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Resumo

Os requisitos crescentes dos serviços em nuvem de hoje requerem a evolução da infraestrutura de rede
para suportar a quantidade crescente de dados que são processados todos os dias. Isso significa que os
operadores de centros de dados devem projectar ou adaptar os seus ambientes de rede em nuvem para
fornecer uma conexão estável e confiável. Uma infraestrutura otimizada muitas vezes significa também
a redução de custos na utilização dos sistemas e nos gastos em energia.

À medida que as redes crescem e são mais complexas, os sistemas devem ser implementados de
forma a permitir não só acompanhar de perto os recursos que a compõem mas também permitindo uma
certa liberdade para a possível evolução dos requisitos. Como tal, as soluções típicas dos fornecedores
não se encaixam realmente nessa paisagem de constante mudança, uma vez que apresentam soluções
muito sólidas e verticalmente integradas. O paradigma do Software Defined Networking, no entanto,
é capaz de resolver esse problema, pois permite o controlo centralizado das redes subjacentes, propor-
cionando visibilidade e controlo sobre os dispositivos, simplificando o diagnóstico de erros e proporcio-
nando uma maior capacidade de resposta.

Neste trabalho, propomos um sistema de gerenciamento modular para controladores de Software
Defined Networks dos centros de dados da nuvem, fornecendo aos administradores de sistemas uma
plataforma simples, destacando-se e ressaltando a visualização da topologia de rede e monitorização
das portas dos dispositivos. A modularidade também fornece uma plataforma simples para estender a
funcionalidade dos controladores de rede, que podem ser usados para implementar a detecção de anor-
malidades e optimizar os caminhos de encaminhamento de fluxo, entre outros.
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Abstract

The rising requirements of today’s cloud services require the evolution of networking infrastructure to
support the increasing amount of data that is processed every day. This means that data center network
operators must design or adapt their cloud networking environments to provide a stable and reliable
connection. Better optimized infrastructure often also means cost reductions in network utilization and
energy savings.

As networks grow larger and more complex, systems must be put in place that allow for closely
monitoring the resources that make up the network, while also allowing for a certain freedom for the
possible constant change of the network. As such, typical vendor solutions don’t really fit into this
ever changing landscape, since they present very solid and vertically integrated solutions. The Software
Defined Networking paradigm, however, is able to solve this issue, since it enables the centralized control
of the underlying networks, providing visibility and control over the network’s devices, simplifying error
diagnosis and troubleshooting.

In this work we propose a modular management system for cloud data center Software Defined Net-
working controllers, providing system administrators a simple platform to view their network’s topology,
monitor networking devices ports, etc. The modularity also provides a simple platform to extend the
functionality of the networking controllers, that can be used to implement detection of network abnor-
malities and optimize flow forwarding paths, among others.
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“By the time you’ve sorted out a complicated idea
into little steps that even a stupid machine can deal with,

youve certainly learned something about it yourself.

Douglas Adams
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Introduction

1.1 Context

The rapid expansion of the cloud computing environment in the previous decade is related to the in-

creasing demand in computational power that applications like distributed databases or data analysis

have. Public cloud solutions like Amazon’s Web Services, Microsoft’s Azure, or private solutions of-

fered through OpenStack provide a very large pool of resources for developers to deploy applications

with ease. Through economies of scale, these vendors have centralized their solutions in very large scale

data centers, consolidating their operations in a single location, allowing increased performance of appli-

cations, and easier maintenance. The offer of virtualisation solutions also contributes to the recent surge

in popularity of these systems, due to the less spending in operational costs and improved utilization

of hardware [1]. Subscription based systems are typically available for renting, allowing users to use

services on a Virtual Machine.

Using open source applications and whitebox hardware has also contributed to the success of these

environments, due to the possible cost reductions. Software Defined Networking (SDN), has proven to

be a reliable environment to manage data center environments, due to the centralization of the network

controllers, improved programmability of the network’s data plane, and improved management systems.

Network programmability, despite not being exclusive to the SDN framework, eliminates the effort in

individually configuring every network device, which in large scale environments becomes an impossible

task. This model also provides the network engineers and software developers a high level network

abstraction that is used to monitor network utilization and optimize resource utilization.

Network management systems (NMSs) provide the central architectural component that allows the

system administrators to track the systems utilization, analyse link, node and device failures, and observe

alarms when the networks’ state is outside the range that network operators define as normal. These

systems also provide an insight for network operators to research where resources should be allocated.

However, network planning considering virtualisation deployments is considered a difficult task, due to

complex scheduling policies and performance deviations [2].

The topic of traffic engineering in SDN is central to this field, more specifically, the flow and ap-

plication level monitoring. The possibility of acting differently towards network traffic is an advantage
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1.2 Motivation Introduction

for network operators, allowing to prioritize applications that are sensitive to latency, like video and au-

dio streaming. As such, focus on service prioritization and delivery optimization has been the focus of

research of the past few years [3].

1.2 Motivation

The increased relevance that cloud computing solutions have on today’s networking environments, and

the growing opportunities in data centers, mainly kick-started by the prevalence of OpenStack, have

brought a rising demand of open sourced solutions that provide an interface in these environments. Ex-

posing a programmable interface for managing networking devices is a central function of network con-

trollers. Due to the prevalence of Linux-based environments in these data centers, network administra-

tors’ familiarity with the Linux networking stack provides a possible interface for network management.

With this consideration, BISDN developed Basebox, an open source Software-Defined Network con-

troller that interacts between the Linux kernel’s networking library and networking devices. This pro-

vides a familiar and stable Application Programming Interface to configure ports, Virtual Local Area

Network (VLAN) and routes, and the advantages of using tools like systemd-networkd and iptables.

Despite providing a stable platform, Basebox also provides a

1.3 Aims and objectives

This thesis aims to plan and develop a system that exposes the physical topology of connections between

switches and server, and monitoring the port configuration and statistics. This management system aims

to clearly display changes in configuration and behaviour of the networking infrastructure connected

to a SDN controller, which will allow system operators to maintain finer control over their resources.

In this first part, we aim to define the components to implement this management system, from the

necessary modifications to the existing controllers, to the Graphical User Interface that users will interact

with. Typical management solutions like Icinga 1, Zabbix 2 or Graphana 3 display relevant metrics for

monitoring of network devices, including the display of the physical topology, monitor the port status,

display devices temperature, among others. In this stage, we define the Minimum Viable Product (MVP)

for this system as a simple Graphical User Interface that can display the connections between switches

and servers, and expose port statistics like the number of received packets and bytes and the number of

errors.

We propose an Operations Support System (OSS) that interacts with the controllers and implements

intelligence for monitoring the state of the network. Due to data center’s traffic profile, one common

challenge for optimizing the networks resource utilization is the asymmetry of traffic, where most of the

networking flows are short-lived, latency-sensitive quick bursts of packets, but do not amount for the

1https://www.icinga.com/
2https://www.zabbix.com/
3https://grafana.com/
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1.4 Organization Introduction

total traffic in the network. The main contributor for the total traffic volume are the large and long-lived

flows, usually called elephant flows. Solution to this problem will increase the networks capability of

splitting resources between the multiple competing virtualised applications, and, as a consequence, their

associated flows. Furthermore, by maintaining a system that monitors and alarms network operators of

the occurrences of large data streams, this will provide insight to the network operators to plan ahead

their network resources. To implement this functionality, we researched the most common ways that

detection of network traffic changes are done, and propose an algorithm that enables quick detection of

changes in the network traffic behaviour via simple statistical methods.

1.4 Organization

This dissertation is divided in the following chapters:

• Background begins with an overview of Software-Defined Networking, providing an insight on

the protocol behind these environments, and presenting information on the existing applications.

We also give an overview of network management, and approach what the roles of management

systems are in current data centers.

• Related Work explores the deeper concepts of statistical detection, providing a formal framework

for change detection mechanisms. We approach the techniques traditionally used in change de-

tection mechanisms, and evaluate the performance measures used to assess their efficiency. We

also explore further the concept of elephant flows, exploring a possible mathematical represen-

tation, and present the mechanisms typically used for detection and mitigation of this network

phenomenon.

• Monitoring SDN Switches is a chapter dedicated to defining the proposed architecture for this

thesis, by defining the components and the high level approaches for implementing this solution,

providing a description on the architecture of the system this thesis will integrate.

• Management API approaches the first stage of the developed work. First, we design the network-

ing entities with a set of standardized data models for networks, so that the structure for creating

the management interface is logically organized. Then we explore the researched alternatives for

implementing the transport protocol between the network controllers and the Graphical User In-

terface. Finally we demonstrate the final Graphical User Interface developed for this stage.

• Elephant Flow Monitoring is the final chapter, where we explore the proposed solution for the

OSS, more specifically the part related to the elephant flow monitoring. In this chapter we explore

the design of the algorithm for monitoring the port changes, using the statistical methods presented

in the Related Work chapter. Finally, we present the results of the detection algorithm, and propose

a set of optimizations for use in this part.
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Background

2.1 Network Management

The topic of network management is very extensive, due to the many components that make up today’s

networks, and the vast amount of information that they provide. It can be summed up as the operation

and maintenance of network infrastructure so that the service it provides is not only "healthy", but also

is operated at a level that keeps costs down for service providers.

2.1.1 Requirements for management systems

As the complexity of the networks, and network devices that compose them, grows bigger and bigger,

the management systems should accommodate for the their necessities. As such, the basic groups of

requirements for management functions defined in the ITU-T X 700 Recommendation [22] are:

• Fault management is the capability for detection, isolation and correction of abnormal operations

in the system

• Accounting management provides ways to monitor the system resource utilization, and using this

data to generate information about the costs that the operation of a certain resource will incur. This

allows for optimizing the network utilization of resources, as it provides insights on how to plan

the evolution of the network

• Configuration management is related to the maintenance and updates of hardware and software

in the network, and the general setup of devices that allow to start, maintain and terminate services

• Performance management relates to monitor systems for the traffic utilization, response time,

performance and logging histories. This allows to maintain Service Level Agreements (SLA)

between the service provider and the client, providing better services even in cases of unusual

traffic.

• Security management enables setting up security policies in terms of access control to resources,

private information protection, among others.

4
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A network management system usually consists of a centralized station, and management agents

running on the network devices. Using management protocols, the agents can report to the station infor-

mation about the its operational status, which includes information ranging from CPU load to bandwidth

usage. Typically this information can be retrieved by the controller polling the agents, or the agents send-

ing information on their own, usually to inform of status changes. Using this information, the network

operator can get insight on the performance or possible errors of the devices that are monitored. In the

next section, we explore one of the most popular management protocols, SNMP.

2.1.2 SNMP

The Simple Network Management Protocol is an IETF defined protocol that allows for the interconnec-

tion of networking devices, and provide a structured way to retrieve relevant information about these

devices. As the name suggests, SNMP allows for a simplified approach to network monitoring, since it

reduces the complexity of the functions that the management agent needs to comply with, which bring

several advantages, like reducing the costs for development of management tools; providing a way to

monitor, independently from different hardware providers the resources; and also supporting freedom in

extending the protocol in order to include other aspects of network operation [23].

The architectural model of SNMP can be described in figure 2.1.

Figure 2.1: Architectural components of SNMP

The management database is one of the most important components of this system, because it serves

as a reference to the entities that are managed in the SNMP protocol. The formal name for this database

is the MIB - Management Information Base [24], and its composed of a collection of objects.

Each object has a name, syntax and encoding [25]. The name of the object, more specifically, the

Object Identifier (OID), is a reference to the object itself. This name is usually a list of integers, and they

serve to build a tree-like hierarchy. This structure allows for the organization of all objects in a logical

pattern, as there is a parent node that contains references to their children, which provides different

indexes for different objects. For human readability, there is usually an Object Descriptor, to refer to the

object type.

