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Abstract 
Sponges are important components of marine communities, with different 

microorganisms being part of the sponge microbiota, with benefits both for the host and 

the symbionts. Due to the relation between sponges and their microbial community they 

must be seen as a metaorganism and studied together. Marine sponges and 

cyanobacteria have a long history of co-evolution with documented genome adaptations 

in cyanobionts. Both organisms are known to produce a wide variety of natural 

compounds. The coast of Portugal has some particular biogeographic circumstances, 

with climatic influences from the Mediterranean Sea and the Atlantic Ocean, already 

known to be a hotspot for marine invertebrate diversity. Also, due to eutrophication and 

climate change, the occurrence and diversity of marine cyanobacteria seems to be 

growing. 

In the present thesis, when possible, it was tried to employ a multidisciplinary approach 

to complement each task. 

Firstly (chapter 2), it was addressed the diversity of intertidal sponges from the western 

coast of Portugal, identifying the most common ones using an integrative approach 

(morphological, ecological and molecular parameters). Also, a collection of all available 

literature on marine sponges was made (appendix I). A comprehensive list of the 

intertidal species described so far are here presented, where both Calcarean and 

Demosponges were identified. Intertidal sponges belonging to the Class Calcarea were 

here identified for the first time. Demospongiae were the most common. High diversity 

of intertidal sponges was found, with the demosponge Hymeniacidon perlevis present at 

all sample locations. Due to its geographical distribution and abundance, H. perlevis was 

the chosen sponge for other studies here presented. 

In the second study (chapter 3) the aim was to assess the cyanobacterial community 

associated with H. perlevis. As many cyanobacteria associated with sponges are known 

to be difficult to isolate a multidisciplinary approach was used, combining isolation and 

assessment through molecular methods (DGGE, cloning and sequencing). Analysis of 

DGGE banding pattern showed differences between sponge tissue and seawater. 

Cyanobacteria belonging to the genera Synechococcus, Cyanobium, Synechocystis, 

Nodosilinea, Pseudanabaena and Phormidesmis were successfully isolated, and 

sequencing from DGGE banding pattern revealed also Synechococcus, Acaryochloris 

and Prochlorococcus. Due to phylogenetic similarity between isolated cyanobacteria and 

free-living cyanobacteria, is here highlighted the importance of the use of sponges as a 
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source for obtaining cyanobacteria present only in small amount in seawater, as through 

filter-feeding they can concentrate microorganisms in their interior. 
Sponges could be a good animal model for several studies but is known to be difficult to 

maintain ex situ. Through NGS analysis (chapter 4) it was assessed the diversity of 

bacteria associated with H. perlevis from natural environment and compared it through 

a period of 30 days under laboratory maintenance. Proteobacteria, was the major phylum 

present in this sponge and prevailed during the experiment. Cyanobacteria almost 

disappeared from sponge tissue after the 30 days, which was also confirmed through 

TEM analysis. We hypothesized that sponge viability was compromised by the loss of 

cyanobionts. This work shows the need to study the community and its balance prior to 

conduct more extensive studies and further investigations on how sponges are 

dependent on their cyanobionts must be made.  

Free living cyanobacteria have been the focus of many studies aiming to address 

secondary metabolite production as a source of novel natural compounds. Since there 

are known adaptations on cyanobionts genomes, the aimed of chapter 5 was to address 

the toxicological potential of cyanobacterial strains isolated from marine sponges through 

a series of ecologically-relevant bioassays. Both the acute toxicity assay using nauplii of 

Artemia salina, and the bioassay with Paracentrotus lividus showed organic extracts to 

be more toxic than aqueous ones, especially for picocyanobacterial strains. Free-living 

cyanobacterial strains from other studies have shown to have the aqueous extracts with 

higher toxicity, showing the importance of the study of the compounds produced from 

the present work. 

 

Keywords 
Marine Sponges, Cyanobacteria, Diversity, Phylogeny, Portuguese coast, North-east 

atlantic, symbionts
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Resumo 
Esponjas (Porifera) são importantes membros das comunidades marinhas, que vivem 

em associação com diferentes microrganismos. Tanto os simbiontes como o hospedeiro 

são beneficiados nestas relações, e devido ao grau de associação, ambos devem ser 

assumidos como um metaorganismo. Esponjas e cianobactérias têm uma longa história 

de coevolução, tendo já sido documentadas adaptações genómicas nas cianobactérias 

simbióticas. Ambos são produtores de inúmeros compostos naturais.  

A costa de Portugal possui circunstâncias geográficas muito particulares, com 

influências tanto do Mediterrâneo como do Atlântico. Estas particularidades fazem desta 

zona um “hotspot” de diversidade de invertebrados marinhos. Eutrofização e alterações 

climáticas têm aumentado tanto a ocorrência, como a diversidade de cianobactérias 

marinhas. 

No presente trabalho, sempre que possível, foram utilizados métodos multidisciplinares. 

No capítulo 2 o objetivo foi identificar as esponjas intertidais mais comuns presentes na 

costa oeste de Portugal usando parâmetros ecológicos, morfológicos e uma análise 

molecular. Foi também feita uma extensa análise bibliográfica das espécies descritas 

em Portugal (apêndice I). As espécies identificadas pertencem às Classes Calcarea e 

Demospongiae. Membros intertidais da Classe Calcarea foram descritos aqui pela 

primeira vez. O presente estudo mostrou a existência de uma extensa variedade de 

esponjas, sendo que a espécie Hymeniacidon perlevis foi a mais comum. Devido à sua 

distribuição geográfica e abundância, H. perlevis for a espécie selecionada para vários 

ensaios seguintes. 

No capítulo 3 a comunidade de cianobactérias associadas à esponja H. perlevis foi 

investigada usando tanto métodos convencionais de isolamento e cultura, como 

metodologias moleculares (DGGE, clonagem e sequenciação). A análise dos padrões 

das bandas mostrou a comunidade de cianobactérias associadas às esponjas por diferir 

da presente na amostra de água. Cianobactérias dos géneros Synechococcus, 

Cyanobium, Synechocystis, Nodosilinea, Pseudanabaena e Phormidesmis foram 

isoladas e a diversidade foi complementada com a informação proveniente da análise 

molecular, onde foram detectados os géneros Synechococcus, Acaryochloris e 

Prochlorococcus. As estirpes isoladas mostraram ser muito semelhantes a estirpes 

anteriormente isoladas e de vida livre, mostrando que as esponjas poderão ser uma boa 

fonte para obtenção de cianobactérias, devido à sua capacidade de filtração e 

acumulação dos microrganismos no seu interior. 
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Devido à sua posição filogenética, as esponjas poderão tornar-se em bons modelos 

animais para diversos estudos. Para tal, manutenção ex situ é imperativa. Usando uma 

análise por sequenciação de nova geração (capítulo 4) estudou-se a diversidade de 

bactérias associadas à esponja H. perlevis, a qual foi comparada com a comunidade de 

bactérias após manutenção em laboratório (30 dias). O Filo Proteobacteria foi o 

principal, mantendo-se em todas as amostras de esponjas. As cianobactérias quase 

desapareceram da esponja após manutenção em laboratório e pouco depois a esponja 

perdeu viabilidade, morrendo.  Por análise TEM foram identificadas cianobactérias em 

vacúolos especializados tanto para o tecido da esponja in situ, como após 15 dias ex 

situ. Ao fim dos 30 dias não foram identificadas cianobactérias. Possivelmente, a perda 

de cianobiontes interferiu com a viabilidade da esponja. Este trabalho mostrou como o 

balanço na comunidade bacteriana pode afetar a viabilidade da esponja, mostrando a 

necessidade de um estudo mais aprofundado para determinar o verdadeiro papel dos 

cianobiontes nesta esponja. 

Cianobactérias marinhas de vida livre têm sido o alvo de inúmeros estudos para detectar 

novos compostos secundários bioativos. Uma vez que os cianobiontes podem possuir 

adaptações genômicas, o seu potencial como produtor de novos compostos está ainda 

por explorar. No capítulo 5 o potencial toxicológico de estirpes isoladas de esponjas 

marinhas foi estudado. Os estratos orgânicos destas estirpes, especialmente das 

estirpes picoplanctónicas mostraram ser os mais tóxicos tanto no bioensaio agudo de 

Artémia salina, como no do equinoderme Paracentrotus lividus. Estudos realizados com 

estirpes de vida livre têm demonstrado os estratos aquosos como mais tóxicos, quando 

comparados com os orgânicos, contrastando com os resultados aqui apresentados, e 

demonstrando o potencial, e a necessidade de explorar estes novos compostos. 

 

Palavras-chave 
Esponjas marinhas, cianobactérias, diversidade, filogenia, costa portuguesa, atlântico 

nordeste, simbiontes 
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Vicente; 36: Sagres; 37: Ingrina; 38: Lagos; 39: Olhos d´Água; horizontal blue line: 

Algarve; vertical blue line: Entre Cabo do Mundo e Setubal. ............................... 183 
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Porifera 
Sponges are ancient animals (with fossil records dating back to around 580 million years 

(Myr))(Hentschel et al., 2006), belonging to the Phylum Porifera, and constitute the 

bottom (less evolved) of the Metazoan branch. Love et al. (2009) also found chemical 

fossil records from marine demosponges from around 635 Myr ago. With a simple body 

plan, highly totipotent cells, a characteristic aquiferous system and different reproduction 

strategies, Porifera lifestyle has proven to be very successful. Among the 28 aquatic 

phyla, sponges are the ones with greater diversity in terms of number of species and 

morphological characters (Hooper & van Soest, 2002). They contributed to the 

construction of the reefs and to the increase of ocean diversity and are one of the most 

abundant groups of animals (Hooper & van Soest, 2002). Recent studies also point to 

their role in the increase of oxygen on the oceans, a requisite for the explosion of more 

complex life forms on Earth (Lenton et al., 2014). Sponges are important organisms 

playing in marine environments crucial steps of the cycle of dissolved nutrients and 

organic matter (Maldonado & Riesgo, 2008), and are a vast source of compounds with 

biotechnological applications (Leal et al., 2012). These and other roles were already 

subjected to reviews as the one made by Bell (2008). 

Sponges are sessile, exclusively aquatic organisms, presented in marine and freshwater 

environments, from tropical to temperate and polar areas, occurring at all depths (Sarà 

& Vacelet, 1973, Bergquist, 1978, Van Soest et al., 2012), with an enormous variety of 

shapes and colour. In benthic environments they can occupy as much as 80% of 

substrate (Webster & Thomas, 2016). Sponges can have sexual or asexual reproduction. 

Asexual reproduction occurs through fragmentation, budding, or gemmule production. 

Without true tissues or organs, sponges are constituted by cells that maintain their 

totipotency, and that are more or less specialized to maintain vital functions (Hooper & 

van Soest, 2002).  They survive by filtering water to obtain food particles and oxygen. As 

represented in Figure 1-1, water enters through the ostia, which is capable of opening 

and close, as well as to regulate the diameter of the pore, then goes through an internal 

system of canals and chambers surrounded by specialized flagellated cells, the 

choanocytes, that are responsible for the generation of a water current. Finally, water is 

expelled through the osculum. Between the canals and chambers there is a collagenous 

matrix, called mesohyl, responsible for harbouring different cells, like the archeocytes 

(amoeboid totipotent cells capable of moving freely, involved in digestion, transport of 

products through the sponge body, and excretory activities) and to support fibbers and 

structures from the skeleton (Van Soest et al., 2012). 
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Figure 1-1. Schematic representation of a marine sponge (asconoid sponge). Environmental microorganisms are 
represented in green and symbiotic microorganisms are in the mesohyl, represented in red. Extracted from Webster and 
Thomas (2016). 
 

As filter feeders, they are capable of filtering thousands of litters of water per day 

(Hentschel et al., 2006), using microorganisms as their main source of food (Hardoim et 

al., 2009) and during this process, some microorganisms survive in the mesophyll tissue 

and can be established as part of the sponge-specific microbiota (Kennedy et al., 2007) 

(Figure 1-1).  These microorganisms may comprise as much as 40% of the total sponge 

volume (Vacelet, 1975, Vacelet & Donadey, 1977, Webster & Taylor, 2012). Within the 

symbiotic microorganisms are bacteria, fungi, unicellular algae and cyanobacteria (Webb 

& Maas, 2002, Taylor et al., 2007a). The variety of microorganisms in sponges, as well 

as the compounds produced by these associations made sponges the centre of various 

studies. 

The body is supported by collagenous fibbers, spongin fibbers and/or an inorganic 

skeleton made of silica or calcium carbonate (spicules) that can be absent (Hooper & 

van Soest, 2002, Van Soest et al., 2012). There are more than 8500 species (according 

to World Porifera Database (Van Soest et al., 2017)) of Porifera accepted and around 

2300-3000 specimens already collected but undescribed (Appeltans et al., 2012) and is 

divided into 4 Classes: Homoscleromorpha, Calcarea, Hexactinellida and 

Demospongiae. Calcarea comprehends exclusively marine species with a mineral 

skeleton entirely of calcium carbonate and with around 800 described species. 

Hexactinellida are called glass sponges and have a siliceous skeleton with 6 rayed 
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spicules. Normally occur in deep waters and there are around 600 different species 

described. Demospongiae have siliceous spicules and/or spongin fibbers. Spicules can 

be absent. They comprise about 83% of all living sponges (Van Soest et al., 2012, 

Morrow & Cárdenas, 2015) and are mainly marine but also occur in freshwaters. 

Sponge classification rely greatly in spicules morphology and arrangement in sponge 

tissue (Morrow et al., 2013). As sessile animals, with only a small part of life with mobility 

(larvae stage) and the occasional asexual reproduction most species are specific to a 

regional location, with several endemisms (Van Soest et al., 2012). Sponge morphology 

has a high degree of plasticity, with variations not only between different species, but 

also within the same species, because of environment factors, such as sedimentation, 

hydrodynamics, light, turbidity, substratum type and angle and flow regime (Bell & 

Barnes, 2000, Van Soest et al., 2012). Also, many of these morphological characters 

can be non-homologous (Boury-Esnault, 2006) resulting in unresolved and ambiguous 

classification. Identification problems resulted in disregarding sponges in large-scale 

surveys. To overcome this problem, many studies have been using an integrative 

approach, combining morphological and molecular characters to identify sponges. 

Phylogenetic studies have shown that the four porifera classes are monophyletic, but 

many major clades of sponges appear to be paraphyletic, leading to a revision of 

traditional sponge classification (Cárdenas et al., 2012, Hill et al., 2013, Thacker et al., 

2013).  

There are two main commercial interests on sponges. Their use as bath sponges and 

as a source of bioactive compounds with pharmaceutical and/or toxicological interest.  

These compounds are produced by sponges and/or their associated microorganisms 

and constitute a major contributor to sponges success. In an ecological perspective, 

sponges can also be used as bioindicators of water quality or, due to their simple body 

plan and early-branching position in the metazoan tree of life, as an animal model for 

scientific studies, being used for animal phylogenetic, neuronal and morphological 

evolution. 

The coast of Portugal has some particular biogeographic circumstances, receiving 

climatic influences from the Mediterranean Sea and the Atlantic Ocean. As a result, 

biodiversity is a mixture of the one present in the North-eastern Atlantic coasts and the 

Mediterranean (Boaventura et al., 2002). Though sponges can be dominant members of 

some communities and play important roles in a variety of ecosystem functions (Rützler, 

2012, Wulff, 2012), our knowledge of the intertidal and subtidal marine sponges in 

Portugal derives from the works of Carter (1876), Hanitsch (1895), Lévi and Vacelet 

(1958), Pérès (1959), Saldanha (1974), Lopes and Boury-Esnault (1981), Monteiro 
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Marques et al. (1982), Monteiro Marques (1987), Lopes (1989), Araújo et al. (1999), 

Naveiro (2002), Pereira (2007), Pires (2007), Costa (2012). Analysing the bibliography 

previously described (see comprehensive tables in appendix I), it is possible to see that 

the majority of sponge species identified in Portugal are subtidal (Figure 1-2a). Most of 

them belong to the class Demospongiae (Figure 1-2b) and within it to the Subclass 

Heteroscleromorpha (Figure 1-2c). The coast of Portugal has an enormous diversity of 

sponges, with more than 200 different species described (this number also includes the 

ones described for the first time in this work). Most studies focus only on diversity of 

subtidal sponges, lacking information on intertidal diversity. 

In recent years, due to difficulties in sponge identification, most diversity studies 

neglected phylum Porifera and, improving our understanding of their biodiversity can be 

essential for habitats protection. For example, Peterson et al. (2006) showed that the 

increase of water phytoplankton blooms can be linked to a decrease of sponge 

populations, and not directly linked with increased nutrient intake of the ecosystem.  

 

 
Figure 1-2. Porifera distribution in Portugal (continental) according to the literature. (a) Distribution by sampling depth; (b) 
distribution by Porifera Class; (c) distribution by Subclass of the Class Demospongiae and by Orders of the Subclass 
Heteroscleromorpha. 
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Cyanobacteria 
Cyanobacteria are prokaryotic photosynthetic organisms, with a high morphological, 

physiological and metabolic diversity. Fossil record point to the existence of 

cyanobacteria dating back 3.5 billion years ago, with very little morphological changes 

until today (Adams & Duggan, 1999). According to Codd et al. (2016), cyanobacteria are 

responsible for the creation of the Earth’s aerobic atmosphere, continuing to be crucial 

elements in biological cycling of carbon, nitrogen, and minerals. Cyanobacteria are 

primary colonisers, being present in almost all ecosystems, including fresh, brackish, 

and marine waters, and also rocks and soils, as well as extreme environments (Codd et 

al., 2016). 

Cyanobacteria are prokaryotes with their nomenclature ruled both by the International 

Code of Nomenclature for Algae, Fungi and Plants and the International Code of 

Nomenclature of Prokaryotes, emerging different types of systematics. This issue has 

been addressed in more depth by Ramos et al. (2017). In recent years, cyanobacterial 

taxonomy was under revision, with a new proposal made by Komárek et al. (2014). 

Cyanobacteria form symbiotic relationships with numerous eukaryotic organisms such 

as plants, fungi and animals (Adams, 2000). In the marine environment occur with 

sponges, ascidians, echuroid worms, diatoms, dinoflagelates and protozoans (Carpenter 

& Foster, 2002). In sponges, cyanobacteria are important photosynthetic symbionts. 

Host sponges with cyanobionts can comprise up to 30-50% of the sponges on tropical 

reefs (Rützler, 1990, Burja & Hill, 2001, Erwin & Thacker, 2007) and 45-60% in temperate 

waters (Lemloh et al., 2009). As photoautotrophic and sometimes heterotrophic, capable 

of fixing nitrogen, they can provide the host both nitrogen and dissolved organic carbon 

(Adams, 2000, Carpenter & Foster, 2002), and some hosts are even unable to survive 

without these symbionts (Thacker, 2005).  

Their secondary metabolism is very active, known for being one of the most rich and 

diverse sources of compounds not only toxic, but also with pharmacological (e.g. 

anticancer, antibiotic and anti-inflammatory properties) and industrial interests (e.g. 

biofertilizers and anti-fouling properties). In marine environments, cyanobacteria are a 

recognized source for novel metabolites, with hundreds of different compounds 

discovered, mainly from filamentous and tropical cyanobacteria. 

The first interest in cyanobacteria secondary metabolites came from their ability to 

produce toxins. These toxic compounds are chemically very diverse (Codd et al., 2016) 

and can cause a variety of symptoms, acting as hepatotoxins, neurotoxins, cytotoxins, 

dermototoxins and irritant toxins (Wiegand & Pflugmacher, 2005). 
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Marine cyanobacteria diversity on the Portuguese coast have already been the focus of 

various studies (e.g. Brito et al. (2012), Leão et al. (2013)), with Cyanobium, 

Leptolyngbya and Pseudanabaena as the most abundant genera among isolates (Brito 

et al., 2012). A huge collection of isolated strains from the coast of Portugal are deposited 

in LEGE culture collection (LEGE CC) (Ramos et al., 2018). These isolated strains were 

found to be a source of bioactive compounds (Leão et al., 2013, Costa et al., 2014, Brito 

et al., 2015, Costa et al., 2015, Afonso et al., 2016) namely strains from the genera 

Cyanobium (Costa et al., 2015), Leptolyngbya, Synechocystis, Nodosilinea and 

Pseudanabaena (Costa et al., 2014, Afonso et al., 2016).  
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Sponges and their microbial community 
In the present work symbiosis will be used according to the definition from de Bary 

(1879): two organisms of different species that live together in association (mutualistic 

or commensal, but not parasitic), over a long period of time.  

Marine sponges are known for harbouring diverse symbiotic microorganisms, with 

mutual benefits both for the host and the partner. These associations evolved millions of 

years ago and played an important role in sponge survival and evolution (Taylor et al., 

2007b).  

The majority of microorganisms inhabit the mesohyl matrix (Vacelet & Donadey, 1977), 

namely heterotrophic and autotrophic bacteria (Hentschel et al., 2003). In the mesohyl 

bacteria can also appear inside bacteriocytes (Vacelet & Donadey, 1977) or in vacuoles. 

Vacelet (1970) have also found some bacteria in the nuclei of certain sponge cells, 

appearing to be correlated with a pathogenic association. Photosynthetic bacteria 

(cyanobacteria and eukaryotic algae) are often located in light-exposed tissue layers, as 

the outer layer (Rützler, 1985, Wilkinson, 1992). 

The first studies in this area date back from the 70’s. Reiswig (1971) was the first to 

address the existence of microorganisms within sponge tissue, pointing to bacterial cells 

being consumed by sponges. The first works addressing the associations between 

sponges and microorganisms were from Vacelet and Donadey (Vacelet, 1970, Vacelet, 

1971, Vacelet, 1975, Vacelet & Donadey, 1977) and from Wilkinson (Wilkinson, 1978a, 

Wilkinson, 1978b, Wilkinson, 1978c). Vacelet and Donadey (1977) using electron 

microscopy showed the existence of intact bacterial cells in the mesohyl and were also 

able to identify different sponges morphotypes harboured different amounts of bacteria, 

where massive sponges with a dense mesohyl had many bacteria, and sponges with a 

smaller mesohyl and well-irrigated had almost none bacteria. According to Vacelet and 

Donadey (1977), bacteria could account up to 38% of sponge wet weight (w.w.). The 

same bacterial morphotypes were later also identified in the works of Wilkinson 

(Wilkinson, 1978a, Wilkinson, 1978c). Wilkinson (1978b) was able to divide sponges into 

6 different clusters, according to bacterial diversity similarity between sponge tissue and 

the surrounding water. Wilkinson (1978b) showed that some sponges had bacterial 

communities completely different from the ones present in the surrounding water and 

characterized them as strictly symbionts. 

The first studies of the microbial community assessment in sponges used culture 

dependent techniques, being able to recover up to 11% of total bacterial within sponge 

tissue (Santavy et al., 1990, Friedrich et al., 2001, Hentschel et al., 2006, Sipkema et al., 
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2011). According to Hentschel et al. (2006) Proteobacteria, especially alpha- and 

gamma- are the majority of cultivated bacteria.  

Later, the use of molecular based techniques uncovered the existence of many more 

phyla, allowing to overcome issues related to culture dependent techniques. The use of 

fluorescence in situ hybridization (FISH) allowed the detection of single cells, and to 

identify their phylogeny, location and morphology (Hentschel et al., 2003). Denaturing 

gradient gel electrophoresis (DGGE) allowed fingerprinting of bacterial communities. 

This technique gives insights in microbial diversity and provides the ability to track 

changes in the community over time or space (Hentschel et al., 2003). 16S rDNA library 

construction was the most informative technique of this three, phylogenetically speaking 

(Hentschel et al., 2003). One of the first studies of this molecular era was performed by 

Hentschel et al. (2002) comparing the microbial community between sponges, 

surrounding water and sediment. This study showed for the first time the evidence of a 

monophyletic, sponge specific clusters and a uniform bacterial community in marine 

sponges on a global scale. This “specific clusters” were explained through vertical 

transmission, where bacterial cells are pass from sponge to offspring through 

reproductive cells (Hentschel et al., 2002). Evidences of vertical transmission were found 

by Sharp et al. (2007), Schmitt et al. (2007), Usher et al. (2001), Sipkema et al. (2015), 

who retrieved different bacterial phyla from both adult sponges and offspring.  

The construction of 16S rRNA gene libraries by PCR or DGGE allowed the identification 

of the following phyla: Acidobacteria, Bacteroidetes, Chlamydae, Chloroflexi, 

Cyanobacteria, Deferribacteres, Deinococcus-Thermus, Firmicutes, Fusobacteria, 

Gemmatimonadites, Lentisphaerae, Nitrospira, OP10, OP11, Planctomyces, 

Proteobacteria (alpha, beta, delta, epsilon and gamma), Spirochaetes, Tenericutes, 

TM6, TM7, Verrucomicrobia and WS3 (Taylor et al., 2007a, Webster & Taylor, 2012). A 

candidate phyla, “Poribacteria” was discovered by  Fieseler et al. (2004), being almost 

exclusively associated with sponges and only scarcely found in seawater (Taylor et al., 

2013). The use of molecular techniques showed that bacterial communities present in 

marine sponges were very different from the ones present in the surrounding water as 

pointed by Wilkinson (1978b) (Hentschel et al., 2006, Taylor et al., 2007a, Hardoim et 

al., 2009, Hentschel et al., 2012, Webster & Taylor, 2012). 

The use of high-throughput sequencing techniques such as next generation sequencing 

(NGS) 454-pyrosequencing provided new insights in sponge microbiology. Lee et al. 

(2011) concluded that bacterial communities in sponges were species specific and 

Schmitt et al. (2012) in a study using 32 marine sponges collected worldwide found the 

existence of 16 different bacterial phyla and a low core community (<1%). Both works 
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highlighted the idea of a species-specific microbial community, going against the idea of 

a worldwide sponge specific community across different species. NGS studies unveiled 

many different phyla (Cárdenas et al., 2014, Hardoim et al., 2014, Kennedy et al., 2014, 

Naim et al., 2014). Thomas et al. (2016), as part of the global sponge microbiome project, 

studied 81 different sponge species worldwide collected, founding the existence of 41 

microbial phyla and candidate phyla. The overall patterns of microbial diversity were also 

found in the work of Moitinho-Silva et al. (2017) in a study comprising 268 sponge 

species. Just like the previous works, most OUT’s (operational taxonomic units) were 

present in a small fraction of the sponges, and only a few were found in most sponge 

species (Moitinho-Silva et al., 2017). Although recent 454 pyrosequencing studies 

revealed many new microbial phyla in sponges, it also showed that the dominant 

bacterial taxa were the same as the ones described in previous studies using 16S rRNA 

gene libraries. As described by Pita et al. (2018) and represented in Figure 1-3, the most 

dominant bacterial phyla are: Proteobacteria (Gamma- and Alpha-), Actinobacteria, 

Chloroflexi, Nitrospirae, Cyanobacteria and Candidatus Phylum Poribacteria.  

 

 
Figure 1-3. Scheme from the work of Pita et al. (2018): “Microbial OUT richness in sponge-associated microbial 
communities at phylum level. The Greengenes annotation of the representative sequences for sponge-associated OTUs 
detected by the Global Sponge Microbiome (Thomas et al., 2016) was used to create this chart. A diversity of 43,034 
OTUs from 39 classified microbial phyla (Bacteria and Archaea) was detected in the microbiomes of the 81 species in this 
project (Thomas et al., 2016)”. 
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According to the bacterial community abundance, sponges were classified into two 

categories: high microbial abundance (HMA) and low microbial abundance (LMA) 

sponges (Hentschel et al., 2006). HMA sponges have 108-1010 bacteria per gram of 

sponge (w.w.) (Friedrich et al., 2001, Hentschel et al., 2006, Weisz et al., 2007), 

corresponding to 2-4x more bacteria than seawater. In this sponges, also known as 

“bacteriosponges”, microorganisms can account for as much as 40-60% of sponge 

biomass (Grozdanov & Hentschel, 2007). LMA sponges have the same amount of 

bacteria than seawater (105-106 bacteria per gram of sponge (w.w.)) (Hentschel et al., 

2006). Different studies have also point to a microbial diversity at phylum-level in 

between HMA and LMA sponges (Weisz et al., 2007, Erwin et al., 2011, Schmitt et al., 

2012, Giles et al., 2013, Moitinho-Silva et al., 2014). LMA sponges are often dominated 

by Proteobacteria (alpha-, beta- and gamma-) or Cyanobacteria (genus Synechococcus) 

and lack the candidate phylum Poribacteria. HMA sponge have higher phyla as 

dominant, such as Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria, candidate 

phyla Poribacteria and other.  

Sponge bacteria associations provide many benefits for the host, such as in nutritional 

processes through translocation of metabolites in the form of glycerol (Wilkinson & Fay, 

1979), organic phosphate and nitrogen (Wilkinson & Fay, 1979) or glucose (Wilkinson, 

1980), enhancing its growth rate and competitiveness with other benthic communities 

(Wilkinson, 1980, Arillo et al., 1993) and sponge skeleton stabilization (Wilkinson et al., 

1981). Bacteria can also participate in chemical defence of the host against both 

predators and biofouling (Unson et al., 1994, Schmidt et al., 2000). It has also been 

proven that sponge survival, in many cases, can be directly linked to the stability of 

certain symbionts. For example, Thacker (2005), observed that a decline on the 

cyanobacterial community of the sponge was related with a decrease of sponge health. 

On the other hand, microorganisms can also benefit from these associations. The 

sponge provides a steady nutrient supply through filter-feeding activity. Ammonia, a 

metabolic end product from sponges, also provide nitrogen for the microorganisms 

(Hentschel et al., 2012). 
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Cyanobacteria and Sponges associations 
Porifera and Cnidarians are the most common marine animals capable of establishing 

symbiotic relationships with photosynthetic microorganisms. That is due to their simple 

morphology and high surface/volume area, allowing photobionts to capture light (Venn 

et al., 2008). 

Symbiotic associations of marine sponges and cyanobacteria are common worldwide, 

from tropical, temperate and polar ecosystems. In tropical areas, cyanosponges can 

comprise 30-50% of the sponge community (Rützler, 1990, Burja & Hill, 2001, Erwin & 

Thacker, 2007), and in temperate regions up to 64% (Lemloh et al., 2009). According to 

Steindler et al. (2002) cyanosponges can achieve up to 85% of all intertidal sponge 

communities in tropical reefs. Sponge cyanobacteria associations has been 

characterized as mutualistic (Konstantinou et al., 2018).  

All Classes of Porifera have already been reported as having cyanobacteria symbionts, 

especially from the classes Demospongiae and Calcarea. Diaz et al. (2007) reported, 

approximately 10 years ago, the existence of more than 100 cyanosponge species and 

a recent new study elevates this number to more than 320 species (Konstantinou et al., 

2018). This increase is probably related to the use of molecular (sequencing, DGGE) 

and metagenomic techniques (454-pyrosequencing and Illumina), contrasting to 

previous techniques used, such as chlorophyll a measurements, microscopy techniques 

(light microscopy, TEM) and isolation, which retrieved much smaller amounts of 

cyanobacteria diversity. 

