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Resumo

Sistemas de células acopladas associados a uma rede são sistemas dinâmicos
que respeitam a estrutura da rede. Um dos objectivos da teoria de células
acopladas é relacionar propriedades das redes e dos seus sistemas de células
acopladas. Um exemplo signi�cativo é a correspondência biunívoca entre
as colorações balanceadas no conjunto de células da rede e os espaços de
sincronia que são invariantes para qualquer sistema de células acopladas
associados a esta rede. A restrição de qualquer sistema de células acopladas a
um espaço de sincronia é também um sistema de células acopladas associado
a uma rede menor. Esta rede menor é designada de rede quociente e a
rede original é dita ser um levantamento da rede quociente. Estudamos
as bifurcações que quebram a sincronia com co-dimensão um de pontos de
equilíbrio em sistemas de células acopladas num ponto de bifurcação com
sincronia total e o problema do levantamento de bifurcações. Dada uma
rede, uma das suas redes quociente e um problema de bifurcação em ambas
as redes, o problema do levantamento de bifurcações questiona se todos os
ramos de bifurcação associados à rede são levantados dos ramos de bifurcação
associados à rede quociente. Restringimos a nossa atenção a dois tipos de
redes: redes regulares e redes homogéneas com entradas assimétricas.

Dada uma rede homogénea com entradas assimétricas, a sua rede funda-
mental revela as suas simetrias ocultas. Métodos para o estudo das bifur-
cações em redes fundamentais estão disponíveis na literatura. Damos uma
caracterização das redes fundamentais. Provamos a existência de ramos de
bifurcação de pontos de equilíbrio com sincronia maximal e submaximal
para problemas de bifurcação em redes regulares. Caracterizamos os ramos
de bifurcação de pontos de equilíbrio para problemas de bifurcação em re-
des homogéneas com entradas assimétricas com uma condição de bifurcação
dada por a valência da rede e estudamos o problema do levantamento de
bifurcações para estes problemas de bifurcação. Descrevemos os ramos de
bifurcação de pontos de equilíbrio para problemas de bifurcação em redes
de transição adiante e abordamos o respectivo problema do levantamento de
bifurcações.

Para caracterizar as redes fundamentais, estudamos a relação entre redes
e as suas redes fundamentais. Damos condições para uma rede ser uma rede
quociente da sua rede fundamental e para a rede fundamental ser uma sub-
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rede da rede. Além disso, relacionamos propriedades grá�cas das redes e das
suas redes fundamentais. Essas propriedades são o tamanho dos ciclos numa
rede e a distância máxima entre as células e os ciclos da rede.

No estudo de bifurcações com co-dimensão um de pontos de equilíbrio
que quebram a sincronia em sistemas de células acopladas associados a re-
des regulares num ponto de equilíbrio com sincronia total, é conhecido um
resultado semelhante ao Equivariant Branching Lemma que mostra a exis-
tência genérica de ramos de bifurcação com sincronia axial. Para além de
estendermos este resultado para ramos de bifurcação com sincronia máxima,
também damos condições necessárias e su�ciente para a existência de ramos
de bifurcação com sincronia submáxima. Estas condições apenas dependem
da estrutura da rede. Ademais, apresentamos exemplos de redes que mos-
tram que a estrutura do reticulado dos espaços de sincronia de uma rede não
é su�ciente para determinar quais são os espaços de sincronia que suportam
um ramo de bifurcação.

Para qualquer rede homogénea com entradas assimétricas, a matriz Jaco-
biana de qualquer sistema de células acopladas num ponto de equilíbrio com
sincronia total tem soma das linhas constante. Esta constante é designada
por valência da rede. Para caracterizar os ramos de bifurcação de pontos
de equilíbrio em problemas de bifurcação com uma condição de bifurcação
dada por a valência da rede, provamos um resultado semelhante ao Teorema
de Perron�Frobenius. Este resultado mostra que a dimensão do espaço pró-
prio associado à valência é igual ao número de fontes na rede. No estudo do
problema do levantamento de bifurcações para os problemas de bifurcação
mencionados anteriormente, veri�camos que o aumento do número de fon-
tes numa rede em relaçao a uma das suas redes quocientes é uma condição
necessária, mas nem sempre su�ciente, para a existência de um ramo de bi-
furcação na rede que não seja levantado da rede quociente. Apesar disto,
existe uma classe de redes e suas redes quocientes tais que qualquer ramo
de bifurcação associado à rede é levantado da sua rede quociente se e só se
a rede e a sua rede quociente têm o mesmo número de fontes.

Redes de transição adiante são redes homogéneas com entradas assimétri-
cas onde o conjunto de células pode ser particionado em camadas. A restrição
de um sistema de transição adiante a um dos seus espaços de sincronia pode,
ou não, ser um sistema de transição adiante. Estudamos os levantamentos
de redes de transição adiante que têm uma estrutura de transição adiante
e de�nimos dois tipos desses levantamentos designados por levantamentos
que criam novas camadas e levantamentos dentro de uma camada. Mostra-
mos que os levantamentos de transição adiante conexos para trás podem ser
decompostos nestes dois tipos de levantamentos. No estudo de bifurcações
com co-dimensão um de pontos de equilíbrio em sistemas de transição adi-
ante num ponto de equilíbrio com sincronia total, existem duas condições de
bifurcação possíveis. Dizemos que uma das condições de bifurcação é dada
por a dinâmica interna e a outra é dada por a valência da rede. Descrevemos
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os ramos de bifurcação para problemas de bifurcação com qualquer uma das
duas condições de bifurcação. Por último, analisamos o problema do levan-
tamento de bifurcações em sistemas de transição adiante para os dois tipos
de levantamentos. Para a maioria dos levantamentos de transição adiante,
existe um ramo de bifurcação associada à rede que não é levantado da rede
quociente se e só se a dimensão do espaço central do problema de bifurcação
aumenta para a rede. Para levantamentos dentro de uma camada, mostra-
mos que o problema do levantamento de bifurcações depende genericamente
do sistema de transição adiante escolhido. Em particular, damos condições
sobre sistemas de transição adiante, tais que, tomando a condição de bifur-
cação dada por a dinâmica interna, alguns levantamentos podem ter ou não
ramos de bifurcação que não sejam levantados da rede quociente.

Palavras-chave: Rede de células acopladas, Sistema de células aco-
pladas, Rede fundamental, Conectividade da rede, Rede circular, Bifurcação
de pontos de equilíbrio, Bifurcação com quebra de sincronia, Problema do
levantamento de bifurcações, Rede de transição adiante.





Abstract

Coupled cell systems associated to a network are dynamical systems that
respect the structure of that network. One of the goals in coupled cell the-
ory is to relate properties of the network and of their coupled cell systems.
A thriving example is the one�to�one correspondence between balanced col-
orings on the set of cells of a network and synchrony subspaces which are
�ow-invariant subspaces for any coupled cell system. The restriction of any
coupled cell system to a synchrony subspace is again a coupled cell system
but associated with a smaller network. This smaller network is called a
quotient network and the original network is said to be a lift of the smaller
network. We study codimension-one steady-state synchrony-breaking bifur-
cations on coupled cell systems and the lifting bifurcation problem. Given a
lift network, one of its quotient networks and a bifurcation problem on both
networks, the lifting bifurcation problem asks if all the bifurcation branches
associated with the lift network are lifted from the bifurcation branches as-
sociated with the quotient network. We restrict our attention to two types
of networks: regular networks and homogenous networks with asymmetric
inputs.

Given a homogenous network with asymmetric inputs, its fundamental
network reveals the hidden symmetries of the given network. Bifurcation
methods are available in the literature for fundamental networks. We give a
characterization of fundamental networks. We prove the existence of steady-
state bifurcation branches with maximal and submaximal synchrony in bi-
furcation problems on regular networks. We characterize the steady-state
bifurcation branches in bifurcation problems with a bifurcation condition
given by the network valency on homogeneous networks with asymmetric
inputs and we study the lifting bifurcation problem for those bifurcation
problems. We describe the steady-state bifurcation branches in bifurcation
problems on feed-forward networks and we address the respective lifting bi-
furcation problem.

In order to characterize fundamental networks, we study the relationship
between networks and their fundamental networks. We give conditions for
a network to be a quotient network of its fundamental network and for a
fundamental network to be a subnetwork of a network. Furthermore, we
relate architectural properties of networks and their fundamental networks.

vii



viii

Those properties are the size of cycles in a network and the maximal distance
between the cells and the cycles of a network.

In the study of codimension-one steady-state synchrony-breaking bifur-
cations of coupled cell systems associated to regular networks at a full-
synchrony equilibrium, it is known a similar result to the Equivariant Branch-
ing Lemma showing the generic existence of bifurcation branches with axial
synchrony. We extend this result to the existence of bifurcation branches
with maximal synchrony. We also give necessary and su�cient conditions
for the existence of bifurcation branches with submaximal synchrony. Those
conditions only depend on the network structure. Furthermore, we give
examples showing that the lattice structure of the synchrony subspaces is
not su�cient to determine which synchrony subspaces support a bifurcation
branch.

For any homogeneous network with asymmetric inputs, the Jacobian ma-
trix of any coupled cell system at a full-synchrony equilibrium has constant
row-sum. This constant is called the network valency. In order to charac-
terize the steady-state bifurcation branches in bifurcation problems with a
bifurcation condition given by the network valency, we prove a result similar
to the Perron�Frobenius Theorem. This results shows that the dimension of
the eigenspace associated with the network valency is equal to the number
of source components in the network. In the study of the lifting bifurcation
problem for the previous stated bifurcation problem, we see that increasing
the number of source components in a lift network is a necessary, but not
always su�cient, condition for the existence of a bifurcation branch on the
lift network which is not lifted from the bifurcation branches on the quotient
network. Nevertheless, there exists a class of lift networks and quotient net-
works such that every bifurcation branch associated with the lift network is
lifted from the quotient network if and only if the two networks have the
same number of source components.

Feed-forward networks are homogeneous networks with asymmetric in-
puts where the set of cells can be partition into layers. The restriction of
a feed-forward system to one of its synchrony subspaces may be, or not, a
feed-forward system. We focus on lifts of feed-forward networks that have
a feed-forward structure and we de�ne two types of those lifts called lifts
that create new layers and lifts inside a layer. We show that a backward
connected feed-forward lift of a feed-forward network can be decomposed
using those two types of lifts. In the study of codimension-one steady-state
bifurcations of feed-forward systems at a full-synchrony equilibrium, there
are two di�erent bifurcation conditions. One bifurcation condition is said to
be given by the internal dynamics and the other is said to be given by the
network valency. We describe the bifurcation branches for the bifurcation
problems given by any of the two bifurcation conditions. In the study of
the lifting bifurcation problem on feed-forward systems, we consider the two
types of lifts. For most feed-forward lifts, there exists a bifurcation branch
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associated with the lift network not lifted from the quotient network if and
only if the dimension of center subspace of the bifurcation problem increases
for the lift network. For lifts inside a layer, we show that the lifting bifurca-
tion problem does depend on the chosen feed-forward system. In particular,
we give conditions on feed-forward systems, such that, taking the bifurca-
tion condition given by the internal dynamics, certain lifts may have or not
branches of solutions that are not lifted from the quotient network.

Keywords: Coupled cell network, Coupled cell system, Fundamen-
tal Network, Network Connectivity, Ring Network, Steady-state bifurcation,
Synchrony-breaking bifurcation, Lifting bifurcation problem, Feed-forward
network.
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1. Introduction

This thesis focus on the study of synchrony�breaking bifurcations in coupled
cell systems. In the present introduction, we give an overview of the de�ni-
tions and terminology that are relevant for the work developed here. We also
describe the current state of the art for bifurcations in coupled cell systems
and some related areas. In the last part of this introduction, we describe the
main contributions of the four articles that constitute the thesis and how it
is organized.

1.1 Networks and coupled cell systems

We follow the formalism proposed by Golubitsky, Stewart, and collaborators
in [107, 76] for (coupled cell) networks and coupled cell systems. A network
is a directed graph where the cells and edges are labeled with types. The
directed graph can include self�loops and multiple edges from the same out-
put cell to the same input cell. Moreover, the type of cells and edges satisfy
the following conditions. If two edges have the same type then their starting
cells have the same type and their targeting cells also have the same type.
If two cells have the same type then there exists a bijection between the
input edges of each cell respecting the edges' types. This condition is also
called input equivalence in [107, 76] and we include it here in the de�nition
of network. An adjacency matrix is a square matrix of dimension equal to
the number of cells where its entries represent the number of connections.
Networks are de�ned by adjacency matrices corresponding to each type of
edge. Figure 1.1 is an example of a network. In general, di�erent arrows
represent the di�erent types of edges.

Coupled cell systems associated to a network are dynamical systems that
respect the network structure in the following way. First, a phase space is
assigned to each cell such that cells with the same type have the same phase
space. The network phase space is the product of the cells phase spaces.
A vector �eld on the network phase space is admissible for a network if
the component of the vector �eld corresponding to any cell depends on the
state of that cell and on the state of the cells with edges directed to it.
Moreover, the admissible vector �elds respect the cells and edges types. The
components of an admissible vector �eld corresponding to cells of the same

1
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1 2

3 4

Figure 1.1: A homogeneous network with four cells of the same type and
two types of edges. Di�erent arrowheads correspond to di�erent edge types.
Each cell receives exactly one input of each type.

type are determined by the same function. If a cell receives two edges of
the same type, then the component of the vector �eld corresponding to that
cell does not change by interchanging the state variable of the starting cells
of those two edges. A coupled cell system is a dynamical system given by
an admissible vector �eld. Discrete coupled cell systems can be de�ned in a
similar way, but they are not treated in this text.

For illustration purposes, a coupled cell system associated with the net-
work in Figure 1.1 has the following form

ẋ1 = f(x1, x1, x3)

ẋ2 = f(x2, x1, x1)

ẋ3 = f(x3, x1, x2)

ẋ4 = f(x4, x4, x3)

, (1.1)

where xi belongs to the phase space of cell i and f(xi, xj , xk) belongs to the
tangent space of the cell phase space at the point xi for 1 ≤ i, j, k ≤ 4.

Coupled cell systems have been used to describe real�world phenomena.
In applications, the studied objects and their dependencies can be naturally
represented using, respectively, the cells and edges of a network. Studied
applications include binocular rivalry [46, 47, 45], coupled oscillators [83],
homeostasis [74] and locomotion patterns [32, 96]. An overview of networks,
coupled cell systems, and their applications can be found in [103, 70, 71]. Def-
initions of networks and coupled cell systems have appeared in the literature
using combinatorial [51], categorical [39] and functional [26, 27] approaches.
In [10], an extension of networks and coupled cell systems to weighted di-
rected graphs is presented.

1.2 Balanced colorings, quotient networks and lift

networks

One of the main goals of the coupled cell networks theory is to connect prop-
erties of a network and dynamical properties of the associated coupled cell
systems. A striking example of that is the existence of subspaces which are
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�ow�invariant for every coupled cell system associated with a given network.
Those subspaces are called polydiagonal and are given by the equality of
some cell coordinates. Each polydiagonal subspace corresponds to a coloring
on the set of cells of the network where two cells share the same color only if
we have equality of the corresponding coordinates in that subspace. In the
other direction, each coloring of cells de�nes a unique polydiagonal subspace.
In [76], the authors prove that a polydiagonal subspace is �ow�invariant for
any coupled cell system if and only if the corresponding coloring is balanced.
Those �ow�invariant polydiagonal subspaces are called synchrony subspaces.
A coloring of cells is balanced if given any two cells with the same color there
exists a bijection between their input edges preserving the type of edges and
the color of the corresponding starting cells. A relevant fact is that, the
restriction of a coupled cell system associated with a network to a synchrony
subspace is a coupled cell system associated with a new network called the
quotient network. The quotient network is a smaller network obtained by
merging cells with the same color. In the other direction, splitting some cells
of the network leads to a larger network. In this case, the larger network
is said to be a lift of the original network when the splitting satis�es the
rules for the original network to be a quotient network of the lift. Trivially,
any solution of a coupled cell system associated with the quotient network
is lifted to a solution of a coupled cell system associated to the lift network.

Recall the network presented in Figure 1.1 and the form of the respective
coupled cell systems (1.1). Note that {x1 = x4} is �ow�invariant for any
system of the form (1.1) and so it is a synchrony subspace. The restriction
of (1.1) to {x1 = x4} is equivalent to the following system

ẋ1 = f(x1, x1, x3)

ẋ2 = f(x2, x1, x1)

ẋ3 = f(x3, x1, x2)

. (1.2)

The coloring associated to {x1 = x4} is given by the following three classes:
{1, 4}, {2} and {3}. Cells 1 and 4 receive an edge with one arrowhead from
themselves and an edge with two arrowheads from cell 3. Then this coloring
is balanced and the quotient network is obtained by merging cells 1 and 4.
See Figure 1.2. Furthermore, any coupled cell system associated with the
quotient network has the form given in (1.2). The network in Figure 1.1 is
said to be a lift of the network in Figure 1.2.

Balanced colorings and synchrony subspaces have received much atten-
tion. The set of synchrony subspaces associated with a given network forms
a �nite lattice, partially ordered by the inclusion. Since each synchrony
subspace corresponds to a unique balanced coloring, the set of balanced col-
orings is a lattice taking the re�nement relation, [104]. Di�erent authors
have developed methods to calculate those lattices, see [18, 80, 82, 6, 90, 3].

Aguiar and coworkers have studied the impact on the set of balanced col-
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Figure 1.2: Quotient network of the network in Figure 1.1 obtained by merg-
ing cells 1 and 4. In the quotient network, the merged cell is labeled by 1.
Note that in the network of Figure 1.1 cells 1 and 4 receive an edge with one
arrowhead from themselves, so the merged cell receives an edge with one ar-
rowhead from itself. Also cells 1 and 4 receive an edge with two arrowheads
from cell 3, and so the merged cell in the quotient network receives an edge
with two arrowheads from cell 3.

orings by some network operations such as join and coalescence [17], products
[7], addition and removing of cells and edges in a network [14] and the com-
plement of a network [9]. Also, the lattice of synchrony subspaces associated
with networks having a prescribed structure is known. This is the case for
grid networks with coupling to the nearest neighbors [112, 19, 20, 21, 42, 43]
and feed�forward networks, [11].

There exists an intrinsic relation between robust patterns of synchrony
of hyperbolic bounded solutions of coupled cell systems and balanced col-
orings of the network's cells, [108, 109, 65, 72]. The synchrony pattern of
a solution is the lower-dimensional polydiagonal subspace that contains this
solution. Given a hyperbolic equilibrium point or a hyperbolic periodic orbit
of a coupled cell system, any small perturbation of that coupled cell system
has a unique perturbed bounded solution associated to the given solution.
Consider perturbations of a coupled cell system that preserve the relation
with the same network. A pattern is robust if any perturbed solution of such
small perturbations of the coupled cell system has the same synchrony pat-
tern. In [108, 109, 65, 72], the authors prove that a hyperbolic equilibrium
point or a hyperbolic periodic orbit of a coupled cell system has a robust
pattern of synchrony if and only if the corresponding coloring is balanced.

1.3 Network �brations and symmetries

A network �bration from a network to another is given by a cell function
from the set of cells of the former network to the set of cells of the latter
and an edge function from the set of edges of the former network to the set
of edges of the latter. The cell and edge functions preserve the source cells
and target cells of edges, [31], that is the source (target) cell of an edge is
sent by the cell function to the source (respectively, target) cell of the edge
image by the edge function. Moreover, the cell and edge functions respect
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the types of cells and edges, respectively. Each network �bration induces a
phase space function from the phase space of the latter network to the phase
space of the former one. Furthermore, the phase space function conjugates
coupled cell systems associated to those networks [38].

It is known that the symmetries of a network have an impact at the
admissible vector �elds and the corresponding coupled cell systems. The
symmetries of a network correspond to the bijective network �brations from
a network to itself. The set of phase space functions given by those network
�brations forms a group action that commutes with any coupled cell system.
A dynamical system is called equivariant, under a group action, if it com-
mutes with that group action. The vast literature on equivariant dynamical
systems provides tools to understand coupled cell systems, see for example
[110, 67, 75, 69, 34, 52], and it is a source of inspiration for their study. For
example, it is known for equivariant dynamical systems that the spatiotem-
poral symmetries of periodic solutions are described by cyclic groups, see
[69]. For coupled cell systems, it is known that the robust phase�shifts of a
hyperbolic periodic orbit are given by the symmetries of a quotient network,
[66, 72]. Nevertheless, network symmetries do not explain every feature of
the dynamics of coupled cell systems. The natural �ow�invariant subspaces
of an equivariant system are the �xed point subspaces de�ned by the sub-
groups of the given group. Recall that the �xed point subspace de�ned by
a subgroup is the set of points �xed by the action of every element of that
subgroup. For network symmetries, the �xed point subspaces are polydiago-
nal subspaces. So every �xed point subspace associated to a subgroup of the
network symmetries is a synchrony subspace. However, for generic networks
there can be other synchrony subspaces that are not �xed point subspaces
of the network symmetries. In [62, 22, 23, 24], the authors present examples
of such networks.

In general, there are network �brations from a network to itself that are
not bijections but that also have an impact at the dynamical properties of
the coupled cell systems associated to that network. In [92], the authors
studied homogeneous networks with asymmetric inputs, i.e., networks where
every cell has the same type and each cell receives exactly one edge of each
type. For any such network, they prove that there exists a network, called
fundamental network, that reveals the hidden partial and full symmetries of
the original network. For illustration purposes, the fundamental network of
the network in Figure 1.2 is given in Figure 1.3. The fundamental network is
essentially the Cayley graph of a semigroup. The fundamental network has
a large degree of symmetries. This large degree of symmetries can improve
the understanding of the corresponding coupled cell systems.
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Figure 1.3: Fundamental network of the network in Figure 1.2. The funda-
mental network is a homogenous network with the same asymmetric inputs.

1.4 Coupled cell systems

Before we head to the main topic of this work, synchrony�breaking bifurca-
tions in coupled cell networks, we overview two topics of research in networks
and coupled cell systems.

Two non�identical networks can have equivalent coupled cell systems
and, in that case, the two networks are said to be dynamical equivalent. In
[44], the authors prove that the dynamical equivalence between two networks
only depends on the equivalence of the linear coupled cell systems of both
networks. A di�erent approach, more combinatorial and based on the inputs
and outputs sets of the networks, to study the dynamical equivalence between
networks is presented in [1, 2]. Two dynamical equivalent networks have the
same number of cells but the number of edges can vary. The network with
fewer edges inside a class of dynamical equivalent networks is called the
minimal network. In [5], the authors describe and give a method to obtain
the minimal network.

Coupled cell systems display some particular properties such as robust
heteroclinic networks, see for example [4]. Roughly speaking, a heteroclinic
network is a collection of equilibrium points (or other invariant sets) in
a dynamical system and trajectories of that dynamical system connecting
those equilibrium points. In general, heteroclinic networks do not persist
under small perturbations. However, heteroclinic networks can be robust
for equivariant and coupled cell systems. For example, methods to construct
heteroclinic networks using networks are presented in [53, 25, 54]. Given two
networks and respective coupled cell systems supporting robust heteroclinic
networks, the product of those two networks admits coupled cell systems
that robustly support the product of the given heteroclinic networks [8].

1.5 Bifurcation theory

Given a manifold X and a smooth family of vector �elds on that manifold,
F : X × Rp → TX, which depends on the parameter λ ∈ Rp, consider the
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following di�erential system

ẋ = F (x, λ), (1.3)

where x ∈ X, λ ∈ Rp and F (x, λ) ∈ TxX. A codimension�p bifurcation on
(1.3) occurs at λ0 ∈ Rp if for any neighborhood U of λ0 there exists λ1 ∈ U
such that the system (1.3) at λ0 is not topologically equivalent to the system
(1.3) at λ1. Two dynamical systems are topologically equivalent if there
exists a homeomorphism (a continuous function with a continuous inverse
function) mapping the trajectories of one dynamical system into trajectories
of the other system.

Here, we consider local bifurcations at a point (x0, λ0) and local topo-
logical equivalence which is the restriction of the topological equivalence to
a su�ciently small neighborhood of x0 in X. Using a local coordinate chart,
we assume that X = Rn for some n > 0, (x0, λ0) is the origin and

F : Rn × Rp → Rn.

We say that the system (1.3) is (locally) structurally stable at (x0, λ0) if
there is no local bifurcation at the point (x0, λ0), i.e., the system (1.3) at λ1
is locally topologically equivalent to the system (1.3) at λ0 for any λ1 in a
su�ciently small neighborhood of λ0.

If x0 is a regular point of F (x, λ0), i.e., F (x0, λ0) 6= 0, then the sys-
tem (1.3) is structurally stable at (x0, λ0), by the Tubular Flow Theorem
[95, Theorem 1.1]. Suppose that x0 is a singular point of F (x, λ0), i.e.,
F (x0, λ0) = 0 and x0 is an equilibrium point of (1.3) at λ0. We say that
the equilibrium point x0 is hyperbolic if the real part of every eigenvalue of
DF (x0, λ0) is not zero, where DF (x0, λ0) is the Jacobian matrix of F with
respect to x at the origin. By the Hartman�Grobman Theorem [95, Theo-
rem 4.1], we know that the system (1.3) is structurally stable at (x0, λ0), for
any hyperbolic equilibrium point x0 of (1.3) at λ0. In order to have a local
bifurcation, we need to have a non�hyperbolic equilibrium point x0 of (1.3)
at λ0.

Suppose now that x0 is a non�hyperbolic equilibrium point of (1.3) at λ0
and the parameter space is one dimensional, p = 1. For generic vector �elds
F (x, λ), we know that the eigenvalues of DF (x0, λ0) are simple [33]. So, in
general, DF (x0, λ0) has a zero eigenvalue or a conjugated pair of imaginary
eigenvalues. If DF (x0, λ0) has a zero eigenvalue, a generic system (1.3) has
a saddle�node (or fold) bifurcation at (x0, λ0), i.e., in one side of λ = 0
there are two equilibria points that merge at λ = 0 into x0 and there is no
equilibrium on the other side of λ = 0. See for example [111, Section 3.2]. If
DF (x0, λ0) has a pair of conjugated imaginary eigenvalues, then DF (x0, λ0)
is invertible. It follows from the Implicit Function Theorem that there exist
a neighborhood U of λ = 0 and a function z : U → X such that z(0) = 0
and z is the unique solution of

F (x, λ) = 0 (1.4)
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in a su�cient small neighborhood of the origin. Hence the number of equi-
librium points does not change when we vary the parameter λ. However,
a periodic orbit appears when we cross the bifurcation parameter λ = 0.
This is a well�known bifurcation called Hopf bifurcation, see, e.g., [111, Sec-
tion 3.2], [84, Section 3.5]. We say that the system (1.3) at (x0, λ0) has a
steady�state bifurcation if the number of equilibrium points in the system
(1.3) changes for any small neighborhood of (x0, λ0). Clearly, if the num-
ber of equilibrium points changes then the two systems are not topologically
equivalent. A steady�state bifurcation can only happen if DF (x0, λ0) is not
invertible. Understanding steady�state bifurcations in the system (1.3) at
(x0, λ0) is given by the solutions of the equation (1.4).

We brie�y describe some well�known methods in bifurcation theory. The
Lyapunov�Schmidt reduction reduces the dimension of the steady�state bi-
furcation equation given by (1.4), [67, Chapter VII]. Using the Lyapunov�
Schmidt reduction, we know that the solutions of (1.4) are in a one�to�one
correspondence with the solutions of a new equation,

g(y, λ) = 0, (1.5)

where g : Rk × Rp → Rk, and k is the dimension of the kernel of DF (0, 0).
The center manifold reduction also reduces the bifurcation problem to the
study of a �ow�invariant manifold that includes all trajectories which are
close to x0 at any time. This �ow�invariant manifold is called the center
manifold and it is tangent to the center subspace of DF (0, 0), the subspace
generated by the generalized eigenvectors of the eigenvalues with zero real
part. After reducing the bifurcation problem using one of the previous meth-
ods, it is desirable to determine the generic vector �elds up to topological
equivalence. Normal forms [91] and singularity theory [60] are two di�erent
methods to obtain the generic vector �elds. In normal forms, the Taylor
series of a vector �eld is simpli�ed up to some (arbitrary) degree using coor-
dinate changes close to the identity. Choosing a class of coordinate changes
and an appropriate Lie bracket, we can de�ne and calculate the normal form,
up to some degree, of a vector �eld. Next, we can truncate the vector �eld
to that degree and study the truncated system. However, it is not trivial to
see, and it is not always the case, that the truncated system is topologically
equivalent to the original system. In singularity theory, the vector �elds are
classi�ed according to their type of singularity in such a way that the vector
�elds of the �rst type are the most common, the vector �elds of the second
type are the most common vector �elds which are not of the �rst type, and
so on. In the beginning of this section, we looked at regular points which
are the most common points of a generic vector �eld, then we look to hy-
perbolic equilibrium points that are the most common non�regular points of
a generic vector �eld. The same idea is used in singularity theory and the
vector �elds are studied according to their type of singularity. In this way,
we can determine the generic vector �elds and how bifurcations can appear.
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1.6 Equivariant bifurcation

As noted before, the equivariant theory is a source of inspiration for the
study of coupled cell systems. In this section, we recall some well�known
results and techniques for bifurcations in equivariant systems. In the next
section, we see that some of those results and techniques have been adapted
to the study of bifurcations in coupled cell systems.

Given a �nite group action on a manifold, the symmetries of a point are
given by the elements of the group �xing that point. The set of those ele-
ments is a subgroup of the given group and it is called an isotropy subgroup.
A point has full symmetry if its isotropy subgroup is the complete group.
Up to conjugacy, the set of isotropy subgroups is a lattice, partially ordered
by inclusion. For any dynamical system equivariant under a group action,
the set of points �xed by a subgroup is a �ow�invariant subspace which is
called the �xed point subspace given by that subgroup. The set of �xed point
subspaces, up to conjugacy, of the isotropy subgroups is a lattice partially
ordered by inclusion.

Usually, the bifurcation point of an equivariant bifurcation is assumed to
have the full symmetry. One of the main questions in equivariant bifurcation
theory asks about the symmetries of the new bounded solutions, such as
equilibrium points and periodic orbits. Whenever the new solutions have less
symmetry than the bifurcation point, the bifurcation is said to be symmetry�
breaking. Those bifurcations have been extensively studied, see e.g. [75, 50,
34, 52].

One of the �rst results in symmetry�breaking bifurcations is the Equiv-
ariant Branching Lemma [35, 36]. Assume that there is a unique point with
full isotropy, which is the origin and that this point is the bifurcation point.
For isotropy subgroups with one�dimensional �xed point subspace, there are
generic bifurcations problems in equivariant systems that have solutions with
the symmetry of those isotropy subgroups. A non�trivial isotropy subgroup
is said to be maximal if it is not contained in any other isotropy subgroup
except the full group. The Equivariant Branching Lemma also holds for
maximal isotropy subgroups which have odd dimensional �xed point sub-
spaces. Moreover, it is known that some non�maximal isotropy subspaces
support symmetry�breaking bifurcations, [55, 58, 86, 85]. For generic Hopf
bifurcation in equivariant systems, there is an analogous result to the Equiv-
ariant Branching Lemma leading to the appearance of a symmetry�breaking
periodic orbit, [68].

The two reduction methods described above, Lyapunov�Schmidt reduc-
tion and center manifold reduction, have adaptations to equivariant systems.
The reduction obtained by those methods can preserve the symmetries of
the original system, [110, 34]. So it is usually assumed that one of those
two methods have been applied before the study of equivariant bifurcations.
Singularities of equivariant systems and equivariant unfolding theory have
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been studied, see e.g. [28, 67, 75]. The unfolding theory describes the generic
small perturbations of a dynamical system and it helps the understanding
of the possible bifurcations.

Bierstone [29] and Field [49] de�ne equivalent notions of transversality
for equivariant systems. A function is transverse to a submanifold at a point
if its evaluation at that point does not belong to that submanifold or the
linearization of the function together with the tangent submanifold gener-
ate the tangent manifold at that point. In the space of functions without
symmetries, the functions transverse to a submanifold are dense. This leads
to the fact that the set of solutions of (1.4) is a manifold. However, this is
not the case for equivariant functions. For example, it is well�known that
the generic bifurcations of equivariant systems with Z2�symmetry is a pitch-
fork bifurcation. In this case, the set of solutions of (1.4) is not a manifold.
Therefore the usual concept of transversality cannot be applied to equivari-
ant functions. The set of equivariant functions is a �nitely generated module
over the set of invariant functions. This fact is essential in both de�nitions
of transversality for equivariant systems. Those de�nitions lead to density
results on the set of equivariant functions similar to the ones established for
generic functions. Later, equivariant transversality prove to be useful in the
study of equivariant bifurcations [56, 57, 52].

Another line of research in equivariant systems is the equivariant degree
theory. Roughly speaking, the degree theory estimates the number of so-
lutions given by some equation. As in the case of transversality, the usual
degree theory cannot be applied to equivariant systems. An adaptation of
degree theory to equivariant functions can be found in [78, 79]. The estima-
tion of the number of solutions is useful in bifurcations, when proving the
existence of bifurcation branches on steady�state bifurcations.

1.7 Coupled cell bifurcations

We describe now some of the work that has been done concerning bifurcations
in coupled cell systems. As most of the work in the literature, we focus on
homogeneous networks, i.e., networks where there is only one type of cells.

Given a network and a choice of phase space, the synchrony of a point is
given by the balanced coloring corresponding to the lower-dimensional syn-
chrony subspace that contains that point. For homogeneous networks, the
diagonal subspace is always a synchrony subspace called the full�synchrony
subspace and the points on the diagonal are said to have full�synchrony.
Assume from now on that the bifurcation point has full�synchrony and that
the bifurcation problem has codimension�one. In bifurcations of coupled
cell systems at a full�synchrony point, new bounded solutions (equilibrium
points or periodic orbits) can have less synchrony than the bifurcation point,
i.e., they belong to a synchrony subspace bigger than the full�synchrony sub-
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space. Analogously to equivariant bifurcations, this phenomenon is called a
synchrony�breaking bifurcation. It is clear that the symmetries of a network
have direct consequences in the bifurcations of coupled cell systems, [63].

There exists an analogous result to the Equivariant Branching Lemma
for steady�state bifurcations in coupled cell systems with a bifurcation con-
dition given by a simple eigenvalue [61]. This result proves the existence of
synchrony�breaking bifurcations on coupled cell systems. The structure of
the network imposes restrictions on the bifurcation problems. In particular,
it can force the degeneracy of a steady�state bifurcation problem in coupled
cell systems to be arbitrary high [106, 105].

The structure of a network can also impose that the Jacobian matrix of
a generic coupled cell system at a full�synchrony equilibrium has a nilpotent
part. This leads to surprising features of the bifurcations occuring on coupled
cell systems. In particular, the bifurcation branches of a bifurcation problem
on coupled cell systems with a nilpotent part have an exceptional growth
rate, [62, 48, 64, 97, 59, 77]. This is the case for the bifurcations in coupled
cell systems associated with the feed�forward networks. The set of cells
in a feed�forward network can be partition into disjoint subsets: the edges
targeting a cell in a layer start in the previous layer, except for cells in
the �rst layer which only receive self�loops. For homogenous feed�forward
networks, the Jacobian matrix of any coupled cell system at a full�synchrony
equilibrium has a nilpotent part. The rank of the nilpotent part increases
with the number of layers. Furthermore, the exceptional growth rate of the
bifurcation branches increases with the number of layers.

The exhaustive study of regular networks with three cells and two inputs
edges for each cell can be found in [87]. A homogenous network is said to
be regular if there is exactly one type of cells and one type of edges. The
authors enumerate all such networks and study the steady�state and Hopf
bifurcations of the corresponding coupled cell systems. They �nd features
of equivariant bifurcation, such as transcritical and pitchfork bifurcations.
For some networks, those features can be explained by the network sym-
metries. However, this is not always the case. In [81], the author studies
network synchrony�breaking bifurcation when the adjacency matrix of the
network only has simple eigenvalues. Using the lattice of synchrony sub-
spaces, the author is able to characterize the synchrony subspaces that sup-
port a synchrony�breaking bifurcation.

Methods of bifurcation theory have been adapted to bifurcations in cou-
pled cell systems, in particular, for homogeneous networks with asymmetric
inputs, see [98, 99, 93]. A homogeneous network has asymmetric inputs if
every cell receives exactly one edge of each type. The edges of those net-
works can then be represented using functions between the set of cells with
one function for each type of edges. The coupled cell systems form a Lie al-
gebra, whenever their representative functions de�ne a monoid, [99]. In this
case, normal forms of coupled cell systems can be de�ned and computed.
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In [98], the authors prove that the Lyapunov�Schmidt reduction preserves
the symmetries of the network including the partial symmetries. They prove
this result for fundamental networks such that their representative functions
de�ne a monoid. Furthermore, the center manifold reduction of coupled cell
systems associated with those networks is studied in [93]. They show that
the center manifold reduction can be made such that it also preserves the
partial and total symmetries of the network.

Since coupled cell systems respect a prescribed network structure, there
are some changes of coordinates that destroy the relationship between the
coupled cell system and the network. In order to study singularities in cou-
pled cell systems, it is vital to recognize the changes of coordinates that
preserve this relation. In [73], the authors describe those changes of coor-
dinates for heterogeneous networks � a network is said to be heterogeneous
if each cell and each edge have a di�erent type. Using the symmetries of
a network and/or of its quotient networks, a degree theory for coupled cell
systems is presented in [100].

Given a (lift) network and a quotient network of it, any solution of a
quotient coupled cell system lifts to a solution of the respective coupled cell
system associated to the (lifted) network. In the same way, the bifurca-
tion branches of a bifurcation problem in a quotient coupled cell system lift
to bifurcation branches of the respective bifurcation problem in the lifted
network. However, there are networks such that some bifurcation branches
associated with the lift network are not lifted from the branches associated
to the quotient network. In [12, 13], the authors gave such examples. The
lifting bifurcation problem asks if every bifurcation branch associated to a
lift network is lifted from a bifurcation branch associated to the quotient net-
work. This problem is related to the classi�cation of synchrony subspaces
that support a synchrony�breaking bifurcation in the following sense. If
there exists a synchrony subspace that contains every bifurcation branch as-
sociated to the lift network, then every branch associated to the lift network
is lifted from a branch associated to the quotient network associated to that
synchrony subspace.

If the dimensions of the center subspaces associated with the bifurca-
tion problem in the lift network and the quotient network are the same,
then every branch on the lift network is lifted from the quotient network.
This observation motivates the comparison between the spectrum of coupled
cell systems associated with the quotient and the lift networks. In [40], the
authors address this issue for a class of networks and lifts. Moreover, the lift-
ing bifurcation problem is studied in [89, 94]. In [41], the authors study the
decomposition of network lifts. In some cases there exists an intermediate
network between a lift network and a quotient network such that this inter-
mediate network is a quotient network of the lift network and a lift network
of the quotient network. In those cases, the lift network is obtained by the
composition of the lift from the quotient network to the intermediate net-
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work and the lift from the intermediate network to the lift network. A lift is
said to be direct if there is no such intermediate network. In [41], the authors
characterize the direct lifts and how to decompose network lifts. Moreover,
they show how this decomposition can be used to compare spectrums.

1.8 Outline and main contributions

Here, we give an outline and the main contributions of this thesis which
consists of four research articles.

The main focus of this thesis is the study of codimension�one steady�
state synchrony breaking bifurcations on coupled cell systems. In particular,
we aim to understand the relations between the network structure and those
bifurcations, and the lifting bifurcation problem. We restrict our attention
to homogeneous networks.

For regular networks, we study codimension�one steady�state bifurca-
tions in maximal and submaximal synchrony subspaces. This leads to a gen-
eralization of one of the results obtained in [61]. For homogeneous networks
with asymmetric inputs, there exists the concept of fundamental network.
Moreover, bifurcation methods for applying to those networks can be found
in the literature [98, 99, 93]. We give a characterization of fundamental net-
works. Moreover, we study the codimension�one steady�state bifurcations
and the lifting bifurcation problem on coupled cell systems corresponding
to homogeneous networks with asymmetric inputs and the bifurcation con-
dition given by the network valency. We also study the codimension�one
steady�state bifurcation and the lifting bifurcation problem on feed�forward
systems.

This thesis is organized as follows. In Chapter 2, the accepted version for
publication of the paper �Characterization of fundamental networks� [15] is
reproduced. Chapter 3 is the reproduction of the published paper �Synchrony
branching lemma for regular networks� [101]. Chapter 4 is the submitted ver-
sion of the article �The steady�state lifting bifurcation problem associated
with the valency on networks� [16]. In Chapter 5, we reproduce the sub-
mitted version of the paper �The lifting bifurcation problem on feed�forward
networks� [102]. Finally, Chapter 6 includes a short discussion of the results
obtained in this work and some directions of research.

Characterization of fundamental networks

We consider homogeneous networks with asymmetric inputs. In [92], the
authors de�ne the fundamental network of a given network.

In this paper, we study the relations between networks and their fun-
damental networks. We de�ne two properties on networks: backward con-
nectivity and transitivity. A network is backward connected if there exists
a cell that has a backward walk to any other cell. A network is transitive
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if there is a cell such that any cell is the evaluation at the former cell of a
self��bration. We show that a backward connected network is a quotient
network of its fundamental network. We also prove that the fundamental
network of a transitive network is a subnetwork of it. Hence, a network is
fundamental if and only if it is backward connected and transitive (Theo-
rem 2.5.16). Moreover, the construction of fundamental networks preserves
the quotient relation between networks (Proposition 2.5.2). The construc-
tion of fundamental networks transforms the subnetwork relation into the
quotient relation (Proposition 2.5.6).

Two important properties of networks are the size of their cycles and the
distance of their cells to a cycle. In [59, 89], the authors study the relation
between bifurcations on coupled cell systems and those two properties. For
a homogeneous network with asymmetric inputs, we consider the networks
given by the restriction of that network to each type of edges. The maximal
distances between any cell and a cycle in a restricted network and in the re-
striction of its fundamental network are equal (Proposition 2.7.2). Moreover,
the size of the cycles on the restricted fundamental network is given by the
least common multiple of the size of some cycles on the restricted network
(Proposition 2.7.4).