The syntax defines the type of data structure in the object type; and the encoding describes how the

object type is transmitted on the network. In the context of this thesis, an important group is the interfaces
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2.1 Network Management Background

group, as it exposes information about the interfaces present in a system. Its OID is .3.6.1.2.1.2., and it

contains the number of interfaces in a system, and a table containing the counters related to the interface

status, like the received unicast packets, the physical address, among others. The flexibility of the MIB

allows for vendors to introduce their own databases into the MIB, while also remaining compatible with

the standardized one.

Due to its permanence in the market, the protocol has suffered some large changes since its original

design. SNMPv3 now supports important changes to the original one, most notably in the security

aspects, introducing strong authentication and encryption capabilities.

Despite it’s dominance on network management products, SNMP features some bad characteristics

that pose an obstacle for the widespread use in network configuration and management, like [26]:

• Incompleteness of the devices features

• SNMP access can sometimes crash systems, or return wrong data

• Unavailability of MIB modules, which forces users to use CLI’s

• Poor performance

• Security is difficult to handle

2.1.3 Data Center Networks (DCN)

The design of the network architecture is central to the data-center networks, as the placement for physi-

cal hosts and virtual machines allows for sharing the resources and create a logical hierarchy of network

devices. The study of the design of DCN has resulted in the creation of typical DC topologies, like fat-tree

topologies (as seen in 2.2), or others, including de Bruijn server only networks, or BCube switch heavy

networks [27]. Using these standardized architectures monitoring the traffic characteristics, resource

consumption and costs of the networking devices are easier, and causes for failure of are understood and

mitigated, and the entire DC can run on the most optimal way possible. The organization in the DCN

also allows for traffic in the network being resistant to failure scenarios, since multiple paths can be used,

redirecting packets to the correct destination even if a link to a switch fails.

Figure 2.2: Visual representation of the fat tree topology commonly used in data centers
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2.2 Software Defined Networking

Computer networking is a vital part of the services that are offered today, and, as such, the performance

in technology backing these is central to the quality of these services. As the service providers move

their data centers to cloud computing environments, enabling several improvements in the predictability,

Quality of Service and ease of use of their services, new technologies are required to make sure that their

services are adapted to the fast changing landscape of networking. One of the most notable innovations

in this field is called Software Defined Networking, where, as described by the Open Networking

Foundation, the control and data planes are decoupled, network intelligence and state are logically

centralized, and the underlying network infrastructure is abstracted from the applications [4]. The two

main contributions of this architecture are:

• Separation of data and control planes SDN allows for the separation of the network control

plane from the data forwarding plane by having network "intelligence" present in the network

controllers, and having them control the forwarding elements that live in the Data Plane

• Centralization of network management functions By isolating the management on a separate

plane, there is possibility of developing a single controller that can regulate the entire network,

having unrestricted access to every element present in the network, simplifying management, mon-

itoring, application of QoS policies, flow optimization, etc

This new paradigm introduces programmability in the configuration and management of networks,

by consolidating the control of network devices to a single central controller, achieving separation of

the control and the data plane, and supporting a more dynamic and flexible infrastructure. This concept

removes middleboxes 1 replacing them with generic software applications.

(a) Traditional networking architecture (b) SDN architecture

Figure 2.3: Traditional vs SDN network architecture

1Computer networking device that does some operations on traffic, besides packet forwarding. Examples include caches,
Intrusion Detection System (IDS), Network Address Translation (NAT), etc
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By moving network infrastructure to SDN models, the difficulty of managing a network is greatly

reduced, since the logical centralization of the control layer exposes the global view of the network, sim-

plifying management tasks. Furthermore, this also removes the challenge of configure each networking

device individually, turning network operation and management into setting high level policies in the

controllers, and letting the protocols that handle connection between the devices and controllers set the

actual rules.

Software-Defined Networking is defined as being composed of two layers: Northbound Interfaces,

which are composed of Application Programming Interfaces (API) for communication between applica-

tions and the controller, enabling network services like routing, security, visualization and management;

and the Southbound Interfaces which connect the network devices to the controllers via protocols like

OpenFlow (see section 2.2.1), or P4 2.

Figure 2.4: General overview of the SDN architectural components

Understanding SDN platforms is then composed of understanding the operation of both interfaces,

and defining requirements for their operation, which are listed below [5]. These requirements are general

principles for networks, but the addition of the SDN controller introduces a single point of failure, that

could be damaging to the entire network.

1. High Performance

2. High Availability

3. Fault Tolerance

4. Monitoring

5. Programmability

6. Modularity

7. Security
2https://p4.org/
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2.2.1 OpenFlow

With the growth of the networking infrastructure of the past few decades, the need for an environment that

allows for experimentation and testing of different protocols and equipment became evident. As such,

there was need for a framework that could enable testing of new ideas on close to realistic settings. So, on

February 2011 OpenFlow was released, and this proposal quickly became the standard for networking

in a Software Defined Network. Since 2011, this protocol has suffered some revisions, and the latest

version released is version 1.5.1.

Several reasons led to the quick standardization of this protocol, which are related not only to the

initial requirements of the platform, like the capability of supporting high-performance and low-cost

implementations, but also the extensibility that the open source development model provides, removing

the limitations that typical commercial solutions give the network researchers.

The big advantage of OpenFlow is that it is, from the data forwarding point of view, easy to process,

since the control decisions are made by the controller present in a separate plane, and all the switch needs

to do is correctly match the incoming packets, forwarding them according to the rules established by the

controller. The components that are part of this system and enable this functionality are:

• Flow Tables This element describes the main component of the switching capabilities of the Open-

Flow switch. Inside the switch there are several flow tables that contain rules to match incoming

packets, and process them according to the rules specified by the controller. These rules can con-

tain actions that affect the path of the packets, and these actions usually include forwarding to a

port, packet modification, among others. Classification is done via matching one or more fields

present in the packet, for example the switch input port, the MAC and IP addresses, IP protocol.

The required actions for an OpenFlow switch are the capability of forwarding to a set of output

ports, allowing the packet to move across the network; to send them to the controller, in the case

of a miss of match; and finally the ability to drop packets, which is useful for DDoS mitigation, or

other security concerns.

• OpenFlow Protocol The OpenFlow Protocol between the switch and the controller defines several

messages that allow for the control of the switch. This protocol enables capabilities such as re-

questing the available features on the switch, configuration of flow rules, among others, using the

messages referred to as Controller-to-Switch. Other relevant message types are the Asynchronous

messages, that provide notifications of events that occurred. This type includes the PACKET_IN

message, which is a type of message that is sent to the controller when a certain packet has no

match in the flow tables present in the switch. Finally, the Symmetric message, like the Hello

message, which are used for negotation of the OpenFlow version and other elements to help con-

nection setup. The initial connection is initialized by either the switch or the controllers over the

defined transport protocol, but after the transport connection is established, the OpenFlow channel

should behave the same way [6].
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• Secure Channel OpenFlow defines the channel that is between the switch and the controller as a

secure communications channel. As messages that are exchanged between the switches and the

controllers are critical for the correct operation of the system, the channel should be cryptograph-

ically secure, to prevent spoofing and manipulation of this information. As such, the channel is

usually transported over TLS.

Figure 2.5: Images describing OpenFlow components. On the left, an overview to the entire system, and
on the right a view at the table structure of the OpenFlow Switch [6]

Figure 2.5 describes the OpenFlow components. The image on the left shows the entire pipeline and

the connections between the controllers and switch, but lacks the connection of the OpenFlow switch to

the data plane switch ports. In image on the right, the structure of the Flow Table is summarized, and the

packet in originates from the switches’ ingress port, and after processing, the packet will exit through the

switches’ egress port.

In the case of controller failover, then the backup controllers should act on this failure, and act as the

new master. OF switches should connect to the set of available controllers, which should coordinate the

management of the switch amongst themselves, according to a set of certain roles. After the switches’

first connection to the controllers, they should maintain these connections alive, but the controllers have

the possibility of changing their roles. These roles are as follows:

• OFPCD_ROLE_EQUAL, where the controller has full access to the switch, receiving all incom-

ing messages, and can modify the state of the switch

• OFPCD_ROLE_MASTER, which is a similar status to the previous one, but where the switch

ensures that only one switch is connected as the master role

• OFPCD_ROLE_SLAVE is a role that controllers has read-only access to the switch, having no

permissions for altering the state of the switch. The only message that controllers registered with

this role receive are the port-status messages

The OpenFlow switches maintain a set of counters, similar to SNMP, that provide information about

the state of the ports, group, flow and table stats. The statistics that are exposed from OF are shown in
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table 2.1. In this table, the fields duration_sec and duration_nsec specify the time that each port has been

configured, in seconds and nanoseconds respectively.

Table 2.1: OpenFlow port statistics

uint64_t rx_packets uint64_t tx_packets;

uint64_t rx_bytes; uint64_t tx_bytes;

uint64_t rx_bytes; uint64_t tx_dropped;

uint64_t rx_errors; uint64_t tx_errors;

uint64_t rx_frame_err; uint64_t tx_over_err;

uint64_t rx_crc_err;

uint64_t collisions;

uint32_t duration_sec;

uint32_t duration_nsec;

2.2.1.1 OpenFlow Data-Path Abstraction

Figure 2.6: OF-DPA components [7]

OpenFlow Data-Path Abstraction (OF-DPA) allows development of OpenFlow based SDN applications

based in Broadcom’s hardware switches. It provides a hardware abstraction layer, supporting program-

ming of network devices using OpenFlow. The main difference from pure OpenFlow to Broadcom’s

implementation are the Flow Table structures, known as the Table Type Patterns (TTP). These TTPs

are templates that describe the protocol features and messages that the controllers and switches need to

support, providing developers additional structure for easier implementation of their applications. Fur-

thermore, the specialized structure provided by these patterns allow for optimizing the allocation of table

memory, and improve the lookup algorithms.

Figure 2.7 displays the utilized TTP in OF-DPA.
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Figure 2.7: OF-DPA TTP [7]

2.2.2 Network Devices

Networking devices are a central part of network operation, performing routing, switching, management

operations, and span the different layers of the OSI model. The investment in dedicated hardware to per-

form management functions can potentially be replaced by SDN controllers, offloading the QoS policies

and traffic engineering (TE) functions from hardware to software. As such, in this section we focus on

the devices that are responsible for the operation on layers 2 and 3 of the standardized networking stack,

switches and routers. A networking switch is a device that connects multiple devices on a computer net-

work, using hardware addresses (MAC) to forward data inside the network, by mapping each port with

a one (or more) MAC addresses, while a router is responsible of forwarding packets between different

computer networks. These devices run at different layers of the networking stack, the former operating

at the data-link, or layer 2, and the latter operating at layer 3, or network. This is not a clear separation

however with multilayer devices, where switches also provide routing capabilities. Typical vendors for

these solutions include Cisco and Juniper, but the rise of whitebox switches that have support for deploy-

ments in SDN environments enables network operators to avoid vendor lock-in, and take advantage of

the open nature of these devices. Commonly associated with whitebox switches is the support for the

OpenFlow protocol, making these an essential part of the SDN infrastructures.

The performance 3 of networking devices is central to the proper operation of networks, especially

in deployments in Data Centers, where the interfaces must be able to support 100 Gbps links and fur-

ther, while also maintaining the programmability that is expected of SDN based infrastructures. This

performance is linked with the hardware that is chosen to serve as the base for the devices [8]:

3Defined as the throughput and latency of the network node
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1. General Purpose Processors (GPPs) provide the greatest flexibility of all the solutions, while

providing the worst results in performance, due to the general purpose design of the hardware and

the optimizations present in the other architectures.