Both coccoid and filamentous cyanobacteria have been described in sponges. The 

majority of the studies reporting the existence of cyanobacteria haven’t done a 

taxonomical identification beyond phylum level (Konstantinou et al., 2018). Among 

cyanobacteria, different species from the genera Aphanocapsa, Synechocystis, 

Synechococcus, Prochloron and Oscillatoria have been reported, but a number of 

unnamed cyanobacteria have been also found (Carpenter & Foster, 2002, Usher, 2008). 

According to Konstantinou et al. (2018), the genus Synechococcus is the most widely 

reported and studied. Isaacs et al. (2009) also found Pseudanabaena and Phormidium 

but weren’t able to cultivate it. In Portugal, Xenococcus-like and Acaryochloris sp. were 

reported from the intertidal marine sponge Hymeniacidon perlevis (Alex et al., 2012, Alex 

& Antunes, 2015). Other cyanobacterial genera already identified in sponge species are 

Leptolyngbya, Plectonema, Myxosarcina, Limnothrix (Angermeier et al., 2011), Lyngbya, 

Cyanothece, Mastigocladus, Anabaena, Calothrix, Microcoleus, Hydrocoleum (Zhang et 

al., 2014), Prochlorococcus, Pleurocapsa, Chroococcidiopsis, Crocosphaera, and 
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Desmonostoc (Fromont et al., 2016). Usher et al. (2006) showed that geographical 

distinct areas and different sponges can have the same symbiont and each sponge can 

harbour more than one cyanobacteria species.  

Molecular techniques demonstrated that cyanobionts in sponges differ from those of the 

seawater communities (Usher et al., 2004, Steindler et al., 2005, Lemloh et al., 2009). 

These techniques have been able to assess the cyanobacterial diversity among the 

sponge hosts (Taylor et al., 2007a). Molecular metagenomic sequencing technology 

have presented in the last few years with new insights in terms of cyanobacteria diversity 

(Wang et al., 2009, Gao et al., 2014, Burgsdorf et al., 2015, Konstantinou et al., 2018). 

Among all cyanobacteria, it seems that “Candidatus Synechococcus spongiarum”, 

belonging to a sponge specific lineage is the most prevalent symbiotic group (Usher et 

al., 2004, Steindler et al., 2005, Erwin & Thacker, 2007, Erwin & Thacker, 2008, Lemloh 

et al., 2009) with little genetically difference between different hosts and geographical 

areas (Erwin & Thacker, 2008). Molecular analysis of another common cyanobacteria, 

Oscillatoria spongeliae, showed that this is a specialist symbiont with genetically different 

populations according to the host sponge (Thacker & Starnes, 2003).  

Unicellular and filamentous cyanobacteria can cover up to 50% of a sponge’s cellular 

volume (Rützler, 1990). Most cyanobacteria are present intercellularly, free-living in the 

mesohyl (Wilkinson, 1978c), but Aphanocapsa feldmannii, can occur intracellularly, in 

specialized arqueocytes vacuoles (Rützler, 1990) named cyanocytes. Some 

cyanobacteria have also been found to occur in digestive vacuoles (Wilkinson, 1978c). 

Cyanobacteria are photoautotrophic and, in some cases, facultative heterotrophic, 

providing many benefits for the host. As photosynthetically active in sponges, they 

transfer glycerol (Wilkinson, 1980) and organic phosphate to the host (Wilkinson & Fay, 

1979), which can comprise to more than 50% of the metabolic needs of the sponge 

(Carpenter & Foster, 2002), enhancing sponge growth (Vacelet, 1971, Wilkinson, 1980, 

Rützler, 1990, Arillo et al., 1993). As cyanobacteria are capable of doing photosynthesis 

in low light environments, this symbiosis can occur at different depths (Usher, 2008), and 

due to their active secondary metabolites, cyanobacteria help in sponge defence 

(Carpenter & Foster, 2002), in protection from U.V light (Adams, 2000) and in substrate 

competition (Usher et al., 2004, Taylor et al., 2007a). They are also capable of fixing 

nitrogen (Adams, 2000) and help in ammonia conversion (Usher, 2008). Some sponges 

are uncapable of surviving without their cyanobionts (Thacker, 2005). 

Cyanobacteria can also benefit from these associations. Sponges work as shelters 

(Erwin & Thacker, 2007), protecting cyanobacteria from extreme environmental 

conditions and from predation (Adams, 2000, Usher, 2008). Sponges have also better 
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levels of phosphorous and ammonia than sea water (Usher, 2008). Due to primary 

productivity and nutrient cycling enhanced by these associations, marine ecosystems 

can also benefit (Diaz & Rützler, 2001) 

Vertical transmission seems to be the main form for cyanobacteria acquisition (Usher et 

al., 2001, Oren et al., 2005, Usher et al., 2005, Schmitt et al., 2007, Sharp et al., 2007). 

Offspring are unable to feed and the presence of cyanobacteria provides them with 

photosynthetic energy (Lemloh et al., 2009), enhancing its competitive fitness (Oren et 

al., 2005). Maldonado (2007) observed that in some sponges, symbionts were always 

obtained from the environment (horizontal transmission) and never present in gametes 

or embryos. In some cases, both transmission routes can be present (Thacker & 

Freeman, 2012). 
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Sponges and cyanobacteria as a source for novel compounds 
Traditionally, plants from terrestrial environments, were the main source of natural 

product-derived drugs. In the early 50’s researchers started looking at marine 

environments as a natural drug source. Since the late 80’s there was a “boom” of articles 

reporting marine natural products as reviewed in the marine natural products reviews 

(Faulkner, 1986, 1987, 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 

1999, 2000, 2001, 2002, Blunt et al., 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 

2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018). Sponges, among marine 

invertebrates, are the most prolific source of bioactive compounds (Blunt et al., 2010), 

as shown in Figure 1-4, comprising 48.8% of all marine natural products discovered since 

1990 (Leal et al., 2012), with a wide range of natural products activities, such as 

antibacterial, antifungal, antitumor, antiviral, antioxidant, antifouling, among other and 

chemical classes (e.g. terpenoids, alkaloids, peptides and polyketides) (Blunt et al., 

2005). Although these compounds have been isolated from sponges, it is now widely 

accepted that symbiotic microorganisms are the main producers (Hentschel et al., 2006). 

Actinobacteria, Cyanobacteria, Firmicutes and Proteobacteria (alpha and gamma 

classes) are the main phyla producing secondary metabolites in sponges (Thomas et al., 

2010b).  

 
Figure 1-4. Collection effort from 1971-2015. Adapted from the work of Blunt et al. (2017) 
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The potential of marine environments as a source of novel compounds started in the 50’s 

with the isolation of two nucleosides (spongethymide and spongouridine) from a marine 

sponge (Bergmann & Feeney, 1950, Bergmann & Feeney, 1951). From that, Ara-C (first 

marine sponge-derived anticancer agent) and Ara-A (an antiviral drug) were synthesized 

(Newman & Cragg, 2004). The bioactive compounds azidothymidine (AZT), used in 

HIV/AIDS treatment and acyclovir, an antiviral drug were obtained through modifications 

of the previous structures. 

Over the last few decades hundreds of compounds were obtained from marine sponges 

and were shown to have a huge potential as drugs. There are more sponge-derived 

compounds in clinical and preclinical trials than any other marine phylum (Blunt et al., 

2005). But, a supply issue raised, as these compounds are in very small amounts in 

sponges, and sponges have a low growth rate and difficult accessibility for isolation, 

hampering investigations for pre and clinical trials. One example is halichondrin B, first 

isolated from the marine sponge Halichondria okadai. This compound showed a high 

anticancer activity but, according to Munro et al. (1999) for initial clinical trials it was 

estimated the necessity of about 10g and 1 to 5 kg per year as a commercial drug. 

Lissodendoryx sp. showed to be the sponge producing higher quantities of halichondrin 

B, with about 300g/ton of sponge and an estimation of entire natural biomass of 289 

tons. These numbers ruled out natural harvesting, and aquaculture showed to be 

economically untenable (Taylor et al., 2007a). Due to the structure complexity of this 

compound total synthesis showed also to be impractical (Taylor et al., 2007a). In 2005 a 

synthetic analogue, E7389 that retains the potency of the parent compound entered 

phase I clinical trials as an anticancer drug (Simmons et al., 2005). This compound is 

now approved by the FDA (U.S. Food and Drug Administration) and the European 

Medicines Agency for breast cancer and liposarcoma treatment. 

Cyanobacteria are one of the oldest forms of life. During their evolution, production of 

secondary metabolites showed to be essential, allowing them to adapt to various 

environmental conditions such as higher temperature, pH variations, etc. Those 

secondary metabolites started being investigated because of their toxic effect. Due to 

eutrophication and climate changes, cyanobacterial blooms increased both in frequency 

and extension in the last decades in water bodies, posing health risks to populations and 

animals. But the potential use of them is much more extended and are already being 

used in agriculture industry (biocides, biofertilizers), cosmetics (UV radiation block), 

pharmaceutical industry (ant-HIV, antiviral, antitumor, antifungal, antiplasmodial, 

antibacterial, immunosuppressant, anticoagulant, anti-inflammatory, antiprotozoal, 

antituberculosis, etc.), and many other commercial uses (biofuel, bioremediators, 
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chelators, food supplements) (Haque et al., 2017, Swain et al., 2017). Many of these 

compounds were proved to be greener chemical compounds for a more sustainable 

future. Moreover, cyanobacteria are a source of peptides, trans-fatty acids, amino-acids, 

vitamins, carotenes, chlorophyll, phycocyanin and minerals (Mimouni et al., 2012), with 

compounds from different classes (peptides, alkaloids, terpenoids, macrolides, 

polyketides, fatty-acids, cyclophanes, etc.) (Swain et al., 2017). According to Gerwick 

and Moore (2012) it is likely that approximately 20% of small molecules with FDA 

approval and in clinical trials have cyanobacteria as predicted biosynthetic source. Apart 

from producing such a wide range of compounds, it is also known that cyanobacteria can 

affect the biosynthesis of compounds from marine invertebrates such as sponges (Ridley 

et al., 2005). 

Most existing studies on the toxicological potential of cyanobacteria focuses on 

freshwater cyanobacteria, with less information on marine environments. The bioactive 

potential of both freshwater and marine cyanobacteria are known to be different (Swain 

et al., 2017). According to Mi et al. (2017), from 2007 to 2016, more than 400 new natural 

compounds were discovered from marine cyanobacteria. Coastal water blooms have 

also increased posing another concern, as cyanobacterial toxins are able to accumulate 

in both vertebrates and invertebrates (Buratti et al., 2017). In Portugal a huge effort is 

being made to address this issue as presented in the works of Brito et al. (2012), Leão 

et al. (2013), Costa et al. (2014), Brito et al. (2015), Costa et al. (2015). Ramos et al. 

(2018) made already a review of the potential chemodiversity of many cyanobacterial 

strains deposited in LEGE CC. Many of these strains were isolated from the coast of 

Portugal. 

Sponges, as filter-feeders harbour a huge diversity of microorganisms such as 

cyanobacteria and are capable of concentrating some of them exceeding up to 4 orders 

of magnitude the microbial diversity in water column (Hentschel et al., 2006). Sponges 

can be used as a source for cyanobacteria harvesting. Some compounds, previously 

extracted from marine sponges were proven to be produced by symbiotic cyanobacteria. 

Oscillatoria spongeliae has been found to be the true source of some compounds 

isolated from marine sponges and with antibacterial and therapeutic properties (Unson 

& Faulkner, 1993, Unson et al., 1994, Thomas et al., 2010b).�One example is the 

metabolite 2-(2',4'- dibromophenoxy)-4,6-dibromophenol. This compound, firstly 

extracted from the surface tissues of the marine sponge Dysidea herbacea was than 

only found in cells of the cyanobacteriam Oscillatoria spongeliae (Unson et al., 1994).  
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Thesis outline 
The main objectives of the present work are stated bellow and are addressed in the 

present thesis as outlined, with each objective as a different chapter:  

 

1. Study the diversity and distribution of sponges in the Portuguese coast (Chapter 2); 

There is a lack of information about marine sponges, especially intertidal species 

from the coast of Portugal. In the present study aimed to address this issue, using 

an integrative approach based the identification on both morphological, ecological 

and molecular parameters, and focusing on the western coast of Portugal intertidal 

area; Since most information from sponge diversity are present in master and PhD 

thesis, not available for most researchers (many of them prior to the 90’s) a 

comprehensive listing on both diversity and location of sponge species was also 

made. 

 

2. Assess the diversity of cyanobacteria associated with marine sponges using culture 

dependent and molecular approaches (Chapter 3); � 

Not all microbial community from sponges can be cultured. Starting with this 

permise, we wanted to see which cyanobacteria we would be able to isolate and 

grow under laboratory conditions and then compare it with molecular identified 

cyanobacteria through DGGE and with their free-living counterparts. We aimed to 

investigate the diversity of cyanobacteria associated with the intertidal marine 

sponge host Hymeniacidon perlevis, collected along the coast of Portugal (Northeast 

Atlantic) and along a year and compare their DGGE fingerprint profiling.  

 

3. Understand the diversity of microorganisms and especially of cyanobacteria within 

sponges and how laboratory maintenance of sponges can affect their microbial 

community (Chapter 4);  

Sponges, due to their phylogenetic position can become good animal models for 

several studies, and many compounds with pharmaceutical interest extracted from 

sponges are known to be produced by associated microorganisms but only when 

associated with the host. Also, sponges and their microbial community must be 

studied as one metaorganism. Studying how translocation of sponges from in situ 

conditions, to laboratory maintenance can affect their bacterial community is the first 

step towards understanding how well the community is maintained and how it affects 

sponge viability. The use of NGS techniques will help answer this question for the 
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intertidal marine sponge H. perlevis. The use of TEM analysis, combined with the 

NGS information will give insights on the cyanobacterial community, and its 

importance in the sponge. 

 

4. Study the toxicological potential from cultured cyanobacteria isolated from marine 

sponges (Chapter 5); � 

Co-evolution of sponges and cyanobacteria have already been documented with 

genome adaptations of the cyanobionts. Free living cyanobacteria have been the 

focus of many studies aiming to address secondary metabolite production as a 

source of novel natural compounds. Since there are adaptation of cyanobionts, the 

aim of the present chapter was to address the toxicological potential of 

cyanobacteria isolated from marine sponges through a series of ecologically-

relevant bioassays.  
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Appendix 1. 

Literature review on Porifera diversity from the coast of Portugal. It is presented a table 

with a revision of sponge diversity from the coast of Portugal, already containing the 

information about sponge diversity obtained from the present study. 

 
Appendix 2.  

Here is presented a booklet, a brochure and a poster for scientific divulgation, made 

during this work with the most abundant demosponges in the northern intertidal coast of 

Portugal. 
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Diversity of intertidal marine sponges from the 

western coast of Portugal (Northeast Atlantic) 
 

Abstract 
Sponges are important components of the intertidal marine communities. There is a lack 

of information about intertidal marine sponge diversity in the western coast of Portugal 

(North-East Atlantic). This region has some particular biogeographic circumstances, with 

climatic influences from the Mediterranean Sea and the Atlantic Ocean. In the present 

work we identified the most common intertidal sponges of the western coast of Portugal 

and made a comprehensive list of the intertidal species described so far for this region. 

Sponges belonging to the Class Calcarea and Demospongiae were identified, the former 

class for the first time at these locations. Demospongiae are the most common intertidal 

sponges, present in all sampling locations. We used an integrative approach for 

Demospongiae identification, using both morphological and molecular characters. 

Molecular identification, using CO1 marker proved to be helpful in the identification to 

the genus level, despite some limitations, such as difficulty in amplification experienced 

for sponges as well as non-target organisms. The western coast of Portugal is shown to 

have a high diversity of intertidal sponge. The demosponge Hymeniacidon perlevis was 

present at all sample locations. Calcarean species were primarily found in samples taken 

along the southwestern coast. 
 

Keywords 

Porifera, Intertidal diversity, CO1, Portugal, Calcarea, Demospongiae 

 

Introduction 
Porifera is the oldest metazoan group still extant in our planet and one of the most 

abundant groups of animals.  These organisms are key members of shallow- and deep-

water benthic ecosystems, occupying all aquatic environments, from marine to 

freshwater, tropical, temperate and polar areas (Sarà & Vacelet, 1973, Van Soest et al., 

2012). There are more than 8500 species (according to World Porifera Database (Van 

Soest et al., 2017)) of Porifera accepted and an additional 2300-3000 species already 

identified (Appeltans et al., 2012). The Class Demospongiae comprises 83% of all living 

sponges (Van Soest et al., 2012, Morrow & Cárdenas, 2015). Sponges play crucial steps 
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of the cycle of dissolved nutrients and organic matter in marine environments (Bell, 2008, 

Maldonado et al., 2012), and are a vast source of compounds with biotechnological 

applications (Leal et al., 2012). 

 Hooper and van Soest (2002) published a revised book on sponge classification 

improving our knowledge in sponge biodiversity. This classification relies greatly in 

spicules morphology and their arrangement in sponge tissue (Morrow et al., 2013). The 

problem with this classification is that sponges are invertebrates with a high degree of 

ecophenotypic plasticity, influenced by parameters such as light, sedimentation, 

substratum type and orientation, and water-flow regime, resulting in unresolved and 

ambiguous classification (Bell & Barnes, 2000, Erpenbeck et al., 2006, Van Soest et al., 

2012, Erpenbeck et al., 2016). Also, many of these morphological characters can be 

non-homologous, resulting in unresolved and ambiguous classification (Boury-Esnault, 

2006). Problems related to identification resulted in disregarding sponges in large-scale 

surveys. In order to overcome this issue, molecular characters are being used as an aid 

for resolving these limitations (Wörheide et al., 2005, Wörheide et al., 2007, Cárdenas 

et al., 2009, Cárdenas et al., 2010, Pöppe et al., 2010, Vargas et al., 2012, Boury-Esnault 

et al., 2013). Although phylogenetic studies have shown that the four Porifera classes 

are monophyletic, many major clades of sponges appear to be paraphyletic, leading to 

a revision of traditional sponge classification (Cárdenas et al., 2012, Hill et al., 2013, 

Thacker et al., 2013, Morrow & Cárdenas, 2015, Alvizu et al., 2018).  

In sponge phylogenetic studies, many different molecular markers have been used, both 

nuclear and mitochondrial. A 5’ partition of the mitochondrial cytochrome oxidase subunit 

1 (CO1) (Folmer et al., 1994) is among the most popular markers, being used for the 

“barcoding of life” initiative. The Sponge Barcoding Project (Wörheide et al., 2007) was 

the first one on any non-bilateral taxon, aiming to cover all sponge taxa using primarily 

the 5’ partition of CO1 marker. 

The western coast of Portugal extends for more than 600 km and has some particular 

biogeographic circumstances (Boaventura et al., 2002), with climatic influences from the 

Atlantic Ocean and Mediterranean Sea (Kottek et al., 2006). As a result, biodiversity is a 

mixture of the one present in the North-western Atlantic coasts and the Mediterranean 

(Boaventura et al., 2002). Although sponges can be dominant members of some 

communities and play important roles in a variety of ecosystem functions (Rützler, 2012, 

Wulff, 2012), our knowledge of the intertidal and subtidal marine sponges in western 

Portugal derives especially from the works of Hanitsch (1895), Lévi and Vacelet (1958), 

Saldanha (1974), Lopes (1989), Pereira (2007). In recent years, due to difficulties in 

sponge identification, most intertidal diversity studies performed in this area (for example: 



FCUP 
Chapter 2. Diversity of intertidal marine sponges from the western coast of Portugal (Northeast Atlantic) 

33 

 

Monteiro Marques et al. (1982), Boaventura et al. (2002), Pereira et al. (2006)) neglected 

phylum Porifera and, improving our understanding of their biodiversity can be essential 

for habitats protection. 

The aim of the present study is to characterize sponge diversity from the western coast 

of Portugal (NE Atlantic) using both morphological and molecular characters. 

 

Materials and methods 
Study site 
Sampling took place between September 2010 and September 2014 in Portugal (North 

East Atlantic) and were made during the lowest tide hours of the month (below 0.5 m of 

mean sea level). All beaches had a combination of sand and rocks. Figure 2-1(a-c) show 

three different sampling locations. Collected sponges inhabit the rocky intertidal region 

and were predominant in sheltered areas, protected from the strong sun and tide, often 

lying at the base of the rocks.  

 Sponge samples were collected from 12 different intertidal sites, as it is shown in Figure 

2-1. A total of 35 collection trips were made and 179 sponges sampled. Sponges were 

on rock overhangs, and through wading and the help of a knife they were collected. After 

collection, sponges were immediately carried to the laboratory and processing began 

within 1h after collection and to a maximum of 28 h.  

Samples were photographed and preserved in 96% ethanol both for molecular analysis 

and morphological identification. 
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Figure 2-1. Sampling locations in Portugal: (1) Viana do Castelo (N 41º 41' 48,79'' ,W 8º 51' 4,03''), (2) Esposende (N 41º 
34' 25,59'' ,W 8º 47' 54,81''), (3) Apúlia (N 41º 29' 17,34'' ,W 8º 46' 59,38''), (4) Angeiras (N 41º 16' 6,08'' ,W 8º 43' 33,39''), 
(5) Memória (N 41º 13' 52,27'', W 8º 43' 18,34''), (6) Aguda (N 41º 2' 58,35’’, W 8º 39' 19,22'’), (7) Buarcos (N 40º 9' 22,36'' 
,W 8º 52' 18,49''), (8) S. João do Estoril (N 38º 41' 31,68'' ,W 9º 21' 57,74''), (9) Porto Côvo (N 37º 52' 3,04’’, W 8º 47' 
37,19''), (10) Vila Nova de Milfontes (N 37º 42' 58,61'' ,W 8º 47' 4,79''), (11) Almograve (N 37º 39' 2,7'' ,W 8º 48' 10,8''), 
(12) Monte Clérigos (N 37º 20' 29,35'' ,W 8º 51' 10,05''). Pictures (a), (b) and (c) ilustrate 3 of the sampling locations: 
Esposende (a), Memória (b) and Porto Côvo (c). 
 
Sponge identification 
Sponges were identified based on shape, consistency, texture, colour, habitat and 

spicules morphology, dimensions and arrangement. All sponge species collected were 

identified according to Hooper and van Soest (2002). 

Molecular analyses 
DNA extraction  

Total genomic DNA was extracted from sponge tissue (choanossomal tissue) using a 

commercially available PurelinkTM Genomic DNA mini Kit (Invitrogen, San Diego, CA) 

and stored at −20 °C until further analyses.  gDNA integrity was checked by agarose gel 

electrophoresis with GelRedTM (Biotium) staining.  

PCR and sequencing of cyanobacterial cultures 

PCR amplification was done for a fragment located at the 5' site of the mitochondrial 

cytochrome oxidase subunit 1 (CO1). Primers used  were  designed by Meyer et al. 

(2005), based on the ones described by Folmer et al. (1994). PCR conditions employed 

were as follows: initial denaturation at 94 ºC for 2 min, followed by 35 cycles of 

denaturation at 94 ºC for 40 s, annealing at 50 ºC for 40 s and extension at 72 ºC for 1 

min and a final extension step at 72 ºC for 10 min. When necessary, amplification was 

done using primer forward from Meyer et al. (2005), combined with the reverse from 

Xavier et al. (2010). This reverse primer amplify an alternative partition of the CO1 gene 

a 

b 

c 
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that overlaps approximately 60 bp with Folmer’s 3’ partition and includes Erpenbeck’s 

I3-M11 (Erpenbeck et al., 2006), a partition known to be more informative in cases of 

shorter divergence times. The incorporation of the primer designed by Xavier et al. 

(2010), showed to be more sponge specific, helping overcome problems related with 

amplification of non-target DNA. The following protocol was used:  initial denaturation at 

95 ºC for 3 min, followed by 35 cycles of denaturation at 94 ºC for 40 s, annealing at 54 

ºC for 45 s and extension at 72 ºC for 90 s and a final extension step at 72 ºC for 10 min. 

A 5-10 ng of DNA were used for the PCR amplification. All PCR reactions were prepared 

in a 50 μL volume using Supreme NZYTaq 2x Green MasterMix (NZYTech, Lisboa, 

Portugal). Thermal cycling was carried out using Biometra T-Professional standard 

thermocycler (Biometra, Goettingen, Germany). PCR products were separated by 1.5% 

(w/v) agarose gel in 1x TAE buffer (Invitrogen, San Diego, CA, USA). The gels were 

stained with GelRedTM (Biotium, Fremont, CA, USA) and photographed under UV 

transillumination. For DNA sequencing each amplified product was purified using an 

Invitrogen PureLinkTMQuickGel Extraction and PCR Purification Combo Kit (Invitrogen, 

San Diego, CA, USA) according to the manufacturer’s protocol followed by direct 

sequencing (GATC Biotech, Cologne, Germany).  

Phylogenetic analysis 

The sequences obtained were analysed using Geneious® v9.1.5 software (Kearse et al., 

2012). The final sequences were used for similarity search using BLAST and the NCBI 

nucleotide database (http://www.ncbi.nlm.nih.gov/BLAST). The nucleotide sequences 

were aligned with Muscle (Edgar, 2004). Ambiguously aligned positions and gaps were 

removed with GBlocks (Castresana, 2000) using less stringent parameters. Maximum-

likelihood (ML) phylogenetic trees (Felsenstein, 1981a) were constructed in PhyML 

(Guindon & Gascuel, 2003b). MrBayes v3.2.5 (Huelsenbeck et al., 2001b) was used to 

perform a Bayesian inference (BI) analysis. The best fit evolutionary models- TrN+I+G 

and HKY+I+G under Akaike Information Criterion with correction (AICc) implemented in 

MrAIC v1.4.6 (Nylander, 2004) were selected for ML and BI respectively. As the point of 

the phylogenetic analysis was not to make any evolutionary inference, focusing on 

sponge diversity rather than evolutionary relationship, unrooted tree was used. 

Nucleotide sequence accession number 

All sequences were submitted to the GenBank database (accession numbers 

KY492518-KY492600). 
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Results 
Sampling locations were selected along the entire western coast of Portugal (Figure 2-1). 

Only rocky shore locations were selected as sponges are sessile animals that settle on 

hard surfaces. Sampling periods were restricted to a few hours because of tidal regimes. 

To gain access to the largest possible intertidal area, sampling was always schedule 

during spring tide.  

A total of 7 sponges (five species) were identified as belonging to the class Calcarea and 

172 specimens (23 species) to the class Demospongiae. Among Demospongiae, all 

species identified belonged to the subclasses Heteroscleromorpha, Keratosa and 

Verongimorpha. Table 2-1 shows the species identification in accordance to location. 

Figure 2-2 shows pictures of the 30 identified sponge species. This identification is based 

on the morphological characters and, when obtained, confirmed by molecular analyses.  

 
Table 2-1. Sponges collected from the western coast of Portugal. Sponges are divided in accordance to Class (Calcarea 
and Demospongiae) and their geographical locations are identified. 
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Grantia compressa 
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X 

Leucandra gossei 
           

X 

Sycon ciliatum 
         

X 
  

Clathrina coriacea 
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Clathrina blanca 
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Stelligera rigida 
    

X 
       

Cliona celata 
    

X 
 

X 
     

Haliclona sp. 
    

X 
       

Haliclona (Rhizoniera) rosea 
      

X 
     

Haliclona (Haliclona) simulans X 
   

X X X 
     

Crella (Yvesia) rosea  
    

X 
       

Amphilectus fucorum  
 

X 
  

X X X 
     

Hymedesmia (Hymedesmia) jecusculum 
    

X 
       

Phorbas plumosus 
    

X X X 
     

Antho (Antho) granditoxa 
    

X 
       

Clathria (Clathria) coralloides X 
   

X 
       

Ophlitaspongia papilla X 
   

X 
      

X 

Myxilla (Myxilla) rosacea 
    

X 
       

Tedania (Tedania) pilarriosae 
    

X 
       

Polymastia sp. 
    

X 
       

Polymastia sp.     X        

Polymastia agglutinans 
    

X 
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Polymastia penicillus 

    
X 

       

Halichondria (Halichondria) panicea X X 
  

X X X X 
    

Hymeniacidon perlevis  X X X X X X X X X X X 
 

Aaptos aaptos  
    

X 
       

Aaptos papillata 
    

X 
       

Dysidea fragilis  
    

X 
       

Ircinia variabilis 
    

X 
    

X 
  

Aplysilla rosea 
     

X 
      

 

 

1 2 3 

4 5 6 

7 8 9 
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13 14 15 

16 17 17 

19 20 21 
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22 23 24 

25 26 27 

28 29 30 

Figure 2-2. Pictures of identified sponges: 1. Grantia compressa, 2. Leucandra gossei, 3. Sycon ciliatum, 4. Clathrina 
coriacea, 5. Clathrina blanca, 6. Stelligera rigida, 7. Cliona celata, 8. Haliclona sp., 9. Haliclona (Rhizoniera) rosea, 10. 
Haliclona (Haliclona) simulans, 11. Crella (Yvesia) rosea, 12. Amphilectus fucorum, 13. Hymedesmia (Hymedesmia) 
jecusculum, 14. Phorbas plumosus, 15. Antho (Antho) granditoxa, 16. Clathria (Clathria) coralloides, 17. Ophlitaspongia 
papilla, 18. Myxilla (Myxilla) rosacea, 19. Tedania (Tedania) pilarriosae, 20. Polymastia sp., 21. Polymastia sp., 22. 
Polymastia agglutinans, 23. Polymastia penicillus, 24. Halichondria (Halichondria) panicea, 25. Hymeniacidon perlevis, 
26. Aaptos aaptos, 27. Aaptos papillata, 28. Dysidea fragilis, 29. Ircinia variabilis, 30. Aplysilla rosea. 
 
 
List of intertidal demosponges from the western coast of Portugal 
Species with an asterisk (*) correspond to the ones found in the present work. After the 

name of the species, is given the reference for the first record for the western coast of 

Portugal. 
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Class CALCAREA Bowerbank, 1862 

 
Subclass CALCARONEA Bidder, 1898 

Order LEUCOSOLENIDA Hartman, 1958 

Family GRANTIIDAE Dendy, 1893 

Genus Grantia Fleming, 1828 

*Grantia compressa (Fabricius, 1780) (Pereira, 2007) 

 

Genus Leucandra Haeckel, 1872 

*Leucandra gossei (Bowerbank, 1862) (Saldanha, 1974) 

 

Family SYCETTIDAE Dendy, 1893 

Genus Sycon Risso, 1827 

*Sycon ciliatum (Fabricius, 1780) (Saldanha, 1974) 

 

Subclass CALCINEA Bidder, 1898 

Order CLATHRINIDA Hartman, 1958 

Family CLATHRINIDAE Minchin, 1900 

Genus Clathrina Gray, 1867 

*Clathrina coriacea (Montagu,1814) (Hanitsch, 1895) 

*Clathrina blanca (Miklucho-Maclay, 1868) (Pereira, 2007) 

 
Class DEMOSPONGIAE Sollas, 1885 

 
Subclass HETEROSCLEROMORPHA Cárdenas, Pérez & Boury-Esnault, 2012 

Order AXINELLIDA Lévi, 1953 

Family RASPAILIIDAE Nardo, 1833 

Genus Eurypon Gray, 1867 

Eurypon clavatum (Bowerbank, 1866) (Lopes, 1989) 

Eurypon coronula (Bowerbank, 1874) (Lopes, 1989) 

 

Family STELLIGERIDAE Lendenfeld, 1898 

Genus Stelligera Gray, 1867 

*Stelligera rigida (Montagu, 1814) (Lopes, 1989) 

 

Order BUBARIDA Morrow & Cárdenas, 2015 

Family DICTYONELLIDAE van Soest, Diaz & Pomponi, 1990 

Genus Tethyspira Topsent, 1890 

Tethyspira spinosa (Bowerbank, 1874) (Lopes, 1989) 
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Order CLIONAIDA Morrow & Cárdenas, 2015 

Family CLIONAIDAE d’Orbigny, 1851 

Genus Cliona Grant, 1826 

*Cliona celata Grant, 1826 (Saldanha, 1974) 

Cliona viridis (Schmidt, 1862) (Saldanha, 1974) 

 

Genus Pione Gray, 1867 

Pione vastifica (Hancock, 1849) (Saldanha, 1974) 

 

Order HAPLOSCLERIDA Topsent, 1928 

Family CHALINIDAE Gray, 1867 

Genus Haliclona Grant, 1841 

*Haliclona sp. 