Synchrony branching lemma for regular networks

We consider regular networks, i.e., homogenenous networks with one type
of cells and one type of edges. We assume that the cells phase space is the
real line and study codimension�one steady�state bifurcations on coupled
cell systems at a full�synchrony equilibrium. The Jacobian matrix of such
a coupled cell system at a full�synchrony equilibrium is determined by the
adjacency matrix of the network. Thus the eigenvalues of the Jacobian ma-
trix are characterized directly from the eigenvalues of the adjacency matrix,
including their multiplicities. For axial synchrony subspaces, Golubitsky and
Lauterbach prove a result analogous to the Equivariant Branching Lemma
in [61]. A synchrony subspace is axial for an eigenvalue if the intersection of
that synchrony subspace and the correspoding eigenspace is one dimensional.
They prove that the bifurcation of coupled cell systems with a bifurcation
condition given by such eigenvalue leads to a bifurcation branch inside that
axial synchrony subspace. For a network such that the eigenvalues of its ad-
jacency matrix are all simple, Kamei gives a classi�cation of the synchrony
subspaces which support a synchrony�breaking bifurcation [81]. In order to
obtain this result, the author uses the previous result and the lattice struc-
ture of the synchrony subspaces.

We generalize the previous result of Golubitsky and Lauterbach to maxi-
mal synchrony subspaces where the bifurcation condition is given by a semi�
simple eigenvalue. A synchrony subspace is maximal for an eigenvalue if
the intersection of that synchrony subspace with the respective eigenspace
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is not trivial and the intersection of any synchrony subspace contained in
that synchrony subspace with that eigenspace is trivial. We prove that a
maximal synchrony subspace supports a synchrony�breaking bifurcation if
the previous intersection has odd dimension (Theorem 3.4.1). We proceed to
the study of synchrony�breaking bifurcations for submaximal synchrony sub-
spaces. A non�maximal synchrony subspace is submaximal for an eigenvalue
if the intersection of that synchrony subspace with the respective eigenspace
is not trivial and the intersection of that eigenspace with any smaller syn-
chrony subspace is at most one dimensional. When the intersection of a
submaximal synchrony subspace with the eigenspace is two dimensional, we
give necessary and su�cient conditions for the existence of a bifurcation
branch with exactly that submaximal synchrony (Theorem 3.5.2). Those
conditions only depend on the network. Moreover, we present examples of
networks with the same lattice structure but di�erent synchrony�breaking
subspaces.

In order to prove the previous results, we use a well�known technique
of coordinates changes called blow�up. For the existence of bifurcation
branches in maximal synchrony subspaces, we use a standard argument in
degree theory. In the study of submaximal synchrony subspaces, we obtain
the mentioned conditions by direct computations.

The steady�state lifting bifurcation problem associated with

the valency on networks

We consider homogeneous networks with asymmetric inputs and we assume
that the cells phase space is the real line. For such networks, the Jacobian
matrix of any coupled cell system at a full�synchrony equilibrium has con-
stant row�sum. This constant is called the valency of the network and it is an
eigenvalue of the Jacobian matrix. We study codimension�one steady�state
bifurcations on coupled cell systems at a full�synchrony equilibrium where
the bifurcation condition is given by the network valency.

In graph theory, the spectrum of adjacency matrices is an active area of
study, see e.g. [30, 37, 88]. A graph is said to be regular if the number of
edges targeting each cell is constant. The number of edges targeting a cell
is called the valency of the graph. It is well�known that the valency of a
regular graph is the adjacency matrix eigenvalue with bigger norm, Perron�
Frobenious Theorem [30]. Moreover, the eigenspace associated to the graph
valency is also described in that result.

In the �rst part of this paper, we describe the bifurcation branches of
coupled cell systems when the bifurcation condition is given by the network
valency (Proposition 4.5.7). In order to do that, we prove a similar result to
the Perron�Frobenious Theorem which describes the eigenspace associated
to the network valency of the Jacobian matrix of coupled cell systems at
a full�synchrony equilibrium. The dimension of this eigenspace is equal to
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the number of source components in the network. A source component is a
strongly connected component of the network whose cells receive edges only
from cells in this component. Using the description of the eigenspace associ-
ated to the network valency, we describe the bifurcation branches of coupled
cell systems for the bifurcation condition given by the network valency.

In the second part, we study the lifting bifurcation problem of coupled
cell systems with a bifurcation condition given by the network valency. Using
the previous description of the bifurcation branches, we prove the following
results. If the lift network and the quotient network have the same number
of source components, then every bifurcation branch associated to the lift
network is lifted from a bifurcation branch associated to the quotient network
(Proposition 4.6.1). If the quotient network has one source component and
the lift network has more, then there exists a bifurcation branch for the lift
network which is not lifted from the bifurcation branches for the quotient
network. We present two examples of lift networks that have more source
components than their quotient networks and such that every bifurcation
branch associated to the lift networks is lifted from the respective quotient
network (Examples 4.6.3 and 4.6.4). In those examples, the lift network is
not backward connected or the quotient network is not transitive. Supposing
that the lift is backward connected and the quotient network is transitive,
we prove that every bifurcation branch for the lift network is lifted from the
quotient network if and only if the two networks have the same number of
source components (Theorem 4.6.5).

The lifting bifurcation problem on feed�forward networks

We consider homogeneous networks with asymmetric inputs and a feed�
forward structure. In feed�forward networks, the set of cells can be parti-
tioned into layers such that every edge targeting a cell in a layer starts in a
cell of the previous layer, excluding the cells in the �rst layer that only have
self�loops. We assume again that every cell phase space is the real line. We
study codimension�one steady�state bifurcations on feed�forward systems at
a full�synchrony equilibrium and the respective lifting bifurcation problem.

The quotient network of a feed�forward network may be, or not, a feed�
forward network. We introduce two types of lifts in feed�forward networks
such that the lift network is a feed�forward network: A lift that creates new
layers is the lift obtained by splitting the �rst layer into a �xed number of
consecutive layers; A lift inside a layer is given by splitting some cells in-
side that layer. Assuming that the lift network of a feed�forward network
is again a feed�forward network and backward connected, we show that the
lift network can be obtained by the composition of those two lifts (Proposi-
tion 5.3.10).

The feed�forward structure of the network forces the Jacobian matrix
of a feed�forward system at a full�synchrony equilibrium to have a lower
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triangular block form upon appropriate ordering of cells. Thus the Jacobian
matrix has only two eigenvalues that we call the valency and the inter-
nal dynamics. We study the codimension�one steady�state bifurcations on
feed�forward systems at a full�synchrony equilibrium where the bifurcation
condition is given by the valency or the internal dynamics. In [48, 64, 97],
the authors study bifurcations on a certain class of feed�forward systems
where the bifurcation condition is given by the internal dynamics. We ex-
tend those studies to include any feed�forward network. In particular, we
give a full characterization of the bifurcation branches using their growth
rates (square�root�orders) and their slopes (Proposition 5.6.6).

In the last part, we address the lifting bifurcation problem when the lift
and quotient networks are feed�forward networks. Given the decomposition
of feed�forward lifts into lifts that create new layers and lifts inside a layer,
we restrict our analysis to those two types of lifts. The dimension of the
center subspace does not increase in the following two cases: (i) when the
bifurcation condition given by the valency, for lifts that create new layers and
lifts inside a layer, except the �rst layer; (ii) when the bifurcation condition
given by the internal dynamics, for lifts inside the �rst layer. In those cases,
it is immediate that the bifurcation branches for the lift network are lifted
from the quotient network. For backward connected lifts inside the �rst layer
and feed�forward systems with a bifurcation condition given by the valency,
there exists a bifurcation branch for the lift network which is not lifted from
the quotient network (Proposition 5.7.6). For lifts that create new layers
and feed�forward systems with a bifurcation condition given by the internal
dynamics, there exists a bifurcation branch for the lift network which is not
lifted from the quotient network (Proposition 5.7.10). More surprising is the
fact that the lifting bifurcation problem where the bifurcation condition is
given by the internal dynamics and the lift is inside a layer depends on the
chosen feed�forward system. In this case, we give a condition on the feed�
forward systems for any bifurcation branch associated with the lift network
be lifted from the quotient network (Propositions 5.7.18 and 5.7.20). More-
over, we also obtain conditions for a bifurcation branch associated to the lift
network not to be lifted from the quotient network (Proposition 5.7.16).
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Abstract

In the framework of coupled cell systems, a coupled cell network describes
graphically the dynamical dependencies between individual dynamical sys-
tems, the cells. The fundamental network of a network reveals the hidden
symmetries of that network. Subspaces de�ned by equalities of coordinates
which are �ow-invariant for any coupled cell system consistent with a net-
work structure are called the network synchrony subspaces. Moreover, for
every synchrony subspace, each network admissible system restricted to that
subspace is a dynamical system consistent with a smaller network, called
a quotient network. We characterize networks such that: the network is a
subnetwork of its fundamental network, and the network is a fundamental
network. Moreover, we prove that the fundamental network construction
preserves the quotient relation and it transforms the subnetwork relation
into the quotient relation. The size of cycles in a network and the distance
of a cell to a cycle are two important properties concerning the description
of the network architecture. In this paper, we relate these two architectural
properties in a network and its fundamental network.
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2.1 Introduction

Coupled cell networks describe in�uences between cells. A network is rep-
resented by a graph where each cell and each edge have a speci�c type. A
cell type de�nes the nature of a cell, and an edge type de�nes the nature
of the in�uence. A dynamical system that respects the network structure is
a coupled cell system admissible by the network. Stewart, Golubitsky and
Pivato [13], and Golubitsky, Stewart and Török [6] formalized the concepts
of coupled cell network and coupled cell system. They showed that there
exists an intrinsic relation between coupled cell systems and coupled cell
networks, proving in particular, that robust patterns of synchrony of cells
are in one-to-one correspondence to balanced colorings of cells in the network
� see [13, theorem 6.5]. Coupled cell networks and coupled cell systems have
been addressed, for example, from the bifurcation point of view, [1, 5, 7, 8].

Recently, Rink and Sanders [11, 12] and Nijholt, Rink and Sanders [9]
developed some dynamical techniques for homogenous networks with asym-
metric inputs, i.e., networks where all cells have the same type and each cell
receives only one edge of each type. When the network has a semi-group
structure, Rink and Sanders in [12] have calculated normal forms of coupled
cell systems and in [11] have used the hidden symmetries of the network to
derive Lyapunov-Schmidt reduction that preserves hidden symmetries. In
[9], Nijholt, Rink and Sanders have introduced the concept of fundamental
network which reveals the hidden symmetries of a network. A fundamental
network is a Cayley Graph of a semi-group. The dynamics associated to a
fundamental network can be studied using the revealed hidden symmetries.
Moreover, the dynamics associated to a network can be derived from the
dynamics associated to its fundamental network, [11, theorem 10.1].

The one-to-one correspondence between balanced colorings and synchrony
subspaces leads to the de�nition of quotient network, such that every dynam-
ics associated to a quotient network is the restriction to a synchrony subspace
of the dynamics associated to the original network. A subnetwork of a given
network is a network whose set of cells is a subset of the cells of the given
network and the respective incoming edges, such that the cells are not in-
�uenced by any cell outside the subnetwork. Thus, the dynamics associated
to the cells in a subnetwork is independent of the dynamics associated to
the other cells. DeVille and Lerman [4] highlighted the concepts of quotient
network and subnetwork using network �brations, i.e., functions between
networks that respect their structure. In particular, they showed that every
surjective network �bration de�nes a quotient network and every injective
network �bration de�nes a subnetwork (� 2.4).

In this work, we will focus on the relation between a homogenous net-
work and its fundamental network. The work is divided in two independent
parts. In the �rst part, we show that the fundamental network construc-
tion preserves the quotient network relation and transforms the subnetwork
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relation into the quotient network relation (� 2.5). We reformulate the char-
acterization done by Nijholt et al. [9] of which networks are a quotient of
its fundamental network (� 2.5.1). Moreover, we characterize the networks
such that: the network is a subnetwork of its fundamental network (� 2.5.2),
and the network is a fundamental network (� 2.5.3). In order to do that, we
introduce the properties of backward connectivity and transitivity for a cell.
The backward connectedness for a cell means that we can reach that cell
from any other cell in the network. This signi�es that the dynamics associ-
ated to that cell is, directly or indirectly, a�ected by the dynamics associated
to every other cell in the network. The transitivity for a cell corresponds to
the existence of network �brations pointing that cell to any other cell. This
property is similar to the vertex-transitivity used in the characterization of
Cayley-Graphs of groups [2, �16]. The vertex-transitivity is the ability of
interchanging any two nodes using a bijective �bration, which reveals the
symmetries of a graph.

In the second part, we relate the architecture of a network and of its
fundamental network. In particular, we study two concepts of a network's
architecture: cycles in the network and the distance of cells to a cycle (� 2.6).
We denote by rings the cycles in the network involving only one edge type,
and by depth the maximal distance of any cell to a ring. Ring networks
have been studied, for example, in Ganbat [5] and Moreira [8]. We start by
looking at networks having a group structure (� 2.7). Then we show that a
network and its fundamental network have equal depth (� 2.7.1), and that
the size of the rings in a fundamental network is a (least common) multiple
of the size of some network rings (� 2.7.2). Last, we describe the architecture
of the fundamental networks of networks that have only one edge type.

The text is organized as follows. Sections 2.2, 2.3 and 2.4 review the con-
cepts of coupled cell networks, fundamental networks and network �brations,
respectively. Section 2.5 characterizes fundamental networks. Section 2.6 de-
�nes rings and depth of a network. Finally, � 2.7 relates rings and depth of
a network and its fundamental network.

2.2 Coupled cell networks

In this section, we recall a few facts concerning coupled cell networks follow-
ing [6, 13]. We also introduce the notion of backward connected network.

A directed graph is a tuple G = (C,E, s, t), where c ∈ C is a cell and
e ∈ E is a directed edge from the source cell, s(e), to the target cell, t(e).
We assume that the set of cells and the set of edges are �nite. The input set
of a cell c, denoted by I(c), is the set of edges that target c. Following [6,
de�nition 2.1.] and imposing that cells of the same type are input equivalent
we de�ne (coupled cell) network.

De�nition 2.2.1. A (coupled cell) network N = (G,∼C ,∼E) is a directed
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graph, G, together with two equivalence relations: one on the set of cells,
∼C , and another on the set of edges, ∼E . The cell type of a cell is its ∼C-
equivalence class and the edge type of an edge is its ∼E-equivalence class. It
is assumed that:
(i) edges of the same type have source cells of the same type and target cells
of the same type;
(ii) cells of the same type are input equivalent. That is, if two cells have the
same cell type, then there is an edge type preserving bijection between their
input sets. ♦

We say that a network is a homogeneous network whenever there is only
one cell type. A network is a homogeneous network with asymmetric inputs

if each cell receives exactly one edge of each edge type. We will focus our
interest in homogeneous networks with asymmetric inputs.

In [11], Rink and Sanders pointed out that a homogeneous network with
asymmetric inputs can be represented by a set of functions σi : C → C, for
each edge type i, such that there is an edge with type i from σi(c) to c. We
write σ = [a1 . . . an] for the function σ : {1, . . . , n} → {1, . . . ,m} such that
σ(j) = aj , for j = 1, . . . , n. For examples of homogeneous networks with
asymmetric inputs see �gure 2.1, where distinct edge types are represented
by di�erent symbols.

1 2

34

(a)

1 2

3 4

(b)

1

2 3 4

5

(c)

Figure 2.1: Homogeneous networks with asymmetric inputs: (a) network
with one edge type represented by the function σ1 = [2 1 2 1]; (b) network
with two edge types, where the solid edges are represented by σ1 = [1 1 1 2]
and the dashed edges are represented by σ2 = [2 2 1 2]; (c) network repre-
sented by the functions σ1 = [1 2 2 5 4], for solid edges, and σ2 = [2 1 4 4 5],
for dashed edges. The network (c) is backward connected, and the networks
(a) and (b) are not.

A directed path in a network N is a sequence (c0, c1, . . . , cm−1, cm) of cells
in N such that for every j = 1, . . . ,m there is an edge in N from cj−1 to cj .

Remark 2.2.2. Compositions of representative functions de�ne directed
paths in the network. Let N be a homogenous network with asymmetric
inputs represented by the functions (σi)

k
i=1. There exists a directed path
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from cell c to cell d if and only if there are 1 ≤ j1, . . . , jm ≤ k such that

σjm ◦ · · · ◦ σj1(d) = c. ♦

De�nition 2.2.3. We say that a network N is backward connected for a

cell c if for any cell c′ 6= c there exists a directed path between c′ and c.
The network N is backward connected if it is backward connected for some
cell. ♦

Example 2.2.4. Consider the networks in �gure 2.1. For the network in
�gure 2.1(a), there is no directed path from cell 4 to cells 1, 2 and 3, neither
from cell 3 to cells 1, 2 and 4. Thus the network is not backward connected.
Similarly, we see that the network in �gure 2.1(b) is not backward connected.
Now, consider the network in �gure 2.1(c), for each cell 1, 2, 4 and 5 there is
a directed path to cell 3 starting at that cell. Thus, the network is backward
connected for cell 3. ♦

Following [9], the input network for a cell of a network contains the cells
that a�ect, directly or indirectly, that cell. The input network for c ∈ C,
denoted by N(c), is the network with set of cells C(c) and set of edges E(c),
where

C(c) = {c} ∪
{
c′ ∈ C | exists a directed path in N from c′ to c

}
,

E(c) =
{
e ∈ E | t(e) ∈ C(c)

}
.

Observe that every input network for a cell is backward connected for
that cell. See �gure 2.2 for an example.

1 2

Figure 2.2: Input network of the network in �gure 2.1(c) for cell 1 (and for
cell 2). It is backward connected for cell 1 (and for cell 2).

2.3 Fundamental networks

In this section, we recall the de�nition of fundamental network of a ho-
mogenous network with asymmetric inputs introduced by Nijholt et al. [9].
We present some examples of fundamental networks and remark that every
fundamental network is backward connected. The identity function in C is
denoted by IdC , and we omit the subscript when it is clear from the context.

De�nition 2.3.1 ([9, de�nition 6.2]). Let N be a homogeneous network
with asymmetric inputs represented by the functions (σi : C → C)ki=1. The
fundamental network of N is the network Ñ where the set of cells, C̃, is
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the semi-group generated by Id and (σi)
k
i=1, and Ñ is represented by the

functions (
σ̃i : C̃ → C̃

)k
i=1

,

de�ned by σ̃i(c̃) = σi ◦ c̃, for c̃ ∈ C̃ and i = 1, . . . , k. ♦

Example 2.3.2. Consider the network in �gure 2.1(a). This network is
represented by the function σ1 = [2 1 2 1]. Note that σ31 = σ1, and the
semi-group generated by σ1 and Id is

C̃ =
{
Id, σ1, σ

2
1

}
.

The representative function, σ̃1, of the fundamental network is obtained from
the compositions of σ1 with each element of C̃: σ̃(σ21) = σ1 and σ̃(σj1) =
σj+1, when j = 0, 1. The fundamental network is represented graphically in
�gure 2.3(a). ♦

Figure 2.3 displays the fundamental networks of the networks in �g-
ures 2.1 and 2.2. Note that all the fundamental networks in �gure 2.3 are
backward connected for Id.

Id

σ1 σ21

(a)

σ21

σ2 Id σ1

σ22

(b)

6 1

7 2 3 4 8

95

(c)

Id

σ2

(d)

Figure 2.3: Fundamental networks of the networks in �gure 2.1(a), (b), (c)
and �gure 2.2, respectively. The cells 1, . . . , 9 in (c) correspond to the func-
tions σ2 ◦ σ1, σ1, Id, σ2, σ1 ◦ σ2, σ2 ◦ σ21, σ21, σ22, σ1 ◦ σ22, respectively. In
� 2.4, we see that the fundamental network in: (a) is a quotient network
and a subnetwork of the network in �gure 2.1(a); (b) is neither a lift nor a
quotient network of the network in �gure 2.1(b); (c) is a lift of the network
in �gure 2.1(c); (d) is equal to the network in �gure 2.2.

Proposition 2.3.3. Every fundamental network of a homogenous network

with asymmetric inputs is backward connected for Id.
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Proof. Let N be a homogenous network with asymmetric inputs represented
by (σi)

k
i=1 and Ñ its fundamental network. If c̃ ∈ C̃, then c̃ = σl1 ◦ · · · ◦ σlm ,

where 1 ≤ li ≤ k, and

σ̃l1 ◦ · · · ◦ σ̃lm(Id) = σl1 ◦ · · · ◦ σlm ◦ Id = c̃.

Hence Ñ is backward connected for Id.

2.4 Network �brations

In this section, we recall the de�nition and some properties of network �-
brations. We introduce a notion of transitivity and we recall the de�nitions
of quotient network and subnetwork. Moreover, we highlight the relations
of quotient network and subnetwork with surjective and injective network
�brations, respectively.

Roughly speaking, a graph �bration is a function between graphs that
preserves the orientation of the edges and the number of input edges. Pre-
cisely, let G = (C,E, s, t) and G′ = (C ′, E′, s′, t′) be two graphs. A function
ϕ : G→ G′ is a graph �bration if ϕ(s(e)) = s′(ϕ(e)), ϕ(t(e)) = t′(ϕ(e)) and
ϕ|I(c) : I(c)→ I(ϕ(c)) is a bijection, for every c ∈ C and e ∈ E.

A network �bration between networks is then de�ned as a graph �bration
preserving the cell types and the edge types:

De�nition 2.4.1 ([4, de�nition 4.1.1]). Consider two networks N = (G,∼C
,∼E) and N ′ = (G′,∼C ,∼E). A network �bration ϕ : N → N ′ is a graph
�bration between G and G′ such that c ∼C ϕ(c) and e ∼E ϕ(e).

We say that N and N ′ are isomorphic, if there is a bijective network
�bration between N and N ′. ♦

We do not distinguish isomorphic networks and we will say that two
networks are the same if they are isomorphic.

Example 2.4.2. Let N be the network in �gure 2.1(a). Denote an edge of N
with source s and target t by (s, t). Consider the function ϕ : N → N such
that ϕ(1) = 1, ϕ(2) = ϕ(4) = 2 and ϕ(3) = 3, and ϕ((1, 2)) = ϕ((1, 4)) =
(1, 2), ϕ((2, 1)) = (2, 1) and ϕ((2, 3)) = (2, 3). The function ϕ is a network
�bration. ♦

In the case of homogeneous networks with asymmetric inputs, the net-
work �brations are characterized by the following property.

Proposition 2.4.3 ([9, proposition 5.3]). Let N and N ′ be homogeneous

networks with asymmetric inputs with sets of cells C and C ′, and represented

by the functions (σi)
k
i=1 and (σ′i)

k
i=1, respectively. The function ϕ : N → N ′

is a network �bration if and only if

ϕ|C ◦ σi = σ′i ◦ ϕ|C , i = 1, . . . , k.
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Example 2.4.4. Recall the network N in �gure 2.1(a) represented by the
function σ1 = [2 1 2 1]. Consider the network �bration, given in exam-
ple 2.4.2, ϕ : N → N such that ϕ = [1 2 3 2]. Observe that ϕ ◦ σ1 =
[2 1 2 1] = σ1 ◦ ϕ. ♦

A network �bration from a network which is backward connected for a
cell c is uniquely determined by the evaluation of the network �bration at
cell c.

Proposition 2.4.5. Let A be a homogeneous network with asymmetric in-

puts and φ : A → B a network �bration. If A is backward connected for c,
then the network �bration is uniquely determined by φ(c).

Proof. Let A be a homogeneous network with asymmetric inputs and φ :
A→ B a network �bration. Then B is a homogeneous network with asym-
metric inputs and has the same edge types of A. Suppose that A and B

are represented by the functions
(
σ1i
)k
i=1

and
(
σ2i
)k
i=1

, respectively, and A
is backward connected for c. Then for every cell d 6= c in A there are
σ1i1 , . . . , σ

1
im

with 1 ≤ i1, . . . , im ≤ k such that d = σ1i1 ◦ · · · ◦ σ
1
im

(c). By
proposition 2.4.3, we know that φ ◦ σ1i = σ2i ◦ φ, for 1 ≤ i ≤ k. Then, for
every cell d 6= c in A,

φ(d) = φ ◦ σ1i1 ◦ · · · ◦ σ
1
im(c) = σ2i1 ◦ · · · ◦ σ

2
im ◦ φ(c).

In the context of graphs, vertex-transitivity is the ability of interchanging
two cells of a graph using a bijective graph �bration. The vertex-transitivity
reveals symmetries in a graph and it was used in the characterization of
Cayley graphs of groups, see [2, �16]. Here, we introduce a weaker version of
transitivity that will play a similar role in the characterization of fundamental
networks.

De�nition 2.4.6. Let N be a homogenous network with asymmetric inputs
and c a cell in N . We say that N is transitive for c if for every cell d in N ,
there is a network �bration φd : N → N such that φd(c) = d. We call the
network N transitive, if it is transitive for some cell. ♦

Example 2.4.7. Consider the networks in �gure 2.1. For the network in
�gure 2.1(a), we have the following four network �brations from the network
to itself: φ1 = [1 2 1 2], φ2 = [2 1 2 1], φ3 = [1 2 3 4], and φ4 = [2 1 4 3].
Then the network is transitive for cell 3 (and for cell 4). For the network in
�gure 2.1(b), there is only one network �bration from the network to itself,
the identity network �bration. Thus the network is not transitive. ♦

2.4.1 Surjective network �brations

We recall now the de�nition of quotient networks using balanced colorings
[6, 13] and establish then their relation with surjective network �brations,
[3, 4].
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A coloring on the set of cells of a network de�nes an equivalence relation
on those cells. Following [6, 13], a coloring is balanced if for any two cells
with the same color there is an edge type preserving bijection between the
corresponding input sets which also preserves the color of the source cells.

Each balanced coloring de�nes a quotient network, see [6, �5]. The quo-
tient network of a network with respect to a given balanced coloring ./, is
the network where the set of equivalence classes of the coloring, [c]./, is the
set of cells and there is an edge of type i from [c]./ to [c′]./, for each edge of
type i from a cell in the class [c]./ to c′. We say that a network L is a lift of
N , if N is a quotient network of L.

Example 2.4.8. Let N be the network in �gure 2.1(a) and Ñ its funda-
mental network displayed in �gure 2.3(a). The coloring on the set of cells
of N with classes {1, 3}, {2} and {4} is balanced because cells 1 and 3 re-
ceive, each, an edge from cell 2. The quotient network of N with respect to
this balanced coloring is Ñ . Hence the fundamental network is a quotient
network. ♦

Example 2.4.9. The network in �gure 2.1(c) is a quotient network of its
fundamental network displayed in �gure 2.3(c) with respect to the balanced
coloring with classes {1, 6}, {2, 7}, {4, 8}, {5, 9} and {3}. In this case, the
fundamental network is a lift. ♦

The balanced colorings are uniquely determined by surjective network
�brations, see [3, theorem 2], [4, remark 4.3.3] or [13, theorem 8.3].

Proposition 2.4.10 ([3, theorem 2]). A network Q is a quotient network of

a network N if and only if there is a surjective network �bration from N to

Q.

For completeness, we sketch the proof here. If Q is a quotient network
of a network N , consider the associated balanced coloring. The function
from N to Q that projects each cell into its equivalence class is a surjective
network �bration. On the other hand, given a surjective network �bration
from N to Q, consider the coloring such that two cells have the same color,
when their evaluation by the network �bration is equal. This coloring is
balanced, and the quotient network of N with respect to this coloring is
equal to Q.

Example 2.4.11. Let N be the network in �gure 2.1(c) and Ñ its funda-
mental network displayed in �gure 2.3(c). The network �bration from Ñ to
N given by ϕ = [1 2 3 4 5 1 2 4 5] is surjective and N is a quotient network
of Ñ . ♦

Example 2.4.12. There is no surjective �bration from the network in �g-
ure 2.1(b) to its fundamental network displayed in �gure 2.3(b), neither a
surjective �bration from the fundamental network to the network. Hence, in
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this case, the fundamental network is neither a lift nor a quotient network
of the network. ♦

2.4.2 Injective network �brations

We consider now subnetworks and their relation with injective network �-
brations. We follow [4, �5.2].

De�nition 2.4.13. Let N and S be two networks with sets of cells and
edges, respectively, C and E, and C ′ and E′. Then S is a subnetwork of N ,
if C ′ ⊆ C, E′ ⊆ E and for every c′ ∈ C ′ and every edge e ∈ E with the
target cell t(e) = c′, we have that e ∈ E′ and the source cell s(e) ∈ C ′. ♦

Example 2.4.14. Consider the network in �gure 2.1(a) and its fundamental
network displayed in �gure 2.3(a). The fundamental network is a subnet-
work. ♦

Remark 2.4.15. Let N be a network with set of cells C.
(i) For every cell c ∈ C, the input network N(c) is a subnetwork of N .
(ii) The union of subnetworks of N is a subnetwork of N . ♦

Example 2.4.16. Let N be the network in �gure 2.1(c). The restriction
of N to the set of cells {1, 2, 4, 5} is a subnetwork of N . That restriction
corresponds to the union of the input networks for the cells 1, 2, 4 and 5. ♦

Proposition 2.4.17 ([4, �5.2]). A network N ′ is a subnetwork of N if and

only if there is an injective network �bration from N ′ to N .

For completeness, we sketch the proof here. If N ′ is a subnetwork of
N , then the embedding of N ′ in N is an injective network �bration. If
ϕ : N ′ → N is an injective network �bration, then N ′ is equal to ϕ(N ′)
which is a subnetwork of N .

2.5 Fundamental networks and network �brations

In this section, we recall some results presented by Nijholt et al. in [9]. We
show then that the fundamental network construction preserves the quo-
tient network relation. Moreover, we see that the fundamental network con-
struction does not preserve the subnetwork relation, but it transforms the
subnetwork relation in the quotient network relation.

Theorem 2.5.1 ([9, theorem 6.4 & remark 6.9 & lemma 7.1]). Let N be

a homogeneous network with asymmetric inputs and Ñ its fundamental net-

work with sets of cells C and C̃, respectively. For every c ∈ C, there is a

network �bration, ϕc : Ñ → N given by

ϕc(c̃) = c̃(c), c̃ ∈ C̃.
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The image of ϕc is the input network N(c). Every network �bration from Ñ

to N is equal to ϕc for some c ∈ C. The network Ñ and its fundamental ˜̃N
are equal.

We prove next that the fundamental network construction preserves the
quotient network relation.

Proposition 2.5.2. Let N be a homogeneous network with asymmetric in-

puts. If Q is a quotient network of N , then Q̃ is a quotient network of Ñ .

Proof. Let N be a homogeneous network with asymmetric inputs and Q
a quotient network of N . By proposition 2.4.10, there exists a surjective
network �bration φ : N → Q and Q is a homogeneous network with asym-
metric inputs. Suppose that N and Q are represented by (σl)

k
l=1 and (γl)

k
l=1,

respectively. By proposition 2.4.3,

φ ◦ σi = γi ◦ φ, i = 1, . . . , k.

De�ne the function φ̃ : Ñ → Q̃ such that φ̃(IdN ) = IdQ and for every
cell σ in Ñ such that σ = σi1 ◦ · · · ◦ σim for some 1 ≤ i1, . . . , im ≤ k, then φ̃
is given by φ̃(σ) = γi1 ◦ · · · ◦ γim . As we show next, φ̃ is well-de�ned and is
a surjective network �bration.

Suppose that σ = σi1 ◦· · ·◦σim = σj1 ◦· · ·◦σjm′ , where 1 ≤ i1, . . . , im ≤ k
and 1 ≤ j1, . . . , jm′ ≤ k. Note that

γi1 ◦ · · · ◦ γim ◦ φ = φ ◦ σ = γj1 ◦ · · · ◦ γjm′ ◦ φ.

Then γi1 ◦ · · · ◦ γim and γj1 ◦ · · · ◦ γjm′ are equal in the range of φ. Because φ
is surjective, we have that γi1 ◦ · · · ◦γim = γj1 ◦ · · · ◦γjm′ . Thus the de�nition
of φ̃ does not depend on the choice of i1, . . . , im. Moreover, φ̃ is de�ned for
every cell in Ñ . Hence, φ̃ is well-de�ned.

By de�nition φ̃(IdN ) = IdQ. Let γ 6= IdQ be a cell in Q̃. Then there are
1 ≤ i1, . . . , im ≤ k such that γ = γi1 ◦ · · · ◦ γim = φ̃(σi1 ◦ · · · ◦ σim). Thus φ̃
is surjective.

From proposition 2.4.3, the function φ̃ is a network �bration if and only
if φ̃ ◦ σ̃i = γ̃i ◦ φ̃, for every i = 1, . . . , k. Let σ 6= IdN be a cell in Ñ . Then
there are 1 ≤ i1, . . . , im ≤ k such that σ = σi1 ◦ · · · ◦ σim . For 1 ≤ i ≤ k, we
have that φ̃ ◦ σ̃i(IdN ) = γ̃i ◦ φ̃(IdN ) and

φ̃ ◦ σ̃i(σ) = φ̃(σi ◦ σi1 ◦ · · · ◦ σim) = γi ◦ γi1 ◦ · · · ◦ γim
= γ̃i(γi1 ◦ · · · ◦ γim) = γ̃i ◦ φ̃(σi1 ◦ · · · ◦ σim) = γ̃i ◦ φ̃(σ).

Hence φ̃ is a surjective network �bration. By proposition 2.4.10, Q̃ is a
quotient network of Ñ .

Using that Ñ = ˜̃N (theorem 2.5.1) and proposition 2.5.2, we have the
following.
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Corollary 2.5.3. If N is a quotient network of L and L is a quotient network

of Ñ , then Ñ = L̃.

Remark 2.5.4. From the proof of proposition 2.5.2, it also follows that if
φ : N → Q is a surjective network �bration, then there exists a surjective
network �bration φ̃ : Ñ → Q̃ such that for every cell c in N the following
diagram is commutative

Ñ Q̃

N Q

φ̃

ϕQφ(c)ϕNc

φ

where ϕQφ(c) and ϕ
N
c are given by theorem 2.5.1. ♦

The next example illustrates the fact that S being a subnetwork of N
does not imply the same relation between the corresponding fundamental
networks. In fact, we see that the existence of an injective network �bration
φ : S → N does not imply the existence of a network �bration φ̃ : S̃ → Ñ .

Example 2.5.5. Let N be the network in �gure 2.1(c) and S the network
in �gure 2.2. The corresponding fundamental networks, Ñ and S̃, are given
in �gure 2.3(c) and (d). There is an injective network �bration from S to N ,
since S is a subnetwork of N . However there is no injective network �bration
from S̃ to Ñ , because S̃ is not a subnetwork of Ñ . In fact, it can easily be
seen that there is no network �bration from S̃ to Ñ , as S̃ has self loops and
Ñ has none. ♦

In the following proposition, we show that the fundamental network con-
struction transforms the subnetwork relation into the quotient network rela-
tion.

Proposition 2.5.6. Let N be a homogeneous network with asymmetric in-

puts. If S is a subnetwork of N , then S̃ is a quotient network of Ñ .

Proof. Let N be a homogeneous network with asymmetric inputs and S a
subnetwork of N . Suppose that N is represented by the functions (σi)

k
i=1.

Then S is represented by the functions (σi|S)ki=1.
Consider the function φ̃ : Ñ → S̃ such that φ̃(σ) = σ|S . This function

is surjective, because if γ = σi1 |S ◦ · · · ◦ σim |S , then γ = (σi1 ◦ · · · ◦ σim)|S .
For every cell σ in Ñ , we have that

φ̃ ◦ σ̃i(σ) = φ̃(σi ◦ σ) = (σi ◦ σ)|S = σi|S ◦ σ|S = σ̃i|S ◦ φ̃(σ).

Hence φ̃ is a surjective network �bration. By proposition 2.4.10, it follows
that S̃ is a quotient network of Ñ .
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2.5.1 Fundamental networks and lifts

In this section, we give a characterization of the fundamental networks that
are lifts of the original network, in terms of the network connectivity, using
the results in [9]. We point out that Nijholt et al. in [9] consider that N ′

is a quotient network of N when there is a network �bration from N to N ′

which need not to be surjective. We also give a necessary condition for a
network to be a lift of its fundamental network.

Proposition 2.5.7. Let N be a homogeneous network with asymmetric in-

puts and Ñ its fundamental network. Then Ñ is a lift of N if and only if N
is backward connected.

Proof. Let N be a homogeneous network with asymmetric inputs and Ñ its
fundamental network. By proposition 2.4.10, the fundamental network Ñ is
a lift of N if and only if there is a surjective network �bration from Ñ to N .

Using theorem 2.5.1 and the network �brations de�ned there, we have
that every network �bration from Ñ to N is equal to ϕc, for some cell c.
Moreover, ϕc is surjective if and only if N(c) = N . Note that N(c) = N if
and only if N is backward connected for c. Hence Ñ is a lift of N if and only
if N is backward connected.

It follows from propositions 2.5.6 and 2.5.7 that a fundamental network
is a lift of every backward connected subnetwork of the original network.

Corollary 2.5.8. Let N be a homogenous network with asymmetric inputs,

Ñ its fundamental network and B a backward connected subnetwork of N .

Then Ñ is a lift of B.

In the next result, we give a necessary condition for a network to be a
lift of its fundamental network.

Proposition 2.5.9. Let N be a homogenous network with asymmetric inputs

and Ñ its fundamental network. If N is a lift of Ñ , then N is transitive.

Proof. Let N be a homogenous network with asymmetric inputs and Ñ its
fundamental network. Suppose that N is a lift of Ñ . By proposition 2.4.10,
there exists a surjective network �bration ψ : N → Ñ . Let c be a cell in N
such ψ(c) = IdN . Consider the network �bration, given in theorem 2.5.1,
ϕd : Ñ → N , for every cell d in N . Note that ϕd ◦ ψ(c) = ϕd(IdN ) = d, for
every cell d in N . Hence N is transitive for c.

2.5.2 Fundamental networks and subnetworks

In this section, we give a necessary and su�cient condition for a network
to be a subnetwork of its fundamental network. Moreover, we give a su�-
cient condition for a fundamental network to be a subnetwork of the original
network. We start with two examples.
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Example 2.5.10. (i) The network in �gure 2.1(c) is not a subnetwork of
its fundamental network, �gure 2.3(c). (ii) The network in �gure 2.4(a) is a
subnetwork of its fundamental network, �gure 2.4(b). ♦

1 2

(a)

σ2 γ

Id σ1

(b) γ = σ1 ◦ σ2

Figure 2.4: (a) Homogeneous network with asymmetric inputs represented
by σ1 = [2 1] and σ2 = [1 1]; (b) Fundamental network of the network (a).

In the next proposition, we give necessary and su�cient conditions for the
existence of a network �bration from a network to its fundamental network.

Proposition 2.5.11. Let N be a homogeneous network with asymmetric

inputs and Ñ its fundamental network with sets of cells C and C̃, respectively.
Suppose that N is backward connected for c ∈ C.
(i) If ϕ : N → Ñ is a network �bration, then σ′ ◦ϕ(c) = σ′′ ◦ϕ(c), for every
σ′, σ′′ ∈ C̃ such that σ′(c) = σ′′(c).
(ii) If there is σ ∈ C̃ such that σ′ ◦ σ = σ′′ ◦ σ, for every σ′, σ′′ ∈ C̃ such

that σ′(c) = σ′′(c), then there is a network �bration ϕ : N → Ñ such that

ϕ(c) = σ.

Proof. Let N be a homogeneous network with asymmetric inputs and Ñ its
fundamental network with sets of cells C and C̃, and represented by (σi)

k
i=1

and (σ̃i)
k
i=1, respectively. Suppose that N is backward connected for c ∈ C.

In order to prove (i), suppose that ϕ : N → Ñ is a network �bration. By
proposition 2.4.3, ϕ ◦ σi = σ̃i ◦ ϕ = σi ◦ ϕ, for every 1 ≤ i ≤ k. So for every
σ ∈ C̃, we have that

ϕ ◦ σ = σ ◦ ϕ.

Let σ′, σ′′ ∈ C̃ such that σ′(c) = σ′′(c). Then

σ′ ◦ ϕ(c) = ϕ ◦ σ′(c) = ϕ ◦ σ′′(c) = σ′′ ◦ ϕ(c).

To prove (ii), suppose that there is σ ∈ C̃ such that σ′ ◦ σ = σ′′ ◦ σ,
for every σ′, σ′′ ∈ C̃ such that σ′(c) = σ′′(c). De�ne ϕ : N → Ñ given by
ϕ(c) = σ and ϕ(c′) = σ′ ◦ σ, where c′ = σ′(c). This function is de�ned
for every cell in N , because N is backward connected for c. And it is well
de�ned, because if c′ = σ′(c) = σ′′(c), then ϕ(c′) = σ′ ◦ σ = σ′′ ◦ σ.

We just need to see that ϕ is a network �bration. Using proposition 2.4.3,
we check that ϕ ◦ σi = σ̃i ◦ ϕ, for every 1 ≤ i ≤ k. Because N is backward
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connected, for every cell d of N , there is σ′ ∈ C̃ such that d = σ′(c) and

ϕ ◦ σi(d) = ϕ(σi ◦ σ′(c)) = σi ◦ σ′ ◦ σ = σ̃i(σ
′ ◦ σ) = σ̃i ◦ϕ(σ′(c)) = σ̃i ◦ϕ(d),

for every 1 ≤ i ≤ k. Hence ϕ ◦ σi = σ̃i ◦ ϕ and ϕ is a network �bration.

Recalling proposition 2.4.17 and restricting the network �bration of propo-
sition 2.5.11 to an injective network �bration, we obtain the characterization
of the networks that are subnetworks of its fundamental network.

Corollary 2.5.12. Let N be a homogeneous network with asymmetric inputs

backward connected for a cell c and Ñ its fundamental network. Then N is a

subnetwork of Ñ if and only if there is σ ∈ C̃ such that for every σ′, σ′′ ∈ C̃,
the following condition is satis�ed:

σ′ ◦ σ = σ′′ ◦ σ ⇔ σ′(c) = σ′′(c).