2. Field-Programmable gate arrays (FPGA) are a platform that enables the configuration of the

devices via hardware design tools, maintaining the programmability of the GPPs, while also al-

lowing for designing the devices around the tasks that they perform, including optimizations for

switching/ routing. A notable example of platforms based in these systems is NetFPGA 4, an open

source hardware platform designed for research, and supporting up to 100 Gbps operation.

3. Application-specific integrated circuits (ASIC) are integrated circuits that are customized for

one particular application, removing the programmability, but also providing greater performance

than the former options.

These architectures generally allows us to design SDN architectures around general purpose hard-

ware, contributing to the flexibility of this paradigm, even considering the proprietary nature of the

ASICs, which can be bundled with Software Development Kits (SDKs) for developing other applica-

tions on top of these.

Considering OF enabled hardware switches, the processing of incoming packets is done as by match-

ing a (up to) 15 field tuple [9] to several flow tables, that have rules sent from the controller. In these

cases, the possibility of bottlenecks is due to several factors, including the latency of the installation of

new flow rules, and the memory limitation on the hardware. Solutions to the memory limitations in OF

switches include DevoFlow [10], which utilizes wild card rules to reduce the number of flow entries

that are installed on the devices, while also aggregating traffic, simplifying detection and management

of unexpected large volumes of traffic (see section 3.1.2), due to reduced control plane load; and Smart-

Time [11] manages the timeouts for the rules on the switch, reducing this in the presence of micro flows,

and increasing the timeout in the case of the occurrence of longer lived flows, which improves memory

utilization and reduces the load on the controller.

Virtualised environments also allowed the development of Software Switches, due to the highly dy-

namic nature of virtual environments with frequent network topology changes caused by Virtual Ma-

chine (VM) movement between physical hosts. Furthermore, standard Linux bridges cannot handle the

multi-server deployments 5 used in virtualised environments, which is why software switches like Open

vSwitch (OVS) replace traditional switches in multi-server virtual deployements. OVS switches are also

compliant with the OpenFlow protocol, which shows the flexibility that can be achieved by combining

all the networking devices with one management protocol.

4https://netfpga.org/site/#/
5https://github.com/openvswitch/ovs/blob/master/Documentation/intro/why-ovs.rst
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2.2.3 SDN Controllers

Central for operation of the networks, SDN controllers allow the orchestration of the multiple parts

required for correctly operating a large scale network. Separate from the data traffic on the network, these

are responsible for the interaction between the Northbound networking applications and the Southbound

devices, as described in figure 2.8.

Figure 2.8: SDN Interfaces division

Although the use case of the controllers will depend on each deployment and implementation, the

basic use case is to provide connectivity across layer 2 and 3 networks, which is achieved via flow man-

agement, including operations like switching, forwarding and potentially load balancing. The logically

centralized position augments this capability by keeping the state of the entire network, which facilitates

route planning and management.

Despite the advantages that the controllers centralization provides, this also introduces a Single Point

of Failure (SPOF) [12], exposing a weakness to Denial-of-Service (DoS) attacks and controller failure.

The potential catastrophic scenario related to controller downtime due to these failures means that an

approach must be planned for disaster failure and recovery. High Availability setups are used to mitigate

the potential failure of the controllers, by having multiple backups running. In order to guarantee that

all controllers see the same network state, every switch must be connected to every controller, but as

specified in section 2.2.3.6, only the Master controller writes the messages to the networking devices,

which ensures that duplicate rules are not enforced. In case of controller failure, one of the backup

controllers can take over the role of the previous master, without any outages on the network.

2.2.3.1 Existing Platforms

There are several controller implementations available for use, each with different interfaces, perfor-

mance, and modularity. In [13] a comparative study is performed on available SDN controllers in 2014,

and compare the different characteristics of each controller, like the available interfaces, the language of

implementation, modularity, etc. In the following sections, we explore two of the highest rated solutions,

Floodlight and OpenDaylight.
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2.2.3.2 Floodlight

Floodlight 6 is a java-based SDN controller, and is one the first open-source solutions to gain relevance

in research and industry [14]. The Northbound endpoint provides a REST API (see figure 2.9) to interact

with the switch, which allows developers to get statistics, push flow entries, and more.

Figure 2.9: Floodlight architecture [15]

This controller also provides the OpenFlow interface, and it enables adding several modules, either

through extensions, or through the utilization of the provided REST interface, simplifying the addition of

new features to the base controller. It also provides an useful GUI for easier visualization of the topology,

link state, and port statistics, which is visible in figure 2.10.

6http://www.projectfloodlight.org/floodlight/
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Figure 2.10: Floodlight web display of the topology

2.2.3.3 OpenDaylight

Figure 2.11: OpenDaylight controller architecture [16]

OpenDaylight 7 (ODL) is a project supported by the major vendors. The main differences between ODL

and other controllers is support for other protocols in the southbound interface, due to the creation of a

Service Abstraction Layer (SAL) [16]. In a high level overview, the creation of the Model-Driven SAL

allows to extend the controller basic functionality by the addition of several plugins, which are used in

combination with a RESTCONF [17] interface, defining the data models for the data stores, and the

RPCs for interaction between the data.
7https://www.opendaylight.org/
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Figure 2.12: OpenDaylight Topology

2.2.3.4 Data center monitoring with SDN

The centralized view that SDN controllers maintain over the networks allows for it to keep the informa-

tion about the flows currently present in the network. As such, the SDN paradigm allows for flexible

control of the path the packets take in the network, and improves performance of the network at a large

scale. By joining the information available on DCN and SDN, the requirements for traffic engineering

(TE) in SDN, from the perspective of flow control are flow management, fault tolerance and traffic anal-

ysis [18]. This set of four requirements set the base for properly monitoring a DCN from the perspective

of the SDN paradigm.

The next section are taken from [18].

2.2.3.5 Flow management

Flow management refers to the capability that the controller has to set rules for packet forwarding, and

maintain the low overhead that is associated with registering a new flow rule, and also limiting the amount

of flow entries, as hardware switches usually have a set amount of flow entries that they can support.

If we consider the fat-tree topology, one obvious consequence is the fact that if one controller is

responsible for the management of the entire underlying topology, a bottleneck can be created when

the rules need to be deployed to a node. When the switch receives a new packet, and there are no

rules to properly forward this packet, then the packet is redirected to the controller, on the form of a

PACKET_IN message, and after processing this packet, a new flow rule is sent to the switch. The

problem with this scenario lies in the delay that it takes between the reception of the packet, and the

installation of the new flow entry, which can be a contributing factor in packet losses in the data plane.

This is an attack vector that is also explored in Distributed Denial of Service (DDoS) attacks for SDN

platforms, as in an extreme scenario, the spoofed packet addresses will not have matches on the tables,

which then result on overflowing the controller [19].

A solution for this issue is then related to decreasing the number of messages sent to the controller, by

introducing some load balancing concepts. One of these concepts is related to the way that we can install
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the flow entries on the switch. The information present in the packets serve to generate the flow-match

entries that are deployed on the table. To reduce the number of interactions between the controller and

OF switches, then we can reduce the number of match fields present in the flow rules, which reduces the

number of flow entries on the switch and the controller messages. Another solution is distributing the

controller among the network, but keeping them connected via a separate channel.

2.2.3.6 Fault tolerance

Although the switches are connected in a way that are able to mitigate link or other switch failures, in

the case of faults occurring there needs to be the possibility of creation of new forwarding rules. An even

bigger concern lies in the case when the controller fails, which will pose a larger problem in the network.

For the case of node failure, fast recovery means that the OF controller can reactively act on link failures,

by signaling the switches to forward packets toward new locations; or proactively, by setting the rules

prior to the occurrence of the failure. In the case that the failure is short lived, then the controller is also

responsible of resetting the paths to the optimal state. The way that controllers handle their connection

is independent of the OpenFlow connection, and the failover should occur with minimal changes to the

underlying flow rules and overhead.

2.2.3.7 Traffic analysis

So that the management tools can correctly display information about the state of the network, status

statistics should be continuously collected and analysed. These statistics should provide the information

about flows, packets and ports, so that the measured metrics can serve as a baseline for the decisions

of the controller to adapt the flow rules to enable the best possible performance. Statistics can be col-

lected in two possible ways: by continuously sampling packets from the switches; or applying sampling

techniques and generalizing the information from the sampled data [20]. The problem here lies in the

collection of the statistics poses a problem for large scale deployments, where continuously polling the

network devices introduces both overhead and very large amounts of data to be parsed, or the data is not

enough to detect failures in a short amount of time.

2.2.4 Statistics

2.2.4.1 OpenFlow

After exploring the requirements for network management, and the way the SDN model can support

developing better systems, we now focus on the possibilities for obtaining this information from the

networking devices. The OpenFlow protocol maintains a set of counters for each flow entry, port and

group statistics, and this information can be queried to obtain a general view on the status of each OF

switch. By sending specific controller-to-switch messages, the switch will return a set of the maintained

statistics, which can then be parsed and analysed further.
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Sending the port statistics message returns an array with the measured counters for each port. These

counters include information like the amount of received and transmitted bytes/ packets, errors and

dropped packets, and the duration that the port is alive.

The next important message is the OFMP_FLOW message, since this allows for getting the individ-

ual flow statistics, and obtain the information about each flow entry, including the time that it has been

set on the switch, the number of packets/bytes in the flow, and the match fields. Also worth noting are

the aggregate flow messages which describe how many packets are in the total flow entries, and also the

number of flow entries that exist.

Also relevant is the information that is retrieved using the group statistics, as they allow to monitor

the number of flows that direct to the group, and again the packet/ byte count that are matched with this

group.

The information provided from these messages allows for a comprehensive view of the state of each

switch, and a Network Management System (NMS) can utilize this information to achieve an under-

standing of the state of the network.

2.2.4.2 sFlow

One problem arises, however, when periodic requests generate too much information, and the control

channel is overflowed with messages of port statistics, which is a possible scenario when the flow tables

start getting too large. As such, a different alternative is to sample a small amount of packets from the

switch, send the packet headers to the controller. One approach to this method is sFlow, a standard for

collection, analysis and storage of network flows and traffic, for each device and its interfaces. sFlow is

implemented using embedded agents on switches and routers, which compile interface and flow samples

and exports them to the sFlow collector via datagrams.

Due to the problems that arise with continuously collecting traffic data, packet sampling has emerged

as a valid solution to this problem, by collecting every n-th packet. The simplicity of the technique allows

for reducing the complexity of sFlow agents, and having the sampling operation being done in hardware,

resulting in the collection of the samples being done at the same speed of the channel it is monitoring.

This reduces the losses that are inherent to the sampling process, which leads to biased analysis of the

traffic [21].

Figure 2.13 shows the basic architecture that composes the sFlow system. One advantage of this

system is the number of systems that incorporate sFlow agents 8, allowing for a detailed analysis of

flows, and enabling flexibility for scalability in the network. By utilizing a sFlow collector that can accu-

rately collect and process the datagrams incoming from the Agents, this protocol can be used to control

most of the central aspects in network management, like troubleshooting network problems; controlling

congestion on the network; or even analysing the possible security threats internal and external to the

network.
8Complete list of compliant devices: http://www.sflow.org/products/network.php
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Figure 2.13: Architectural components of sFlow

2.3 BISDN

Figure 2.14: Basebox architecture

As the SDN market grows larger and larger in the networking world, new applications and prod-

ucts are developed and improved. Seeing the prevalence of closed source and proprietary solutions for

this market, a need for open products that enable further growth and innovation in cloud DCNs is evi-

dent. The main gain in moving from vertically integrated solutions, is the decrease of costs involved, as

cheaper solutions can be found in whitebox 9 switches and open sourced networking applications. With

this motivation, BISDN developed Basebox, a Linux-powered solution to integrate switches and SDN

controllers, allowing for data center operators to configure and manage networks using linux commands,

removing the need for having to manage several devices with different interfaces and workflows, and

adding the capability of running standard networking applications on top of the controllers and switches.