*Haliclona (Rhizoniera) rosea (Bowerbank, 1866) 

*Haliclona (Haliclona) simulans (Johnston, 1842) 

 

Order POECILOSCLERIDA Topsent, 1928 

Family COELOSPHAERIDAE Dendy, 1922 

Genus Lissodendoryx Topsent, 1892 

Lissodendoryx (Lissodendoryx) isodictyalis (Carter, 1882) (Saldanha, 1974) 

 

Family CRELLIDAE Dendy, 1922 

Genus Crella Gray, 1867 

*Crella (Yvesia) rosea (Topsent, 1892) 

 

Family ESPERIOPSIDAE Hentschel, 1923 

Genus Amphilectus Vosmaer, 1880 

*Amphilectus fucorum (Esper, 1794) (Lopes, 1989) 

 

Family HYMEDESMIIDAE Topsent, 1928 

Genus Hymedesmia Bowerbank, 1864 

*Hymedesmia (Hymedesmia) jecusculum (Bowerbank, 1866) 

Hymedesmia (Hymedesmia) pansa Bowerbank, 1882 (Lopes, 1989) 

Hymedesmia (Stylopus) coriacea (Fristedt, 1885) (Lopes, 1989) 

 

Genus Phorbas Duchassaing & Michelotti, 1864 

Phorbas dives (Topsent, 1891) (Lopes, 1989) 

Phorbas fictitious (Bowerbank, 1866) (Saldanha, 1974) 
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*Phorbas plumosus (Montagu, 1814) (Lopes, 1989) 

 

Family MICROCIONIDAE Carter, 1875 

Genus Antho Gray, 1867 

*Antho (Antho) granditoxa Picton & Goodwin, 2007 

Antho (Antho) involvens (Schmidt, 1864) (Lopes, 1989) 

 

Genus Clathria Schmidt, 1862 

*Clathria (Clathria) coralloides (Scopoli, 1772) (Lopes, 1989) 

Clathria (Clathria) toxistricta Topsent, 1925 (Pereira, 2007) 

Clathria (Microciona) atrasanguinea (Bowerbank, 1862) (Lopes, 1989) 

Clathria (Microciona) strepsitoxa (Hope, 1889) (Lopes, 1989) 

 

Genus Ophlitaspongia Bowerbank, 1866 

*Ophlitaspongia papilla Bowerbank, 1866 (Costa, 2012) 

 

Family MYCALIDAE Lundbeck, 1905 

Genus Mycale Gray, 1867 

Mycale (Aegogropila) contarenii (Lieberkühn, 1859) (Lopes, 1989) 

Mycale (Carmia) macilenta (Bowerbank, 1866) (Lopes, 1989) 

Mycale (Carmia) minima (Waller, 1880) (Lopes, 1989) 

 

Family MYXILLIDAE Dendy, 1922 

Genus Myxilla Schmidt, 1862 

*Myxilla (Myxilla) rosacea (Lieberkühn, 1859) (Hanitsch, 1895) 

 

Family TEDANIIDAE Ridley & Dendy, 1886 

Genus Tedania Gray, 1867 

Tedania (Tedania) anhelans (Vio in Olivi, 1792) (Saldanha, 1974) 

*Tedania (Tedania) pilarriosae Cristobo, 2002 

 

Order POLYMASTIIDA Morrow & Cárdenas, 2015 

Family POLYMASTIIDAE Gray, 1867 

Genus Polymastia Bowerbank, 1862 

*Polymastia sp. 

*Polymastia sp. 

*Polymastia agglutinans Ridley & Dendy, 1886 

*Polymastia penicillus (Montagu, 1814) (Saldanha, 1974) 
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Order SUBERITIDA Chombard & Boury-Esnault, 1999 

Family HALICHONDRIIDAE Gray, 1867 

Genus Halichondria Fleming, 1828 

*Halichondria (Halichondria) panicea (Pallas, 1766) (Carter, 1876) 

 

Genus Hymeniacidon Bowerbank, 1858 

*Hymeniacidon perlevis (Montagu, 1814) (Hanitsch, 1895) 

 

Family SUBERITIDAE Schmidt, 1870 

Genus Aaptos Gray, 1867 

*Aaptos aaptos (Schmidt, 1864) 

*Aaptos papillata (Keller, 1880) (Lopes, 1989) 

 

Genus Protosuberites Swartschewsky, 1905 

Protosuberites epithyum (Lamark, 1815) (Lopes, 1989) 

 

Genus Pseudosuberites Topsent, 1896 

Pseudosuberites mollis Topsent, 1925 (Lopes, 1989) 

 

Genus Suberites Nardo, 1833 

Suberites carnosus (Johnston, 1842) (Lopes, 1989) 

 

Genus Terpios Duchassaing & Michelotti, 1864 

Terpios fugax Duchassaing & Michelotti, 1864 (Lopes, 1989) 

 

Order TETHYIDA Morrow & Cárdenas, 2015 

Family HEMIASTERELLIDAE Lendenfeld, 1889 

Genus Adreus Gray, 1867 

Adreus fascicularis (Bowerbank, 1866) (Lopes, 1989) 

 

Family TETHYIDAE Gray, 1848 

Genus Tethya Lamark, 1815 

Tethya aurantium (Pallas, 1766) (Hanitsch, 1895) 

 

Family TIMEIDAE Topsent, 1928 

Genus Timea Gray, 1867 

Timea mixta (Topsent, 1896) (Lopes, 1989) 

 

Order TETRACTINELLIDA Marshall, 1876 
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Family ANCORINIDAE Schmidt, 1870 

Genus Stelleta Schmidt, 1862 

Stelletta anancora (Sollas, 1886) (Lopes, 1989) 

Stelletta hispida (Buccich, 1886) (Saldanha, 1974) 

 

Family GEODIIDAE Gray, 1867 

Genus Erylus Gray, 1867 

Erylus discophorus (Schmidt, 1862) (Saldanha, 1974) 

 

Genus Geodia Lamark, 1817 

Geodia cydonium (Linnaeus, 1767) (Saldanha, 1974) 

 

Order TRACHYCLADIDA Morrow & Cárdenas, 2015 

Family TRACHYCLADIDAE Hallmann, 1917 

Genus Trachycladus Carter, 1879 

Trachycladus minax Topsent, 1888 (Lopes, 1989) 

 

Subclass KERATOSA Grant, 1861 

Order DICTYOCETARIDA Minchin, 1900 

Family DYSIDEIDAE Gray, 1867 

Genus Dysidea Johnston, 1842 

*Dysidea fragilis (Montagu, 1814) (Pérès, 1959) 

 

Family IRCINIIDAE Gray, 1867 

Genus Ircinia Nardo, 1833 

*Ircinia variabilis (Schmidt, 1862) (Hanitsch, 1895) 

 

Genus Sarcotragus Schmidt, 1862 

Sarcotragus spinosulus Schmidt, 1862 (Lopes & Boury-Esnault, 1981) 

Sarcotragus fasciculatus (Pallas, 1766) (Saldanha, 1974) 

 

Family SPONGIIDAE Gray, 1867 

Genus Spongia Linnaeus, 1759 

Spongia (Spongia) officinalis Linnaeus, 1759 (Lopes & Boury-Esnault, 1981) 

 

Family THORECTIDAE Bergquist, 1978 

Genus Scalarispongia Cook & Bergquist, 2000 

Scalarispongia scalaris (Schmidt, 1862) (Lopes & Boury-Esnault, 1981) 
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Order DENDROCETARIDA Minchin, 1900 

Family DARWINELLIDAE Merejkowsky, 1879 

Genus Aplysilla Schulze, 1878 

*Aplysilla rosea (Barrois, 1876) (Lopes, 1989) 

 

Subclass VERONGIMORPHA Erpenbeck, Sutcliffe, De Cook, Dietzel, Maldonado, van 

Soest, Hooper & Wörheide, 2012 

Order CHONDRILLIDA Redmond, Morrow, Thacker, Diaz, Boury-Esnault, Cardenas, Hajdu, 

Lobo-Hajdu, Picton, Pomponi, Kayal & Colins, 2013 

Family CHONDRILLIDAE Gray, 1872 

Genus Thymosia Topsent, 1895 

Thymosia guernei Topsent, 1895 (Lopes, 1989) 

 

Order VERONGIIDA Bergquist, 1978 

Family APLYSINIDAE Carter, 1875 

Genus Aplysina Nardo, 1834 

Aplysina aerophoba (Nardo, 1833) (Lopes, 1989) 

 

 

For the 172 Demosponges collected, we were only able to retrieve DNA from 154. For 

that, we only recover sponge DNA for 85 of them. For the remain, obtained DNA had 

poor quality or amplified DNA from other small invertebrates or marine algae, and were 

discarded. The molecular analysis was made to apply an integrative taxonomy approach, 

complementing the morphological identification with molecular data and to assess the 

relative positioning of the identified Demospongiae. The phylogenetic tree (Figure 2-3) 

revealed a well-supported topology, both by Maximum Likelihood and Bayesian tree-

reconstruction approach, clearly separating different sponge genera. All sequences 

obtained belong to the subclass Heteroscleromorpha and there is a clear distinction 

between the different orders. Specimens from the genus Hymeniacidon, Halichondria 

and Aaptos clustered together as all belong to the order Suberitida. In this clade is also 

possible to distinguish between different families (Hymeniacidon and Halichondria 

belong to the family Halichondriidae and Aaptos belong to the family Suberitidae) and 

different genera. Also, the genera Tedania, Hymedesmia, Myxilla, Phorbas, Antho, 

Ophlitaspongia and Amphilectus belong all to the order Poecilosclerida and are all 

clustered together. For almost all genera from this order, is also possible to distinguish 

between different families. 
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Figure 2-3. Maximum likelihood (ML) phylogenetic tree based on the CO1 fragment of the sequences from Demospongiae. 
GenBank accession numbers are given in parentheses. The tree is unrooted. Bayesian posterior probabilities and ML 
bootstrap support values are represented at the nodes. Only bootstrap values greater than 50% are given. The scale bar 
at the bottom represents 2% sequence divergence. 
 

Discussion 
The present study shows for the first time an updated list of intertidal sponges from the 

western coast of Portugal. Identified sponges belong to the class Calcarea (5 species), 

and Demospongiae. Praia da Memória, in the northern part of Portugal seems to harbour 

the higher diversity of demosponges. Sponges belonging to the class Calcarea are more 

dominant on the southern intertidal area of Portugal. The present work was the first 

focusing on calcarean sponges from the intertidal areas in this geographical location. So 

Ophlitaspongia papilla MC41D (KY492538)
Ophlitaspongia papilla M35B (KY492542)

 Ophlitaspongia papilla M31B (KY492544) 
Ophlitaspongia papilla M21E (KY492547)

Ophlitaspongia papilla M35I (KY492539) 
Ophlitaspongia papilla M35F (KY492540) 
Ophlitaspongia papilla M35E (KY492541) 
Ophlitaspongia papilla M31F (KY492543) 
Ophlitaspongia papilla V27E (KY492537) 
Ophlitaspongia papilla M25E (KY492545) 
Ophlitaspongia papilla M23G (KY492546) 
Ophlitaspongia papilla M20J (KY492548)

               Ophlitaspongia papilla M12B (KY492549) 
Amphilectus fucorum Ag26E (KY492598)

Hymeniacidon perleYis M21F (KY492564) 
Hymeniacidon perleYis An13G (KY492571) 
Hymeniacidon perleYis An13E (KY492573) 
Hymeniacidon perleYis An13B (KY492576) 
Hymeniacidon perleYis An13A (KY492577) 
Hymeniacidon perleYis M12A (KY492568)

Hymeniacidon perleYis B32C (KY492569) 
Hymeniacidon perleYis Ap28A (KY492570) 
Hymeniacidon perleYis V27C (KY492551) 
Hymeniacidon perleYis V27B (KY492552) 
Hymeniacidon perleYis M25I (KY492561) 
Hymeniacidon perleYis M23B (KY492562) 
Hymeniacidon perleYis M23A (KY492563) 
Hymeniacidon perleYis SB22A (KY492553) 
Hymeniacidon perleYis M21B (KY492565) 
Hymeniacidon perleYis Ag19I (KY492580) 
Hymeniacidon perleYis Ag19C (KY492582) 
Hymeniacidon perleYis Ag19B (KY492583)
Hymeniacidon perleYis PC18A (KY492555) 
Hymeniacidon perleYis Al17D (KY492578) 
Hymeniacidon perleYis Al17B (KY49259) 
Hymeniacidon perleYis SB16B (KY492554)

Hymeniacidon perleYis M31N (KY492560)
 Hymeniacidon perleYis M20B (KY492566) 

Hymeniacidon perleYis Ag19D (KY492581) 
Hymeniacidon perleYis Ag19A (KY492584) 
Hymeniacidon perleYis An13F (KY492572)

Halichondria panicea B32B (KY492592)
Halichondria panicea V27A (KY492587)

Halichondria panicea SB16A (KY492588) 
Aaptos papillata M25A (KY492599)
Aaptos papillata M24A (KY492600)

Stelligera rigida M25O (KY492522) 
Stelligera rigida M24I (KY492523) 
Stelligera rigida M23C (KY492524)

Haliclona sp. M25Q (KY492586)
Haliclona sp. P2MK (KY492585)

Polymastia sp. M25G (KY492525) 
Polymastia penicillus M31D (KY492526) 
Polymastia penicillus M21C (KY492527) 
Polymastia agglutinans M35A (KY492528) 
Polymastia agglutinans M25H (KY492529) 
Polymastia agglutinans M24B (KY492530)

Cliona celata M30A (KY492596) 
Cliona celata M23F (KY492595) 
Cliona celata P2MA (KY492594) 
Cliona celata Pn1MA (KY492593)

Tedania pillarriosae M25J (KY492520)
Tedania pillarriosae P2MC (KY492521) 

Antho granditoxa P2MF (KY492597)

Hymeniacidon perlevis An13D	(KY492574)
Hymeniacidon perlevis An13C	(KY492575)
Hymeniacidon perlevisM12C	(KY492567)
Hymeniacidon perlevis P2ML	(KY492556)	

88.6/86

95.5/100

78.9 /70

96.5/100

99.5/100

99.9/100

Halichondria panicea M24E (KY492591)

 Halichondria panicea M31G (KY492590) 
Halichondria panicea MF42B (KY492589)

�/68

Hymeniacidon perleYis MF42E (KY492557)
Hymeniacidon perleYis MF42C (KY492558)

Hymeniacidon perleYis M35N (KY492559)

77.6/97
96.2/100

84/98

100/100

99.9/100

100/100

84.7/99

99.6/100

95.3/100

�/62

  Tedania pillarriosae M35G (KY492518)
Tedania pillarriosae M31A (KY492519)

90.7/100 
          Hymedesmia jecusculum P2MI (KY492536)
          Myxilla rosacea PN1MC (KY492550) 
Phorbas plumosus M35O (KY492531) 
Phorbas plumosus M35H (KY492532) 
Phorbas plumosus B30F (KY492534) 
Phorbas plumosus Ag26G (KY492535) 
Phorbas plumosus M25N (KY492533)

98.8/100

77.2/89

95/99 96.3/100

64.3/77

69.7/67

79.3/68

75.9/60

92/81

99.1/100

�/90

97.5/100

0.02
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far, there was no information for intertidal diversity of calcarean sponges (Hanitsch, 1895, 

Saldanha, 1974, Lopes, 1989, Pereira, 2007). From the 27 species of Demospongiae, 

12 are described for the first time in the intertidal area and 11 for the first time on the 

western coast of Portugal. These results show the high diversity of sponges inhabiting 

the intertidal western coast of Portugal. 

Most sponge diversity studies focus on underwater sponges (Carter, 1876, Topsent, 

1928, Lévi & Vacelet, 1958, Saldanha, 1974, Lopes & Boury-Esnault, 1981, Naveiro, 

2002, Pereira, 2007, Pires, 2007) and most intertidal diversity studies from this 

geographical area completely neglect the existence of sponges. Although lacking many 

typical characteristics of animals, genetically, sponges have many key metazoan gene 

families. This enable them to give insights on the evolution of metazoans, as all these 

phyla derive from a common ancestor (Müller et al., 2004). In Atlantic shores, sponges 

have been recognized as important members of the ecosystem, both in terms of biomass 

and species richness, playing significant roles in ecosystem functioning (Xavier & van 

Soest, 2012) due to being filter feeders. Economically they are also of major importance 

due to the vast production of secondary metabolites, either by their own chemistry or that 

of their symbionts. Cyanobacteria, a common sponge symbiont, and known for their 

active secondary metabolism, have already been reported in intertidal sponges from this 

geographical location (Alex et al., 2012, Alex et al., 2013, Alex & Antunes, 2015, 

Regueiras et al., 2017). New secondary metabolites from Porifera, all from 

Demospongiae, are among the most promising to use for pharmaceutical applications 

(Leal et al., 2012).  Intertidal sponges can also be used as bioindicators for water quality 

monitoring. Mahaut et al. (2013) used Hymeniacidon perlevis as a bioindicator and 

reported it to have a higher accumulation capacity of contaminants than the mussel 

Mytilus edulis Linnaeus. As this sponge inhabits almost all western coast of Portugal, it 

can be used for water pollution studies in the future. These findings show the importance 

of the study of sponges, and knowing their diversity is the first step for every other study. 

Plasticity in sponge morphology is very common, which makes sponge identification a 

challenge. Barnes and Bell (2002) found differences in sponge morphology within the 

same species with varying depth. 

To overcome this issue, many studies have been focusing on molecular data. CO1 has 

been the most popular marker, as it can help in taxonomy (Pöppe et al., 2010). Also, as 

it has been the marker chosen for the barcoding of life and the sponge barcoding project, 

and there is more information on public databases for this marker than for any other. 

In our study, the use of CO1 helped to distinguish most of our sponges at the genus 

level. According to Cárdenas et al. (2012), CO1 is not the ideal sponge barcoding 
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marker, as it does not allow to distinguish between different species due to the slow 

evolutionary rate (Erpenbeck et al., 2016) and by the difficulty to sequence it. As here 

demonstrated, CO1 was previously shown to have a good resolution at the family level 

(Erpenbeck et al., 2002, Erpenbeck et al., 2016) and in some cases to the genus level 

(Erpenbeck et al., 2006). 

We were not able to retrieve DNA for all Demospongiae. Extracting DNA from sponge 

tissue can have its challenges, as it is known that some taxa required specialized 

protocols (Erpenbeck et al., 2016) and some compounds can be present that can inhibit 

PCR reaction (Vargas et al., 2012). Also, the use of CO1 can result in co-amplification 

and/or specific amplification of non-target organisms (Vargas et al., 2012). According to 

Vargas et al. (2012) some Porifera families tend to be easier to amplify DNA than others. 

55% of our samples showed poor DNA quality and/or amplification of DNA from non-

target organisms. Vargas et al. (2012) found amplification of non-target organisms to 

happen in 40% of samples. 

Erpenbeck et al. (2006) suggested the use of a downstream of the 5’-Folmer partition, 

which has a higher substitution rate to help distinguish between species or populations 

(Xavier et al., 2010). In order to overcome these problems, when necessary, we used a 

more specific primer, designed by Xavier et al. (2010). This approach allowed us to 

obtain more sequences but not for all Demospongiae. We only amplified this second 

region when we were not able to obtain target DNA, as this primer showed to be more 

sponge specific than the Folmer’s one. In the future, it would be interesting to amplify all 

collected sponges using this partition, to help distinguishing phylogenetically between 

species and to see if its resolution can separate different populations of the same species 

in accordance with geographical distribution.  

In this study, we presented for the first time a list of intertidal sponges from the western 

coast of Portugal, based on collection and identification and bibliography data. We 

presented also the first intertidal data for Calcarea intertidal sponges for the western 

coast of Portugal. We also showed advantages and limitations of using CO1 DNA data 

to help in the identification of Demospongiae. It seems that this marker is suitable for 

identification, in most cases, to the genus level but, to help distinguish species, another 

marker should be also used. A more specific primer for CO1 should also be used to 

decrease non-target DNA amplification. Also, a protocol for Demospongiae DNA 

extraction most be developed to overcome problems caused by contaminants that can 

inhibit PCR reaction. 
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Cyanobacterial diversity in the marine 

sponge Hymeniacidon perlevis from a temperate 

region (Portuguese coast, Northeast Atlantic) 

 
Abstract 
Cyanobacteria are commonly associated with marine sponges and are known to be 

difficult to isolate. In the present study, we used isolation and molecular techniques to 

investigate the diversity of Cyanobacteria associated with the intertidal marine sponge 

host Hymeniacidon perlevis, collected along the coast of Portugal (Northeast Atlantic). 

Cyanobacterial community profiling and comparison using 16S rRNA gene-sequence 

based denaturing gradient gel electrophoresis (DGGE) revealed different banding 

patterns between the sponge tissue and seawater. We succeeded in isolating 

Cyanobacteria belonging to the genera Synechococcus, Cyanobium, Synechocystis, 

Nodosilinea, Pseudanabaena and Phormidesmis from the sponge tissues. Chlorophyll a 

concentrations were very low, in spite of the diversity of cyanobacteria identified. DGGE 

analyses comparing sponge samples and ambient seawater further revealed the 

presence of Synechococcus, Acaryochloris and Prochlorococcus. Many of the isolated 

cyanobacteria show a high similarity with previously isolated free-living cyanobacteria 

from the coast of Portugal, highlighting the advantages of using sponges as a source for 

obtaining cyanobacteria present only in small amount in seawater.  

 

Keywords 
Cyanobacteria, Marine sponges, Diversity, Phylogeny, DGGE, North-eastern Atlantic 

coast  

 

Introduction 
Sponges are the most primitive multi-celled animals, with fossil records dating back 700 

to 800 million years (Belarbi, 2003). They are known for harbouring a diversity of 

symbiotic microorganisms such as bacteria, fungi, unicellular algae and cyanobacteria 

(Taylor et al., 2007a). Based on the abundance and diversity of the microbial community 

they contain, sponges are classified as being high microbial abundance (HMA) or low 
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microbial abundance (LMA) sponges (Hentschel et al., 2003, Weisz et al., 2007). HMA 

sponges can contain a concentration of microorganisms 2 to 4 orders of magnitude 

higher than seawater (Friedrich et al., 2001, Hentschel et al., 2006). LMA sponges are 

typically smaller (Hentschel et al., 2006), with a smaller mesohyl and simpler aquiferous 

system but a higher pumping rate (Weisz et al., 2008). 

Cyanobacteria, common photosymbionts, form associations with a wide variety of 

organisms in different habitats. In the marine environment, they are known to occur with 

sponges, ascidians, Echuroid worms, diatoms, dinoflagellates and protozoans 

(Carpenter & Foster, 2002). Cyanobacteria are an important group among the 

photosynthetic symbionts of sponges. Sponges with photosynthetic symbionts can 

constitute up to 85% of the total intertidal sponge communities in tropical reefs (Steindler 

et al., 2002) and up to 64% in temperate waters (Lemloh et al., 2009). According to 

Rützler (1990), unicellular and filamentous cyanobacteria can comprise up to 50% of a 

sponge’s cellular volume. Cyanobacteria contribute to the relationship by transferring 

nutrients to the sponge, such as glycerol (Wilkinson & Fay, 1979), organic phosphate 

and nitrogen (Wilkinson & Fay, 1979), which enhances its growth rate and 

competiveness with other benthic communities (Wilkinson, 1980, Arillo et al., 1993). 

Cyanobacteria also provides UV protection as well as chemical defence through the 

production of secondary metabolites, as reviewed in Taylor et al. (2007a), Usher (2008), 

and Webster and Taylor (2012). Cyanobacteria can also benefit from the association 

with sponges, although the mechanisms are not as clear. The host provides shelter 

(Erwin & Thacker, 2007), and higher levels of ammonium and phosphorus than those 

present in the ocean (Usher, 2008). Primary productivity and nutrient cycling in marine 

ecosystems can also be enhanced by these symbioses (Diaz & Rützler, 2001). Vertical 

transmission of cyanobacterial symbionts (cyanobionts) to new generations has already 

been reported (Usher et al., 2001, Oren et al., 2005), which is considered to benefit the 

offspring by giving them photosynthetic energy before they are able to feed (Lemloh et 

al., 2009), enhancing their competitive fitness (Oren et al., 2005). Maldonado (2007) 

reported that in some sponges the symbiont is not transmitted to gametes or embryos, 

but instead they are obtained in each new generation from the environment (i.e. 

horizontal transmission). According to Schmitt et al. (2007) embryos from LMA sponges 

are typically microbe-free.    

Cyanobacterial associations occur within the sponge classes Calcarea and 

Demospongiae (Carpenter & Foster, 2002). The sponge-associated Cyanobacteria 

identified so far belong to Aphanocapsa, Synechococcus, Prochloron, Synechocystis 
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and Oscillatoria. Recently, Alex et al. (2012) also reported the presence of Xenococcus-

like and Acaryochloris sp. from the intertidal marine sponge Hymeniacidon perlevis. 

Some unknown species have also been found, as reviewed by Usher (2008). Some of 

these associations can occur in geographically distinct areas, and it is known that 

different sponges can have the same symbiont and each one can harbour more than 

one cyanobacterial species (Usher et al., 2006). 

Cyanobacterial diversity in marine sponges has been the focus of many studies, mainly 

in tropical environments. Approximately 99% of the sponge associated microorganisms 

cannot be cultured (Santavy & Colwell, 1990, Friedrich et al., 2001, Hentschel et al., 

2003, Isaacs et al., 2009) and, allied to the fact that the morphological characteristics are 

not enough to distinguish the cyanobacterial species (Usher et al., 2006), it is thought 

that the diversity is being underestimated and many relationships are yet to be 

discovered. In the last few years, molecular approaches have demonstrated that 

symbiotic cyanobacteria in sponges differ from those in the seawater communities 

(Usher et al., 2004, Steindler et al., 2005, Lemloh et al., 2009). These techniques have 

been able to assess the cyanobacterial diversity among the sponge hosts (Taylor et al., 

2007a). Denaturing gradient gel electrophoresis (DGGE) has been commonly used to 

assess the diversity of Bacteria associated with marine sponges (Usher et al., 2004, Li 

et al., 2006, Wichels et al., 2006, Thiel et al., 2007, Lemloh et al., 2009, Anderson et al., 

2010, Gerçe et al., 2011) and can provide insights into enrichment of the communities 

(Hentschel et al., 2003). 

The aim of the present study was to assess the diversity of the cyanobacterial community 

in the most common intertidal LMA marine sponge, Hymeniacidon perlevis 

(Demospongiae, Halichondrida), distributed along the western coast of Portugal (NE 

Atlantic), using culture-based and molecular-based techniques. We also compared the 

phylogenetic relationships of the cyanobacterial community retrieved from sponge 

tissues and the water column with other, previously reported sponge-associated and 

free-living cyanobacteria, and discuss the ecological relevance of this study.  
 
 

Materials and methods 
Sample collection and preparation 
Sampling was performed from September 2010 to September 2011 in Portugal 

(Northeast Atlantic). Specimens of the sponge Hymeniacidon perlevis were collected 

along the western coast of Portugal, during the lowest tide over each month (1.5 to 1.9 

m below mean sea level). All selected sampling sites were beaches consisting of a 
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combination of sand and rocks. Sample collection only required a small portion of the 

sponge, which did not affect the animals’ survival in the natural environment. For 

molecular purposes, only H. perlevis from 3 sampling locations (Memória, Aguda and 

Porto Côvo) (Figure 3-1) were used.  

Samples were cleaned of debris and sediment, and placed in sterile 100 mL flasks 

containing filtered natural seawater from the sampling location. Water samples (150 mL) 

were also collected from each sampling location to isolate free-living cyanobacteria and 

for molecular-based analysis. After collection, sponge samples were immediately 

transported to the laboratory in a cooler on ice. Processing began between 1 and 6 h 

after sample collection. Samples were divided into 3 parts: one was processed 

immediately for the isolation of Cyanobacteria; one was preserved in 100% ethanol for 

subsequent genetic analysis; and one was preserved in 70% ethanol for morphological 

identification. For seawater, 150 mL samples were filtered through a 0.45 μm sterile filter 

followed by DNA extraction. 

Sponges were identified based on the sampling habitat, shape, consistency, texture, 

colour, smell of the sponge sample and characteristic features (morphology, dimensions) 

of spicules. All sponge species were confirmed according to Hooper and van Soest 

(2002). 

 
Figure 3-1. Sampling locations in Portugal (SW Europe) for denaturing gradient gel electrophoresis (DGGE) analysis: 
Memória (41° 13’ 52.27’’N, 8° 43’ 18.34’’W); Aguda (41° 2’ 58.35’’N, 8° 39’ 19.22’’W); and Porto Côvo (37° 52’ 3.04’’N, 8° 
47’ 37.19’’W) 
 

Chlorophyll a quantification 
We employed the protocol described by Thacker (2005) to extract chlorophyll a (chl a) 

from marine sponges, assuming that most of the sponges harbour chl a-containing 
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cyanobacteria. Quantification of chl a was done in 9 specimens of H. perlevis collected 

from the sampling site at Memória. To summarize, 0.25 g from each sponge (wet weight) 

was extracted in 10 ml of 90% acetone, and kept overnight at 4°C. Three aliquots from 

the supernatant were used to determine absorbance at 630, 647, 664 and 750 nm. Chl 

a concentration was calculated using the equations of Parsons et al. (1984) standardized 

by sponge mass extracted. 

Cyanobacteria culture and morphological characterization 
To avoid the culturing of superficial bacteria, 1 mm of the exposed sponge surface 

tissues was removed with a sterile, double-sided razor. The remaining sponge samples 

were rinsed with distilled water to remove the transient and loosely attached organisms. 