Proof. Let N be a homogeneous network with asymmetric inputs backward
connected for a cell c and Ñ its fundamental network. Recall, by proposi-
tion 2.4.17, that N is a subnetwork of Ñ if and only if there is an injective
network �bration from N to Ñ . By proposition 2.5.11, there is a network
�bration ϕ from N to Ñ such that ϕ(c) = σ ∈ C̃ if and only if

σ′ ◦ σ = σ′′ ◦ σ ⇐ σ′(c) = σ′′(c), σ′, σ′′ ∈ C̃.

A network �bration ϕ : N → Ñ , such that ϕ(c) = σ ∈ C̃, is injective if and
only if

σ′ ◦ σ = ϕ(σ′(c)) = ϕ(σ′′(c)) = σ′′ ◦ σ ⇒ σ′(c) = σ′′(c), σ′, σ′′ ∈ C̃.

Combining the previous conditions, we obtain the result.

Example 2.5.13. Consider the network in �gure 2.4(a) represented by σ1 =
[2 1] and σ2 = [1 1]. The network is backward connected for the cell 1 and
σ′ ◦ σ2 = σ′′ ◦ σ2 if and only if σ′(1) = σ′′(1). By the previous corollary, the
network is a subnetwork of its fundamental network. ♦

We show now that if a network is transitive, then its fundamental network
is a subnetwork of the network. This result will be used in the following
section to characterize fundamental networks.

Proposition 2.5.14. Let N be a homogenous network with asymmetric in-

puts and Ñ its fundamental network. If N is transitive, then Ñ is a subnet-

work of N .

Proof. Let N be a homogenous network with asymmetric inputs and Ñ its
fundamental network. Denote the network �bration, given in theorem 2.5.1,
by ϕd : Ñ → N , for every cell d in N . Suppose that N is transitive for a cell



Characterization of Fundamental Networks 42

c. Then for every cell d in N there is a network �bration ψd : N → N such
that ψd(c) = d. In order to prove that Ñ is a subnetwork of N , we show
that ϕc is an injective network �bration.

Note that ψd ◦ ϕc(Id) = ψd(c) = d = ϕd(Id). By propositions 2.3.3 and
2.4.5, we have that ψd ◦ϕc = ϕd. If ϕc(γ1) = ϕc(γ2), then for every cell d in
N

γ1(d) = ϕd(γ1) = ψd ◦ ϕc(γ1) = ψd ◦ ϕc(γ2) = ϕd(γ2) = γ2(d),

and γ1 = γ2. Hence ϕc is an injective network �bration. By proposi-
tion 2.4.17, Ñ is a subnetwork of N .

From propositions 2.5.9 and 2.5.14, we have the following result.

Corollary 2.5.15. Let N be a homogenous network with asymmetric inputs

and Ñ its fundamental network. If N is a lift of Ñ , then Ñ is a subnetwork

of N .

2.5.3 Networks which are fundamental networks

Using theorem 2.5.1 and the results obtained in the previous sections, we
can now characterize the networks that are fundamental networks, in terms
of transitivity and backward connectedness.

Theorem 2.5.16. Let N be a homogeneous network with asymmetric inputs.

The network N is a fundamental network if and only if there are cells c and
d such that N is backward connected for c and transitive for d.

Proof. Let N be a homogeneous network with asymmetric inputs.
Suppose that N is a fundamental network. Then N is equal to Ñ and

there is a bijective network �bration ψ : Ñ → N . From proposition 2.3.3,
we know that Ñ is backward connected for Id. By theorem 2.5.1, we have

for every cell σ in Ñ that there is a network �bration φσ : ˜̃N = Ñ → Ñ such
that φσ(γ) = γ ◦ σ. In particular φσ(Id) = σ, and Ñ is transitive for Id.
Hence, N is backward connected for ψ(Id) and it is transitive for ψ(Id).

Suppose that there are cells c and d in N such that N is backward
connected for c and transitive for d. Then Ñ is a subnetwork of N , by
proposition 2.5.14, and Ñ is a lift of N , by proposition 2.5.7. So |Ñ | ≤
|N | ≤ |Ñ |. The network �bration ϕc : Ñ → N , given by theorem 2.5.1, is
a bijection, since it is surjective by the proof of proposition 2.5.7, and it is
injective because |Ñ | = |N |. Thus N and Ñ are equal.

2.6 Architecture of networks: rings and depth

In this section, we introduce the de�nitions of ring and depth of a homoge-
nous network with asymmetric inputs. We start by recalling the de�nitions
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of connected and strongly connected component. We �nish by describing
how we can obtain the rings and the depth of a homogenous network with
asymmetric inputs using the representative functions of the network.

We say that there is an undirected path in a network connecting the se-
quence of cells (c0, c1, . . . , ck−1, ck), if for every j = 1, . . . , k there is an edge
from cj−1 to cj or an edge from cj to cj−1. A directed path (c0, c1, . . . , cm−1, ck)
is called a cycle, if c0 = ck.

De�nition 2.6.1. Let N be a network. A subset Y of cells in N is called
connected if for every two di�erent cells in Y there is an undirected path
between them.

We say that Y is a connected component ofN , if Y is a maximal connected
subset of cells, in the sense that if Y ∪ {c} is connected then c ∈ Y . ♦

We can partition the set of cells of a network into its connected compo-
nents.

De�nition 2.6.2. Let N be a network with set of cells C and a subset
X ⊆ C.
(i) The subset X is strongly connected, if for every two di�erent cells c1, c2 ∈
X there are directed paths from c1 to c2 and from c2 to c1.
(ii) The subset X is a strongly connected component of N , if X is a maximal
strongly connected subset of cells.
(iii) The subset X is a source of N , if X is a strongly connected component
that does not receive any edge with source cell outside X, i.e., s(I(X)) ⊆
X. ♦

Let N be a homogeneous network with asymmetric inputs and i an edge
type of N . Denote by Ni the network with the same cells of N and only
the edges of type i of N . Let C1

i , . . . , C
m
i be the partition of the set of

cells of the network Ni into its connected components. For each connected
component, the topology of Ni is the union of a unique source component
and feed-forward networks starting at some cell of the source component.
See �gure 2.5 for an example and see [5, proposition 2.3] for details. For
each j = 1, . . . ,m, we call the source of Ni in C

j
i a ring and denote it by

Rji . Since the cells in the network Ni have only one input, every cycle in Ni

connects every cell in a ring.

De�nition 2.6.3. LetN be a homogeneous network with asymmetric inputs
and i an edge type of N . Let C1

i , . . . , C
m
i be the connected components of

Ni. For each connected component, Cji , of Ni, we de�ne the depth of Ni in
Cji by

Depthji (N) := max{min{|(r, c)| : r ∈ Rji} : c ∈ Cji },
where |(r, c)| is 0, if r = c, or the number of edges in the shortest directed
path in Ni from r to c. And the depth of Ni is

Depthi(N) := max
j=1,...,m

{Depthji (N)}. ♦
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Figure 2.5: Union of a ring and feed-forward networks starting at the ring.

1 2 3 4 5

Figure 2.6: The restriction of the network in �gure 2.1(c) to the solid edges
has three connected components and its depth is 1. On the left, the ring is
{1} and the depth is 0. On the center, the ring is {2} and the depth is 1.
On the right, the ring is {4, 5} and the depth is 0.

Example 2.6.4. Let N be the network in �gure 2.1(c). Consider the re-
striction N1 to the solid edges represented in �gure 2.6. The network N1 has
three connected components, C1

1 = {1}, C2
1 = {2, 3} and C3

1 = {4, 5}. The
rings of Ni are: R1

1 = {1} in C1
1 ; R

2
1 = {2} in C2

1 ; and R
3
1 = {4, 5} in C3

1 .
The depth of N1: in C1

1 is 0; in C2
1 is 1; and in C3

1 is 0. So the depth of N1

is 1.
Let Ñ be the fundamental network of N represented in �gure 2.3(c).

Consider the restriction Ñ1 to the solid edges. The network Ñ1 has four
connected components. Each of the connected components has a ring of size
2. And the depth of Ñ1 is 1. Note that the size of any ring in Ñ1 is a
multiple of the size of some rings in N1 and the depth of N1 is equal to the
depth of Ñ1. In the next section, we formalize and prove these observations
for networks with asymmetric inputs. ♦

We describe now the rings and the depth of a network using representative
functions. This is derived from the following facts: every representative
function, σi, is semi-periodic, i.e., there exist a ≥ 0 and b > 0 such that
σai = σa+bi ; if σai = σa+bi , then there is a cycle for every cell in the range of
σai ; and the distance of a cell c to a ring R is equal to the minimum p ≥ 0
such that σpi (c) ∈ R.

Lemma 2.6.5. Let N be a homogeneous network with asymmetric inputs

represented by the functions (σi)
k
i=1 and C the set of cells of N . Fix 1 ≤

i ≤ k and denote the connected components of Ni by C
1
i , . . . , C

m
i , and the

corresponding rings by R1
i , . . . , R

m
i .
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(i) If σai = σa+bi for some a ≥ 0 and b > 0, then Rji = σai (Cji ) for 1 ≤ j ≤ m.

(ii)

Depthi(N) = min

p ∈ N0 : σpi (C) ⊆
m⋃
j=1

Rji

 .

Example 2.6.6. Consider the example 2.6.4. Let N be the network in �g-
ure 2.1(c), N1 its restriction to the solid edges represented by the function
σ1 = [1 2 2 5 4] and C1

1 = {1}, C2
1 = {2, 3} and C3

1 = {4, 5} the con-
nected components of N1 appearing in �gure 2.6. Note that σ1 = σ31. By
lemma 2.6.5, the rings of N1 are R1

1 = σ1(C
1
1 ) = {1}, R2

1 = σ1(C
2
1 ) = {2},

and R3
1 = σ1(C

3
1 ) = {4, 5}. Moreover, σk1 (C1

1 ) ⊆ R1
1 ∪R2

1 ∪R3
1 if and only if

k ≥ 1. Hence Depth1(N) = 1. ♦

2.7 Architecture of fundamental networks

We start this section by studying the connectivity of fundamental networks
for which the semi-group generated by their representative functions is in
fact a group.

Proposition 2.7.1. Let N be a homogenous network with asymmetric inputs

and Ñ its fundamental network.

(a) The following statements are equivalent:

(i) Ñ is strongly connected.

(ii) C̃ is a group.

(iii) The representative functions of N are bijections (i.e., permutations).

(b) If N is connected and Ñ is strongly connected, then N is strongly con-

nected.

Proof. Let N be a homogenous network with asymmetric inputs and Ñ its
fundamental network with sets of cells C and C̃, respectively.

If Ñ is strongly connected, then there is a directed path between every
pair of cells in C̃, in particular, between Id and σ ∈ C̃. Thus

∀σ∈C̃ ∃σ′∈C̃ : σ′ ◦ σ = Id,

where σ′ is a directed path from Id to σ. Conversely, if C̃ is a group, then
there is a directed path between every pair of cells in C̃. Thus (i) is equivalent
to (ii).

Any representative function is invertible if and only if it is a bijection.
And every permutation has a �nite order. Hence the statements (ii) and
(iii) are equivalent.

Now, to prove (b), suppose that N is connected and Ñ is strongly con-
nected. Then C̃ is a group and for every representative function σ of N ,
there exists σ−1. Note that σ−1 is not always a representative function, but
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it is a composition of representative functions, by de�nition of C̃. We refer to
σ−1 has the inverse path of the connection σ. Moreover, for every two cells
c and d there exists an undirected path from c to d, because N is connected.
From this undirected path it is possible to get a directed path in N from
c to d by considering for each connection in the undirected path either the
connection itself or its inverse path.

2.7.1 Depth of fundamental networks

In example 2.6.4, we presented a network such that the depth of the net-
work is equal to the depth of its fundamental network. We prove now that
this property is valid for every homogenous network with asymmetric in-
puts. Moreover, we use this fact to show that an adjacency matrix of a
network is non-singular if and only if the correspondent adjacency matrix of
its fundamental network is non-singular.

Proposition 2.7.2. Let N be a homogeneous network with asymmetric in-

puts represented by the functions (σi)
k
i=1 and Ñ its fundamental network.

Then

Depthi(N) = Depthi(Ñ),

where i = 1, . . . , k.

Proof. LetN be a homogeneous network with asymmetric inputs represented
by (σi)

k
i=1, C its set of cells and Ñ its fundamental network. Fix 1 ≤

i ≤ k. Denote the connected components of Ni by C1
i , . . . , C

m
i and the

corresponding rings by R1
i , . . . , R

m
i . Denote the connected components of

Ñi by C̃1
i , . . . , C̃

m̃
i and the corresponding rings by R̃1

i , . . . , R̃
m̃
i . Let pi =

Depthi(N) and p̃i = Depthi(Ñ).
By lemma 2.6.5 (ii), we have that σpii (C) ⊆ R1

i ∪ · · · ∪ Rmi . For each
connected component Cji of Ni, since cycles of Ni in C

j
i start in a cell of Rji

and travel by the other cells in Rji to reach the initial point, we have that
σpii (c) = σpi+ri (c), for every c ∈ Cji , if and only if r is a multiple of |Rji |.
Therefore σpii = σpi+ri , if r = l. c.m.{|R1

i |, . . . , |Rki |} where l. c.m. is the least
common multiple.

Note that σ̃pii = σ̃pi+ri , because σ̃pii (σ) = σpii ◦ σ = σpi+ri ◦ σ = σ̃pi+ri (σ).
By lemma 2.6.5 (i),

m̃⋃
j=1

R̃ji =
m̃⋃
j=1

σ̃pii (C̃ji ) = σ̃pii (C̃)

Hence p̃i ≤ pi, by lemma 2.6.5 (ii).
From σ̃pii = σ̃pi+ri , we also know that {σpii , . . . , σ

pi+r−1
i } is a ring of Ñi,

because (σpii , . . . , σ
pi+r−1
i , σpi+ri = σpii ) is a cycle in Ñi. The directed path

Id = σ0i , σ
1
i , . . . , σ

pi−1
i , σpii is the shortest directed path in Ñi from Id to a cell

in this ring. Then we have that p̃i ≥ pi and thus conclude that p̃i = pi.
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A network can be represented by its adjacency matrices Ai, one for each
edge type i. More precisely, if the network has n cells, say C = {1, . . . , n},
then the matrix Ai is an n× n matrix, where the entry (Ai)c c′ denotes the
number of edges of type i from c′ to c.

Corollary 2.7.3. Let N be a homogeneous network with asymmetric inputs

and Ñ its fundamental network. Denote by Ai the adjacency matrix of N
and Ãi the adjacency matrix of Ñ , for an edge type i.

Then Ai is non-singular if and only if Ãi is non-singular.

Proof. The eigenvalues of the adjacency matrix of a homogeneous network
with asymmetric inputs for an edge of type i, Ai, are 1, wj , w

2
j , . . . , w

rj−1
j

where rj = |Rji |, wj = exp2πı/rj , Rji is the ring of type i of N in Cji and
C1
i , . . . , C

m
i are the connected components of Ni, and 0 if Depthi(N) 6=

0. Hence Ai is non-singular if and only if Depthi(N) = 0 if and only if
Depthi(Ñ) = 0 if and only if Ãi is non-singular.

2.7.2 Rings of fundamental networks

We consider now the relation between the size of the rings in a network
and of those in its fundamental network. Speci�cally, we show that the size
of a ring in a fundamental network is a (least common) multiple of some
ring's sizes in the network. Moreover we use this result to fully describe the
fundamental network of a network with only one edge type.

Proposition 2.7.4. Let N be a homogeneous network with asymmetric in-

puts represented by the functions (σi)
k
i=1, C the set of cells of N and Ñ

its fundamental network. Fix 1 ≤ i ≤ k. Let C1
i , . . . , C

m
i be the connected

components of Ni and R
1
i , . . . , R

m
i the corresponding rings. Analogously, let

C̃1
i , . . . , C̃

m̃
i be the connected components of Ñi and R̃

1
i , . . . , R̃

m̃
i the corre-

sponding rings. If 1 ≤ j ≤ m̃ and γ ∈ C̃ji , then

|R̃ji | = l. c.m.
{
|Rj

′

i | : C
j′

i ∩ γ(C) 6= ∅
}
.

Moreover, there exists 1 ≤ j ≤ m̃ such that |R̃ji | = l. c.m.
{
|R1

i |, . . . , |Rmi |
}
.

Proof. Let N be a homogeneous network with set of cells C and asymmet-
ric inputs represented by the functions (σi)

k
i=1. Let Ñ be its fundamental

network. Fix 1 ≤ i ≤ k. Let C1
i , . . . , C

m
i be the connected components of

Ni and R1
i , . . . , R

m
i the corresponding rings. Analogously, let C̃1

i , . . . , C̃
m̃
i be

the connected components of Ñi and R̃1
i , . . . , R̃

m̃
i the corresponding rings.

Let pi = Depthi(N) = Depthi(Ñ). Choose j and γ such that 1 ≤ j ≤ m̃

and γ ∈ C̃ji . De�ne J = {j′ : γ(C) ∩ Cj
′

i 6= ∅}, rγ = l. c.m.{|Rj
′

i | : j′ ∈ J |}
and Cγ = ∪j′∈JCj

′

i .
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By lemma 2.6.5,
σpii (Cγ) =

⋃
j′∈J

Rj
′

i .

Note that σpii |Cγ = σpi+r
γ

i

∣∣∣
Cγ

, because rγ is a multiple of |Rj
′

i |, for every j′ ∈

J . Then σ̃pii ◦γ = σpii ◦γ = σpi+r
γ

i ◦γ = σ̃pi+r
γ

i ◦γ and (σpii ◦γ, . . . , σ
pi+r

γ

i ◦γ)

is a cycle in Ñi. Since γ ∈ C̃ji , we have that σpii ◦ γ, . . . , σ
pi+r

γ−1
i ◦ γ ∈ C̃ji

and so the ring of Ñi in C̃
j
i is R̃ji = {σpi+1

i ◦ γ, . . . , σpi+r
γ

i ◦ γ}. This cycle
does not repeat cells, because rγ is the least common multiple. Thus

|R̃ji | = rγ = l. c.m.
{
|Rj

′

i | : C
j′

i ∩ γ(C) 6= ∅
}
.

The second part of the result follows from taking γ = IdC .

Propositions 2.7.2 and 2.7.4 can be used to describe the fundamental
network of a homogenous network with only one edge type.

De�nition 2.7.5 ([8, de�nition 3.1.], [5, de�nition 2.4]). Let N be a homo-
geneous network with asymmetric inputs that has only one edge type. We
say that N is a loop-chain with sizes l ≥ 1 and p ≥ 0, if N has l+ p cells, it
has a unique source component with l cells and the depth of N is p. ♦

Loop-chains are studied in great detail in Nijholt, Rink and Sanders [10]
where they are called generalized feed forward networks.

12

l − 1 l l + 1 l + p

Figure 2.7: The fundamental network of a homogenous network with asym-
metric inputs N having only one edge type is a loop-chain with sizes l and
p, where l is the least common multiple of all ring's sizes in N and p is the
depth of N .

Corollary 2.7.6. Let N be a homogeneous network with asymmetric inputs

and only one edge type. If l is the least common multiple of the size of all

the rings in N and p is the depth of N , then the fundamental network of N
is a loop-chain with sizes l and p.

Proof. Let N be a homogeneous network with asymmetric inputs that has
only one edge type, l the least common multiple of the size of all the rings
in N , p the depth of N and Ñ its fundamental network.
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We know by proposition 2.3.3 that Ñ is backward connected and so Ñ
has only one connected component. The size of the ring of that connected
component is equal to the least common multiple of the sizes of rings in N ,
see proposition 2.7.4. By proposition 2.7.2, we also know that Depth(N) =
Depth(Ñ). Then Ñ has at least the loop-chain with sizes l and p described
in �gure 2.7.

Next, we prove that Ñ has only l + p cells. Suppose that there exists
more than l+p cells. Then there is a cell j > l+p that receives an edge from
the cells 1, . . . , l+ p, because Ñ has only one connected component and the
�rst l+ p cells already receive an edge from the �rst l+ p cells. If j receives
an edge from the cells 1, . . . , l + p − 1, then Ñ is not backward connected.
If j receives an edge from the cell l + p, then Depth(Ñ) > p. Hence Ñ is a
loop-chain with sizes l and p described in �gure 2.7.
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3.1 Introduction

Coupled cell networks describe in�uences between cells and can be repre-
sented by graphs. A dynamical system that respects a network structure is
called a coupled cell system associated to the network. In [18] and [8], the
authors formalize the concepts of (coupled cell) network and coupled cell
system. They also show that there exists an intrinsic relation between cou-
pled cell systems and networks, proving that a polydiagonal subspace given
by a coloring of the network is an invariant subspace for any coupled cell
system if and only if the coloring is balanced. Here, a coloring is balanced if
any two cells with the same color receive, for each color, the same number of
inputs starting in cells with that color. And a polydiagonal subspace given
by a balanced coloring is called a synchrony subspace. Given a balanced col-
oring, they de�ne the corresponding quotient network by merging cells with
equal color. Moreover, the restriction of a coupled cell system to a synchrony
subspace is a coupled cell system for the quotient. We will focus on regular
networks, where all cells and edges are identical, and each regular network
can be represented by an adjacency matrix. The adjacency matrix of a quo-
tient network is given by the restriction of the original network adjacency
matrix to the corresponding synchrony subspace, [1].

Equivariant theory is the study of dynamical systems that commute with
an action of a group in the phase space and isotropy subgroups are the
subgroups that �x some point of the phase space, see e.g. [5]. For each
isotropy subgroup, the set of �xed points forms an invariant subspace for
every equivariant dynamical system and it is called the �xed point subspace.
One goal of equivariant bifurcation theory is to characterize which isotropy
subgroups support a bifurcation. The Equivariant Branching Lemma [3] is
one of the �rst important results about the existence of symmetry-breaking
steady-state bifurcation branches for isotropy subgroups that have one di-
mensional �xed point subspaces. This result was extended for isotropy sub-
groups that have odd dimensional �xed point subspaces, see e.g. [10, 4, 2],
and it was analyzed for isotropy subgroups that have two dimensional �xed
point subspaces, [11]. This topic is a large source of inspiration to the study
of synchrony-breaking bifurcations on networks, where one of the key ques-
tions concerns the characterization of synchrony subspaces which support
(generically) steady-state bifurcation branches.

A similar result to the �rst version of the Equivariant Branching Lemma
for regular networks has been already stated, see [19, Theorem 2.1], [6, The-
orem 6.3] and [9, Corollary 3.1.], we call this result the Synchrony Branching
Lemma. The eigenvalues of the Jacobian of a coupled cell system associ-
ated to a regular network at a full synchronous solution are related to the
eigenvalues of its adjacency matrix and this relation preserves multiplicities,
[12]. So, we can use the eigenvalue structure of the network adjacency ma-
trix to tabulate the possible local codimension-one (steady-state or Hopf)
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synchrony-breaking bifurcations that can occur for the coupled cell systems
associated to a network. We say that an eigenvalue of the adjacency matrix
belongs to a balanced coloring, if it has an eigenvector in the synchrony sub-
space given by that coloring. Fixing an eigenvalue, we say that a coloring
is maximal if the eigenvalue belongs to that coloring and it does not belong
to any lower dimensional synchrony subspace. The Synchrony Branching
Lemma states that every synchrony subspace given by a maximal coloring
with a simple eigenvalue (algebraic multiplicity 1) generic supports a bifur-
cation branch. In [17], the authors study the degeneracy of steady-state
bifurcation problems for regular networks and simple eigenvalues. They give
conditions on the network structure for the degeneracy of steady-state bi-
furcation problems and they also present examples of regular networks that
have generic highly degenerate steady-state bifurcation problems. In [9],
it is given a characterization of the synchrony subspaces which support a
synchrony-breaking bifurcation using the lattice structure of balanced color-
ings, for regular networks that only have simple eigenvalues.

In this manuscript, we generalize the Synchrony Branching Lemma for
semisimple eigenvalues (the algebraic and geometric multiplicity are equal).
We prove that a synchrony subspace given by a maximal coloring generically
supports a bifurcation branch, if the semisimple eigenvalue has odd multi-
plicity, Theorem 3.4.1. This follows from the application of the Lyapunov-
Schmidt Reduction [7] and a blow-up technique also used in equivariant
bifurcation, see e.g. [10], which transforms the bifurcation problem into a
problem of �nding the equilibria of a vector �eld on a sphere. When the
semisimple eigenvalue has odd multiplicity, the sphere is even dimensional
and there exists at least one equilibrium point, Poincaré-Hopf theorem [14].
In the way, we prove that the degeneracy of a bifurcation problem asso-
ciated to a semisimple eigenvalue only depends on the network structure,
Lemma 3.3.2. Next, we focus on semisimple eigenvalues with multiplicity
2. If a coloring is maximal and has even degeneracy, then its synchrony
subspace supports a bifurcation branch, Theorem 3.5.1. We also give nec-
essary and su�cient conditions for the existence of bifurcation branches on
synchrony subspaces given by submaximal colorings, i.e., the eigenvalue be-
longs to the submaximal coloring and it must have multiplicity 0 or 1 in
any synchrony subspace strictly included in the synchrony subspace given
by the submaximal coloring, Theorem 3.5.2. Those conditions only depend
on the network structure. We give examples of networks where the previous
results apply, including two networks that have the same synchrony lattice
structure but do not have the same type of synchrony-breaking bifurcations,
Examples 3.3.8 and 3.5.5. Despite we do not present an explicit network,
we show how a network can have a semisimple eigenvalue with multiplicity
2 and do not support a bifurcation branch, see Example 3.4.3.

This text is organized as follows: in section 3.2, we review some concepts
and results of networks, coupled cell systems and steady-state bifurcations on
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networks, focusing on regular networks. Choosing a semisimple eigenvalue
of the adjacency matrix and considering a generic coupled cell system with
a bifurcation condition associated to the eigenvalue, in section 3.3, we apply
the Lyapunov-Schmidt Reduction and a blow-up technique to the coupled
cell system reducing the bifurcation problem to the problem of �nding zeros
of a vector �eld on a sphere. Next, we prove the existence of a bifurcation
branch, if the eigenvalue has odd multiplicity, section 3.4. Last, we study
the existence of bifurcation branches, when the eigenvalue has multiplicity
2, section 3.5.

3.2 Settings

In this section, we recall some facts about networks and coupled cell systems,
following [18, 8], and steady-state bifurcations on coupled cell systems.

3.2.1 Regular networks

A directed graph is a tuple G = (C,E, s, t), where c ∈ C is a cell and e ∈ E is
a directed edge from the source cell, s(e), to the target cell, t(e). We assume
that the sets of cells and edges are �nite. The input set of a cell c, I(c), is
the set of edges that target c.

De�nition 3.2.1. A regular network is a directed graph N such that the
cardinality of the input set of a cell is the same for all cells. The valency ϑ
of N is the number of edges that target each cell. We denote the number of
cells in N by |N |. ♦

See Figure 3.1 for two examples of regular networks with valency 2.
A regular network can be represented by its adjacency matrix A, where

A is a |N | × |N | matrix and the entry (A)c c′ is the number of edges from c′

to c.

1 3

4 2

(a) Network #29 of [9]

1 3

4 2

(b) Network #51 of [9]

Figure 3.1: Regular networks with valency 2.

De�nition 3.2.2. A coloring of the cells of a network N is an equivalence
relation on the set of cells of N . The coloring is balanced for N if for any
two cells of N with the same color there is a bijection between the input sets
of the two cells preserving the color of the source cells. ♦
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Any regular network N has two trivial balanced colorings: the full syn-
chronous coloring, ./0, and the full asynchronous coloring ./=. The full
synchronous coloring has only one class, i.e., c ./0 c′ for every cells c, c′ in N ,
and the full asynchronous coloring has |N | classes, i.e., c ./= c′ if and only
if c = c′.

Each balanced coloring de�nes a quotient network, [8, Section 5].

De�nition 3.2.3. The quotient network of a regular network N with respect
to a given balanced coloring ./ is the network where the equivalence classes
of the coloring, [c]./, are the cells and there is an edge from [c]./ to [c′]./, for
each edge from a cell in the class [c]./ to c′. We denote the quotient network
by N/ ./. We also say that a network L is a lift of N , if N is a quotient of
L with respect to some balanced coloring of L. ♦

1 3

Figure 3.2: Quotient network of the network in Figure 3.1(a) associated to
the balanced coloring with classes {1, 2} and {3, 4}.

See Figure 3.2 for an example of a quotient network.
The set of balanced colorings forms a complete lattice, see [16, 9]. Denote

by ΛN the set of balanced colorings for N . For every ./1, ./2∈ ΛN , we say
that ./1 is a re�nement of ./2, and we write ./1≺./2, if ./1 6=./2 and c ./1 d
implies c ./2 d for every cells c, d of N . We denote by � the relation of
re�nement or equal. The pair (ΛN ,�) forms a lattice.

Now, we introduce the de�nition of µ-maximal and µ-submaximal color-
ings, where µ is an eigenvalue of the network adjacency matrix.

De�nition 3.2.4. Let N be a regular network, ./ a balanced coloring of N
and µ an eigenvalue of the adjacency matrix associated to N . We say that
./ is a µ-maximal coloring if for every ./′ such that ./≺./′ we have that µ is
not an eigenvalue of the adjacency matrix associated to N/ ./′. ♦

De�nition 3.2.5. Let N be a regular network, ./ a balanced coloring of N
and µ an eigenvalue of the adjacency matrix associated toN with multiplicity
m > 1. We say that ./ is a µ-submaximal coloring of type j if there are j
balanced colorings ./1, . . . , ./j all distinct such that: (i) ./≺./i, ./i 6�./i′ and
µ is an eigenvalue with multiplicity 1 of the adjacency matrix associated to
N/ ./i for i, i′ = 1, . . . , j with i 6= i′; (ii) for any other balanced coloring ./′

such that ./≺./′ we have that µ is not an eigenvalue of the adjacency matrix
associated to N/ ./′ or ./i�./′ for some i = 1, . . . , j. We say that ./1, . . . , ./j
are the µ-simple components of ./. ♦



Synchrony branching lemma for regular networks 56

Example 3.2.6. We consider the network #51 of [9] (Figure 3.1(b)), which
we denote by N51 and it has the following adjacency matrix:

A51 =


0 0 0 2
0 0 0 2
1 1 0 0
1 1 0 0

 .
The eigenvalues of A51 are: the network valency 2, −2 and 0 with multiplic-
ity 1, 1 and 2, respectively. The network N51 has four non-trivial balanced
colorings ./1= {{1, 2}, {3, 4}}, ./2= {{3}, {1, 2, 4}}, ./3= {{1, 2}, {3}, {4}}
and ./4= {{1}, {2}, {3, 4}}. The balanced colorings of N51 and the eigenval-
ues of the adjacency matrix corresponding to the quotient networks of N51

associated to each balanced coloring are annotated in Figure 3.3.
The balanced coloring ./0 is 2-maximal. The balanced coloring ./1 is

(−2)-maximal. The balanced colorings ./2 and ./4 are 0-maximal. And the
balanced coloring ./= is 0-submaximal of type 2 with 0-simple components
./3 and ./4. ♦

./0: {2}

./2: {2, 0}./1: {2,−2}

./3: {2,−2, 0}./4: {2,−2, 0}

./=: {2,−2, 0, 0}

Figure 3.3: Balanced colorings of N51 (Figure 3.1(b)) and the eigenvalues of
the adjacency matrices associated to the corresponding quotient networks.

3.2.2 Coupled cell systems

In order to associate dynamics to a network, following [18, 8], we specify a
phase space for the network and describe vector �elds that are admissible
for the network.

Let N be a regular network with valency ϑ and represented by the ad-
jacency matrix A. We correspond to each cell c a coordinate xc and assume
that xc ∈ R. The network phase space is the product of the phase space of
the cells, i.e., R|N |.

A vector �eld F : R|N | → R|N | is admissible for a regular network N if:
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1. The dynamics of cell c depends only on its internal state and on the
state of its input cells, s(I(c)). Thus there is a function f : R×Rϑ → R
such that for every cell c

(F (x))c = f(xc, xs(I(c))),

where xs(I(c)) = (xs(e))e∈I(c);

2. The state of the input cells have equal e�ect on the dynamics. That is,
the function f is Sϑ-invariant, where Sϑ is the group of permutations
in {1, . . . , ϑ}. For every σ ∈ Sϑ

f(σ(x0, x1, . . . , xϑ)) = f(x0, x1, . . . , xϑ),

where σ(x0, x1, . . . , xϑ) = (x0, xσ(1), . . . , xσ(ϑ)).

A coupled cell system associated to a regular network N is a dynamical
system de�ned by an admissible vector �eld F : R|N | → R|N |

ẋ = F (x), x ∈ R|N |.

Let f : R × Rϑ → R be a Sϑ-invariant function. We denote by fN

the admissible vector �eld for N de�ned by f and given by the previous
formulas. Observe that every admissible vector �eld for N is equal to fN

for some Sϑ-invariant function f . We say that a function f : R×Rϑ → R is
regular if f is Sϑ-invariant and (0, 0, . . . , 0) is an isolated zero of f . In this
case 0 ∈ R|N | is an equilibrium point of the coupled cell system de�ned by
fN .

For di�erentiable admissible vector �elds fN , its Jacobian at the origin
can be represented in terms of the adjacency matrix of N , see [12]. We
denote by JNf the Jacobian of fN at the origin 0 ∈ R|N |. We have that

JNf = (DfN )0 = f0Id+ f1A,

where Id is the |N | × |N | identity matrix,

f0 =
∂f

∂x0
(0, 0, . . . , 0), f1 =

∂f

∂x1
(0, 0, . . . , 0) = · · · = ∂f

∂xϑ
(0, 0, . . . , 0). (3.1)

For every eigenvalue µ of A with algebraic multiplicity ma and geometric
multiplicity mg, we have that f0 +µf1 is an eigenvalue of JNf with the same
multiplicities ma and mg. See [12, Proposition 3.1]. Moreover, the kernel
of JNf can be described using the eigenvectors of A. Denote by v1, . . . , vj a
set of linear independent eigenvectors of A and µ1, . . . , µj its corresponding
eigenvalues, where j is equal to the sum of all geometric multiplicities. Then

ker(JNf ) = {v : JNf v = 0} = Span({vi : f0 + µif1 = 0}),

where Span denotes the linear subspace spanned by the vectors.
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De�nition 3.2.7. A polydiagonal subspace of R|N | is a subspace de�ned by
the equality of certain cell coordinates. Let ./ be a coloring in N . The
polydiagonal subspace associated to ./ is de�ned by

∆./ = {x : xc = xd ⇐ c ./ d} ⊆ R|N |.

Each polydiagonal subspace de�nes an unique coloring of the cells. A subset
K ⊆ V is invariant under a map g : V → V , if g(K) ⊆ K. A synchrony

subspace of a network is an invariant polydiagonal subspace for any vector
�eld admissible for the network. ♦

We have that the synchrony subspaces and balanced colorings are in
one-to-one correspondence.

Theorem 3.2.8 ([8, Theorem 4.3]). Let ./ be a coloring of cells in a network

N . Then ∆./ is a synchrony subspace of N if and only if ./ is balanced.

The restriction of an admissible vector �eld to a synchrony subspace
∆./ is an admissible vector �eld for the quotient network associated to the
balanced coloring ./. Moreover, any admissible vector �eld for the quotient
network lifts to an admissible vector �eld for the network.

Theorem 3.2.9 ([8, Theorem 5.2]). Let N be a regular network with valency

ϑ, ./ a balanced coloring of N and f : R×Rϑ → R a Sϑ-invariant function.
If Q is the quotient network of N associated to ./, then
(i) The restriction of fN to ∆./ is the admissible vector �eld fQ for Q.
(ii) The admissible vector �eld fQ for Q lifts to the admissible vector �eld

fN for N .

In particular, the previous result means that if xQ(t) ∈ R|Q| is a solution
to ẋQ(t) = fQ(xQ(t)), then xN (t) is a solution to ẋN (t) = fN (xN (t)), where
(xN (t))c = (xQ(t))[c]./ for each cell c in N . And we say that xQ(t) is lifted
to xN (t).

3.2.3 Steady-state bifurcation on regular networks

Let N be a regular network with valency ϑ and represented by the adja-
cency matrix A. We consider a family of regular functions f : R × Rϑ ×
R → R depending on a parameter λ, i.e., for each λ ∈ R, the function
f(x0, x1, . . . , xϑ, λ) is regular. In this work, we assume that this function is
smooth in some neighborhood of the origin. Consider the coupled cell system

ẋ = fN (x, λ), (3.2)

where fN : R|N | × R→ R|N | is given for each cell c in N by

(fN (x, λ))c = f(xc, xs(I(c)), λ).
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Since we are assuming that f is regular, the origin 0 ∈ R|N | is an equilibrium
point of the coupled cell system for every λ ∈ R.

We are interested in studying the steady-state bifurcations of (3.2) oc-
curring from the origin x = 0 at λ = 0. A local steady-state bifurcation
at λ = 0 near the origin can only occur if JNf has a zero eigenvalue. Thus
we will assume that one of the eigenvalues of JNf is zero, say, f0 + µf1 = 0
for some eigenvalue µ of A, where f0 and f1 are de�ned in (3.1). Observe
that, under the generic hypothesis on f , f1 6= 0, µ is the unique eigenvalue
satisfying f0 +µf1 = 0. In this case, we say that f is a regular function with

a bifurcation condition associated to µ.

De�nition 3.2.10. Let N be a regular network with valency ϑ and repre-
sented by the adjacency matrix A, and f : R×Rϑ×R→ R a regular function.
We say that a di�erentiable function b = (bN , bλ) : [0, δ[→ R|N | × R is an
equilibrium branch of f on N if b(0) = (0, . . . , 0, 0), bλ(z) 6= 0 and

fN (bN (z), bλ(z)) = 0,

for every z > 0. We say that an equilibrium branch b is a bifurcation branch

of f on N if b is di�erent from the trivial equilibrium branch of f on N , i.e.,
for every z 6= 0,

bN (z) 6= 0.

♦

Despite two di�erent bifurcation branches can de�ne essentially the same
branch (e.g., by rescaling of the parameter), it is not a problem for our
discussion about the existence of bifurcation branches (see [5, Section 4.2]
for a de�nition of bifurcation branch that takes this aspect into account).

The trivial equilibrium branch is totally synchronized, since all cell's
coordinates have the same value. Other bifurcation branches can have less
synchrony depending on which synchrony subspaces they belong.

De�nition 3.2.11. We say that an equilibrium branch b : [0, δ[→ R|N | ×R
has (exact) synchrony ./, if bN ([0, δ[) ⊆ ∆./ (and bN ([0, δ[) 6⊆ ∆./′ for every
./′ such that ./≺./′). ♦

In the same way we lift solutions, we can lift bifurcation branches on a
quotient network to the original network, see the end of section 3.2.2.

3.3 Synchrony branching lemma

In this section, we establish the two main steps in order to prove the existence
of a bifurcation branch of generic regular functions on regular networks. First
we apply the method of Lyapunov-Schmidt Reduction, [7, Chapter VII], to
the coupled cell system and we obtain a reduced equation for the bifurcation
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problem. Next we apply a blow-up argument (see e.g. [10]) to transform the
reduced equation into a vector �eld on a sphere.

Let N be a regular network with valency ϑ and represented by the ad-
jacency matrix A, µ an eigenvalue of A and f : R × Rϑ × R → R a regular
function with a bifurcation condition associated to µ. Hence ker(JNf ) 6= {0}
and we assume the generic hypothesis that m = dim(ker(JNf )) > 0 is the
geometric multiplicity of µ in A.

Let v1, . . . , vm be a basis for ker(JNf ) (and eigenvectors of A associated to
µ), v∗1, . . . , v

∗
m be a basis for Range(JNf )⊥. Applying the Lyapunov-Schmidt

Reduction method, we get a function g : Rm × R → Rm such that the
solutions of fN (x, λ) = 0 are in one-to-one correspondence with the solu-
tions of g(y, λ) = 0. We can calculate the derivatives of g at the origin
using the derivatives of f at the origin, see [7, Chapter VII �1 (d)]. Since
f(0, 0, . . . , 0, λ) = 0 for every λ, we have that

g(0, λ) = 0,
∂gi
∂yj

(0, 0) = 0,
∂gi
∂λ

(0, 0) = 0.

The Taylor expansion of g at (y, λ) = (0, 0) has the following form:

g(y, λ) = L(λ)y +Qk(y) +O(‖y‖k+1 + ‖y‖2|λ|),

where
L(λ) = λDgλ +O(2),

Dgλ is the matrix with entries (∂2gi/∂λ∂yj) evaluated at (y, λ) = (0, 0), Qk
has homogenous polynomial components in the variable y of smallest degree
k such that Qk does not vanish. From [7, Chapter VII �1 (d)], we know that

∂2gi
∂yj∂λ

(0, 0) = 〈v∗i , (DfNλ )vj〉 = 〈v∗i , (f0λId+f1λA)vj〉 = (f0λ+µf1λ)〈v∗i , vj〉,

where 〈·, ·〉 is the usual inner product in R|N |. Therefore

Dgλ = (f0λ + µf1λ)L,

where

L =


〈v∗1, v1〉 〈v∗1, v2〉 . . . 〈v∗1, vm〉
〈v∗2, v1〉 〈v∗2, v2〉 . . . 〈v∗2, vm〉

...
...

. . .
...

〈v∗m, v1〉 〈v∗m, v2〉 . . . 〈v∗m, vm〉

 .
We will assume that the eigenvalue µ is semisimple, i.e., µ has the same

algebraic and geometric multiplicity. Note that L is invertible if and only if
µ is semisimple.
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Since L is invertible, we can choose a basis v′∗1 , . . . , v
′∗
m of Range(JNf )⊥

such that 
〈v′∗1 , v1〉 〈v′∗1 , v2〉 . . . 〈v′∗1 , vm〉
〈v′∗2 , v1〉 〈v′∗2 , v2〉 . . . 〈v′∗2 , vm〉

...
...

. . .
...