9whitebox switches are generic switches that possess no association to a certain vendor
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Basebox also includes the possiblity of running in a failover scenario, by introducing a backup controller

for the network, and the possibility of creating a giant switch abstraction, by adding another controller,

Capability AWare Routing (CAWR), and having this manage all the southbound switches.

2.3.1 Existing product

2.3.1.1 baseboxd

Figure 2.15: Diagram displaying baseboxd’s capabilities[28]

baseboxd is a controller daemon connecting whitebox switches with a Linux-based system. The

controller communicates with the Linux kernel over netlink 10 and with the switch using the OpenFlow

Data Path Abstraction (OF-DPA) which will represent the state of the switching infrastructure as part of

the Linux networking stack.

From the perspective of the switch, the baseboxd listens for OFPT_PORT_STATUS async messages,

and updates the state of the interfaces in the Linux kernel, creating tap interfaces for each port that is up,

and deleting them when they go down. On the controller side, the changes done to the interfaces are also

propagated downwards into the switch, for example the addition of VLANs, or setting route to neighbors,

and sends the appropriate flow messages via the OpenFlow protocol. Since baseboxd responds directly

to the relevant netlink messages, it is one of the intended ways to interface with baseboxd. One may use

tools such as iproute2 and systemd-networkd to configure baseboxd through this interface [28].

2.3.1.2 CAWR

CAWR is a secondary OpenFlow controller that creates a giant switch abstraction from a set of whitebox

switches. This giant switch integrates with baseboxd and allows for easy scaling and management of

10netlink is an Inter-Process Communication’s (IPC) socket for exchanging information between the Linux kernel and
userspace applications. This interface provides a communication framework to configure a network’s control plane.
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multiple networking devices. As a secondary controller, it is placed in between baseboxd and the phys-

ical switches, and both its northbound and southbound interfaces are OpenFlow, following the OF-DPA

standard.

CAWR was designed to handle multi-switch configurations, and the current version supports up to

two switches. A host can be connected to each of the switches by a pair of interfaces that have bond
11 mode configured, and the layer 2 traffic across the physical network is properly forwarded. Failover

mechanisms to deliver uninterrupted operation are present, in the case of port or switch failure.

CAWR adds Link-Aggregation Control Procotol (LACP) (IEEE 802.3ad, IEEE 802.1ax) and Link-

layer Discovery Protocol (LLDP) -based (IEEE 802.1ab) topology discovery to the Basebox setup.

CAWR uses LLDP to detect internal links (connections between the switches) to build an initial topol-

ogy, and bonds that are discovered via LACP or have been manually configured are added to the topology

as well. LACP is also used to continuously monitor the link status and detect port connections and dis-

connections on servers that have LACP enabled [28].

Figure 2.16: Diagram displaying CAWR’s capabilities[28]

11Network Interface (NIC) bonding is a process of combining two separate network interfaces into a single interface. This
technique guarantees performance increase and redundancy.
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3.1 Traffic engineering in data centers

Understanding the impact of elephant flows in the normal operation of a data center requires understand-

ing the traffic characteristics of the typical cloud data center. The geographical proximity and localization

of large data centers optimizes the interoperability that applications may require by minimizing propaga-

tion delay that could be present if the links between servers, however cloud data centers used for costumer

faced applications and those employed in data intensive tasks may present different requirements, which

poses a problem in optimizing the underlying network. Furthermore, absence of publicly available data

contributes to the challenge of researching data centers [37].

Typical cloud data centers operate at a ratio of 1:1000 staff members to servers [34], which points to

an essential need for extensible automation and failure recovery plans for optimal operation. Automation

is central for cost reduction strategies in data centers, reducing the impact of failures caused by human

errors.

Cost management is also achieved by improving power consumption, which correlates with improved

methods for balancing load on the servers [42]. Load balancing is the concept of moving the load of an

overloaded server to an underutilized one, which reduces performance degradation, and increase recovery

from failures [40]. In a virtualised environment the possibility of moving Virtual Machines (VMs) across

servers and racks facilitates distributing the load without downtime, but the migration decision is not

trivial due to the large amount of variables involved, for example, the bandwidth, memory and CPU that is

available on each server supporting the migrated VM. Furthermore, if an application’s workload changes

over time, one decision may not apply for further migrations [35]. Netshare [36] proposes a system

that optimizes bandwidth allocation by imposing max-min fair sharing on services, using a centralized

controller for orchestration. In [31], a minimization approach is applied to the migration problem, by

generating a cost function considering the variables associated to VM placement, computing the impact

of moving a certain VM to a physical host, and the migration destination is selected with the least amount

of generated impact.

Caching is the act of duplicating content across a network, in order to optimize access to frequently

accessed content, minimizing network congestion at peak access hours [33]. For Software Defined Net-
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working, the centralized controller provides an optimal environment to implement caching in data centers

due to high level knowledge of the tenants in the network. Moirai [39] presents a programmable data-

plane caching system, that allows to prioritize workloads, providing per-workload bandwidth guarantees.

In [32], the last mile delivery of Video-On- Demand problem is solved with the inclusion of OpenFlow

to create dynamic caches using hardware independent statistics, and provide support for additional poli-

cies like load balancing. These systems show an evolution from historical caching mechanisms, that do

not tend to support operations necessary in data center network operations, with higher bandwidth and

storage requirements [39].

3.1.1 DCN Traffic

The techniques proposed for traffic engineering in traditional networks do need to be revised in DCN’s,

since metrics like propagation delay can be negligible, due to the physical proximity of nodes in DC’s

[57]. However, research in this topic can be a difficult task, since many data center operators do not

publish information about their applications and services.

By collecting data from different types of DC’s, several studies have been made about the traffic

characteristics [37, 59, 58]:

• The placement of VMs and servers effects the bandwidth and link capacity, due to the variety of

applications that can be running on the servers at any time, and this non-uniform placement of

VMs contributes to higher amounts of traffic originating from the same rack

• The majority of flows 1 are described as being small in size, and short in duration, which are usually

described as mice flows. The counterpart to these are the elephant flows, which occupy a very

large share of the bandwidth, and degrade application performance, due to a choking effect to the

latency-sensitive mice flows. Applications are tied to the type of traffic they generate, where online

gaming, VoIP and multimedia broadcasting usually originate mice flows, where the large data

transfers and file-sharing generate elephant flows. Despite 90% flows are small and last hundreds

of milliseconds, total traffic volume is largely dominated by the remainder, called elephant flows
[37]

• In a normal situation, link utilization is low in the layers apart from the core switches. In addition

to this discovery, losses are not associated with spikes in traffic, instead being related to high

utilization of the link, which is one of the effects of the previously mentioned elephant flows.

Software Defined Networking based monitoring allows to increase the capability of conducting traf-

fic monitoring and measurements. OpenTM [38] utilizes the monitoring information to build the Traffic

Matrix (TM) of an OpenFlow network by employing different methods of querying the switches, al-

lowing to reduce the load associated with these queries and taking into account the different processing

1flows are sequences of packets sent from a source to a certain destination, either host, anycast or multicast domain
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power of each device. Another method for estimating the link utilization is present in FlowSense [44], in

which PACKET_IN and FLOW_REMOVED OpenFlow messages are monitored since these messages

carry information of arrival of new flows and expiration of flow entries, providing a zero-overhead mon-

itoring technique. This method has optimal performance when the flows in the network are short lived,

posing worse performance as the flow time increases. Due to the absence of these messages in longer

lived flows, the performance decreases when applying this technique on elephant flows.

3.1.2 Elephant flows

Detection of network anomalies is subject to intense research, and as such, several methods were devel-

oped, that assume different levels of control over the network and provide different results to different

use cases. In this section we focus on the available techniques for detection and mitigation of large flows.

3.1.2.1 General formulation of elephant flows

Networks can be represented as an undirected graph G(V,E), which contains a certain multicast group

M ⊆ V , and a multicast tree T ⊆ E [49]. Considering the nodes u,v ∈ M, and the unique paths pu→v,

an approach to define elephant flows is to consider the set of flows that optimize the Quality-of-Service

(QoS) on the unicast path p, or the multicast tree T such as in [49, 56].

Considering the set of flows F on the path p,

F =< F1,F2, ...,Fn >,

and an arbitrary Quality of Service function q(), then xp = q(F) is the QoS requirements for path p.

In [47], the optimal partition is the configuration that improves the QoS in p, or, in a formal definition:

q(F ′
1,F

′
2, ...F

′
n)> q(F1,F2, ...,Fn),

where F ′
X is an optimized set of flows on path p. q() is a generic function, since QoS can be classified

with several parameters, like bandwidth, latency, error rate, and so on, which must then be adapted

from case to case. These parameters can be classified in two classes: bottleneck and additive [49]. As

previously mentioned, the main effect of elephant flows is the choking effect of the bandwidth of the

shorted lived flows, making the bandwidth a proper metric for usage in q(). Considering bandwidth as

the global QoS requirement Q, F ′
p must satisfy the condition

x′p = QF∈p,

since bandwidth can be classified as a bottleneck parameter, where the link with the lowest bandwidth

sets the total for the link. Considering the additive case, where the delay of the links can be used as an

example, the total delay of the links will be the sum of the delays of each link.
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Using this notation, < F ′
e ,F

′
m > identifies the optimal QoS partition where Fe is the set of elephant

flows, and Fm is the set containing mouse flows. From this framework, the set of elephant flows F ′
e is

F ′
e =< F ′

1, ...,F
′

X >⊂ F,

that correspond to the smallest set of of flows that maximize the QoS function for a set of links.

Formally, this restriction can be defined as

min(X),

max(q(F ′
e))< Q.

3.1.2.2 Elephant flow detection

The problem of detection of traffic anomalies has been subject to extensive research, and several different

approaches have been proposed. These methods are based on different techniques [20]:

• Modifications to the applications and services to notify the controller about the state of the traf-

fic on each service. Despite this approach resulting in the most accurate "detection" of network

anomalies, support for this technique is not extensive, due to the required changes to each service,

and it does not account for abrupt changes on the traffic

• By setting hard limits on the transmission capabilities of each port and switch, and enforcing via

shaping mechanisms, the controller is ensured of the non existence of flows that could impact

network performance. This is a mitigation strategy that does not scale well to very large networks,

since it requires the storage of the rules imposed to every port, and can potentially lead to the

inefficient use of network resources, reducing the flexibillity on the DCN’s.

• By employing sampling and collection techniques, using mechanisms like sFlow (see 2.2.4.2), and

building the profile of the normal state of the network, this method can detect outliers that deviate

from the normal state of the network. Utilizing this method reduces the impact of continuously

polling the network, while reducing impact on the packet and byte counts [21], but the loss of

information inherent to sampling may be a challenge to successful deployments, which should

account for optimal sampling strategies and inference from the obtained statistics.

• Periodic polling of the statistics from the switch, and employing statistical analysis methods to

determine change points in the state of the network.