Sections of the sponge body were used for culturing cyanobacteria. Small fragments 

(<0.5 cm3) of sponge tissue were placed in 2 different media: Z8 liquid medium (Kótai, 

1972) supplemented with 30 g l-1 of NaCl, and MN liquid medium (Rippka, 1988). The 

media were supplemented with vitamin B12 and cycloheximide (Rippka, 1988). The 

cultures were kept under 14 h light (10 to 30 μmol photons m-2s-1), 10 h dark cycles at 

25°C. When cyanobacterial growth in the liquid was visible, an isolation procedure was 

done using a micromanipulation technique (Rippka, 1988), using a sterile Pasteur pipette 

to transfer a single cell or filament to liquid medium. Cyanobacteria cultures were 

achieved after several subcultures, and were unicyanobacterial and non-axenic. Water 

samples were centrifuged at 16 000 x g for 5 min (nSorval Legend RT centrifuge) and 

the pellet was placed in cyanobacterial culture media and kept under the same conditions 

as mentioned above.  

Morphological cyanobacterial identification was performed following the criteria of 

Komárek and Anagnostidis (Komárek & Anagnostidis, 1998, Komárek & Anagnostidis, 

2005, Komárek, 2013), using Bergey’s manual of systematic bacteriology (Castenholz 

et al., 2001) and Komárek et al. (2014). Pictures were taken using an Olympus BX41 

microscope (Olympus Europe) and analysed using CellB (Olympus Europe). 

Cyanobacterial isolates were deposited at LEGE Culture Collection (Laboratory of 

Ecotoxicology, Genomics and Evolution, CIIMAR, Porto, Portugal). 

Molecular analyses 
DNA extraction 

Total genomic DNA (gDNA) was extracted from pure cyanobacterial cultures and sponge 

tissue, using a commercially available PurelinkTM
 genomic DNA mini kit (Invitrogen) 

following the protocol described for Gram-negative bacteria in accordance with the 

manufacturer’s recommendations, and stored at -20 °C until further analysis. For the 
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water samples, 150 mL was centrifuged at 16 000 x g for 8 min followed by DNA 

extraction from the ‘pellet’ as described above. gDNA integrity was checked by agarose 

gel electrophoresis with ethidium bromide staining. 

PCR and sequencing of cyanobacterial cultures 

Two sets of primers were used for amplification and sequencing of 2 fragments of the 

partial 16S ribosomal RNA (rRNA) gene sequence, as shown in Table 3-1. PCR 

conditions were as follows: initial denaturation at 94 °C for 2 min, followed by 35 cycles 

of denaturation at 94 °C for 20 s, annealing at 50 °C for 30 s and extension at 72 °C for 

1 min and a final extension step at 72 °C for 5 min. A total of 5 to 10 ng of DNA were 

used for the PCR amplification. All PCR reactions were prepared in a 50 μL volume 

containing 1x PCR buffer, 2.5 mM MgCl2, 250 μM of each deoxynucleotide triphosphate, 

10 pmol of each primer, and 0.5 U of Taq DNA polymerase (Bioline). Thermal cycling 

was carried out using Biometra T-professional standard thermocycler (Biometra). PCR 

products were separated by 1.5% (w/v) agarose gel in 1x TAE buffer (Invitrogen). The 

gels were stained with ethidium bromide and photographed under UV transillumination. 

For DNA sequencing, each amplified product was purified using an Invitrogen 

PureLinkTMQuickGel Extraction and PCR Purification Combo Kit (Invitrogen) according 

to the manufacturer’s protocol, followed by direct sequencing (Macrogen Europe). 

Sequences were deposited in GenBank database (accession numbers JQ927344, 

JQ927345, JQ927348, JQ927353 and KX608887 to KX608890). 

 
Table 3-1. Primer pairs used in this study. F: Forward; R: Reverse 

 
 
Screening of cyanobacterial community from sponge tissue and water samples 
For 16S rRNA gene amplicons, a first round of PCR employing the cyanobacteria-

specific primers CYA106F and CYA781R (described in Table 3-1) (Nübel et al., 1997) 

was followed by nested PCR reaction with GC-clamped primers, to amplify a 

cyanobacteria specific fragment from the 16S rRNA gene (16SCYA) with 359F-GC and 

781R primers (Nübel et al., 1997). PCR conditions were as follows: initial denaturation 

at 94 °C for 2 min, followed by 12 cycles of denaturation at 94 °C for 1 min, annealing at 
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65 °C for 1 min and extension at 72 °C for 1 min, followed by 35 cycles of denaturation 

at 94 °C for 1 min, annealing at 55 °C for 1 min and extension at 72 °C for 1 min, and a 

final extension step at 72 °C for 4 min. 

A total of 20 μL of the PCR products corresponding to the 16S-CYA fragments were 

loaded into 6% polyacrylamide 1 mm gels, using a 30 to 55% denaturing gradient (100% 

denaturing conditions correspond to 7 M urea and 40% formamide). One gel was used 

to accommodate the 8 samples (4 specimens of H. perlevis and 4 seawater samples). 

Electrophoresis was performed using 1% TAE buffer (40 mM Tris, 20 mM acetic acid, 1 

mM EDTA), at 60 V for 16 h, in a DCode system (Bio-Rad). The gels were stained with 

1x SYBR Gold nucleic acid stain (Invitrogen) and selected DGGE bands were excised 

using a razor blade and placed in sterile microcentrifuge tubes with 10 μL of sterile Milli-

Q H2O. When bands with the same length appeared in different samples, only one of 

them was extracted; it was assumed that bands of the same length corresponded to the 

same cyanobacterial species. A total of 5 μL was used as a template in a new PCR 

reaction. This re-amplification was performed under the same conditions described in 

the previous section (see Table 3-1) for the corresponding fragment type, except that 

forward primers did not contain a GC-clamp. PCR products were excised from agarose 

gel and cleaned (Cut&Spin Gel Extraction columns, GRiSP) prior to cloning. 

Purified PCR products from DGGE bands were then cloned into pGEM®-T Easy vector 

(Promega), and transformed into OneShot® TOP10 chemically competent E. coli cells 

(Invitrogen) using standard procedures (Sambrook & Russell 2001) and following the 

manufacturer’s instructions. Plasmid DNA was isolated using GenElute™ plasmid 

miniprep kit (Sigma-Aldrich) and sequenced (Macrogen Europe) using M13 primers. For 

sequencing, 2 clones for each DGGE band were selected. Sequences obtained from 

DGGE clones were deposited in GenBank (accession numbers KC896629 to 

KC896638). 

Phylogenetic analysis 
The partial 16S rRNA gene sequences obtained were analysed using Geneious® v.9.1.5 

software (www.geneious.com; Kearse et al. (2012)). The final sequence length, ranging 

from 345 to 1373 bp, was used for a similarity search using BLAST and the NCBI 

nucleotide database (www.ncbi.nlm.nih. gov/BLAST). A chimera check for derived 16S 

rRNA sequences was performed using Mallard (Ashelford et al., 2006). The sequences 

used in phylogenetic analyses were chosen to include (1) representatives of 

cyanobacterium diversity (reference strains), (2) sponge-associated cyanobacteria 

sequences overlapping with the new 16S rRNA sequences, and (3) representatives of 
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the cyanobacteria−sponge symbionts. BLAST similarity searches were also conducted 

for each cyanobacterial sequence to retrieve the closely related sequences available in 

the databank. Chimeras and the DGGE clones that did not retrieve sequences similar to 

Cyanobacteria through the BLASTn search in the NCBI database (March 2013) were not 

included in the phylogenetic analysis. The sequences were aligned with Clustal Omega 

(Sievers & Higgins, 2014), a multiple sequence alignment program implemented in Sea 

View v.4.4.2 (Gouy et al., 2010). Ambiguously aligned regions were filtered by Gblocks 

using less stringent options (Castresana, 2000). A final multiple alignment containing 

1293 positions was used for the phylogenetic reconstructions of the 16S rRNA nucleotide 

data set performed using the Maximum Likelihood (ML) approach (Felsenstein, 1981b) 

implemented in PhyML (Guindon & Gascuel, 2003a) with a nearest-neighbour-

interchange (NNI) heuristic search method, resampled using 100 bootstrap replicates. 

Posterior probabilities of branch nodes were calculated in MrBayes (BY) v.3.2.6 

(Huelsenbeck et al., 2001a) employing the optimal nucleotide substitution model. The 

best fit evolutionary model– general time reversible (GTR) plus gamma distributed (G) 

plus invariant sites (I) (GTR+G+I) – was adopted under Akaike’s information criterion 

with correction (AICc) implemented in MrAIC v.1.4.4 (Nylander, 2004). 

 

Results 
Isolation of cyanobacteria 
To promote growth of the highest diversity possible, 2 isolation media with different 

compositions were used (MN and Z8 30‰). Eight strains of Cyanobacteria were isolated 

from the sponge tissue (Figure 3-2), as well as 1 cyanobacterium from the surrounding 

waters (Cyanobium sp. LEGE10378). These strains belong to the order 

Synechococcales (Table 3-2). In most cases, morphological characterization based on 

light microscopy allowed identification to genus level, and in some cases to species level. 

The Chroococcales isolates belong to the genera Synechocystis. Partial 16S rRNA gene 

sequences obtained from the isolates were compared with those available in the NCBI 

database (June 2016), and the results are shown in Table 3-2. Similarities above 98% 

were obtained for all isolates. The molecular analyses were, in most cases, in agreement 

with the morphological classification previously done.   
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Figure 3-2. Cyanobacteria isolated from Hymeniacidon perlevis. Identification was done based on morphological 
characters; accordingly, strains were classified as: (A) Phormidesmis sp. LEGE 10370, (B) Cyanobium sp. LEGE 11382, 
(C) Pseudanabaena cf. curta LEGE 10371, (D) Nodosilinea cf. nodulosa LEGE 10376, (E) Synechocystis sp. 12A21hp, 
(F) Synechococcus sp. 12A10hp, (G) Cyanobium sp. 19B10hp and (H) Nodosilinea sp. 19D10hp. 
 
Table 3-2. Morphological identification and molecular analysis of the cyanobacterial isolates 

 
 

Chl a quantification  
The method we used for chl a quantification in marine sponges has been used by 

different authors (Becerro & Paul, 2004, Thacker, 2005, Erwin & Thacker, 2007, Thacker 

et al., 2007, Erwin et al., 2012, Pita et al., 2013, Burgsdorf et al., 2014). Chl a 

quantification was done in sponges collected from different light intensity locations. Chl 

a varied from 6.04 to 17.35 μg g−1, averaging 9,41±3,66(SD) μg g−1 of wet sponge. 

Organic solvents, such as acetone, can interfere with chlorophyll quantification. Chl d is 
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a red-shifted chlorophyll, but when extraction is done with an organic solvent it shows a 

minor red-shift (Li et al., 2012) and the peaks of chl a and chl d overlap. This makes it 

impossible to distinguish between chl a and d.  

DGGE analysis  
A 16S rRNA DGGE analysis was done followed by cloning of the extracted bands and 

sequencing. In this analysis, both sponge tissues and water samples from the same 

locations and dates were analysed (Memória, September 2010; Aguda, October 2010; 

Porto Côvo, November 2010; Memória, September 2011). To analyse the banding 

pattern, we assumed that bands in the same position on the gel represented the same 

organism. We were able to determine the presence of 24 unique bands from DGGE 

(Figure 3-3). Ten of them were present in all samples, both from sponge tissues and 

water samples (stars (é) in Figure 3-3). Another 10 were found exclusively in water 

samples (triangles (�) in Figure 3-3) and 4 in sponge tissue only (filled circles (l) in 

Figure 3-3). Because a single DGGE band can represent more than one strain, we 

cloned each extracted DGGE band twice. From the initial 24 bands, we successfully 

identified 10 clones corresponding to 9 different bands (numbered 1 to 9 in Figure 3-3). 

The closest representatives of the clones retrieved through the BLASTn search are 

shown in Table 3-3. DGGE banding patterns revealed higher species richness in the 

seawater compared to the sponge samples (Figure 3-3). DGGE clone 1_1, derived from 

a band only present in sponge tissue, showed molecular similarity with other 

Cyanobacteria identified in the sponge Hymeniacidon heliophila. The same similarity 

was found in DGGE clone 7_1, extracted from a band only present in water samples. 

Two of them (DGGE clones 4_1 and 5_1) seem to belong to the genus Acaryochloris, 

and clones 2_1, 6_1, 8_2 and 9_1 to the genus Synechococcus.  
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Figure 3-3. Denaturing gradient gel electrophoresis (DGGE) banding profiles of cyanobacterial 16S rRNA genes PCR-
amplified from the tissue of the marine sponge Hymeniacidon perlevis tissue in comparison to samples of seawater from 
same locations and dates (a−d). (a) Memória (September 2010); (b) Aguda (October 2010); (c) Porto Côvo (November 
2010); (d) Memória (September 2011). Individual bands are labelled on the left-hand side of the lane numbered from 1 to 
24. (�) bands present only in water samples; (l) bands present only in sponge samples; (é) bands present both in water 
and sponge samples. 
 
Phylogenetic analysis  
Phylogenetic analysis was performed to assess the relative positioning of the isolated 

cyanobacteria and DGGE clones from the present study with free-living and previously 

reported sponge-associated cyanobacteria. The phylogenetic tree (Figure 3-4) revealed 

a well-supported topology, both by ML and Bayesian tree-reconstruction approaches, 

showing a heterogeneous diversity among our sequences, clearly forming 3 distinct 
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clusters. DGGE clones and most of the cyanobacterial isolates from the sponges 

grouped in cluster A, which was mainly comprised of unicellular cyanobacteria and the 

filamentous Pseudanabaena genus. The isolate from seawater (Cyanobium sp. LEGE 

10378) was also placed in this cluster. DGGE clones in cluster A showed similarity both 

with previously reported sponge-associated cyanobacteria and free-living strains. Two 

DGGE clones (clone 4_1 and clone 5_1) showed similarity with Acaryochloris sp., one 

(clone 8_2) with Prochlorococcus sp., 5 (clones 1_1, 2_1, 6_1, 7_1 and 9_1) with 

Synechococcus sp., and the remaining 2 (clones 3_1 and 8_1) had affiliation with 

Synechocystis sp.. Clusters B and C were mainly comprised of filamentous species. 

Cluster B grouped Phormidesmis sp. (LEGE10370) with different filamentous 

cyanobacteria, as well as a Synechococcus species. Cluster C only contained 

Nodosilinea species. 

 
Table 3-3. Phylogenetic affiliations of 16S rRNA gene clones obtained from denaturing gradient gel electrophoresis 
(DGGE) bands from Hymeniacidon perlevis and seawater 
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well-supported topology, both by ML and Bayesian
tree-reconstruction approaches, showing a heteroge-
neous diversity among our sequences, clearly form-
ing 3 distinct clusters. DGGE clones and most of the
cyanobacterial isolates from the sponges grouped in
cluster A, which was mainly comprised of unicellular
cyanobacteria and the filamentous Pseudanabaena
genus. The isolate from seawater (Cyanobium sp.
LEGE 10378) was also placed in this cluster. DGGE
clones in cluster A showed similarity both with previ-
ously reported sponge-associated cyanobacteria and
free-living strains. Two DGGE clones (clone 4_1 and
clone 5_1) showed similarity with Acaryochloris sp.,
one (clone 8_2) with Prochlorococcus sp., 5 (clones
1_1, 2_1, 6_1, 7_1 and 9_1) with Synechococcus sp.,
and the remaining 2 (clones 3_1 and 8_1) had affilia-
tion with Synechocystis sp. Clusters B and C were
mainly comprised of filamentous species. Cluster B
grouped Phormidesmis sp. (LEGE10370) with differ-
ent filamentous cyanobacteria, as well as a Syne-
chococcus species. Cluster C only contained Nodosi-
linea species.

DISCUSSION

Hymeniacidon perlevis is one of the most common
sponge species along the rocky intertidal shore of
Portugal. The presence of photosymbionts such as
cyanobacteria may be beneficial for the survival and
growth of this sponge. In this study, we assessed the
cyanobacterial diversity contained in H. perlevis
sampled from the coast of Portugal (Fig. 1), using
 culture-dependent and culture-independent ap proa -
ches. Although photosynthetic microorganisms are

usually present in the outer layers (which are more
exposed to sunlight) while the inner layers (mesohyl)
are populated by heterotrophic and autotrophic bac-
teria (Hentschel et al. 2003, Kennedy et al. 2007),
cyanobacteria are distributed throughout the whole
sponge, as the mesohyl provides higher quantities of
nutrients than the surrounding waters (Hentschel et
al. 2006, Kennedy et al. 2007). Hence, the whole
sponge tissue was used to isolate and assess cyano-
bacterial diversity.

We succeeded in characterizing 8 isolates, 7 of
them from sponge tissue using phenotypic character-
istics (Fig. 2) and molecular features. Phylogenetic
analysis of the cyanobacterial isolates from this study
(Fig. 4) were in agreement with the morphological
characters validating their taxonomic affiliation
(Komárek et al. 2014).

Erwin & Thacker (2007) classified sponges accord-
ing to their photosynthetic community through chl a
quantification. The sponges from the present study
might harbour a small photosynthetic community, as
the values determined for all 9 specimens were
below 50 µg g−1. As previously noted, the results for
chl a quantification may also be incorporating chl d
(Li et al. 2012). Through DGGE analysis, we were not
able to identify Synechococcus spongiarum, known
to be a true sponge cyanobiont. Erwin & Thacker
(2007) reported that low chl a sponges did not har-
bour S. spongiarum. DGGE analysis only showed the
presence of unicellular cyanobacteria, indicating that
these are likely more abundant than filamentous
forms.

Molecular analysis revealed different DGGE
 banding patterns between seawater and sponge
samples (Fig. 3), suggesting the presence of sponge-

8

DGGE clone Accession no. Source Best hit indicated by BLAST
Accession no. Molecular analysis % max. identity

1_1 KC896629 Sponge JF824768 Uncultured cyanobacterium 99
from Hymeniacidon heliophila

2_1 KC896630 Seawater AY172835 Synechococcus sp. WH8020 99
3_1 KC896631 Seawater JN825316 Uncultured cyanobacterium 99
4_1 KC896632 Seawater NR_074407 Acaryochloris marina MBIC11017 99
5_1 KC896633 Sponge NR_074407 Acaryochloris marina MBIC11017 99
6_1 KC896634 Sponge HE687328 Uncultured Synechococcus 99
7_1 KC896635 Seawater AM259807 Uncultured cyanobacterium 99

from Thethya aurantium
8_1 KC896636 Seawater JX255822 Uncultured cyanobacterium 99
8_2 KC896637 Seawater FJ903249 Uncultured Synechococcus 99
9_1 KC896638 Sponge HE687328 Uncultured Synechococcus 99

Table 3. Phylogenetic affiliations of 16S rRNA gene clones obtained from denaturing gradient gel electrophoresis (DGGE) 
bands from Hymeniacidon perlevis and seawater
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Figure 3-4. Maximum likelihood (ML) phylogenetic tree based on the 16S rRNA sequences. The isolates from the present 
study are in bold and underlined. Isolate with an asterisk (*) was isolated from water sample. Denaturing gradient gel 
electrophoresis (DGGE) clones obtained from the present study are in bold. The different cyanobacterial clusters are 
represented with letters from A to C. 16S rRNA sequences obtained from marine sponges are in grey with information of 
the host sponge species. The retrieved sequences of GenBank were selected based on being the reference strains and 
the best match for BLASTn analysis. GenBank accession numbers are given in parentheses. The tree was rooted using 
Chloroflexi bacterium JKG5. Bayesian posterior probabilities and ML bootstrap support values are represented at the 
nodes. Only bootstrap values greater than 50% are given. The scale bar at the bottom represents 10% sequence 
divergence 
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Discussion 
Hymeniacidon perlevis is one of the most common sponge species along the rocky 

intertidal shore of Portugal. The presence of photosymbionts such as Cyanobacteria may 

be beneficial for the survival and growth of this sponge. In this study, we assessed the 

cyanobacterial diversity contained in H. perlevis sampled from the coast of Portugal 

(Figure 3-1), using culture-dependent and culture-independent approaches. Although 

photosynthetic microorganisms are  usually present in the outer layers (which are more 

exposed to sunlight) while the inner layers (mesohyl) are populated by heterotrophic and 

autotrophic bacteria (Hentschel et al., 2003, Kennedy et al., 2007), Cyanobacteria are 

distributed throughout the whole sponge, as the mesohyl provides higher quantities of 

nutrients than the surrounding waters (Hentschel et al., 2006, Kennedy et al., 2007). 

Hence, the whole sponge tissue was used to isolate and assess cyanobacterial diversity. 

We succeeded in characterizing 8 isolates, 7 of them from sponge tissue using 

phenotypic characteristics (Figure 3-2) and molecular features. Phylogenetic analysis of 

the cyanobacterial isolates from this study (Figure 3-4) were in agreement with the 

morphological characters validating their taxonomic affiliation (Komárek et al., 2014).  

Erwin and Thacker (2007) classified sponges according to their photosynthetic 

community through chl a quantification. The sponges from the present study might 

harbour a small photosynthetic community, as the values determined for all 9 specimens 

were below 50 μg g-1. As previously noted, the results for chl a quantification may also 

be incorporating chl d (Li et al., 2012). Through DGGE analysis, we were not able to 

identify Synechococcus spongiarum, known to be a true sponge cyanobiont. Erwin and 

Thacker (2007) reported that low chl a sponges did not harbour S. spongiarum. DGGE 

analysis only showed the presence of unicellular cyanobacteria, indicating that these are 

likely more abundant than filamentous forms.  

Molecular analysis revealed different DGGE banding patterns between seawater and 

sponge samples (Figure 3-3), suggesting the presence of sponge-associated 

cyanobacterial communities that are distinct from the seawater. Interestingly, the 16S 

rRNA DGGE fingerprint from H. perlevis samples a, b and c (Figure 3-3), sampled from 

different geographical locations within an interval of 3 months, revealed a similar banding 

pattern, further pointing to a consistency in sponge-associated cyanobacteria, even 

though there was a slight change in the banding pattern from the seawater. However, 

we observed an enrichment of the cyanobacterial community, represented by the 
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presence of more bands, in sponge-d compared to sponge-a, which were collected from 

the same location at times 1 year apart. This observed trend of inconsistency among the 

sponge-associated bacteria has been previously reported, suggesting the possibility of 

temporary association or host-switching (Alex et al., 2012), or part of the sponges’ dietary 

supply (Sipkema et al., 2015). It is known that irradiance conditions may influence the 

photosynthetic activity of sponge-associated cyanobacteria (Erwin et al., 2012), which 

could explain the differences in the banding patterns between sponges a and d.  

Not all filtered bacteria are ingested. They can survive and grow in the mesohyl tissue, 

becoming part of the sponge microbial community (Kennedy et al., 2007). It is known 

that only the most common and abundant organisms of the main populations are 

displayed in the banding pattern, and that organisms representing <1% of the community 

will not be identified (Muyzer et al., 1993), resulting in an underestimation of the bacterial 

community. Many bands that were present in sponge samples were not detected in the 

water samples, and recent studies have shown that most of the sponge-specific 16S 

rRNA gene sequence clusters are also present in the seawater but in smaller amounts 

(Taylor et al., 2013). The absence of a band in the DGGE does not necessarily mean 

the absence of that species; rather, it could mean that the organism was present at the 

moment of collection, but in an amount below the detection limit of the method. Banding 

pattern shifts cannot be analysed in terms of diversity, only abundance. Some bands, 

more evident in the sponge tissues than water samples, may show a selective uptake of 

the cyanobacterium.  

From the 24 bands present in DGGE, only 10 were successfully sequenced. This can 

explain why filamentous cyanobacteria were not identified. Also, filamentous 

cyanobacteria may exist in smaller amounts than the detection limit of the method. In the 

future, it would be interesting to clone more bands, as well as to pick more clones from 

each band, to assess cyanobacterial diversity.   

The phylogenetic analysis with partial 16S rRNA gene sequences from the isolates and 

DGGE band clones show 3 different clusters. Clusters A and C were comprised of only 

Synechococcales, and cluster B of Synechococcales and an Oscillatoriales (Figure 3-4). 

Sponge-associated cyanobacteria from our study resulted in polyphyletic clusters, which 

is a common phenomenon according to previous reports (e.g. Steindler et al. (2005)). 

Although we failed to detect S. spongiarum, in accordance with a previous study our 

phylogenetic reconstruction showed a clear distinction between free-living cyanobacteria 

and the cyanobionts (S. spongiarum) (cluster A; Figure 3-4) (Erwin & Thacker, 2007). 

Cluster A was represented by Synechococcus and Prochlorococcus species, an 
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association that has been widely described in 26 Demospongiae and 17 Calcarea 

families (Li et al., 2011). An earlier study also showed that the marine sponge Clathria 

prolifera harboured cyanobacteria belonging to the genus Pseudanabaena (Isaacs et al., 

2009). All DGGE clones are represented in cluster A.  

Retrieval of DGGE clones from sponge tissue with significant similarity to Acaryochloris 

marina further validated Acaryochloris as a H. perlevis-associated cyanobacterium, 

which has been reported previously in sponges (Alex et al., 2012) and sea-squirts 

(López-Legentil et al., 2011). Acaryochloris is the only known producer of chl d, a red-

shift chlorophyll. Chl d was first identified in red algae (Manning & Strain, 1943), then in 

A. marina (Miyashita et al., 1996); eventually, Acaryochloris was confirmed as the only 

chl d producer (Murakami et al., 2004). Chl d in this cyanobacterium accounts for 95 to 

99% of all chlorophyll content (Miyashita et al., 1996), replacing all function of chl a and 

allowing it to exploit light environments depleted of visible radiation. Due to its unique 

use of far-red light, Acaryochloris can live in niches in coastal waters (Murakami et al., 

2004), and therefore its presence in intertidal marine sponges is expected, due to their 

filtration capability. The association of sponges with Acaryochloris can be beneficial due 

to this red-shift chlorophyll. In order to confirm the presence of Acaryochloris in H. 

perlevis, in the future, it would be interesting to quantify both chl a and chl d using the 

methods described by Li et al. (2012).  

Cluster B comprised species from the genera Leptolyngbya, Phormidesmis and 

Pseudophormidium, as well as a strain from Synechococcus and a former 

Synechococcus, now identified as unicellular Synechococcales. The clustering of 

Synechococcus sp. PCC 7335 with filamentous non-heterocystous cyanobacteria from 

the genus Leptolyngbya has been previously reported (Honda et al., 1999, Castenholz 

et al., 2001, Wilmotte & Herdman, 2001). Cluster C formed a well-supported group, only 

containing Nodosilinea species.  

The presence of sponge-associated cyanobacteria from seawater samples supports the 

hypothesis of procurement of symbionts through the environment, i.e. horizontal 

transmission (Maldonado, 2007), apart from the commonly accepted vertical mode of 

transmission. Furthermore, it indicates the ability of sponge-associated cyanobacteria to 

survive outside the host tissue (Taylor et al., 2013). According to Alex et al. (2013), H. 

perlevis from the Portuguese coast is a LMA sponge, and it has been suggested by Giles 

et al. (2013) that LMA sponges may acquire bacteria mainly from ambient seawater. In 

addition, sponges are filter-feeding animals that use picoplanktonic cyanobacteria as a 

source of food. Due to the close phylogenetic relationship to planktonic Synechococcus 
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strains, a seawater origin for the H. perlevis cyanobacterial clones cannot be excluded. 

But it can also point to the existence of a community shared between sponges and the 

surrounding waters, because it is known that the sponge microbial community is a 

mixture of organisms acquired both from the water column and by vertical transmission 

(Hentschel et al., 2003). Usher et al. (2001) observed Cyanobacteria in only 25% of 

sponge larvae, suggesting that vertical transmission is not the only mode of symbiont 

procurement. Bacterial profile assessment and comparison using adults and embryos 

could further validate the mode of symbiont transmission among the intertidal sponge H. 

perlevis.  

As has been previously reported (Steindler et al., 2002), the presence of Cyanobacteria 

can be very important for the survival of intertidal marine sponges. For instance, these 

sponges are prone to air exposure, leading to fluctuations in temperature and irradiance, 

and lack of filter feeding opportunities (Steindler et al., 2002). During these conditions, 

the photosymbionts play an important role, providing the sponge hosts with nutrient 

uptake for their survival and the production of potential UV-screening substances 

(Steindler et al., 2002). Although we employed a relatively inexpensive technique 

(DGGE) to profile the microbial diversity, it provided a first glimpse of the cyanobacterial 

community, allowing visualization and monitoring of changes directly from the banding 

patterns. This method, when used for a long period can also allow differentiation between 

transient and permanent communities (Hentschel et al., 2003). Further determination of 

the origin and diversity of sponge-associated cyanobacteria in comparison to their free-

living counterparts can be achieved using advanced next-generation sequencing 

techniques.  

Many previous studies have reported the presence of a huge diversity of marine 

cyanobacteria isolated from the Portuguese coast (e.g. Brito et al. (2012), (Leão et al., 

2013)). Brito et al. (2012) reported that Cyanobium, Leptolyngbya and Pseudanabaena 

were the most abundant genera among isolates. Strains from the same genera obtained 

in the present study, also collected from the coast of Portugal, were found to be a source 

of bioactive compounds (Leão et al., 2013, Costa et al., 2014, Brito et al., 2015, Costa 

et al., 2015) namely strains from the genera Cyanobium (Costa et al., 2015), 

Leptolyngbya, Synechocystis, Nodosilinea and Pseudanabaena (Costa et al., 2014). 

Isolation and growth of these species under laboratory conditions would be necessary to 

obtain sufficient quantities of these natural compounds for their detailed chemical 

characterisation and production. Also, due to the negligible amount of some 

cyanobacteria in seawater, they could easily be missed when isolating and culturing, and 
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hence their bioactive potential would remain unexploited. Sponges are filter-feeders 

capable of pumping 24cm3 of seawater per day, per kg of sponge (Vogel, 1977), with 

very efficient filtration systems and a clearance rate of up to 61% (Stabili et al., 2006). In 

this way, sponges could be used as a natural filtration and concentration mechanism to 

obtain new cyanobacterial strains with pharmaceutical potential.  

The present study shows, for the first time, the diversity of cyanobacteria associated with 

marine sponges from the intertidal area of the Portuguese coast (NE Atlantic) using both 

culture- and molecular-based methods, and the comparison of the sponges’ 

cyanobacterial community to that present in seawater. Even although the true 

cyanobacterial diversity might be underestimated, culture-dependent and culture-

independent methods showed that some sponge-associated cyanobacteria were 

detected in the surrounding waters, suggesting temporary or selective uptake. 

Nevertheless, we argue that the recurrent presence of a cyanobacterial community at 

different spatial and temporal scales could be indicative of environmental acquisition of 

Cyanobacteria by the intertidal marine sponge H. perlevis. Finally, the isolation technique 

employed here could be used to isolate new cyanobacteria that are only present in small 

amounts in the water column. 
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Changes in the bacterial community of the marine 

sponge Hymeniacidon perlevis from in situ and ex 

situ conditions: insights on the cyanobacterial 

diversity 
 

Abstract 
The microbial community in marine sponges have been extendedly studied in the last 

few decades, with NGS approaches providing new insights to these associations. 

