direction):

ĵ’ = k̂’x î’ (2.5)

Hence, to define the relative bone-orientation in 3D (see Figure 2.4), there are needed at least

three angles of rotation, one per axis, known as absolute angles. ISB (International Society of

Biomechanics) uses the terms yaw, pitch and roll for rotations (right-handed) about the Y-vertical,

Z-lateral and X-anteroposterior axis, in this order. Kinetikos software also uses this representation

for the motion reconstruction workflow (see Figure 2.4). These angles are also named in a general

way by Euler Angles.

Additionally, the angles between two adjacent bone segments are called relative, joint or car-

dan angles. Cardan angles, sometimes also grouped with Euler angles differ from the last as for

Euler the first and last rotation are about the same axis (for example XYX and YZY). Nonethe-

less, to fully describe a rigid body we need six independent parameters: the location (X,Y,Z) of

it’s center of mass and yaw, pitch and roll angles that provide the orientation.

The number of described parameters defines the unique location of the body and is known as

the body’s degrees of freedom (DoFs). Generally, two anatomical landmarks of the bone define

one frame axis and the third point will yield the bone anatomical plane and therefore the other two

axis of the frame. Furthermore, its determination should ensure inter- and intra- subject repeata-

bility and requires convenient axis to represent rotations and translations of adjacent joints [21].

Therefore, each frame will be characterized by the bone-associated anatomical landmarks or pre-

dicted centers of rotation, which are time-invariant and estimated in the GCS, at each sampled

instant of time [22]. These target points will be tracked during the movement by placing mark-

ers either into cutaneous (external) or bony (internal) parts. Bone-pin markers comprise invasive

approaches and have some ethical concerns and they will not be considered in this dissertation.
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Markers are either placed individually or attached to the body within a cluster. When the clus-

ter is rigid it helps compensate relative movements between skin and bone, in the other cases,

when using skin markers or non-rigid clusters, algorithms are implemented to compensate for the

mentioned artifacts [21]. Nonetheless, the "ideal" position of the markers may be associated with

marker-bone displacements [23] or lack of visibility by the cameras. Hence, experimental re-

quirements may triumph against anatomical considerations. More than the three strictly necessary

markers per segment may be used to yield a better estimation of bone frame and joint axis.

At sum, kinematics will not account for causes of the biomechanical movement, especially

forces and torques [24].

2.2 Inverse Kinematics (IK)

Widespread use of movement analysis, via marker co-ordinates and multi-link models, has been

the choice method for reconstruction of the musculoskeletal system motion, with applications in

diagnosis, treatment or movement improvement [25]. But does analyzing marker trajectories have

clinical significance? Something more meaningful leads to an Inverse Kinematics (IK) problem

that requires prior determination of the pose (position and orientation) of the body segment/link.

At least three non-collinear markers per segment are needed to specify its reference frame and thus

to completely describe its pose. Given a posture configuration, Inverse Kinematics states: "What

are the joint variables for that desired position in a desired orientation?". For instance, if someone

intends to grab a glass of water, they will not think about how and how much they need to move

their wrist, elbow or shoulder. But even to reach the glass there are a few solutions which represent

further challenges to solve for the IK problem. However, our biomechanical restrictions prevent

many of those solutions from being possible. Explicitly, to calculate lower extremity kinematics

using 3D coordinates, we know where the end effector is (in this case the foot) and we want to

know what angles in leg segments would be to end up with the end effector in that specific position.

Inverse kinematics can still yield different solutions, that may not be naturally attainable by human

body, that explains why the joint constrains need to be implemented. It is also possible to use the

3D angle between two vectors but in the case the vectors are not in the same plane this angle

does not necessarily represent the desired clinical joint angle. Joints define how the bone segment

moves with respect to its parent body, being that the kinematic chain is defined from parent to

child joint frame [26]. The preferred method of most motion capture systems is then to calculate

the angles based on the local coordinate frames for each segment.

2.2.1 Pose Estimation Algorithms

Biomechanical modelling is frequently used to analyse the motion of a human body. When a body

is modeled as series of rigid links, representing each segment, defines a multi-link model. The pose

of each segment in a multi-link model can be estimated by different approaches, distinguished by

their mathematical complexity and whether or not they cope with biomechanical constraints of the

joints and soft tissue artifacts (STA). Joint constraints describe the interactions of a segment with
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other segments allowing from zero up to six DoFs. Inverse Kinematics Algorithms may or not

compensate for those STA and constrains [27].

The Direct Method (DM)

Direct Methods estimate the LCSs in a dynamic trial in the same manner as they estimate in

the standing pose. Direct Pose Estimation (DPE) is the simplest method here described as it does

not impose any of those artifacts in the data, and it calculates the segment LCS from two vectors,

pointing from one of the three markers to the other two. Having only three markers to compute

the LCS and no redundancy to represent the segment means that if a tracking marker is occluded

the LCS cannot be defined [20]. Another limitation is that no kinematic constraints are considered

between adjacent bones and all six DoFs are attained [27, 21].

Segmental Optimization Method (SOM)

Generally, STA can not be avoided unless one uses bone-pin markers. As so, in attempt to

reduce their influence, Segmental Optimization Method (SOM) appeared, which estimates the

segment pose minimizing the errors between the virtual model and the experimentally placed

markers. The segment pose is achieved by a transformation matrix in a least-squares sense but it

does allow for non-anatomical joint displacements [27]. On the other hand, Global Optimization

Methods (GOM) do not treat each segment independently and apply joint constraints for the entire

limb or body preventing apparent joint dislocations, giving more reliable values for joint kinemat-

ics.

Global Optimization Method (GOM)

As now intensively used (e.g. in Kinetikos software), the GOM formulation, which addi-

tionally has the asset of considering internal coordinates to map complex smooth and continuous

joint motion, known as "mobilizers". Mobilizers can be thought as the mathematical reverse of

joint constraints. While a constraint removes DoFs from a model, a mobilizer grants DoFs to a

body [28]. These are particularly useful in modeling biomechanics because coordinates became

directly related to the DoF of interest [29]. Joint frames orientation as reported in this thesis was

computed according ISB recommendations. Kinetikos software will be used to model participants

as a multi-link chain where body segments are represented as rigid links, and to further perform

data analysis.

2.3 Ways to Human Movement Reconstruction

Capturing the three-dimensional (3D) human motion and transfer it to a digital model can be

attained either by optical or non-optical systems. Optical systems use tracking cameras (with or
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without markers), while the systems that measure inertia or mechanical motion are referred to as

non-optical. Currently, the standard choice for biomechanical monitoring are the optical motion

capture systems [30], justified by their high resolution measurements and extreme accuracy in

reproducing the precise position in virtual environments. Nonetheless, these systems are quite

constrained to experiments in a controlled environment and so the lack of portability and capability

to collect real-world data led to the adoption of wearable systems as inertial measurement units

(IMUs). IMU-based human motion tracking (IHMT) systems are also easier to use, have a shorter

setup routine and provide instant validated data output.

2.3.1 Optical Motion Capture (OMC) Systems

Optical image-based sensing systems generally reconstruct the participant’s posture by using mul-

tiple cameras that track predetermined points, usually specific bony landmarks [5]. Optical as the

term suggests, means related to sight, involving some visual tool to capture the motion. It can

be simply visible light, used on video-based systems or infrared-based devices. As a result, they

may require infrared (IR) emission cameras and reflective markers or pulse infrared light emitting

diodes (LEDs) attached to the segments of interest. OMC systems have an integrated software,

call for a calibration wand and may be coupled with force platforms when measuring specific pa-

rameters of locomotion (see Figure 2.5 for a general example).

Figure 2.5: Motion capture system adopted in [1].

Examples of the most commonly used tracking systems are Vicon and Qualisys motion sys-

tems. Here, full body kinematics assessment needs between eight and sixteen (sometimes much

more) high-quality cameras, and only one or two cameras for facial motion recognition [17]. Opti-

cal systems can be further segmented into passive - if the infrared cameras track the retro reflective

markers and active - when the motion is captured through the emission of light from LED markers.
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Optical-passive methods comprise reflective markers, usually rubbers coated with retro-reflective

material, that reflects the incoming IR light back to the cameras. Spherical markers are the most

common choice as they reflect the light at each possible angle with respect to the tracking sys-

tem [31]. Optical-active approaches are less handy as they need wires to connect the LEDs or

battery to operate and emit IR light. Nonetheless, as they do not depend on reflecting IR light

from the cameras, the tracking distance can be increased and thus, a greater volume measurement

is attained. These approaches have the disadvantages that the emitted or reflected light might

be blocked during the movements, and therefore the resulting kinematic representation would be

adulterated in relation to real-world data. Moreover, the markers may also detach or move from the

original position and for these reasons the motion capture needs to be in a controlled environment.

Furthermore, literature reports that joint kinematics and segment pose reconstruction from

marker-based studies are harmed by the presence of soft tissue artifacts. STA are the most in-

tractable cause of inaccuracies when measuring the underlying bone movements. They are trans-

lated into skin movements, muscle contractions and wobbling masses and can lead to rigid mo-

tion (rotations and translations) and/or non-rigid motion (deformation) of the measurement clus-

ters [23]. Hence, the optimal limb region to place the cluster will be the one with the least move-

ment artifacts, avoiding bony prominences, for instance. To further minimize the error propagation

in kinematic reconstruction, a minimum of four marker-cluster is needed to extract the rigid mo-

tion component and its longest principal axis should be orientated and aligned with the anatomical

landmarks [22]. Moreover, STA distribution maps for the tight and shanks located the minimum

STA on the lateral side of the lower half of the limbs [23].