Mahout [20] presents a system that allows for elephant flow detection by monitoring end hosts. Via

implementation of a shim layer on top of every host present in the network, the proposed system allows

to tag the traffic that belongs to larger flows, reducing the complexity that is generated if the monitoring

were done at the aggregation or core switches. Detection itself is done by comparing the number of bytes
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in a buffer to a pre-defined threshold. In Hedera [45] the problem of maximizing network bandwidth is

via detection of large flows and optimization of the placement of the switches according to the demands

of these flows. A sampling approach for detection of network anomalies is explored in [43], where the

proposed method relies on analysing the sampled packets and building a tuple of the traffic characteristics

(source and destination IP, source and destination ports, and the protocol). Using machine learning

methods, this system then compares the entropy of each field to a pre-defined threshold, which allows

for detection and classification of different types of DDoS attacks. In TE, the use of entropy has been

vastly discussed [21, 41], since it can be used in fine grained traffic engineering systems, as well as

anomaly detection systems, since entropy based methods detect the changes in traffic distribution, and

changes that would be too small for volume change detectors are visible in these systems. Furthermore,

traffic classification is now possible, since similar changes in traffic distribution cause the same changes

in entropy, and this factor can be used in classifying the different types of DDoS attacks, for example.

In the case of systems that explore the changes in packet and bytes, [30] proposes a simple approach

for traffic change detection, based on time series and Principal component analysis (PCA). By measur-

ing the state of the network, using the links, flows and packets statistics, a statistical approach to finding

the time locations of change points in the network traffic is designed, by combining different types of

statistical process control techniques. PCA removes the correlation of a set of observations, separating

the seasonal variation from the residual variability. Another system exploring PCA for anomaly detec-

tion is studied in [48], where traffic flow measurements from Origin-Destination (OD) links are used to

determine the anomalies present in the link.

3.1.2.3 Elephant flow mitigation

Now that the methods for identifying elephant flows were presented, discussion of mitigation techniques

to decrease the impact on the smaller, latency sensitive flows must be addressed.

In general, post-detection actions for solving elephant flows can be based in [51, 50]

• separating the queues for elephants and mice flows,

• routing the elephants on a separate path or forwarding them in separate networks,

• splitting the elephants into smaller flows, using different ports and relying on reliable transmission

mechanisms, such as those present on TCP to organize and re-order the packets.

A novel approach for mitigation of elephant flows is present in [52], where the timeout present in

OpenFlow rules in presented as a dynamic way to manage the control plane load and improve the usage

of flow table resources, managing the flows based in their inter packet arrival interval and periodicity.

Basic functionality of this system is the management of the timeout setting of each flow, since, if this

is proven to be too long for flows with long inter packet arrival periods, the flow rules on the switch

could become out dated, leading to a possible switch table overflow; and if the timeouts are too short,

the control plane can be overloaded, causing possible controller failures.
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Another solution proposed for managing elephant flows are present in congestion-aware systems,

where the routing or forwarding decisions are done with a dynamic overview of each link properties.

The proposals in congestion-aware systems are relevant, due to the inefficiency of Equal-cost multi-path

(ECMP) routing in data centers, which causes low throughput and bandwidth utilization for elephant

flows, and increases latency for mice flows [53]. In [54], link capacity is managed per flow by analysing

the flow deadline 2. The reasoning behind analysis of the flow deadline is due to splitting resources on

the link. If the link’s capacity is shared equally between every flow, then every flow will arrive at the

same time, but likely the deadline will have been missed by some. Furthermore, consideration of the

flow implies that every packet must arrive before the deadline. In the case of elephant flow mitigation,

assigning larger portions of the link’s capacity to the shorter flows can be a possible strategy. A similar

approach is present in [55], instead analysing Round-Trip Time (RTT), since this metric directly reflects

the end-to-end latency of a link.

3.2 Time series analysis

As a result of the large scale of current data centers, maintaining control over these networks proves a

difficult task. Networks operators must then adapt to the current situation by improving the monitoring

infrastructures to allow faster response to problems, and Root-Cause Analysis (RCA) 3 of the source

of network issues can be done faster and easier, which will reflect on better service and lower costs for

network operators.

Network behaviour analysis is defined by the constant monitoring of a network, so that events that

compromise the "healthy" state of the network can be removed or mitigated. These include not only cases

where the anomalies are caused with malicious intent, like the case of DDoS attacks, but also failure of

network devices or changes in user behaviour [30]. These systems are equipped with alarm capabilities,

so that system administrators can quickly respond to changes, possibly even giving some information

about the source of the problem. However, the automation of these monitoring processes means that the

possible existence of false alarms reduces the operators capabilities to act on actual failures.

Understanding processes and their results is a key factor in the success of implementing new features,

or analysing existing ones for their efficiency and output. This analysis, important for the different fields

in engineering, economics, health, allows obtaining information about the normal and abnormal state

of each underlying process, provide forecasts and predictions on short and long term behaviour of the

relevant data, classify and cluster information, and more. The act of collecting and processing the data,

over a period of time is called time series analysis.

Monitoring systems provide a guarantee in quality engineering, since they allow to follow a system

and its properties, and notify operators if changes happen that impact the normal status of a relevant pa-

rameter. These changes can be occasional or systematic, but should the state of the system deviate from

2Flow deadline is defined as the time that the flow has to finish transmission, usually due to Service Level Agreements
(SLAs)

3method of identifying the initiating cause of an error or fault in a system
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the limits set by the operators, researching the cause of the errors can reveal some errors or malfunctions

in the system. Change detection is the study of the different parameters of the system, and determining

the points where these cause a significant deviation from the normal operation. In network traffic analy-

sis, these methods can be applied to determine when the behaviour of certain flows, that can be monitored

over metrics originating from the controller and switches, impact the traffic characteristics. One key part

on the application of changepoint detection is the understanding and selection of the proper metrics to

monitor, to ensure that these are sensitive to the traffic changes. One other important consideration in

applying changepoint detection mechanisms is the reduction of false alarms, that occur when the metrics

are too sensitive to traffic changes, and limit the network operators capability of accurately responding

to real network issues.

Change detection mechanisms are classified as follow [30]:

• Online vs Offline In change detection theory, an important distinction is the difference between

online and offline detection. Offline, or batch detection methods consider a fixed length of observa-

tions, and retrospectively analyse the dataset to determine the time where the change, or changes

took place. Online detection, or sequential detection, unlike batch detection which uses all the

available observations to detect the changes, including the ones obtained after the change took

place, is based on the determination of the change points based on the arrival of the new data,

allowing for determining the change as fast as possible [60].

• Parametric vs Non-parametricAnother important distinction is related to the scalability, and

the amount of data that needs to be stored to accurately implement detection on new samples.

Parametric approaches rely on learning a probability distribution from the monitored variables,

and using this learned data to estimate the unknown parameters, after which the training data can

be discarded. Non-parametric models however, do not take into consideration the distribution of

the monitored variables, and analyse statistical properties instead. The cost of this analysis is that

the previous data must be stored to provide better results, but this problem can be mitigated using

algorithms like sliding windows or moving averages.

3.2.1 Mathematical formulations

A time series can be defined as a stream of observations X = {x1, ...xi}, where xi is a vector arriving at

time i. The time series X can also be described as the sum (in equation 3.1), or product (in equation 3.2)

of the following components: St , which refers to the seasonal component of the data; Tt , which defines

the trend of the data, and Rt represents the residual values, accounting for uexpected variation and noise.

X = St +Tt +Rt , (3.1)

Or:

X = St ∗Tt ∗Rt (3.2)
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In regards to the classification of the trends according to the type of change, they can be classified as:

• Deterministic when the trend is consistently increasing/decreasing

• Stochastic when the opposite happens

Time series data usually present a non stationary behaviour, that is characterized by changes in the

mean and variance. Statistical methods require, however, stationarity in the data. The presence of trends

and cyclic behaviours is the most common violation of stationary, and table 3.1 shows the most common

trends present in the data, and the parameters that need to be learned from the time series in study.

Linear y = m · x+b
Polynomial y = b+ c1 · x+ . . .+ cn · xn

Exponential y = c · xb

Logarithmic y = a · ln(x)+b
Table 3.1: Trend models

Removing systematic changes like trends is also possible with differencing,

∇Xt = Xt −Xt−1.

3.2.2 Forecasting

Time-series’ have the possibility of applying statistical models to extract the next value prediction based

on past observations. Under the assumption that the underlying process can be modeled by previous

historical values, and assuming this model remains true for future measurements, the time series data

historical behaviour can be used to generate these forecasts for future values in the time series.

3.2.2.1 Exponential smoothing

Exponential smoothing allows for generating predictions using the historical behaviour, by applying a set

of weights to the data that exponentially decreases over time. Considering the time series Xt , the one-step

ahead prediction x̂t can be obtained by equation 3.3. In this model, the smoothing factor α(0 < α < 1)

should be obtained empirically, and its value will determine the forgetting factor for the past observations.

x̂1 = x0,

x̂t = αxt +(1−α)x̂t−1, t > 1.
(3.3)

Due to its simplicity, this method is not suitable for situations where the data has trends, or seasonal

behaviours [62]. The solution for this problem is introduced with double exponential smoothing, also

know as Holt forecasting, and triple exponential smoothing, also known as Holt-Winters forecasting.
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These methods introduce further components to dampen the effects of cyclic behaviours in the data.

Double exponential smoothing is defined by [30] :

x̂t = Lt−1 +Tt−1,

Lt = αxt +(1−α)(Lt−1 +Tt−1),

Tt = β (Lt −Lt−1)+(1−β )Tt−1.

And triple exponential smoothing is defined by:

x̂t = Lt−1 +Tt−1 + It−1,

Lt = α(xt − It−s)+(1−α)(Lt−1 +Tt−1),

Tt = β (Lt −Lt−1)+(1−β )Tt−1,

It = γ(xt −Lt)+(1− γ)It−s.

The components these methods introduce account for the cyclic behaviours in the data: Lt accounts

for the baseline behaviour of the data, which is calculated on the simple method; Tt smooths the trend

with the β parameter; and St accounts for the seasonal components with the γ parameter. As with α
these parameters should be defined mostly by previous experience.

3.2.2.2 Autoregressive Moving average

Approximating the time series data to a model allows for generating predictions for the next values, since

the relationship between two variables in the data is then known. The Box-Jenkins method defines the

steps of building this model as [61]:

1. Identification Model the data, by reducing the variables to a stationary state, and removing the

possible seasonality in the series

2. Fitting Estimate the parameters for the model

3. Checking Verify if the model accurately fits the available data, returning to the identification step

if its not adequate

Modelling the time series data is possible through moving average (MA), autoregression (AR) or a

mix of the two (ARMA) processes. The autoregressive model, also referred to as AR(p), considers the

linear regression of the p past values, as equation 3.4 shows.

xt =
p

∑
i=1

ϕiXt−i + εt , (3.4)
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where εt is the white noise component, a purely random process of mean 0 and variance σ2, ϕi are

the constant parameters of the model, and p defines the order of the model.

The moving average process models the time series to the white noise that has occurred in the pre-

vious periods, as shown in equation 3.5. In this equation, θi are the parameters of the model, µ is the

mean of the series, and εt are the white noise components. Similarly as in the autoregressive model, the

moving average process can be defined as MA(q), where q is the order of this model.

xt =
q

∑
i=1

θiεi +µ, (3.5)

Finally, the ARMA(p, q) process is defined as the combination of both methods, as shown in equation

3.6.

xt = µ +
q

∑
i=1

θiεi +
p

∑
i=1

ϕiXt−i. (3.6)

Finding the p and q parameters of the models is done via observation of autocorrelation and partial

autocorrelation functions, as introduced in the Box-Jenkins method [61]. The autocorrelation function

calculates the correlation of a time series with its own lagged values. The behaviour of this function

can provide us with the information on the these parameters: if the sample autocorrelation shows an

exponential decrease then the process can be modelled with an AR method; and if this function shows a

drop after a certain value q, then the moving average model is better suited for modelling the time series

[30].

3.2.2.3 Error calculation

A very important part of building forecasting modules is assessing the associated errors with the predic-

tion. Minimizing prediction errors improves the quality of the forecasts, via the adjustment of the chosen

parameters for the model.

A common way to calculate the error is via the Squared Sum of Errors (SSE), which is shown in

equation 3.7.