〈v′∗m, v1〉 〈v′∗m, v2〉 . . . 〈v′∗m, vm〉

 = Id,

by taking v′∗i =
∑m

l=1 bi lv
∗
l where bi j are the entries of L

−1 for 1 ≤ i, j ≤ m.
In the following we assume that µ is semisimple and that we have chosen

a basis of Range(JNf )⊥ in the Lyapunov-Schmidt Reduction such

g(y, λ) = L(λ)y +Qk(y) +O(‖y‖k+1 + ‖y‖2|λ|), (3.3)

where Qk has homogenous polynomial components in the variable y of small-
est degree k such that Qk does not vanish and

L(λ) = λ(f0λ + µf1λ)Id+O(2).

De�nition 3.3.1. Let N be a regular network with valency ϑ and f : R×
Rϑ×R→ R a regular function. We denote by k(N, f) the integer k in (3.3).
We say that the bifurcation problem of f on N has k − 1 degeneracy. ♦

In [17], the authors studied the degeneracy of a bifurcation problem on
regular networks associated to simple eigenvalues. They have shown that
there exist bifurcation problems on regular networks with high degeneracy.
We refer the reader to their work for examples of k-degenerate bifurcation
problems on regular networks, with 1 ≤ k ≤ 5.

Before we prove that the integer k(N, f) does not depend generically on
the regular function f associated to some eigenvalue, we give an explicit
formula for the second derivatives of gi with respect to yj and yl for 1 ≤
i, j, l ≤ m.

Since f : R × Rϑ × R → R is a regular function, it has the following
Taylor expansion at the origin:

f(x0, x1, . . . , xϑ, λ) = f0x0 + f1(x1 + · · ·+ xϑ) + f0λx0λ+ f1λ(x1 + · · ·+ xϑ)λ

+
f00
2
x20 + f01x0(x1 + · · ·+ xϑ) +

f11
2

(x21 + · · ·+ x2ϑ)

+ f1ϑ(

ϑ∑
i=1

ϑ∑
j>i

xixj) +O(3),

where

f00 =
∂2f

∂x0∂x0
(0, 0), f11 =

∂2f

∂x1∂x1
(0, 0) =

∂2f

∂xi∂xi
(0, 0),

f01 =
∂2f

∂x0∂x1
(0, 0) =

∂2f

∂x0∂xi
(0, 0), f1ϑ =

∂2f

∂x1∂xϑ
(0, 0) =

∂2f

∂xi∂xj
(0, 0),
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for i, j > 0 and i 6= j.
For every cell c in N , we denote by c1, . . . , cϑ the source cells of the edges

that target c (repeated, if there is more than one edge from the same cell).

d2fNc (vj , vl) = f00(vj ∗ vl)c + 2f01(vj ∗Avl)c +

ϑ∑
a=1

ϑ∑
b=1

fab(vj)ca(vl)cb

=(f00 + 2µf01)(vj ∗ vl)c + f1v(Avj ∗Avl)c + (f11 − f1v)
ϑ∑
a=1

(vj ∗ vl)ca

=(f00 + 2µf01 + µ2f1v)(vj ∗ vl)c + (f11 − f1v)(A(vj ∗ vl))c,

where w ∗ z = (w1z1, w2z2, . . . , wnzn), for w, z ∈ Rn. So

d2fN (vj , vl) = (f00 + 2µf01 + µ2f1v)vj ∗ vl + (f11 − f1v)A(vj ∗ vl).

It follows from [7, Chapter VII �1 (d)] and the Taylor expansion of f
that

∂2gi
∂yj∂yl

(0, 0) = (f00 + 2µf01 + µ2f1ϑ)〈v∗i , vj ∗ vl〉+ (f11 − f1ϑ)〈v∗i , A(vj ∗ vl)〉,

for 1 ≤ i, j, l ≤ m. Since µ is semisimple, v∗i is orthogonal to any generalized
eigenvector associated to an eigenvalue di�erent from µ. Writing vj ∗ vl in
the base of generalized eigenvectors of A, we have that 〈v∗i , A(vj ∗ vl)〉 =
µ〈v∗i , vj ∗ vl〉. Thus, for 1 ≤ i, j, l ≤ m,

∂2gi
∂yj∂yl

(0, 0) = (f00 + 2µf01 + µf11 − µf1ϑ + µ2f1ϑ)〈v∗i , vj ∗ vl〉.

Thus, generically, the vanish of the second derivatives of g is independent of
the regular function f with a bifurcation condition associated to µ. Next,
we prove that the smallest integer k(N, f) is, generically, the same for every
regular function f with a bifurcation condition associated to µ.

Lemma 3.3.2. Let N be a regular network with valency ϑ and adjacency

matrix A, µ an eigenvalue of A and f, f ′ : R×Rϑ×R→ R regular functions

with a bifurcation condition associated to µ. Then, generically,

k(N, f) = k(N, f ′).

Proof. For a given integer l, we can rearrange the terms in the Taylor ex-
pansion of f as follows

f(x0, x1, . . . , xϑ, λ) = Pl−1(x0, x1, . . . , xϑ) + Pl(x0, x1, . . . , xϑ)

+ Pl+1(x0, x1, . . . , xϑ) +R(x0, x1, . . . , xϑ, λ),
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where Pl−1 is a polynomial of degree lower or equal to l − 1, Pl+1 has
only terms of degree upper or equal to l + 1, R is a function such that
R(x0, x1, . . . , xϑ, 0) = 0 and Pl is homogenous polynomial of degree l:

Pl(x0, x1, . . . , xϑ) =
∑

0≤n0,n1,...,nϑ≤l
n0+n1+···+nϑ=l

fn0n1...nϑ

n0!n1! . . . nϑ!
xn0
0 x

n1
1 . . . xnϑϑ ,

fn0n1...nϑ is the l-partial derivative of f at (0, 0, . . . , 0, 0) with respect n0
times to x0, n1 times to x1, . . . , and nϑ times to xϑ. Since f is Sϑ-invariant,
Pl is also Sϑ-invariant and it has the following form, see e.g. [13],

Pl(x0, x1, . . . , xϑ) =

l∑
n0=0

∑
0≤n1≤···≤nϑ≤l
n0+n1+···+nϑ=l

fn0n1...nϑ

n0!n1! . . . nϑ!
xn0
0

∑
σ∈Sϑ

xn1

σ(1) . . . x
nϑ
σ(ϑ)

 .

For 1 ≤ i, i1, . . . , il ≤ m, the l-th derivative of gi with respect to yi1 , yi2 , . . . , yil
at (y, λ) = (0, . . . , 0, 0) is given by

∂lgi
∂yi1∂yi2 . . . ∂yil

=

l∑
n0=0

∑
0≤n1≤···≤nϑ≤l
n0+n1+···+nϑ=l

fn0n1...nϑ

n0!n1! . . . nϑ!
〈v∗i , An0n1...nϑ(vi1 , . . . , vil)〉,

where An0n1...nϑ(vi1 , . . . , vil) ∈ R|N | and it is given for every cell c in N by

(An0n1...nϑ(vi1 , . . . , vil))c =
∑
σ∈Sϑ

∂l

∂t1 . . . ∂tl

(
ϑ∏
b=0

(t1vi1 + · · ·+ tlvil)
nb
cσ(b)

)∣∣∣∣∣
ti=0

,

where σ(0) = 0, c0 = c and c1, . . . , cϑ are the source cells of the edges that
target c.

Note that every term in the variable y of degree l in g vanish if and only
if for every 1 ≤ i, i1, . . . , il ≤ m

∂lgi
∂yi1∂yi2 . . . ∂yil

= 0.

For each 1 ≤ i, i1, . . . , il ≤ m, regard (∂lgi)/(∂yi1∂yi2 . . . ∂yil) as a
polynomial function in the variables fn0n1...nϑ , where 0 ≤ n0 ≤ l and
0 ≤ n1 ≤ n2 ≤ · · · ≤ nϑ ≤ l such that n0 + n1 + · · · + nϑ = l. We
have two cases: (∂lgi)/(∂yi1∂yi2 . . . ∂yil) is identically zero since

〈v∗i , An0n1...nϑ(vi1 , vi2 , . . . , vil)〉 = 0,

for every 0 ≤ n0 ≤ l and 0 ≤ n1 ≤ n2 ≤ · · · ≤ nϑ ≤ l; otherwise the set of
regular functions such that (∂lgi)/(∂yi1∂yi2 . . . ∂yil) = 0 is residual and for
every generic regular function we have that

∂lgi
∂yi1∂yi2 . . . ∂yil

6= 0.
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Therefore, generically, given f regular every term in the variable y of
degree l in g vanishes if and only if

〈v∗i , An0n1...nϑ(vi1 , vi2 , . . . , vil)〉 = 0,

for every 1 ≤ i, i1, . . . , il ≤ m, 0 ≤ n0 ≤ j and 0 ≤ n1 ≤ n2 ≤ · · · ≤ nϑ ≤ j.
The second part of the previous �if and only if� does not depend on the

regular function f . So for every regular functions f, f ′ : R × Rϑ × R → R
with a bifurcation condition associated to µ, we have generically that

k(N, f) = k(N, f ′).

Following the previous lemma, we de�ne the smallest k in (3.3) as a
function of the network N and the eigenvalue µ.

De�nition 3.3.3. Let N be a regular network and µ an eigenvalue of its
adjacency matrix. For any generic regular function f with a bifurcation
condition associated to µ, we de�ne k(N,µ) = k(N, f). We say that the
bifurcation problem associated to µ on N has k(N,µ)− 1 degeneracy. ♦

Remark 3.3.4. Let N be a regular network, Q a quotient network of N
and µ an eigenvalue of the adjacency matrix associated to Q. Then

k(N,µ) ≤ k(Q,µ).

In fact, let f be a regular function with a bifurcation condition associated to
µ. Denote by gQ and gN the reduced functions of fQ and fN , respectively,
obtained by Lyapunov-Schmidt reduction. The previous inequality follows
from the fact

gQ = P−1gNP,

where P : R|Q| → ∆ ⊆ R|N | is the lift of the phase space of Q into the
synchrony subspace of N associated to the quotient network and P−1 : ∆→
R|Q| is the inverse of P . ♦

In the next step we apply a blow-up argument also used in the equivariant
theory, see e.g. [10]. Applying the following change of variables to the
reduced function g of the Lyapunov-Schmidt reduction (3.3),{

y = εu

λ = εk−1η
, (3.4)

where u ∈ Sm−1(m− 1 dimensional sphere), ε ∈ R, η ∈ R and k = k(N,µ),
we have the following equation:

g(y, λ) = 0⇔ g(εu, εk−1η) = 0⇔ εk (η(f0λ + µf1λ)u+Qk(u) +O(|ε|)) = 0.



65 Synchrony branching lemma

Let h : Sm−1 × R× R→ Rm be the function given by

h(u, ε, η) = η(f0λ + µf1λ)u+Qk(u) +O(|ε|).

For y 6= 0, we have that

g(y, λ) = 0⇔ h(u, ε, η) = 0. (3.5)

Proposition 3.3.5. Let N be a regular network with valency ϑ and adja-

cency matrix A, µ a semisimple eigenvalue of A with multiplicity m and

f : R × Rϑ × R → R a regular function with a bifurcation condition asso-

ciated to µ. If b is a bifurcation branch of f on N with synchrony ./, then
generically there exists ũ ∈ Sm−1 and η̃ ∈ R such that

h(ũ, 0, η̃) = 0,

and

ũ1v1 + · · ·+ ũmvm ∈ ∆./,

where v1, . . . , vm is the basis of ker(JNf ).

Proof. Let b = (bN , bλ) be a bifurcation branch of f on N and k = k(N,µ).
Consider b̃ = (b̃y, b̃λ) : [0, δ[→ Rm × R such that b̃y is the projection of bN
into ker(JNf ) according to the basis v1, . . . , vm and b̃λ = bλ. Then

g(b̃y(z), b̃λ(z)) = h

(
b̃y(z)

‖b̃y(z)‖
, ‖b̃y(z)‖,

b̃λ(z)

‖b̃y(z)‖k−1

)
= 0,

for z 6= 0. Note that b̃′y(0) 6= 0, see e.g. [5, Lemma 4.2.1]. We can also

prove by induction on j, that b̃(j)λ (0) = 0, for 1 ≤ j < k − 1, where b̃(j)λ (0)

is the j-derivative of b̃λ at z = 0. Taking the limit of z → 0 in the previous
equation,

h(ũ, 0, η̃) = 0,

where

ũ =
b̃′y(0)

‖b̃′y(0)‖
, η̃ =

b̃
(k−1)
λ (0)

(k − 1)!‖b̃′y(0)‖k−1
.

If b has synchrony ./, then bN (z) ∈ ∆./ and b̃y1(z)v1 + · · ·+ b̃ym(z)vm ∈
∆./ for every z ≥ 0. So b̃′y1(0)v1 + · · ·+ b̃′ym(0)vm ∈ ∆./ and

ũ1v1 + · · ·+ ũmvm ∈ ∆./.
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It follows from Proposition 3.3.5 that we can study the zeros of h(u, 0, η)
to understand the bifurcation branches. For the radial component

〈h(u, 0, η), u〉 = 0⇔ η = − 〈Qk(u), u〉
f0λ + µf1λ

,

where it is assumed, generically, that f0λ + µf1λ 6= 0. De�ning

η̃(u) = − 〈Qk(u), u〉
f0λ + µf1λ

, h̃(u) = h(u, 0, η̃(u)),

we obtain a vector �eld h̃ on the (m− 1)-sphere and

h(u, 0, η) = 0⇔ h̃(u) = 0 ∧ η(u) = − 〈Qk(u), u〉
f0λ + µf1λ

.

Now, we see how to make the correspondence between a zero of the vector
�eld h̃ and a bifurcation branch of f on N . For this purpose, we will assume
for a zero ũ ∈ Sm−1 of h̃ that(

∂h

∂(u, η)

)
(ũ,0,η̃(ũ))

is non-singular, (3.6)

where the Jacobian is calculated in the geometry of Sm−1 × R.
Moreover, we say that condition (H1) holds for f and N if

∀ũ h̃(ũ) = 0⇒ (3.6) holds for ũ. (H1)

Proposition 3.3.6. Let N be a regular network with valency ϑ and adja-

cency matrix A, µ a semisimple eigenvalue of A with multiplicity m, f :
R×Rϑ×R→ R a regular function with a bifurcation condition associated to

µ and ũ ∈ Sm−1 such that h̃(ũ) = 0 and (3.6) holds for ũ. Then generically

there exists a bifurcation branch of f on N .

Proof. We have that h(ũ, 0, η̃(ũ)) = 0, because h̃(ũ) = 0. Since (3.6) holds
for ũ, it follows from the implicit function theorem that there exists a neigh-
borhood W ⊆ R of ε = 0 and a di�erentiable function (u∗, η∗) : W →
Sm−1 ×R such that h̃(u∗(ε), ε, η∗(ε)) = 0 and (u∗, η∗)(0) = (ũ, η̃). Recalling
(3.4) and (3.5), we have that

h(u∗(ε), ε, η∗(ε)) = 0⇔ g(εu∗(ε), εk−1η∗(ε)) = 0⇔ g(y∗(ε), λ∗(ε)) = 0,

de�ning (y∗, λ∗) : W → Rm × R by y∗(ε) = εu∗(ε) and λ∗(ε) = εk−1η∗(ε).
By the Lyapunov-Schmidt reduction, there exists a di�erentiable function

b∗ : W → R|N | × R associated to (y∗, λ∗) such that 0 ∈ W , b∗(0) = (0, 0),
b∗N (ε) 6= 0 and fN (b∗N (ε), b∗λ(ε)) = 0, for every ε ∈ W \ {0}. Since the
origin is an isolated zero of fN (x, 0), there exists δ > 0 such that b∗λ(ε) 6= 0
for 0 < ε < δ. Restricting the function b∗ to [0, δ[, we have that b∗ is a
bifurcation branch of f on N .
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Remark 3.3.7. Equation (3.6) is related to the determinacy of a bifur-
cation problem. When the kernel of the Jacobian is one-dimensional, the
determinacy and degeneracy are equal. If m = 1 and f0λ + µf1λ 6= 0, then
(3.6) holds. When m > 1, determinacy and degeneracy can be di�erent, see
Example 3.3.8. ♦

If condition (3.6) fails, we can apply the Lyapunov-Schmidt Reduction
to the function h(u, ε, η) at (ũ, 0, η̃) and a blow-up change of coordinates to
obtain a vector �eld on a sphere, then we look for zeros of this new reduced
vector �eld on a sphere associated to the parameter ε. Since the Jacobian of
h with respect to (u, η) at (ũ, 0, η̃(ũ)) is not identically null, the dimension of
the problem will be further reduced and we will need to calculate derivatives
of higher order of the original vector �eld fN . In the new reduced vector
�eld on a sphere, ũ can continue or not to be an equilibrium. If it is not an
equilibrium, then do not correspond to a bifurcation branch. If it continues
to be an equilibrium and a similar condition to (3.6) holds, then we obtain
a bifurcation branch. If it continues to be an equilibrium and a similar
condition to (3.6) fails, we need to repeat the previous process. See e.g. [15].

If a zero ũ of h̃ corresponds to a point in some synchrony subspace ∆./

(ũ1v1 + · · ·+ ũmvm ∈ ∆./) such that k(N/ ./, µ) > k(N,µ), then (3.6) fails
at ũ. In this case, we should study the bifurcation problem of f on N/ ./,
or look for zeros of h̃ which do not correspond to a point in ∆./.

For submaximal colorings, we use condition (H1a). We say that condition
(H1a) holds for f and N if

∀ũ,./ h̃(ũ) = 0∧ ./=≺./ ∧(ũ1v1 + · · ·+ ũmvm) /∈ ∆./ ⇒ (3.6) holds for ũ.
(H1a)

Example 3.3.8. As in Example 3.2.6, consider again the network #51 of [9].
The eigenvalue 0 of A51 is semisimple and has multiplicity 2. The balanced
coloring ./= is 0-submaximal of type 2 with 0-simple components ./3 and
./4. Let f : R×R2×R→ R be a generic regular function with a bifurcation
condition associated to 0, i.e., f0 = 0. We have that dim(ker(JN51

f )) = 2.

We choose a basis of ker(JN51
f ) such that v1 ∈ ∆./3 and v2 ∈ ∆./4 . Let

v1 = (0, 0, 1, 0) ∈ ∆./3 , v2 = (−1, 1, 0, 0) ∈ ∆./4 , v
∗
1 = (0, 0, 1,−1) and

v∗2 = (−1, 1, 0, 0)/2, where v∗1, v
∗
2 is a basis of Range(JN51

f )⊥. Then

h(u1, u2, ε, η) =

f0ληu1 +
f00u

2
1

2
f0ληu2

+O(ε).

Moreover, h(u1, u2, 0, η) = 0 if and only if (u1, u2, η) = (±1, 0,∓f00/(2f0λ))
or (u1, u2, η) = (0,±1, 0). We have(

∂h

∂(u, η)

)
(±1,0,∓ f00

(2f0λ)
)

=

[
0 ±f0λ
∓f00

2
0

]
,
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(
∂h

∂(u, η)

)
(0,±1,0)

=

[
0 0
0 ±f0λ

]
.

Since (3.6) holds at the zeros (±1, 0), then by Proposition 3.3.6 there is a
bifurcation branch with exact synchrony ./3 . However condition (3.6) fails at
the zeros (0,±1) and the dimension of the kernel is equal to 1. We could ap-
ply the Lyapunov-Schmidt Reduction and obtain an one-dimensional bifur-
cation problem, then we should solve it by �nding the lowest non-vanishing
terms of the reduced equation. Alternatively, we note that the zero (0, 1) cor-
responds to a point in the synchrony subspace ∆./4 and that k(N/ ./4, 0) = 3.
We can also obtain the bifurcation branch of f on N with synchrony ./4 by
studying the bifurcation problem of f on N/ ./4. ♦

3.4 Synchrony branching lemma � odd dimensional

case

Now, we prove the analogous version of the odd dimensional version of the
Equivariant Branch Lemma for regular networks. Recall the notation of
section 3.3.

Theorem 3.4.1. Let N be a regular network with valency ϑ and adjacency

matrix A, ./ a balanced coloring of N and µ a semisimple eigenvalue of A.
Let f : R × Rϑ × R → R be a regular function with a bifurcation condition

associated to µ such that ker(JNf ) ∩ ∆./ has odd dimension. Assume that

condition (H1) holds for f and N/ ./. Then generically there is a bifurcation

branch of f on N with at least synchrony ./. Moreover, if ./ is µ-maximal,

then the bifurcation branch has exact synchrony ./.

Proof. Let N be a regular network with valency ϑ and represented by the
adjacency matrix A, ./ a balanced coloring of N and µ a semisimple eigen-
value of A. Let f : R×Rϑ×R→ R be a regular function with a bifurcation
condition associated to µ such that ker(JNf ) ∩∆./ has odd dimension.

Denote by Q the quotient network of N with respect to ./ which is
represented by the adjacency matrix AQ. Then µ is a semisimple eigenvalue
of AQ and m = dim(ker(JQf )) = dim(ker(JNf ) ∩∆./) is odd.

We perform the calculation of section 3.3 for the network Q and the
generic regular function f . Following section 3.3, let h̃ be the vector �eld in
Sm−1 obtained. Since m is odd, from the Poincaré-Hopf theorem [14], we
know that there exists at least one ũ ∈ Sm−1 such that h̃(ũ) = 0. Then
h(ũ, 0, η̃(ũ)) = 0, where η̃(ũ) is de�ned in section 3.3.

Assuming that condition (H1) holds for f and N/ ./, we have that (3.6)
holds for ũ. From Proposition 3.3.6, there exists a bifurcation branch of f
on Q. Last, we can lift this bifurcation branch of f on Q to a bifurcation
branch of f on N with at least synchrony ./.
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If ./ is µ-maximal, then for every ./′ such that ./≺./′ there is no bifurca-
tion branch of f on N/ ./′. Thus the bifurcation branch has exact synchrony
./.

We establish the existence of a bifurcation branch, using the result above.

Example 3.4.2. Let N be the regular network given by the adjacency ma-
trix:

A =


24 1 2 3 4
16 0 5 6 7
8 6 3 8 9
0 8 9 6 11
20 3 4 5 2

 .
The eigenvalues of A are: the network valency 34 with multiplicity 1; 13
with multiplicity 1; and −4 with multiplicity 3.

Let f : R×R34 ×R→ R be a regular function with a bifurcation condi-
tion associated to the eigenvalue µ = −4. Considering the trivial balanced
coloring, ./=, we have that dim(ker∗(JNf )∩∆./) = 3. Assume that condition
(H1) holds for f and N . Then there exists a bifurcation branch of f on N ,
by Theorem 3.4.1.

The network N has no non-trivial balanced colorings and the unique
eigenvalue of the adjacency matrix associated to N/ ./0 is 34. So ./= is
(−4)-maximal and the bifurcation branch has no synchrony. ♦

In the next two examples, we do not explicitly present the networks but
we assume that the networks satisfy some conditions. Since the number of
cells in a network is not restricted, those conditions may be solved with as
many variables as it is needed to consider. The next example shows that we
cannot remove the odd dimension condition in Theorem 3.4.1.

Example 3.4.3. Let N be a network with adjacency matrix A, µ a semisim-
ple eigenvalue of A with multiplicity 2. Let f be a generic regular function
with a bifurcation condition associated to µ, (v1, v2) be a basis for ker(JNf )

and (v∗1, v
∗
2) be a basis for Range(JNf )⊥. We will assume that A, (v1, v2) and

(v∗1, v
∗
2) respect the following conditions:

〈v∗1, v1〉 = 〈v∗2, v2〉 = 1, 〈v∗2, v1〉 = 〈v∗1, v2〉 = 0,

〈v∗i , v1 ∗ v1〉 = 〈v∗i , v1 ∗ v2〉 = 〈v∗i , v2 ∗ v2〉 = 0, i = 1, 2,

〈v∗1, v1 ∗ v1 ∗ v1)〉 = 〈v∗2, v1 ∗ v1 ∗ v2)〉, 〈v∗1, v2 ∗ v2 ∗ v1)〉 = 〈v∗2, v2 ∗ v2 ∗ v2)〉,

〈v∗1, 3(v1 ∗ (A(v1 ∗ v1)))〉 = 〈v∗2, 2v1 ∗ (A(v1 ∗ v2)) + v2 ∗ (A(v1 ∗ v1))〉,

〈v∗2, 3(v2 ∗ (A(v2 ∗ v2)))〉 = 〈v∗1, 2v2 ∗ (A(v2 ∗ v1)) + v1 ∗ (A(v2 ∗ v2))〉,

0 6= 〈v∗1, v1∗v1∗v2)〉 = 〈v∗1, v2∗v2∗v2)〉 = −〈v∗2, v1∗v2∗v2)〉 = −〈v∗2, v1∗v1∗v1)〉,
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0 6= 〈v∗1, 2v1 ∗ (A(v1 ∗ v2)) + v2 ∗ (A(v1 ∗ v1))〉 = 〈v∗1, 3(v2 ∗ (A(v2 ∗ v2)))〉 =

= −〈v∗2, 2v2 ∗ (A(v1 ∗ v2)) + v1 ∗ (A(v2 ∗ v2))〉 = −〈v∗2, 3(v1 ∗ (A(v1 ∗ v1)))〉.

Then k(N,µ) = 3. Let g = (g1, g2) : R2 × R → R2 be the reduced equation
obtained by the Lyapunov-Schmidt Reduction. The previous equalities imply
for every regular function f that

∂3g1
∂y31

=
∂3g2
∂y21∂y2

,
∂3g1
∂y1∂y22

=
∂3g2
∂y32

,

α =
∂3g1
∂y21∂y2

=
∂3g1
∂y32

= −∂
3g2
∂y31

= − ∂3g2
∂y1∂y22

6= 0

at (y1, y2, λ) = (0, 0, 0). Then the vector �eld, h̃, on the 1-sphere is given by

h̃(u1, u2) =

[
αu2(u

2
1 + u22)

2

−αu1(u21 + u22)
2

]
= α

[
u2
−u1

]
,

where (u1, u2) ∈ S1. We have that h̃(u1, u2) 6= 0 for every (u1, u2) ∈ S1. By
Proposition 3.3.5, there is no bifurcation branch of f on N . ♦

In the next example, we lift the network of the previous example to a
network with one more cell. This example shows that there are zeros of the
vector �eld on the sphere which do not correspond to a bifurcation branch
and the relevance of (3.6) in Proposition 3.3.6.

Example 3.4.4. Let N , A, µ, v1, v2, v∗1 and v
∗
2 as in Example 3.4.3. Assume

that µ = 0. Fix a cell c of N . Let N̂ be the network with |N |+ 1 cells given
by the following adjacency matrix:

Â =

[
A 0
R 0

]
,

where R = (Ac d)d∈N is a 1 × |N |-matrix. Denote by c′ the new cell of N̂
and by ./ the balanced coloring of N̂ given by c ./ c′. The network N is
a quotient network of N̂ with respect to ./. Note that 0 is a semisimple
eigenvalue of Â with multiplicity 3.

Let f be a generic regular function with a bifurcation condition associated
to µ = 0, v̂1 = (v1, (v1)c), v̂2 = (v2, (v2)c), v̂3 = (0, . . . , 0, 1), v̂∗1 = (v∗1, 0),
v̂∗2 = (v∗2, 0) and v̂∗3 ∈ R|N̂ | such that (v̂∗3)c = −1, (v̂∗3)c′ = 1 and (v̂∗3)d = 0

otherwise. Then (v̂1, v̂2, v̂3) is a basis of ker(J N̂f ) and (v̂∗1, v̂
∗
2, v̂
∗
3) is a basis

of Range(J N̂f )⊥. Let ĝ = (ĝ1, ĝ2, ĝ3) : R3 × R→ R3 be the reduced equation

obtained by the Lyapunov-Schmidt Reduction of f N̂ . Note that

∂2g3
∂y1∂y3

= f00(v1)c,
∂2g3
∂y2∂y3

= f00(v2)c,
∂2g3
∂y23

= f00,
∂2gi
∂yj∂yl

= 0,
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for any other i, j and l. Then k(N̂ , 0) = 2 and

h(u1, u2, u3, 0, η) =

 f0ληu1
f0ληu2

f0ληu3 +
f00
2
u23 + f00(v1)cu1u3 + f00(v2)cu2u3

 ,
where (u1, u2, u3) ∈ S2. We have that h(0, 0, 1,−f00/(2f0λ)) = 0, condi-
tion (3.6) holds for (0, 0, 1) and it leads to a bifurcation branch of f on
N̂ .

On the other hand h(u1, u2, 0, 0) = 0, condition (3.6) does not hold for
(u1, u2, 0), where (u1, u2, 0, 0) ∈ S2×R, and it does not lead to a bifurcation
branch of f on N̂ . Otherwise this bifurcation branch would be inside ∆./ ⊆
R|N̂ |, since v̂1, v̂2 ∈ ∆./, and would lead to a bifurcation branch of f on N .
But, as we saw, there is no bifurcation branch of f on N . ♦

3.5 Synchrony branching lemma � two dimensional

case

In this section, we study the smallest case not included in the results of
the previous section, i.e., when the semisimple eigenvalue µ has multiplicity
m = 2 and k(N,µ) is even. We give conditions for the existence of bifurcation
branches with maximal or submaximal synchrony.

Let N be a regular network with valency ϑ and represented by the ad-
jacency matrix A, µ a semisimple eigenvalue of A and f : R× Rϑ × R→ R
a generic regular function with a bifurcation condition associated to µ such
that m = dim(ker(JNf )) = 2.

Taking into account the calculations in section 3.3, whenm = dim(ker(JNf ) =
2, we have the following vector �eld on the 1-sphere

h̃(u1, u2) = Qk(u1, u2)− 〈Qk(u1, u2), (u1, u2)〉(u1, u2),

where u21 + u22 = 1, k = k(N,µ). Transforming the variables (u1, u2) to the
angular variable θ, where (u1, u2) = (cos(θ), sin(θ)). The dynamical system
u̇ = h̃(u) is equivalent to the dynamical system θ̇ = Θ(θ) given by

Θ(θ) = cos(θ)q2(cos(θ), sin(θ))− sin(θ)q1(cos(θ), sin(θ)),

where Qk(u1, u2) = (q1(u1, u2), q2(u1, u2)). So, �nding zeros of h̃ is equiva-
lent to solve the equation

Θ(θ) = 0.

Theorem 3.5.1. Let N be a regular network with valency ϑ and adjacency

matrix A, ./ a balanced coloring of N and µ a semisimple eigenvalue of A.
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Let f : R × Rϑ × R → R be a regular function with a bifurcation condition

associated to µ and such that dim(ker(JNf )∩∆./) = 2. Assume that condition

(H1) holds for f and N/ ./. If ./ µ-maximal and k(N/ ./, µ) is even, then

generically there is a bifurcation branch of f on N with exact synchrony ./.

Proof. Let N be a regular network with valency ϑ, ./ a balanced coloring
of N and µ a semisimple eigenvalue of the adjacency matrix of N . Take
f : R × Rϑ × R → R to be a regular function with a bifurcation condition
associated to µ such that dim(ker(JNf ) ∩∆./) = 2.

LetA./ to be the adjacency matrix ofN/ ./. Thenm = dim(ker(J
N/./
f )) =

dim(ker(JNf ) ∩∆./) = 2 and µ is a semisimple eigenvalue of A./.
Performing the calculations of section 3.3 and of this section for the

network N/ ./ and the regular function f , we consider the function Θ(θ)
given by

Θ(θ) = cos(θ)q2(cos(θ), sin(θ))− sin(θ)q1(cos(θ), sin(θ)),

where Qk(u1, u2) = (q1(u1, u2), q2(u1, u2)) and k = k(N/ ./, µ). We look for
solutions of Θ(θ) = 0.

Suppose that ./ is µ-maximal and k(N/ ./, µ) is even. Then Qk(u1, u2) =
Qk(−u1,−u2) and

Θ(θ + π) = −Θ(θ).

By the intermediate value theorem, we know that it must exists θ̃ such
that Θ(θ̃) = 0. Consider ũ = (cos(θ̃), sin(θ̃)), then h̃(ũ) = 0. Assuming that
condition (H1) holds for f and N/ ./, we know that (3.6) holds for ũ. From
Proposition 3.3.6, there exists a bifurcation branch of f on N/ ./. Lifting
this bifurcation branch, we obtain a bifurcation branch of f on N with at
least synchrony ./. Since ./ is µ-maximal this bifurcation branch of f on N
has exact synchrony ./.

Returning to the beginning of this section. If k(N,µ) = 2, then

qi(u1, u2) = β

(
di11
2
u21 + di12u1u2 +

di22
2
u22

)
, (3.7)

where i = 1, 2, β = (f00 + 2µf01 + µf11 − µf1ϑ + µ2f1ϑ) and for l1, l2 = 1, 2

dil1l2 = 〈v∗i , vl1 ∗ vl2〉.

Theorem 3.5.2. Let N be a regular network with valency ϑ and adjacency

matrix A, ./ a balanced coloring of N and µ a semisimple eigenvalue of A.
Let f : R × Rϑ × R → R be a regular function with a bifurcation condition

associated to µ and such that dim(ker(JNf )∩∆./) = 2. Assume that condition

(H1a) holds for f and N/ ./ and k(N/ ./, µ) = 2.
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(i) If ./ is µ-submaximal of type 1. Then generically there is a bifurcation

branch of f on N with exact synchrony ./ if and only if

(d222 − 2d112)
2 ≥ 4d122(d111 − 2d212). (3.8)

(ii) If ./ is µ-submaximal of type 2. Then generically there is a bifurcation

branch of f on N with exact synchrony ./ if and only if

(2d212 − d111)(2d112 − d222) 6= 0. (3.9)

Proof. Let N be a regular network with valency ϑ and adjacency matrix
A, ./ a balanced coloring of N and µ a semisimple eigenvalue of A. Let
f : R × Rϑ × R → R be a regular function with a bifurcation condition
associated to µ and such that dim(ker(JNf ) ∩∆./) = 2 and k(N/ ./, µ) = 2.

LetA./ to be the adjacency matrix ofN/ ./. Thenm = dim(ker(J
N/./
f )) =

dim(ker(JNf ) ∩∆./) = 2 and µ is a semisimple eigenvalue of A./.
Performing the calculations of section 3.3 and of this section for the

network N/ ./ and the regular function f , we consider the function Θ(θ)
given by

Θ(θ) = cos(θ)q2(cos(θ), sin(θ))− sin(θ)q1(cos(θ), sin(θ)),

where Qk(u1, u2) = (q1(u1, u2), q2(u1, u2)) and k = k(N/ ./, µ). We look for
solutions of Θ(θ) = 0.
(i) Suppose that ./ is µ-submaximal of type 1 with a µ-simple component
./1. We denote by ./′1 the balanced coloring of N/ ./ that corresponds to the
balanced coloring ./1 of N . Now, we return to the calculations of section 3.3
for the network N/ ./ and we choose a basis v1, v2 of ker(J

N/./
f ) such that

v1 ∈ ∆./′1
.

Note that d211 = 0, for the following reason. From Theorem 3.4.1 and
dim(ker(J

N/./
f ) ∩∆./′1

) = 1, there exists a bifurcation branch of f on N/ ./

with synchrony ./′1. By 3.3.5, h̃(±1, 0) = 0. So d211 = 0. (This can be also
shown using the fact that ∂2g2

∂y1∂y1
(0, 0) = 0, since ∆./′1

is invariant.)
Using the expansion of q1 and q2 presented in (3.7), we have that

Θ(θ) = β

(
u1

(
d212u1u2 +

d222u
2
2

2

)
− u2

(
d111u

2
1

2
+ d112u1u2 +

d122u
2
2

2

))
,

where u1 = cos(θ), u2 = sin(θ) and β = (f00+2µf01+µf11−µf1ϑ+µ2f1ϑ) 6= 0
generically. We have that Θ(θ) = 0, if sin(θ) = 0, however those zeros
correspond to the known bifurcation branch of f on N/ ./ with synchrony
./′1. For sin(θ) 6= 0, we have that

Θ(θ) = 0⇔ (2d212 − d111)
(

cos(θ)

sin(θ)

)2

+ (d222 − 2d112)
cos(θ)

sin(θ)
− d122 = 0.



Synchrony branching lemma for regular networks 74

De�ne x = cos(θ)/ sin(θ) and consider the equation

(2d212 − d111)x2 + (d222 − 2d112)x− d122 = 0 (3.10)

that has a real solution if and only if (3.8) holds.
If (3.8) holds, then there exists a solution x̃ of (3.10). Since the image

of ]0, π[3 θ 7→ cos(θ)/ sin(θ) is the entire real line, there exists θ̃ such that
x̃ = cos(θ̃)/ sin(θ̃) and Θ(θ̃) = 0. Consider ũ = (cos(θ̃), sin(θ̃)), then h̃(ũ) =
0. Assuming that (H1a) holds for f and N/ ./, we know that (3.6) holds for
ũ. From Proposition 3.3.6, there exists a bifurcation branch of f on N/ ./.
This bifurcation branch has no synchrony in N/ ./, since ./ is µ-submaximal
and sin(θ̃) 6= 0. Lifting this bifurcation branch to N , we obtain a bifurcation
branch of f on N with exact synchrony ./.

Suppose by contradiction that there exists a bifurcation branch of f on
N with exact synchrony ./ and (3.8) does not hold. We have by Proposi-
tion 3.3.5 that there exists (u1, u2) ∈ S1 such that u2 6= 0 and h̃(u1, u2) = 0.
So x = u1/u2 is a real solution of equation (3.10), which is an absurd since
we are supposing that (3.8) does not hold. This proves (i).
(ii) Suppose that ./ is µ-submaximal of type 2 with µ-simple components
./1 and ./2. We denote by ./′1, ./

′
2 the balanced colorings of N/ ./ that

corresponds to the balanced colorings ./1, ./2 of N , respectively. In the
calculations of section 3.3 for the network N/ ./, we choose a basis v1, v2 of
ker(J

N/./
f ) such that v1 ∈ ∆./′1

and v2 ∈ ∆./′2
.

As before, we note that d211 = 0 and d122 = 0. So

Θ(θ) = β

(
u1u2

(
d212u1 +

d222u2
2

)
− u2u1

(
d111u1

2
+ d112u2

))
,

where u1 = cos(θ) and u2 = sin(θ). We have that Θ(θ) = 0, if sin(θ) = 0 or
cos(θ) = 0, however those zeros correspond to the known bifurcation branch
of f on N/ ./ with synchrony ./′1 or ./

′
2. For cos(θ), sin(θ) 6= 0, we have that

Θ(θ) = 0⇔ (2d212 − d111) cos(θ) = (2d112 − d222) sin(θ).

has a solution such that cos(θ), sin(θ) 6= 0 if and only if (3.9) holds.
If (3.9) holds, let θ̃ be a solution of the equation above, i.e., Θ(θ̃) =

0. Assuming that condition (H1a) holds for f and N/ ./, we know that
(3.6) holds for ũ = (cos(θ̃), sin(θ̃)). From Proposition 3.3.6, there exists a
bifurcation branch of f on N/ ./ which has no synchrony in N/ ./, since ./
is µ-submaximal and cos(θ), sin(θ) 6= 0. Lifting this bifurcation branch to
N , we obtain a bifurcation branch of f on N with exact synchrony ./.

Suppose by contradiction that there exists a bifurcation branch of f on
N with exact synchrony ./ and (3.9) does not hold. We have by Proposi-
tion 3.3.5 that there exists (u1, u2) ∈ S1 such that u1, u2 6= 0 and h̃(u1, u2) =
0. So (2d212 − d111)u1 = (2d112 − d222)u2 and u1, u2 6= 0. This is an absurd
since (2d212 − d111)(2d112 − d222) = 0. This proves (ii).
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Now, we study some examples where the trivial balanced coloring ./= is
maximal or submaximal. We see, in particular, that there are networks with
similar lattice structures but di�erent synchrony-breaking bifurcations.

Example 3.5.3. Consider the network N1 given by the adjacency matrix

A1 =


343 430 86 129
377 453 77 81
47 214 166 561
432 494 62 0

 .
The eigenvalues of A1 are the network valency 988, −24 and −1 with mul-
tiplicity 1, 1 and 2, respectively. They are semisimple. We consider the
trivial balanced coloring ./= and the bifurcations associated to the eigen-
value µ = −1 of A1. The network N1 does not have any non-trivial balanced
coloring. So the balanced coloring ./= is maximal and is (−1)-maximal.

Let f : R×R988×R→ R be a generic regular function with a bifurcation
condition associated to −1, i.e., f0− f1 = 0. We have that dim(ker(JN1

f )) =

2. Let v1 = (1,−1, 1, 0) and v2 = (8,−7, 0, 2) be a basis of ker(JN1
f ). Let

(v∗1, v
∗
2) be a basis of Range(JN1

f )⊥ such that 〈v∗i , vj〉 is 1 if i = j and 0
otherwise, for i, j = 1, 2. Then dabc 6= 0 for every a, b, c = 1, 2 and k(N1, µ) =
2 is even.

By Theorem 3.5.1, there is a bifurcation branch of f on N1 without
synchrony, if condition (H1) holds for f and N1. ♦

Example 3.5.4. Consider the network N2 given by the adjacency matrix

A2 =

2 0 0
0 2 0
1 1 0

 .
The eigenvalues of A2 are the network valency 2 and 0 with multiplicity 2
and 1, respectively. They are semisimple. We consider the trivial balanced
coloring ./= and bifurcations associated to the eigenvalue 2 of A2. The
network N2 has only one non-trivial balanced coloring: ./1 given by the
classes: {{1, 2}, {3}}. The balanced coloring ./= is 2-submaximal of type 1,
with 2-simple component ./1. See Figure 3.4.

Let f : R×R2 ×R→ R be a generic regular function with a bifurcation
condition associated to 2, i.e., f0+2f1 = 0. We have that dim(ker(JN2

f )) = 2.