To scale a lower limbs biomechanical model, one should register Body Measurements of each

participant such as, body mass and height, shoe size, hip height, knee height, ankle height and hip

width [32]:

(i) Foot size — Is measured from the back of the heel to the front of the toe;

(ii) Arms’ span — Measured fingertip to fingertip;

(iii) Ankle height — Is measured from the floor to the center of the ankle;

(iv) Hip height — Is measured from the floor to the greater trochanter. Additionally the anterior

superior iliac spine (ASIS) should be measured for hip width. Usually coincides with the

center of the leg;

(v) Knee height — Is measured from the floor to the lateral epicondyle. It can be found by

locating the space between the lower and upper leg and moving slightly upwards;

(vi) Shoulder width — Is the distance between the left and right acromion;

(vii) Shoulder height — Is the distance between the floor and the left or right acromion.

Many platforms are available to treat MoCap data, such as, Anybody, Visual 3D and OpenSim.

In this thesis Kinetikos software was used to reconstruct motion from either Qualysis and Xsens

data sources.
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Biomechanical in vivo studies like this, that intend to attain the most correct interpretations of

the movement might require medical imaging tools to precisely estimate the center of rotation of

the involved joints [33]. However, when equipment are unavailable, the joint centers (for example,

the shoulder complex, hip and knee) may be estimated via functional movements and mathematical

approaches. Before proceeding with any simulation, the marker data can be filtered in order to

attain a cleaner motion. The data from the optical system might then be low-pass filtered using a

fourth-order Butterworth filter with zero-lag and a cut-of frequency of 10Hz [34] using Vicon 3D,

Matlab [35] as well as other programming languages [36].

2.3.2 Motion Reconstruction Workflow

Data collected either with Qualysis motion system and Xsens IMUs was used to reconstruct sub-

jects motion through Kinetikos pipeline constituted of Scaling, Posing and IK.

2.3.2.1 Scaling and Model Posing

The Scale tool is meant to adapt the chosen model dimensions and weight to a specific subject. The

final dimensions of the generic model are accomplished via scale factors automatic computation.

The scale factors can be set manually or calculated based on the distance between analogous

marker pairs in the model and the subject. For example, if the virtual distance between pair 1 is m1
and the correspondent experimental distance for the same pair is e1 the scale factor being applied

to the body segment containing this markers will be s1= e1
m1 .This is then applied uniformly to all

segments or the user can select which markers’ distances will be used to scale which segments

Relative weights can be assigned to each of the selected markers. These weights determine

to what degree the algorithm should try to match them, concerning to others. For example, if the

RASIS (Right Anterior Superior Iliac Spine) marker has a weight of 10 and RKNE (Right Knee)

marker a weight of 1, the first will be ten times more tightly tracked than the last, and the tracking

errors will also be more penalized. Thus, generally, the markers weighted more heavily should

be the ones that more closely match the experimental, like those placed on bony parts, which are

less likely to be misplaced. Regarding the segments’ mass adjustments, two approaches can be

used: (i) The first one preserves the mass distribution, i.e, guarantees that the segments in subject’s

specific model are scaled in the same proportion as they were in the generic model. This way, the

scale factor applied to each segment will be independent from the ones determined for scaling the

segments’ size and the final total mass will correspond to the subject’s. (ii) The second approach

blindly applies the scale factors computed for the size scaling also for the mass adjustments and

so, will presumably not correspond to the total mass of the subject.

Scaling is an important step in accurate human motion reconstruction. We strongly advise to

preview how the scale segments and corresponding markers march the experimental ones.

Once scaling is achieved model’s joint generalized coordinates are modified in such a way that

the model match as accurate as possible the experimental pose (e.g. first frames of data collection)

just like an IK problem. This can be achieve in the Kinetikos software either by manually entering
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model’s generalized coordinates values (if known) or by using the Kinetikos Posing tool which

asks for a set of distances between specific bony landmarks that can be directly measured using a

tape.

2.3.2.2 Inverse Kinematics

In Kinetikos software (like in many others) the IK tool reconstructs subject’s motion by varying the

kinematic model joint angles (generalized coordinates) in such a way that: (i) the model markers

will track (and try to minimize the distance to) the experimental ones in each time step (frame) in

the case of using 3D markers coordinates; (ii) the model segments’ orientation will track the given

IMUs Euler rotations given by the sequence XYZ. In both cases, the IK tool solves a weighted

least squares problem that aims to minimize marker’s/Euler angles and unprescribed coordinate’s

error term. Unprescribed coordinates are those calculated using IK that are unlocked and whose

trajectory is unknown, contrary to prescribed coordinates whose value is reliable enough to remain

unchanged and so they are not used in IK solver.

minq

[
∑

iεmarkers
wi
∥∥xexp

i − xi(q)
∥∥2

+ ∑
jεunprescribed coords

ωi

(
qexp

j −q j

)2
]

qexp
j = q j, f or all prescribed coordinates j (2.6)

where, having as an example the marker-based solution, q is the computed vector of general-

ized coordinates, xexp
i the experimental position of marker i, xi(q) the corresponding position on

the model and qexp
j the experimental value for the coordinate. The time range in which the IK will

be performed is user-specified, depending on the study goal. If not specified it will run the entire

frames of the trial.

Such a solution is also used by Kinetikos to reconstruct subjects motion in real time as seen in

Kinetikos biofeedback tool.

2.3.3 Non-optical Motion Capture Systems (NOMC)

Although traditional optical systems allow for extremely faithful motion reconstruction in most

cases, they are limited to the laboratory workspace that the experiments are confined. Added to

their complexity, those systems are operationally intensive and comprise an expensive hardware.

Non-optical alternatives emerged in motion tracking research to overcome those limitations, of-

fering a small size and automatic data capture from areas where visibility is impaired or impossi-

ble [6] without the need of external cameras. These technologies include inertial and electromag-

netic systems [17] and they may combine different types of sensors: gyroscopes, accelerometers

and magnetometers, as can be depicted in Figure 2.6.
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Figure 2.6: Waseda bioinstrumentation system No.3 (WB-3) IMUs presented in [1].

2.3.3.1 Inertial Motion Tracking Sensors

Kinematic applications paved the way for the use of wearable sensors as inertial NOMC systems,

referred to as IMUs. They result from a combination of inertial measurement units of accelerome-

ter, gyroscope and magnetometer (see Figure 2.6) that can either be incorporated on a suit or used

individually discarding the need for visibility.

These three sensors are useful for determining position and orientation, but they measure dif-

ferent quantities.

The accelerometer measures the kinematic variable of acceleration which can be integrated

once to measure changes in velocity and integrated twice to measure changes in position. An ac-

celerometer at rest provides a straight upwards reference which is the linear gravitational accelera-

tion.As a result, tilting the accelerometer up and down it will vary between± 1G (≈± 9.81m/s2).

However, during dynamic conditions the accelerometer’s output does not distinguish the gravita-

tional acceleration from the external acceleration of the object/body is attached to. Meaning that

the gravity component with respect to the sensor frame changes according to the modifications in

the sensor orientation [37].

The gyroscope measures either changes in orientation (regular gyro) or changes in angular

velocity (rate gyro) reacting quickly to this changes, unlike the accelerometer, however, it accu-

mulates enormous error over time.

A magnetometer is a sensor that measures the local magnetic flux density which is directly

proportional to the magnetic field strength. Therefore, a magnetometer senses magnetic fields,

namely the Earth’s magnetic field. Hence, without worrying about how it is held the magnetometer

can be used as a compass to guide us in the NESW (North East South West) plane.

Therefore, if we combine accelerometer and gyroscope signals it would provide an accurate

and quick measurement of tilt and orientation concerning gravity (referred to as roll and pitch an-

gles). Nonetheless, the orientation is typically calculated by integrating the angular velocity from

gyroscopes, which originates a small drift that leads to an increasing integration error over time. In
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other words, the longer the inertial system is used, the higher the drift on tracking points’ velocity,

making the estimation no longer reliable [38, 10]. Still, accelerometer and gyros data would lack

information on sensor’s orientation about vertical direction (heading or yaw angle) [39].

The magnetometer senses the magnetic North and corrects sensor’s vertical reference solving

this drift drawback and calculate yaw. Thus, researchers combined accelerometer and gyroscopes

sensors with magnetometers to yield what is known as Inertial Measurement Unit (IMU). Even

if the unit is not purely inertial as soon as magnetometers are added. The magnetometer is then

used as an earth-fixed reference for the current estimation of the IMU orientation [10], before the

gyroscope data is integrated.

For those reasons, such three-sensor combination will enable the monitoring of the rotational

velocity of a body in relation to the earth [40] given by Roll, Pitch and Yaw measurements, seen

in Figure 2.7. These components will yield the full 3D geometric position of the link (body

segment) through its X,Y and Z coordinates, respectively. In this case, when they contain 3-

axis accelerometers, 3-axis gyroscopes and 3-axis magnetometers, they may also be recognized

as Magnetic Inertial Measurement Units (MIMUs) [41], mIMUs or IMMUs [10, 42]. In this

dissertation we will use two IMUs following those specifications: Xsens and Wear.

Together, these sensors allow for quick and accurate 3D position and orientation determination

with a low amount of drift over time.

Figure 2.7: Roll, Pitch and Yaw representation in a reference coordinate system (left) and in a
shoulder movement example (right), retrieved from [43].



Chapter 3

State of the art

In this chapter are briefly described ways that IMUs are currently incorporated to reconstruct

human movement and how they are compared with the gold standard optoelectronic systems ac-

curacy. First is given an overview of the existing comparison studies that match this dissertation

goals: daily living activities, namely lower limbs’ and gait assessment studies. These are the focus

of this project, but other applications where IMUs are already considered an alternative system to

optoelectronic ones are also presented in the end of section 3.1. To attain that goal, it was carried

out a literature survey on Scopus and Web of Science databases with keywords as: [IMUs OR In-

ertial (as Title or Abstract)] AND [[Cameras OR Optical OR Vicon OR Qualysis] OR Kinematics

(as Title or Abstract)] In section 3.2 are explored in more detail the methodological approaches

going throughout the data analysis and processing strategies.