SSE =
T

∑
t=1

(xt − x̂t)
2 =

T

∑
t=1

ε2
t (3.7)

Other methods include the Root Mean Squared Error (RMSE),

RMSE =

√
T

∑
t=1

(xt − x̂t)2

n

or the Mean Absolute Percentage Error (MAPE),

MAPE =
100

n

T

∑
t=1

∣∣∣∣xt − x̂t

xt

∣∣∣∣,
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In [72] a comparative study of these measures is presented to determine the most adequate mea-

sure for univariate time series forecasts. They analyse simple forecasting methods like the exponential

smoothing and Holt’s method, and the out-of-sample 4 and in-sample 5 performance of these methods.

This analysis of the different forecasting accuracy measures is finished by concluding that the Mean Ab-

solute Scaled Error (MASE), seen in equation 3.8 due to simple interpretations, and independent of the

scale of the data, which poses problems when comparing forecasts with different scales. In equation 3.8,

the numerator et is the forecast error for a certain period, or et = xt − x̂t .

MASE =
1
T

T

∑
t=1

(
|et |

1
T−1 ∑T

t=2 |xt − xt−1|

)
(3.8)

3.2.2.4 Change Detection

A relevant indicator for the validity of the generated forecasts is the forecast error, that is calculated

via the difference between the real measurements and the predicted value. Furthermore, by assuming a

distribution for the forecast error, and a certain significance level, it is possible to validate the generated

forecasts, and detect values that do not fit the model, accusing a possible variation in the parameters of

the model. As such, the prediction error is able to be employed in change detection algorithms. This

prediction error can be defined as:

εt = xt − x̂t

Hypothesis testing is used to perform a test of an assumption about two random variables. This

hypothesis states that a certain relationship between the two variables exists with a certain significance

value, and this relationship can be a relation in the means, the distribution of the observations, etc. The

first step is set null hypothesis, which is the desired assumption to test, and is referred to as H0, which is

then tested against the alternative hypothesis, H1, which is considered true if H0 is rejected. The validity

of H0 is based on a comparison between the two data sets, according to a certain threshold, called the

significance level. This significance level also defines the probability of wrongly rejecting or accepting

a hypothesis, which are defined as following errors: Type I error, happening when the null hypothesis

is rejected, but the performed test is true, and the Type II errors, occurring when the opposite happens.

Originating from quality engineering, control charts are common ways of following the output of

a certain process, with the aim of reducing variability associated to manufacturing processes. Control

charts allow to evaluate the possible sources of variation, and classify the output of the process, based on

the mean or variation of the sampled process, as in control or out of control, depending on the causes of

variation. The process is considered in control when the parameters of the monitored variable, like µ0 or

σ2 are inside the predefined control limits, that are usually set as requirements for the process. The wide

range of control charts allow for a flexibility in choosing the right one that fits each application. Common

4used for evaluating the forecasting accuracy, by using samples not belonging to the initial fitting period
5using data available on the initial fitting period to generate one step ahead forecasts
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charts used are those proposed by Shewhart, where the measurements from the process in study provide

a statistic, like the mean, range, etc. Plotting these parameters allows for drawing the center line at H0,

and the control limits are defined by a multiple of the standard deviation. This control chart allows for

actions to the process be performed not only when the points are shown to be out of control, but also

when there is a sequence of values above or below the center line, or a upward or downward trend is

shown in the control charts.In the context of change detection, the hypothesis test relies on H0 stating

that there is no change in the parameters of the sample like the mean or the variation, and the second

hypothesis H1 stating the contrary.

The CUSUM (cumulative sum) control chart provides a test based on stopping rules, where the

alarms are raised when a parameter of the distribution θt , like the mean, or the variance exceeds certain

thresholds. In the parametric case, the CUSUM algorithm for detection of a change at t0 from the

observation xi is based on the log likelihood ratio defined by [60].

St =
k

∑
i=1

si =
k

∑
i=1

ln
Pθ1(xi)

Pθ0(xi)
.

The previous equation is related to the negative drift of St under normal conditions, and the positive

drift after a change is detected. The alarm is raised when a test statistic gt is larger than a threshold h,

and can be obtained by

gt = St − min
1≤i≤t

Si ≥ h

In the case when Pθ (x) is not known, the log likelihood parameter cannot be calculated, a non-

parametric approach must be used, as mentioned in [60].

3.2.2.5 Performance Evaluation

A relevant metric for designing change detection models for application under network traffic is the false

alarm rate, due to the impact that incorrectly identifying the normal state of the network as abnormal

can have on the operators capability of addressing real abnormalities. This statistical difference of errors

present in hypothesis testing is not relevant for network operators [30], which implies that the design of

the change detection mechanisms should reduce the total false alarm rate. The effectiveness of a statis-

tical approach for change detection can be seen as the relationship between false and real alarms, since

the trade-off with online detection is the number of falsely raised alarms, and the number of accurately

reported changes. As mentioned in section 3.2.2.4 the possible wrong decisions are the type I and II

errors, which are usually represented with error, or confusion matrices, seen in table 3.2, where the pos-

sible outcomes from the decision algorithm are displayed. The notation for this table is True Positive

(TP), False Positive (FP), False Negative (FN) and True Negative (TN).
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Predicted
H0 H1

A
ct

ua
l H0 TP FP

H1 FN TN

Table 3.2: Generalized confusion matrix for hypothesis testing

In the following equations, we define the ratios that allow for measuring the performance of the

algorithm, with Accuracy (A), measuring the correct decision of the algorithm; Sensitivity (S), indicating

the capability of the system to detect the change, and Precision (P) indicates the ability of the algorithm

to accurately distinguish between true and false alarms.

A =
TP +TN

TP +TN +FP +FN
=

TP +TN

Nalarms

S =
TP

TP +FN

P =
TP

TP +FP

The performance of the change detection algorithms can also be defined by:

• MTFA (Mean Time Between False Alarms)

• MTD (Mean Time to Detection)

• ARL (Average Run Length)

The ARL is the expected number of samples required before an alarm is provided, and it can be

divided further in two important measures: ARL0, which specifies the expected number of required

samples until the alarm is raised, assuming that the process is in control; and the ARL1, indicating the

expected number of samples until an alarm is raised, under the condition that the process is out of control.

For optimal results for change detection, we require that ARL0 is as large as possible, and ARL1 be as

small as possible.
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4.1 Problem

Developing solutions for use in mission critical environments requires the deep understanding and anal-

ysis of the requirements of these environments, like those present in large data centers. The Basebox

system (see section 2.3) is an example of these solutions, but lacks a system for monitoring and manage-

ment of the network devices. Such a system should

• display the topology information reported by CAWR, including the internal switch links, and the

LACP discovered bond interfaces on the servers,

• display the port and link statistics for both switches,

• design an alerting system, so that network operators can be informed of changes on the network

state,

• provide diagnostic capabilities.

Also addressed by this system should be the definition of Quality-of-Service (QoS) policies, that

maintains the levels of accepted traffic behaviour of each device in the network, and identifies and ap-

plies some automatic mitigation strategy when the system does not perform according to normal state.

By understanding data center traffic characteristics, one of the largest problems are the existence of ele-

phant flows, that impact the available bandwidth of the network. As such, the development of a full

management system should also include a system that receives the incoming port statistics, analyses

these, and applies statistical analysis to manage the impact caused by elephant flows.

4.2 Solution

Following the previously presented requirements, the proposed system is present in figure 4.1. First, we

add an interface for the controllers that exposes management information like the network’s topology,

statistics, etc. After this, we build an Operations Support System (OSS) that provides the basis for

the development of applications that monitor the state of the network, using the implemented API to
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Figure 4.1: High-level visual description of the proposed system

obtain the relevant information. This system allows further separation of roles in the network, in con-

trast to a system where the controller would gather the roles of managing and monitor the network’s

status, increasing the load on the controllers. Furthermore, this architecture increases the modularity of

the components, enabling hot-swapping different modules, and allows parallel development of different

features in the monitoring and management stack.

We provide a proof-of-concept composed of two components: the first is a Graphical User Interface

(GUI) providing an user friendly interface to display topology and statistics, and the second is an intelli-

gent system enabling the detection of elephant flows. In this section we describe in a high level way the

approaches for the development of this system.

4.2.1 GUI

The primary use case for this component is following the changes in the underlying topology, while also

allowing the monitoring some aspects of the port statistics, and as such, the links between switches and

the hosts, and the association between the ports and the switches should be displayed. Performance wise,

this system must run as fast as possible, and the transmission of data must not interfere with the systems

operation.

In order to reduce the memory requirements of the platform, and decrease the time that it takes for

drawing topology updates, a decision was made to not store state, which would increase the time it

takes for topology updates, with queries to store and load data from these databases. This also removes

complexity as the system grows, where storing information about links and switches would dramatically

increase database size.

Motivated by compatibility with standardized systems, choosing the data model for representing the

underlying system required the investigation of similar systems, and the RFCs, or similar standardized

documents that exist.
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4.2.2 Elephant Flow detection

The second component of our system was developed for monitoring the system statistics, and displaying

alerts when elephant flows are detected. For this end, we have implemented an algorithm for the detection

part.

By monitoring traffic changes in the switches ports, the developed system aims to detect the presence

of large flows based on the traffic statistics obtained from the API. As we assume the tree topology in

data centers, seen in figure 2.2, the testing environment must be designed to monitor the lower layer edge

switches, connected directly to the physical hosts. By monitoring the ports on these switches, we detect

changes in the reported traffic statistics via a developed Python script.
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Basebox is a SDN controller used in data centers, which are a mission critical component for network

operators. As such, management capabilities so that managing and operating infrastructure must be a

central component of this system. There are several steps necessary to understand the problem and be

able to choose the most appropriate design. In this chapter we present the information required to build

this system:

• Understanding and organizing the information available on the network controllers according to a

set of data models;

• Analyse the available protocols for handling the transport between the network controllers and the

Graphical User Interface;

• Decide on the GUI server back-end, and how the visual interface should look like.

5.1 Data models

Data models are abstract concepts that map the properties of entities and organizes their attributes, and

how they relate to each other. To create a switch management interface, the entities we want to model are

the switches themselves, with attributes like the switch name, port counters, and the relationships of the

data will allow us to display the links and topology of the network. One of the considerations that were

taken into account when choosing the data models was the compatibility with standardized data models

by the organizational entities like the IETF 1 and OpenConfig 2.

The NETCONF [68] network configuration model, which we explore further in 5.2.1 also defines a

data modelling language known as YANG, which is used in this protocol to model its configuration and

data, and the remote procedure calls [67]. YANG data model defines the hierarchy of data between a

NETCONF client and server with the objective of smooth integration with the existing system’s infras-

tructure.
1https://www.ietf.org/
2http://openconfig.net/
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The systems we aim to model are two: the topology between the servers and switches, and the port

statistics for each port one the switch. Since there is no data model that would accurately describe both

of them correctly, for the topology we chose the IETF network data model [65], and for the port counters

the OpenConfig interfaces data model 3.

5.1.1 Topology

The topology data model maps a collection of nodes, and the relationships between each node, called

a link. This also allows for describing the network in a vertical hierarchy, by displaying relationships

between several layers, which can then be used to display the entire networking stack, for example

displaying the physical links between nodes, their connections at layer 2 and layer 3 of the OSI model,

and the virtualised relationships that the elements could have in a cloud deployment. As the development

of the product continues, and more features are added, for example, layer 3 routing, then we require a

flexible data model that can be extended to support the new capabilities.