We choose a basis of ker(JN2
f ) such that v1 ∈ ∆1. Let v1 = (1, 1, 1) ∈ ∆1

and v2 = (1,−1, 0). Let v∗1 = (1/2, 1/2, 0) and v∗2 = (1/2,−1/2, 0) that form
a basis of Range(JN2

f )⊥. Then

d112 = d211 = d222 = 0, d111 = d122 = d212 = 1.

Therefore k(N2, µ) = 2 and (3.8) holds.
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./0: {2}

./1: {2, 0}

./=: {2, 2, 0}

Figure 3.4: Balanced colorings of N2 and the eigenvalues of the adjacency
matrices associated to the corresponding quotient networks.

By explicit calculations, we can see that condition (H1a) holds whenever
f0λ + 2f1λ 6= 0 and f00 + 4f01 + 2f11 + 2f19 6= 0. Then there is a bifurcation
branch of f on N2 without synchrony, by Theorem 3.5.2 (i). ♦

Example 3.5.5. Consider the network #29 of [9] (Figure 3.1(a)) which will
be denoted by N29 and has the adjacency matrix

A29 =


0 0 0 2
0 0 0 2
0 1 1 0
0 1 1 0

 .
The eigenvalues of A29 are the network valency 2, −1 and 0 with multiplicity
1, 1 and 2, respectively, which are semisimple. The networkN29 has four non-
trivial balanced colorings ./1= {{1, 2}, {3, 4}}, ./2= {{1}, {2, 3, 4}}, ./3=
{{1, 2}, {3}, {4}} and ./4= {{1}, {2}, {3, 4}}. The balanced coloring ./= is 0-
submaximal of type 2 with 0-simple components ./3 and ./4. See Figure 3.5.

./0: {2}

./2: {2, 0} ./1: {2,−1}

./4: {2,−1, 0} ./3: {2,−1, 0}

./=: {2,−1, 0, 0}

Figure 3.5: Balanced colorings of network N29 and the eigenvalues of the
adjacency matrices associated to the corresponding quotient networks.

We consider the trivial balanced coloring ./=. Let f : R×R4×R→ R be
a generic regular function with a bifurcation condition associated to 0, i.e.,
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f0 = 0. We have that dim(ker(JN29
f )) = 2. We choose a basis of ker(JN29

f )
such that v1 ∈ ∆./3 and v2 ∈ ∆./4 . Let v1 = (1, 1,−1, 0) ∈ ∆./3 and
v2 = (1, 0, 0, 0) ∈ ∆./4 . Let v

∗
1 = (0, 0,−1, 1) and v∗2 = (1,−1, 0, 0) that form

a basis of Range(JN29
f )⊥. Then

d111 = −1, d112 = d122 = d211 = 0, d212 = 1, d222 = 1.

Therefore k(N29, µ) = 2 and (3.9) holds.
By explicit calculations, we can see that condition (H1a) holds, whenever

f0λ 6= 0 and f00 6= 0. Then there is a bifurcation branch of f on N29 without
synchrony, by Theorem 3.5.2 (ii). ♦

Remark 3.5.6. Note that the networks N51 and N29 share the same lat-
tice structure. However, the network N51 does not support a bifurcation
branch without synchrony, Example 3.3.8, and the network N29 supports a
bifurcation branch without synchrony, Example 3.5.5. ♦
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4. The Steady-state Lifting Bifurca-
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Valency on Networks
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Abstract

We consider coupled cell networks whose cells receive the same number of in-
puts which are said to be homogeneous. The coupled cell systems associated
with a network are the dynamical systems that respect the network struc-
ture. There are subspaces, determined solely by the network structure, that
are �ow-invariant under any such coupled cell system � the synchrony sub-
spaces. For a homogeneous network, one of the eigenvalues of the Jacobian
matrix of any coupled cell system at an equilibrium in the full-synchrony
subspace corresponds to the valency of the network. In this work, we study
the codimension-one steady-state bifurcations of coupled cell systems with
a bifurcation condition associated with the valency. We start by giving an
adaptation of the Perron�Frobenius Theorem for the eigenspace associated
with the valency showing that the dimension of that eigenspace equals the
number of the network source components. A network source component is a
strongly connected component of the network whose cells receive inputs only
from cells in the component. Each synchrony subspace determines a smaller
network called quotient network. The lifting bifurcation problem addresses
the issue of understanding when the bifurcation branches of a network can
be lifted from one of its quotient networks. We consider the lifting bifurca-

81
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tion problem when the bifurcation condition is associated with the valency.
We give su�cient conditions on the number of source components for the
answer to the lifting bifurcation problem to be positive and prove that those
conditions are necessary and su�cient for a class of networks.

Keywords: Coupled cell network, Steady-state bifurcation, Lifting bifur-
cation problem.

2010 Mathematics subject classi�cation: 37G10; 34D06; 05C50

4.1 Introduction

A coupled cell network is a directed graph with labels on the cells and edges,
which describe their types. A coupled cell system is a dynamical system
given by an admissible vector �eld for the network, that is, it must respect
the graph structure. More precisely, the admissible vector �elds for a network
determine that the dynamics of each cell is a�ected by its own state and
the state of the cells with an input edge directed to that cell. Moreover,
the admissible vector �elds must respect the type of the cells and edges.
In [21, 11], the authors formalize the concepts of coupled cell network and
coupled cell system and enlighten about their intrinsic relation. They prove
the existence of synchrony subspaces that are �ow invariant for any coupled
cell system. The synchrony subspaces are given by the state's equality of
some cells of the network. The restriction of a network admissible vector �eld
to a synchrony subspace is an admissible vector �eld for a smaller network,
called a quotient network. A quotient network is obtained by merging cells
that have the same state in the corresponding synchrony subspace. The
original network is said to be a lift of the smaller network.

We focus on homogeneous networks with asymmetric inputs, where all
cells have the same type and each cell has exactly one input of each type.
These kind of networks have been studied in [17, 18, 16, 1]. For each type
of input, there is an adjacency matrix that represents the inputs of that
type. Moreover, the Jacobian matrix of an admissible vector �eld at a full-
synchrony point can be expressed using the adjacency matrices of the net-
work, and it has a constant row-sum called the valency of the network.
Thus, the valency of the network is an eigenvalue of the Jacobian matrix. In
this paper, we study codimension-one steady-state bifurcations for coupled
cell systems of homogeneous networks where the bifurcation condition corre-
sponds to the network valency and address the respective lifting bifurcation
problem.

Bifurcation problems on coupled cell systems have been previously stud-
ied by di�erent authors, see for example [13, 2, 12, 9, 8, 20]. These include
speci�c network examples, classes of networks that have an additional struc-
ture such as (partial) symmetries or a feed-forward structure or even some
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conditions about the bifurcation condition which need to be veri�ed in a
case-by-case scenario. Here, we address a bifurcation problem that it is
transverse to every homogeneous network with asymmetric inputs. We �rst
describe the kernel of generic coupled cell systems with a bifurcation condi-
tion corresponding to the network valency. This is a technical step where we
use a novel recursive argument on the number of cells of the network. Af-
ter that, the standard methods of bifurcation theory are applied to describe
the bifurcation branches. Next, we analyze the lifting bifurcation problem
which has been studied in [2, 14, 7, 16, 19]. We observe that this problem
is closely related with the study of synchrony-breaking bifurcations, since
bifurcation branches which do not break the synchrony associated with a
quotient network are lifted from that quotient network. Despite we give a
complete description of the bifurcation branches for every generic coupled
cell system with a bifurcation condition associated to the network valency,
we present examples suggesting that it is not trivial to fully understand the
lifting bifurcation problem. Nevertheless, we are able to give a complete
answer to the lifting bifurcation problem for a class of networks. Below, we
make this discussion more precise.

In order to study the bifurcation problem where the bifurcation condition
corresponds to the network valency, we �rst give an adaptation of the Perron-
Frobenius Theorem to generic coupled cell systems. For real squares matrices
with non-negative entries and constant row-sum, the Perron-Frobenius The-
orem proves that the row-sum is the greater eigenvalue in absolute value
and it describes the eigenspace associated with that eigenvalue. As every
adjacency matrix of an homogenous network has constant row-sum 1 and
entries 0 or 1, this result applies to the homogenous network adjacency ma-
trices. The Jacobian matrix of a coupled cell system at a full synchrony
subspace is not in general non-negative, but it has constant row-sum equal,
that we call the network valency. Then the valency of the network is an
eigenvalue of the Jacobian matrix. In this paper, we describe the eigenspace
corresponding to the valency of the network for generic coupled cell system
in Propositions 4.5.1, 4.5.5 and 4.5.6. The dimension of this eigenspace is
equal to the number of source components in the network. Every network
can be partitioned into its strongly connected components. We say that a
component is a source if every input targeting a cell in that component starts
in a cell also inside that component. After this �rst step, we use well-known
methods of bifurcation theory to describe the codimension-one steady-state
bifurcations of generic coupled cell systems where the bifurcation condition
corresponds to the network valency, see Proposition 4.5.7. In particular, we
show that there exists a synchrony-breaking bifurcation branch if and only
if the network has at least two source components.

Given a network and a lift network, the solutions (and the bifurcation
branches) of a coupled cell system in the quotient network lift to solutions
of the corresponding coupled cell system in the lift network. The lifting
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bifurcation problem addresses the issue of whether all bifurcation branches
occurring in a coupled cell system of the lift network are lifted from the
smaller network. In the last part of this paper, we study the lifting bifurca-
tion problem of generic coupled cell systems where the bifurcation condition
corresponds to the network valency. We obtain su�cient conditions, given
by the number of source components in the lift and quotient network, to an-
swer the lifting bifurcation problem, Proposition 4.6.1. More precisely, if the
lift and quotient networks have the same number of source components then
all the bifurcation branches on the lift network are lifted from the quotient
network. On the other hand, if the quotient network has exactly one source
component and the lift network has at least two source components, then
there is a synchrony-breaking bifurcation branch on the lift network which is
not lifted from the quotient network. This result is expected, since the num-
ber of source components equals the dimension of the kernel of the Jacobian
matrix at a full synchronous point associated to a coupled cell system where
the bifurcation condition corresponds to the network valency. Thereby, it
would be expected that if the number of source components increases for the
lift network, then some bifurcation branch on the lift network would not be
lifted from the quotient network. We present, however, two examples where
this does not hold (Examples 4.6.3 and 4.6.4). Despite the number of source
components increases in those examples, every bifurcation branch in each lift
network is lifted from the respective quotient network. In one of the exam-
ples, a condition on the partial symmetries of the quotient network, called
transitive, is broken. In the other example, a condition on the connectivity
of the lift network, called backward connected, is broken. Networks that
are backward connected and transitive have received an extra attention in
[15, 3]. Restricting the lifting bifurcation problem to transitive quotient net-
works and backward connected lift networks, we prove that every bifurcation
branch on the lift network is lifted from the quotient network if and only if
the quotient and lift network have the same number of source components,
Theorem 4.6.5.

The structure of this paper is the following. In Section 4.2, we recall some
notions about coupled cell networks such as quotient network, backward
connected network and transitive network. In Section 4.3, we review the
de�nition of coupled cell systems. In Section 4.4, we describe coupled cell
systems having a bifurcation condition corresponding to the network valency
and the respective lifting bifurcation problem. In Section 4.5, we study
the codimension-one steady-state bifurcation problem for those coupled cell
systems. In Section 4.6, we discuss the lifting bifurcation problem.
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1 2 3

4 5 6

Figure 4.1: A homogeneous network with asymmetric inputs represented by
σ1 = [1 2 3 6 4 5] and σ2 = [1 2 3 1 2 3]. The strongly connected components
of this network are {1}, {2}, {3} and {4, 5, 6}.

4.2 Coupled cell networks

In this section, we recall de�nitions and results concerning coupled cell net-
works, connectivity of networks, balanced colorings, quotient networks and
network �brations. We follow the presentation given in [21, 11, 17, 6].

De�nition 4.2.1. A network N is de�ned by a directed graph with a �nite
set of cells C and �nite sets of directed edges divided by types E1, . . . , Ek
such that each edge e ∈ Ei starts in a cell s and targets a cell t, where
1 ≤ i ≤ k and s, t ∈ C. We denote by |N | the number of cells in the network
N . In this work we will assume that all networks are homogeneous with

asymmetric inputs in the sense that each cell c is target by exactly one edge
of each type. ♦

Graphically, we use di�erent symbols to distinguish the edge types. As
an example, the network in Figure 4.1 has two types of edges.

Let N be a network and E1, . . . , Ek the sets of edges in N . By relabeling
the cells, we can assume that C = {1, . . . , n}, with n = |N |.

Given 1 ≤ a1, . . . , an ≤ m, we denote by σ = [a1 . . . an] the function
σ : {1, . . . , n} → {1, . . . ,m} such that σ(j) = aj , 1 ≤ j ≤ n. The identity
function on {1, . . . , n} is denoted by σ0, i.e., σ0(j) = j, for 1 ≤ j ≤ n.

As pointed out by Rink and Sanders [17], a homogeneous network with
asymmetric inputs can be represented using a collection of functions. For
each 1 ≤ i ≤ k, consider the function σi = [si(1) . . . si(n)] such that there
exists an edge e ∈ Ei from si(c) to c for 1 ≤ c ≤ n. In fact a homogeneous
network with asymmetric inputs is uniquely determined by the functions
(σi)

k
i=1 and we say that N is represented by (σi)

k
i=1. See the network in

Figure 4.1.
A network can be also represented by its adjacency matrices. For each

1 ≤ i ≤ k, the n×n-matrix Ai is the adjacency matrix of type i, if (Ai)c σi(c) =
1 and (Ai)c c′ = 0, when σi(c) 6= c′. A network N is uniquely represented by
its adjacency matrices (Ai)

k
i=1. We denote the identity matrix by A0.

Given cells c and d of N , we say that c and d are connected if there exists
a sequence of cells c0, c1, . . . , cl−1, cl such that c0 = c, cl = d and there is an
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1

2 3

Figure 4.2: A strongly connected network represented by σ1 = [3 2 1], σ2 =
[1 3 2] and σ3 = [2 1 3] which is backward connected for every cell.

edge from cj−1 to cj or an edge from cj to cj−1, for every 1 ≤ j ≤ l. In this
work, we always consider connected networks, i.e., networks where every two
distinct cells are connected.

De�nition 4.2.2. Let N be a network. A path in N from the cell c to the
cell d is a sequence of cells c0, c1, . . . , cl−1, cl such that c0 = c, cl = d and
there is an edge from cj−1 to cj , for every 1 ≤ j ≤ l. We say that cells c and
d are strongly connected, if there are paths from c to d and from d to c. A
subset B of cells is a strongly connected component of N , if any two distinct
cells c, d ∈ B are strongly connected and B is a maximal subset of strongly
connected cells, i.e., for every strongly connected cells c ∈ B and d we have
that d ∈ B. ♦

The set of cells of a network can be partitioned into its strongly connected
components, see e.g. [5, Theorem 2.4].

In the network example of Figure 4.1, the strongly connected components
are {1}, {2}, {3} and {4, 5, 6}.

De�nition 4.2.3. LetN be a network. The networkN is strongly connected,
if N has exactly one strongly connected component given by the set of cells.
A strongly connected component S is a source component, if every edge
targeting a cell of S starts in a cell of S. We denote by s(N) the number of

source components of N . ♦

The network in Figure 4.2 is an example of a strongly connected net-
work and its unique source component is the set of cells. The networks in
Figure 4.1 and Figure 4.3 have three source components: {1}, {2} and {3}.

De�nition 4.2.4. A network N is backward connected for a cell c, if for
every other cell c′ there exists a path from c′ to c. A network N is backward
connected if it is backward connected for some cell. ♦

Every strongly connected network is backward connected for every cell.
Figure 4.2 shows an example of a backward connected network. The network
in Figure 4.1 is backward connected for the cells 4, 5 and 6. On the other
hand, Figure 4.3 shows an example of a network which is not backward
connected.
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1 2 3

4 5

Figure 4.3: A network represented by σ1 = [1 2 3 1 3] and σ2 = [1 2 3 2 2] with
three source components. This network is not backward connected, as there
is no path from cell 4 to cell 5 and vice versa.

1 2

4 5 6

Figure 4.4: The quotient network of the network in Figure 4.1 associated with
the balanced coloring ./ such that 2 ./ 3. This quotient network is backward
connected, since the network in Figure 4.1 is also backward connected, but
it is not transitive.

Let N be a network represented by the functions (σi)
k
i=1 such that |N | =

n. A coloring of the set of cells of N is an equivalence relation on the set
of cells. A coloring ./ is balanced if σi(c) ./ σi(c′), for every 1 ≤ i ≤ k and
1 ≤ c, c′ ≤ n such that c ./ c′. It follows from [18, Proposition 7.2] that
this de�nition coincides with the de�nition of balanced coloring given in [11,
De�nition 4.1]. Given a subset of cells S ⊆ {1, . . . , n}, we denote by [S]./
the set of ./-classes containing the cells in S, i.e., [S]./ = {[c]./ : c ∈ S}.

De�nition 4.2.5 ([11, Section 5]). Let N be a network represented by the
functions (σi)

k
i=1 such that |N | = n and ./ a balanced coloring in N . The

quotient network of N associated to ./ is the network where the set of cells
are the ./-classes and the edges are represented by the functions (σ./i )ki=1

such that
σ./i ([c]./) = [σi(c)]./, 1 ≤ i ≤ k, 1 ≤ c ≤ n.

We denote the quotient network by N/ ./. We also say that a network L is
a lift of N , if N is a quotient of L for some balanced coloring in L. ♦

The networks in Figures 4.4 and 4.5 are examples of quotient networks
of the networks described in Figures 4.1 and 4.3, respectively.

Remark 4.2.6. Let L be a lift of the network N . Trivially, we have the
following relation between the number of source components of N and L:
s(N) ≤ s(L). In particular, if L is backward connected, then N is also
backward connected. ♦
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1 2

5

Figure 4.5: The quotient network of the network in Figure 4.3 associated
with the balanced coloring ./ such that 1 ./ 3 and 4 ./ 5. This network is
transitive and backward connected for the cell 5.

Next, we de�ne network �brations following [6, De�nition 2.1.4] and [15,
Proposition 5.3]. A network �bration is a function between two networks
which respects the edges and their types.

De�nition 4.2.7. Let N and N ′ be the networks with the set of cells C, C ′

and represented by the functions (σi)
k
i=1 and (σ′i)

k
i=1. A function ϕ : C → C ′

is a network �bration from N to N ′, if

ϕ ◦ σi = σ′i ◦ ϕ, i = 1, . . . , k.

We denote a network �bration from N to N ′ by ϕ : N → N ′. We say
that N and N ′ are equal and write that N = N ′ if there exists a bijective
network �bration ϕ : N → N ′. ♦

If N is a network and ./ a balanced coloring of the set of cells of N , the
network �bration induced by ./ is the function ϕ./ : N → N/ ./ given for
every cell c of N by

ϕ./(c) = [c]./.

Example 4.2.8. Let N be the network in Figure 4.5. There are three
network �brations from N to itself: ϕ1 = [111]; ϕ2 = [222] and ϕ3 = [125].

Let L the network in Figure 4.3 and ./ the balanced coloring in L such
that 1 ./ 3 and 4 ./ 5. The network L is a lift ofN = L/ ./ and ϕ./ = [12155]
is a network �bration from L to N , where 1, 2 and 5 are representatives of
the classes [1]./, [2]./ and [5]./, respectively. ♦

Remark 4.2.9. Let ϕ : N → N ′ be a network �bration between two net-
works N and N ′. If S is a source component of N , then ϕ(S) is a source
component of N ′. This follows from the fact that each path in the network
N is projected by the network �bration ϕ : N → N ′ into a path in the
network N ′. ♦

The evaluation of a network �bration at each cell of a path can be deter-
mined by the evaluation of the network �bration at the end cell of that path.
Since for a backward connected network there is a cell such that there is a
path from every other cell to it, the network �brations from such network
are uniquely determined by their evaluation at that cell:
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Remark 4.2.10. Let ϕ : N → N ′ be a network �bration between the
networks N and N ′. If N is backward connected for c, then the network
�bration is uniquely determined by its evaluation at c, ϕ(c). ♦

The self-�brations of a network are an indicator of the partial symmetries
of that network. Next, we de�ne a class of networks with at least one self-
�bration for each cell.

De�nition 4.2.11. Let N be a network and c a cell of N . We say that
N is transitive for c if for every cell d in N , there is a network �bration
φd : N → N such that φd(c) = d. We say that N is transitive, if it is
transitive for some cell. ♦

The network in Figure 4.5 is an example of a transitive network, since
it is transitive for the cell 5, see Example 4.2.8. The network in Figure 4.4
is not transitive, because there are only three self-�brations. In [15], the
authors have de�ned fundamental networks. A network is fundamental if
and only if it is backward connected and transitive, see [3, Theorem 5.16].
Figure 4.5 is an example of a fundamental network.

4.3 Coupled cell systems

In this section, we recall concepts and results about coupled cell systems, syn-
chrony subspaces and conjugacies induced by network �brations, following
[21, 11, 6]. We restrict the phase space of each cell to be the one-dimensional
real space, however the de�nitions and results are valid for any di�erential
manifold, see [21, 11, 6].

Let N be a network represented by the functions (σi)
k
i=1 and |N | = n.

For each cell c of the network, we associate a coordinate xc ∈ R. We say that
F : Rn → Rn is an admissible vector �eld for N , if there is f : R× Rk → R
such that

(F (x))c = f(xc, xσ1(c), . . . , xσk(c)),

for every cell c of N . The admissible vector �elds for N are uniquely de�ned
by such function f : R × Rk → R. We denote by fN the admissible vector
�eld for N de�ned by f .

Let f : R×Rk → R be a smooth function. A coupled cell system associ-
ated to a network N is a system of ordinary di�erential equations

ẋ = fN (x), x ∈ Rn.

Let (Ai)
k
i=1 be the adjacency matrices of N . The Jacobian matrix of fN

at the origin is

JNf := (DfN )0 =

k∑
i=0

fiAi,
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where

fi :=
∂f

∂xi
(0, 0 . . . , 0),

for 0 ≤ i ≤ k and A0 is the identity n × n matrix. Since (1, . . . , 1) is an
eigenvalue of A0, . . . , Ak, then

JNf

1
...
1

 =

(
k∑
i=0

fi

)1
...
1


and

∑k
i=0 fi is always an eigenvalue of JNf that we call the network valency.

A polydiagonal subspace is a subspace of Rn given by the equalities of
some cell coordinates. Given a coloring ./ on the set of cells of N , the
polydiagonal subspace associated to ./ is

∆./ := {x : c ./ d⇒ xc = xd} ⊆ Rn.

We say that a polydiagonal subspace ∆ ⊆ Rn is a synchrony subspace

of a network N if the polydiagonal subspace is invariant by any admissible
vector �eld of N , i.e., fN (∆) ⊆ ∆, for every f : R × Rk → R. There is
a one-to-one correspondence between balanced colorings ./ and synchrony
subspaces ∆./, see [11, Theorem 4.3]. More speci�cally, the polydiagonal
∆./ is a synchrony subspace of N if and only if ./ is a balanced coloring.
For homogeneous networks, the coloring with only one color is always bal-
anced and the corresponding synchrony subspace is called the full-synchrony
subspace:

∆0 := {(x, . . . , x) ∈ Rn : x ∈ R}.

Since a synchrony subspace ∆./ is invariant by every admissible vector
�eld fN , the coupled cell systems of N can be restricted to ∆./. The re-
stricted systems are coupled cell systems of N/ ./ given by admissibles fN/./,
see [11, Theorem 5.2].

Let N ′ be a network and n′ = |N ′|. Following [6], every network �bration
ϕ : N → N ′ induces a map between the phase spaces of those networks,
Pϕ : Rn′ → Rn such that

(Pϕ(x))c = xϕ(c), 1 ≤ c ≤ n.

Moreover, the coupled cell systems de�ned by fN and fN
′
are conjugated

Pϕ ◦ fN ′ = fN ◦ Pϕ.

Any solution y(t) ∈ Rn′ of ẏ = fN
′
(y), induces a solution x(t) = Pϕ(y(t))

of ẋ = fN (x). In particular, for any balanced coloring ./ in N , the solutions
of every coupled cell system on N/ ./ are lifted by Pϕ./ to solutions of the
corresponding coupled cell system on N and those solutions belong to the
synchrony subspace ∆./.
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4.4 Steady-state bifurcations

In this section, we review some concepts related to steady-state bifurcations
on coupled cell systems and the lifting bifurcation problem is formulated.

Let f : R× Rk × R→ R be a one-parameter family of smooth functions
and consider the family of coupled cell systems, depending on the parameter
λ,

ẋ = fN (x, λ) x ∈ Rn, λ ∈ R. (4.1)

Assume that the origin is an equilibrium point of (4.1) for every λ ∈ R,
i.e. fN (0, 0, . . . , 0, λ) = 0 for every λ ∈ R. If the Jacobian matrix of fN

at (x, λ) = (0, 0), JNf := (DfN )(0,0), is invertible, then the origin is the
unique equilibrium point of (4.1) in a su�cient small neighborhood of the
origin in Rn × R. We say that a steady-state bifurcation occurs if there
exists an equilibrium point of (4.1) di�erent from the origin in any small
neighborhood of the origin in Rn × R. Hence a necessary condition for a
steady-state bifurcation to occur is that JNf is non-invertible.

Recall that the network valency
∑k

i=0 fi is an eigenvalue of JNf . In this
paper, we study steady-state bifurcation where the bifurcation condition is

given by the network valency. Let V(N) be the set of smooth functions
f : R× Rk × R→ R de�ned by:

V(N) :=

{
f :

k∑
i=0

fi = 0, f(0, 0, . . . , 0, λ) = 0, λ ∈ R

}
.

Since our study is local, we recall the de�nition of germ. Let U1, U2 ⊂ R
be open neighborhoods of 0. We say that two smooth functions b1 : U1 → Rn
and b2 : U2 → Rn are germ equivalents if b1(λ) = b2(λ), for every λ ∈ U1∩U2.
Given a smooth function b, we use the term germ b to refer to a representative
element of the equivalence class of b with respect to germ equivalence.

Let f ∈ V(N). We say that a germ b : U → Rn is an equilibrium branch

of f on N , if
fN (b(λ), λ) = 0,

for every λ ∈ U . As f(0, 0, . . . , 0, λ) = 0, we have that x(λ) = (0, . . . , 0) is
an equilibrium branch of f on N , called the trivial branch of f on N . The
equilibrium branches of f on N di�erent from the trivial branch are called
the bifurcation branches of f on N .

As usual in bifurcation theory, the study of the steady-state bifurca-
tion problem is posed for a large class of functions called generic functions.
The generic functions are de�ned using non-degenerated conditions. A non-

degenerated condition is given by a polynomial p on some partial derivatives
of a function evaluated at the bifurcation point. Given a function f , we
denote by p(f) the evaluation of the polynomial p at that function and we
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say that a function f satis�es the non-degenerated condition given by p, if
p(f) 6= 0.

Given f ∈ V(N), the value of its �rst partial derivative with respect to
x0 at the origin, f0, is given by its �rst partial derivatives with respect to xi
at the origin, fi, for i = 1, . . . , k, Also, partial derivatives of any order l > 0
with respect to λ at the origin, ∂lf/∂λl, are zero. Hence, we do not use
non-degenerated conditions which depend on f0 and ∂lf/∂λl for any l > 0.
We say that an assertion holds for generic functions in V(N), if there exists
a �nite number of non-degenerated conditions such that this assertion holds
for any function in V(N) satisfying those non-degenerated conditions.

Let N be a network and L a lift of N . If fN is a coupled cell system on
N with a bifurcation condition corresponding to the network valency, then
fL is a coupled cell system on L with a bifurcation condition corresponding
to the network valency. Thus

V(N) = V(L).

In the end of the previous section, it was stated how to lift solutions
of a coupled cell system associated to N to the corresponding coupled cell
system associated to L using network �brations. In the same way, we can
lift bifurcation branches of a coupled cell system to another using network
�brations.

De�nition 4.4.1. Let N be a network, L a lift of N and f ∈ V(N). We
say that a bifurcation branch b of f on L is lifted from N , if there exists a
network �bration ϕ : L → N and a bifurcation branch b′ of f on N such
that

b = Pϕ(b′). ♦

Given a network N and a lift network L of N , the lifting bifurcation

problem asks when every bifurcation branch of L is lifted from N .

4.5 Steady-state bifurcations associated to the va-

lency

In this section, we study the bifurcations branches of (4.1) where f ∈ V(N)
and N is a homogeneous network with asymmetric inputs. We start by
describing the kernel of the Jacobian matrix JNf , when the network N is
strongly connected. By the Perron-Frobenius Theorem ([5, Theorem 0.3]),
the kernel of JNf is equal to the full-synchrony subspace, when the network
N is strongly connected, f ∈ V(N) and fi > 0 for every 1 ≤ i ≤ k. We show
next that this holds for generic functions f ∈ V(N).

Proposition 4.5.1. Let N be a strongly connected network. For generic

f ∈ V(N), the kernel of JNf is the full-synchrony subspace

ker(JNf ) = ∆0.
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1 2

34

Figure 4.6: A strongly connected network.

We will prove this result by recursion on the number of cells. In order to
do the recursive step, we create a new network with one cell less. Before the
proof, we present a concrete example to illustrate how the recursive step is
done.

Example 4.5.2. Let N be the network in Figure 4.6 and f : R×R2×R→
R. The network N is represented by (σ1, σ2), where σ1 = [4 1 3 3] and
σ2 = [2 3 2 2]. Recall that σ0 = [1 2 3 4] corresponds to the hidden
self-dependence.

The Jacobian matrix of fN at the origin is

JNf =


f0 f2 0 f1
f1 f0 f2 0
0 f2 f0 + f1 0
0 f2 f1 f0

 ,
where each fi is the partial derivative of f with respect to xi at the origin.
The eigenvalues of JNf are f0 +f1 +f2, f0 (twice) and f0−f2. Assume f has
a bifurcation condition associated with the valency, that is f0 + f1 + f2 = 0
and f satis�es the non-degenerated conditions f1 + f2 6= 0 and f1 + 2f2 6= 0.
Then the kernel of JNf is the eigenspace associated with f0 + f1 + f2, that is,

ker(JNf ) = ∆0.

For concrete coupled cell systems, we can explicitly calculate the required
non-degenerated conditions in Proposition 4.5.1 by computing the eigenval-
ues of JNf . Another approach that we present, goes through considering a
new network with one less cell such that we can derive the kernel of the
Jacobian matrix on the origianl network using the kernel of the Jacobian
matrix on this new network.

Suppose that f ∈ V(N), i.e., f0 + f1 + f2 = 0. Then the kernel of JNf is
characterized by the following system:

f0 f2 0 f1
f1 f0 f2 0
0 f2 f0 + f1 0
0 f2 f1 f0



v1
v2
v3
v4

 = 0⇔


f0v1 + f2v2 + f1v4 = 0

f1v1 + f0v2 + f2v3 = 0

f2v2 + (f0 + f1)v3 = 0

f2v2 + f1v3 + f0v4 = 0

.
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Assume the non-degenerated condition f0 = −f1 − f2 6= 0. From the last
equality in the previous system, we have that

v4 = −f2v2 + f1v3
f0

.

Replacing v4 in the other equalities and multiplying by f0, we obtain the
system 

f20 v1 + (f0f2 − f1f2)v2 − f21 v3 = 0

f0f1v1 + f20 v2 + f0f2v3 = 0

f0f2v2 + (f20 + f0f1)v3 = 0

. (4.2)

As the variable v4 does not appear in (4.2), we remove this cell from
the network N . In order to apply a recursive argument on the number of
cells, we �nd a network without cell 4 such that (4.2) de�nes the kernel of
the Jacobian matrix for a coupled cell system of this new network with a
bifurcation condition associated to the valency. We use the rules described
on Table 4.1 to remove cell 4 and de�ne the new network.

Fixing the cell n = 4 of N , we de�ne the networkM with 3 cells, {1, 2, 3}
and 8 edge's types, (γ(0,1), γ(0,2), γ(1,0), γ(1,1), γ(2,1), γ(2,0), γ(2,1), γ(2,2)). The
edges of M are given by the rules presented in Table 4.1. See Figure 4.7.
Following the �rst row of the table, the cell 1 receives in N an input of type
1 from the cell 4 and the cell 4 receives in N a self-input of type 0, then
the cell 1 receives in M a self-input of type (1, 0). Following the second row,
the cells 1 and 4 receive in N an input of type 2 from the cell 2 , then the
cell 1 receives in M a self-input of type (2, 2). Following the third row, the
cell 1 receives in N an input of type 1 from the cell 4 and the cell 4 receives
in N an input of type 1 from the cell 3, then the cell 1 receives in M an
input of type (1, 1) from the cell 3. Following the fourth row, the cell 1
receives in N an input of type 2 from the cell 2 and the cell 4 receives in N
a self-input of type 0, then the cell 1 receives in M an input of type (2, 0)
from the cell 2. Doing the same for the other cells and inputs, we see that
γ(0,1) = γ(0,2) = γ(2,1) = γ(2,2) = [1 2 3], γ(1,0) = [1 1 3], γ(1,1) = [3 2 3],
γ(1,2) = [2 2 3] and γ(2,0) = [2 3 2]. Note that the network M is also strongly
connected.

Looking to the system of equations (4.2), we see now that the type of
inputs (i, j) adapt to that system. We �nd a coupled cell system gM such
that the system (4.2) corresponds to the kernel of JMg . We de�ne the function
g : R× R8 × R→ R as follows:

g(x00, x01, x02, x10, x11, x12, x20, x21, x22, λ) =

f(f(x00,−x01,−x02, λ), f(x10,−x11,−x12, λ), f(x20,−x21,−x22, λ), λ),
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N M

c n
i

j c (i,j)

c

n b

a
i

j

c (i,j)

cc n b
i j

c b
(i,j)

c

n

a
i

j

c a
(i,j)

Table 4.1: Given an n-cell network N with set of cells {1, . . . , n}
and k types of edges {1, . . . , k}, we de�ne the (n-1)-cell network
M with set of cells {1, . . . , n − 1} and k2 + 2k types of edges
{(0, 1), . . . , (0, k), (1, 0), (1, 1), . . . , (1, k), . . . , (k, 0), (k, 1), . . . , (k, k)} us-
ing the rules given by the table. Each edge in the table is annotated with
its type and the cells a, b, c ∈ {1, . . . , n − 1}. Given a cell c 6= n in N , the
left hand side of the table displays the edge of type i that targets c and
the edge of type j that targets n where 0 ≤ i, j ≤ k. Depending on the
con�guration of the left hand side of the table, we give the corresponding
edge in M of type (i, j) that targets c.
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where f ∈ V(N). The partial derivative of g with respect to xij at the origin
is {

gi0 = fif0, i = 0, 1, 2

gij = −fifj , i = 0, 1, 2, j = 1, 2
.

Note that gM has a bifurcation condition associated with the valency of M :

2∑
i,j=0

gij = f0

2∑
i=0

fi −
2∑
j=1

fj

2∑
i=0

fi = 0.

The Jacobian matrix of JMg at the origin is

JMg =

a+ g10 g12 + g20 g11
g10 a+ g11 + g12 g20
0 g20 a+ g10 + g11 + g12

 ,
where a = g00 + g01 + g02 + g21 + g22. Recalling that f ∈ V(N) and so
f0 + f1 + f2 = 0,

JMg =

 f20 f2f0 − f1f2 −f1f1
f1f0 f20 f2f0

0 f2f0 f20 + f1f0

 .
Thus (v1, v2, v3) ∈ ker(JMg ) if and only if (v1, v2, v3) satis�es the system
(4.2). We could further reduce the network M . After two reductions, we
would obtain a network with only one cell where the kernel of the Jacobian
matrix of a coupled cell system with a bifurcation condition associated to the
valency is the full synchrony subspace. Instead, we assume that ker(JMg ) =
{(x, x, x) : x ∈ R}, for generic functions g ∈ V(M). Therefore,

(v1, v2, v3, v4) ∈ ker(JNf )⇔

(v1, v2, v3) ∈ ker(JMg )

v4 = −f2v2 + f1v3
f0

⇔ v1 = v2 = v3 = v4.

Thus ker(JNf ) = ∆0, for generic functions f ∈ V(N). ♦

Proof of Proposition 4.5.1. Let N be a strongly connected network with n
cells and represented by (σi)

k
i=1 and f ∈ V(N) generic. Recall that σ0 is

the identity function on {1, . . . , n} and it corresponds to the hidden self-
dependence. We recursively prove that

ker(JNf ) = {(x, . . . , x) ∈ Rn : x ∈ R}.

Suppose that the network N has one cell, n = 1. Since
∑k

i=0 fi = 0, we
have that JNf = [0] and ker(JNf ) = R = ∆0.
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1 2

3

(0,1),(0,2),
(1,0),(2,1),
(2,2) (1,0)

(1,2),(2,0)
(0,1),(0,2),
(1,1),(1,2),
(2,1),(2,2)

(1,1) (2,0)

(0,1),(0,2),
(1,0),(1,1),
(1,2),(2,1),
(2,2)

Figure 4.7: A three-cell homogeneous network with asymmetric inputs ob-
tained from the network in Figure 4.6 by removing cell 4 and applying the
rules in Table 4.1. The edges are annotated with their edge types and edges
with more than one label represent multiple edges. This network is strongly
connected.

Suppose that the network N has m + 1 cells {1, . . . ,m, n} with n =
m + 1. Since f ∈ V(N), we have that ker(JNf ) is nontrivial. Take v =

(v1, . . . , vm, vn) ∈ Rn such that JNf v = 0. Denote by Jc d the (c, d) entry of
JNf , i.e.,

Jc d :=
∑

σi(c)=d

fi.

Thus, using this notation, we have that

JNf v = 0⇔


J1 1v1 + J1 2v2 + · · ·+ J1 nvn = 0

...

Jn 1v1 + Jn 2v2 + · · ·+ Jn nvn = 0

. (4.3)

Since N is strongly connected, the cell n receives an edge from some
other cell. Thus Jn n 6=

∑k
i=0 fi and so, we can generically assume on f that

Jn n =

k∑
σi(n)=n

fi = −
k∑

σi(n) 6=n

fi 6= 0.

Moreover,

vn = −Jn 1v1 + Jn 2v2 + · · ·+ Jnmvm
Jn n

.

Replacing vn in the �rst m equations of the system (4.3), we obtain

m∑
d=1

(Jn nJc d − Jc nJn d)vd = 0, 1 ≤ c ≤ m.
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Let J ′ be the m×m-matrix with entries

J ′c d = Jn nJc d − Jc nJn d,

where 1 ≤ c, d ≤ m. Next, we de�ne a network M with m cells and a
function g ∈ V(M) such that

JMg = J ′.

In order to remove cell n from network N and de�ne the network M , we
use the rules presented in Table 4.1. The type of edges in M are (i, j) where
0 ≤ i, j ≤ k and (i, j) 6= (0, 0), and the edges of type (i, j) are represented
by the function γi j . Following Table 4.1, each function γi j is given by

γi j(c) =


c, σi(c) = σj(n) = n

c, σi(c) 6= n, σj(n) 6= n

σj(n), σi(c) = n, σj(n) 6= n

σi(c), σi(c) 6= n, σj(n) = n

,

where 1 ≤ c ≤ m and each case corresponds to the corresponding row in the
table.

Each path in N induces a path in M by removing any transition by cell
n. Therefore M is strongly connected, because N is strongly connected.

In order to use a recursive argument, we de�ne now a function g such
that g ∈ V(M) and J ′ = JMg . Let g : R×R(k+1)2−1×R→ R be the function

g(x00, . . . , x0k, x10, . . . , x1k, . . . , xk0, . . . , xkk, λ) =

f(f(y00, . . . , y0k, λ), f(y10, . . . , y1k, λ), . . . , f(yk0, . . . , ykk, λ), λ),

where f ∈ V(N), yij = βjxij , βj = 1, if σj(n) = n, and βj = −1, if
σj(n) 6= n, for 0 ≤ i, j ≤ k. For 1 ≤ i, j ≤ k, we have that

gij =
∂g

∂xij
(0, 0 . . . , 0, 0) = βjfifj .

Now, we prove that g satis�es the required conditions: J ′ = JMg and
g ∈ V(M). Let 1 ≤ c, d ≤ m. If c 6= d, then

(JMg )c d =
∑

γi j(c)=d

gij =
∑

σi(c)=d

∑
σj(n)=n

fifj −
∑

σi(c)=n

∑
σj(n)=d

fifj = J ′c d.

Recall that
∑

σi(c)<n

fi +
∑

σi(c)=n

fi = 0 as f ∈ V(N). Then

(
JMg
)
c c

=
∑

σi(c)=c
σj(n)=n

fifj −
∑

σi(c)=n
σj(n)=c

fifj +
∑

σi(c)=n
σj(n)=n

fifj −
∑

σi(c)<n
σj(n)<n

fifj =

=J ′c c +
∑

σi(c)=n

fi
∑

σj(n)=n

fj −
∑

σi(c)=n

fi
∑

σj(n)=n

fj = J ′c c.
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Hence
J ′ = JMg .

Note that g ∈ V(M), since

k∑
i=0

k∑
j=0

gij =

k∑
j=0

βjfj

k∑
i=0

fi = 0.

Before we apply the recursive argument, we emphasize that, whenm > 1,
the generic condition on g can be regarded as a generic condition on f :∑

γij(m)=m

gij =
∑

σi(m)=m

fi
∑

σj(n)=n

fj −
∑

σi(m)=n

fi
∑

σj(n)=m

fj 6= 0,

We can repeat the previous reduction to the network M and the function g.
After a �nite number of steps, we obtain a network with only one cell where
the kernel of the Jacobian matrix is the full synchrony subspace. So we as-
sume that ker(JMg ) is the full-synchrony subspace and prove that ker(JNf ) =

∆0. We have that v ∈ ker(JNf ) if and only if (v1, . . . , vm) ∈ ker(JMg ) and

vn = −Jn 1v1 + Jn 2v2 + · · ·+ Jnmvm
Jn n

= −
∑m

c=1 Jn c
Jn n

v1 = v1,

because v1 = · · · = vm. Therefore v ∈ ker(JNf ) if and only if v ∈ ∆0.