3.1 Literature Review

With the growing need to track human movement in outside environments, emerged the use of

inertial systems for its simplicity, discretion and portability. IMUs have become popular in wear-

able human motion tracking as they are compact devices and can be easily integrated in inertial

measurements of different daily activities. Several studies have incorporated IMUs to reconstruct

kinematic parameters of human movement and evaluate its accuracy towards the standard optical

methods of Motion Capture (MoCap). These methods may differ in the IMU itself, as these may

comprise accelerometers and gyroscopes or also magnetometers, and in the data filtering steps.

The methods can also be distinguished by the type of optical motion capture system they use and

whether they are passive or not [17]. Some of IMUs applications are on sports field, where their

small size is particular attractive for outdoor measurements.

3.1.1 Daily living activities

The effectiveness of these inertial systems was proved in sit-to-stand experiments, conducted to aid

elderly people [44]. Vicon Optical Motion Capture (OMC) system was used and two IMUs were

placed on the leg and trunk of the patient. The data retrieved from the inertial sensors was fused

19
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through an Adaptive Neuro-Fuzzy Inference System (ANFIS). Both resulting outputs would drive

an assistive system, including a robot arm and an active walker to imitate a caregiver’s motion

during supporting tasks (see Figure 3.1). The path generated with IMUs accurately reflected the

one estimated with Vicon with a max error of 0.04 m.

Figure 3.1: Diagram of the interactive control between patient and the assistive device proposed
by Salah et al. [44]. The posture of the patient is reconstructed by two IMUs placed on his trunk
and leg. The reference for the end effector in world coordinates is generated by ANFIS algorithm
and the joint variables are determined through inverse kinematics to drive the device.

Later on, the same author [1] achieved great results using the same ANFIS method in sit-to-

stand experiments to estimate the position of the shoulder. He also proposed the ANFIS followed

by a Kalman Filter (KF) to reduce the mismatch between sequential measurements. With and

without the additional KF step the max match error was 0.06 m and 0.035 m for the x direction

and approximately 0.05 m and 0.04 m for the y direction. In these experiments the participants

have one IMU placed on the trunk and other on the tight, and are asked to sit with their arms on

the chest.

Strong results at lower limbs were obtained with a single IMU placed on lower back during a

planar squat task [45]: RMSD estimation in knee joint kinematics about 2.0±1 degrees, in hip joint

3.1±0.9 degrees and ankle joint 3.2±1.0 degrees with average correlation coefficients greater than

0.9. The IMU data was processed with a WFLC (Weighted Frequency Fourier Linear Combiner)

filter to find the best estimation of its position and orientation. The algorithms were validated

on a humanoid robot (twenty-one DoFs) and eight healthy human volunteers and compared with

nine-camera stereophotogrammetric system (MX, Vicon).

Joint kinematics was estimated in underwater flykick [46] through four 9-axis IMUs (with

accelerometer, gyroscope and magnetometer) and a rotary encoder being compared with manual

digitization. The data from each IMU was processed with an EKF and AnyBody was used to cre-

ate two musculoskeletal models. The joint angles estimated through inverse kinematics (and the
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muscle activities simulated through inverse dynamics) agreed closely for both manually digitized

and the IMU driven simulations. Knee flexion had the lowest normalised root-mean-square error

(NRMSE): 0.12 and the highest coefficient of determination (R2): 0.94. The worst NRMSE was

obtained in pelvis-thorax flexion: 0.37 and the worst R2 in hip flexion: 0.43.

In 2011, a contrasting approach described in [47] continuously tracks shoulder and elbow

angles with two inertial sensors placed near the wrist and on the upper arm, between the shoulder

and elbow, and validates the method with a Vicon optical motion tracking system. The angles

are estimated using the Unscented Kalman Filter (UKF) and the algorithms can be generalized to

track any limb movement, in either real-time or off-line, with higher accuracy for slow and fast

motion with a minimal number of sensors. It obtained a correlation between the two approaches

higher than 0.90.

Focused on upper limbs kinematics, [10] compares five non-optical different methods with

Vicon OMC system to reconstruct a human arm motion. All the techniques resort to IMUs but

they differ essentially on the sensor fusion algorithm choice, using Complementary Filters (CF)

and variations of KF, on whether or not they incorporate magnetometer signals, and one of them

exploits an additional visual reference for tracking the upper limbs. These methods also differ

concerning the kinematic models, some use the Denavit–Hartenberg (DH) convention, others use

Euler angles and some use quaternions. Error and correlation were evaluated in each method:

elbow flexion-extension ranged between 38.8 and 89.2 mm | 0.77 and 0.91, for shoulder flexion-

extension ranged between 82.7 and 214.4 mm | 0.49 and 0.89, and shoulder abduction-adduction

between 66.0 and 272.2 mm | 0.36 and 0.73. Regarding the correlation between the real movement

pattern and estimated position, one of the methods that performed better resorted to the additional

visual reference to estimate trunk orientation and the wrist position, and Extended Kalman Filter

(EKF) to provide shoulder and elbow angles. The other best performing method developed a seven

DoFs hierarchical kinematic model of each arm according to DH approach, and adopted UKF as

sensor fusion technique.

3.1.2 Sport

In football-related activities, IMUs demonstrated good agreement with OMC in quantifying lower

extremity kinematics during walking (RMSE: Picerno et al., 2008, 0.8-3.6; Zhang et al., 2013,

1.8-2.4) and running (RMSE: Cooper et al., 2009, 0.7-3.4; Ferrari et al., 2010, 0.6-5.0) [12].

Five reflective markers were attached on a golf club and Vicon MX20+ motion tracking system

with eight 2.0 megapixel cameras were used to compare position and orientation estimated of

a golf club in space. The study used a Memsense Nano IMU with merely accelerometer and

gyroscope data. High-fidelity validation during golf swings was not achieved concerning golf

club position [35] but presented almost perfect match regarding golf club orientation in space.

The IMUs performance was also validated in robotic motions, using raw data wearable IMUs by

APDM [7] and eight-camera Vicon motion-tracking system with passive retro-reflective markers.
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Nonetheless, validation with robots provides programmed and repeatable movements i.e, without

major issues or external influences to question the reliability of the results.

3.1.3 Clinical Assessment with IMUs

Recently, the strengths of IMUs were also exploited to detect walking disorders in patients with

parkinson’s disease, with and without turning episodes [8]. The steps were detected with an algo-

rithm developed on the basis of a continuous wavelet transform (cwt) and the data were extracted

from a single 6-axis IMU (ADPM) at the lower back. The heel strike and toe off time detec-

tion were compared with a Vicon optoelectronic system and the results demonstrated accuracies

greater than 0.88 for both episodes being that the results for non-turning episodes were slightly

better, reaching 0.91. Currently, regarding step detection, the potential of IMUs gave rise to a

wearable low-cost sensing system [9] that along with ultrasound sensors and a particle filter was

capable to provide tracking errors less than 2%. A modified version of EKF used two update mea-

surements from two proximity sensors to correct the estimated position and the validation of the

system was provided by a Vicon motion capture system.

It can be perceived that wearable devices applications are able to cover different health care

areas such as gait analysis, stabilometry, instrumented clinical tests, upper-body mobility assess-

ment, daily-living activity monitoring and tremor assessment (see summary table of IHMT meth-

ods in [10]). Yet, each of these applications implies distinct methodologies, depending on the

experiment, or the body part kinematics one intents to assess. For instance, concerning the upper

limbs and spine kinematics, the clinical application of inertial systems is still little explored being

that optical systems are typically chosen. Even so, some simple approaches carried out experi-

ments using one single IMU placed on the upper arm. However, they revealed that the level of

detail provided by one IMU is insufficient and amplifies the compensatory strategies’ interference

that occur in the trunk [39]. On the other hand, for sit-to-stand tests, a single sensor positioned on

trunk of the subject is enough to obtain feasible kinematic information in patients with Parkinson’s

disease [48]. Stabilometry tests focus on analyzing the parameters collected about the center of

pressure on foot which are properly and directly provided by stabilometric and barodopometric

platforms what does not justify the purchase of IMUs [39].

3.2 Processing of IMUs data

Data processing steps are crucial to have meaningful motion capture data, and include aligning

the orientation of the involved reference coordinate systems and possibly some data denoising and

drift elimination. There are two main reference systems of interest:

(i) Laboratory reference frame — The optoelectronic system reports data in this frame and the

IMU data will be converted into this frame.
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(ii) Subjects’ reference frame — This frame moves during the movement of each body segment

and it is stationary with respect to the corresponding IMU.

Estimating a body’s position and orientation goes through determine the kinematic equation

for a specific rotation of the body [10] :

Ṙ = RS(ω) with S(ω) =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 , (3.1)

where S(ω) is the skew-symmetric matrix of vector ω , the angular velocity or rotation rate vector

of the body-fixed coordinate system. The rotation R represents the orientation of the body-fixed

reference frame related to earth’s reference frame.

However, Equation 3.1 is susceptible to numerical errors that continuously grow when applied

to sensors that drift with time. Like this, with gyroscopes or accelerometers that suffer from time

varying biases and noises, R will stop representing a rotation, at some point [10]. For this reason,

researchers started exploiting both algorithmic and hardware strategies as ultrasonic sensors, GPS,

ultra wide bands (UWB), cameras, and magnetic field generated by actuated coils, to solve the

drift issue [10]. Even so, the non-linearity of Equation 3.1 harms the implementation of filtering

algorithms as it is described in section 3.2.

Additionally, there are few other ways to represent the rotation that influence the choice of the

filtering algorithm. Most well-known are the representations by a rotation matrix, Euler angles

and quaternions, each one having its own set of advantages and disadvantages [49].

Seaman et al. [35] suggested that the rotation cited above may be attained by quaternions or

Euler angles.