Figure 5.1: Example topology hierarchy achievable with this data model [65]

Mapping the data model to the real world data is then adding the two types of information the data

model expects: the first one composed of adding the different networks that composed the entire topol-

ogy, including their nodes and network types; and then using the previous information to build the links

between each of the nodes, using the termination points the model exposes. As seen in 5.1, this data

model can be extended by adding underlying networks, representing the several layers in the networking

stack.

Displaying the topology proved useful for CAWR since this controller is directly connected to the

underlying switches and can see the links among these networking devices. The connection to the servers

3http://ops.openconfig.net/branches/master/docs/openconfig-interfaces.html
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can also be monitored, by configuring LACP on the servers interface to report their status. Figure 5.2

presents this entire data model, as defined by the IETF.

Figure 5.2: The IETF description for the nodes and links in the proposal for network topologies [65]

5.1.2 Port statistics

Modelling the port statistics to build a management interface requires first understanding of the Open-

Flow statistics.

The chosen data model should then accurately model the fields that we need to expose, and the data

type of counters we wish to measure. In this case, the prevalence of other controllers allows to use the

same data models present in their implementations. OpenConfig maintains a set of vendor neutral data

models, written in YANG, allowing network operators to use standardized models for their networking

infrastructure. The entire set of published models can be accessed in their github page 4.

5.2 Protocols

None of the controllers had a clear way of obtaining the statistics apart from manually looking in the ter-

minal and following the logs exposed and waiting for the appropriate output. In this section we describe

the two Remote Procedure Call (RPC) systems that were researched, and focus on the advantages which

led to the final decision of implementing gRPC on Basebox.

4https://github.com/openconfig/public
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5.2.1 NETCONF

IETF developed a protocol that allowed for installation, manipulation and deletion of configuration of

networking devices called NETCONF, which devices use to expose a full API to their systems. This

protocol is set in a client/server communications pattern and is based in the four layers, as can be seen

in the image 5.3. Data models and operations, covered in detail in the previous section, are related to the

Content layer on the image.

Figure 5.3: NETCONF protocol layers [68]

Configuration of a network device can be complex, and managing separate configurations between

device startup and normal operation is a difficult task, but there is occasional need for this capability.

NETCONF defines the existence of different datastores to enable this feature, allowing the network op-

erator to set an initial configuration, used when the device is initialized, and switching to the running

datastore when the device is ready to maintain normal operation. This concept of datastores also enables

the creation of a candidate datastores, providing the capability of testing configurations on the network

device, checking for any possible errors, while making sure that there is no impact on the current con-

figuration of the device. After the changes have been tested and validated, a <commit> operation can be

used to deploy the new configuration to the running datastore.

Another useful feature of the NETCONF protocol, is the possibility of using the rollback-on-error

capability. When rolling a new change, and if the system is enabled to support this feature, NETCONF

can detect errors in the changes done to the configurations, and return the system to the previous state

that is error free.

The NETCONF API provides several operations to interact with the managed devices to get sys-

tem information and push new configurations. The set of supported operations in the base NETCONF

protocol are [68]:

42



5.2 Protocols Management API

Table 5.1: NETCONF Operations

get

get-config

edit-config

copy-config

delete-config

lock

unlock

close-session

kill-session

NETCONF is able to run on top of several transport protocols. However, NETCONF requires that a

persistent connection is maintained between devices, and this connection should be reliable, and support

transmission failure. In addition, the security should be handled by the transport layer [66], providing the

guarantee that transactions are done in a cryptographically secure channel, between two authenticated

hosts. As a result, typical NETCONF implementations are based on SSH or TLS protocols.

5.2.2 gRPC

The basic idea behind RPC systems is defining an interaction between remote environments where sub-

routines are executed as if they were executed as a local procedure call. These subroutines are defined

by specifying the methods that can be called, with their parameters and return values.

gRPC defines a data serialization format known as protocol buffers, or protobuf, which is used for

defining the service interface and the structure of the messages. This system is based in HTTP/2, due to

the optimizations present in this protocol, like

• header compression, which reduces overhead in transmission;

• multiplexing of multiple requests over single connections;

• and stream prioritization, which allows the creation of streaming RPCs, where a bi-directional

sequence of messages can be exchanged.

There are some projects 5 that enable the translation between YANG to protobuf, which allows us to

use the data models previously chosen, only adding the extra step to convert the files.

Data serialization is a common task for communication between services, and optimization of this

task, specifically regarding the speed, allows for reducing overheads in the transmission of the data.

A comparative study regarding several serialization formats reports [69], without any optimizations,

protobuf improves performance on serializing and de-serializing messages compared to XML or JSON.

5https://github.com/openconfig/goyang
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Figure 5.4: Operations Support System architecture

5.2.3 Comparison

Despite of both protocols capability of meeting the requirements that were presented to us, the gRPC

framework was chosen due to several reasons:

• Both frameworks allow us to use the standardized data models currently proposed by the IETF and

OpenConfig;

• NETCONF trades information as XML encoded information; while gRPC allows to handle infor-

mation in a way thats native to the language implementation of the client/server;

• The faster serialization of data reduces overheads in the connection and load on the controllers;

• The integration with the existing system was easier: since gRPC has implementations for the

languages that the controllers are developed on (i.e. C++), this framework was easier to implement

than NETCONF, which would have required integration with third party tools.

5.3 Implementation

By combination of the technologies presented in this chapter, we developed an Operations Support Sys-

tem (OSS), visible in figure 5.4. The controllers had to be extended to support the gRPC interfaces, and

this connection is accessible through port 5000 on baseboxd and port 5001 on CAWR.

To demonstrate the interfaces capability of exposing the topology and statistics information, we have

developed a simple Graphical User Interface (GUI) as a proof-of-concept of this platform. This GUI

can be accessed via a web page, since this provides an ease of access to the system. The web page

was developed on top of the Django Framework 6, since it is a framework developed in the Python

6https://www.djangoproject.com/
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programming language, support for official gRPC integration and ease of implementation. For drawing

the topology we used the JavaScript library D3.js 7.

5.3.1 Testing

Testing of this component was done on the setup displayed in image 5.5. This test bed was designed for

testing the Basebox controllers, with configuration of the bonded interfaces on the servers connected to

both switches, represented as BX on the image.

Figure 5.5: Graphical User Interface test setup

7https://d3js.org/
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5.3.2 Proof-of-concept

Figure 5.6: Topology obtained from CAWR

Figure 5.6 displays the topology that CAWR reports, similar to the one in the testing environment 5.5.

Table A.1 displays the meaning of the icons present in the GUI. Since this system is to be used in a real

time deployment, there is no interest in storing the state of the network, which means that the topology

must be drawn with every request to the server. Currently the topology is updated every two seconds,

providing a balance between real time updates and the interval for requests to the controllers.

A drawback present in figure 5.6 is that the controllers do not have the mapping between each inter-

face and the physical host, which is why the connected server is displayed as unknown. This is a known

limitation of the system, that can be solved either by manually updating the host name to port mapping in

a configuration file, or extending the controllers to interpret LLDP messages from the servers, although

this was considered out-of-scope for this proof-of-concept.

The connection between both controllers to the GUI provides the view for both controllers, which

means that CAWR will present the view for the physical switches, bonded ports and hosts, while the

baseboxd only shows the giant switch created by CAWR. An advantage of this is the analysis of the global

view of the state of the network, and further possibilities include the addition of displaying configured

VLANs in each port, and even provide a way to configure these VLANS via a GUI. Interaction with the

nodes is possible, and clicking on each provides an insight to the statistics related to the ports in that

node, as seen in figure 5.7.
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Figure 5.7: Single Port statistics from Baseboxd
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6.1 Elephant flow detection algorithm

Section 3.2.2.4 presents several techniques for time series analysis and change detection, in which we

explore the available techniques for modelling the data in a time series, calculating predictions from a

time series’ historical data (see equation 3.3), and finding change points in this data (see section 3.2.2.4).

Using this mathematical baseline, we built an algorithm that monitors the changes in the traffic charac-

teristics of an interface of a switch.

Algorithm 1 is a high level overview of the steps required to obtain the detection, and in the following

sections, we introduce each step, and provide some clarifications on the design decisions.

Algorithm 1 Elephant Detection Algorithm - High Level

1: procedure ELEPHANT FLOW DETECTION

2: Initialization

3: Query controller

4: loop
5: Calculate prediction error

6: Predict next values

7: Detection

8: if Detection then
9: Raise Alarm

10: end if
11: wait 2 seconds

12: end loop
13: end procedure

6.1.1 Initialization

In equation 6.1, BXX and PXX describe to the port statistics obtained from the controllers (see table 2.1),

the byte (BXX) and packet (PXX) counters, respectively, and the indexes describe if the counters account
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for the transmitted or received data in that port.

xi =


BRX

PRX

BT X

PT X

 (6.1)

The initialization step of the algorithm is a crucial step for obtaining correct results in the algorithm.

Algorithm 2 defines the actual steps in this algorithm, allowing the correct initialization of the model

parameters, including the trend component, and to provide a baseline for the expected traffic on the net-

work. It is assumed that no traffic anomalies exist during this stage, but a longer period for initialization

can account for short bursts of higher traffic.

Algorithm 2 Elephant Detection Algorithm - Initialization

1: procedure INITIALIZATION

2: initialization period = 30s

3: while t <= initialization period do
4: x = Query controller

5: initialization measures += x

6: end while
7: Linear Regression (initialization measures)

8: return Linear regression coefficient

6.1.2 Prediction and error calculation

Time series analysis can generate forecasts for future values, assuming the temporal behaviour is main-

tained for future observations. A change detection mechanism analyses the difference between the pre-

dicted value to the observation. In this section we present the prediction and error calculation sections of

the elephant flow detection algorithm.

For calculating forecasts, we have presented in section 3.2.2 two possible methods for generating

predictions. During the design phase of the algorithm, we selected the exponential smoothing technique,

since this is a commonly used technique [29, 30] in the reviewed literature, and provides a generally sim-

ple way to generate forecasts based in historical data. For readers convenience, the prediction equations

are repeated here from section 3.2.1, since they provide the mathematical baseline for the development

of prediction module of the algorithm. The equations are:

x̂1 = x0,

x̂t = αxt +(1−α)x̂t−1, t > 1.
(6.2)
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With this method are able to predict the values that are expected in the following sample. In this

step, the most important consideration is the adjustment of the forgetting factor, α(0 < α < 1), that

determines the impact of previous samples on the calculation of the prediction. The value of this factor

must be adjusted experimentally, by tuning the value according to the desired output.

6.1.3 Detection

The detection component of the algorithm provides the logic for finding the timestamps where a port’s

traffic behaviour changes. For this component we consider two possible techniques: the first, which sim-

ply compares the output of the error calculation to a certain threshold; and a second, using the CUSUM

algorithm (see section 3.2.2.4).

The first analysed detection method is defined as

ε2 ≥ δ ,

and this method provides advantages mainly due to the simplicity of the technique, however previous

knowledge of the change is required to determine a possible threshold δ .

The second analysed method is the CUSUM algorithm. This method is used for monitoring parame-

ters of a sample, by monitoring deviations of the observations according to a certain target value. Typical

implementations of this algorithm are based in an offline approach, calculating the alarm times with

knowledge of the entire data set. Since our method is expected to run in an online approach, the adapta-

tion of this algorithm for an online form is based in the application of a sliding window of observations.

The offline method allows us, however, to obtain a baseline for the online detection algorithm. We

have collected the error prediction output, and applied the algorithm to a generated data set. Performing

this step baselines the expected number of alarms that are raised in a certain testing conditions, so that

application of the online algorithm may provide the closest approximation to the optimal offline version.