Several experiments have the need to maintain sponges in ex situ conditions, which is 

known to affect their microbial community and even sponge survival. In the present work, 

a 454-pyrosequencing analysis was conducted on the sponge H. perlevis, both from in 

situ and after maintenance ex situ. Results showed the diference in bacterial community 

between the sponges and natural seawater. In sponges, Proteobacteria was a major 

phylum present in all sponge samples. Some organisms, such as Cyanobacteria almost 

disappeared from sponge tissue under controlled conditions, after 30 days. TEM analysis 

from sponge tissue also showed the same cyanobacterial trend. We hypothesized that 

sponge viability was compromised by the loss of cyanobionts. In terms of community 

diversity and richness, all sponge samples showed similarities, but when applied a beta-

diversity analysis it was evident how the community changed along the time frame under 

ex situ conditions. This work shows the need to study the bacterial community and its 

balance prior to conduct more extensive studies and further investigations must be made 

in order to confirm the results here presented. 

 

Keywords 
Hymeniacidon perlevis; Porifera; pyrosequencing; bacterial diversity; ex situ 

maintenance; cyanobacteria 

 

Introduction 
Sponges, Phylum Porifera, have fossil records dating back to around 580 million years 

(Hentschel et al., 2006), and constitute the bottom (less evolved) of the Metazoan 

branch. Although sessile animals, they are present in every aquatic environment, at all 

depths (Sarà & Vacelet, 1973, Bergquist, 1978, Van Soest et al., 2012), with a huge 
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diversity in number of species and morphological characters. Characterized by a simple 

body plan, highly totipotent cells, a characteristic aquiferous system and different 

reproduction strategies, their lifestyle has proven to be very successful. In marine 

environments, sponges play important roles in the cycle processes of dissolved nutrients 

and organic matter (Maldonado & Riesgo, 2008), and are a vast source of compounds 

with biotechnological applications (Leal et al., 2012).  

Mainly in the mesohyl tissue, inhabit a huge diversity of microorganisms comprising as 

much as 40% of the total sponge volume (Vacelet, 1975, Vacelet & Donadey, 1977, 

Webster & Taylor, 2012). Many of these associations, evolved millions of years ago 

playing an important role in both sponge survival and evolution (Taylor et al., 2007b). 

The sponge benefits from these associations, through translocation of metabolites from 

microorganisms in the form of glycerol (Wilkinson & Fay, 1979), organic phosphate and 

nitrogen (Wilkinson & Fay, 1979) or glucose (Wilkinson, 1980), which is known to 

enhance sponge growth rate and competitiveness with other benthic communities 

(Wilkinson, 1980, Arillo et al., 1993). Bacteria can also participate in chemical defence 

of the host against both predators and biofouling (Unson et al., 1994, Schmidt et al., 

2000). It has also been proven that sponge survival, in many cases, can be directly linked 

to the stability of certain symbionts. For example, Thacker (2005), observed that a 

decline on the cyanobacterial community of the sponge was related with a decrease of 

sponge health. Translocation of sponges to ex situ conditions can have implications in 

their microbial community, and consequently in the survival of the sponge. 

Addressing microbial diversity using culture independent techniques was a major 

breakthrough, leading to the discovery of many more phyla. Hentschel et al. (2002) 

compared the microbial community between sponges, surrounding water and sediment, 

showing for the first time the evidence of a monophyletic, sponge specific clusters and a 

uniform bacterial community in marine sponges on a global scale. As early as in the 70’s, 

Wilkinson (1978b) stated that the microbial community presented in sponges were very 

different from the one presented in surrounded seawater. Molecular based techniques 

were able to confirm that statement (Hentschel et al., 2006, Taylor et al., 2007a, Hardoim 

et al., 2009, Hentschel et al., 2012, Webster & Taylor, 2012).  

The use of high-throughput sequencing techniques such as next generation sequencing 

(NGS) 454-pyrosequencing provided, in the last decade, new insights in sponge 

microbiology. 

Through NGS studies, different new phyla were unveiled (Cárdenas et al., 2014, 

Hardoim et al., 2014, Kennedy et al., 2014, Naim et al., 2014), concluding that bacterial 

communities were species specific (Lee et al., 2011) and the presence of a low core 
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community (<1%) (Schmitt et al., 2012), against the previous idea of a sponge specific 

community across different sponges. As part of the global sponge microbiome project, it 

has been found more than 40 microbial phyla or candidate phyla in sponges, where most 

OTUs (operational taxonomic units) were present in a small fraction of the sponges, and 

only a few found in most sponge species (Thomas et al., 2016, Moitinho-Silva et al., 

2017). Apart from revealing new phyla, these works showed that the dominant bacterial 

taxa were the same as the ones described in previous studies using 16S rRNA gene 

libraries: Proteobacteria (Gamma- and Alpha-), Actinobacteria, Chloroflexi, Nitrospirae, 

Cyanobacteria and Candidatus Phylum Poribacteria (Pita et al., 2018).  

The study of the sponge-microbe symbiotic community can help to understand the 

diversity of Proto-Eukaryote symbiosis. Also, despite their simple body plan, sponges 

are situated in an important phylogenetic position (bottom of the Metazoan) among 

marine invertebrates, making them ideal candidates as animal models. Porifera has a 

huge genomic complexity (Riesgo et al., 2014), expressing homologs of genes involved 

in the animal nervous system (Ludeman et al., 2014) and in innate immunity (Hentschel 

et al., 2012, Riesgo et al., 2014).  

Many studies are now focusing also in the ability of sponges and their symbionts to 

produce secondary metabolites (toxins and compounds with pharmaceutical interest). 

Translocation of sponges from natural environment to laboratory-controlled conditions 

can be necessary for several studies, which may influence the symbiotic community. The 

aim of this study is to assess the microbial community in the marine sponge 

Hymeniacidon perlevis, a common intertidal marine sponge of the Portuguese coast, and 

to understand how the bacterial community is affected by translocation to ex situ 

conditions. With that intent, we aim to perform a 454-pyrosequencing analysis from 

sponge tissue collected in situ and ex situ. Those results will be combined with 

information from TEM (transmission electron microscopy) analysis, in order to infer on 

changes of the bacterial community, and especially within the cyanobacterial community 

 

Materials and Methods 
Sample collection, preparation and aquarium maintenance 
A specimen of the marine sponge Hymeniacidon perlevis (Montagu, 1814) (Figure 4-1) 

were collected from the intertidal area of Memória beach, Matosinhos Portugal (Figure 

4-2). Memória beach has a combination of sand and granite rocks and the coast is 

exposed to the prevailing northwest oceanic swell, which can reach values over 5m in 

the winter, and sea surface temperature ranging from 13-20 ºC. The tidal regime along 
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the Portuguese coast is semi-diurnal with the largest tidal range during spring tides of 

3.5 and 4 m.  

Sponges were attached to rocky surfaces in sheltered areas, protected from direct 

influence of the sun and tide, and collected with the help of a knife, cleaned of debris and 

sediment and placed in sterile 100 mL flasks containing natural seawater from the 

sampling location. Water sample (2,5 L) was also collected. After collection, sponge 

samples were immediately transported to the laboratory and processing began as soon 

as arriving. A small fraction of H. perlevis (1 cm3) was preserved in 100% ethanol for 

subsequent molecular analysis and morphological identification; approximately 2 mm of 

the sponge was cut for transmission electron microscopy use. Seawater was filtered 

through a 0.45 μm sterile filter followed by DNA extraction. 

Sponge identification was based on the sampling habitat, shape, consistency, texture, 

colour, smell and characteristic features (morphology, dimensions) of spicules (Hooper 

& van Soest, 2002). 

The collected specimen was placed in containers with natural filtered seawater (2 μm 

net pore) for a period of 2 hours. After each 20 minutes the water was changed. This 

process helped in removing transient microorganisms or debris from the sponge. Sponge 

were transferred to 30 L aquariums with 15 L of natural seawater obtained from a place 

near where the specimens were collected. Prior to use, natural seawater was submitted 

to a 24 h sedimentation process, followed by two filtration steps (100 μm, and 25 μm). 

The aquarium was equipped with a filtration system (Boyu Model FP- 28E). Aquarium 

room was kept at a temperature of 16 ºC and salinity, temperature, dissolved oxygen 

and pH were quantified every day. Aquarium water was changed every week. Sponges 

were fed every day with a 5 mL solution composed by two commercial aquarium foods: 

1 full spoon (provided with the commercial food) of Tropic Marin® Pro-Coral Zooton and 

half a spoon of Cyclop-Eeze (Argent Chemical Laboratories). Prior to feeding process 

the filtration system was turned off and kept off for 10 minutes. The solution was provided 

with the help of a sterile pipette and deposited on the sponge surface. Sponge was kept 

under aquarium conditions for a total period of 30 days. After 15 and 30 days fragments 

of the sponge were collected, both for molecular analysis and for TEM.  

After 30 days, H. perlevis started losing their characteristics. Lost color and structure, 

leading to lose of viability, stopping the experiment. 
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Figure 4-1.Picture of a specimen of Hymeniacidon perlevis in their natural habitat 
 

 
Figure 4-2. Sampling location: Memória (41° 13’ 52.27’’N, 8° 43’ 18.34’’W), with pictures of the sampling area. 

 

Transmission Electron Microscopy  
Sponge tissue (~2 mm) was cut and immediately fixed in 2% glutaraldehyde in 50 mM 

sodium cacodylate buffer (pH 7.2) for 2 h. After that it was washed three times in double 

strength buffer, post-fixed with 2% osmium tetroxide in 50 mM sodium cacodylate buffer 

(pH 7.2) for 2 h, and washed again in double strength buffer. The dehydration was 

performed using an ethanol series (25–100%; v/v), and once using propylene oxide. 

Samples were embedded in mixtures of propylene oxide and Epon resin, followed by 

Epon for at least 24 h, before being placed in embedding moulds with Epon, and being 

allowed to polymerize at 55 °C. Thin sections were cut with a Leica Reichert Supernova 

ultramicrotome, and mounted in copper grids 200 Mesh. The sections were contrasted 

before being visualized using a transmission electron microscope Jeol JEM 1400 

operating at 80 kV (IBMC / HEMS).   

Molecular analyses and 454 pyrosequencing 
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Total genomic DNA (gDNA) was extracted from sponge tissue and sampled seawater, 

using a commercially available PurelinkTM genomic DNA kit (Invitrogen) and stored at -

20°C until further analysis.  

The 16S rDNA of each sample was amplified and barcoded for pyrosequencing using a 

10 bp barcode sequence (Table 4-1) added to the polymerase chain reaction (PCR) 

primers: forward primer U789F (5′-TAGATACCCSSGTAGTCC-3′) and reverse primer 

U1068R (5′-CTGACGRCRGCCATGC-3′) (Baker et al., 2003). PCR reactions were 

performed in triplicates (final volume of 100 μL) containing 5 U of Pfx50 DNA polymerase 

(Invitrogen), 1X Pfx50 PCR mix, 0.3 mM of dNTPs (NZYTech), 0.5 μM of each barcoded 

primer and 30 ng of metagenomic DNA. PCR reaction started with an initial denaturation 

at 95 ºC for 5 minutes, followed by 26 cycles of 94 °C for 15 seconds, 63 °C for 30 

seconds, 68 °C for 45 seconds, and a final extension step at 68 ºC for 5 minutes. PCR 

products were purified using a PCR gel extraction purification kit (Macherey-Nagel). 

Products were pooled on a titanium adaptor and pyrosequencing was performed on 

ROCHE 454 GS-FLX Titanium platform. Raw pyrosequencing reads were submitted to 

the NCBI Short Reads Archive database (SRR949132).  

 
Table 4-1. List of samples with the respective sample codes and multiplex identifiers (MID) 

List of samples Sample code MID 

Seawater SW TAGATACCCSSGTAGTCC 

H. perlevis (environmental sample) Hp TAGATACCCSSGTAGTCC 

H. perlevis (15 days ex situ) Hp15d TAGATACCCSSGTAGTCC 

H. perlevis (30 days ex situ) Hp30d TAGATACCCSSGTAGTCC 

 

454 tag sequence processing and OTU picking  
Pyrosequencing data analysis were performed with The Quantitative Insights Into 

Microbial Ecology software package (QIIME) v.1.9.1 (Caporaso et al., 2010b). 

Summarizing, raw multiplexed sequences (34654 reads) were assigned to samples 

based on barcodes for downstream analysis and pre-processed by trimming with an 

average quality threshold score of 25, removing reads containing ambiguous bases or 

where bad windows were found, as well as sequences shorter than 100 bp and 

unassigned reads. Final sequences were of an average read length of 286.5 bp. After, 

pre-processed dataset was screened by denoising (Reeder & Knight, 2010) to avoid over 

representation of species diversity. Operational taxonomical units (OTUs) were 

determined at 97% sequence similarity using the UCLUST method (Edgar, 2010). 

Taxonomy assignment of representative sequences of each OTU were picked using 



FCUP 
Chapter 4. Changes in the bacterial community of the marine sponge Hymeniacidon perlevis from in situ and 

ex situ conditions: insights on the cyanobacterial diversity 

85 

 
QIIME default parameters, and aligned employing PyNAST (Caporaso et al., 2010a) 

against a Greengenes core reference alignment (DeSantis et al., 2006). From the OTU 

table originated, undesirable OTUs were removed (Archaea, and singletons (one single 

sequence)) 

A final OTU biom-format table was then created and used as input data for downstream 

analyses.  

Microbial diversity and co-occurrence analysis  
After taxonomic assignment using QIIME, bar charts were created at phylum level for 

each sample. In order to avoid biases related to sequencing depth, libraries were 

normalized by size through randomly picking sequences that were further used for both 

alpha- and beta-diversity metrics. 

Microbial richness indices namely observed species richness (S.obs), expected richness 

with Chao1 estimator (S.Chao1) (Chao, 1987), and diversity measure of Shannon 

indices (Shannon, 1948) were executed in QIIME environment. Measures of 

(dis)similarity in microbial community composition between samples was made through 

multivariate analysis of the community composition at the OTU level (97% sequence cut-

off) performed using beta-diversity unweighted Unique Fraction metric (UniFrac) 

(Lozupone & Knight, 2005), and used for multivariate analysis by Principal Coordinate 

Analysis (PCoA) (Krzanowski & Krzanowski, 2000). To estimate uncertainty in 

hierarchical clustering and PCoA plots of bacterial communities, a Jackknife beta-

diversity analysis was used. 

All QIIME scripts used are described as supplementary work. 

 

Results 
The present work intended to analyse and compare the bacterial community of a 

common intertidal marine sponge, Hymeniacidon perlevis, and see how maintenance 

under controlled conditions, ex situ, would change the community. Short after 30 days 

ex situ, the viability of the sponge was compromised and died. 

From 454 data, we retrieved a total of 12114 16S rRNA V4-tag sequences. After  quality 

sequencing filtering, we obtained 7685 sequences. Table 4-2 summarizes the sequence 

data, where filtered sequences were assigned to a total of 507 operational taxonomic 

units (OTUs), at a 97% similarity cut-off.  
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Table 4-2. Summary of sequence data 

Sample Sample code Sequences OTUs 97 

Seawater SW 1699 324 

H. perlevis (environmental sample) Hp 334 58 

H. perlevis (15 days ex situ) Hp15d 1914 144 

H. perlevis (30 days ex situ) Hp30d 3738 213 

 

Observing the community composition at phylum level, represented in Figure 4-3, it is 

possible to notice that seawater bacterial composition differs from the ones from 

sponges. And that translocation to controlled conditions affect the bacterial community 

in sponges. Phyla with less than 2% of representativeness were grouped together and 

displayed in Figure 4-3 as “Other”. Those are Actinobacteria, BHI80-139, BRC1, 

Chlamydiae, Firmicutes, Gemmatimonadetes, Lentisphaerae, Nitrospirae, OP1, OP3, 

OP8, PAUC34f, SAR406, Synergistetes, TM6, WPS-2, WS2, ZB3 and [Thermi]. 

Altogether, 31 different phyla were identified, among recognized and candidate taxa. In 

sponge samples, 21 different phyla were identified. Seawater is dominated by 

Planctomycetes (155 OTUs and 815 sequences), while sponges by Proteobacteria. 

Inside the Phylum Proteobacteria, classes Alpha- Delta- and Gamma-Proteobacteria are 

the most common. The most dominant sponge-associate phyla were Proteobacteria, 

Planctomycetes, Cyanobacteria and Bacteroidetes. Under controlled conditions, the 

candidate Phylum SBR1039 started growing and after 30 days ex situ, the most 

important remark was the almost absence of the phylum Cyanobacteria (1 OTU, 3 

sequences).  
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Figure 4-3. Bacterial community at Phylum level for all samples. All Phylum with less than 2% diversity were combined 
and are represented as other. SW: seawater sample; Hp: H. perlevis in situ; Hp15d: H. perlevis 15 days ex situ, under 
controlled conditions; Hp30d: H. perlevis 30 days ex situ, under controlled conditions. 
 

The same pattern was observed through TEM analysis (Figure 4-4). In both the sponge 

in situ (Figure 4-4a-b) and in the sponge after 15 days under controlled conditions (Figure 

4-4c-d), unicellular cyanobacteria were observed inside cyanocytes, with the presence 

of spiral thylakoids. No cyanobacteria were observed in TEM analysis in the sponge after 

30 days under controlled conditions. 
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Figure 4-4. Transmission electron microscopy of the mesohyl tissue of the sponge H. perlevis. Cyanobacteria observed 
in the sponge at time of collection from natural environment (a and b) and from maintenance under controlled conditions, 
ex situ, for 15 days (c and d). In pictures a and c it is possible to observe the existence of cyanocytes. Pictures b and d 
show the cyanobacteria in more detail, where it is possible to observe the presence of spiral thylakoids. 
 
In respect to cyanobacterial diversity, at genus level, it was possible to identify the 

presence of OTUs assigned to Acaryochloris in sponge samples and Acaryochloris, 

Synechococcus and Phormidium in seawater. In all samples, OTUs of unidentified 

cyanobacteria were also present. 

Rarefaction analysis of alpha-diversity, through measurements of bacterial richness and 

diversity in marine sponges and seawater were also quantified. Observed richness and 

estimated richness (Chao1) are represented in the rarefaction graphs in Figure 4-5. 

Analysis of Figure 4-5 shows that the amount of observed OTUs was less than the 

estimated and that the diversity depends very strongly on the sequencing depth. For 

sponge samples rarefaction curves start to stabilize at around 250 sequences/sample, 

showing a good depth. 
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Figure 4-5. Rarefaction curves depicting cumulative community richness: observed diversity and Chao1 (estimated 
diversity) for the normalized dataset. Sw: seawater (green); Hp: H. perlevis in situ (red); Hp15d: H. perlevis ex situ for 
15days (orange); H. perlevis ex situ for 30 days (blue). 
 

Community diversity was determined using Shannon indices, as presented in the 

rarefaction curves in Figure 4-6. Results show the diversity not to change greatly in 

accordance to the number of sequences per sample. A higher diversity for seawater, 

when compared to sponge samples. In between sponge samples, there is not a big 

difference in diversity. 

 

 
Figure 4-6. Rarefaction curves depicting cumulative community diversity: Shannon diversity index for the normalized 
dataset. Sw: seawater (green); Hp: H. perlevis in situ (red); Hp15d: H. perlevis ex situ for 15days (orange); H. perlevis ex 
situ for 30 days (blue). 
 

Beta-diversity allowed the comparison in between samples. Principal coordinates 

analysis (PCoA) is shown in Figure 4-7 allowing to infer that seawater diversity is much 

more different from sponge samples than sponge samples in between them. Also, the 

bacterial community of sponge’s changes along the time under controlled conditions. 
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Figure 4-7. Principal coordinates analysis (PCoA) based on weighted UniFrac distance metric of the most common 
bacterial community profiles at phylotype (OTUs) level. Samples are presented by color: Sw: seawater (green); Hp: H. 
perlevis in situ (red); Hp15d: H. perlevis ex situ for 15days (orange); H. perlevis ex situ for 30 days (blue). The 5 most 
dominant bacterial taxa (at phylum level) are shown and respective assigned OTUs. The position of bacterial taxa was 
determined by correlation of relative abundances and sample categories. 
  

In Figure 4-8, a Venn diagram is shown to elucidate shared and unique OTUs in samples. 

The diagram shows that only 16 OTUs are shared for all samples, and only 9 for 

sponges. 

 

 
Figure 4-8. Venn diagram showing number of OTUs shared and unique to each sample. Sw: seawater; Hp: H. perlevis in 
situ; Hp15d: H. perlevis ex situ for 15days; H. perlevis ex situ for 30 days. 
 

Discussion  
In the present study we intended to assess how the microbial community associated with 

a common intertidal marine sponge from the coast of Portugal, would change when 

translocated to laboratory-controlled conditions. The chosen sponge, Hymeniacidon 

perlevis, has been used previously in different studies to assess the microbial community 

by our group (Alex et al., 2012, Alex et al., 2013, Regueiras et al., 2017), and has a broad 

geographical distribution along the Atlantic Ocean, North Sea, Mediterranean Sea (Van 

Soest et al., 2018), showing the importance of the study of this sponge on a global scale. 
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Next-generation sequencing (NGS) technologies allowed to deeply understand microbial 

community richness. Recently, the global sponge microbiome project started assessing 

microbial communities from sponges, around the globe using standardized protocols 

(Thomas et al., 2016, Moitinho-Silva et al., 2017). Prevalence of microbial community 

within marine invertebrates showed that these organisms cannot be studied individually 

and must be assumed as metaorganisms (Bosch & McFall-Ngai, 2011). Due to all 

advantages from these associations, symbionts are known to influence both health and 

functioning of the hosts (Pita et al., 2018).  

Here we applied NGS to understand how the microbial community would be affected by 

translocation of sponge to ex situ conditions, and if those changes could affect sponge 

viability.  

First, we unveiled a much different bacterial community between the water column (Sw) 

and the one in the sponge in situ (Hp) (Figure 4-3), with only 7 OTUs shared by both 

(Figure 4-8). The results here obtained are in accordance to the ones from previous 

studies (Hentschel et al., 2002, Hentschel et al., 2006, Taylor et al., 2007a, Hentschel et 

al., 2012, Webster & Taylor, 2012). Webster et al. (2010) found sponge OTUs to be 

present in seawater at very low abundances. In between sponge samples, a high 

discrepancy in both OTUs observed and number of sequences was found. PCR-based 

techniques may influence the results, as specific taxonomic groups can be favoured and 

disproportionally be amplified, affecting richness estimations in environmental samples 

(Webster et al., 2010). 

From sponge samples, altogether, 21 microbial phyla (or candidate phyla) were 

identified, suggesting a complex microbial community. Our data revealed that bacterial 

composition from each sample were different from each other, and through the beta-

diversity analysis performed (Figure 4-7), it is possible to see how the community 

changes from the sponge collected from the natural environment (Hp) and the 

community after 30 days under controlled conditions (Hp30d). The most dominant 

sponge-associated phyla were Proteobacteria, Planctomycetes, Cyanobacteria and 

Bacteroidetes. Alpha- gamma- and delta-proteobacteria were the major classes. 

Proteobacteria are an important group found in almost all sponge microbial diversity 

studies (Thomas et al., 2016, Moitinho-Silva et al., 2017), and showed to not change 

drastically after sponge translocation in our work. Alex and Antunes (2015), using NGS 

analysed the microbial community associated with different marine intertidal sponges 

(n=12) from the coast of Portugal, finding also Proteobacteria to be the main phyla 

present in all sponge species, as well as the presence of both Planctomycetes and 

Cyanobacteria. 
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It has been pointed before that H. perlevis is a low microbial abundance sponge (LMA) 

(Alex et al., 2013, Regueiras et al., 2017), meaning that it has a microbial concentration 

similar to the one present in the water column, and Weigel and Erwin (2016) suggested 

that intertidal sponges may have a less diverse microbial community due to constrictions 

from living in a physiological stress area (air exposure and high temperature oscillations).  

It is known that environmental conditions can affect the microbial community (Morrow et 

al., 2016, Steinert et al., 2016, Weigel & Erwin, 2017). Disturbing the balance that exists 

between sponge and symbiotic microorganisms can affect both the sponge and the 

hosts, changing the production of secondary metabolites or even interfering in sponge 

survival. Pita et al. (2018) refers that disturbance in the holobiont can lead to three 

different scenarios: through resistance and resilience the community can stay stable, or 

microbial community can change so drastically affecting sponge survival, or even can 

lead to a new acclimations and adaptation to novel environmental conditions. 

Under controlled conditions after 30 days ex situ, the most important remark was the 

almost absence of the phylum Cyanobacteria (1 OTU, 3 sequences). The observed trend 

was confirmed by TEM analysis, where we were unable to detect any cyanobacteria in 

sponge tissue after that period. In contrast, both the sponges collected from the natural 

environment (Figure 4-4a-b) and after 15 days under controlled conditions (Figure 4-4c-

d), presented a large cyanobacterial community within specialized arqueocytes vacuoles 

(Rützler, 1990) named cyanocytes. The combination of molecular techniques and 

microscopic ones has been suggested as a better approach and used in different studies 

to address cyanobionts composition in sponges (Alex et al., 2012, Bayer et al., 2014). 

Photosynthetic bacteria, such as cyanobacteria provide many benefits for the host, such 

as supplemental nutrition (Wilkinson & Fay, 1979, Wilkinson, 1980)  and through 

production of secondary metabolites can provide defence (Carpenter & Foster, 2002), 

protection from U.V light (Adams, 2000) and help in substrate competition (Usher et al., 

2004, Taylor et al., 2007a). Recently, a detailed review on the sponge-cyanobacteria 

associations was made by Konstantinou et al. (2018), concluding that these associations 

are as common in temperate areas, as in tropical ones. The nature of these associations 

can be affected by physical and environmental aspects (Usher, 2008), and some 

sponges are unable of surviving without their cyanobionts (Thacker, 2005). Steindler et 

al. (2007) found the expression from some sponge genes to be related to the presence 

of cyanobionts, and Morrow et al. (2014) found sponges to be able to survive and even 

to enhance its growth under new climate scenarios, such as ocean acidification, due to 

harbouring a significantly higher abundance of Synechococcus species, which provide 

the host with a nutritional benefit. After 30 days sponge viability was compromised, and 
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the sponge died. We here hypothesized that the changes observed in the cyanobacterial 

community were, at least in part, responsible for that overcome.  

Sponges are important members of benthic communities, with a huge biotechnological 

potential, and capable of providing more insights on conserved mechanisms of host-

microbe relations in basal metazoans. The fact that sponges occur at all geographical 

aquatic locations, and associations with microbes occur across different species, make 

them good laboratory models. Assuming the sponge and their microbial community as a 

metaorganisms and knowing that maintenance under controlled conditions can be 

challenging and assessing the microbial community, it changes and how it affects 

sponge survival is the first step towards the use of these organisms as models. Here, we 

provided a first assessment on bacterial community changes and we hypothesized that 

sponge viability was compromised by the loss of cyanobionts. Further investigations 

must be made in order to confirm the results here presented. 
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Differential toxicity of Cyanobacteria isolated from 

marine sponges towards echinoderms and 

crustaceans 
 

Abstract 
Marine sponges and cyanobacteria have a long history of co-evolution with documented 

genome adaptations in cyanobionts. Both organisms are known to produce a wide 

variety of natural compounds, with only scarce information about novel natural 

compounds produced by cyanobionts. In the present study, we aimed to address their 

toxicological potential, isolating cyanobacteria (n=12) from different sponge species from 

the coast of Portugal (mainland, Azores and Madeira Islands). After large-scale growth, 

we obtained both organic and aqueous extracts to perform a series of ecologically-

relevant bioassays. In the acute toxicity assay using nauplii of Artemia salina, only 

organic extracts showed lethality, especially in picocyanobacterial strains. In the 

bioassay with Paracentrotus lividus, both organic and aqueous extracts produced 

embryogenic toxicity (respectively 58% and 36%), pointing to the presence of 

compounds that interfere with growth factors on cells. No development of pluteus larvae 

was observed for the organic extract of the strain Chroococcales 6MA13ti, indicating the 

presence of compounds that affect skeleton formation. In the hemolytic assay, none of 

the extracts induced red blood cells lysis. Picocyanobacterial strains showed to be the 

ones with most potential. Organic extracts, especially from picoplanktonic strains, proved 

to be the most promising for future bioassay-guided fractionation and compounds 

isolation. This approach allows us to clarify the compounds extracted from the 

cyanobacteria into effect categories and bioactivity profiles.  

 

Keywords 
Marine cyanobacteria; cyanotoxins; marine sponges; secondary metabolites; marine 

natural compounds; bioassays; Artemia salina; Paracentrotus lividus; hemolytic essay 
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Key Contribution 
The present work shows for the use of marine sponges as a source for harvesting 

cyanobacteria. Being adapt to life inside sponges, these cyanobacteria can prove to have 

novel compounds produced from their secondary metabolism. 

 

Introduction 
Cyanobacteria are photosynthetic prokaryotes, with a high morphological, physiological 

and metabolic diversity, with fossil records dating back to 3.5 billion years ago (Adams 

& Duggan, 1999). Secondary metabolite production was essential for their survival 

allowing for adaptation to several environmental conditions such as variations in 

temperature, pH, salinity, UV radiation among others. 

Climate change and eutrophication increased the occurrence and frequency of 

cyanobacterial blooms in water bodies, posing human and animals’ health risks due to 

toxin production. Apart from toxin production, these secondary metabolites have also 

been shown to be a source of compounds of interest in different industries, such as 

pharmaceutical, cosmetics, agriculture, energy, etc. It is estimated that only in the last 

decade more than 400 new natural compounds were extracted from marine 

cyanobacteria (Mi et al., 2017). Coastal water blooms pose another health risk 

concerning cyanobacterial toxins, as many of them are able to accumulate in both 

vertebrates and invertebrates (Buratti et al., 2017).  

Assessing marine cyanobacterial diversity on the Portuguese coast has already been 

the focus of various studies (e.g.(Brito et al., 2012, Brito et al., 2017)), with Cyanobium, 

Leptolyngbya and Pseudanabaena as the most abundant genera among isolates (Brito 

et al., 2012). Isolated strains from the coast of Portugal were found to be a source of 

bioactive compounds, both with toxicological and/or pharmaceutical interest (Martins et 

al., 2005, Martins et al., 2007, Martins et al., 2008, Frazão et al., 2010, Leão et al., 2013, 

Costa et al., 2014, Costa et al., 2015, Afonso et al., 2016). Also, Brito et al. (2015) 

evaluated the potential to produce secondary metabolites for some strains through 

molecular methods. 

In marine environments cyanobacteria are known to form associations with a variety of 

invertebrates, such as sponges (Phylum Porifera). Sponges are filter-feeders, capable 

of filtering thousands of litters of water per day. During this process, some filtered 

microorganisms can become part of the sponge microbiota, which diversity can reach up 

to 4 orders of magnitude, when compared to the one from water column (Hentschel et 
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al., 2006). In temperate ecosystems, it is estimated that 45-60% of sponges to have 

cyanobacterial symbionts (cyanobionts) (Lemloh et al., 2009), and are capable to cover 

up to 50% of the sponge cell volume (Rützler, 1990). As they are able to concentrate 

microorganisms, sponges can be used as a source for cyanobacteria harvesting as 

already stated by Regueiras et al. (2017). Sponges are a huge source of bioactive 

compounds (Blunt et al., 2010), most of them known to be produced by their symbiotic 

microorganisms (Hentschel et al., 2006). Actinobacteria, Cyanobacteria, Firmicutes and 

Proteobacteria (alpha and gamma classes) are the main phyla producing secondary 

metabolites in sponges (Thomas et al., 2010a).  