A quaternion is a four-dimensional complex number that can also represent the orientation of

a rigid body in the three-dimensional space:

A
Bq = [q1 q2 q3 q4] = [cos Θ

2 − rxsin Θ

2 − rysin Θ

2 − rzsin Θ

2 ], (3.2)

where A
Bq describes the orientation of frame B relative to frame A and Ar is a vector described in

frame A. rx, ry and rz define the components of the unit vector Ar in the x, y and z axis of frame A,

respectively.

Since any rotation of a body around a direction gives the same vector but a different quaternion,

the problem is solved by converting the measured acceleration vector into a quaternion [50]. A

graphical visualization of a quaternion is in Figure 3.2 .
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Figure 3.2: Quaternion representation. The orientation of frame B is achieved by a rotation, from
alignment with frame A, of angle θ around the axis Ar. Retrieved from [51].

Different software can be used to treat the data from Xsens. For example, MVN Studio

BIOMECH, now called Xsens MVN Analyze [52], which simultaneously gives a real-time pre-

view on screen and records the data and Visual3D, a generic biomechanical software that allows

to collect further information about movement. MVN Analyse is a full-body human measurement

system based on inertial sensors, biomechanical models, and sensor fusion algorithms. Easy to use

with short setup time and instant validated data output. Once the data is collected (e.g. Xsens),

it can be automatically pushed into Kinetikos online platform where proprietary biomechanics

models reconstruct the motion and output in real time calculated joint angles.

Accelerometers, gyroscopes and magnetometers units, contained in the IMU, create data that

needs further sensor fusion techniques to obtain useful information about the limbs’ position and

orientation. Some of these techniques are detailed below, being that the one here used to output

Euler Angles is implemented by Xsens, a Kalman Filter (KF) - based technique.

3.2.1 Sensor Fusion algorithms

Inertial systems alone have poor stability and are very sensitive to errors in the rotation rates

and accelerations, as mentioned in section 1.1. To overcome these problems the data retrieved

from the different inertial units within an IMU can be fused differently. This is attained through

sensor fusion techniques that are implemented with the aim to provide feasible orientation and

position information. Sensor fusion algorithms determine the heading, pitch and roll (mentioned

in Chapter 2) from the outputs of motion tracking devices. Several algorithms can be used to attain

these measures, being that, the three most common approaches are: (i) Complementary Filter (CF)

and (ii) Kalman Filter (KF):
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(i) Complementary filters are applicable to IMUs consisting of 3-axis gyroscopes and 3-axis

accelerometers, and magnetic angular rate and gravity (MARG) sensor arrays, that also

include 3-axis magnetometers (six DoF and nine DoF sensors, respectively) [53]. Hence,

CF are able to fuse either data from 6-axis IMUs or 9-axis IMUs. Madgwick filter is the

most common example, and uses a quaternion to represent a body’s attitude in order to

eliminate the ambiguity when the direction is determined with a vector.

The algorithm performance is further controlled by an adjustable parameter, β , that com-

pensates the drift from gyroscope (explained in 2.3.3), and represents the trade-off between

accuracy and response speed [36]. This filter also includes an analytically derived and op-

timized gradient descent algorithm enabling performance at low sampling rates; an on-line

magnetic distortion compensation algorithm; and gyroscope bias drift compensation [51].

Mangia et al. [54] used this Madgwick filtering to estimate the attitude and pose of the bodies

in water environment, applied to 9-axis IMUs. The filter is relatively simple and computa-

tionally light, being perfect for small embedded systems [55]. Another complementary filter,

suggested by Mahony et al., also employs quaternion representation for orientation estima-

tion applicable to IMUs, offering efficient performance with little computational cost [56].

(ii) Kalman Filter (KF), along with its variants (as Extended KF (EKF), and Unscented KF

(UKF)) are the most widespread sensor fusion technique. They accurately estimate the

desired orientation and reconstruct the 3D position of the segment in which the IMU is

placed [10]. Although they are very powerful, they are a lot more complex than comple-

mentary filters, due to its hard-understanding Gaussian probability density functions (pdfs).

EKF approach is a manipulation of KF, generally adopted when dealing with nonlinear

equations [10]. UKF are used to provide even more accurate estimation of the pdfs under

nonlinear transformations.

The success of KF is due to its small computational requirement, elegant recursive proper-

ties, and its status as the optimal estimator for one-dimensional linear systems with Gaussian

error statistics [57]. The Kalman Filter model assumes that the state of a system at a time, t,

evolved from the prior state, at time t-1, according to the equation [57]:

xt = Ftxt−1 +Btut +wt , (3.3)

where xt is the state vector that contains the position, velocity or heading at time t, ut is

the vector containing any control inputs. Ft is the state transition matrix, which applies

the effect of each system state parameter at time t-1 on the system state at time t (position

and velocity at time t-1 affect the position at time t). Bt is the control input matrix, which

applies the effect of each control input parameter in the vector ut on the state vector. wt

is the vector containing the process noise terms for each parameter in the state vector via
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covariance matrices. The KF further involves a prediction and measurement update stages

(additional information about KF implementation can be found in [57]).

Salah et al. [1] adopted KF for sit to stand experiments and Seaman et al. used EKF applied

to golf swings in [35]. Zizzo et al. in [9] included a modified version of EKF, that provides

periodic corrections for the algorithm during human walking motion.



Chapter 4

Materials and Methods

In this study we conduct a concurrent validity study where we validate an IMU-based motion re-

construct system, the MTw Awinda (Xsens Technologies B.V., Enschede, the Netherlands) versus

a 12 camera optical motion capture system (Qualisys AB, Sweden). Seven healthy subjects where

selected by convenience from the Faculty of Sports of University of Porto (FADEUP). The par-

ticipants had no noticeable physical impairments and body height, mass and date of birth were

registered for scaling purposes. Seven subjects (age: 25.1 ± 2.7 yrs; height: 173.1 ± 9.2 cm;

mass: 68.0 ± 10.0kg) were asked to perform static and gait trials with 26 reflective markers and 7

IMUs consistently placed between subjects. The joint angles during static pose were used to align

the differences in the orientation of each segment anatomical frame determined using the IMUs

and Qualisys.

Additionally, a preliminary object-based test was conducted using a toy track and a car to

evaluate the potential of another IMU engineered at Champalimaud Foundation, named "Wear".

Four reflective markers were placed on the top of an Xsens sensor and for comparison means

Wear was fixed on Xsens (see Figure 4.5) and both local axis were aligned (manually). Horizontal

sliding movements with the IMUs fixed over a toy car were performed to discard gravity, which

Qualisys does not account for.

4.1 Optical Motion Capture System

Concurrent validity was assessed in both cases using kinematic data from 12-camera Qualisys (3

Oqus310 plus 9 Oqus400), functioning at a typical frequency of 100Hz. Cameras were placed

at 2.0 ± 0.9m in an arc around an indoor testing in LABIOMEP. A small webcam (HP Webcam

HD 2300) was also used to collect the video for each test. Wand calibration was performed as

recommended by manufacturer: a rigid wand, with two markers mounted, was moved inside the

volume of interest in all three directions to extract camera’s relative position and orientation; a

L-shaped reference structure was further placed on the ground to determine the lab coordinate

system. Figure 4.1 shows the laboratory reference frame with XYZ designation. Y-axis is directed

anteriorly, in the direction of the movement, Z-axis points upward vertically and finally X-axis

27
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laterally and orthogonal to the other two axis.

Figure 4.1: Laboratory reference frame. Qualisys Track Manager Screen for lower limbs.

Regarding the subject-based trials, the calibration lasted 60 seconds and was wide and long

enough so that the markers didn’t lose track during the walking trials. The reconstruction error was

consistently below 0.8 mm and the exposure/threshold adjustments were performed with closer

markers, simulating fibula head and lateral epicondyle of the femur distance.

In the toy track test the calibration lasted 30 seconds with a reconstruction error of 0.5 mm

capturing table volume of interest.

4.2 Inertial Systems

4.2.1 Xsens Inertial Data

Each MTw Awinda sensor (47 x 30 x 13 mm), weights 16g and integrates 3D accelerometer

(scale:± 160 m/s2, noise: 0.002 m/s2/
√

Hz), 3D gyroscope (±2000 deg/s, 0.01 deg/s/
√

Hz),

3D magnetometer (±1.9Gauss, 0.2m Gauss/
√

Hz) and a barometer (300-1100 mBar10, 0.85

Pa/
√

Hz). With Awinda, the battery can be in operation for up to approximately 6 hours. The

data is further transmitted to the Awinda Master (Awinda Station or Awinda USB Dongle). MTw

Awinda provides 3D angular velocity using rate micro-electromechanical (MEMS) gyroscopes,

3D linear acceleration using MEMS accelerometers and 3D earth magnetic field using magne-

tometers. The technical drawing of the sensor was created on Autodesk R© Inventor R© and is

represented in Figure 4.2.
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Figure 4.2: Technical drawing of the Xsens MTw Awinda sensor.

Kinetikos Link software allows to communicate directly with Xsens IMUs. Among other

features it holds an important property, specially when collecting data with humans - sensors

alignment reset. This property makes all sensor’s coordinate system align, independently of the

segment orientation in which they are attached. This alignment was performed in every trial before

subjects performed the asked activity.

In some cases a static trial is used just to record the subject is in static pose, which can be used

as a starting reference for subsequent measurements.

4.2.2 Wear Inertial Data

In previous years the Champalimaud’s Hardware Platform (Champalimaud Foundation) developed

an IMUs system for human research. It is a 9-axis integrated system comprising 3-axis accelerom-

eter, 3-axis gyroscope and 3-axis magnetometer and weights merely 2g. Its small battery lasts up

to approximately 4 hours. More dimension details are represented in Figure 4.3, which corre-

sponds to the technical drawing created on Autodesk R© Inventor R©. This hardware is still under

development and was used to assess the potential for greater biomechanical studies comparing its

acceleration measurements with Qualisys and Xsens.
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Figure 4.3: Technical drawing of the Wear IMU sensor.