In the following example, we present a strongly connected network N
and a degenerated function f ∈ V(N) for which the kernel of JNf is not the
full-synchrony subspace.

Example 4.5.3. Let N be the strongly connected network represented in
Figure 4.2 and f ∈ V(N) such that f1 = f2 = 1 and f3 = −1/2. Then
f0 = −3/2,

JNf =

−1
2 −1

2 1
−1

2 −1
2 1

1 1 −2


and

∆0 ( ker(JNf ) = {(2x, 2y, x+ y) : x, y ∈ R}. ♦

Next, we describe the codimension-one steady-state bifurcation of cou-
pled cell systems associated to strongly connected networks where the bifur-
cation condition corresponds to the network valency. As shown below, this
bifurcation does not break the full-synchrony. This result follows from the
previous result and well-know methods in bifurcation theory.

Proposition 4.5.4. Let N be a strongly connected network and f ∈ V(N)
generic. Then, there exist a neighborhood U ⊂ R of 0 and a germ bf : U → R
such that if b : U → R|N | is a bifurcation branch of f on N then

b(λ) = (bf (λ), . . . , bf (λ)) ∈ ∆0, λ ∈ U.
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Proof. Let N be a strongly connected network and f ∈ V(N) generic. By
Proposition 4.5.1, we know that ker(JNf ) = ∆0. Applying the Lyapunov-

Schmidt Reduction ([10, Chapter VII]), there exists W : R×R→ R|N | such
that

fN (b, λ) = 0⇔ b = (x, . . . , x) +W (x, λ) ∧ f(x, x, . . . , x, λ) = 0.

If f(x, x, . . . , x, λ) = 0, then fN ((x, . . . , x), λ) = 0. By uniqueness of W ,
W ≡ 0. So b ∈ ∆0.

Assuming non-degenerated conditions on the function f , the equation
f(x, x, . . . , x, λ) = 0 has a transcritical bifurcation, see e.g., [4]. There exist
a neighborhood U ⊆ R of 0 and a non-zero germ bf : U → R such that

f(x, x, . . . , x, λ) = 0⇔ x = 0 ∨ x = bf (λ), λ ∈ U.

Moreover

fN (b, λ) = 0⇔ b = (0, . . . , 0) ∨ b = (bf (λ), . . . , bf (λ)), λ ∈ U.

Therefore, if b : U → R|N | is a bifurcation branch of f on N then b(λ) =
(bf (λ), . . . , bf (λ)), λ ∈ U .

Now, we address the same bifurcation problem assuming that the network
is not necessarily strongly connected. Let N be a network and f ∈ V(N)
generic. We start by describing the kernel of JNf . Reordering the cells in the
network by its strongly connected components, we have that the eigenvalues
of JNf are the union of the eigenvalues of JBf for each strongly connected
component B of N . Here JBf is the submatrix of JNf with columns and
rows corresponding to the cells in B. We prove now that the kernel of JBf is
trivial, if B is not a source.

Proposition 4.5.5. Let N be a network, f ∈ V(N) generic and B a strongly

connected component of N which is not a source. Then ker(JBf ) = {0}.

Proof. Let N be a network represented by (σi)
k
i=1, f ∈ V(N) generic and

B a strongly connected component of N which is not a source. Like in the
proof of Proposition 4.5.1, we use a recursive argument on the number of
cells of B to prove the result. Denote by c1, . . . , cn the cells of B and by Jp q
the (cp, cq)-entry of JBf . De�ne θ = (θ1, . . . , θn), where

θp :=
∑

σi(cp)/∈B

fi.

Generically on f , we can assume that θ 6= (0, . . . , 0), i.e., θp 6= 0 for some
1 ≤ p ≤ n, as B is not a source. Since f ∈ V(N),

n∑
q=1

Jp q = −θp, 1 ≤ p ≤ n.
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Let v = (v1, . . . , vn) ∈ R|B| be such that JBf v = 0.

Suppose that n = 1. Then JBf = [−θ1] 6= 0, generically, and so

ker(JBf ) = {0}.

Suppose now that n = m + 1. We can assume generically on f that
Jn n 6= 0, since B is a strongly connected component. Let J ′ be the m×m-
matrix and let θ′ = (θ′1, . . . , θ

′
m) which are, respectively, de�ned by

J ′p q = Jn nJp q − Jp nJn q,

θ′p = Jn nθp − Jp nθn,

for 1 ≤ p, q ≤ m. Generically on f , we assume that θ′ 6= (0, . . . , 0), and if
m > 1 we also assume that J ′mm 6= 0. Note that (v1, . . . , vm) ∈ ker(J ′) and

m∑
q=1

J ′p q =Jn n

m∑
q=1

Jp q − Jp n
m∑
q=1

Jn q

=Jp n(Jn n + θn)− Jn n(Jp n + θp) = −θ′p.

As in the proof of Proposition 4.5.1, we can remove the cell n belonging to
B from the network N and de�ne a network M with a strongly connected
component B′ and a function g ∈ V(M) such that B′ = B \ {n} has m
cells and J ′ = JB

′
g . Hence we can apply the same recursive argument and

conclude that

ker(JBf ) = {0}.

In the next result, we describe the kernel of the Jacobian matrix of a cou-
pled cell system with the bifurcation condition corresponding to the network
valency.

Proposition 4.5.6. Let N be a network and f ∈ V(N) generic. Then

ker(JNf ) has dimension equal to s(N). Moreover, if S is a source component

of N and v ∈ ker(JNf ), then

vc = vd, c, d ∈ S.

Proof. Let N be a network and f ∈ V(N) generic such that s(N) = s. De-
note the source components of N by S1, . . . , Ss and order the other strongly
connected components by B1, . . . , Br such that any edge targeting a cell in
Bi starts in a cell of S1 ∪ · · · ∪ Ss ∪B1 ∪ · · · ∪Bi. Reordering the cells of N
by its strongly connected components, we see that the matrix JNf has the
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following block form

JNf =



JS1
f 0 . . . 0

0 JS2
f . . . 0

...
...

. . .
...

0 0 . . . JSsf

0

R
JB1
f 0 . . . 0

R21 JB2
f . . . 0

...
...

. . .
...

Rr1 Rr2 . . . JBrf


.

By Propositions 4.5.1 and 4.5.5, ker(JSif ) is one-dimensional for every 1 ≤
i ≤ s and ker(J

Bj
f ) is trivial for every 1 ≤ j ≤ r. So ker(JNf ) is s = s(N)-th

dimensional.
Let v ∈ ker(JNf ) and 1 ≤ i ≤ s. Then vSi = (vc)c∈Si ∈ ker(JSif ) and, it

follows from Proposition 4.5.1 that vc = vd, for c, d ∈ Si.

Using the previous results, we describe next the codimension-one steady-
state bifurcations of coupled cell systems associated to a network and im-
posing the bifurcation condition corresponding to the network valency.

Proposition 4.5.7. Let N be a network and f ∈ V(N) generic. Then there

are 2s(N) equilibrium branches of f on N with the following properties:

(i) For every equilibrium branch b, if c, d ∈ S, for some source component

S, then bc = bd = 0 or bc = bd = bf , where bf is de�ned by Proposition 4.5.4.

(ii) Given two equilibrium branches b and b′, if bS = b′S for every source

component S, then b = b′.

Proof. Let N be a network, s = s(N) and f ∈ V(N) generic. Denote by
S1, . . . , Ss the source components ofN and by B the set of cells not belonging
to S1 ∪ · · · ∪ Ss.

It follows from the proof of Proposition 4.5.6 that JBf is invertible. By

the Implicit Function Theorem, there existsW : R|S1|×· · ·×R|Ss|×R→ R|B|
such that

fN (x, λ) = 0⇔

{
fSi(xSi , λ) = 0, i = 1, . . . , s

xB = W (xS1 , . . . , xSs , λ)
.

Using Proposition 4.5.4, it follows that, for each source Si, 1 ≤ i ≤ s, we
can solve as:

fSi(xSi , λ) = 0⇔ xSi = (0, . . . , 0) ∨ xSi = (bf (λ), . . . , bf (λ)),
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1
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Figure 4.8: Homogeneous network with asymmetric inputs and two source
components: {1} and {2}. Given a generic coupled cell system with a bifur-
cation condition associated to the network valency, there are four bifurcation
branches.

where bf : U → R is de�ned in Proposition 4.5.4 and it does not depend on
the source component. Hence

fN (x, λ) = 0⇔

{
xSi = (0, . . . , 0) ∨ xSi = (bf (λ), . . . , bf (λ)), i = 1, . . . , s

xB = W (xS1 , . . . , xSs , λ)
.

For each source component we have two choices in the previous equation,
then there are 2s(N) equilibrium branches of f on N .

If b is an equilibrium branch of f on N and c, d belong to the same source
component, then bc = bd = 0 or bc = bd = bf . This proves (i).

Let b and b′ be two equilibrium branches of f on N . If bS = b′S for every
source component, then bB = W (bS1 , . . . , bSs , λ) = W (b′S1

, . . . , b′Ss , λ) = b′B
and b = b′. Proving (ii).

Example 4.5.8. Let N be the network in Figure 4.8 and f ∈ V(N) generic.
The network N has two source components. By Proposition 4.5.7, there are
4 bifurcation branches of f on N . The bifurcation branches are (0, 0, 0, 0, 0),
(bf , 0, bf , 0, b1), (0, bf , 0, bf , b2) and (bf , bf , bf , bf , bf ), where bf is de�ned by
Proposition 4.5.4 applied to (any) of the source components of N , that is
f(bf (λ), bf (λ), bf (λ), λ) = 0, b1 is the unique solution of f(x, bf (λ), 0, λ) = 0
and b2 is the unique solution of f(x, 0, bf (λ), λ) = 0. ♦

Remark 4.5.9. Let N be a network and f ∈ V(N) generic. Denote by
S1, . . . , Ss the source components of N . The cells inside a source component
receive every input from a cell inside that source component. Then the col-
oring that assigns a di�erent color for each source component and it assigns
the same color only for cells inside the same source component is balanced.
The corresponding synchrony subspace is

∆S1 × · · · ×∆Ss × R|N |−(|S1|+···+|Ss|),

where ∆Si = {x ∈ R|Si| : xc = xd, c, d ∈ Si} is the full synchrony subspace
in the source component Sj , for j = 1, . . . , s.



The Lifting Bifurcation Problem Associated with the Network Valency 104

By Proposition 4.5.7, if b is a bifurcation branch of f on N , then

b ∈ ∆S1 × · · · ×∆Ss × R|N |−(|S1|+···+|Ss|). ♦

4.6 The lifting bifurcation problem associated to

the valency

In this section, we give conditions that characterize the lifting bifurcation
problem for generic coupled cell systems with a bifurcation condition associ-
ated to the valency. Those conditions only depend on the number of source
components. The results follow from the characterization of the bifurcation
branches obtained in Section 4.5.

Proposition 4.6.1. Let N be a network, L a lift of N and f ∈ V(N) generic.
Then:

(i) If s(N) = s(L), then every bifurcation branch of f on L is lifted from

N .

(ii) If 1 = s(N) < s(L), then there exists at least one bifurcation branch of

f on L not lifted from N .

Proof. Let N be a network, L a lift of N , ./ a balanced coloring in L such
that N = L/ ./ and f ∈ V(N) generic. Denote by ϕ./ : L→ N the network
�bration induced by ./ and by S1, . . . , Ss(L) the source components of L.
Note that the source components of N are ϕ./(S1), . . . , ϕ./(Ss(L)).
(i) Suppose that s(N) = s(L). Let b be a bifurcation branch of f on L.
Using Proposition 4.5.7, we de�ne the bifurcation branch a of f on N such
that

aϕ./(c) := bc, c ∈ Si, 1 ≤ i ≤ s(L).

The bifurcation branch a is de�ned for each source component because the
network �bration ϕ./ sends each source component of L into a di�erent source
component of N . Therefore the bifurcation branch a is well de�ned. Note
that

bSi = (Pϕ./(a))Si , 1 ≤ i ≤ s(L),

where Pϕ./ is the map between the phase spaces of N and L induced by ϕ./.
So the bifurcation branches b and Pϕ./(a) coincide on the source components
and b = Pϕ./(a), by Proposition 4.5.7 (ii).
(ii) Suppose that 1 = s(N) < s(L). Denote by S the unique source compo-
nent of N . Let b′ be a bifurcation branch of f on N . By Proposition 4.5.7 (i),
we know that b′S = (0, . . . , 0) or b′S = (bf , . . . , bf ). Returning to the proof
of Proposition 4.5.7, we have that W (b′S , λ) = b′s(1, . . . , 1) for any s ∈ S,
because W : R|S| × R → R|N |−|S| is the unique solution of the system
fN (b′S +W (b′S , λ), λ) = 0. So b′c = b′d, for any cells c and d of N and

b′ ∈ ∆N ⊆ R|N |,
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1

Figure 4.9: Network with a single cell and two edges types.

where ∆N is the full synchrony subspace associated to the network N . For
any network �bration ϕ : L→ N , (Pϕb′)c = b′ϕ(c) = b′ϕ(d) = (Pϕb′)d for any
cells c and d of L and

Pϕb′ ∈ ∆L ⊆ R|L|,

where ∆L is the full synchrony subspace associated to the network L. By
Proposition 4.5.7 there exists a bifurcation branch b of f on L such that
b /∈ ∆L, because s(L) > 1. Moreover b is not lifted from N , because any
bifurcation branch lifted from N belongs to the full-synchrony subspace,
∆L.

The previous result shows that the bifurcation branches of a generic
coupled cell system, associated to a network with only one source component
and the bifurcation condition correspondent to the network valency, are lifted
from the trivial quotient network with a single cell and the same number of
edge types. Thus those bifurcation branches do not break the full-synchrony.

Example 4.6.2. The network N in Figure 4.9 is the trivial quotient network
of every network with two types of edges associated to the balanced coloring
with exactly one color. Consider the lifts L1 and L2 of N given in Figures 4.6
and 4.8, respectively and f ∈ V(N) generic. Note that 1 = s(N) = s(L1) <
s(L2) = 2.

By Proposition 4.6.1 (i), the bifurcations branches of f on L1 are lifted
from N . On the other hand, by Proposition 4.6.1 (ii) there exists a bifurca-
tion branch of f on L2 which is not lifted from N . ♦

In Proposition 4.6.1 (ii) we assume that 1 = s(N) < s(L). If we change
that assumption to 1 < s(N) < s(L), then it may happen that all the bifur-
cation branches of f on L are lifted from N , as illustrated in the following
two examples.

Example 4.6.3. Let N be the network described in Figure 4.5 which has 2
source components, L the lift network of N described in Figure 4.3 with 3
source components and f ∈ V(N) generic. Consider the network �brations
from L toN given by: ϕ1,2 = [22125]; ϕ1,3 = [12155]; and ϕ2,3 = [12252]. Let
b be a bifurcation branch of f on L. According to Proposition 4.5.7 (i), the
bifurcation branch b can take one of two possible values on the coordinates
of each of the cells 1, 2 and 3. Then at least one of the equalities b1 = b2,
b1 = b3, b2 = b3 holds. Suppose that bi = bj , for some 1 ≤ i < j ≤ 3. Let b′

be the bifurcation branch of f on N such that b′ϕi,j(c) = bc, for c ∈ {1, 2, 3}.
Then b = Pϕi,jb

′ and it is lifted from N .
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The networks L and N satisfy 1 < s(N) < s(L) and every bifurcation
branch of f on L is lifted from N . ♦

Example 4.6.4. Let N be the network in Figure 4.4, L the lift network in
Figure 4.1 and f ∈ V(N) generic. Consider the network �brations from L
to N given by: ϕ1,2 = [2 2 1 5 6 4]; ϕ1,3 = [2 1 2 6 4 5]; and ϕ2,3 = [1 2 2 4 5 6].
Let b be a bifurcation branch of f on L. By Proposition 4.5.7, we know that
b1 = b2, b2 = b3 or b1 = b3. Suppose that bi = bj , for some 1 ≤ i < j ≤ 3.
Then b is lifted from N using ϕi,j .

Again, we have that 1 < s(N) < s(L) and every bifurcation branch of f
on L is lifted from N . ♦

In the previous examples, we saw that increasing the number of source
components on the lift network is not su�cient to ensure that some bifurca-
tion branch on the lift network is not lifted from the quotient network. The
lift network in Figure 4.3 and considered in Example 4.6.3 is not backward
connected. In Example 4.6.4, we consider the quotient network given by
Figure 4.4 which is not transitive. The next result shows that increasing
the number of source components on the lift network with respect to the
quotient network is a necessary and su�cient condition for the existence of
some bifurcation branch on the lift network that is not lifted from the quo-
tient network, provided that the lift network is backward connected and the
quotient network is transitive.

Theorem 4.6.5. Let N be a transitive network, L a backward connected lift

of N and f ∈ V(N) generic. Then every bifurcation branch of f on L is

lifted from N if and only if s(N) = s(L).

Proof. Let N be a transitive network for the cell t in N and represented by
the functions (σi)

k
i=1 and f ∈ V(N) generic. Let L be a backward connected

network for the cell l, ./ a balanced coloring in L such that N = L/ ./.
If s(N) = s(L), then every bifurcation branch of f on L is lifted from N ,

by Proposition 4.6.1(i).
Next,we suppose that s(N) < s(L) and prove that there is a bifurcation

branch of f on L that is not lifted from N . Denote by ϕ./ : L → N the
network �bration induced by ./. Note that the network N is backward
connected for the cell l′ = ϕ./(l). Denote by φc : N → N the network
�brations for each cell c in N such that φc(t) = c.

Since N is backward connected for l′, for every cell c in N there exist
1 ≤ i1, . . . , im ≤ k such that φl′(σi1 ◦ · · · ◦ σim(t)) = σi1 ◦ · · · ◦ σim(φl′(t)) =
σi1 ◦ · · · ◦ σim(l′) = c. Then φl′ is surjective and it is also bijective, since N
is �nite. Applying the inverse of φl′ to φc, we see that N is transitive for the
cell l′. Assume that l′ = t.

From s(N) < s(L), it follows that there exist two source components
S1, S2 of L such that ϕ./(S1) = ϕ./(S2) is a source component of N . Let
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1
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Figure 4.10: Homogeneous network with three source components: {1}, {2}
and {6}. This network is a lift of the network in Figure 4.5, taking the
balanced coloring ./ such that 1 ./ 3 and 2 ./ 4 ./ 6.

ϕ : L → N be any network �bration from L to N . By Remark 4.2.10 and
ϕ(l) = φϕ(l) ◦ ϕ./(l), we have that ϕ = φϕ(t) ◦ ϕ./. Hence ϕ(S1) = ϕ(S2), for
every network �bration ϕ : L→ N . If b′ is a bifurcation branch of f on N ,
then

Pϕ(b′)c1 = Pϕ(b′)c2 ,

for c1 ∈ S1 and c2 ∈ S2. However, we know from Proposition 4.5.7 (i) that
there exists a bifurcation branch b of f on L such that bc1 6= bc2 , for c1 ∈ S1
and c2 ∈ S2. So b is not lifted from N .

Example 4.6.6. Let N be the transitive network described in Figure 4.5
and f ∈ V(N) generic. Consider the lift networks L1 and L2 of N described
in the Figures 4.8 and 4.10, respectively. Note that s(N) = s(L1) = 2,
s(L2) = 3 and the network L1 and L2 are backward connected for the cell
5. Using Theorem 4.6.5, we know that every bifurcation branch of f on L1

is lifted from N but there exists a bifurcation branch of f on L2 that is not
lifted from N . ♦
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on Feed-Forward Networks
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Abstract

We consider feed-forward networks, that is, networks where cells can be di-
vided into layers, such that every edge targeting a layer, excluding the �rst
one, starts in the prior layer. A feed-forward system is a dynamical sys-
tem that respects the structure of a feed-forward network. The synchrony
subspaces for a network, are the subspaces de�ned by equalities of some
cells coordinates, that are �ow-invariant by all the network systems. The
restriction of a network system to each of its synchrony subspaces is a sys-
tem associated with a smaller network, which may be, or not, a feed-forward
network. The original network is then said to be a lift of the smaller net-
work. We show that a feed-forward lift of a feed-forward network is given
by the composition of two types of lifts: lifts that create new layers and
lifts inside a layer. Furthermore, we address the lifting bifurcation prob-
lem on feed-forward systems. More precisely, the comparison of the possible
codimension-one local steady-state bifurcations of a feed-forward system and
those of the corresponding lifts is considered. We show that for most of the
feed-forward lifts, the increase of the center subspace is a su�cient condi-
tion for the existence of additional bifurcating branches of solutions, which
are not lifted from the restricted system. However, when the bifurcation
condition is associated with the internal dynamics and the lift occurs inside
an intermediate layer, we prove that the existence of a bifurcation branch
not lifted from the restricted system does depend generically on the chosen
feed-forward system.
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Keywords: Feed-forward networks, Steady-state bifurcations, Lifting bi-
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5.1 Introduction

Coupled cell networks describe in�uences between cells and are represented
by directed graphs with possible multiple arrows. Examples of modeling
through networks include biological, computational and physical real-world
applications, see e.g., [25, 4, 12, 16]. In applications, networks are commonly
used to describe properties of dynamical systems formed by interacting indi-
vidual dynamical systems. We consider coupled cell systems which are given
by vector �elds that respect the structure of the network [24, 15]. Brie�y, a
vector �eld respects the structure of a network if each cell corresponds to an
individual dynamical system that depends on its own state and on the state
of the cells in its input set. Examples of dynamics that can be observed in
coupled cell systems include full-synchronized attractors, synchrony-breaking
bifurcations and heteroclinic networks, see e.g., [4, 13, 1].

In this work, we consider networks such that all cells are identical and re-
ceive exactly one edge of each type. The di�erent edge's types are graphically
represented by di�erent arrowheads. For example, considering the networks
in Figure 5.1, every cell receives two edges of a di�erent type.

A

1 5

4

6

B

1 2 5

4

6

C

1

2

3

5

4

6

Figure 5.1: Feed-forward networks with two types of inputs that are distin-
guishes by their arrow heads. The network A has 2 layers and the networks
B and C have 3 layers. The network A is the quotient network of B obtained
by merging cells 1 and 2, that is, B is a lift of A that creates a new layer.
The network B is the quotient network of C got by merging cells 2 and 3, C
is a lift of B inside the second layer.

Two cells are synchronized if their dynamics agree for trajectories with
the same initial condition. In [24, 15], the authors showed that there is an



113 Introduction

intrinsic relation between cells' synchronization and colorings of the network
set of cells. More precisely, it is shown that, given a network, a subspace
de�ned by equalities of some of the network cell coordinates is an invariant
subspace for any coupled cell system if and only if the coloring of the cells
determined by those equalities is balanced. Given a balanced coloring, the
correspondent quotient network is obtained by merging cells with the same
color. Moreover, the dynamics associated with the quotient network is the
restriction of the dynamics on the original network to the correspondent
invariant subspace. The original network is then said to be a lift of the
smaller network.

Consider the networks in Figure 5.1. As the cells 2 and 3 of the network
C receive their inputs from cell 1, the coloring in C that identify cells 2 and 3
is balanced. The quotient network associated to this coloring is the network
B. By merging cells 2 and 3, we have that each edge of C starting at cell 2
or 3 has a corresponding edge in B starting at the merged cell. In the same
way, we can see that the network A is obtained from B by merging cells 1
and 2. Hence the network C is a lift of B which is itself a lift of A.

In general real-world networks, due to their complexity, are big in size.
Quotient networks are a way of reducing the size of a network and study,
at least a fraction of, the dynamics associated with a big network. If a
dynamical property in a lifted network follows from the study of that dy-
namical property on a smaller network, then the dimension of the problem
can be reduced. Given a bifurcation problem on a feed-forward network.
The main goal of this paper is to study the lifting bifurcation problem for
feed-forward networks, i.e., investigate when every bifurcation branch in a
lift feed-forward network is obtained by (lifting) a bifurcation branch in a
quotient feed-forward network. As we explain below, the answer to this prob-
lem can help us, for example, to understand which synchronization patterns
are broken via bifurcation. Synchrony-breaking events can be observed, for
example, in biological networks, [25], and neuronal networks, [18]. In the
following paragraphs, we describe the lifting bifurcation problem for feed-
forward networks, our approach to it and the results obtained.

Feed-forward networks are a class of networks where the set of cells can be
partitioned into disjoint sets called layers. We consider feed-forward networks
where each cell in the �rst layer only receives inputs from itself and cells in the
other layers only receive inputs from cells in the previous layer. Feed-forward
networks have been used, for example, to design machine learning networks
and neuronal networks, [12, 16]. In those applications, the cells emulate
neurons and each edge corresponds to a unidirectional connection between
two neurons. The cells in the �rst layer are viewed as the original information
receptors. The following layers receive and transform this information and
then transmit it to the next layer. In the last layer, we can �nd the outcome
of processing the original information. This process is usually assumed to be
discrete. Nevertheless some features of neuronal networks have been observed
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in continuous models, such as binocular rivalry [8, 9, 7]. The feed-forward
structure allows us to reason layer by layer and we use this to study feed-
forward networks and the associated feed-forward systems.

Three examples of feed-forward networks appear in Figure 5.1. The net-
work C has 3 layers: {1}, {2, 3} and {4, 5, 6}. The networks A and B have,
respectively, 2 and 3 layers.

The lift network of a feed-forward network does not need to be a feed-
forward network. Our �rst goal is to understand which lifts of feed-forward
networks also have a feed-forward structure. Previous work about balanced
colorings on feed-forward networks can be found in [2]. We introduce two
basic lifts on feed-forward networks, lifts inside a layer and lifts that create
new layers. A lift that creates new layers is the replication of the �rst layer
into consecutive layers. A lift inside a layer is given by the split of some
cells within a layer. In Proposition 5.3.10, we prove that the lifts of feed-
forward networks that also have a feed-forward structure are given by the
composition of basic lifts. The de�nition of the basic lifts is crucial to the
study of the lifting bifurcation problem, since it reduces our study to the two
cases corresponding to the basic lifts.

Returning to the networks in Figure 5.1. The network C is obtained
from the network B by splitting the cell 2 of B into the cells 2 and 3. That
is, C is a lift of B inside the second layer. Also, the network B is a lift of
the network A with one more layer. Thus the network B is a lift of A that
creates a new layer. We have then that the network C is a lift of A given by
the composition of a lift that creates a new layer with a lift inside a layer.

Our second goal is to address the (codimension-one steady-state) bifur-
cations from a full synchrony equilibrium on feed-forward systems. Previous
works have addressed bifurcations on feed-forward systems with one cell per
layer, [10, 5, 14, 20, 11], and have identi�ed a surprising phenomenon of bi-
furcation on feed-forward systems: the layers of the feed-forward network act
as ampli�ers for the growth rate of the bifurcation branches. We generalize
that study of steady-state bifurcations to general feed-forward networks. In
this work, we assume that the phase space of each cell is real and one di-
mensional and that the feed-forward system has a steady-state solution with
full synchrony. It follows from the feed-forward structure that the lineariza-
tion of a feed-forward system at a full synchrony equilibrium has only two
eigenvalues: the valency and the internal dynamics. This leads to two types
of bifurcation conditions from a full synchrony equilibrium on feed-forward
systems. One bifurcation condition is given by the linearization of the self
input, that we call internal dynamics. The other bifurcation condition is
given by the sum of all inputs' linearization, that we call valency.

In this work, we study bifurcations on feed-forward systems given by
the two di�erent bifurcation conditions. A direct application of the Implicit
Function Theorem describes the bifurcation branches of a feed-forward sys-
tem with a bifurcation condition associated to the valency. Furthermore, we
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give in Proposition 5.6.6 a full characterization of the bifurcation branches
of a feed-forward system with a bifurcation condition associated to the in-
ternal dynamics in terms of their square-root-orders and slopes. In order to
obtain this characterization, we follow the technique used in [20] for feed-
forward networks with one cell per layer. In [20], the authors used a suitable
change of coordinates to we see how the growth rate of a bifurcation branch
propagates from one layer to the next. Using this change of coordinates
and exploiting the layer structure, we obtain the complete description of the
bifurcation branches on any feed-forward system.

As an example, we present some conclusions that follow, using our re-
sults, from the characterization of the bifurcation branches of a feed-forward
system on the network C in Figure 5.1 with a bifurcation condition associ-
ated to the internal dynamics. The full characterization of the bifurcation
branches is given in Example 5.6.5. There are 8 bifurcation branches with
a linear growth rate and 8 bifurcation branches with a square root growth.
The cells 2 and 3 of C are in synchrony for any of those bifurcation branches.
Moreover, there are 16 more bifurcation branches with a square root growth
if and only if the feed-forward system has the same sign for the linearizations
of the �rst and second inputs. In the latter case, for the extra bifurcation
branch solutions, cells 2 and 3 of C are not synchronized.

Last, we study our main goal, the lifting bifurcation problem for feed-
forward networks. The restriction of a coupled cell system to a synchrony
subspace is a coupled cell system of the correspondent quotient network.
Thus any bifurcation branch for the quotient system lifts to a bifurcation
branch on the lift system. The lifting bifurcation problem asks if there
are more bifurcation branches on the lift system. Note that the bifurcation
branches lifted from a quotient network preserve the synchrony associated to
the quotient network. So any bifurcation branch not lifted from a quotient
network breaks the synchrony associated to that quotient network. The
lifting bifurcation problem was �rst raised in [3] where the authors proved
that there are networks which have more bifurcation branches on some lift
systems than the ones lifted from the quotient network. This problem was
also studied in [17, 19]. A well-known result gives a necessary condition for
the lifting bifurcation problem: There can be additional bifurcation branches
on a lifted network than the ones lifted only if the center subspace of the
coupled cell systems associated to the original network and the lift network
have di�erent dimensions. We refer to Corollary 5.7.3. As we show, the study
of the lifting bifurcation problem for feed-forward networks reduces to its
analysis on the basic lifts: lifts that create new layers and lifts inside a layer.
We describe now the results that we obtain about the lifting bifurcation
problem on feed-forward networks. In order to obtain those results, we use
the characterization of the bifurcation branches on feed-forward systems,
stated above.

Frequently, the aforementioned necessary condition for the lifting bifur-
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cation problem is also su�cient. In Propositions 5.7.6, 5.7.10 and 5.7.13, we
prove this in the following cases. For feed-forward systems with a bifurcation
condition associated to the valency. For lifts that create new layers, inside
the �rst layer and inside a layer which has only one cell in the next layer,
and feed-forward systems with a bifurcation condition associated with the
internal dynamics. Moreover, those cases do not depend generically on the
feed-forward system.

Consider the networks in Figure 5.1 and the correspondent feed-forward
systems. If the feed-forward systems have a bifurcation condition associated
to the valency, then the center subspaces associated to A, B and C have
dimension 1. So every bifurcation branch on the network C is lifted from A.
On the other hand, if the feed-forward systems have a bifurcation condition
associated to the internal dynamics then there exists a bifurcation branch
on B which is not lifted from A. This follows from the fact that the network
B is a lift of A that creates a new layer and the center subspaces associated
to the network A and B are, respectively, one and two dimensional.

For lifts inside an intermediate layer and feed-forward systems with a bi-
furcation condition associated to the internal dynamics, the center subspaces
of the feed-forward system and of the lift system have di�erent dimensions.
For lifts inside an intermediate layer, we show in Proposition 5.7.16 that
there exists an open set of feed-forward systems with a bifurcation condi-
tion associated to the internal dynamics for which there are more bifurcation
branches on the lifted network than the ones lifted from the quotient net-
work. Remarkably, we see in Propositions 5.7.18 and 5.7.20 that, for a class
of lifts inside an intermediate layer, there is also an open set of feed-forward
systems with a bifurcation associated to the internal dynamics such that
there are no more bifurcation branches on the lift system.

Consider the network C in Figure 5.1 and a feed-forward system with
a bifurcation condition associated to the internal dynamics. Note that the
feed-forward network C is a lift of the network B inside the second layer
and the center subspace associated to C is bigger than the center subspace
associated to B. We stated before that all bifurcation branches of the feed-
forward system associated with C have synchrony between the cells 2 and 3
if and only if the linearization of the two inputs have opposite signs. We can
show that a bifurcation branch of C is lifted from B only if it has synchrony
between the cells 2 and 3. Therefore every bifurcation branch on the network
C is lifted from B if and only if the linearization of the two inputs have the
opposite signs. This condition provides the open sets of feed-forward systems
mentioned in the previous paragraph.

The paper is organized as follows. In Section 5.2, we recall the de�nitions
of coupled cell networks and feed-forward networks. Next, we study lifts of a
feed-forward network which preserve the feed-forward structure (Section 5.3).
Coupled cell systems and feed-forward systems are recalled in Section 5.4.
Then we analyze the steady-state bifurcations in feed-forward systems with
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bifurcation conditions associated to the valency (Section 5.5) and the internal
dynamics (Section 5.6). Finally, we study the lifting bifurcation problem for
feed-forward systems with bifurcation conditions associated to the valency
(Section 5.7.1) and the internal dynamics (Section 5.7.2).

5.2 Feed-forward networks

In this section, we recall a few facts concerning coupled cell networks, fol-
lowing [15, 21], and de�ne feed-forward networks.

De�nition 5.2.1. A network N is de�ned by a directed graph with a �nite
set of cells C and a �nite sets of directed edges divided by types E1, . . . , Ek.
We assume that each cell c is target by one and only one edge of each type.
We denote by |N | the number of cells in the network N . ♦

Figure 5.2 displays an example of a network with 2 types of edges.
We say that the networks N and N ′ are equal and write N = N ′ if they

only di�er by a relabel of cells, edges and types. In this paper, we consider
connected networks, i.e., networks such that every two distinct cells have an
undirected path between them.

2

3

4

5

6

7

1

Figure 5.2: Feed-forward network with 3 layers

Following [21], we can regard each type of edge as a function from the
target cell to the input cell. Let (σi : C → C)ki=1 be the collection of functions
such that there exists an edge e ∈ Ei from σi(c) to c, for every c ∈ C and
1 ≤ i ≤ k. We write that N is represented by the functions (σi : C → C)ki=1.

Example 5.2.2. Consider the functions σ1 and σ2 de�ned by

σ1(1) = σ1(2) = σ1(3) = σ1(4) = 1, σ1(5) = 3, σ1(6) = 4, σ1(7) = 2,

σ2(1) = σ2(2) = σ2(3) = σ2(4) = 1, σ2(5) = 2, σ2(6) = 3, σ2(7) = 4.

The network in Figure 5.2 is represented by (σ1, σ2), where σ1 represents the
edges with one head and σ2 represents the edges with two heads. ♦
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In feed-forward networks, the cells can be partition into layers. Each cell
in the �rst layer only receives inputs from itself. Cells in the other layers only
receive inputs from cells in the previous layer. The network in Figure 5.2 is
an example of a feed-forward network with 3 layers.

De�nition 5.2.3. Let N be a network represented by the functions (σi)
k
i=1.

We say that N is a feed-forward network (FFN), if there exists a partition of
the set of cells of N into subsets C1, . . . , Cm such that ∪ki=1σi(Cj) = Cj−1,
for every 2 ≤ j ≤ m and σi(c) = c, for every c ∈ C1 and 1 ≤ i ≤ k. The
subset Cj is called the jth layer of N . ♦

Backward connectivity of a network is an important concept for the re-
sults obtained in this paper. Roughly speaking, a network is backward con-
nected for some cell if there exists a directed path starting in any other cell
and ending in that cell.

De�nition 5.2.4. We say that a network N is backward connected for a

cell c if for every cell c′ di�erent from c there exists a sequence of cells
c0, c1, . . . , cl−1, cl in N such that c′ = c0, c = cl and there is an edge from
ca−1 to ca, for every 1 ≤ a ≤ l. The network N is backward connected if it
is backward connected for some cell. ♦

The network in Figure 5.3 is an example of a backward connected network
for the cell 10. An example of a network which is not backward connected is
the one pictured in Figure 5.2, as there is no directed path between the cells
5, 6 and 7. Observe that, by de�nition, a feed-forward network is backward
connected if and only if it has only one cell in the last layer.

1
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Figure 5.3: Backward connected feed-forward network with 5 layers.

5.3 Lifts of feed-forward networks

The main goal of this section is to show how the feed-forward lifts can be
decomposed. We recall the notions of balanced colorings, quotient networks
and lifts of networks, following [24, 15, 21, 22], with emphasis on feed-forward
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networks. Roughly speaking, in a balanced coloring, cells with the same color
receive each type of input from cells with the same color. And the associated
quotient network is obtained by merging cells with the same color.

Let N be a network represented by the functions (σi : C → C)ki=1. A
coloring of the set of cells of N is an equivalence relation on the set of cells.
A coloring ./ is balanced if σi(c) ./ σi(c′), for every 1 ≤ i ≤ k and c, c′ ∈ C
such that c ./ c′. Given a subset of cells S in N , we denote by [S]./ the set
of ./-classes of the cells in S, i.e., [S]./ = {[c]./ : c ∈ S}.

De�nition 5.3.1 ([15, Section 5]). Let N be a network represented by the
functions (σi : C → C)ki=1 and ./ a balanced coloring in N . The quotient

network of N associated to ./ is the network where the set of cells is [C]./
and there is an edge of type i from [σi(c)]./ to [c]./ for every 1 ≤ i ≤ k and
c ∈ C. We denote by N/ ./ the quotient network of N associated to ./. We
also say that a network L is a lift of N , if N is a quotient of L for some
balanced coloring in L. ♦

Let N bet a network represented by the functions (σi : C → C)ki=1 and ./
a balanced coloring in N . The quotient network N/ ./ is represented by the
functions (σ./i : [C]./ → [C]./)

k
i=1, where σ

./
i is given by σ./i ([c]./) = [σi(c)]./,

for every 1 ≤ i ≤ k and c ∈ C. Note that the quotient network of a backward
connected network is also backward connected.

1 2

5

7

Figure 5.4: Quotient network of the network in Figure 5.2 given by merging
cells 2, 3, 4, and cells 5, 6.

Example 5.3.2. Let N be the network in Figure 5.2. Consider the coloring
./ in N given by 2 ./ 3 ./ 4 and 5 ./ 6. Note that the cells 5 and 6 receive
inputs from the cells 2, 3 and 4 that have the same color. Moreover, the cells
2 and 3 receive inputs from a unique cell 1. So the coloring is balanced and
the network in Figure 5.4 is the quotient of N associated to ./. ♦

In [2], the authors studied and described the balanced colorings of feed-
forward networks. The set of balanced colorings forms a partial order set as
studied in [23] given by the re�nement relation. Given two balanced colorings
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./′, ./ of a network N , we say that ./′ re�nes ./ and we write ./′�./, if c ./′ d
implies that c ./ d, for every cells c and d of N . We have that if ./′�./, then
N/ ./ is a quotient of N/ ./′.

If L, N and Q are networks such that L is a lift of N and N is a lift
of Q, then L is a lift of Q. Moreover, we say that the lift L of Q is given
by the composition of the lift N of Q and the lift L of N . In some cases, a
lift can be seen as the composition of two lifts, see [6, Theorem 2.4]. In the
next result, we give a su�cient condition for the existence of an intermediate
quotient which only merges cells in an independent subset of cells.

Lemma 5.3.3. Let L be a network represented by the functions (σi : C →
C)ki=0, ./ a balanced coloring in L and S ⊆ C such that σi(S) ⊆ S, for
1 ≤ i ≤ k. Then, there exists a balanced coloring ./′ in L such that L/ ./′ is
a lift of L/ ./, [C \ S]./′ = C \ S and there exists a bijection between [S]./
and [S]./′.

Proof. Let L be a network represented by the functions (σi : C → C)ki=0, ./
a balanced coloring in L and S ⊆ C such that σi(S) ⊆ S, for 1 ≤ i ≤ k.

De�ne ./′ as the coloring of L such that c ./′ c′ if c ./ c′ and c, c′ ∈ S. Let
c, c′ ∈ S such that c ./′ c′. Then c ./ c′, σi(c) ./ σi(c′) and σi(c), σi(c′) ∈ S,
for every 1 ≤ i ≤ k. Hence σi(c) ./′ σi(c′), for every 1 ≤ i ≤ k, and ./′ is a
balanced coloring of L. Note that ./′�./ and so L/ ./ is a quotient of L/ ./′.

The ./′-class of any cell in C \ S is singular, so [C \ S]./′ = C \ S.
Let α : [S]./ → [S]./′ be given by α([c]./) = [c]./′ , where c ∈ S. Let

c, c′ ∈ S such that [c]./ = [c′]./. Then c ./ c′ and c ./′ c′. So α is well-
de�ned. Suppose that α([c]./) = α([c′]./). Then c ./′ c′ and c ./ c′. So
[c]./ = [c′]./ and α is injective. Let [c]./′ ∈ [S]./′ . Then α([c]./) = [c]./′ and
α is surjective. So α is a bijection between [S]./ and [S]./′ .

We exemplify the use of the previous lemma in the next example.

Example 5.3.4. Consider the network L in Figure 5.2 and the balanced
coloring de�ned by 2 ./ 3 ./ 4 and 5 ./ 6. Every input of a cell in the subset
S = {1, 2, 3, 5} is from a cell in S. By Lemma 5.3.3, there exists a network
between L and L/ ./. Let ./′ be the balanced coloring such that 2 ./′ 3. The
quotient L/ ./′ is the network C in Figure 5.1. And L/ ./′ is a lift of L/ ./.

However, if we consider the subset S′ = {1, 2, 3, 5, 6}, then does not exist
an intermediate balanced coloring as stated in Lemma 5.3.3. The cell 6
belongs to S′ but it receives an input from cell 4 which does not belong to
S′. If there was such an intermediate balanced coloring, then cells 5 and 6
would have the same color. If the coloring is balanced and cells 5 and 6 have
the same color, then their inputs must have the same color and cells 3 and
4 must have the same color. In Lemma 5.3.3, cells not in S′ do not share
the color with any other cell. If there was a balanced coloring as stated
in Lemma 5.3.3, then cells 3 and 4 would not have the same color. This
contradiction implies that Lemma 5.3.3 does not hold for S′. ♦
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There are lift networks of feed-forward networks that are not feed-forward
networks. For example, the network with exactly one cell and k types of edges
is a feed-forward network and every other network with k types of edges is
a lift of that network. We study feed-forward lift networks of feed-forward
networks.