Both coccoid and filamentous cyanobacteria have been described in sponges. Recently, 

Konstantinou et al. (2018) made a review on the diversity of both sponge species 

harboring cyanobacteria, and cyanobacterial diversity. In Portugal, Xenococcus-like and 

Acaryochloris sp. were reported from the intertidal marine sponge Hymeniacidon perlevis 

(Alex et al., 2012, Alex & Antunes, 2015). Regueiras et al. (2017) were also able to 

identify cyanobacteria belonging to the genera Synechococcus, Cyanobium, 

Synechocystis, Nodosilinea, Pseudanabaena, Phormidesmis, Acaryochloris and 

Prochlorococcus associated with the same marine sponge.  

Due to a long evolutionary history of both cyanobacteria and marine sponges, co-

evolution has already been documented, with some cyanobacteria being passed to new 

sponge generations through vertical transmission (from sponge to offspring through 

reproductive cells) (Usher et al., 2001). The study of genomes from the symbiotic 

cyanobacteria “Ca. Synechococcus spongiarum” and its comparison with the genome of 

free-living ones, found adaptations to life inside sponges and the presence of different 

adaptations in different phylotypes (Gao et al., 2014, Burgsdorf et al., 2015). These 

adaptations may also lead to the production of novel and unique natural compounds. 

Bioassay-guided fractionation is a successful strategy in the isolation and discovery of 

novel compounds (Papendorf et al., 1998, Luesch et al., 1999, Luesch et al., 2000, 

Mundt et al., 2001, Han et al., 2006). To address toxin production several assays can be 

used. The use of the brine shrimp Artemia salina has ecological relevance in marine 

ecosystems, as these organisms are a representation of the zooplankton community and 

vital on the ecology of seashores (Martins et al., 2007). For embryogenesis studies, the 

use of echinoids, such as the sea urchin Paracentrotus lividus is very common. They 

occupy an important phylogenetic position (deuterostomes) when compared to other 

invertebrates. P. lividus are also common among the Portuguese seashore and key 

elements on their habitats, capable of producing a great amount of eggs feasible to be 
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fertilized in seawater, and to develop optically clear embryos (Lopes et al., 2010). Apart 

from these common assays, less is known on hemolytic toxins from cyanobacteria. 

Cyanobacterial toxins are able to accumulate in marine vertebrate and invertebrates 

(Engström-Öst et al., 2002, Ferrão-Filho et al., 2002), posing risks for mammals, showing 

the importance of the use of such assays. 

The present study aims to do a preliminary assessment on the cyanotoxin potential of 

marine cyanobacteria isolated from marine sponges. Most studies isolate marine 

cyanobacteria through filtration of large volumes of water, or by scratching coastal 

surfaces. In the present study we aimed to isolate cyanobacteria from marine sponges 

of the coast of Portugal, as they are able to concentrate microorganisms, allowing to 

obtain some cyanobacteria that can be present in seawater in amounts under detection. 

 

Materials and methods 
Cyanobacterial strains selection and biomass production 
Cyanobacterial strains used in this study were previously isolated from marine sponges. 

Marine sponges were collected both from seashore rocks and by scuba diving and a 

small fraction of the sponge tissue was collected in flaks with ambient seawater. Figure 

5-1 shows sampling locations, being all intertidal sites, with exception from the one in 

Madeira Island, Caniçal, (sponges collected through scuba diving). When collected from 

intertidal areas, beaches were chosen with a combination of sand and rocks. Sponges 

substratum were rocks or sand. Preparation of sponge samples and cyanobacterial 

isolation and characterization was done according to Regueiras et al. (2017). 

Summarizing, sponges were cleaned of debris and 1 mm of the sponge surface was 

discarded, using a sterile razor to avoid cultivation of superficial bacteria. Small 

fragments of the sponge body (<0.5 cm3) were placed in 2 different culture media, Z8 

liquid media (Kótai, 1972), supplemented with 30 g l-1 of NaCl and MN liquid medium 

(Rippka, 1988). Both culture media were supplemented with vitamin B12 and 

cyclohexamide (Rippka, 1988). After growth, through micromanipulation techniques, as 

described by Rippka (1988), a single cell or filament of cyanobacteria were transfer to 

new liquid medium, until achievement of unicyanobacterial, non-axenic cultures.  

The selection of cyanobacterial strains was based on growth performance rates and 

cyanobacterial diversity. Morphological identification followed the criteria of Komárek and 

Anagnostinis (Komárek & Anagnostidis, 2005, Komárek, 2008, Komárek, 2013), the 

Bergey’s manual of systematic bacteriology (Castenholz et al., 2001) and Komárek et al. 

(2014). Strains are deposited in the LEGE Culture Collection (Ramos et al., 2018). The 
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twelve strains selected (Table 5-1) were cultured and up-scaled under laboratory 

conditions at 25°C, light/dark cycle of 14/10 h and light intensity of approximately 25 × 

10−6 E/m−2s−1. After 60 to 90 days of growth, the cyanobacterial biomass produced was 

collected (through centrifugation or filtration with a 20 μm pore net), frozen at -20 ºC and 

freeze dried. Lyophilized material was kept at -20 ºC. 
 
Table 5-1. Cyanobacterial strains selected for the present study, with information about the marine sponge it was isolated 

from and collection site. 

Cyanobacterial strain Sponge species Collection site 

Synechococcus sp. LEGE11381 Polymastia sp. Memória 

Synechocystis sp. 44B13pa Polymastia agglutinans São Roque, Azores 

cf. Phormidesmis sp. LEGE10370 Hymeniacidon perlevis Memória 

Unidentified filamentous Synechococcales LEGE11384 Phorbas plumosus Memória 

Phormidium sp. 25J12tp Tedania pilarriosae Memória 

Nodosilinea cf. nodulosa LEGE10376 Hymeniacidon perlevis Porto Côvo 

Chroococcales 6MA13ti Tedania ignis São Roque, Azores 

Leptolyngbya sp. 31H12hpa Halichondria panicea Memória 

Cyanobacterium 34C12sp Unidentified sponge Caniçal, Madeira 

Cyanobium sp. LEGE10375 Hymeniacidon perlevis Memória 

Pseudanabaena aff. curta 12C10hp Hymeniacidon perlevis Memória 

Leptolyngbya sp. 31B12op Ophlitaspongia papila Memória 
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Figure 5-1. Sampling locations. Two sampling locations were in Portugal mainland: Memória (N 41º13'52.27'', W 

8º43'18.34'') and Porto Côvo (N 37º52'3.04’’, W 8º47'37.19''). One was in Madeira Island: Caniçal (N 32º44’20.08’’, W 

16º44’17.55’’). And the other in São Miguel Island, Azores: São Roque (N 37º45’15,35’’, W 25º38’31.60’’). 

 

Preparation of cyanobacterial extracts 
The freeze dried biomass from each cyanobacterial strain was repeatedly extracted with 

a warm (<40 °C) mixture of dichloromethane and methanol (CH2Cl2:MeOH) (2:1) (P.A. 

Sigma, USA). Afterwards, the solvents were removed in vacuo and/or under a N2 stream. 

Following the organic extraction, the remaining biomass was subjected to aqueous 

extraction (ultra-pure water), decanted and centrifuged at 4600 rpm for 15 min. The 

resulting supernatant was freeze-dried, weighed and stored at −20 °C. Just before the 

tests, organic extracts were dissolved (30 mg mL−1) in dimethyl-sulfoxide (DMSO) and 

aqueous extracts in ultra-pure water. 

Bioassays 
Acute toxicity assay using nauplii of Artemia salina 

In the acute toxicity assay, the nauplii of the crustacean Artemia salina were used. The 

dried cysts (JBL Novotemia, Germany) hatched after 48h in 35 g/L filtered seawater, at 

25 °C, under conditions of continuous illumination and aeration. Toxicity was screened 

•

•
•

Memória

Porto Côvo

Ponta de 
S. Roque

•
Caniçal
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in a 96-well polystyrene plate, with 10-15 nauplii per well and 200 µL of organic or 

aqueous extract. The negative controls were filtered seawater and filtered seawater with 

0.1% DMSO. As for the positive control was used potassium dichromate at a 

concentration of 8 µg/mL. Four replicates were made for each treatment. The plates were 

covered with Parafilm to prevent water loss and then incubated at 25 °C, for 48 h in 

darkness. Dead larvae were counted in each well on an inverted microscope at 24 h and 

48 h. Before determining the total number of larvae, organisms were fixed with a few 

drops of Lugol’s solution. Mortality was calculated through percentage as described by 

Martins et al. (2007). 

Embryo – larval acute toxicity assay with Paracentrotus lividus 

For the embryo-larval acute toxicity assay, sea urchins Paracentrotus lividus were 

captured in the intertidal rocky shore, during low tide in Praia da Memória, Matosinhos, 

Portugal and immediately transported to the laboratory, in natural sea water and under 

refrigeration. The protocol employed was the one described by Fernández and Beiras 

(2001). Briefly, a couple of specimens were dissected, and gametes were collected with 

a pipette directly from the gonads. The optimal condition from gametes (spherical eggs 

and mobile sperm) was granted through careful observation under the optical 

microscope. Eggs were transferred to a 100 mL measuring cylinder containing natural 

seawater filtered through a 0.45 µm pore filter. A few microliters of sperm were added to 

the eggs suspension and then carefully stirred to allow fertilization. Fertilized eggs were 

counted in four 10 µL aliquots in order to determine the fertilization success and egg 

density. In a 24-well plate, a concentration of 20 fertilized eggs per mL of solution were 

exposed to organic and aqueous extracts, during 48 h at 20 °C, in darkness. Test 

solutions consisted of 2.5 mL of each cyanobacterial extract; two negative controls were 

used, one with only filtered seawater and the other with 0.1% DMSO; as positive control 

was used potassium dichromate in a concentration of 4 µg/mL. Four replicates were 

made for each treatment. After 48 h of incubation, the solutions were fixed with 40% 

formalin. Results were evaluated through percentage of pluteus larvae (embryogenic 

success) and larval length (larval growth) (Martins et al., 2007). 

Hemolytic assay 

For the hemolytic assay, mice blood, stabilized with heparin, was provided by IBMC 

Bioterium, from healthy specimens without need to sacrifice the animals. The protocol 

used was an adaptation of the ones described by Rangel et al. (1997) and Slowing et al. 

(2009). Summarizing, the erythrocytes solution was diluted with 30 volumes of a saline 

solution (0.85% NaCl with 10 mM CaCl2) and centrifuged at 1100 g for 5 minutes, 
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discarding the supernatant and then washed three times with the same solution followed 

by centrifugations (1100 g for 5 min). After the final wash, the cells were diluted to a final 

concentration of 1% in sterile PBS solution. The assay was performed with 100 µL of 

each extract mixed with equal volume of erythrocytes suspension, using three replicates 

per treatment. For the negative and positive controls were used PBS and 0.1% 

Triton100, respectively. Eppendorfs with the mixtures were incubated for 2 hours, at a 

temperature of 37 ºC, with slow agitation. After that period, the mixtures were centrifuged 

at 4000 g for 1 minute at 4 ºC. The supernatants were transferred to a 96 well plate. 

Hemoglobin content was evaluated spectrophotometrically at 540 nm (Rangel et al., 

1997).  

 

Hemolytic activity= 
Abs sample − Abs negative control

Abs positive control − Abs negative control
 ×100% 

 
Statistical analysis 
Data collected during the bioassays were analyzed using a one-way analysis of variance 

(ANOVA), followed by a multi-comparisons Dunnett test (p < 0.05). The software IBM 

SPSS Statistics 24 (Version 24.0.0.0 edition 64-bit, IBM Corporation, NY, USA, 2016) 

was used for statistical analysis. 

 

Results 
Acute toxicity assay using nauplii of Artemia salina 
In the bioassay to assess mortality in Artemia salina nauplii (Figure 5-2), aqueous 

extracts from the selected cyanobacterial strains did not exhibit statistically significant 

differences, when compared against the control. However, for the organic extracts, 

toxicity was found after 48h of exposure. Cyanobacterial strains Synechococcus sp. 

LEGE11381 (F=68.80, p<0.000), Synechocystis sp. 44B13pa (F=21.82, p<0.048), 

unidentified filamentous Synechococcales LEGE11384 (F=24.74, p<0.018), 

Chroococcales 6MA13ti (F=86.73, p<0.000) and Cyanobium sp. LEGE10375 (F=43.50, 

p<0.000) presented statistically significant differences when compared against the 

negative control. 
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Figure 5-2. Mortality rate for the Artemia salina bioassay, after 48h of exposure, with organic and aqueous extracts. The 

Synechococcus sp. LEGE11381 strain was not present in the aqueous extract. Controls used included filtered seawater 

with 0.1% DMSO for negative control and potassium dichromate (8 µg/ml) for positive control. *Statistically significant 

differences between extract and control. 

 

Embryo – larval acute toxicity assay with Paracentrotus lividus  
The viability of the sea urchin assay was measured through the analysis of embryogenic 

success, i.e. the ability of the fertilized egg to reach the stage of pluteus larvae, and 

through the growth of pluteus larvae in length (Figure 5-3). Development arrest indicates 

that no normal pluteus larvae were produced. The results gathered after 48h of 

incubation with cyanobacterial extracts revealed that in the control, 67.5 ± 6.1% of the 

sea urchin fertilized eggs developed to normal pluteus larvae, with an average length of 

330,0 ± 18,8 µm. Figure 5-4 shows significant difference in the embryogenic 

development, at p<0.05, for the organic extract of the following strains: Synechococcus 

sp. LEGE11381 (F=-62.78, p<0.000), Synechocystis sp. 44B13pa (F=-41.80, p< 0.000), 

unidentified filamentous Synechococcales LEGE11384 (F=-36.05, p<0.000), 

Phormidium sp. 25J12tp (F=-27.22, p<0.010), Leptolyngbya sp. 31H12hpa (F=67.48, 

p<0.048) and Cyanobium sp. LEGE10375 (F=-52.38, p<0.000). The organic extract of 

the strain Chroococcales 6MA13ti caused development arrest with none of the larvae 



FCUP 
Chapter 5. Differential toxicity of Cyanobacteria isolated from marine sponges towards echinoderms and 

crustaceans 

110 

 

reaching the stage of viable pluteus.  Amongst the aqueous extracts, unidentified 

filamentous Synechococcales LEGE11384 (F=-41.75, p<0.001), Phormidium sp. 

25J12tp (F=-28.75, p<0.033), Chroococcales 6MA13pi (F=-30.00, p<0.024) and 

Cyanobacterium 34C12sp (F=-39.25, p<0.002) strains presented significant 

embryogenic effect. Regarding the results from the positive control, only embryos on 

gastrula stage were found.  

 

 
Figure 5-3. Effects of marine cyanobacterial extracts on embryogenesis of the sea urchin Paracentrotus lividus. (a) 

Fertilized sea urchin eggs; (b) Normal pluteus larvae resulting from control treatment and (c) Abnormally developed larvae 

resulting from treatments with cyanobacterial extracts. Scale bar: 100 µm. 

 

Regarding larval growth data, homogeneity in larval length was evidenced in the 

aqueous extracts at p<0.05 [F (11, 36) =1.039, p<0.434)] (Figure 5-5). However, 

differences in larval length were found in organic extracts. These differences were more 
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significant in Synechococcus sp. LEGE11381 (246.2 ± 11.5µm, p<0.001) and 

Cyanobium sp. LEGE10375 (325.7 ± 9.7µm, p<0.000).  

 
Figure 5-4. Embryogenic success from the aqueous and organic extracts of the cyanobacterial strains represented by 

percentage of pluteus larvae developed. For the controls it was used filtered seawater with 0.1% DMSO (negative) and 

potassium dichromate at 4µg/ml (positive). *Statistically significant differences between extract and control.  

 
Figure 5-5. Larval growth from the organic extracts of the cyanobacterial strains. For the controls it was used filtered 

seawater with 0.1% DMSO (negative) and potassium dichromate at 4µg/ml (positive). *Statistically significant differences 

between extract and control. 

* * 

* 
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Hemolytic assay 
The hemolytic activity registered during the assay was below 10%, with the highest value 

obtained being 7% of activity by the strain Chroococcales 6MA13ti, in the organic extract. 

The remaining strains and extracts did not present significant interference with the 

haemoglobin content. 

 

Discussion 
To date, most studies exploring the bioactivity of marine cyanobacteria have been 

focusing on free-living forms. Cyanobacteria can live in association with a variety of 

marine invertebrates, such as sponges, and it is known that cyanobacteria can affect the 

biosynthesis of compounds from the host (Ridley et al., 2005) and that symbionts have 

specific adaptations in their genome (Gao et al., 2014, Burgsdorf et al., 2015). The 

biological potential of associated and/or symbiotic cyanobacteria is still mostly 

unexplored. In the present study, twelve marine cyanobacterial strains were isolated from 

sponges of the Portuguese coast. These strains were submitted to a bioassay-guided 

ecologically-relevant bioassays in order to assess the production of secondary 

metabolites with toxicological or pharmaceutical interest. 

Artemia spp. is known for its ability to adapt to different environmental conditions, making 

it a crucial test organism in ecotoxicology (Nunes et al., 2006). Results from the bioassay 

with the brine shrimp Artemia salina nauplii showed that the aqueous extracts of the 

tested cyanobacterial strains did not display acute toxicity towards the nauplii. The 

organic extracts of Synechococcus sp. LEGE11381, Synechocystis sp. 44B13pa, 

unidentified filamentous Synechococcales LEGE11384, Chroococcales 6MA13ti and 

Cyanobium sp. LEGE10375 cyanobacterial strains proved to be the most toxic to this 

crustacean species. In contrast with our results, most previous studies with 

cyanobacteria from the coast of Portugal found aqueous extracts to be more toxic. For 

example, Leão et al. (2013) reported lethality towards A. salina, in aqueous extracts in 

free-living forms from Nodosilinea, Leptolyngbya and Pseudanabaena genera strains. 

Also, Frazão et al. (2010) found aqueous extracts of the genera Cyanobium, 

Synechococcus, Leptolyngbya, Oscillatoria and Phormidium more toxic than organic 

ones. In brackish waters Lopes et al. (2010) also found aqueous extracts more toxic, and 

organic extracts did not induced more than 7% of mortality. Pagliara and Caroppo (2011) 

found aqueous extracts of Leptolyngbya sp. and Synechococcus sp. isolated from the 

marine sponge Petrosia ficiformis to cause acute toxicity. The higher values of mortality 

here observed were all in picocyanobacterial strains. Costa et al. (2015) already reported 
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the potential of these cyanobacteria as a source for novel metabolites. In the present 

work, toxicity was only found after 48h. The present results may infer that cyanobacteria 

associated with marine sponges may produce different metabolites (present in organic 

extracts) with low ecotoxicity, and therefore their future potential for drug discovery.  

In the bioassay with sea urchin Paracentrotus lividus, embryogenic toxicity occurred in 

58% of the organic extracts and in 36% of the aqueous extracts tested. The unidentified 

filamentous Synechococcales LEGE11384, Phormidium sp. 25J12tp, Chroococcales 

6MA13ti cyanobacterial strains demonstrated embryogenic toxicity in both extracts, 

which may lead us to infer that, for the same cyanobacterial strain, chemically different 

bioactive compounds are produced, having the same effect on embryogenic activity of 

the sea urchin. Although the Synechocystis sp. 44B13pa, unidentified filamentous 

Synechococcales LEGE11384, Phormidium sp. 25J12tp, Leptolyngbya sp. 31H12hpa, 

Chroococcales 6MA13pi and Cyanobacterium 34C12sp cyanobacterial strains have 

demonstrated to be embryotoxic, no alteration on larval length was observed. This may 

suggest that the toxicity showed by these cyanobacterial strains only affected the early 

life stages of the sea urchin embryos development, providing strong evidence for the 

presence of compounds which interfere with growth factors on cells (Martins et al., 2007). 

The organic extracts of Synechococcus sp. LEGE11381 and Cyanobium sp. 

LEGE10375 exhibited interference with the embryogenic development and also with the 

larval growth. From all the extracts tested, the organic extract from Chroococcales 

6MA13ti seemed to have the most potent effect on P. lividus larvae since it did not allow 

a normal development of any pluteus larvae. Cyanobium sp. organic extracts have 

already showed to decrease P. lividus larvae length (Costa et al., 2015). Lopes et al. 

(2010) found organic extracts from brackish waters to be more toxic to P. lividus, which 

is in accordance to our results. The inhibition of larval morphogenesis, here observed, 

point to the presence of compounds that affect skeleton formation. 

Hemolytic activity has already been documented in strains of Synechocystis (Sakiyama 

et al., 2006), Anabaena (Wang et al., 2005) and Synechococcus and Leptolyngbya 

(Pagliara & Caroppo, 2011). From the hemolytic assay, results showed that in neither 

organic nor aqueous extracts analyzed, the lysis of the red mammalian blood cells was 

induced. As stated by Pagliara and Caroppo (2011), hemolytic toxins are not common 

among cyanobacteria. 

The identification of new sources of bioactive compounds are a crucial step towards 

natural drug discovery. The present study aimed to assess a preliminary 

cyanotoxicological potential from twelve marine cyanobacteria isolated from sponges of 
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the Portuguese coast. Eight cyanobacterial strains have showed a promising potential 

on the performed ecologically-relevant bioassays (Synechococcus sp. LEGE11381, 

Synechocystis sp. 44B13pa; Unidentified filamentous Synechococcales LEGE11384; 

Phormidium sp. 25J12tp; Chroococcales 6MA13ti; Leptolyngbya sp. 31H12hpa; 

Cyanobacterium 34C12sp; Cyanobium sp. LEGE10375). Furthermore, the 

concentrations of the extracts here used (30 μg mL−1) are an ecological relevant 

concentration. This emphasizes the premise that sponges can harbor microorganisms 

with toxicological interest and that these invertebrates can and should be used in order 

to isolate new cyanobacteria. The extracts with the most promising bioactivity should be 

further fractionated to identify with more detail the bioactive compounds. Chemical 

elucidation should be performed once the purest compounds are achieved.  
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In this thesis, in order to address the various issues, a total of 41 sampling trips (table 6-

1) were made, collecting a total of 218 specimens. The majority of the collection effort 

was made on the northern coast of Portugal (mainland). Sampling effort during the 

present thesis 
 
Table 6-1. Sampling effort during the present thesis 

Geographical locations Number of sampling trips 
intertidal Subtidal (scuba-diving) 

Western coast of Portugal North 20 3 
Centre 3 0 
South 4 0 

S. Miguel, Azores 1 3 
Madeira Island 2 2 

 

The western Atlantic shore line is a known diversity hotspot for marine invertebrates (Leal 

et al., 2012), and sponges have been recognized as important members of the 

ecosystem, both in terms of biomass and species richness, playing significant roles in 

ecosystem functioning (Xavier & van Soest, 2012) due to being filter feeders.  

Due to a lack of information available on sponge diversity from the coast of Portugal, 

especially the diversity present on intertidal areas, a major effort was done on the 

identification of these organisms, as presented in Chapter 2. Also, prior to this 

identification, a review of the available literature from sponges’ diversity was made, and 

here presented in Appendix 1. Most of the information about intertidal sponge diversity 

comes from the work of Lopes (1989), from her PhD thesis. For the identification of 

sponges a multidisciplinary approach was employed collecting information about 

sponges’ natural habitat, morphological characters and also molecular information using 

CO1 as the molecular marker. Overall, the combination of the data collected, together 

with the one from literature allowed to make for the first time an updated list of intertidal 

sponges from the western coast of Portugal, with references not only on the Class 

Demospongiae, but also Calcarea. Praia da Memória, located on the northern part of 

Portugal harboured a huge diversity of Demosponges. On total, 5 calcarean species and 

27 belonging to Demospongiae were identified, 12 of them for the first time in intertidal 

locations and 11 from the western coast of Portugal.  

To improve public awareness on these common intertidal invertebrates, a simple form of 

divulgation strategy was outlined, through the written of a booklet, a brochure and also 

a poster, presenting the most common sponge species of the intertidal area. This 

information is displayed in Appendix II. This information is already well-documented for 

almost all other common marine invertebrates presented along the Portuguese 

seashore. 
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Sponge identification and assessing its diversity showed to be an important first step for 

other studies. From the collection effort, Hymeniacidon perlevis showed to be the most 

common sponge, proving to be a good candidate for further studies, as the ones 

presented in chapters 3 and 4. 

Sponges are known to harbour a huge diversity of microorganisms. Photosynthetic 

bacteria, such as cyanobacteria provide many benefits for the host, such as 

supplemental nutrition (Wilkinson & Fay, 1979, Wilkinson, 1980)  and through production 

of secondary metabolites can provide defence (Carpenter & Foster, 2002), protection 

from U.V light (Adams, 2000) and help in substrate competition (Usher et al., 2004, 

Taylor et al., 2007a). In intertidal areas, sponges are prone to air exposure, leading to 

fluctuations in temperature and irradiance, and lack of filter feeding opportunities 

(Steindler et al., 2002). During these conditions, the photosymbionts play an important 

role, providing the sponge hosts with nutrient uptake for their survival and the production 

of potential UV-screening substances (Steindler et al., 2002).  

In chapter 3, using again a multidisciplinary approach (culture dependent and molecular 

approaches) an assessment of the cyanobacterial diversity associated with the marine 

sponge H. perlevis was made. For that, we isolated cyanobacteria from sponge tissue 

and cultivate it, and also made a molecular analysis of both the isolated strains, and data 

collected from DGGE analysis from sponge tissue. Through DGGE, only coccoid 

cyanobacteria were detected. The absence of a band in the DGGE could mean that the 

organism was present, but in an amount below the detection limit of the method, 

explaining why filamentous cyanobacteria were not detected through this method. 

Employing a relatively inexpensive technique (DGGE) to profile the microbial diversity, 

provided a first glimpse of the cyanobacterial community, allowing visualization and 

monitoring of changes directly from the banding patterns. This method, when used for a 

long period can also allow differentiation between transient and permanent communities 

(Hentschel et al., 2003). Isolated cyanobacteria showed similarity to already isolated 

free-living strains. Also, due to the negligible amount of some cyanobacteria in seawater, 

they could easily be missed when isolating and culturing, and hence their bioactive 

potential would remain unexploited. Once again, the use of a multidisciplinary approach 

proved to be complementary to each other. The results here presented, in my point of 

view show that sponges could be used as a natural filtration and concentration 

mechanism to obtain new cyanobacterial strains with pharmaceutical potential.  

DGGE banding pattern analysis between seawater and sponge samples, suggested the 

presence of sponge-associated cyanobacterial communities that are distinct from the 

seawater. The recurrent presence of a cyanobacterial community at different spatial and 
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temporal scales could be indicative of environmental acquisition of cyanobacteria by the 

intertidal marine sponge H. perlevis. This study (chapter 3) showed, for the first time, the 

diversity of cyanobacteria associated with marine sponges from the intertidal area of the 

Portuguese coast (NE Atlantic) using both culture- and molecular-based methods, and 

the comparison of the sponges’ cyanobacterial community to that present in seawater. 

The genus Acaryochloris was detected through molecular methods both in the work 

presented in chapter 3 (DGGE banding sequence) and chapter 4 (pyrosequencing), 

validating Acaryochloris as a H. perlevis-associated cyanobacterium, which has been 

reported previously in sponges (Alex et al., 2012). Due to its unique use of far-red light 

(production of chlorophyll d), Acaryochloris can live in niches in coastal waters 

(Murakami et al., 2004), and therefore its presence in intertidal marine sponges is 

expected, due to their filtration capability. The association of sponges with Acaryochloris 

can be beneficial due to this red-shift chlorophyll. In order to confirm the presence of 

Acaryochloris in H. perlevis, in the future, it would be interesting to quantify both chl a 

and chl d.  

A NGS analysis was done to the sponge H. perlevis to assess the bacterial community 

associated with the sponge and how it changes when sponge is translocated to 

laboratory conditions. Also, a comparison with the community from seawater was done. 

This study was presented in chapter 4. Once again, a multidisciplinary approach was 

performed, combining the results obtained from NGS with a TEM analysis of the sponge 

tissue. 

Results obtained from comparing sponge tissue bacterial community to the one present 

in seawater were in accordance with the conclusions obtained in chapter 3, showing the 

community from both to be very different. The diversity of the bacterial community 

(through number of OTUs) from the tissue of the sponge in situ, when compared to the 

one present in the seawater, was smaller. In Chapter 3, quantification of chlorophyll a 

was also made and the results pointed to the presence of a small photosynthetic 

community (Erwin & Thacker, 2007) harboured in the sponge H. perlevis. Both findings 

point to H. perlevis to be a low microbial abundance sponge. Weigel and Erwin (2016) 

suggested that intertidal sponges may have a less diverse microbial community due to 

constrictions from living in a physiological stress area (air exposure and high temperature 

oscillations). Giles et al. (2013) suggested that LMA sponges may acquire bacteria 

mainly from ambient seawater. The presence of sponge-associated cyanobacteria from 

seawater samples (in chapter 3) supports the hypothesis of procurement of symbionts 

through the environment (horizontal transmission). Furthermore, it indicates the ability of 

sponge-associated cyanobacteria to survive outside the host tissue (Taylor et al., 2013). 



FCUP 
Chapter 6. General discussion 

123 

 

Vertical transmission of cyanobacteria can benefit the offspring by giving them 

photosynthetic energy before they are able to feed (Lemloh et al., 2009), enhancing its 

competitive fitness (Oren et al., 2005) but, Maldonado (2007) reported that in some 

sponges the symbionts are obtained in each new generation from the environment. In 

the present work, it was intended to obtain larvae from the sponge H. perlevis to assess 

the presence of true cyanobacterial symbionts. Previous studies, using electron 

microscopy allowed to confirm vertical transmission of cyanobionts to the eggs and 

larvae of sponges (Usher et al., 2001). According to Stone (1970), the embryos are 

visible to the naked eye, with a clear breeding period in the warmest part of the year, 

between July and October. Gaino et al. (2010) found the presence of H. perlevis larvae 

limited to five months, from the end of spring to the late summer. A survey was made to 

try to find larvae in H. perlevis, for 3 years, from April to November. Unfortunately, 

sponges in a reproductive stage were never found, nor allowing to test the hypothesis 

here presented of especially a horizontal transmission of cyanobionts. 

On chapter 4, from sponge samples, altogether, 21 microbial phyla (or candidate phyla) 

were identified. Data revealed the bacterial composition from each sample to be different 

from each other, and beta-diversity analysis showed how the community changed from 

the sponge collected from the natural environment and the community after 30 days 

under controlled conditions. The most dominant sponge-associate phyla were 

Proteobacteria, Planctomycetes, Cyanobacteria and Bacteroidetes. Alpha- gamma- and 

delta-proteobacteria were the major classes. Proteobacteria showed to not change 

drastically after sponge translocation.  