4.3 Experimental setup with subjects

Subject-based studies are intended to depict walking activities concerning the right lower limb

joints: hip, knee and ankle. These and other joints are covered by Kinetikos biomechanics mod-

els, where in the case of this study, hip internal/external rotation, hip abduction/adduction, hip

flexion/extension, knee flexion/extension, and ankle dorsi/plantar flexion were used.

Each subject experiment began with a approximately 20 seconds static recording with the

subjects standing in an upright posture, where the Xsens’ IMUs were previously reset aligned

followed by a gait trial. This step serves as a static calibration to establish the hip, knee and ankle

angles offsets.

Kinetikos Link alignment reset, mentioned in section 4.2.1, was performed in two distinct

ways: (i) the first one, with subjects No.1 up to subject No.5, this step was performed before Qual-

isys started recording, which may have left room for possible movements in the meantime, and

then, a new recording containing the walking data was collected; (ii) the second way was applied

to subject No.6 and subject No.7 and the alignment reset button was hit in Qualisys time, knowing

roughly the moment when both systems were perfectly aligned. However, the time counting was

made by an independent timer, due to the fact that it was not possible to mark this time in Qualisys

records. In this case, immediately after the static part, the subjects started walking until the end of

recording.

The static trials are fundamental to scale the kinematic model to the subjects and establish
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it’s joint angles offsets. The gait trial consisted in five repetitions of self-selected pace, walking

around two signaling cones delimiting the walking area.

The inertial and optical systems were collected at 100 Hz and synchronized by an external

source emitting a 5V trigger signal. The Xsens received a pulse on the rising edges and Qualisys

started in the falling edges of the 5V step signal.

Concerning the IMUs, they were preferably affixed on quadriad and aligned to the axis defined

by orthogonal vectors connecting the retro reflective markers or alternatively held with straps.

This additional set of cluster markers (see Figure 4.4) adds redundancy in case the markers detach

during the trials as explained in Chapter 2.

The markers placement on anatomical landmarks followed International Society of Biome-

chanics (ISB) recommendations on definitions of joint coordinate systems for the lower limbs

joints [58]. Additionally, three markers were placed on the dorsal margin/aspect of the 1st , 2nd and

5th metatarsal head according to Istituto Ortopedico Rizzoli’s (IOR) marker set. The complete set

of markers is discretized in table 4.1 for the lower limbs.

Table 4.1: Markers dataset for Lower Body.

Right Side Left Side Anatomical Reference

R.ASIS L.ASIS Anterior superior iliac spine
R.PSIS L.PSIS Posterior superior iliac spine
R.Troc L.Troc Greater trochanter

R.Thigh.Front_Upper L.Thigh.Front_Upper Laterally and distal [23] positioned with the
longest principal axis of the marker distribution
oriented toward the relevant anatomical
landmark position [22].

R.Thigh.Front_Lower L.Thigh.Front_Lower
R.Thigh.Rear_Lower L.Thigh.Rear_Lower
R.Thigh.Rear_Upper L.Thigh.Rear_Upper

R.Knee.Lat L.Knee.Lat Epicondylus femoris lateralis
R.Knee.Med L.Knee.Med Epicondylus femoris medialis
R.TT L.TT Tibial tuberosity
R.FH L.FH Fibula head

R.Shank.Front_Upper L.Shank.Front_Upper Laterally and distal [23] positioned with the
longest principal axis of the marker distribution
oriented toward the relevant anatomical
landmark position [22].

R.Shank.Front_Lower L.Shank.Front_Lower
R.Shank.Rear_Lower L.Shank.Rear_Lower
R.Shank.Rear_Upper L.Shank.Rear_Upper

R.Ankle.Lat L.Ankle.Lat Tip of the lateral malleolus
R.Ankle.Med L.Ankle.Med Tip of the medial malleolus
R.Toe.Lat L.Toe.Lat Dorsal margin 5th metatarsal head
R.Toe.Med L.Toe.Med Dorsal margin of the 1st metatarsal head
R.FM2 L.FM2 Dorsal aspect of the 2nd metatarsal head

Every subject was equipped with seven IMUs placed on lower limbs and pelvis. The position-

ing of the sensors on each body segment followed the suggestions by Kinetikos team, as to adapt

to their processing steps:
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(i) Pelvis: placed vertically with the light pointing down over the top of the sacrum between

LPSIS and RPSIS markers.

(ii) Thighs: placed horizontally in the central-third on a marker-cluster with the lights point

back on the limbs.

(iii) Shanks: placed horizontally on a marker-cluster with the lights point back on the limbs.

(iv) Feet: placed vertically with a small strap over the flat portion of the feet and with the light

pointing up .

It should be noted that the IMUs placement were sligthly different from the ones suggested by

Mangia et al. [54], Xsens tutorials and Kinetikos knowledge base guidance.

Concerning the IMUs, they were preferably affixed on a quadriad (or triad) and aligned to

the axis defined by orthogonal vectors connecting the retro reflective markers or alternatively held

with straps. According to Baré et. al [23] and Cappozo et. al [22] the cluster should be laterally

and distal positioned, with the longest principal axis of the marker distribution oriented toward the

relevant anatomical landmark position. Figure 4.4 exemplifies one subject with the marker set and

IMUs positioned for static and walking trials.

Figure 4.4: Front (left) and back (right) view of subject No.1 with reflective markers and IMUs
mounted.

Because IMUs are prone to magnetic disturbances, before proceed with the experiments, it

was chosen a "magnetically safe" place with no clipping indication on magnetometer data. Then,
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all participants stayed at the very least 2.5 seconds in static position to later warm-up the post

processing filter.

4.3.1 Pre-processing

Optical data processing used the acquisition software Qualisys Track Manager, provided by the

same company (Qualisys AB, Sweden), and included filling the marker trajectories. The preferred

method was the spline-filled method with polynomial interpolation, where gaps were less than 10

frames. Some movements occurred very quickly and the adjustment proved to be more suitable

that the one provided by linear interpolation.

IMU data are rotated/posed with Kinetikos kinematic model in static position so that both

reconstructions/position estimates started from the same basis. This correction by the standing

reference was already proven to be determinant to decrease the results differences [59]. This

step is achieved by Kinetikos proprietary algorithm, feeding the files into Kinetikos platform. Of

course, it could simply be considered that in the initial moment all variables are zero, but that

would be clinically irrelevant. IMU-based or OMC-based data were then translated to achieve the

best alignment and to allow the calculus of performance indices and further analysis.

4.3.2 Statistical Analysis

To assess the performance of Xsens MTw Awinda in joint angle measurement under walking con-

ditions, two metrics were calculated for each subject: Mean Absolute Error (MAE), and Pearson’s

Correlation Coefficient (ρ) also referred to as Pearson’s r. The analyses were performed using

Matlab R©R2017a.

MAE enables the comparison of one measurement technique, the gold standard, against an

alternative technique. MAE will measure the average magnitude of the errors in that set of predic-

tions obtained with the alternative approach. Root Mean Squared Error (RMSE) is also a metric

to measure accuracy but, as it squares the errors before they are averaged, it increases the relative

weight given to occasional disparate errors. In other words, large errors will lie far from RMSE

regression line and will be accounted greatly, as they will be distanced from the line of best fit.

On the contrary, MAE averages the errors without considering their direction, and attributes

equal weights to each difference between observed and predicted angle value:

MAE =
1
n

n

∑
j=1
| qθ j− xθ j |, | eθ j |=| qθ j− xθ j |, (4.1)

where qθ j is the expected angle value measured with Qualisys and xθ j is the correspondent pre-

diction calculated with Xsens. The corresponding error is designated by eθ j and n is the total

number of frames used in each trial, correspondent to 10 gait cycles. For each trial, the MAE for

each lower limb joint (hip, knee and ankle) was calculated to measure the accuracy of the mean

joint angles, estimated with MTw Awinda.
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The waveform similarity was assessed using Pearson’s r, which is a statistical measure that

calculates the strength of the relationship between the relative displacements of the inertial and

optical-based joint angles. It ranges between -1.0 and 1.0 and is defined by:

ρqx =
Cov

(
θq,θ x)

σqσx
=

E[(Q−µq)(X−µx)]

σqσx,
(4.2)

where Cov
(
θq,θx) is the covariance matrix, µq and µx correspond to the expected values for the

Qualisys and Xsens angles, respectively. The correspondent standard deviations are σq and σx and

E represents the expected value operator.

A correlation coefficient, between two variables, of 1.0 shows perfect positive similarity, which

means that for each positive increase in one variable, the other variable also presents a positive

increase, disregarding the magnitude of the increase. On the opposite, -1.0 means perfect negative

correlation, when for a positive increase in one variable the other has a negative increase, moving

in opposite directions. A correlation of 0.0 means zero or no relationship between the waves shape

of the two variables.

4.4 Experimental setup with Object

Wear was fixed on top of Xsens along with four reflective markers of 12 mm. All systems were

collected at 100 Hz and synchronized by a 5V trigger signal emitted by Wear station: the Xsens

received the pulse on the rising edges and Qualisys started in the falling edges of the 5V step signal

(more specifications of the sensors, setup and markers can be found in Appendix 2).

The position and orientation of both Wear and Xsens inertial systems was chosen according

with the data visually retrieved from the corresponding software: Bonsai and MT Manager, in this

order. The axis documentation from Wear did not correspond with the outputted data and so the

orientation provided from its documentations was not considered. The ideal alignment, without

any reset in the heading or inclination was found to be the one depicted in Figure 4.5, where both

accelerometer and gyroscope data in the three-axis must be aligned. The magnetometer data is

not inter-comparable since Wear is overly vulnerable to surrounding magnetic interferences as

watches, phones and principally the Xsens where it was attached.