The chosen CUSUM algorithm implementation used was from https://github.com/demotu/BMC,

and figure 6.1 shows the alarms raised. Furthermore, this implementation also provides us with the

timestamps corresponding to the start and end of the detected changes. This algorithm calculates the

CUSUM of a set of data, and expects two inputs: a threshold parameter, which defines the amplitude

threshold for the change in data; and the drift parameter tunes the algorithm to allow faster detection

(larger drift), or less false alarms (smaller drift).
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Figure 6.1: Offline CUSUM output

The adaptation of the CUSUM algorithm for utilization as an online technique is based on a sliding

window that is updated with every new sample. Applying this method has the advantages of using

the CUSUM algorithm without needing extensive changes, while also reducing the amount of memory

needed to apply this method. Choosing the window size is a central point to a successful implementation

of the change detection mechanism, that is explored further in section 6.3.

6.2 Testing

The design of a testing environment for testing of the change detection algorithm, must allow for the

accurate simulation of the traffic conditions on real DCNs, and should provide the flexibility to under-

stand and change the underlying topologies. This indicates a strong motivation for deploying a testing

environment in a virtualised environment, using tools like mininet, which provides a miniature network

that can be changed as needed. This testing suite provides a strong alternative to deploying these changes

in hardware.

Despite the changes implemented to Basebox, utilizing these controllers in combination with the

virtualised environment poses a challenge, related to the implementation of the OpenFlow protocol in

the hardware and software switches. Hardware switches that were used for the implementation of the

OSS have a modified version of the OpenFlow tables structure, OF-DPA (see section 2.2.1.1), and the

libraries that make up the controller are designed around this. To utilize the controllers, changes to Open

vSwitch or other alternatives steps would be required in order to use the environment, which was decided

out-of-scope for this thesis. Also, the limited access to the hardware setup meant that an alternative

solution was required.

To solve this issue we adopt a different controller for interaction with the virtual environment. In

addition, researching the traffic engineering modules in other controllers provides ideas that can later

be adopted in Basebox. The chosen controller was Floodlight (see section 2.2.3.2), since it exposes a

simple REST API for obtaining statistics, setting table rules, and is continuously maintained providing

an optimal test bed.
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These elements compose the testing environment that seen in 6.2. To ease the installation of the

utilized applications, we based these applications on VMs and containers, and the installation files can

be found on github 1.

Figure 6.2: The high level overview of the testing setup

Figure 6.2 describes the testing setup designed for testing. This setup provides a close approximation

to setups used to the Top-of-Rack switches connected to the servers on the edge layers (see figure 2.2)

of data centers, while keeping the resource consumption of the virtualised network and controller to a

minimum. In the diagram, the hosts are shown using the HX notation, ranging from 1 to 4, and the

switches use the SX notation. Information about the hosts, like the IP and MAC addresses can also be

seen, and the port numbers used are also displayed.

Mininet provides an API to interact with a virtual network and setup tests in a predictable manner.

We utilize this API to develop a script that creates the network topology. For traffic generation, however,

we require another tool that provides specific functionalities like control of the inter-packet interval and

the packets payload size. The tool hping is a common tool used for packet generation and port mapping,

and its simplicity allows to quickly deploy different tests against the designed setups. In picture 6.3 the

command line interface of the tool is presented and the arguments to build the tests are presented.

1https://github.com/rubensfig/thesisdoc.git
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Figure 6.3: hping tool tests and command line arguments

We consider a test scenario, where every host is communicating with each other, simulating back-

ground traffic. This has the purpose of simulating low traffic intensities in the network, and verify the

behaviour of the designed algorithm in an approximation to real conditions. In this test scenario, we

initialize the network with the background traffic for a specified amount of time, where we assume no

abnormal traffic conditions. After this initialization period, we generate traffic between the hosts H_4

and H_2 during a period of 30 seconds, increasing the payload of the packets each time.

The utilization of Open vSwitch has, however some limitations that should be address when the tests

are being designed. Figure 6.4 shows the increase of the packet loss as the number of flows in OVS

increases. This limitation implies that in order for the tests to run successfully, there needs to be a care

in the amount of flows that are generated.

Figure 6.4: OVS measured packet loss

6.3 Results and Evaluation

We analyse the measurements of the initial received bytes in the different ports of the switch. Figures

6.5 and 6.6 provide an insight on the initial traffic characteristics of each port, and we observe that the
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ports providing the connection between the two switches report a higher utilization in number of bytes

and packets received. This figure also gives an insight on the present trend in the data, that in order to

improve the next values’ prediction and error calculation, these trends should be removed.

Figure 6.5: Plotting the initial measurements of BRX

Figure 6.6: Plotting the initial measurements of PRX

For calculating the prediction error εt , we analysed two possibilities. The first, obtained with

εt = (xi(t)/x̂i(t))2, (6.3)
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provides the output present in figure 6.7, and while it clearly indicates the deviations created by the

elephant flows, it does not provide insight to the level of change caused by larger payloads in the flows.

Figure 6.7: Error calculation, with two different values for α , obtained with equation 6.3

The alternate approach devised was to consider the squared prediction errors, as shown in equation

6.4.

ε2
t = (xt − x̂t)

2 (6.4)

This method allows to obtain the prediction error, while increasing the impact of larger changes to

the flow data size, and minimizing smaller changes. In figure 6.8 we can visualise the output of this

method, which displays the traffic behaviour in the ports of a switch, and the impact of larger payloads

of data is visible, as shown by the increasing level of εt .

55



6.3 Results and Evaluation Elephant Flow Monitoring

Figure 6.8: ε2 calculation using the method present in 6.4

In figure 6.7 and 6.8 , we test the error prediction behaviour for two different values of the α pa-

rameter of the prediction equations, to see the impact that the previous observations have on the error

behaviour. We consider the output of the bottom plot of 6.8 as the desired one, where we assume α = 0.8

since it clearly indicates the start and end times of the variation, which in contrast to the upper plot in this

figure, where the value α = 0.2 is used, does not present a rising trend. Due to this result, we propose

higher (α → 1) values for the smoothing factor for posterior results, more specifically α = 0.8.

In the initial detection strategy, the error detection is based in comparing the calculated prediction

error to a certain threshold. Choosing this threshold requires previous knowledge of the magnitude of

the change, and figure 6.9 represents the output of the prediction error calculation using this method. We

assume a value of δ > 2 for this detection threshold, to show that the detection threshold may be tuned

depending on the use case.

In figure 6.9 we plot the prediction error calculated for every port on the switch, including the inter-

switch connection. Since the developed algorithm monitors the changes in traffic characteristics on the

switch ports connected to a host, applying the change detection to the inter-switch connection does not

provide any useful information, as such, we do not apply the algorithms to these ports.
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Figure 6.9: Simple detection

Figure 6.10 displays the error detection using the CUSUM algorithm, and the timestamps of alarms

raised for the switch port connected to host H4. From this result, we conclude that with this algorithm we

can accurately detect the changes in traffic per port. The greatest difference to the previous mechanism

is the reduction in the number of alarms, since this algorithm does the detection across a sliding window

of observations, and the alarms are only raised when the traffic characteristics change. Regardless, the

same changes in port traffic are detected.
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Figure 6.10: CUSUM Detection results

Analysing the output of the algorithm after the tests finish indicates the corresponding timestamps of

the alarms. Blindly applying the sliding window technique in the algorithm will result in repeated alarms

across the window, and as we vary the length of the window, the algorithm may raise notifications even

if the change has taken place at some time in the past. A simple enhancement to the proposed algorithm

is to consider only the first occurrence of the alarms. Figure 6.11 shows the result of plotting the number

of alarms against the changing size of the window, the upper figure considering only the timestamps of

the first occurrence of the alarm, on the contrary of the lower figure.

This proposed approach also allows the comparison between the offline and the online approach to

change detection. In figure 6.1, the offline output can be analysed for the number of expected alarms

on this testing scenario. Comparing this result to the enhanced version in figure 6.11, we conclude

that the number of errors are similar to the offline version, which means that we can accurately detect

every change in the test scenario with the online algorithm. In this figure, the shaded area represents the

measured variation in the number of alarms.
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Figure 6.11: Comparison of the alarm count between enhanced and non enhanced version

Continuing the analysis of the impact caused by the variation of the window size, the analysis of a

single elephant flow (as shown in figure 6.12) allows us to evaluate the performance of the algorithm,

with the methods mentioned in section 3.2.2.5. Obtaining a baseline for the amount of raised alarms and

detection timestamps was done by applying the offline CUSUM algorithm to this test case.

Figure 6.12: Single elephant flow
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The analysis of the error detection time will provide us with the performance of this change detection

algorithm. By establishing the baseline detection times obtained from the CUSUM algorithm, using the

same threshold and drift parameters in the online and offline case, we can determine the difference be-

tween these baseline values and the values obtained online. Figure 6.13 shows the result of this analysis,

and the variation caused to the time to detection from the varying window size. To generate this result,

we have performed 30 different measures for each window size, and compare the time of detection to the

baseline value.

Figure 6.13: Analysis of the time to detect the change

Analysing the single elephant flow, and the output of the online detection algorithm also allows us

to compare the baseline amount of alarms. This will give us an insight to the amount of false alarms

generated, and the relationship of these with the window size. Table 6.1 shows us the obtained statistics

of the number of alarms, which confirms a worse accuracy for the number of alarms with the smaller

windows.

Table 6.1: False alarms statistics

Window Size 5 10 15 20 25

count 30 30 30 30 30

x̄ 2.833333 2.166667 2.0 2.0 2.0

σ2 0.791478 0.379049 0.0 0.0 0.0
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In spite of the expected result of quicker detection for smaller windows [73], figure 6.13 does not

present much variation in the detection time, but the amount of false alarms raised by the smaller windows

suggest a better performance of the algorithm using larger window sizes.

Finally, an interesting consequence of applying a change detection method applied to the statistics

on the ports on the switch, is the independence of the protocol, allowing us to understand traffic changes

on the ports regardless if the transport protocol is TCP or UDP.
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Conclusion

7.1 Summary of Results

The main objective for this thesis was building a management system that would integrate with a pre-

existing Software-Defined Network controller, exposing information for network operators to manage

and configure their networking infrastructure. With these requirements, we have proposed a management

environment that extends a previously existing system, by adding an interface to baseboxd and CAWR,

two SDN controllers composing the Basebox environment, allowing further developments in the field

of Traffic Engineering with these systems. Integrating this system, we have designed a Graphical User

Interface for interaction with the users, allowing for simple visualisation of the network’s physical topol-

ogy, and the display of interfaces’ statistics, like the packets and bytes received and sent, or the number

of errors.

We have also proposed an algorithm that allows for monitoring traffic changes in ports, in order

to detect elephant flows in the network. Despite not having used the Basebox system for testing this

algorithm, due to differences in the testing environment, we believe that the same algorithm can be used

for large flow detection in the Basebox stack, by changing the interface for obtaining statistics. We have

shown that a simple method can be employed by operators to monitor the state of their network, and rely

on this algorithm to provide them with alarms of port changes.

7.2 Future Work

Despite our conclusion that the main objectives of the thesis were achieved, the large scope of themes

that this topic encompasses means that not everything could be successfully covered. As for more im-

mediate concerns, the next steps in guaranteeing a stable product would be the expansion of the GUI to

report and configure VLANs in each port that is monitored; and support layer 3 functionality, such as

visualising next hop neighbours, routing tables, etc. In regards to longer term goals, continuing the work

on monitoring not only the port change, but the actual flow that contributes to the largest changes in ports.

This could be expanded into a system that analyses the services and applications that contribute the most

to the traffic volumes in the network, which can then be further optimized by reporting the periodicity
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of the largest traffic volumes. The aspect of providing a system that can discriminate the traffic by trans-

port protocol is also an interesting research topic for improving Quality of Service in Software-Defined

Networks.
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Appendix

A.1 GUI icons mapping

Table A.1: GUI icons and their meaning

switch

host

port
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