Disturbing the balance that exists between sponge and symbiotic microorganisms can 

affect both the sponge and the symbionts, changing the production of secondary 

metabolites or even interfering in sponge survival. Under controlled conditions after 30 

days ex situ, the most important remark was the almost absence of the phylum 

Cyanobacteria (1 OTU, 3 sequences). The observed trend was confirmed by TEM 

analysis, where we were unable to find any cyanobacteria in sponge tissue at that period. 

In contrast, both the sponge collected from the natural environment and after 15 days 

under controlled conditions, presented a large cyanobacterial community within 

specialized arqueocytes vacuoles (Rützler, 1990) named cyanocytes. The presence of 

these coccoid cyanobacteria in the cyanocytes point to the presence of a true symbiont. 

Some sponges are unable of surviving without their cyanobionts (Thacker, 2005). The 

absence of cyanocytes in sponge tissue after 30 days ex situ could have interfered with 

sponge viability, compromising it and leading to its death. The combination of molecular 

techniques and microscopic ones proved to be a good and complementary approach. 
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Sponges are also very important economically, due to the vast production of secondary 

metabolites, either by their own chemistry or that of their symbionts. Intertidal sponges 

can also be used as bioindicators for water quality monitoring. Mahaut et al. (2013) used 

Hymeniacidon perlevis as a bioindicator and reported it to have a higher accumulation 

capacity of contaminants than the mussel Mytilus edulis Linnaeus.  

Due to the diversity of cyanobacterial strains isolated in the present study from the 

different marine sponges, an assessment of their toxicological potential was made and 

presented in chapter 5. Most studies exploring the bioactivity of marine cyanobacteria 

focus on free-living forms. Cyanobionts can have specific adaptations in their genome 

(Gao et al., 2014, Burgsdorf et al., 2015) and affect the biosynthesis of compounds from 

the host (Ridley et al., 2005). 

The biological potential of associated and/or symbiotic cyanobacteria is still mostly 

unexplored. From the bioassay with the brine shrimp Artemia salina nauplii, organic 

extracts of several strains showed to be toxic. On the other hand, the aqueous extracts 

tested did not display acute toxicity towards the nauplii. This results contrast with the 

ones made from free-living strains, where aqueous extracts proved to be more toxic 

(Frazão et al., 2010, Lopes et al., 2010, Leão et al., 2013). Picocyanobacterial strain 

showed to be more toxic. The present results may infer that cyanobacteria associated 

with marine sponges may produce different metabolites (present in organic extracts) 

showing their potential for drug discovery. In the bioassay with sea urchin Paracentrotus 

lividus, organic extracts showed the same trend in both embryogenic development and 

larval growth. Some strains produced embryogenic toxicity for both extracts, inferring for 

the presence of a combination of compounds with the same effect on the tested 

organisms. In one strain, Chroococcales 6MA13ti, the organic extract did not allow a 

normal development of any pluteus larvae. The inhibition of larval morphogenesis, here 

observed, point to the presence of compounds that affect skeleton formation. 

The identification of new sources of bioactive compounds are a crucial step towards 

natural drug discovery. Eight cyanobacterial strains have showed a promising potential 

on the performed ecologically-relevant bioassays, emphasizing that sponges can 

harbour microorganisms with toxicological interest and that these invertebrates can and 

should be used in order to isolate new cyanobacteria. The extracts with the most 

promising bioactivity should be further fractionated until chemical elucidation to identify 

with more detail the bioactive compounds.  
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There was a clear line of work that linked all this thesis, being each chapter not only 

linked to the others, but also complementary. At each step of the way, each result 

obtained helped in the decision of what to do next and how the new information could 

affect and complement the work done so far, raising more insights on the subject. 

 

Here are presented the major conclusions and future perspectives from the present work: 

• Sponges (Phylum Porifera) showed to be diverse along the coast of Portugal; 

Demospongiae are the main class, although members of the class Calcarea were 

also identified; 

• The bacterial community associated with the intertidal marine sponge H. perlevis is 

very diverse and complex and shifts with the environmental conditions, such as 

translocation of the sponges to controlled conditions can affect the community, 

interfering on the sponge survival; Although complex, it seems, through analysis of 

the DGGE banding-pattern that the cyanobacterial community maintains similar 

along different geographical areas; 

• Using more conserved molecular techniques, such as DGGE analysis and 

sequencing and more advanced ones, as NGS 454-pyrosequencing showed the 

bacterial and cyanobacterial community to differ from the sponge tissue and water 

column; 

• Through NGS analysis, Proteobacteria OTUs were the most commonly found, 

followed by Cyanobacteria, Bacteroidetes and Planctomycetes; 

• Under controlled conditions, sponges started shifting their bacterial community, with 

the almost complete loss of cyanobacterial OTUs, also observed by the absence of 

cyanocytes or cyanobacterial cells through TEM analysis, pointing to the importance 

of these organisms on sponge survival; 

• The impact of cyanobionts on sponge survival should be further investigated; 

• The isolated cyanobacterial strains showed phylogenetic similarity to free-living 

ones pointing to these organisms to be obtained from the water column. Future 

studies should focus on understanding how cyanobionts are acquired (horizontal 

and/or vertical transmission); 

• Organic extracts from isolated cyanobacterial strains from sponge tissue showed a 

huge toxicological potential towards echinoderms and crustaceous. Previous 

studies made using similar free-living strains showed to have aqueous extracts to 

be more toxic, pointing to novel compounds being produced by these sponge 
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associated cyanobacteria. A further analysis, fractioning these extracts should be 

made to uncover the compound, or compounds mixture here present; 

• In the present study, when possible, tried to employ multidisciplinary approaches to 

complement each task. These methods proved complement each result, leading to 

better understanding each step of the way. 
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9.1. Appendix I.  
Bibliographic information on the diversity of marine sponges from the Portuguese 
coast 
Here is presented a revision of sponge diversity from the coast of Portugal, already 

containing the information about sponge diversity obtained from the present study. Table 

9-1 shows the diversity within Class Calcarea, Table 9-2 for Class Demospongiae, and 

Table 9-3 for Class Homoscleromorpha. Apart from the identification of sponge species, 

it is also presented information on sampling locations and if collection was subtidal or 

intertidal. 
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Table 9-1. Bibliographic information on sponge diversity from the coast of Portugal – Class Calcarea 
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Ca
lca

ro
ne

a Baerida Baeriidae Borojevic, Boury-Esnault & Vacelet, 
2000 

Leuconia Grant, 1833 Leuconia johnstoni Carter, 1871  Algarve S [1] 
   

Arrábida S [2] 
  

Leuconia nivea (Grant, 1826)  Arrábida S [2] 
  

Leuconia sp. Arrifana S [3] 

Leucosolenida Grantiidae Dendy, 1893 Amphiute Hanitsch, 1894 Amphiute paulini Hanitsch, 1894 Sines S [4] 
  

Grantia Fleming, 1828 Grantia compressa (Fabricius, 1780)  Aljezur I a 

    
VN Mil Fontes I a 

     
Apúlia S [5] 

     
Sagres S [6] 

   
Leucandra Haeckel, 1872 Leucandra aspera (Schmidt, 1862)  Arrábida S [2] 

     
Sines S [4] 

    
Leucandra bulbosa Hanitsch, 1895 Sines S [4] 

    
Leucandra fistulosa (Johnston, 1842)  Arrábida S [2] 

    
Leucandra gossei (Bowerbank, 1862)  Aljezur I a 

     
Apúlia S [5] 

     
Arrábida S [2] 

     
Arrifana S [3] 

  
Sycettidae Dendy, 1893 Sycon Risso, 1827 Sycon ciliatum (Fabricius, 1780)  VN Mil Fontes I a 

    
Arrábida S [2] 

    
Sycon elegans (Bowerbank, 1845)  Arrábida S [2] 
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Sycon humboldti Risso, 1827  Apúlia S [5] 

    
Sycon raphanus Schmidt, 1862 Arrábida S [2] 

    
Sycon sp. Risso, 1827  Largo Rio Mira S [7] 

Ca
lci

ne
a Clathrinida Clathrinidae Minchin, 1900 Borojevia Klautau, Azevedo, Cóndor-Luján, 

Rapp, Collins & Russo, 2013 
Borojevia cerebrum (Haeckel, 1872) Arrifana S [3] 

  
Clathrina Gray, 1867 Clathrina blanca (Miklucho-Maclay, 1868)  Apúlia S [5] 

   
Clathrina clathrus (Schmidt, 1864) Algarve S [1] 

    
Arrifana S [3] 

     
Sagres S [6] 

    
Clathrina coriacea (Montagu, 1814) Memória I a 

     
VN Mil Fontes I a 

     
Apúlia S [5] 

     
Arrábida S [2] 

     
Sines S [4] 

    
Clathrina blanca (Miklucho-Maclay, 1868) Memória I a 

     
Prego S a 

    
Clathrina lacunosa (Johnston, 1842) Arrifana S [3] 

 
  Leucaltidae Dendy & Row, 1913 Ascandra Haeckel, 1872 Ascandra contorta (Bowerbank, 1866) Arrábida S [2] 

  
Leucaltis Haeckel, 1872 Leucaltis clathria Haeckel, 1872  Apúlia S [5] 

   
Leucaltis nodusgordii (Poléjaeff, 1883)  Sines S [4] 

   
Leucetta solida (Schmidt, 1862)  Arrábida S [2] 
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Table 9-2. Bibliographic information on sponge diversity from the coast of Portugal – Class Demospongeae 
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He
te

ro
sc

le
ro

m
or

ph
a Axinellida Axinellidae Carter, 

1875 
Axinella Schmidt, 1862 Axinella cf. damicornis (Esper, 1794) Sagres S [7] 

  
Axinella damicornis (Esper, 1794) Algarve S [1] 

    
Apúlia S [5] 

    
Arrábida S [8] 

   
Axinella guiteli Topsent, 1896 Algarve S [1] 

     
Sagres S [6] 

    
Axinella polypoides Schmidt, 1862 Algarve S [1] 

     
Arrábida S [2] 

     
Sagres S [7] 

    
Axinella verrucosa (Esper, 1794) Arrábida S [2] 

   
Ophiraphidites Carter, 1876 Ophiraphidites tortuosus Carter, 1876  Cabo S. Vicente S [9] 

   
Phakellia Bowerbank, 1862 Phakellia ventilabrum (Linnaeus, 1767)  Cabo S. Vicente S [9] 

     
Porto S [10] 

  
Raspailiidae Nardo, 
1833 

Eurypon Gray, 1867 Eurypon cinctum Sarà, 1960  Arrábida S [8] 

   
Eurypon clavatum (Bowerbank, 1866)  Buarcos I [11] 

     
Magoito I [11] 

    
Eurypon coronula (Bowerbank, 1874) Afife I [11] 

   
Janulum de Laubenfels, 1936 Janulum spinispiculum (Carter, 1876) Cabo S. Vicente S [9] 

   
Raspailia Nardo, 1833 R. (Clathriodendron) hispida (Montagu, 1814)  Algarve S [1] 

    
Raspailia (Parasyringella) agnata (Topsent, 1896)  Apúlia S [5] 

    
Raspailia (Raspailia) ramosa (Montagu, 1814) Arrábida S [8] 
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Raspailia (Raspailia) viminalis Schmidt, 1862  Arrábida S [2] 

    
Raspailia formidabilis Hanitsch, 1895  Sines S [4] 

    
Raspailia sp. Nardo, 1833  Cabo S. Vicente S [7] 

  
Stelligeridae 
Lendenfeld, 1898 

Paratimea Hallmann, 1917 Paratimea constellata (Topsent, 1893)  Apúlia S [5] 

  
Stelligera Gray, 1867 Stelligera rigida (Montagu, 1814) Amado I [11] 

     
Buarcos I [11] 

     
Galapos I [11] 

     
Magoito I [11] 

     
Memória I a 

 

Biemnida Rhabderemiidae 
Topsent, 1928 

Rhabderemia Topsent, 1890 Rhabderemia intexta (Carter, 1876)  Cabo S. Vicente S [9] 

 

Bubarida Dictyonellidae van 
Soest, Diaz & 
Pomponi, 1990 

Acanthella Schmidt, 1862 Acanthella acuta Schmidt, 1862 Arrábida S [8] 

  
Dictyonella Schmidt, 1868 Dictyonella incisa (Schmidt, 1880)  Algarve S [1] 

    
Arrábida S [8] 

     
Arrifana S [3] 

    
Dictyonella marsilii (Topsent, 1893) Algarve S [1] 

     
Sagres S [6] 

    
Dictyonella obtusa (Schmidt, 1862) Algarve S [1] 

    
Dictyonella pelligera (Schmidt, 1864)  Arrábida S [2] 

   
Tethyspira Topsent, 1890 Tethyspira spinosa (Bowerbank, 1874) Afife I [11] 

     
Aguda I [11] 

     
Amado I [11] 

     
Buarcos I [11] 
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Galapos I [11] 

     
Ingrina I [11] 

     
Magoito I [11] 

     
Olhos d'Água I [11] 

     
Porto Côvo I [11] 

 

Clionaida Clionaidae 
d'Orbigny, 1851 

Cliona Grant, 1826 Cliona celata Grant, 1821 Afife I [11] 

    
Aguda I [11] 

     
Amado I [11] 

     
Buarcos I [11] a 

     
Consolação I [11] 

     
Galapos I [11] 

     
Ingrina I [11] 

     
Magoito I [11] 

     
Memória I a 

     
Olhos d'Água I [11] 

     
Prego S a 

     
Apúlia S [5] 

     
Arrábida S [2, 8] 

     
Arrifana S [3] 

     
Largo Rio Mira S [7] 

     
Pelo Negro S a 

     
Sagres S [6] 

     
Viana Castelo S a 
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Cliona lobata Hancock, 1849  Porto S [10] 

    
Cliona viridis (Schmidt, 1862) Afife I [11] 

     
Aguda I [11] 

     
Amado I [11] 

     
Consolação I [11] 

     
Galapos I [11] 

     
Ingrina I [11] 

     
Olhos d'Água I [11] 

     
Porto Côvo I [11] 

     
Algarve S [1] 

     
Arrábida S [2, 8] 

     
Arrifana S [3] 

     
Sagres S [6] 

   
Pione Gray, 1867 Pione vastifica (Hancock, 1849)  Afife I [11] 

     
Amado I [11] 

     
Galapos I [11] 

     
Ingrina I [11] 

     
Olhos d'Água I [11] 

     
Arrábida S [2, 8] 

  
Placospongiidae 
Gray, 1867 

Placospongia Gray, 1867 Placospongia decorticans (Hanitsch, 1895) Apúlia S [5] 

    
Sines S [4] 
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Spirastrellidae 
Ridley & Dendy, 
1886 

Diplastrella Topsent, 1918 Diplastrella bistellata (Schmidt, 1862)  Arrábida S [8] 

  
Spirastrella Schmidt, 1868 Spirastrella cunctatrix Schmidt, 1868 Sagres S [6] 

 

Desmacellida Desmacellidae 
Ridley & Dendy, 
1886 

Desmacella Schmidt, 1870 Desmacella inornata (Bowerbank, 1866) Apúlia S [5] 

 

Haplosclerida Callyspongiidae de 
Laubenfels, 1936 

Callyspongia Duchassaing & Michelotti, 
1864 

Callyspongia cylindrica (Lendenfeld, 1886) Cabo S. Vicente S [7] 

   
Leça S [4] 

  
Chalinidae Gray, 
1867 

Chalinula Schmidt, 1868 Chalinula limbata (Montagu, 1814) Apúlia S [5] 

   
Chalinula renieroides Schmidt, 1868  Apúlia S [5] 

   
Haliclona Grant, 1841 Haliclona (Gellius) angulata (Bowerbank, 1866)  Arrábida S [8] 

    
Haliclona (Gellius) fibulata (Schmidt, 1862)  Apúlia S [5] 

     
Arrábida S [2] 

     
Sines S [4] 

    
H. (Halichoclona) fistulosa (Bowerbank, 1866)  Apúlia S [5] 

    
Haliclona (Haliclona) oculata (Linnaeus, 1759)  Apúlia S [5] 

     
Arrábida S [2] 

    
Haliclona (Haliclona) simulans (Johnston, 1842) Aguda I a 

     
Buarcos I a 

     
Memória I a 

     
Viana Castelo I a 

     
Apúlia S [5] 

     
Arrábida S [8] 

    
Haliclona (Haliclona) sp. Grant, 1836 Buarcos S [4] 
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Sines S [4] 

    
Haliclona (Reniera) cinerea (Grant, 1826)  Apúlia S [5] 

     
Arrábida S [8] 

     
Sines S [4] 

    
H. (Reniera) mediterranea Griessinger, 1971  Arrábida S [8] 

    
Haliclona (Reniera) sp. Schmidt, 1862 Sines S [4] 

    
H. (Rhizoniera) indistincta (Bowerbank, 1866)  Apúlia S [5] 

    
Arrábida S [8] 

    
Haliclona (Rhizoniera) rosea (Bowerbank, 1866) Buarcos I a 

    
Cabo S. Vicente S [7] 

    
Apúlia S [5] 

    
Haliclona (Rhizoniera) viscosa (Topsent, 1888) Apúlia S [5] 

     
Arrábida S [8] 

    
H. (Soestella) valliculata (Griessinger, 1971) Arrábida S [8] 

    
Haliclona (Soestella) xena De Weerdt, 1986  Apúlia S [5] 

    
Haliclona sp. Grant, 1841 Memória I a 

     
Prego S a 

  
Niphatidae van 
Soest, 1980 

Gelliodes Ridley, 1884 Gelliodes luridus (Lundbeck, 1902)  Arrábida S [2] 

  
Petrosiidae van 
Soest, 1980 

Petrosia Vosmaer, 1885 Petrosia (Petrosia) ficiformis (Poiret, 1789)  Arrábida S [2] 

    
Cabo S. Vicente S [7] 

 

Poecilosclerida Acarnidae Dendy, 
1922 

Acarnus Gray, 1867 Acarnus tortilis Topsent, 1892 Arrábida S [8] 

  
Iophon Gray, 1867 Iophon hyndmani (Bowerbank, 1858)  Arrábida S [8] 
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Chondropsidae 
Carter, 1886 

Batzella Topsent, 1893 Batzella inops (Topsent, 1891)  Arrábida S [8] 

  
Psammoclema Marshall, 1880 Psammoclema finmarchicum (Hentschel, 1929)  Apúlia S [5] 

  
Coelosphaeridae 
Dendy, 1922 

Coelosphaera Thomson, 1873 C. (Coelosphaera) phlyctenodes (Carter, 1876) Cabo S. Vicente S [9] 

  
Forcepia Carter, 1874 Forcepia (Forcepia) forcipis (Bowerbank, 1866) Cabo S. Vicente S [9] 

   
Lissodendoryx Topsent, 1892 L. (Lissodendoryx) isodictyalis (Carter, 1882)  Amado I [11] 

    
Consolação I [11] 

    
Porto Côvo I [11] 

    
Arrábida S [2] 

    
Apúlia S [5] 

  
Crambeidae Lévi, 
1963 

Crambe Vosmaer, 1880 Crambe crambe (Schmidt, 1862) Arrábida S [8] 

  
Crellidae Dendy, 
1922 

Crella Gray, 1867 Crella (Crella) elegans (Schmidt, 1862) Algarve S [1] 

    
Arrábida S [2] 

    
Crella (Pytheas) donsi Burton, 1931  Apúlia S [5] 

    
Crella (Pytheas) fusifera Sarà, 1969 Algarve S [1] 

     
Arrábida S [8] 

     
Sagres S [6] 

    
Crella (Yvesia) albula (Bowerbank, 1866)  Apúlia S [5] 

    
Crella (Yvesia) pertusa (Topsent, 1890)  Amado I [11] 

    
Crella (Yvesia) rosea (Topsent, 1892)  Memória I a 

   
Crellomima Rezvoi, 1925 Crellomima derma Hentschel, 1929  Apúlia S [5] 

  
Esperiopsidae 
Hentschel, 1923 

Amphilectus Vosmaer, 1880 Amphilectus fucorum (Esper, 1794) Aguda I a 

    
Buarcos I a 
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Esposende I a 

     
Memória I a 

     
Afife I [11] 

     
Amado I [11] 

     
Buarcos I [11] 

     
Consolação I [11] 

     
Galapos I [11] 

     
Ingrina I [11] 

     
Magoito I [11] 

     
Apúlia S [5] 

     
Arrábida S [8] 

   
Ulosa de Laubenfels, 1936 Ulosa stuposa (Esper, 1794) Arrábida S [2, 8] 

  
Hymedesmiidae 
Topsent, 1928 

Hemimycale Burton, 1934 Hemimycale columella (Bowerbank, 1874) Algarve S [1] 

    
Arrifana S [3] 

     
Sagres S [6] 

   
Hymedesmia Bowerbank, 1864 H. (Hymedesmia) baculifera (Topsent, 1901) Ingrina I [11] 

    
Algarve S [1] 

    
Arrifana S [3] 

    
Hymedesmia (Hymedesmia) jecusculum Memória I a 

    
Hymedesmia (Hymedesmia) pansa Bowerbank, 1882 Afife I [11] 

    
Consolação I [11] 

    
Arrábida S [8] 

    
H. (Hymedesmia) peachii Bowerbank, 1882  Arrábida S [8] 
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H. (Hymedesmia) pilata Bowerbank, 1882 Apúlia S [5] 

    
H. (Hymedesmia) versicolor (Topsent, 1893)  Arrábida S [8] 

    
Hymedesmia (Stylopus) coriacea (Fristedt, 1885) Afife I [11] 

    
Buarcos I [11] 

    
Amado I [11] 

    
Algarve S [1] 

    
Hymedesmia (Stylopus) primitiva Lundbeck, 1910  Apúlia S [5] 

    
Hymedesmia (Stylopus) sp. Fristedt, 1885  Arrábida S [8] 

   
Phorbas Duchassaing & Michelotti, 1864 Phorbas dives (Topsent, 1891)  Afife I [11] 

    
Amado I [11] 

     
Consolação I [11] 

     
Galapos I [11] 

     
Porto Côvo I [11] 

     
Prego S a 

     
Arrábida S [8] 

    
Phorbas fictitius (Bowerbank, 1866) Afife I [11] 

     
Amado I [11] 

     
Consolação I [11] 

     
Galapos I [11] 

     
Ingrina I [11] 

     
Olhos d'Água I [11] 

     
Porto Côvo I [11] 

     
Ribeira das Ilhas I [12] 
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Algarve S [1, 13] 

     
Arrábida S [2, 8] 

     
Arrifana S [3] 

     
Sagres S [6] 

    
Phorbas plumosus (Montagu, 1814)  Afife I [11] 

     
Aguda I a 

     
Amado I [11] 

     
Buarcos I a 

     
Buarcos I [11] 

     
Consolação I [11] 

     
Ingrina I [11] 

     
Memória I a 

     
Olhos d'Água I [11] 

     
Apúlia S [5] 

     
Arrábida S [8] 

    
Phorbas tenacior (Topsent, 1925) Algarve S [1] 

     
Arrifana S [3] 

     
Sagres S [6] 

   
Plocamionida Topsent, 1927 Plocamionida ambigua (Bowerbank, 1866) Apúlia S [5] 

    
Plocamionida microcionides (Carter, 1876)  Cabo S. Vicente S [9] 

  
Microcionidae 
Carter, 1875 

Antho Gray, 1867 Antho (Antho) granditoxa Picton & Goodwin, 2007 Memória I a 

   
Prego S a 

    
Antho (Antho) inconstans (Topsent, 1925)  Arrábida S [8] 
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Antho (Antho) involvens (Schmidt, 1864) Afife I [11] 

     
Amado I [11] 

     
Ingrina I [11] 

   
Clathria Schmidt, 1862 Clathria (Clathria) coralloides (Scopoli, 1772) Consolação I [11] 

     
Galapos I [11] 

     
Ingrina I [11] 

     
Magoito I [11] 

     
Memória I a 

     
Viana Castelo I a 

    
Clathria (Clathria) toxistricta Topsent, 1925 Ribeira das Ilhas I [12] 

    
C. (Microciona) atrasanguinea (Bowerbank, 1862) Cabo do Mundo I [14] 

    
Afife I [11] 

    
Aguda I [11] 

    
Buarcos I [11] 

    
Apúlia S [5] 

    
Clathria (Microciona) gradalis Topsent, 1925  Arrábida S [8] 

    
Clathria (Microciona) normani (Burton, 1930) Apúlia S [5] 

    
C. (Microciona) spinarcus (Carter & Hope, 1889)  Arrábida S [8] 

    
Clathria (Microciona) strepsitoxa (Hope, 1889)  Aguda I [11] 

     
Buarcos I [11] 

     
Consolação I [11] 

     
Arrábida S [8] 

    
Clathria (Microciona) toxitenuis Topsent, 1925  Arrábida S [8] 
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Clathria (Paresperia) anchorata (Carter, 1874) Apúlia S [5] 

     
Cabo S. Vicente S [9] 

   
Echinoclathria Carter, 1885 Echinoclathria sp. Carter, 1885 Sines S [4] 

   
Ophlitaspongia Bowerbank, 1866 Ophlitaspongia papilla Bowerbank, 1866  Aljezur I a 

     
Cabo do Mundo I [14] 

     
Memória I a 

     
Viana Castelo I a 

  
Mycalidae 
Lundbeck, 1905 

Mycale Gray, 1867 M. (Aegogropila) contarenii (Lieberkühn, 1859) Galapos I [11] 

   
Ingrina I [11] 

    
Olhos d'Água I [11] 

    
Porto Côvo I [11] 

    
Mycale (Aegogropila) rotalis (Bowerbank, 1874)  Apúlia S [5] 

    
Arrábida S [2] 

    
Mycale (Carmia) macilenta (Bowerbank, 1866)  Afife I [11] 

     
Arrábida S [8] 

    
Mycale (Carmia) minima (Waller, 1880)  Afife I [11] 

     
Consolação I [11] 

    
Mycale (Mycale) lingua (Bowerbank, 1866)  Algarve S [1] 

    
Mycale (Mycale) massa (Schmidt, 1862)  Cabo S. Vicente S [9] 

  
Myxillidae Dendy, 
1922 

Myxilla Schmidt, 1862 Myxilla (Myxilla) cf. incrustans (Johnston, 1842)  Arrábida S [2] 

   
M. (Myxilla) incrustans var. viscosa (Topsent, 1892)  Sines S [4] 

    
Myxilla (Myxilla) iotrochotina (Topsent, 1892)  Arrábida S [2] 

    
M. (Myxilla) macrosigma Boury-Esnault, 1971 Arrábida S [8] 
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Myxilla (Myxilla) rosacea (Lieberkühn, 1859)  Afife I [11] 

     
Amado I [11] 

     
Buarcos I [11] 

     
Consolação I [11] 

     
Galapos I [11] 

     
Ingrina I [11] 

     
Magoito I [11] 

     
Memória I a 

     
Olhos d'Água I [11] 

     
Porto Côvo I [11] 

     
Prego S a 

     
Arrábida S [2, 8] 

     
Pelo Negro S a 

  
Tedaniidae Ridley & 
Dendy, 1886 

Tedania Gray, 1867 Tedania (Tedania) anhelans (Vio in Olivi, 1792) Amado I [11] 

    
Consolação I [11] 

     
Galapos I [11] 

     
Ingrina I [11] 

     
Olhos d'Água I [11] 

     
Porto Côvo I [11] 

     
Arrábida S [2, 8] 

    
Tedania (Tedania) pilarriosae Cristobo, 2002 Memória I a 

     
Prego S a 

     
Viana Castelo S a 
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Tedania (Tedania) suctoria (Schmidt, 1870)  Apúlia S [5] 

   
Trachytedania Ridley, 1881 Trachytedania ferrolensis Cristobo & Urgorri, 2001 Arrábida S [8] 

 

Polymastiida Polymastiidae Gray, 
1867 

Polymastia Bowerbank, 1862 Polymastia agglutinans Ridley & Dendy, 1886  Memória I a 

    
Apúlia S [5] 

    
Polymastia boletiformis (Lamarck, 1815)  Memória I a 

     
Apúlia S [5] 

    
Polymastia mamillaris (Müller, 1806)  Afife I [11] 

     
Amado I [11] 

     
Buarcos I [11] 

     
Galapos I [11] 

     
Magoito I [11] 

     
Arrábida S [2] 

    
Polymastia penicillus (Montagu, 1814)  Memória I a 

    
Polymastia sp. Bowerbank, 1862  Memória I a 

    
Polymastia spinula Bowerbank, 1866  Apúlia S [5] 

 

Scopalinida Scopalinidae 
Morrow, Picton, 
Erpenbeck, Boury-
Esnault, Maggs & 
Allcock, 2012 

Scopalinidae Schmidt, 1862 Scopalina lophyropoda Schmidt, 1862 Algarve S [1] 

    
Arrifana S [3] 

    
Sagres S [6] 

 

Suberitida Halichondriidae 
Gray, 1867 

Axinyssa Lendenfeld, 1897  Axinyssa digitata (Cabioch, 1968) Algarve S [1] 

  
Ciocalypta Bowerbank, 1862 Ciocalypta penicillus Bowerbank, 1862 Algarve S [1] 

     
Arrábida S [8] 

   
Halichondria Fleming, 1828 H. (Halichondria) bowerbanki Burton, 1930 Apúlia S [5] 

     
Arrábida S [8] 
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Halichondria (Halichondria) genitrix (Schmidt, 1870) Apúlia S [5] 

    
Halichondria (Halichondria) panicea (Pallas, 1766)  Afife I [11] 

     
Aguda I [11] a 

     
Amado I [11] 

     
Assafora I [12] 

     
Buarcos I [11] a 

     
Consolação I [11] 

     
Esposende I a 

     
Galapos I [11] 

     
Ingrina I [11] 

     
Magoito I [11] 

     
Memória I a 

     
Olhos d'Água I [11] 

     
Parede I [12] 

     
Porto Côvo I [11] 

     
Ribeira das Ilhas I [12] 

     
S Joao Estoril I a 

     
S. Bernardino I [12] 

     
Viana Castelo I a 

     
Apúlia S [5] 

     
Arrábida S [8] 

    
Halichondria sp. Fleming, 1828  Peniche I [15] 

     
Sines S [4] 
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Hymeniacidon Bowerbank, 1858 Hymeniacidon perlevis (Montagu, 1814)  Afife I [11] 

     
Aguda I [11] a 

     
Almograve I a 

     
Amado I [11] 

     
Angeiras I [14] a 

     
Apúlia I a 

     
Assafora I [12] 

     
Baleal I [12] 

     
Buarcos I [11] a 

     
Cabo do Mundo I [14] 

     
Consolação I [11] 

     
Esposende I a 

     
Galapos I [11] 

     
Ingrina I [11] 

     
Magoito I [11, 12] 

     
Memória I a 

     
Olhos d'Água I [11] 

     
Parede I [12] 

     
Peniche I [15] 

     
Porto Côvo I [11] a 

     
Ribeira das Ilhas I [12] 

     
S Joao Estoril I a 

     
Viana do Castelo I [12] a 
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VN Mil Fontes I a 

     
Prego S a 

     
Apúlia S [5] 

     
Algarve S [1] 

     
Arrábida S [8], [2] 

     
S. Martinho Porto S [11] 

     
Sagres S [6] 