The sliding trial system, represented in Figure 4.6, consisted in a small gutter, fixed over a

table, and alternatively aligned with X-axis and Y-axis of Qualisys/Lab coordinate system, where

toy car slid over it.
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Figure 4.5: Mounting scheme with Wear, Xsens and reflective markers glued on top.

Furthermore, the assembly (Wear plus Xsens plus markers) remained constant, with the axis

of the inertial systems, but alternatively aligned with the axis of Qualisys (see Figure 4.7).

A ( 1 : 2 )

A

Date:

05/07/2018

Dimensions:

mm

Sheet Size:

A4 Of

1 : 10

Scale:

1

jmgc2018.100.99

Part Number:

Sheet Number:

1

8

7

1

2

6

3

4

5

Figure 4.6: Test schematics created on Inventor. Legend: 1-table, 2-track, 3-weight, 4-Xsens,
5-car, 6-wire, 7-reflective marker, 8-Wear.

For example, with the gutter aligned with laboratory Y-axis, the assembly (Wear plus Xsens

plus markers), were placed on the car in three distinct positions: with the sensors’ X-axis in

the direction of laboratory Y-axis, with the sensors’ Y-axis in the direction of laboratory Y-axis

and finally with the sensors’ Z-axis in the direction of laboratory Y-axis. Each assembly-car

orientation, depicted in Figure 4.7, was repeated at least three times, making a total of 23 tests.
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Figure 4.7: Left - Position 1: Sensor’s X-axis along the gutter longitudinal axis. Middle - Position
2: Sensor’s Y-axis along the gutter longitudinal axis. Right - Position 3: Sensor’s Z-axis along the
gutter longitudinal axis

4.4.1 Pre-processing and Statistical Analysis

Contrary to the processing in the walking trials, here, the raw data of all three systems were fil-

tered. The first attempt was to evaluate the power spectrum of the accelerometer data, choosing the

best cutoff frequency and then, low pass filter it with a 4th order Butterworth. However, the signals

spectrum did not allow us to choose the best cutoff frequency for the systems, because it appeared

widely scattered over the entire range of permitted frequencies. In the case of the shape of the

spectrum being an exponential, or presenting notable peaks, the frequencies of interest would be

easily selected however, in this case, it was required another approach, finding a compromise be-

tween what was relevant to keep within the signal and the noise to be eliminated. For the purpose,

it was tested decreasing frequencies from 49 Hz (Nyquist frequency = 50 Hz) and used as refer-

ence a specific aspect of the signals, present is all tests. As soon as the car plus sensors assembly

reaches the end of the gutter and the engine stops, the system undergoes a sudden deceleration,

corresponding to a strong negative acceleration peak in the signals. As this moment is certain to

happen in all the tests, the percentage of decrease of this peak in the filtered signal to the original

was the basis for the choice of the cutoff frequency of the filter. A good range of testing would

be between 20% and 50%, so that the peak does not disappear and the filtering has some effect,

since very low frequencies completely "erase" this peak, and therefore, soften the signal too much,

and very high frequencies do not alter it. After testing few cases and observing the results, it was

verified that the 30% were the fairer, because above this value the signal suffered too much change

compared to the raw data, adulterating the results between the systems.

The offset of the signals was removed as they would start in the same static basis (zero accel-

eration). Then, the signals were aligned and performance indices were calculated. In most cases

the inertial data had to be manually aligned due to the presence of a non-deterministic noise in

the data collections. The alignment was attained using the first appearing positive peak right after

the assembly starts going through the gutter. The performance indices were calculated between

the one hundred frames before the moment of the peak and the peak frame (nearly), as from here,

the assembly would be disarranged due to the clash with a barrier, at the end of the gutter, and
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it would not make sense to apply any comparison terms. Finally, to evaluate the performance

of the systems, the chosen metrics were the MAE (Mean Absolute Error) and ρ (Pearson’s Cor-

relation Coefficient), similarly to the gait studies, and the analyses were also performed using

Matlab R©R2017a.
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Chapter 5

Results and Discussion

5.1 Concurrent Validation with subjects

In this chapter are presented the results from the concurrent validation and the preliminary object-

based test. The comparisons were obtained through Mean Absolute Error (MAE) and Pearson’s

Correlation Coefficient (r).

5.1.1 Experimental Results

The motion reconstruction workflow described in 2.3.2 was applied to reconstruct hip, knee and

ankle kinematics using data from both Qualisys and Xsens systems.

Additionally, data obtained with Qualisys system were processed using six different combina-

tions of markers’ weights (in arbitrary units) to assess the importance of this step in the IK result.

For this purpose, we assumed the following reasoning (implemented in Kinetikos software): the

parent frame is the pelvis and from there down the tendency in increasing the errors is higher,

so the weights given from upper to lower should decrease, since the confidence also decreases.

Markers with larger weights mean that IK solver will try more tightly to match the marker’s vir-

tual and experimental position, as compared to markers with smaller weights. The weight of a

marker will be multiplied by the squared-error term for that marker. And so, markers placed with

greater confidence are generally the ones that will have larger weights so as not to increase the

error in the least-squares equation 2.6. Table 5.1 presents the values of weights used for each

marker and Figure 5.1 the effect on the MAE value.

The resulting joint angles for the lower limbs were compared to those obtained with the inertial

sensors while assuming the same model posing.
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Table 5.1: Weight of the markers, in arbitrary unit (arb. unit), used in each IK running trial.
The shaded lines correspond to the thigh and shank clusters and the bold values the weights that
changed from the previous distribution method. The real set of markers is in duplicate for right
and left side.

Weight Distribution Method)

Markers’ Weights (arb. unit) 1 2 3 4 5 6

ASIS 1.0 10.0 10.0 20.0 20.0 20.0

PSIS 1.0 10.0 10.0 20.0 20.0 20.0

Thigh.Front_Upper 1.0 5.0 1.0 1.0 1.0 5.0
Thigh.Upper 1.0 5.0 1.0 1.0 1.0 5.0
Thigh.Front 1.0 5.0 1.0 1.0 1.0 5.0
Thigh.Rear 1.0 5.0 1.0 1.0 1.0 5.0
Knee.Lat 1.0 4.0 4.0 4.0 4.0 4.0

Knee.Med 1.0 4.0 4.0 4.0 4.0 4.0

Shank.Upper 1.0 4.0 4.0 4.0 4.0 4.0

Shank.Front 1.0 4.0 4.0 4.0 4.0 4.0

Shank.Front_Upper 1.0 3.0 1.0 1.0 1.0 3.0
Shank.Rear 1.0 3.0 1.0 1.0 1.0 3.0

Shank.Rear_Lower 1.0 3.0 1.0 1.0 1.0 3.0
Shank.Front_Lower 1.0 3.0 1.0 1.0 1.0 3.0

Ankle.Lat 1.0 2.0 2.0 2.0 4.0 2.0
Ankle.Med 1.0 2.0 2.0 2.0 4.0 2.0
Midfoot.Lat 1.0 1.0 1.0 1.0 1.0 1.0

Toe.Med 1.0 1.0 1.0 1.0 1.0 1.0

Toe.Tip 1.0 1.0 1.0 1.0 1.0 1.0

The values of the error (MAE) and of the correlation that each weight distribution method

scored are reported in Table 5.2. The same amount of static part were preserved between subjects

for comparison purposes. This way, eliminating the influence that the static part might have had

in the final error.

The graph in Figure 5.1 shows the effect of IK running trial choice in the final error for the

lower limb joints. Only the right side were evaluated and the MAE represents the average for the

seven participants. Each boxplot in Figure 5.3 shows how the overall error of each lower limb

joint evolves along the weight distribution methods.



5.1 Concurrent Validation with subjects 41

Figure 5.1: Evolution of the MAE in the joints motion reconstruction for the walking trials. The
symbols represent the average MAE in each weight distribution method, accounting all partic-
ipants. HIE−ROT : hip internal/external rotation, HAA: hip abduction/adduction, HFE : hip flex-
ion/extension, KFE : knee flexion/extension, and ADP−FLEX : ankle dorsi/plantar flexion.

Figure 5.2: Overall MAE results divided by participant.
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Table 5.2: Mean absolute error (MAE) and Pearson’s Correlation Coefficient (r) estimates using
distinct weight distribution methods. MAE and r are calculated according to Equations 4.1 and
4.2 for hip internal/external rotation HIE−ROT , hip abduction/adduction HAA , hip flexion/extension
HFE , knee flexion/extension KFE , and ankle dorsi/plantar flexion ADP−FLEX . Bold values high-
light methods that performed better in MAE.

HIE−ROT HAA HFE KFE ADP−FLEX Mean

Method MAE r MAE r MAE r MAE r MAE r MAE r

1 3.71 0.91 4.54 0.64 5.99 0.95 2.31 0.99 1.61 0.96 3.63 0.89

2 3.41 0.92 3.98 0.65 4.58 0.96 2.14 0.99 1.94 0.95 3.21 0.90

3 2.96 0.93 3.51 0.70 3.59 0.97 2.18 0.99 2.13 0.94 2.87 0.91

4 2.93 0.94 3.15 0.73 2.84 0.97 2.17 0.99 2.62 0.93 2.74 0.91

5 2.98 0.94 3.18 0.72 2.94 0.97 2.18 0.99 2.49 0.93 2.75 0.91

6 3.34 0.93 3.48 0.68 3.68 0.97 2.06 0.99 2.36 0.94 2.98 0.90

Figure 5.3: Overall MAE results. The central lines correspond to the 2nd quartile (median), Q2,
the upper line the 3rd quartile, Q3, and the lower line the 1st quartile, Q1. The whiskers represent
the lower and upper limits and the cross symbol the mean MAE. Outlier values lie outside the
whiskers.
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Figure 5.4: MAE results for each tested weight distribution methods. The central lines correspond
to the 2nd quartile (median), Q2, the upper line the 3rd quartile, Q3 and the lower line the 1st
quartile, Q1. The whiskers represent the lower and upper limits and the cross symbol the mean
MAE. Outlier values lie outside the wiskers.
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5.1.2 Discussion

IMU-based an OMC-based systems can now be compared through two suggested statistical mea-

sures: Mean Absolute Error, MAE, and Pearson’s Correlation Coefficient, r.