We de�ne two types of basic lifts for feed-forward networks: lifts inside
a layer and lifts that create new layers. A lift is inside a layer if the corre-
sponding balanced coloring only identi�es cells within some layer. And a lift
that replicates the �rst layer is a lift that creates new layers. In Figure 5.1,
we present examples of those basic lifts.

De�nition 5.3.5. Let N be a feed-forward network and L a feed-forward
lift of N . Denote the layers of N and L by C1, . . . , Cm and C ′1, . . . , C

′
n,

respectively.
We say that L is a lift inside the layer Cj , where 1 ≤ j ≤ m, if m = n,

|C ′j | 6= |Cj | and |C ′i| = |Ci| for every i 6= j.
We say that L is a lift that creates n −m new layers, if m < n, |C ′1| =

· · · = |C ′n−m| = |C1| and |C ′n−m+j | = |Cj |, for every 2 ≤ j ≤ m. ♦

The lift network in Figure 5.2 of the network in Figure 5.4 can be seen
as the composition of two lifts inside a layer. The network B of Figure 5.1 is
a lift inside the third layer of the network in the Figure 5.4 and the network
in Figure 5.2 is a lift inside the second layer of B.

Combining the feed-forward structure and Lemma 5.3.3, we see that a
lift from a feed-forward network to a feed-forward network with the same
number of layers is a composition of lifts inside a layer.

Example 5.3.6. Let N be a feed-forward network and L a feed-forward lift
of N . Suppose that N and L have the same number of layers and denote
the layers of L by C1, . . . , Cm.

Consider Lemma 5.3.3 applied to the subset S1 = C1 and to the lift L
of N . We have that there exists a network Q1 between the lift L and the
network N . The network Q1 is given by the merge of cells in the �rst layer
of L. So Q1 is also a feed-forward network with the same number of layers a
N and L. Moreover, the number of cells in each layer of L and Q1 coincide,
except in the �rst layer. Hence L is a lift of Q1 inside the �rst layer (or
N = Qm−1).

We can repeat the previous application of Lemma 5.3.3 to the subset
Sj = C1 ∪ · · · ∪ Cj and the lift Qj−1 of N , for each 2 ≤ j ≤ m − 1. Thus
we obtain a sequence of networks L = Q0, Q1, . . . , Qm−1, Qm = N such that
Qj−1 is a lift of Qj inside the jth layer (or Qj−1 = Qj) for j = 1, . . . ,m− 1
and Qm−1 is a lift of N . Therefore the lift of N to L is the composition of
lifts inside the layers and the lift of N to Qm−1.

If L is backward connected, then the networks N and Qm−1 have only
one cell in the last layer. By the previous construction, we already knew
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that N and Qm−1 are equal in every layer, except the last. Thus N = Qm−1
and the lift of L from N is the composition of lifts inside a layer. ♦

When the lifted network is not backward connected, we can have lifts
which do not decompose into basic lifts.

1

2 3

1a 1b

2 3

Figure 5.5: The feed-forward network on the right is a lift of the feed-forward
network on the left. This lift is not given by the composition of lifts that
create new layers and lifts inside layers. Note that the lift network is not
backward connected.

Example 5.3.7. Let N be the feed-forward network in the left of Figure 5.5
and L the feed-forward network on the right of Figure 5.5. The network L is
a lift of N , considering the coloring in L given by the classes {1a, 1b}, {2},
{3}. This lift cannot be obtained by a composition of lifts that create new
layers and lifts inside the layers. Note that N and L have the same number
of layers and the coloring in L given by the class {1b, 3}, {1a}, {2} is not
balanced. However, L is not backward connected. ♦

For backward connected lifts, we show the following. The �rst layer of
a feed-forward quotient network is given by the merge of all the cells in a
number of consecutive layers, starting in the second layer, with the cells in
the �rst layer, eventually with the merge of some cells in the �rst layer.
Moreover, the next layers of the feed-forward quotient network are given by
merging cells in a speci�c layer of the lift network respecting the layers order.

Lemma 5.3.8. Let N be a feed-forward network with layers C1, . . . , Cm and

L a feed-forward lift of N with layers C ′1, . . . , C
′
n such that L is backward

connected. Denote by ./ the balanced coloring of L such that L/ ./= N .

Then

[C ′n−m+1]./ = · · · = [C ′1]./ = C1, [C ′n−j ]./ = Cm−j , 0 ≤ j ≤ m−2.

Proof. Let N be a feed-forward network with layers C1, . . . , Cm and L a feed-
forward lift of N with layers C ′1, . . . , C

′
n such that L is backward connected.

Assume that N and L are represented by (σi)
k
i=1 and (σ′i)

k
i=1, respectively.

Let ./ be a balanced coloring such that L/ ./= N . Then n ≥ m and
[σ′i(c)]./ = σi([c]./), for every cell c in L and 1 ≤ i ≤ k.

Since L is backward connected, we have that N is backward connected,
C ′n = {c1}, Cm = {[c1]./} and [C ′n]./ = Cm. If m = 1, then N has only
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one cell and there is only one equivalence class of ./. Hence [C ′n]./ = · · · =
[C ′1]./ = C1.

Now, suppose that m > 1. Assuming that [C ′n+1−j ]./ = Cm+1−j , we see
that [C ′n−j ]./ = Cm−j for j = 1, . . . ,m−1. Let d1 ∈ Cm−j where 1 ≤ j ≤ m.
Then there exist 1 ≤ i ≤ k and d2 ∈ Cm+1−j such that d1 = σi(d2). By
assumption, there exists d′2 ∈ C ′n+1−j such that d2 = [d′2]./, d1 = [σ′i(d

′
2)]./

and σ′i(d
′
2) ∈ C ′n−j . Thus Cm−j ⊆ [C ′n−j ]./. On the other hand, let d′1 ∈

C ′n−j . Then there exist 1 ≤ i ≤ k and d′2 ∈ C ′n+1−j such that d′1 = σ′i(d
′
2).

By assumption, we have that [d′2]./ ∈ Cm+1−j and [d′1]./ = [σ′i(d
′
2)]./ ∈ Cm−j .

Therefore [C ′n−j ]./ = Cm−j . It follows inductively from [C ′n]./ = Cm that

[C ′n−j ]./ = Cm−j 1 ≤ j ≤ m− 1.

In particular, [C ′n−m+1]./ = C1 and σi(C1) = C1, for 1 ≤ i ≤ k. Using
the same argument, we conclude that

[C ′n−m]./ = · · · = [C ′1]./ = C1.

Example 5.3.9. Let L be the network in Figure 5.3 which is backward
connected for the cell 10. The network L has 5 layers that we denote by
C ′1, C

′
2, C

′
3, C

′
4 and C ′5. Consider the balanced coloring ./ in L given by

1 ./ 2 ./ 3 and 4 ./ 5. Note that L/ ./ is a feed-forward network with 4
layers. Denote the layers of L/ ./ by C1, C2, C3 and C4. Lemma 5.3.8 states
that

[C ′1]./ = [C ′2]./ = C1, [C ′3]./ = C2, [C ′4]./ = C3, [C ′5]./ = C4 ♦

Example 5.3.7 shows that Lemma 5.3.8 does not hold if the lift network
is not backward connected. The lift in Figure 5.5 merges a cell in the second
layer with one in the �rst layer and does not merge the other cell in the
second layer with a cell on the �rst layer. The lift network in Figure 5.5 is
not backward connected and this lift does not satisfy the conclusion of the
previous lemma.

Using the method described in Example 5.3.6 and Lemma 5.3.8, we state
the main result of this section. This result shows how to decompose a feed-
forward lift into lifts that create new layers and lifts inside a layer.

Proposition 5.3.10. Let N be a feed-forward network and L a feed-forward

lift of N such that L is backward connected. Then, the lift of N to L is the

composition of a lift that creates new layers with lifts inside the layers.

Proof. Let N be a feed-forward network with layers C1, . . . , Cm and L a feed-
forward lift of N with layers C ′1, . . . , C

′
n such that L is a backward connected

and L is represented by (σi)
k
i=1. Denote by ./ the balanced coloring in L

such that N is the quotient network of L associated to ./.
De�ne the coloring ./1 in L such that c ./1 d if c ./ d and c, d ∈ C ′j for

1 ≤ j ≤ n. Let c ./1 d. Since ./ is balanced, we have that σi(c) ./ σi(d)
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and σi(c), σi(d) ∈ C ′j′ , where j
′ = max{1, j − 1} and 1 ≤ i ≤ k. Then

σi(c) ./1 σi(d) for 1 ≤ i ≤ k. Hence ./1 is balanced.
De�ne the network Q1 = L/ ./1 and the set of cells Aj = [C ′j ]./1 , for

1 ≤ j ≤ n. The network Q1 is a feed-forward network with the layers
A1, . . . , An. Let c ∈ A1. There exists d ∈ C ′1 such that c = [d]./1 . Then
σ./1i (c) = σ./1i ([d]./1) = [σi(d)]./1 = [d]./1 = c, for 1 ≤ i ≤ k. We have
that Aj−1 = [C ′j−1]./1 = [∪ki=1σi(C

′
j)]./1 = ∪ki=1σ

./1
i (Aj), for j = 2, . . . ,m.

Therefore Q1 is a feed-forward network with the layers A1, . . . , An.
Note that ./1�./. Hence Q1 is a lift of N , if ./1≺./, and Q1 = N , if

./1=./. It follows from Lemma 5.3.8 that

|An−m+j | = |[C ′n−m+j ]./1 | = |[C ′n−m+j ]./| = |Cj |, 1 ≤ j ≤ m,

and
|Aj′ | = |[C ′j′ ]./1 | = |[C ′j′ ]./| = |C1|, 1 ≤ j′ ≤ n−m.

Hence Q1 is a lift of N that creates n−m new layers or Q1 = N .
The networks Q1 and L have the same number of layers and L is a

backward connected lift of Q1. Following Example 5.3.6, we see that the lift
of Q1 to L is the composition of lifts inside the layers. Thus the lift of N
to L is the composition of a lift that creates new layers and lifts inside the
layers.

Example 5.3.11. Let L be the feed-forward network in Figure 5.3 which
is backward connected. Consider the balanced coloring ./ in L given by
1 ./ 2 ./ 3 and 4 ./ 5. Note that L/ ./ is a feed-forward network.

Using Proposition 5.3.10, we know that L can be obtained from L/ ./ by
a lift that creates a new layer and lifts inside the layers. In fact, we can see
that L is given by a lift of L/ ./ that creates a new layer, then a lift on the
second layer and �nally a lift inside the third layer. ♦

The lift in Figure 5.5 shows that Proposition 5.3.10 does not hold if the
lift is not backward connected.

In the rest of this section, we make two remarks that will be useful in
the next sections. First, we see that a lift inside a layer can be further
decomposed into simpler lifts. This will allow us to consider simpler lifts.

De�nition 5.3.12. Let N be a network and L a lift of N . We say that L
is the split of a cell c in N into cells c1, c2, . . . , cl in L, if the coloring ./ in L
given by ci ./ cj , for 1 ≤ i, j ≤ l, is balanced, L/ ./= N and [ci]./ = c. ♦

The network in Figure 5.2 is a split of the cell 2 in the network B of
Figure 5.1 into the cells 2, 3 and 4. The split of the cell 2 in B into the
cells 2 and 4 gives the network C of Figure 5.1. And the split of the cell 2
in C into the cells 2 and 3 return back the network in Figure 5.2. Hence
the lift inside the second layer from B to the lift network in Figure 5.2 is
the composition of splits of a cell into two cells. Using Lemma 5.3.3, we can
easily see that this is the case for every lift inside a layer.
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Remark 5.3.13. A lift inside a layer is the composition of splits of a cell
into two cells. ♦

Second, we prove that each lift of a feed-forward network is given by a
unique balanced coloring, if the lifted network is backward connected. This
statement will be useful to understand which solutions are lifted from the
quotient system to the lift system. We start by looking at an example of a
lift given by more than one balanced colorings. In this example, the lift is
not backward connected.

Example 5.3.14. Consider the feed-forward network N in Figure 5.4 and
the feed-forward network B in Figure 5.1. Take the following three balanced
colorings in B: ./1 given by 4 ./1 5; ./2 given by 4 ./2 6; and ./3 given by
5 ./3 6. Then N = B/ ./1= B/ ./2= B/ ./3. ♦

Using the backward connectedness of the lifted network, we have the
following lemma.

Lemma 5.3.15. Let N be a feed-forward network and L a lift of N such that

L is a backward connected feed-forward network. Let ./1, ./2 be two balanced

colorings in L. If L/ ./1= L/ ./2= N , then ./1=./2.

Proof. Let N be a feed-forward network and L a lift of N such that L is
a backward connected feed-forward network. Let ./1, ./2 be two balanced
colorings in L. Denote by C1, . . . , Cm the layers of N , by (σNi )ki=1 the repre-
sentative functions of N , by C ′1, . . . , C

′
n the layers of L and by (σLi )ki=1 the

representative functions of L. Suppose that L/ ./1= L/ ./2= N .
Since L is backward connected, we know that N is backward connected

and |Cm| = |C ′n| = 1. So for c ∈ C ′n, we have that [c]./1 = [c]./2 . Suppose
that [c]./1 = [c]./2 , for every c ∈ C ′j where j > 1. Let d ∈ C ′j−1. Then there
exist 1 ≤ i ≤ k and c ∈ C ′j such that σLi (c) = d. Thus

[d]./1 = [σLi (c)]./1 = σNi ([c]./1) = σNi ([c]./2) = [σLi (c)]./2 = [d]./2 .

And [d]./1 = [d]./2 , for every d ∈ C ′j−1. By induction, [c]./1 = [c]./2 , for every
c ∈ C ′j and 1 ≤ j ≤ n. Hence ./1=./2.

Example 5.3.16. Let L be the network in Figure 5.3. Consider the balanced
coloring ./ in L given by 1 ./ 2 ./ 3 and 4 ./ 5 and the quotient network N =
L/ ./. Note that L is backward connected for the cell 10. By Lemma 5.3.15,
we know that ./ is the unique balanced coloring such that N = L/ ./. ♦

5.4 Feed-forward systems

Given a network, a coupled cell system admissible by that network is a system
that respects the network structure. In a coupled cell system, we view each
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cell of the network as a dynamical system whose dynamics depends on its own
state and on the state of the cells that are coupled to it. In this section, we
formalize coupled cell systems associated to a network, synchrony subspaces
and steady-state bifurcations, following [24, 15].

LetN be a network represented by the functions (σi)
k
i=1. For each cell c of

the network, we associate a coordinate xc ∈ R. We say that F : R|N | → R|N |
is an admissible vector �eld for N , if there is f : R× Rk → R such that

(F (x))c = f(xc, xσ1(c), . . . , xσk(c)),

for every cell c of N . The admissible vector �elds for N are de�ned by the
functions f : R× Rk → R. We denote by fN the admissible vector �eld for
N de�ned by f .

A coupled cell system associated to a network N is a system of ordinary
di�erential equations

ẋ = fN (x), x ∈ R|N |,

where fN : R|N | → R|N | is an admissible vector �eld for N . When N is a
feed-forward network, we refer to a coupled cell system associated to N as a
feed-forward system.

1

2

3

4

Figure 5.6: Feed-forward network with 3 layers.

Example 5.4.1. Let N be the feed-forward network in Figure 5.6. A feed-
forward system associated to N has the following form

ẋ1 = f(x1, x1, x1)

ẋ2 = f(x2, x1, x1)

ẋ3 = f(x3, x1, x1)

ẋ4 = f(x4, x2, x3)

,

where f : R×R2 → R is a smooth function that de�nes the dynamics of each
cell. For example the variable x4, that corresponds to the cell 4, depends on
the variable x2 and x3, which correspond to its input cells 2 and 3. ♦
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In order to study steady-state bifurcation, we will assume that the sys-
tem has an equilibrium at a full-synchronized equilibrium. Without loss of
generality, we assume that this equilibrium is the origin.

Let C1, . . . , Cm be the layers of N . For every feed-forward system fN

associated to N , the Jacobian matrix at the origin has the form

JNf =



(
∑k

i=0 fj)I1 0 0 . . . 0 0
R2 f0I2 0 . . . 0 0
0 R3 f0I3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . f0Im−1 0
0 0 0 . . . Rm f0Im


,

where

fi :=
∂f

∂xi
(0, 0 . . . , 0),

0 ≤ i ≤ k, Ij is the identity matrix of size |Cj | × |Cj |, j = 1, . . . ,m, Rl is a
|Cl| × |Cl−1|-matrix, l = 2, . . . ,m. The eigenvalues of JNf are

k∑
i=0

fj and f0.

The Jacobian matrix of a feed-forward system at a full synchrony equilibrium
has only those two eigenvalues which we call the valency and the internal
dynamics, respectively.

A polydiagonal subspace is a subspace of R|N | given by the equalities
of some cell coordinates. Given a coloring ./ on the set of cell of N , the
polydiagonal subspace associated to ./ is

∆./ := {x : c ./ d⇒ xc = xd} ⊆ R|N |.

Note that any polydiagonal subspace of R|N | de�nes a unique coloring on
the set of cells of N .

Given a function G : R|N | → R|N | and a subset ∆ ⊆ R|N |, we say that
∆ is invariant by G if G(∆) ⊆ ∆. A synchrony subspace of a network N is
a polydiagonal subspace of R|N | that is invariant by any admissible vector
�eld of N . There is a one-to-one correspondence between balanced colorings
./ and synchrony subspaces ∆./. See [15, Theorem 4.3]. More speci�cally,
the polydiagonal ∆./ associated to a coloring ./ is a synchrony subspace of
N if and only if the coloring ./ is balanced.

Since a synchrony subspace ∆./ is invariant by every admissible vector
�eld fN of N , every coupled cell system of N given by fN can be restricted
to ∆./. Each restricted system is a coupled cell system of N/ ./ given by
fN/./. Moreover, given a solution y(t) ∈ R|N/./| of the coupled cell system
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of N/ ./ given by fN/./, we have that x(t) = (xc(t)), where xc(t) = y[c]./(t)

is a solution of the coupled cell system of N given by fN . See [15, Theorem
5.2].

Example 5.4.2. Consider the network N in Figure 5.6 and the general form
of a feed-forward system associated to N given in Example 5.4.1. It is easy
to see that the polydiagonal subspace ∆1 = {x2 = x3} is �ow-invariant for
every such feed-forward system. This synchrony subspace corresponds to the
balanced coloring given by 2 ./ 3 and the quotient network Q = N/ ./ is the
feed-forward network with 3 layers and one cell in each layer.

Let y = (y1, y2, y4) : R → R3 be a solution of ẏ = fQ(y), a feed-forward
system of Q. Then we can lift this solution to a solution of the corresponding
feed-forward system of N , ẋ = fN (x). The lifted solution has the form
x(t) = (y1(t), y2(t), y2(t), y4(t)). ♦

Now we de�ne the classes of feed-forward systems with a steady-state
bifurcation from a full synchronized equilibrium.

Let G : Rd × R→ Rd be a family of smooth vector �elds, d > 0 and the
corresponding dynamical systems, depending on a parameter λ,

ẋ = G(x, λ). (5.1)

Consider an equilibrium (x∗, λ∗) of (5.1), i.e., G(x∗, λ∗) = 0. The family
of dynamical systems (5.1) su�ers a local bifurcation at (x∗, λ∗) if for every
neighborhoods Ux and Uλ of x∗ and λ∗, respectively, there exists λ1, λ2 ∈ Uλ
such that the family (5.1) at λ1 and λ2 have di�erent topological structures
(di�erent stability/number of equilibrium points or periodic orbits, etc.). A
necessary condition for a local bifurcation to occur is that the Jacobian of
G at (x∗, λ∗), DG(x∗,λ∗), has an eigenvalue with zero real part. We focus
on steady-state bifurcations and we say that a steady-state bifurcation at
(x∗, λ∗) occurs if the number of equilibrium points in a neighborhood of x∗

changes when the parameter λ crosses λ∗. A necessary condition for the
occurrence of a steady-state bifurcation at (x∗, λ∗) is that 0 is an eigenvalue
of DG(x∗,λ∗).

In order to study the steady-state bifurcations of a family of coupled cell
systems associated to N from a fully synchronous equilibrium at λ = 0, we
consider a family of smooth functions f : R× Rk × R→ R such that

f(0, 0, . . . , 0, λ) = 0,

for every λ ∈ R. We denote by V(N) the set of those functions. The set of
functions f ∈ V(N) such that a steady-state bifurcation occurs at (0, 0) for
fN is given by the union of the following sets

Vk(N) := {f ∈ V(N) :

k∑
i=0

fj = 0}, V0(N) := {f ∈ V(N) : f0 = 0}.
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Thus Vk(N) denotes the set of functions with a bifurcation condition
associated with the valency of N and V0(N) the set of functions with a
bifurcation condition associated with the internal dynamics of the cells.

Next, we de�ne equilibrium branches of a coupled cell system. Since our
study is local, we de�ne branches using germs. A germ is a class of functions
with the same values in some neighborhood of the origin.

We say that D ⊆ R is a domain if D has one of the following forms:
] − λ0, 0]; ] − λ0, λ0[; or [0, λ0[, for some λ0 > 0. Let D1, D2 be domains.
We say that two smooth functions b1 : D1 → R|N | and b2 : D2 → R|N |
are germ equivalents if there exists an open neighborhood U of 0 such that
U ∩ D1 ∩ D2 6= {0} and b1(λ) = b2(λ), for every λ ∈ U ∩ D1 ∩ D2. The
previous relation is not transitive, so we consider its closer by transitivity.
Given a smooth function b, we use the term germ b to refer to a representative
element of the equivalence class of b with respect to germ equivalence.

Let D be a domain. We say that a germ b : D → R|N | is an equilibrium

branch of f on N , if
fN (b(λ), λ) = 0,

for every λ ∈ D. Since f(0, 0, . . . , 0, λ) = 0 for every λ, we have that
x(λ) = (0, . . . , 0) is an equilibrium branch of f on N , called the trivial

branch of f on N . The equilibrium branches of f on N di�erent from trivial
branch are called the bifurcation branches of f on N . We de�ne the set of
equilibrium branches of f on N

B(N, f) = {b : D → R|N | : b is an equilibrium branch of f on N}.

5.5 Steady-state bifurcations for FFNs associated

with the valency

In this section, we study the bifurcation branches on a feed-forward system
with a bifurcation condition associated with the valency. This corresponds
to solve the equation

fN (x, λ) = 0

in a neighborhood of the origin. By the feed-forward structure, we know
that the solution for each cell in the �rst layer is independent of the others
cells. Using the Implicit Function Theorem, we see that the solution on the
�rst layer determinates the solution on the other layers, and the dynamics
in each cell of the �rst layer has a transcritical bifurcation.

Proposition 5.5.1. Let N be a feed-forward network with layers C1, . . . , Cm.
Let f ∈ Vk(N). Then, generically, there are 2|C1| equilibrium branches of f
on N . Moreover, every equilibrium branch is uniquely determined by its value

at the cells of the �rst layer C1.
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Proof. Let N be a feed-forward network with layers C1, . . . , Cm. Let f ∈
Vk(N). Generically, assume that f0 6= 0,

∑k
i,j=0 fij 6= 0 and

∑k
i=0 fiλ 6= 0,

where fij is the second order partial derivatives of f(x0, x1, . . . , xk, λ) at
(0, 0, . . . , 0, 0) with respect to xi and xj , and fiλ is the second order partial
derivatives of f at (0, 0, . . . , 0, 0) with respect xi and λ, for 0 ≤ i, j ≤ k.

The equilibrium branches of f on N are given by the solutions of

fN (x, λ) = 0,

in a neighborhood of the origin. The Taylor expansion of f at (0, 0, . . . , 0, 0)
is given by

f(x, x1, . . . , xk, λ) =

k∑
i=0

fixi +

k∑
i=0

fiλxiλ+

k∑
i,j=0

fij
2
xixj + h.o.t.,

where h.o.t denotes high order terms.
For c ∈ C1, we have that

fNc (x, λ) = 0⇔f(xc, xc, . . . , xc, λ) = 0.

⇔xcλ
k∑
i=0

fiλ + x2c

k∑
i,j=0

fij
2

+ h.o.t. = 0

⇔xc = 0 ∨ λ
k∑
i=0

fiλ + xc

k∑
i,j=0

fij
2

+ h.o.t. = 0

Using the Implicit Function Theorem, there exist λ0 > 0 and a germ
β :]− λ0, λ0[→ R such that β(0) = 0 and

f(xc, xc, . . . , xc, λ) = 0⇔ xc = 0 ∨ xc = β(λ), −λ0 < λ < λ0.

Denote by D the set of cells C2 ∪ · · · ∪ Cm. Since f0 6= 0, the matrix[
∂fNd /∂xd′

]
d,d′∈Dis invertible. By the Implicit Function Theorem, there exist

λ′0 > 0 and W : R|C1|×]− λ′0, λ′0[→ R|D| such that λ′0 ≤ λ0 and

fN (x, λ) = 0⇔

 ∧
c∈C1

f(xc, xc, . . . , xc, λ) = 0

 ∧ xD = W (xC1 , λ).

⇔

 ∧
c∈C1

[xc = 0 ∨ xc = β(λ)]

 ∧ xD = W (xC1 , λ).

for −λ′0 < λ < λ′0.
Therefore any equilibrium branch is uniquely determined by its value at

the cells of the �rst layer C1 and each cell of C1 has one of two possible
values. So there are 2|C1| equilibrium branches.
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Figure 5.7: The feed-forward network on the right is a lift of the network
on the left. This is a lift inside the �rst layer. There are di�erent balanced
colorings on the right network such that the left network is the quotient
network associated to those colorings.

Example 5.5.2. Let L be the feed-forward network on the right of Fig-
ure 5.7. Consider a generic feed-forward system with a bifurcation condition
associated to the valency. By Proposition 5.5.1, there are 8 equilibrium
branches. The equilibrium branches must synchronize for at least two cells
in the �rst layer. Since each cell in the �rst layer has two possible values and
there are 3 cells in the �rst layer.

Consider the following colorings in L: ./1 given by 1 ./1 2; ./2 given by
2 ./2 3; and ./3 given by 1 ./3 3. They are balanced and the network on the
left of Figure 5.7 is the quotient of L by any of the colorings.

Every equilibrium branch in L corresponds to a bifurcation branch in the
quotient network. There are more bifurcation branches in L, however, they
are copies of bifurcation branches in the quotient network. ♦

5.6 Steady-state bifurcations for FFNs associated

with the internal dynamics

Now, we study the bifurcation branches of a feed-forward system with a
bifurcation condition associated to the internal dynamics. Layer by layer,
we solve the equation

fN (x, λ) = 0

in a neighborhood of the origin. In the �rst layer, there exists no bifurcation
and the trivial solution is the unique solution. The inputs of each cell on
the second layer are from cells in the �rst layer. Using the Implicit Function
Theorem, we can see that the cells in the second layer have a transcritical
bifurcation. Fixing a solution in the �rst two layers, we solve the equation
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for the cells in the following layer

f(xc, xc1 , . . . , xck , λ) = 0,

where c1, . . . , ck are the input cells of c which belong to the previous layer
and have a �xed solution value. In order to solve this equation, we use an
appropriate change of coordinates that was used in [20]. The solutions of
this equation have a predictable growth-rate and slopes.

De�nition 5.6.1 ([20, De�nition 2.2]). Let b : D → R be a germ and
D = [0, λ0[ or D =] − λ0, 0]. If b = 0, we say that bc has square-root-order
−1 and slope 0. Otherwise, we say that b has square-root-order p and slope

s and write that b ∼ O(2−p), if p is the smallest non-negative integer such
that there is a smooth function b∗ : [0, λ2

−p
0 [→ R satisfying

b(λ) = b∗(|λ|2−p), s = lim
|λ|↘0
λ∈D

b∗(|λ|)
λ

6= 0. ♦

In previous studies of bifurcation in feed-forward networks, di�erent au-
thors have noticed that the layers act as ampli�ers, [14, 20]. We will also see
that the square-root-order of a bifurcation branch increases from a layer to
the next layer.

In the next two lemmas, we determine the square-root-order and slope of
a solution to f(x, x1, . . . , xk, λ) = 0, when the square-root-orders and slopes
of the inputs x1, . . . , xk are known. In the �rst lemma, we consider inputs
that are de�ned for positive values of the parameter λ.

Lemma 5.6.2. Let f ∈ V0(N) generic, y : [0, λ0[→ Rk a germ, p1, . . . , pk
and s1, . . . , sk such that yi has square-root-order pi and slope si for 1 ≤ i ≤ k.
Suppose that p := max{p1, . . . , pk} ≥ 0 and de�ne

A :=
{
i : yi ∼ O(2−p)

}
, Z =

∑
i∈A

fisi
f00

.

(i) If Z < 0, then there exist 0 < λ∗0 < λ0 and germs b+, b− : [0, λ∗0[→ R
such that b± have square-root-order p+ 1 and slope ±

√
−2Z, and

f(x, y(λ), λ) = 0⇔ x = b±(λ), 0 < λ < λ∗0

(ii) If Z > 0, then the equation f(x, y(λ), λ) = 0 has only the trivial solution

(x, λ) = (0, 0).

Proof. Let f ∈ V0(N), y : [0, λ0[→ Rk, p1, . . . , pk and s1, . . . , sk such that
yi has square-root-order pi and slope si for 1 ≤ i ≤ k. Suppose that p :=
max{p1, . . . , pk} ≥ 0 and de�ne

A :=
{
i : yi ∼ O(2−p)

}
, Z =

∑
i∈A

fisi
f00

.
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The Taylor expansion of f at the origin is

f(x, x1, . . . , xk, λ) =

k∑
i=1

fixi +
f00
2
x2 + f0λxλ+

k∑
i=1

fiλxiλ+

+
k∑
i=1

f0ixix+
k∑

i,j=1

fij
2
xixj + h.o.t..

For λ ≥ 0, consider the following transformation of variables

µ = λ2
−(p+1)

, x = µz, yi(λ) = λ2
−piwi(µ).

Then

wi(0) = lim
λ↘0

yi(λ)

λ2
−pi

= si, λ = µ2
(p+1)

, yi(λ) = µ2
(p+1−pi)wi(µ).

Moreover p − pi = 0, if i ∈ A, and p − pi > 0, otherwise. Using the
transformation of variables and the Taylor expansion of f , we obtain that

f(x, y(λ), λ) = 0⇔
k∑
i=1

fiyi(λ) +
f00
2
x2 + f0λxλ+

k∑
i=1

fiλyi(λ)λ+

+

k∑
i=1

f0iyi(λ)x+

k∑
i,j=1

fij
2
yi(λ)yj(λ) + h.o.t. = 0

⇔
∑
i∈A

fiµ
2wi(0) +

f00
2
µ2z2 + h.o.t. = 0

⇔µ2
(∑
i∈A

fiwi(0) +
f00
2
z2 + h.o.t.

)
= 0

⇔µ = 0 ∨
∑
i∈A

fisi +
f00
2
z2 + h.o.t. = 0.

De�ne
h(z, µ) =

∑
i∈A

fisi + f00z
2/2 + h.o.t..

If Z < 0, we have that h(±
√
−2Z, 0) = 0 and hz(±

√
−2Z, 0) 6= 0. By the

Implicit Function Theorem, there exist a neighborhood U of 0 and functions
z+, z− : U → R such that

h(z, µ) = 0⇔ z = z±(µ), z±(µ) = ±
√
−2Z + h.o.t.

Let 0 < λ∗0 < λ0 and b+, b− : [0, λ∗0[→ R such that [0, (λ∗0)
2−(p+1)

[⊆ U
and

b±(λ) = µz±(µ) = ±
√
−2Zλ2

−(p+1)
+ h.o.t. ∼ O(2−(p+1)).
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Then b± have square-root-order p+ 1 and slope ±
√
−2Z, and

f(x, y(λ), λ) = 0⇔ µ = 0 ∨ z = z±(µ)⇔ µz = µz±(µ)⇔ x = b±(λ).

This proves (i).
If Z > 0, then h(z, 0) is always positive, when f00 > 0, or it is always

negative, when f00 < 0. So there is no solution to the equation h(z, 0) = 0.
And the equation f(x, y(λ), λ) = 0 has only the trivial solution (x, λ) =
(0, 0), proving (ii).

In the second lemma, we look to the solution of f(x, x1, . . . , xk, λ) = 0
when the inputs solutions (x1, . . . , xk) are de�ned for λ < 0. The proof is
very similar to the previous one and it is omitted.

Lemma 5.6.3. Let f ∈ V0(N) generic, y :]−λ0, 0]→ Rk a germ, p1, . . . , pk
and s1, . . . , sk such that yi has square-root-order pi and slope si for 1 ≤ i ≤ k.
Suppose that p := max{p1, . . . , pk} ≥ 0 and de�ne

A :=
{
i : yi ∼ O(2−p)

}
, Z =

∑
i∈A

fisi
f00

.

(i) If Z > 0, then there exist λ0 < λ∗0 < 0 and germs b+, b− :] − λ∗0, 0] → R
such that b± have square-root-order p+ 1 and slope ∓

√
2Z, and

f(x, y(λ), λ) = 0⇔ x = b±(λ), 0 > λ > λ∗0.

(ii) If Z < 0, then the equation f(x, y(λ), λ) = 0 has only the trivial solution

(x, λ) = (0, 0).

We return to the network C of Figure 5.1 and calculate some bifurca-
tion branches of a feed-forward system associated to this network with a
bifurcation condition associated with the internal dynamics.

Example 5.6.4. Let C be the feed-forward network in Figure 5.1 with 3
layers {1}, {2, 3}, {4, 5, 6} and fC a feed-forward system with a bifurcation
condition associated with the internal dynamics. In order to study the bi-
furcation branches, we need to solve the equation

fC(x, λ) = 0

in a neighborhood of the origin. We solve this equation layer by layer and
start by the �rst layer. For the cell 1, we need to solve the equation

f(x1, x1, x1, λ) = 0.

By the Implicit Function Theorem, there exists only the trivial branch

x1(λ) = 0,
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for λ in a neighborhood of 0. This completes the study of the �rst layer and
we proceed to the second layer.

Fixing the unique solution on the �rst layer, we look to the equation in
one of the cells in the second layer. Take for example the cell 2, we have the
following equation

f(x2, 0, 0, λ) = 0.

The study of this equation is similar to the bifurcations with a condition
associated to the valency. Assuming that f00 6= 0 and f0λ 6= 0, we conclude
that there are two solutions

x2(λ) = 0 ∨ x2(λ) = b0(λ) = −2f0λ
f00

λ+ h.o.t. (5.2)

for λ in a neighborhood of 0. Repeat the same procedure for the other cell
in the second layer. Then there are 4 solutions on the second layer{

x2(λ) = 0 ∨ x2(λ) = b0(λ)

x3(λ) = 0 ∨ x3(λ) = b0(λ)

Before we study the next layer, note that the branch b0(λ) has square-root-
order 0 and slope −2f0λ/f00.

Now, we �x one of the solutions for the previous layer and solve the
equation in the next layer using Lemmas 5.6.2 and 5.6.3. For example we
�x the solution (x1, x2, x3) = (0, 0, b0) and look to the equation of the cell 5

f(x5, x2, x3, λ) = 0⇔ f(x5, 0, b
0(λ), λ) = 0.

Remember that x2 has square-root-order −1 and x3 has square-root-order
0. By the Lemmas 5.6.2 and 5.6.3, we know that any solution has square-
root-order 1. If f2f0λ > 0, Lemma 5.6.2 implies that there are two solutions
with square-root-order 1

x5 = s+1 (λ) ∨ x5 = s−1 (λ),

where s±1 has slope ±2
√
f2f0λ/f00 and λ is restricted to positive values,

λ ≥ 0. If f2f0λ < 0, we apply Lemma 5.6.3 and obtain two solutions with
square-root-order 1 and slope ±2

√
|f2f0λ|/f00, however the solutions will be

de�ned for negative values of λ, λ ≤ 0.
We still need to solve the equations for the cell 4 and 6{

f(x4, x2, x2, λ) = 0

f(x6, x3, x2, λ) = 0
⇔

{
f(x4, 0, 0, λ) = 0

f(x6, b
0, 0, λ) = 0

As before and using the Implicit Function Theorem, we note that the �rst
equation has two solutions

x4(λ) = 0 ∨ x4(λ) = b0(λ),
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de�ned in a neighborhood of 0. For the second equation, we need to use
one of the previous Lemmas. If f1f0λ > 0, we obtain two solutions with
square-root-order 1

x6 = s+2 (λ) ∨ x6 = s−2 (λ),

slopes ±2
√
f1f0λ/f00 which are de�ned for λ positive. If f1f0λ < 0, we also

have two solutions but they are de�ned for λ negative.
We have computed the possible solutions on each cell of the third layer

when we �x a solution on the �rst two layers. Now, we need to patch the
solutions into a solution of the network system. In order to do that we de�ne
the solution in the intersection of the domain of each cell solution. However,
the solutions can be de�ned on di�erent sides of λ = 0. When this occurs,
it does not correspond to a solution of the whole system. For example take
f2f0λ < 0 and f1f0λ > 0, then the solutions for x5 are de�ned for λ positive
and x6 is de�ned for λ negative. Thus, it does not correspond to a solution
of the whole system.

Fixing the solution (x1, x2, x3) = (0, 0, b0). If f1f2 > 0, we have the
following solutions 

x4 = 0 ∨ x4 = b0

x5 = s+1 (λ) ∨ x5 = s−1 (λ)

x6 = s+2 (λ) ∨ x6 = s−2 (λ),

where s±i have square-root-order 1 and it is de�ned for λ ≥ 0(λ ≤ 0), when
f1f0λ > 0(f1f0λ < 0, respectively). If f1f2 < 0, then there is no solution to
the equation in the next layer and there is no bifurcation branch b of f on
C such that (b1, b2, b3) = (0, 0, b0).

Repeating this process for the other solutions on the �rst two layers,
we �nd all bifurcation branches of f on C. We can check that there is no
bifurcation branch of f on C without synchrony on the cells 2 and 3, if
f1f2 < 0. ♦

Finally, we represent all bifurcation branches using their growth-rates
and slopes. Let N be a feed-forward network and f ∈ V0(N). We de�ne the
function that assign for each bifurcation branch a symbol

Θ : B(N, f)→ {−1, 0, 1} × Z|N | × R|N |

(bc)c 7→ (δ, (pc)c, (sc)c),

where bc has square-root-order pc and slope sc, for each cell c of N , and δ
indicates the domain of the branch b. If b is de�ned in a neighborhood of 0,
then δ = 0. If b is only de�ned for λ > 0, then δ = 1. Finally, if b is only
de�ned for λ < 0, then δ = 1.
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Example 5.6.5. Returning to the feed-forward network C of Figure 5.1, we
give the complete description of the bifurcation branches using the symbols
(δ, (pc)c, (sc)c). There is the trivial branch

(0, (−1,−1,−1,−1,−1,−1), (0, 0, 0, 0, 0, 0)).

There are 7 branches with square-root-order 0

(0, (−1,−1,−1,−1,−1, 0), (0, 0, 0, 0, 0, s0)),

(0, (−1,−1,−1,−1, 0,−1), (0, 0, 0, 0, s0, 0)),

(0, (−1,−1,−1, 0,−1,−1), (0, 0, 0, s0, 0, 0)),

(0, (−1,−1,−1,−1, 0, 0), (0, 0, 0, 0, s0, s0)),

(0, (−1,−1,−1, 0,−1, 0), (0, 0, 0, s0, 0, s0)),

(0, (−1,−1,−1, 0, 0,−1), (0, 0, 0, s0, s0, 0)),

(0, (−1,−1,−1, 0, 0, 0), (0, 0, 0, s0, s0, s0)),

where s0 = −2f0λ/f00. There are 8 branches with square-root-order 1

(δ, (−1, 0, 0, 1, 1, 1), (0, s0, s0,±s1,±s1,±s1)),

where δ = Sign((f1 + f2)f0λ and s1 = 2
√
|(f1 + f2)f0λ|/f00. If f1f2 > 0,

there are 16 more branches with square-root-order 1

(δ, (−1, 0,−1, 1, 1, 1), (0, s0, 0,±s1,±s2,±s3)),

(δ, (−1,−1, 0,−1, 1, 1), (0, 0, s0, 0,±s3,±s2)),

(δ, (−1,−1, 0, 0, 1, 1), (0, 0, s0, s0,±s3,±s2)),

where s2 = 2
√
|f1f0λ|/f00 and s3 = 2

√
|f2f0λ|/f00. ♦

The symbols which are the image of some bifurcation branch respect
some rules. If (δ, (pc)c, (sc)c) ∈ Θ(B(N, f)), then

Ω.1 pc = −1⇔ sc = 0,

This follows from De�nition 5.6.1.

Ω.2 δ = 0⇒ ∀c pc ≤ 0,

The bifurcation branch is de�ned on an open neighborhood of 0 if and
only if δ = 0. By Lemmas 5.6.2 and 5.6.3, we know that every branch
with a square-root-order greater than 0 is de�ned only on one side of
λ = 0 and δ 6= 0. So δ = 0 implies that pc ≤ 0 for every cell c.

Ω.3 pc = −1⇒ ∀i pσi(c) = −1,

Suppose that the branch is not trivial on one input of c, i.e., pσi(c) > −1
for some i. By Lemmas 5.6.2 and 5.6.3, we have that pc > −1.
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Ω.4 pc > −1⇒ ∀i pσi(c) ≤ pc − 1 ∧ ∃i′ pσi′ (c) = pc − 1,

Suppose that the branch has a square-root-order greater than pc − 1
for some input of c, i.e., pσi(c) > pc − 1 for some i. By Lemmas 5.6.2
and 5.6.3, we obtain the contradiction that bc has square-root-order
greater than pc. Supposing that every input of c has square-root-order
less than pc − 1, Lemmas 5.6.2 and 5.6.3 lead to an absurd.