5.1.2.1 MAE

MAE is commonly used to verify the proximity of expected values to known results and thus, as

OMC data were considered the "gold standard" and accordingly the known values, IMU-derive

kinematics are the predictions. Therefore, from Table 5.2, we see that the weights combination

used in method 4 have lowered the MAE in all hip DoFs, being comparable with method 5. This

leads to the conclusion that higher relative weights on pelvis markers plus "discarding" cluster

markers generate better results at the hip. In correspondence, the best results for the ankle (1.61◦

were attained without much effort, using relative weights of 1.0 in all markers (weight distribution

method 1). It can be concluded that the ankle tracking is improved when the other markers are

not over-weighted relative to that of the ankle/foot. Regarding the weight distribution impact on

knee’s MAE, the variations were to small to support any kind of interdependence.

Using default weights of 1.0 (arb. unit) for all markers (method 1) the hip errors were quite

large, certainly because there was no anatomical points on the trunk to aid the tracking of the

pelvis. Therefore, to tightly match the kinematics, the hip markers weights were increased in a

systematic manner.

Furthermore, Figure 5.1 and Table 5.2 show that the most problematic joint was the hip in

all its degrees of freedom. With weight distribution method 1, in which all the markers equally

influenced the kinematics, the hip flexion/extension MAE were 6◦, hip adduction/abduction 4.54◦

and hip internal/external rotation 3.71◦ of MAE. However, other weights combinations were tested

and it was possible to achieve fairly good results at hip flexion/extension in method 4 and method

5 (MAE < 3.2◦). This hip DoF is given more importance since most walking dynamics take place

in the sagittal plane.

Since what changed from method 1 up to method 6 was mainly the relative weight attributed

to the markers placed on the hip: ASIS and PSIS, it can be infer that as we increase the weight

of these markers in relation to the others, the hip position estimation with the two systems come

drastically closer. On the contrary, the ankle orientation error increases as the hip ones decrease,

yet, achieving quite small MAE in all cases with the biggest error of 2.6◦. The knee behaviour is

the least prone to significant variations, maintaining in all cases errors below 2.3◦ and, additionally,

from Figure 5.3 we see that KFE presents the lowest distance between quartiles (Q3-Q1), which

sustain the aforementioned interpretation.

Also, from boxplots in Figure 5.3, the global error for HFE is clearly the most affected by

changing the markers’ weights, followed by HAA and ADP.

Another consistent test across weight distribution methods was to evaluate the influence of the

clusters in the inverse kinematics. Comparing methods 2-3 and 6-4, it can be perceived that in

either cases, when cluster markers weights decrease to the default 1.0, the HFE MAE decreases
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almost 1◦ but ADP−FLEX tend to slightly increase. This concludes that the clusters have no signif-

icant use to improve hip orientation estimation, but have some relevance when comes to tracking

ankle joint and a little less relevance for the knee.

We could start distinguishing the methods by qualifying the inter-quartile difference, Q3-Q1,

and outliers points, since these serve as a measure of data variability, which is desirable to reduce.

Thereby, the worst performing methods would be method 1-3, with extreme outliers at knee level

joint.

Even so, these outliers have high extreme values and hence, should be discarded from the data

series as they may be quietly increasing the MAE in the remaining methods. Through intrinsic

observation, it can be concluded that these extreme results probably belong to participant 3 (see

Figure 5.2), which are consistently higher than those in other subjects (except for HIE−ROT ).

From Figure 5.4 we can see that methods 4 and 5 are the best cases as they present for all

DoFs the third quartile below 4◦ of error. The second quartile (median) in the these methods

(methods 4 and 5) does not vary notably, which is proven by the results presented in Table 5.2,

where both MAE and r have more or less the same mean values. With a MAE of 2.7◦ mean, we

are within the dynamic error range of Xsens MTx (≈ 3◦RMSE) [60]. Hence, it was not significant

to explore another weights combination because the compensation would be really small or even,

unmeasurable. As explained above, it was expected that the last two subjects would lead to better

results since the alignment reset occurred on Qualisys time was noted and used to discard the

previous marker data. For subject No.7, we can say that the outcome went as expected, since in

the DoFs of interest (in the saggital plane) the errors are below 3◦, which is the knee best result

within the group. Also in Figure 5.2 we see that subject No.1 also presents MAE below 3◦ in the

saggital plane, with better results than subject No.6 at the hip and ankle level. This could be due to

some misplacement of hip markers (ASIS or PSIS) in that particular subject, or probably subject

No.1 remained really static in the upright posture trial.

For the purpose of this thesis (and also for pedagogical reasons) we opt to manually manip-

ulate markers weights to assess its consequence on IK results. Nevertheless, an automatic and

systematic solution could be implemented to automatically search for the best set of weights.

5.1.2.2 Pearson’s Correlation Coefficient (r)

The second measure that was studied is Pearson’s Correlation Coefficient (r or ρ) and evaluates,

within a scale -1.0 and 1.0, how well the IMU-estimated kinematics follow the reconstruction

pattern obtained with OMC [61]. If a good r is attained then the signals shape does not vary

significantly, which means that a virtual character will act similarly with any of the alternative

systems, and the reconstruction will naturally converge.

Comparing with the DoF reflected in the saggital plane, the ankle drosi/plantar flexion achieved

the lowest correlation, what can be due to the use of shoes during the walking trials. These results

might be improved with subjects walking barefoot with the markers and IMU placed directly on

surface skin.
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From the perspective of r, Table 5.2 points method 1 as the best to follow ADP pattern, methods

3-6 to track HFE and no significant preference concerning knee joint. Method 4-5 for HIE−ROT

and method 4 for HAA.

However, correlation coefficients present propensity to be distorted when in presence of out-

liers, which may wrongly infer any relationship between the variables. As subject No.3 (see Figure

5.2) may have lead to the outliers visible in Figure 5.4, our discussion will not depend to much on

this performance index.

Clusters and isolated skin marker displacements are subject-specific, so they might have non-

systematically influenced the results.

5.2 Summary

Generally, considering MAE and r, the best weight distribution method to reconstruct the motion

would be method 4, comparable to method 5 with MAE of 2.7◦ and r of 0.91◦. Either methods

decreased the first errors in more than 3◦, which had really high impact in the final results. Of

course there are infinite other combinations of markers weights as a result, a global optimization

approach would search for the best combination among all markers weights and subjects what

would probably ensure that we had the best results possible. However, the attempts of decreasing

the errors were made manually, and since we only tested six solutions, we would have been very

lucky to hit the best combination.

It is described that the best performance of IMU-based systems is achieved in the main motion

plane [59], which in this case is the saggital plane. This supports this thesis results, where HIE−ROT

(transverse plane) and HAA (coronal plane), in fact, present the worst MAE between signals 2.93◦

and 3.15, respectively, yet they are still great results. On the other hand, the flexion/extension FE

angles estimate revealed the highest accuracy (MAE < 2.7◦). In general, the kinematic patterns

agreed considerably (MAE = 2.74 and r = 0.91) and the overall MAE ranged between 2.2◦-3.1◦,

being that the lowest was KFE and highest the HAA.

To endorse our findings, we have adopted the studies from [10] that are comparable with ours

(evaluate the same DoFs) and added some more to Table 6.1 in Appendix ??. Our findings are

comparable to previous works when measuring sagittal ankle, knee and hip joint kinematics dur-

ing walking that obtained errors of 1.9◦-4.8◦ [61], even though the markers were placed on top

of the sensor which discards the SA effect. Also a similar study [62] obtained MAE between

1.2◦-4.5◦, being that the lowest value were the ankle dorsi/plantar flexion and the highest the hip

internal/external rotation, however, it is not described whether or not the subjects used shoes while

walking. Later, [63] achieved 2.2◦-3.1◦ using MAV (Mean Absolute Variablity) as similarity indi-

cator. Oddly, its best result was for hip abduction/adduction and the worse at hip internal/external

rotation and hip flexion. Here, contrary to our study, the subjects walked wearing only socks,

which does might have been relevant to decrease errors in ankle joint kinematics.
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An equivalent study, aided by UWB, instead of magnetometers (to remove the drift in the

yaw angle estimation), conquered in walking/stair climbing RMSE (root mean squared error) of

1.4◦-ankle dorsi/plantar flexion and 3.5◦-knee flexion/extension.

Shortly, Kinetikos motion reconstruction workflow allowed for the estimate of lower limb

joint angular kinematics in an accurate manner, validating the utility of inertial systems in outside

applications. The greatest discrepancies may be certainly due to the misalignment between the

anatomical frames of Xsens and Qualisys at the posing step. Since the joint kinematics are ob-

tained by mean of rotation matrices, the differences in the measured joint angles might lie right

there. Also the fact that participants performed the trials wearing shoes and the Xsens on the foot

was placed over straps might justify the 1.4◦ of difference compared to the most similar study [62].

Also, the lack of experience in data collection and palpation of anatomical points by the person

who did the recordings might have had negative impact in the results. However, this could be also

a favorable condition, since it proves that even with small previous knowledge is possible to attain

really good results in short time. Overall, our results corroborate that IMU-based human motion

reconstruction is an accurate, easy to use and promising technology.

5.3 Concurrent Validation with object

5.3.1 Experimental Results

The mean results in all planes of study for the 23 performed tests are presented in Table 5.3.

However, in some cases the inertial systems failed badly or suffered sampling mismatches (see

Figure 5.5), which is why it is also presented the results considering only the successful cases in

Table 5.4. So, without the failures remained, 18 tests, which continues to be a quite reasonable

sample.

Table 5.3: Mean absolute error (MAE) in m/s2 and Pearson’s Correlation Coefficient (r) estimates
among 23 sliding trials, pondering success and failure cases.

Qualisys(Q)
Inertial Systems

(MT andW)
MAE(m/s2) r

QvsMT QvsW MTvsW QvsMT QvsW MTvsW

Y
X 1.10 2.36 2.79 0.79 0.46 0.22
Y 0.46 1.28 1.23 0.97 0.87 0.83
Z 0.96 1.29 1.34 0.92 0.70 0.64

X
X 0.78 1.08 1.05 0.91 0.84 0.79
Y 0.53 0.87 0.71 0.96 0.92 0.92
Z 0.60 0.95 0.23 0.99 0.81 0.99

Mean 0.74 1.30 1.22 0.92 0.77 0.73
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Table 5.4: Mean absolute error (MAE) in m/s2 and Pearson’s Correlation Coefficient (r) estimates
among 18 sliding trials discarding the failure cases.

Qualisys(Q)
Inertial Systems

(MT andW)

MAE(m/s2) r

QvsMT QvsW MTvsW QvsMT QvsW MTvsW

Y

X 0.72 1.03 - 0.98 0.92 -

Y 0.46 1.28 1.23 0.97 0.87 0.83

Z 0.93 0.75 0.66 0.94 0.96 0.95

X

X 0.74 0.90 0.96 0.92 0.92 0.87

Y 0.53 0.87 0.71 0.96 0.92 0.92

Z 0.60 0.65 0.23 0.99 0.98 0.99

Mean 0.66 0.91 0.76 0.96 0.93 0.91

Figure 5.5: Acceleration(m/s2) vs time (ms) graph showing Wear advance and oscillating waves
during the sliding. Q (blue line) stands for Qualisys, W (red line) to Wear and X (orange line)
represents Xsens values.

5.3.2 Discussion

The tables above aim to speculate about Wear IMU being a promising method for later biome-

chanical studies. In 23 tests, the number of success trials decreases 22% to 18 cases. The losses

represent the failures in the inertial systems and delays or advances in the Wear inertial unit. In

the successful cases the MAE were equal or below 0.91 m/s2 and r above 0.91. The rudimentary

character of the study does not allow us to obtain reproducibility in the results. The wire that was

not in constant tension and the slide was not controlled by any initial brake. The spring effect
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of the wire prevent the acceleration wave to have the expected shape of a perfect step response,

presenting some oscillating waves (see Figure 5.5).

These Wear delays / advances appear to result from high oscillations in the sampling frequency.

This should vary between 100 ± 1 (99 and 101), however, by examining the raw files the number

of samples in each second varies more than that, sometimes being 98, 103, 105 others 107. An

oscillating acquisition frequency between 98 and 107 (± 9Hz≈ 10%) is a critical mismatch, which

by analysis of the signals the explanation of these delays or advances would then be the gain or

loss of samples by the Wear inertial unit.

In both cases, the acceleration errors are higher than expected as compared with [64], which is

a robot based motion where the non deterministic noise is greatly decreased. This brings us good

expectations when applying these systems to human movement, much less controlled. Nonethe-

less, for the purpose of obtaining the biomechanical angles, the accelerations needed to be inte-

grated into position, further increasing the present errors.

As future work, less rudimentary tests with greater mechanical control should be performed

in order to eliminate the non-deterministic noise and to obtain a step acceleration waveform. For

instance, a brake would control the beginning of the slide and ensure that the rope is always taut,

and the force being applied would be constant, and as so the acceleration (F=ma). To solve for the

Wear issues, data would be collected at higher frequencies followed by down sampling to same

amount of samples per second.
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Chapter 6

Conclusions and Future Work

The main goal of this thesis was to conduct a concurrent validity study, using a motion reconstruct

system (Kinetikos, Coimbra, Portugal), where the MTw Awinda (Xsens Technologies B.V., En-

schede, the Netherlands), was compared against the "gold standard" camera optical motion capture

system (Qualisys AB, Sweden). Based on this study results we can conclude that by combining

Kinetikos physics-based models of human biomechanics with measurements of movement from

body worn inertial sensors we can accurately reconstruct human motion matching the results of an

OMC system.

This is only possible when the same biomechanical model is applied and both calculus start

from the same basis. So, besides the offset between correspondent angles measured by MAE, was

also evaluated if the pattern of the calculated angles follows the same variation through correla-

tion coefficient. As so, the final errors might be justified by the mismatches between the human

subject and the computer model. Yet, adding another system with intrinsic dynamic accuracy of

approximately 3◦ (Xsens) naturally increases the associated error. The errors are smaller and the

correlation rates higher when the range of motion is wider, i.e. in the saggital plane. For future

work, we stress the need to run similar experiments in other free daily living activities (involving

both lower and upper limbs) and clinical relevant populations.

6.1 Obstacles

Generally, our results are comparable to those reported in literature, sometimes better and other

times worse but in the same order of magnitude. Many issues can be considered to explain our

results:

i Synchronization problems of the 3 kinematic systems (two inertial and one optical). The

functioning of the trigger did not always work, and whenever the voltage was below 5V the

optical system was not triggered;

ii Lack of experience in data collection and palpation of anatomical points by the person who

did the recordings. This could be also a favorable condition, since it proves that even with

small previous knowledge is possible to attain really good results in short time;
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iii Readjustments in the collection procedures. Testing different ways to when reset align

Xsens IMUs in order to obtain a feasible posing;

iv Posing of the models without knowing the exact time at which the two kinematic systems

were in the same basis;

v Preprocessing of walking data. We did not consider filtering neither optical data or iner-

tial one. This could eventually decrease the errors, however by graphs visualization the

difference would not be significant;

vi An optimization approach was not created in order to go trough all participants and all

weights combinations. It would have an overly demanding programming component that

was not the focus for this thesis.

vii The rudimentary character of the preliminary study introduces non-deterministic errors to

the system, which probably prevented more promising results.

6.2 Goals Satisfaction and Future Work

Although IMUs have been widely used in instrumented movement analysis to aid clinical assess-

ment, rehabilitation, sports, diagnostics, etc., there are still some gaps that need to be explored.

Several studies on sit to stand movement and gait analysis obtained promising results sup-

porting the idea of inertial alternatives. However, comparative studies involving the upper limbs

are not so straightforward, as the light reflected or emitted by the markers during the movement

might be obstructed, preventing their visibility by the cameras. An incoming work, would be to

study upper limbs’ kinematics, which is predicted to be more challenging due to the lower range

of successful experiments that cover this body part and the associated shoulder complexity.

Also, the validity of IMUs was reported to be speed-specific [12] and task-specific and [65],

which would be a great point testing faster movements, like running or kicking a ball in the future.

Finally, we were able to support the idea and further prove that a lower complexity system with

smaller cost and size is capable of accurately estimate the target orientation and position of a body,

kicking in biomechanics’ guidelines. Regarding the preliminary test, greater mechanical control

should be applied in order to eliminate the non-deterministic noise and obtain as expected a step

acceleration waveform. Furthermore, similarly gait trials using Wear units and Qualisys would

certificate the hardware and eventually lead to more complex studies such as scapular movements.
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Appendix 1. Gather of lower limbs methods presented here

and in [10].



Table 6.1: Summary of Concurrent Validation studies targeting Lower Limbs kinematics.

Ref. Year Sensors
Kinematics

and
constraints

Sensor Fusion
approach Validation Measure Error C Comments

hip rot 4.5
hip ad 3.6
hip fle 3

knee fle 2.4
[62] 2008

2 acc,
2 gyro ,
2 mag

- - OMC

ankle fle 1.2

-

one
gait

cycle,
walk
MAE

hip rot 3.0 0.96
hip ad 4.8 0.39
hip fle 2.5 0.99

knee fle 1.9 0.99
[61] 2013 - - - OMC

ankle fle 2.1 0.99

markers
on imus top

one gait cycle,
walk ,

MAE, CMC

hip rot 3.1 0.90
hip ad 2.2 0.96
hip fle 3.1 0.99

knee fle 3.0 0.97
[63] 2014 7 acc rot mat TRIAD like OMC

ankle fle 2.6 0.92

walk,
right side.

MAV,
r

hip ad 2.9 -
hip fle 2.7 -

knee fle 3.5 -
[66] 2016

7acc,
7gyro,
3 UWB

kinematic chain,
rot mat

KF OMC

ankle fle 1.4 -

100s walk/
stairs

climbing
RMSE

hip rot 2.9 0.94
hip ad 3.1 0.73
hip fle 2.8 0.97

knee fle 2.2 0.99
Our 2018

7 acc,
7 gyro,
7mag

kinematic chain KF OMC

ankle fle 2.6 0.93

30s walk
MAE,

r



Table 6.2: List of abbreviations.

Abbreviation Full Name

acc accelerometer
gyro gyroscope
mag magnetometer

UWB ultra wide band

int integration
rot mat rotation matrix

KF Kalman Filter
OMC Optical Motion Capture

ad abduction/adduction
rot rotation
fle flexion/extension

MAE Mean Absolute Error
MAV Mean Absolute Variability

RMSE Root Mean Squared Error
CC Coefficient of Correlation

CMC Coefficient of Multiple Correlation
r Pearson’s Correlation Coefficient



Appendix 2. Preliminary test specifications

PARTS LIST

COMPONENTITEM

Table
1

Track2

Weight3

Xsens4

Car5

String6

Reflective 

markers

7

Wear8

A4

mm

Date:

Sheet Size:

17/07/2018

Dimensions:

1

Part Number:

1

jmgc2018.100 - Cópia

Sheet Number:

Of

Scale:

1 : 7,5

8

7

4

5

2

6

3

1

Figure 6.1: Exploded view of all experimental set up.
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Sheet Number:

Part Number:

jmgc2018.100.0105/07/2018

Sheet Size:
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Figure 6.2: Track specifications.
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Figure 6.3: Car specifications.
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