Ω.5 pc = 0⇒ sc = −2f0λ
f00

,

Assume that pc = 0. By Ω.4, we know that pσi(c) = −1 for every
1 ≤ i ≤ k and bσi(c) = 0. In the running example, we saw that if a
cell has trivial inputs, then there are two options. See equation (5.2).
Since pc = 0, we know that bc 6= 0 and bc has slope −2f0λ/f00. So
sc = −2f0λ/f00.

Ω.6 pc > 0⇒ sc = ±
√
− 2δ

f00

∑
i∈Ac

fisσi(c), where Ac = {i : pσi(c) = pc − 1}.

This follows from Lemma 5.6.2, if δ = 1, and Lemma 5.6.3, if δ = −1.

Let Ω(N, f) ⊆ {−1, 0, 1}×Z|N |×R|N | be the set of symbols (δ, (pc)c, (sc)c) ∈
{−1, 0, 1}×Z|N |×R|N | satisfying Ω.1, Ω.2, Ω.3, Ω.4, Ω.5 and Ω.6. Next, we
prove that Θ is a one-to-one correspondence between B(N, f) and Ω(N, f).

Proposition 5.6.6. Let N be a feed-forward network and f ∈ V0(N) generic.
If (δ, (pc)c, (sc)c) ∈ Ω(N, f), then there exists a unique b ∈ B(N, f) such that

Θ(b) = (δ, (pc)c, (sc)c).

Proof. Let N be a feed-forward network represented by the function (σi)
k
i=1

and f ∈ V0(N) generic.
Let (δ, (pc)c, (sc)c) ∈ Ω(N, f). We construct the equilibrium branch b of

f on N such that Θ(b) = (δ, (pc)c, (sc)c). It follows from Ω.4 that pc = −1
for every cell c in the �rst layer and −1 ≤ pc ≤ m− 2, for every cell c of N .

Let c be a cell of N such that pc = −1. Then sc = 0, by Ω.1. De�ne bc
as the germ de�ned on an open neighborhood of 0 such that bc = 0. Then
bc has square-root-order pc and slope sc. It follows from Ω.3 that

f(bc, bσ1(c), . . . , bσk(c), λ) = f(0, 0, . . . , 0, λ) = 0.

Let c be a cell of N such that pc = 0. Then sc = −2f0λ/f00, by Ω.5, and
pσi(c) = −1 for 1 ≤ i ≤ k, by Ω.4. De�ne bc as the germ b0 de�ned in (5.2)
on an open neighborhood of 0. Then bc has square-root-order pc, slope sc
and

f(bc, bσ1(c), . . . , bσk(c), λ) = f(b0, 0, . . . , 0, λ) = 0.
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The following germs are de�ned by induction on p ≥ 1. Assuming that
bc′ is de�ned for every cell c′ of N such that pc′ < p and bc′ has square-root-
order pc′ and slope sc′ , we de�ne the germ bc which has square-root-order pc
and slope sc, for each cell c of N such that pc = p. Since pc ≤ m − 2, this
process must terminate.

Let p ≥ 1 and c be a cell of N such that pc = p. By Ω.4 and the
assumption, pσi(c) < p and bσi(c) is de�ned for every 1 ≤ i ≤ k. Consider
the germ y : D → Rk such that yi = bσi(c) for every 1 ≤ i ≤ k, and let bc
be the germ obtained in Lemma 5.6.2 (5.6.3), if δ = 1 (−1, respectively),
such that bc has square-root-order pc slope sc and it is de�ned for positive
(negative) values. It follows from Ω.6 that there exists such germ and it is
unique. Moreover,

f(bc, bσ1(c), . . . , bσk(c), λ) = 0.

De�ne the germ b = (bc)c : D → R|N |, where D is the intersection of the
domains of each bc. By construction fN (b(λ), λ) = 0, so b is an equilibrium
branch of f on N . Let (δ′, (p′c)c, (s

′
c)c) := Θ(b). By construction, p′c = pc

and s′c = sc, for every cell c. If δ = 0, then pc ≤ 0 and δ′ = 0, by Ω.2. If
δ = ±1, then there exists pc > 0, by Ω.1 and Ω.6. If δ = 1, then bc is de�ned
for positive values and δ′ = 1. Similar, if δ = −1, then δ′ = 1. Therefore

Θ(b) = (δ, (pc)c, (sc)c).

We can see in each step of the construction of b that we choose the
unique germ that respects the conditions of square-root-order, slope and be
a solution to the equation.

Next, we see how to use this result to �nd some bifurcation branches.
Let N be a feed-forward network with layers C1, . . . , Cm and f : Rk+1 ×

R→ R ∈ V0(N) generic. De�ne

δ̃ = Sign(f0λ

k∑
i=1

fi) =

f0λ

k∑
i=1

fi∣∣∣∣∣f0λ
k∑
i=1

fi

∣∣∣∣∣
, p̃1 = −1, s̃1 = 0, (5.3)

and

p̃j = j − 2, s̃j = −Sign(f0λ)
2|f0λ|2

−(j−2)

f00

∣∣∣∣∣
k∑
i=1

fi

∣∣∣∣∣
1−2−(j−2)

, (5.4)

for 2 ≤ j ≤ m. Now, for each 3 ≤ r ≤ m, de�ne δr± = δ̃,

pr±c = p̃1, sr±c = s̃1, c ∈ C1 ∪ · · · ∪ Cm−r+1,
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pr±c = p̃l, sr±c = s̃l c ∈ Cm−r+l, 2 ≤ l ≤ r − 1,

pr±c = p̃r, sr±c = ±s̃r c ∈ Cm,
We also de�ne δ2 = 0,

p2c = −1, s2c = 0, c ∈ C1 ∪ · · · ∪ Cm−1, p2c = 0, s2c = −2f0λ
f00

, c ∈ Cm,

δ1 = 0, p1c = −1, s1c = 0, c ∈ C1 ∪ · · · ∪ Cm.
We can see that the symbols

(δ1, (p1c)c, (s
1
c)c),

(δ2, (p2c)c, (s
2
c)c),

(δr±, (pr±c )c, (s
r±
c )c)

respect the rules Ω.1, Ω.2, Ω.3, Ω.4, Ω.5 and Ω.6, for 3 ≤ r ≤ m. Therefore,
they belong to Ω(N, f) and correspond to equilibrium branches of f on N ,
Proposition 5.6.6.

This means that the set B(N, f) contains the trivial equilibrium branch
b1, a bifurcation branch b2 which have a square-root-order 0 and two bifur-
cation branches br+, br− with square-root-order r − 2 for every 3 ≤ r ≤ m.
Moreover, those equilibrium branches have synchrony inside each layer. We
summarize the previous in the following result.

Corollary 5.6.7. Let N be a feed-forward network with m layers and f ∈
V0(N) generic. For every 1 ≤ r ≤ m, there exists b ∈ B(N, f) such that b
has square-root order r− 2. If b ∈ B(N, f), then b has square-root-order less
or equal to m− 2.

In Example 5.6.5, we saw that the network C in Figure 5.1 respects the
previous corollary.

Example 5.6.8. Let N be the feed-forward network C in Figure 5.1 with
3 layers. In Example 5.6.5, we saw that any feed-forward system on N with
a bifurcation condition associated to the internal dynamics has equilibrium
branches with square-root-order −1, 0 and 1. Moreover, every equilibrium
branch has square-root-order less or equal to 1. ♦

5.7 Lifting bifurcation problem on FFNs

The bifurcation branches occurring in a quotient system are lifted to bifur-
cation branches occurring in a lift system. In this section, we study the
lifting bifurcation problem which consists on understanding if every bifurca-
tion branch occurring in a coupled cell system associated to a lift network is
lifted from a bifurcation branch occurring in the coupled cell system associ-
ated to the quotient network.
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De�nition 5.7.1. Let N be a network and L a lift of N . We say that a
bifurcation branch b of f on L is lifted from N , if there exists a balanced
coloring ./ in L such that b ∈ ∆./ and N = L/ ./. ♦

In the next proposition, we recover a well-known result about the bifur-
cation branches being inside a �ow-invariant space which contains the center
subspace. We present the proof here for completeness. Let A : Rd → Rd be
a linear operator from Rd to itself and d > 0. The center subspace of A is
given by

ker∗(A) = {v ∈ Rd : Akv = 0 for some k}.

We denote the orthogonal complement with respect to the usual inner prod-
uct of a subspace B ⊆ Rd by B⊥.

Proposition 5.7.2. Let F : Rd×R→ Rd be a smooth function and K ⊆ Rd
such that ker∗(DF(0,0)) ⊆ K, F (0, 0) = 0 and F (K,λ) ⊆ K for every λ ∈ R.
Suppose that there exists a function x : D → Rd de�ned in a domain D such

that F (x(λ), λ) = 0 for λ ∈ D. Then there exists a neighborhood U of 0 such

that x(λ) ∈ K for every λ ∈ U ∩D.

Proof. Let F : Rd × R → Rd be a smooth function and K ⊆ Rd such that
ker∗(DF(0,0)) ⊆ K, F (0, 0) = 0 and F (K,λ) ⊆ K for every λ ∈ R. Note that
Rd = K ⊕K⊥. Writing every element of Rd in its decomposition in K and
K⊥, v = y + w, where y ∈ K and w ∈ K⊥, there are g : K ×K⊥ × R→ K
and h : K ×K⊥ × R→ K⊥ such that

v̇ = F (v, λ)⇔

{
ẏ = g(y, w, λ)

ẇ = h(y, w, λ)
.

Hence

DF(0,0) =

[
Dyg(0,0) Dwg(0,0)
Dyh(0,0) Dwh(0,0)

]
.

Observe that h(y, 0, λ) = 0, because K is invariant. Then Dyh(0,0) = 0
and Dwh(0,0) is invertible, since ker∗(DF(0,0)) ⊆ K. By the Implicit Function
Theorem, there isW : K×R→ K⊥ such thatW (0, 0) = 0 and h(y, w, λ) = 0
if and only if w = W (y, λ).

From h(y, 0, λ) = 0, we have that W (y, λ) = 0. Therefore

F (y, w, λ) = 0⇔ g(y, 0, λ) = 0 ∧ w = 0.

Supposing that x is a solution to F (v, λ) = 0, we have that x ∈ K.

It follows that a necessary condition for the existence of a bifurcation
branch on a lift network not lifted from the original network is that the center
subspace of the coupled cell systems associated to the original network and
the lift network have di�erent dimensions.
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Corollary 5.7.3. Let N be a network, L a lift of N associated to the coloring

./ and f ∈ V(N). If ker∗(JNf ) and ker∗(JLf ) have the same dimension, then

every bifurcation branch of f in L belongs to ∆./ and it is lifted from N .

We recall the dimension of the center subspace of JNf for feed-forward
systems with a bifurcation condition associated to the valency and internal
dynamics.

Remark 5.7.4. Let N be a feed-forward network with layers C1, . . . , Cm.
(i) If f ∈ Vk(N), then the dimension of ker∗(JNf ) is |C1|.
(ii) If f ∈ V0(N), then the dimension of ker∗(JNf ) is |C2|+ · · ·+ |Cm|. ♦

Example 5.7.5. Let N be the network on the left of Figure 5.7 and L the
lift of N on the right of Figure 5.7.

Consider f ∈ V0(N) with a bifurcation condition associated to the inter-
nal dynamics. The spaces ker∗(JNf ) and ker∗(JLf ) have the same dimension,
the conclusion of Corollary 5.7.3 holds and every bifurcation branch of f on
L is lifted from N .

Consider f ∈ Vk(N) with a bifurcation condition associated to the va-
lency. Note that ker∗(JNf ) has dimension 2 and ker∗(JLf ) has dimension 3.
We saw in Example 5.5.2 that every bifurcation branch of f on L is lifted
fromN . This example shows that the condition in Corollary 5.7.3 is su�cient
but not necessary. ♦

5.7.1 Lifting bifurcation problem on FFNs associated with

the valency

In this section, we study the lifting bifurcation problem for feed-forward
systems determined by a regular function that has a bifurcation condition
associated to the valency. We prove that a lift has an extra bifurcation
branch if and only if the center subspace is bigger on the lift than on the
quotient network.

Proposition 5.7.6. Let N be a feed-forward network, f ∈ Vk(N) generic

and L a feed-forward lift of N .

(i) If L is a lift that creates new layers or a lift inside a layer, except the

�rst layer, then every bifurcation branch of f on L is lifted from N .

(ii) If L is a lift inside the �rst layer and L is backward connected, then there

is at least one bifurcation branch of f on L which is not lifted from N .

Proof. Let N be a feed-forward network, f ∈ Vk(N) generic and L a feed-
forward lift of N . Denote by C1 and by C ′1 the �rst layer of N and L,
respectively.

If L is a lift that creates new layers or a lift inside a layer, except the �rst,
then ker∗(JNf ) and ker∗(JLf ) have the same dimension. Recall Remark 5.7.4.
By Corollary 5.7.3, every bifurcation branch of f on L is lifted from N .
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Suppose that L is a lift inside the �rst layer and L is backward connected.
By Remark 5.3.13, we assume that L is the split of a cell c ∈ C1 into two cells
c1, c2 ∈ C ′1 and denote by ./ the balanced coloring in L given by c1 ./ c2.
By Lemma 5.3.15, ./ is the unique balanced coloring such that L/ ./= N .
By the proof of Proposition 5.5.1, we know that there exists a bifurcation
branch b ∈ B(L, f) such that bc1 6= bc2 . So b /∈ ∆./ and it is not lifted from
N .

We give two examples where the previous result can be applied.

Example 5.7.7. Consider the networks in Figure 5.1 and f ∈ Vk(A) generic.
The network B is a lift that creates a new layer from A. Moreover, the
network C is a lift inside the second layer of B.

By Proposition 5.7.6 (i), every bifurcation branch of f on B is lifted
from A. Again by Proposition 5.7.6 (i), every bifurcation branch of f on
C is lifted from B. Thus every bifurcation branch of f on C is lifted from
A. ♦
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Figure 5.8: Lift inside the �rst layer from the �rst network to the second.

Example 5.7.8. Let N be the network on the left of Figure 5.8, L the
lift inside the �rst layer described on the right of Figure 5.8 and f ∈ Vk(L).
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Consider the balanced coloring ./ in L given by 2 ./ 3. By Lemma 5.3.15, this
is the unique balanced coloring in L such that L/ ./= N , as L is backward
connected. There exists a bifurcation branch b ∈ B(L, f) such that b2 6= b3
and thus it is not lifted from N . This agrees with the Proposition 5.7.6 (ii).

♦

In Examples 5.5.2 and 5.7.5, we saw that Proposition 5.7.6 (ii) is not
valid if the lift is not backward connected. In the above example, the lifted
network has more bifurcation branches but they are copies of some bifur-
cation branches on the smaller network. The bifurcation branches of the
smaller network can be lifted in multiple ways because there is more than
one balanced coloring on the lift network that corresponds to the quotient
network.

Example 5.7.9. LetN be the feed-forward network on the left of Figure 5.7,
L the lift inside the �rst layer of N represented in the right of Figure 5.7
and f ∈ Vk(N) generic. In Example 5.5.2, we saw that L has three balanced
colorings ./1, ./2 and ./3 such that L/ ./1= L/ ./2= L/ ./3= N . Every
bifurcation branch b ∈ B(L, f) is lifted from N using one of the previous
colorings. ♦

5.7.2 Lifting bifurcation problem on FFNs associated with

the internal dynamics

In this section, we study the lifting bifurcation problem for feed-forward
systems determined by a regular function that has a bifurcation condition
associated to the internal dynamics. We start by the lifts that create new
layers and lifts inside the �rst layer. These cases do not depend on the feed-
forward system and every bifurcation branch is lifted if and only if the center
subspace in the lifted network is equal to the center subspace on the smaller
network.

Proposition 5.7.10. Let N be a feed-forward network, f ∈ V0(N) generic

and L a feed-forward lift of N .

(i) If L is a lift inside the �rst layer, then every bifurcation branch of f on

L is lifted from N .

(ii) If L is a lift that creates new layers, then there is a bifurcation branch

of f on L which is not lifted from N .

Proof. Let N be a feed-forward network, f ∈ V0(N) generic and L a feed-
forward lift of N .

Suppose that L is a lift inside the �rst layer. Then the center subspace of
JNf and JLf have the same dimension. By Corollary 5.7.3, every bifurcation
branch of f on L is lifted from N .

Suppose that L is a lift that creates new layers. By Corollary 5.6.7, there
exists a bifurcation branch b ∈ B(L, f) having square-root-order greater than
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any bifurcation branch of f on N . Hence there is a bifurcation branch of f
on L which is not lifted from N .

We apply the previous result to the networks in Figures 5.1 and 5.7.

Example 5.7.11. Let N the feed-forward network on the left of Figure 5.7
and L the lift inside the �rst layer of N given on the right of Figure 5.7.
Consider f ∈ V0(N). Using Proposition 5.7.10 (i), we know that every
bifurcation branch of f on L is lifted from N . ♦

Example 5.7.12. Consider the networks A and B in Figure 5.1 and f ∈
V0(A) generic. The network B is a lift that creates a new layer from A.
Proposition 5.7.10 (ii) states that there exists a bifurcation branch of f on
B not lifted from A. In fact, the feed-forward system fB has a bifurcation
branch with square-root-order 1 but every bifurcation branch of f on A has
square-root-order less or equal to 0, because A has only 2 layers. ♦

There is one more special case that does not depend on the speci�c feed-
forward system considered. For lifts inside a layer such that the next layer
only has one cell, there is a bifurcation branch on the lift network not lifted
from the original network.

Proposition 5.7.13. Let N be a feed-forward network with layers C1, . . . , Cm,
f ∈ V0(N) generic and L a feed-forward lift of N .

If L is a lift inside Cj, 1 < j < m and |Cj+1| = 1, then there is a

bifurcation branch of f on L which is not lifted from N .

Proof. Let N be a feed-forward network with layers C1, . . . , Cm, f ∈ V0(N)
generic and L a feed-forward lift of N . Suppose that L is a lift inside Cj ,
1 < j < m and Cj+1 = {d}. Denote by C ′j the j-layer of L and by (σLi )ki=1

the representative functions of L. By Remark 5.3.13, we assume that L is
the split of a cell c ∈ Cj into two cells c1, c2 ∈ C ′j and denote by ./ the
balanced coloring in L given by c1 ./ c2. Since [d]./ = d and Cj+1 = {d}, ./
is the unique balanced coloring such that L/ ./= N .

Using Proposition 5.6.6, we construct a bifurcation branch b ∈ B(L, f)
such that bc1 6= bc2 . Let A = {i : σLi (d) = c2}, δ = Sign(f0λ

∑
i∈A fi) and

pa = −1, sa = 0, a ∈ C1 ∪ · · · ∪ Cj−1 ∪ C ′j \ {c2},

pc2 = 0, sc2 = −2f0λ
f00

, pd = 1, sd = −Sign

(
δ

k∑
i=1

fi

)
2

f00

∣∣∣∣∣f0λ∑
i∈A

fi

∣∣∣∣∣
2−1

,

pa = l, sa = −Sign

(
δ

k∑
i=1

fi

)
2

f00

∣∣∣∣∣
k∑
i=1

fi

∣∣∣∣∣
1−2−(l−1) ∣∣∣∣∣f0λ∑

i∈A
fi

∣∣∣∣∣
2−l

,

for a ∈ Cj+l and 2 ≤ l ≤ m − j. We have that (δ, (pc)c, (sc)c) ∈ Ω(L, f).
By Proposition 5.6.6, there exists a bifurcation branch b ∈ B(L, f) such that
bc1 6= bc2 , since pc1 6= pc2 . Thus b /∈ ∆./ and b is not lifted from N .
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Example 5.7.14. Let L be the network in Figure 5.6 and ./ the balanced
coloring in L given by 2 ./ 3. The network L is a lift inside the second layer
of L/ ./ and L/ ./ has only one cell in the third layer. Taking f ∈ V0(L),
we know that there exists a bifurcation branch of f on L not lifted from
L/ ./. ♦

The last layer of a backward connected feed-forward network has only
one cell. So we can apply Proposition 5.7.13 for backward connected lifts
inside the last but one layer.

We look next to a lift inside a layer such that the next layer has more
than one cell. The example is similar to Example 5.5.2 and it exempli�es
how multiple balanced colorings can allow for the existence of new bifurcation
branches which are copies of bifurcation branches on the quotient network.
In this case the conclusion of Proposition 5.7.13 does not hold.

Example 5.7.15. Consider the network C in Figure 5.1 and the network
L in Figure 5.2. The network L is a lift inside the second layer of C. Note
that the third layer of L has 3 cells.

The lift network has three balanced colorings ./1, ./2 and ./3 such that
C = L/ ./1= L/ ./2= L/ ./3. The balanced colorings in L are de�ned by
2 ./1 3; 3 ./2 4; and 2 ./3 4.

Let f ∈ V0(C) generic and b ∈ B(L, f). We know that b2, b3 and b4
have square-root-order −1 or 0 and only two possible values. Thus b2 = b3,
b2 = b4 or b3 = b4 and b is lifted from C. ♦

We focus on backward connected lifts, since every backward connected
lift has a unique corresponding balanced coloring, see Lemma 5.3.15. Lifts
that create new layers and lifts inside the �rst layer are covered by Proposi-
tion 5.7.10. A backward connected feed-forward network has only one cell in
the last layer. So a backward connected lift cannot be a lift inside the last
layer. And Proposition 5.7.13 includes backward connected lifts inside the
last but one layer. The following results consider lifts inside an intermedi-
ate layer. This result depends on the speci�c feed-forward system consider.
The �rst result shows that there exists an open set of feed-forward systems
in V0(N) such that every lift inside an intermediate layer has a bifurcation
branch which is not lifted.

Proposition 5.7.16. Let N be a feed-forward network with layers C1, . . . , Cm,
f ∈ V0(N) generic and L a feed-forward lift of N such that L is backward

connected and a lift inside a layer Cj, where 1 < j < m− 1.
If fi > 0 for every 1 ≤ i ≤ k (or fi < 0 for every 1 ≤ i ≤ k), then there

is a bifurcation branch of f on L which is not lifted from N .

Proof. Let N be a feed-forward network with layers C1, . . . , Cm, f ∈ V0(N)
generic and L a feed-forward lift of N such that L is backward connected
and a lift inside a layer Cj , where 1 < j < m− 1. Denote by C ′j the j-layer
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of L and by (σLi )ki=1 the representative functions of L. By Remark 5.3.13,
we assume that L is the split of a cell c ∈ Cj into two cells c1, c2 ∈ C ′j and
denote by ./ the balanced coloring in L given by c1 ./ c2. By Lemma 5.3.15,
./ is the unique balanced coloring such that L/ ./= N .

Assuming that fi > 0 for every 1 ≤ i ≤ k, we use Proposition 5.6.6
to construct a bifurcation branch b ∈ B(L, f) such that b /∈ ∆./. De�ne
δ = Sign(f0λ), pa = −1 and sa = 0, for a ∈ C1 ∪ · · · ∪ C ′j \ {c1}, pc1 =
0 and sc1 = −2f0λ/f00. We de�ne the value of p and s by induction in
the layers Cj+1, . . . , Cm in the following way: for a ∈ Cl, j < l ≤ m, if
pσL1 (a) = · · · = pσLk (a)

= −1 de�ne pa = −1 and sa = 0, otherwise de�ne
pa = max{pσL1 (a), . . . , pσLk (a)

}+ 1 and

sa = −Sign(f00f0λ)

√√√√− 2δ

f00

∑
i∈A(a)

fisσi(a),

where A(a) = {i : pσLi (a)
= pa − 1}.

We have that (δ, (pa)a, (sa)a) ∈ Ω(L, f) and pc1 6= pc2 . By Proposi-
tion 5.6.6, there exists b ∈ B(L, f) such that b /∈ ∆./. Thus there is a
bifurcation branch of f on L not lifted from N .

The case fi < 0 for every 1 ≤ i ≤ k is analogous.

Example 5.7.15 shows that the previous result does not always hold if
the lift is not backward connected.

Example 5.7.17. Let L be the feed-forward network of Figure 5.3, ./ the
balanced coloring in L given by 2 ./ 3 and N the quotient network of L
associated to ./. The network N is a feed-forward network and L is a lift
inside the second layer of N . And L is backward connected for the cell 10.
Take f ∈ V0(N) generic such that f1 > 0, f2 > 0 and f3 > 0.

Proposition 5.7.16 states that there exists a bifurcation branch of f on
L not lifted from N . In Example 5.7.23, we will see that this is not true for
every generic f ∈ V0(N). In fact, there exists an open set of functions in
V0(N) such that every bifurcation branch of f on L is lifted from N . ♦

Finally, we give su�cient conditions on a feed-forward lift, with a bigger
central subspace, and on a feed-forward system for every bifurcation branch
on the lift be lifted from the quotient network. First, we look to lifts inside
the second layer. By Remark 5.3.13, we assume that the lift inside the second
layer is a split of two cells.

Proposition 5.7.18. Let N be a feed-forward network with layers C1, . . . , Cm,
f ∈ V0(N) generic and L a feed-forward lift of N . Denote by C ′2 the second

layer of L and by (σLi )ki=1 the representative function of L. Assume that L
is the split of c ∈ C2 into c1, c2 ∈ C ′2 (and a lift inside C2).
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If for every I ⊆ C ′2 \ {c1, c2} there exist d′, d′′ ∈ C3 such that

(wd
′
I + wd

′
1 )(wd

′′
I + wd

′′
1 ) < 0 ∧ (wd

′
I + wd

′
2 )(wd

′′
I + wd

′′
2 ) < 0,

where wdI =
∑

σLi (d)∈I
fi, w

d
1 =

∑
σLi (d)=c1

fi and w
d
2 =

∑
σLi (d)=c2

fi, then
every bifurcation branch of f on L is lifted from N .

Proof. Let N be a feed-forward network with layers C1, . . . , Cm, f ∈ V0(N)
generic and L a feed-forward lift of N . Denote by C ′2 the second layer of L
and by (σLi )ki=1 the representative function of L. Assume that L is the split
of c ∈ C2 into c1, c2 ∈ C ′2.

We prove the result by contraposition. Suppose that there exists b ∈
B(L, f) not lifted from N . Then bc1 6= bc2 . Let (δ, (pa)a, (sa)a) = Θ(b) ∈
Ω(L, f). For every a ∈ C ′2 we have that

pa ∈ {−1, 0} sa = −(pa + 1)
2f0λ
f00

.

Let I = {a ∈ C ′2 \ {c1, c2} : pa = 0} ⊆ C ′2 \ {c1, c2}. By Ω.6, for d ∈ C3 such
that pd = 1 we have that

sd = ± 2

f00

√
δf0λ

∑
i∈A(d)

fi,

where A(d) = {i : pσLi (d)
= 0}. Then (

∑
i∈A(d′) fi)(

∑
i∈A(d′′) fi) > 0, if

pd′ = pd′′ = 1, (
∑

i∈A(d′) fi)(
∑

i∈A(d′′) fi) = 0, if pd′ < 1 or pd′′ < 1, for every
d′, d′′ ∈ C3. Thus  ∑

i∈A(d′)

fi

 ∑
i∈A(d′′)

fi

 ≥ 0,

for every d′, d′′ ∈ C2. Since bc1 6= bc2 , −1 ≤ pc1 6= pc2 ≤ 0. If pc1 = 0
and pc2 = −1, then

∑
i∈A(d) fi = wdI + wd1 . If pc1 = −1 and pc2 = 0, then∑

i∈A(d) fi = wdI + wd2 . So

(wd
′
I + wd

′
1 )(wd

′′
I + wd

′′
1 ) ≥ 0 ∨ (wd

′
I + wd

′
2 )(wd

′′
I + wd

′′
2 ) ≥ 0,

for every d′, d′′ ∈ C3. By contraposition, we obtain the result.

Example 5.7.19. Consider the networks B and C in Figure 5.1. Consider
f ∈ V0(C) such that f1f2 < 0. The lift C of B and the function f satisfy the
conditions of Proposition 5.7.18. As we saw in Example 5.6.5, and accord-
ingly with Proposition 5.7.18, every bifurcation branch of f on C is lifted
from B. ♦
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Last, we consider lifts inside the other intermediate layers. We give
su�cient conditions on a lift network and feed-forward systems such that
there is no new bifurcation branch. We will assume that the lift is given by
the split of a cell into two cells which are the unique inputs cells of two other
cells in the next layer.

Proposition 5.7.20. Let N be a feed-forward network with layers C1, . . . , Cm,
f ∈ V0(N) generic, L a feed-forward lift of N and 2 < j ≤ m−1. Denote by
C ′j the j layer of L and by (σLi )ki=1 the representative function of L. Assume

that L is the split of c ∈ Cj into c1, c2 ∈ C ′j (and a lift inside Cj).

If there exist d′, d′′ ∈ Cj+1 such that σLi (d′), σLi (d′) ∈ {c1, c2}, for every
1 ≤ i ≤ k, and

wd
′

1 w
d′′
1 < 0 ∧ wd

′
2 w

d′′
2 < 0 ∧ wd

′
1 w

d′′
1 + wd

′
2 w

d′′
2 < wd

′
1 w

d′′
2 + wd

′′
1 wd

′
2 ,

where wd1 =
∑

σLi (d)=c1
fi and wd2 =

∑
σLi (d)=c2

fi, then every bifurcation

branch b of f on L is lifted from N .

Proof. Let N be a feed-forward network with layers C1, . . . , Cm, f ∈ V0(N)
generic, L a feed-forward lift of N and 2 < j ≤ m − 1. Denote by C ′j the
j-layer of L and by (σLi )ki=1 the representative function of L. Assume that L
is the split of c ∈ Cj into c1, c2 ∈ C ′j . Suppose that there exist d′, d′′ ∈ Cj+1

such that σLi (d′), σLi (d′) ∈ {c1, c2}, for 1 ≤ i ≤ k. Let b ∈ B(L, f) be a
bifurcation branch and (δ, (pa)a, (sa)a) = Θ(b) ∈ Ω(L, f) the corespondent
symbol.

We know that b ∈ B(L, f) is not lifted from N if and only if bc1 6= bc2 . We
assume that bc1 6= bc2 and obtain a contradiction with the given conditions.

Suppose that bc1 6= bc2 . Then pc1 = 0 ∧ pc2 = −1 or pc1 = −1 ∧ pc2 = 0
or pc1 = pc2 > 0 ∧ sc1 = −sc2 . We have that wd

′
1 w

d′′
1 ≥ 0, if pc1 = 0 and

pc2 = −1. And wd
′

2 w
d′′
2 ≥ 0, if pc1 = −1 and pc2 = 0. If pc1 = pc2 > 0 and

sc1 = −sc2 , then pd′ = pd′ = pc1 + 1 and

sd′ = ±

√
− 2δ

f00
(wd

′
1 − wd

′
2 )sc1 , sd′′ = ±

√
− 2δ

f00
(wd

′′
1 − wd

′′
2 )sc1 .

Thus (wd
′

1 − wd
′

2 )(wd
′′

1 − wd
′′

2 ) > 0. Generically, (wd
′

1 − wd
′

2 )(wd
′′

1 − wd
′′

2 ) 6= 0.
Therefore

wd
′

1 w
d′′
1 < 0 ∧ wd

′
2 w

d′′
2 < 0 ∧ wd

′
1 w

d′′
1 + wd

′
2 w

d′′
2 < wd

′
1 w

d′′
2 + wd

′′
1 wd

′
2 ,

implies that bc1 = bc2 and that b ∈ B(L, f) is lifted from N .

Example 5.7.21. Let L be the network in Figure 5.9 and ./ the balanced
coloring in L given by 4 ./ 5. Consider a function f ∈ V0(L) such that fL
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1 3

2 4

5

6

7 8

Figure 5.9: Feed-forward network with 5 layers.

has a bifurcation condition associated to the internal dynamics. Denote by
N the quotient network L/ ./.

The network L is a split of a cell in N into the cells 4 and 5 and the cells
6 and 7 only receive inputs from those cells. Denote by wdc the sum of the
linear inputs from c to d, where c = 4, 5 and d = 6, 7. We have that

w6
4 = f1 w7

4 = f1 + f3 w6
5 = f2 + f3 w7

5 = f2.

By Proposition 5.7.20, we know that every bifurcation branch of f on L
is lifted from N if

f1(f1 + f3) < 0 ∧ f2(f2 + f3) < 0 ∧ (f1 − f2)2 < f23 .

In order to see that the previous inequalities are satis�ed by some function
f , take f1 = 2, f2 = 1 and f3 = −3. ♦

The previous result does not necessary hold if the splitted cells only target
one cell or if the splitted cells are not the unique inputs of two cells in the
next layer. We present next an example where the splitted cells are not the
unique inputs and the conclusion does not hold.

1 3

2 4

5

6

7

8 9

Figure 5.10: A network L with a quotient network N obtained by the bal-
anced coloring ./ given by 5 ./ 6. If f ∈ V0(N), then there exists a bifurcation
branch of f on L not lifted from N .

Example 5.7.22. Let L be the feed-forward network of Figure 5.10, ./ the
balanced coloring in L given by 5 ./ 6 and N the quotient network of L
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associated to ./. The network N is a feed-forward network and L is a split
of one cell inside the third layer. Let f ∈ V0(N) generic. We show that there
exists a bifurcation branch of f on L not lifted from N .

Let δ = Sign(f0λ(f1 + f2)), p1 = p3 = p6 = −1, p2 = p5 = 0, p4 = 1,
p7 = p8 = 2, p9 = 3, s1 = s3 = s6 = 0,

s2 = s5 = −Sign(f1)δ
2|f0λ|
f00

, s4 = −Sign(f0λ)
2
√
|f0λ|
f00

√
|f1 + f2|,

s7 = s8 = −Sign(f0λ)
2 4
√
|f0λ|
f00

√
|f1|
√
|f1 + f2|

and

s9 =
2 8
√
|f0λ|
f00

√
|f1 + f2|

√
|f1|
√
|f1 + f2|

Note that (δ, (pa)a, (sa)a) ∈ Ω(L, f). Let b ∈ B(L, f) be the bifurcation
branch associated to (δ, (pa)a, (sa)a). Since L is backward connected, a bi-
furcation branch b on L can be lifted from N if and only if b5 = b6. However
p5 6= p6 and b is not lifted from N . ♦

In the next example, we see that the lifting bifurcation problem goes
beyond the one layer to the next layer reasoning. As the example shows, the
network structure can further restrict the possible bifurcation branches. In
this case, we need to look for the next two layers to understand the possible
bifurcation branches.

Example 5.7.23. Let L be the feed-forward network of Figure 5.3, ./ the
balanced coloring in L given by the class {2, 3} and N the quotient network
of L associated to ./. The network N is a feed-forward network and L is a
lift inside the second layer.

Let f ∈ V0(L) be generic such that f3(f2 + f3) < 0. As we show next,
there is no bifurcation branch b ∈ B(L, f) such that b2 6= b3 and every
bifurcation branch of f on L is lifted from N .

Let b ∈ B(L, f). Suppose by contradiction that b2 6= b3. We know that b2
and b3 are the trivial branch or the branch b0 with square-root-order 0 and
de�ned in (5.2). There are two options: b2 = b0 and b3 = 0; or b2 = 0 and
b3 = b0. If b2 = b0 and b3 = 0, we have that b5 and b6 are de�ned on di�erent
sides of λ = 0, like we saw in Proposition 5.7.18. Thus there is no bifurcation
branch of f on L such that b2 = b0 and b3 = 0. If b2 = 0 and b3 = b0, then b4
has square-root-order −1 or 0 and b5 has square-root-order 1. Now, we look
to the next layer, in particular to the cells 7 and 8. We know that b7 and b8
have square-root-order 2 and that the side of λ = 0 where they are de�ned
depend on b5. Since f3(f2 + f3) < 0, the cell 7 receives inputs of type 2 and
of type 3 from the cell 5 and the cell 8 receives an input of type 3 from cell
5, we know that b7 and b8 are de�ned on di�erent sides of λ = 0. So there is
no bifurcation branch of f on L such that b2 6= b3. ♦
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5.8 Discussion

The main goal of this work is to address the lifting bifurcation problem in
the context of feed-forward systems. We identify two important types of lifts
in feed-forward networks, lifts that create new layers and lifts inside a layer.
We show that every backward connected lift is given by the composition
of basic lifts. When studying codimension-one steady-state bifurcations on
feed-forward systems, we identify two possible bifurcations conditions, that
we call valency and internal dynamics. For both conditions, we give a com-
plete description of the bifurcation branches. For bifurcations associated to
the internal dynamics, we introduce a new symbolic set which describes all
bifurcation branches. The symbols represent the growth rate and slope of
the bifurcation branches and the symbolic set is given by the symbols that
satisfy some given rules. Finally, we study the lifting bifurcation problem
for feed-forward systems. For a �xed bifurcation condition, when the lifted
network has a center subspace bigger than the center subspace associated
to the smaller network, we expect the existence of new synchrony-breaking
bifurcation branches. We prove this for di�erent cases, including lifts that
create new layers. From the lifting bifurcation problem point of view, it can
be important when no new bifurcation branches appear and so the study of
the quotient network is su�cient to understand the bifurcations on the lift
network. For some lifts inside an intermediate layer, we prove that there
is a class of feed-forward systems without new bifurcation branches. This
depends on the correct balance between the signs of each of the input's lin-
earization.

We stress that some of the restrictions that we impose at the class of
feed-forward systems in this work can, in fact, be easily removed. If the
dimension of each cell phase space is bigger than 1, then the steady-state
bifurcation analysis is generically the same, using the Lyapunov-Schmidt
reduction. If every layer has a di�erent type of cells, then we only have
lifts inside a layer and the steady-state bifurcation study is similar to the
case of feed-forward systems with a bifurcation condition associated with the
valency. Also, if we do not impose that the origin is an equilibrium for every
value of the parameter, then the steady-state bifurcation with a condition
associated to the internal dynamics is the same. This follows from the fact
that the full-synchronized subspace does not support a bifurcation and a
full-synchronized equilibrium will still exist for every value of the parameter
which can be assumed to be the origin. For the steady-state bifurcations with
a condition associated to the valency, we will have a fold bifurcation instead
of a transcritical bifurcation. However, the lifting bifurcation problem with
a condition associated to the valency will be essentially the same, because
we still have two options for each cell in the �rst layer.

Example 5.7.23 shows that the study of the lifting bifurcation problem for
feed-forward networks is not limited to the next layer reasoning. Examples
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that depend on the next two (or more) layers are not covered by our results
on the lifting bifurcation problem. It would be interesting to have results
that include that kind of examples.

We could consider the lifting bifurcation problem for feed-forward net-
works with a �xed number of layers. And we can ask if there exists a minimal
feed-forward network such that all bifurcation branches of any feed-forward
lift, with the same number of layers, are lifted from that minimal network.

We can also ask the same questions about the lifts, the bifurcation
branches and the lifting bifurcation problem for feed-forward networks with
intra-layer connections.
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6. Conclusions and future work

The goal of this thesis is to understand the codimension one steady-state
synchrony-breaking bifurcations on coupled cell systems. For homogenous
networks with asymmetric inputs, we characterize the fundamental networks
in terms of their graphical properties. Methods to study the synchrony-
breaking bifurcations for this class of networks are available in the litera-
ture. For regular networks, we study the synchrony-breaking bifurcations
on maximal and submaximal synchrony subspaces. Here, we show that the
lattice structure of the synchrony subspaces of a network is not su�cient to
understand the synchrony-breaking bifurcations of the coupled cell systems
associated with the network. In the last two parts of the thesis, we focus
on the lifting bifurcation problem, a problem that compares the synchrony-
breaking bifurcations between a network and their lifts. We study the lifting
bifurcation problem where the bifurcation condition is given by the net-
work valency. We prove that there exists a class of networks such that the
dimension of the eigenspace associated with the valency is su�cient to un-
derstand this problem. Last, we address the lifting bifurcation problem for
feed-forward networks. One of the main conclusions from our work, it is
that the lifting bifurcation problem does depend on the chosen coupled cell
system.

The study of synchrony-breaking bifurcations on coupled cell systems is
an ongoing subject of research, as well as, the study of robustly supported
heteroclinic networks in coupled cell systems. An interesting question is
to determine the bifurcations in coupled cell systems that lead to robust
heteroclinic networks. Some other directions of study in coupled cell systems
are:

• Hopf bifurcations.

• Classi�cation of singularities.

• Transversality.

• Degree theory.

We can also ask which networks are dynamical equivalent to a funda-
mental network.

157


	Acknowledgments
	Resumo
	Abstract
	Introduction
	Networks and coupled cell systems
	Balanced colorings, quotient networks and lift networks
	Network fibrations and symmetries
	Coupled cell systems
	Bifurcation theory
	Equivariant bifurcation
	Coupled cell bifurcations
	Outline and main contributions
	Bibliography

	Characterization of Fundamental Networks
	Introduction
	Coupled cell networks
	Fundamental networks
	Network fibrations
	Surjective network fibrations
	Injective network fibrations

	Fundamental networks and network fibrations
	Fundamental networks and lifts
	Fundamental networks and subnetworks
	Networks which are fundamental networks

	Architecture of networks: rings and depth
	Architecture of fundamental networks
	Depth of fundamental networks
	Rings of fundamental networks

	Bibliography

	Synchrony branching lemma for regular networks
	Introduction
	Settings
	Regular networks
	Coupled cell systems
	Steady-state bifurcation on regular networks

	Synchrony branching lemma
	Synchrony branching lemma – odd dimensional case
	Synchrony branching lemma – two dimensional case
	Bibliography

	The Steady-state Lifting Bifurcation Problem Associated with the Valency on Networks
	Introduction
	Coupled cell networks
	Coupled cell systems
	Steady-state bifurcations
	Steady-state bifurcations associated to the valency
	The lifting bifurcation problem associated to the valency
	Bibliography

	The Lifting Bifurcation Problem on Feed-Forward Networks
	Introduction
	Feed-forward networks
	Lifts of feed-forward networks
	Feed-forward systems
	Steady-state bifurcations for FFNs associated with the valency
	Steady-state bifurcations for FFNs associated with the internal dynamics
	Lifting bifurcation problem on FFNs
	Lifting bifurcation problem on FFNs associated with the valency
	Lifting bifurcation problem on FFNs associated with the internal dynamics

	Discussion
	Bibliography

	Conclusions and future work