     
Sines S [4] 

   
Spongosorites Topsent, 1896 Spongosorites difficilis (Lundbeck, 1902)  Apúlia S [5] 

   
Vosmaeria Fristedt, 1885 Vosmaeria crustacea Fristedt, 1885 Apúlia S [5] 

    
Vosmaeria levigata Topsent, 1896  Apúlia S [5] 

  
Suberitidae 
Schmidt, 1870 

Aaptos Gray, 1867 Aaptos aaptos (Schmidt, 1864) Memória I a 

   
Aaptos papillata (Keller, 1880)  Afife I [11] 

     
Buarcos I [11] 

     
Memória I a 

   
Homaxinella Topsent, 1916 Homaxinella subdola (Bowerbank, 1866)  Apúlia S [5] 

   
Protosuberites Swartschewsky, 1905 Protosuberites ectyoninus (Topsent, 1900)  Arrábida S [8] 

    
Protosuberites epiphytum (Lamarck, 1815) Afife I [11] 

     
Aguda I [11] 

     
Amado I [11] 

     
Buarcos I [11] 

     
Galapos I [11] 
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Olhos d'Água I [11] 

     
Apúlia S [5] 

     
Arrábida S [8] 

    
Protosuberites rugosus (Topsent, 1893)  Arrábida S [8] 

   
Pseudosuberites Topsent, 1896 Pseudosuberites hyalinus (Ridley & Dendy, 1886)  Apúlia S [5] 

    
Pseudosuberites mollis Topsent, 1925  Buarcos I [11] 

     
Algarve S [1] 

     
Apúlia S [5] 

    
Pseudosuberites sulphureus (Bowerbank, 1866)  Apúlia S [5] 

   
Suberites Nardo, 1833 Suberites carnosus (Johnston, 1842)  Afife I [11] 

     
Aguda I [11] 

     
Amado I [11] 

     
Buarcos I [11] 

     
Consolação I [11] 

     
Galapos I [11] 

     
Ingrina I [11] 

     
Porto Côvo I [11] 

     
Arrábida S [8] 

    
Suberites massa Nardo, 1847 Apúlia S [5] 

   
Terpios Duchassaing & Michelotti, 1864 Terpios fugax Duchassaing & Michelotti, 1864  Amado I [11] 

     
Galapos I [11] 

     
Olhos d'Água I [11] 

     
Arrábida S [8] 
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Terpios sp. Duchassaing & Michelotti, 1864 Sagres S [6] 

 

Tethyida Hemiasterellidae 
Lendenfeld, 1889 

Adreus Gray, 1867 Adreus fascicularis (Bowerbank, 1866) Afife I [11] 

  
Tethyidae Gray, 
1848 

Tethya Lamarck, 1815 Tethya aurantium (Pallas, 1766)  Amado I [11] 

    
Galapos I [11] 

     
Magoito I [11] 

     
Peniche I [15] 

     
Apúlia S [5] 

     
Arrábida S [2, 8] 

     
Lagos S [7] 

     
S. Martinho Porto S [11] 

     
Sagres S [6] 

     
Sines S [4] 

  
Timeidae Topsent, 
1928 

Timea Gray, 1867 Timea mixta (Topsent, 1896)  Afife I [11] 

    
Amado I [11] 

     
Buarcos I [11] 

     
Galapos I [11] 

     
Ingrina I [11] 

     
Magoito I [11] 

     
Memória I a 

     
Olhos d'Água I [11] 

    
Timea unistellata (Topsent, 1892)  Arrábida S [8] 
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Tetractinellida Ancorinidae 
Schmidt, 1870 

Dercitus Gray, 1867 Dercitus (Stoeba) plicatus (Schmidt, 1868)  Arrábida S [2] 

  
Stelletta Schmidt, 1862 Stelletta anancora (Sollas, 1886)  Amado I [11] 

     
Consolação I [11] 

     
Galapos I [11] 

     
Porto Côvo I [11] 

    
Stelletta hispida (Buccich, 1886)  Amado I [11] 

     
Consolação I [11] 

     
Galapos I [11] 

     
Ingrina I [11] 

     
Arrábida S [2, 8] 

    
Stelletta sp. Schmidt, 1862  Peniche I [15] 

  
Azoricidae Sollas, 
1888 

Leiodermatium Schmidt, 1870 Leiodermatium pfeifferae (Carter, 1873) Cabo S. Vicente S [9] 

  
Calthropellidae 
Lendenfeld, 1907 

Calthropella Sollas, 1888 C. (Calthropella) geodioides (Carter, 1876) Cabo S. Vicente S [9] 

  
Geodiidae Gray, 
1867 

Erylus Gray, 1867 Erylus discophorus (Schmidt, 1862) Amado I [11] 

    
Consolação I [11] 

     
Porto Côvo I [11] 

     
Arrábida S [2] 

    
Erylus mamillaris (Schmidt, 1862)  Amado I [11] 

    
Erylus mamillaris (Schmidt, 1862)  Ingrina I [11] 

   
Geodia Lamarck, 1815 Geodia conchilega Schmidt, 1862  Peniche I [15] 

    
Geodia cydonium (Linnaeus, 1767)  Amado I [11] 

     
Consolação I [11] 
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Porto Côvo I [11] 

     
Arrábida S [2] 

    
Geodia megastrella Carter, 1876  Cabo S. Vicente S [9] 

    
Geodia megastrella var. laevispina Carter, 1876 Cabo S. Vicente S [9] 

   
Pachymatisma Bowerbank in Johnston, 
1842 

P. johnstonia (Bowerbank in Johnston, 1842) Apúlia S [5] 

  
Macandrewiidae 
Schrammen, 1924 

Macandrewia Gray, 1859 Macandrewia azorica Gray, 1859 Cabo S. Vicente S [9] 

  
Pachastrellidae 
Carter, 1875 

Characella Sollas, 1886 Characella pachastrelloides (Carter, 1876)  Cabo S. Vicente S [9] 

   
Characella tripodaria (Schmidt, 1868)  Sines S [4] 

   
Nethea Sollas, 1888 Nethea amygdaloides (Carter, 1876) Cabo S. Vicente S [9] 

   
Triptolemma de Laubenfels, 1955 Triptolemma intextum (Carter, 1876) Cabo S. Vicente S [9] 

  
Theonellidae 
Lendenfeld, 1903 

Discodermia du Bocage, 1869 Discodermia polydiscus (Bowerbank, 1869) Cabo S. Vicente S [9] 

  
Vulcanellidae 
Cárdenas, Xavier, 
Reveillaud, 
Schander & Rapp, 
2011 

Poecillastra Sollas, 1888 Poecillastra compressa (Bowerbank, 1866)  Apúlia S [5] 

 

Trachycladida Trachycladidae 
Hallmann, 1917 

Trachycladus Carter, 1879 Trachycladus minax (Topsent, 1888) Afife I [11] 

    
Amado I [11] 

     
Magoito I [11] 

     
Arrábida S [8] 

Ke
ra

to
sa

 

Dendroceratida Darwinellidae 
Merejkowsky, 1879 

Aplysilla Schulze, 1878 Aplysilla rosea (Barrois, 1876) Afife I [11] 
   

Aguda I [11] a 
    

Amado I [11] 

     
Buarcos I [11] 
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Consolação I [11] 

     
Galapos I [11] 

     
Ingrina I [11] 

     
Magoito I [12] 

     
Magoito I [11] 

     
Olhos d'Água I [11] 

     
Porto Côvo I [11] 

    
Aplysilla sp. Schulze, 1878 Cabo S. Vicente S [7] 

     
Sines S [4] 

    
Aplysilla sulfurea Schulze, 1878 Arrábida S [8] 

  
Dictyodendrillidae 
Bergquist, 1980 

Spongionella Bowerbank, 1862 Spongionella pulchella (Sowerby, 1804)  Apúlia S [5] 

    
Algarve S [1] 

     
Arrábida S [8] 

 

Dictyoceratida Dysideidae Gray, 
1867 

Dysidea Johnston, 1842 Dysidea avara (Schmidt, 1862) Apúlia S [5] 

    
Algarve S [1] 

     
Lagos S [7] 

     
Sagres S [6] 

    
Dysidea fragilis (Montagu, 1814)  Afife I [11] 

     
Amado I [11] 

     
Consolação I [11] 

     
Memória I a 

     
Olhos d'Água I [11] 

     
Porto Côvo I [11] 
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Ribeira das Ilhas I [12] 

     
Prego S a 

     
Algarve S [1, 16] 

     
Apúlia S [5] 

     
Arrábida S [8] 

     
Arrifana S [3] 

     
Cabo Espichel S [16] 

     
Cabo S. Vicente S [7] 

     
Lagos S [7] 

     
Sagres S [7] 

     
Sagres S [6] 

   
Pleraplysilla Topsent, 1905 Pleraplysilla spinifera (Schulze, 1879)  Algarve S [1] 

     
Arrábida S [8] 

     
Cabo Espichel S [16] 

     
Lagos S [7] 

  
Irciniidae Gray, 
1867 

Ircinia Nardo, 1833 Ircinia dendroides (Schmidt, 1862)  Algarve S [1, 16] 

    
Arrábida S [16] 

     
Sagres S [6] 

    
Ircinia oros (Schmidt, 1864)  Algarve S [1] 

     
Arrábida S [8] 

    
Ircinia procumbens (Poléjaeff, 1884) Mondego to Setúbal S [16] 

    
Ircinia sp. Nardo, 1833  Sagres S [6] 

    
Ircinia variabilis (Schmidt, 1862)  Memória I a 
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VN Mil Fontes I a 

     
Arrábida S [2] 

     
Berlenga S [16] 

     
S. Martinho Porto S [16] 

     
Sines S [4] 

   
Sarcotragus Schmidt, 1862 Sarcotragus fasciculatus (Pallas, 1766)  Amado I [11] 

     
Consolação I [11] 

     
Galapos I [11] 

     
Ingrina I [11] 

     
Olhos d'Água I [11] 

     
Porto Côvo I [11] 

     
Algarve S [1, 16] 

     
Apúlia S [5] 

     
Arrábida S [2, 8, 16] 

     
Arrifana S [3] 

     
Sagres S [6] 

    
Sarcotragus foetidus Schmidt, 1862 Algarve S [16] 

    
Sarcotragus spinosulus Schmidt, 1862  Amado I [11] 

     
Porto Côvo I [11] 

     
Algarve S [1, 16] 

     
Apúlia S [5] 

     
Arrábida S [8, 16] 

     
Sagres S [6] 



FCUP 
Chapter 9. Appendix 

180 

 
Su

bc
la

ss
 

O
rd

er
 

Fa
m

ily
 

G
en

er
a 

Sp
ec

ie
s 

Sa
m

pl
in

g 
Lo

ca
tio

n 

I/
S  

Re
fe

re
nc

e 

  
Spongiidae Gray, 
1867 

Coscinoderma Carter, 1883 Coscinoderma confragosum Poléjaeff, 1884  Mondego to Setúbal S [16] 

  
Spongia Linnaeus, 1759 Spongia (Spongia) agaricina Pallas, 1766  Algarve S [1] 

    
Arrábida S [8, 12, 16] 

     
Arrifana S [3] 

     
Sagres S [6] 

    
Spongia (Spongia) irregularis (Lendenfeld, 1889)  Berlenga S [16] 

     
S. Martinho Porto S [16] 

     
Sines S [16] 

    
Spongia (Spongia) nitens (Schmidt, 1862)  Algarve S [16] 

     
Arrábida S [2, 16] 

    
Spongia (Spongia) officinalis Linnaeus, 1759  Amado I [11] 

     
Consolação I [11] 

     
Galapos I [11] 

     
Ingrina I [11] 

     
Olhos d'Água I [11] 

     
Porto Côvo I [11] 

     
Ribeira das Ilhas I [12] 

     
Apúlia S [5] 

     
Algarve S [1] 

     
Arrábida S [8, 16] 

     
Sagres S [6] 

    
S. (Spongia) osculata (Lendenfeld, 1889) Sines S [4] 

    
Spongia (Spongia) virgultosa (Schmidt, 1868)  Algarve S [16] 
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Arrábida S [16] 

    
Spongia sp. Linnaeus, 1759  Lagos S [7] 

  
Thorectidae 
Bergquist, 1978 

Aplysinopsis Lendenfeld, 1888 Aplysinopsis sp. Lendenfeld, 1888  Sines S [4] 

  
Cacospongia Schmidt, 1862 Cacospongia mollior Schmidt, 1862 Algarve S [16] 

   
Fasciospongia Burton, 1934 Fasciospongia cavernosa (Schmidt, 1862)  Algarve S [16] 

   
Hyrtios Duchassaing & Michelotti, 1864 Hyrtios collectrix (Schulze, 1880)  Sines S [4] 

   
Scalarispongia Cook & Bergquist, 2000 Scalarispongia scalaris (Schmidt, 1862) Amado I [11] 

     
Consolação I [11] 

     
Olhos d'Água I [11] 

     
Porto Côvo I [11] 

     
Algarve S [16] 

     
Arrábida S [2, 8, 16] 

     
Lagos S [7] 

Ve
ro

ng
im

or
ph

a Chondrillida Chondrillidae Gray, 
1872 

Thymosia Topsent, 1895 Thymosia guernei Topsent, 1895  Aljezur I a 

   
Amado I [11] 

    
S. João Estoril I a 

    
Arrábida S [8] 

 
Halisarcidae 
Schmidt, 1862 

Halisarca Johnston, 1842 Halisarca dujardinii Johnston, 1842  Apúlia S [5] 

 

Chondrosiida Chondrosiidae 
Schulz, 1877 

Chondrosia Nardo 1847 Chondrosia reniformis Nardo, 1847 Algarve S [1] 

    
Arrifana S [3] 

     
Sagres S [6] 
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Verongiida Aplysinidae Carter, 
1875 

Aplysina Nardo, 1834 Aplysina aerophoba (Nardo, 1833) Amado I [11] 

    
Consolação I [11] 

     
Ingrina I [11] 

     
Apúlia S [5] 

     
Arrábida S [8] 

     
Sagres S [6] 

     
Arrábida S [8, 16] 

  
Ianthellidae Hyatt, 
1875 

Hexadella Topsent, 1896 Hexadella racovitzai Topsent, 1896  Algarve S [1] 

  
Table 9-3. Bibliographic information on sponge diversity from the coast of Portugal – Class Homoscleromorpha 
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Homoscleropho

rida 

Oscarellidae 

Lendenfeld, 1887 

Oscarella Vosmaer, 1884 Oscarella cruenta (Carter, 1876)  Cabo S. Vicente S [9] 
 

Oscarella lobularis (Schmidt, 1862)  Apúlia S [5] 
    

Algarve S [1] 
    

Arrábida S [8] 
    

Lagos S [7] 
    

Sagres S [6] 
 

Plakinidae Schulze, 

1880  

Corticium Schmidt, 1862 Corticium candelabrum Schmidt, 1862 Sagres S [6] 
 

Plakina Schulze, 1880 Plakina monolopha Schulze, 1880  Amado I [11] 
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Figure 9-1. Sampling locations from all bibliographic review, and presented in tables 9-1, 9-2 and 9-

3. Legend: 1. Afife; 2: Viana do Castelo; 3: Esposende; 4: Apúlia; 5: Angeiras; 6: Memória; 7: Cabo 

do Mundo; 8: Leça; 9: Pelo Negro; 10: Prego; 11: Aguda; 12: Large du Porto; 13: Buarcos; 14: São 

Martinho do Porto; 15: Berlengas; 16: Baleal; 17: Peniche; 18: Consolação; 19: São Bernardino; 20: 

Ribeira das Ilhas; 21: Assafora; 22: Magoito; 23: São João do Estoril; 24: Parede; 25: Cabo Espichel; 

26: Arrábida; 27: Galapos; 28: Sines; 29: Porto Côvo; 30: Vila Nova de Mil Fontes; 31: Largo do Rio 

Mira; 32: Almograve; 33: Aljezur; 34: Amado; 35: Cabo de São Vicente; 36: Sagres; 37: Ingrina; 38: 

Lagos; 39: Olhos d´Água; horizontal blue line: Algarve; vertical blue line: Entre Cabo do Mundo e 

Setubal.  
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Appendix II.  
Book, brochure and poster for scientific divulgation of the most common sponges of the 

Portuguese intertidal area 
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Esponjas intertidais do litoral norte de Portugal 

Guia de campo das espécies de esponja (Porifera) mais comuns do litoral Norte intertidal 

de Portugal 

Intertidal sponges from the northern Portugal 

Shore guide for the most common sponge species (Porifera) from the intertidal area of 

Northern Portugal 
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INTRODUÇÃO
Portugal possui uma importante posição na 
costa Atlântica Europeia, onde o Mediterrâneo 
ainda exerce grande influência, resultando 
numa das mais interessantes regiões bio-
geográficas a nível europeu. O litoral norte 
de Portugal, caracteriza-se pela presença de 
um grande número de praias com afluências 
rochosas, substrato ideal para grande número 
de esponjas. 

Este guia resulta de uma longa pesquisa das 
espécies de esponja intertidais presentes no 
litoral norte de Portugal. Contudo, apenas 
estão representadas algumas espécies, con-
sideradas as mais comuns, de uma rica fauna 
de poríferos presentes nestas regiões. 

INTRODUCTION
Portugal has a unique location on the Euro-
pean Atlantic coast,  where the Mediterranean 
still has its influence, resulting in one of the 
most interesting European biogeographic 
regions. The northern Portuguese sea shore is 
characterized by the presence of various rocky 
beaches, the ideal substrate for sponge settle-
ment. 
 
This guide results from a long research of 
the intertidal sponges inhabiting the rocky 
sea shore of northern Portugal. Here are only 
represented some of them, the most common 
species of a rich fauna of Porifera that appears 
in these areas.

1
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AS ESPONJAS

As esponjas são animais pertencentes ao 
Filo Porifera, que datam de há cerca de 600 
milhões de anos, constituindo o ramo menos 
evoluído dos Metazoários. Estes animais 
contribuíram para a construção dos recifes. 
Estudos recentes apontam também para um 
possível papel das esponjas no aumento do 
oxigénio nos oceanos e, consequentemente, 
para a explosão de formas de vida mais com-
plexas. São organismos aquáticos, sesseis, 
sem verdadeiros tecidos ou órgãos, onde as 
células conservam a totipotência, sendo que 
as funções vitais são asseguradas por células 
mais ou menos especializadas. São conhe-
cidas cerca de 8000 espécies, amplamente 
distribuídas. São maioritariamente marinhas, 
embora também surjam em água doce.
O corpo é suportado por elementos esque-
léticos de sílica ou carbonato de cálcio, as 
espículas, que podem estar ausentes, e por 
elementos orgânicos, principalmente fibras de 
espongina. 

NUTRIÇÃO
As esponjas são animais filtradores, com a 
superfície perfurada por inúmeros poros ina-
lantes, ostíolos e por poros exalantes, em 
menor número e de maiores dimensões, os 
ósculos. Algumas esponjas podem filtrar até 
20000 vezes o seu volume de água por dia. 
A circulação da água no interior da esponja 
deve-se à presença de células flageladas que 
se movimentam de forma sincronizada, os 
coanócitos. Muitas esponjas têm a capacidade 
de regular a quantidade de água que entra, 
por contração de células contrácteis, os poró-
citos. A contração ocorre normalmente como 
resposta a estímulos físicos e/ou à remoção 
do animal da água. Na presença de um intru-
so, podem igualmente sessar por completo 
a circulação da água, por paragem da movi-
mentação dos coanócitos. O mecanismo pelo 
qual se dá a passagem desta informação é 
ainda desconhecido, uma vez que as esponjas 
são desprovidas de um sistema nervoso. Os 
coanócitos são igualmente responsáveis pela 
filtração da água e captação dos nutrientes, 
por fagocitose, e transferindo-as para outras 
células, os arqueócitos , que se encarregam 
da sua digestão. A presença de organismos

THE SPONGES

Sponges are animals, belonging to the Phylum 
Porifera. They appeared around 600 million 
years ago, and constitute the bottom (less 
evolved) of the Metazoan branch. They con-
tributed to the formation of the reefs. Recent 
studies also point to their role in the increase 
of oxygen on the oceans, a requisite for the 
explosion of more complex life forms on Earth. 
They are sessile, aquatic organisms, without 
true tissues or organs, constituted by cells that 
maintain their totipotency, and that are more 
or less specialized to maintain vital functions. 
There are around 8000 different species de-
scribed, worldwide distributed. The majority 
are marine but can also occur in freshwater.
The body is supported by a silica or calcium 
carbonate skeleton, called spicules, that can 
be absent, and by organic elements, mainly 
spongin fibbers. 

NUTRITION
Sponges are filter feeder animals. Surface is 
covered  with numerous inhalant apertures, os-
tia and exhalant apertures, oscules. Normally, 
oscules are less and bigger than ostia. Some 
sponges can filter up to 20000 times their vol-
ume of water per day. The circulation of water 
through the sponge is due to the  synchronized 
movement of flagellated cells, choanocytes. 
Some sponges have the ability to regulate the 
amount of water that enters, contracting some 
cells, known as porocytes. This contraction 
normally occurs in response to physical stimuli 
and/or removal from the water. When feel-
ing threatened, sponges can also completely 
stop water circulation, through intermission 
of the movement of the choanocytes. It is still 
unknown the mechanism responsible for this 
signalling, since the sponges are devoid of a 
nervous system. Water filtration and nutrient 
captation is done by the choanocytes through 
phagocytosis, and then transfer to the archae-
ocytes, where digestion takes place. 
The presence of symbiont organisms, such as 
algae, bacteria and cyanobacteria are equally 
important in the nutritional process of the 
sponge, providing the animal with important

2
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em simbiose com a esponja, nomeadamente 
de algas, bactérias e cianobactérias são igual-
mente importantes no processo nutricional da 
esponja, fornecendo ao animal metabolitos 
importantes para a sua sobrevivência. 

REPRODUÇÃO
A reprodução pode ser sexuada ou assexua-
da, estando intimamente relacionada com 
condições ambientais. A reprodução assexua-
da permite o desenvolvimento rápido de novos 
indivíduos similares à esponja parental, assim 
como a formação de gémulas, capazes de 
sobreviver em condições adversas e depois 
desenvolver-se quando as condições forem 
mais favoráveis. Na reprodução sexuada, sur-
ge variação genética, pois existe fecundação 
de gâmetas. Neste tipo de reprodução, há for-
mação de larvas, de vida livre, o que permite a 
colonização de novas superfícies.

INTERESSE ECOLÓGICO E COMERCIAL
O conhecimento da diversidade de Poriferos 
tem uma enorme importância ecológica. 
As esponjas são essencialmente conhecidas 
devido ao seu uso como esponjas de banho. 
Nos últimos anos, no Mar Mediterrâneo, tem 
havido uma sobre-exploração das espécies 
usadas para este fim (Euspongia officinalis e 
Hippospongia communis), pondo em risco a 
sobrevivência das mesmas.
Estes animais, filtradores ativos, formam rela-
ções de simbiose com outros organismos. Das 
associações com cianobactérias, bactérias 
e fungos, resulta na produção de compostos 
bioactivos com elevado interesse farmacêutico 
e/ou toxicológico. Alguns compostos extraídos 
das esponjas já são atualmente usados na 
indústria farmacêutica, como o Aciclovir (Ara 
A), para tratamento de herpes, a Citarabina 
(Ara C), usado no tratamento de algumas 
leucemias e linfomas, e o AZT, antirretroviral 
HIV. Outros compostos, como a Halichondrina 
B, possuem propriedades anticancerigenas, 
encontrando-se em diversas fases de diferen-
tes ensaios clínicos e pré-clinicos. Contudo, 
problemas ecológicos surgem na pesquisa 
e extração destes compostos. Por exemplo, 
para obter 12,5 mg de Halichondrina B, são 
necessários cerca de 600 kg de esponja. Com 
vista a combater este problema de sobre-ex-
ploração de algumas espécies, nos últimos

metabolites.

REPRODUCTION
Sexual and asexual reproduction are intimately 
connected with environmental conditions. 
Asexual reproduction allows quick develop-
ment of new organisms similar to the parental 
sponge. It also allows the production of gem-
mules, capable of surviving through adverse 
environmental conditions. Sexual reproduc-
tion consists in the fecundation of gametes, 
and therefore, genetic variation. In this type of 
reproduction, there is a free-living larvae stage, 
allowing the colonization of new habitats.

ECOLOGIC AND COMMERCIAL INTEREST
Understanding the diversity of Porifera has an 
enormous ecological importance.
The main use of marine sponges is as bath 
sponges. In the last few years, in the Mediter-
ranean, it has been an over-exploration of the 
species used for this purpose (Euspongia of-
ficinalis and Hippospongia communis). 
These animals are active filter feeders, forming 
symbiosis with other organisms. Associations 
with cyanobacteria, bacteria and fungus can 
lead to the production of bioactive compounds 
with pharmaceutical and/or toxicological inter-
est. Some compounds extracted from marine 
sponges and already being used by the phar-
maceutical industry are Acyclovir (Ara A), used 
for herpes treatment, Cytarabine (Ara C), used 
for leukaemia and lymphoma treatment, and 
AZT, a HIV anti-retroviral. Other compounds, 
like Halichondrin B, are known to have anti-
cancer properties, being at the moment in sev-
eral phases of clinical or preclinical trials. The 
extraction of these compounds arises some 
ecological problems. For example, to extract 
12,5 mg of Halichondrin B, it is needed around 
600 kg of sponge. In order to avoid over-explo-
ration the some species, it has been develo-
ped in the last few years other ways to obtain 
the compound, mainly through sponge aqua-
culture and synthetic production of the com-
pounds.

3
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anos tem-se recorrido tanto à produção em 
aquacultura das esponjas, bem como tentar 
desenvolver formas de síntese sintética destes 
compostos.
Além do seu interesse como produtores de 
compostos bioativos, também podem ser 
usados como bioindicadores da qualidade 
da água. Estes animais estão diretamente 
dependentes da qualidade ambiental, devido 
ao facto de serem filtradores e sésseis. Logo, 
conhecendo a diversidade existente em deter-
minado local, é possível inferir sobre a quali-
dade da água. 
Uma vez que são os animais com uma estru-
tura mais simples, também podem ser exce-
lentes modelos para diversos estudos.
A legislação portuguesa não contempla a pro-
teção de nenhuma espécie de esponja. As úni-
cas espécies protegidas referem-se às referi-
das na Convenção de Berna (Conservação da 
Vida Selvagem e do Meio Natural da Europa), 
no anexo II (espécies estritamente protegidas) 
e no anexo III (espécies protegidas), sendo 
todas espécies do Mediterrâneo.

IDENTIFICAÇÃO

Algumas esponjas possuem características 
marcantes, que permitem a sua identificação 
in situ mas, a maioria, exige que sejam reco-
lhidas amostras e analisadas em laboratório. 
As espículas presentes nos organismos são 
essenciais para a identificação das espécies e, 
de acordo com o seu tamanho dividem-se em 
megascleras e microscleras. Outro fator impor-
tante na identificação tem a ver com a forma 
como as espículas e as fibras de espongina se 
dispõem para formar o esqueleto interno.

Na região intertidal, as esponjas encontram-
-se sob superfícies rochosas ou arenosas, 
com pelo menos uma parte do dia submersas 
e, normalmente, em zonas protegidas da luz 
solar direta. Características como cor, forma, 
consistência, presença de muco, cheiro e tipo 
de substrato são importantes na identificação 
destes organismos. Como algumas destas ca-
racterísticas alteram-se após a coleta, é reco-
mendado que sejam documentadas in situ.
Uma vez que as esponjas podem produzir 
substâncias tóxicas ou possuir espículas
projetadas para o exterior do corpo, é aconse-

Besides their importance as bioactive com-
pounds producers, sponges can also be used 
as water quality bioindicators. Because these 
animals are filter feeders, they are completely 
dependent from the environment and, under-
standing sponge diversity allows to infer water 
quality. 
Once they have a simple structure, Porifera 
can also be used as an animal model for sci-
entific studies.
Portuguese legislation doesn’t protect any 
sponge in particular. The only Porifera species 
protected in the European Union are the ones 
in the Berne Convention (Convention on the 
Conservation of European Wildlife and Natural 
Habitats), appendix II (strictly protected fauna 
species) and III (protected fauna species) and, 
all of them are Mediterranean species.

IDENTIFICATION

Some sponges have distinctive characters, 
allowing them to be identified in situ. But the 
majority needs to be analysed in a laboratory 
in order to identify them. Spicules are essen-
tial for sponge identification. According to their 
size, spicules can be separated into two cat-
egories: megascleres and microscleres. Other 
important character in sponge identification 
is the internal skeleton, the way spicules and 
spongin fibbers are arranged.

In the intertidal areas, sponges are in rocky 
or sandy surfaces, with at least a part of the 
day submerged and, normally, protected from 
direct sunlight. Characters like colour, shape, 
consistency, presence of mucous, smell and 
type of substrate are important for Porifera 
identification. Some of these characters can 
change after collection so, it is important to 
document all of them in situ. Sponges can 
produce toxic substances or have spicules pro-
jected from the surface, being important to
always use gloves when handling them. When 
collecting these organisms, it is essential to 
properly accommodate them in plastic bags
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lhado sempre o uso de luvas para o manuseio 
dos organismos. No caso de recolha de espé-
cimes, estes devem ser acondicionados em 
sacos que vedem ou frascos, e submersos em 
água do mar.

Para estudos taxonómicos, os espécimes 
devem ser colocados em etanol a 90%, até 
24h após a coleta. Para conservação a longo 
prazo, deve-se depois transferir-se os organis-
mos para etanol a 70%.

TÉCNICAS DE IDENTIFICAÇÃO
A observação microscópica de espículas e 
do arranjo do esqueleto são parâmetros fun-
damentais para a identificação das espécies. 
Assim, seguem indicações para visualização 
microscópica rápida destas características: 

Preparação rápida para visualização de 
espiculas por microscopia:
Numa lâmina colocar uma pequeno fragmento 
de esponja, cobri-lo com uma lamela e deitar 
umas gotas de solução de hipoclorito de sódio, 
deixando que a peça se dissolva. Lavar depois 
com água várias vezes, usando papel de filtro 
para absorver a água. Finalmente fazer uma 
lavagem com álcool, e deixar secar sobre uma 
placa aquecedora.

Cortes espessos rápidos para visualização 
do esqueleto :
É aconselhado que as esponjas sejam manti-
das em álcool por pelo menos 24 horas antes 
de se proceder aos cortes. Fazer cortes rela-
tivamente finos (< 0,5mm) da esponja, tanto 
longitudinais como transversais. Os cortes 
devem ser feitos usando uma lâmina de bisturi 
bem afiada. Colocar os cortes imersos em ál-
cool absoluto, num vidro de relógio por aproxi-
madamente 15 minutos, para garantir que toda 
a água é removida dos tecidos. Posteriormen-
te, colocá-los sob uma lâmina, distinguindo 
entre os cortes longitudinais e os transversais, 
e deixar secar. Se os cortes tiverem tendência 
a enrolar ao secar, re-hidratar com etanol e 
colocar lamelas e um pequeno peso sobre os 
cortes durante a secagem. Estes cortes po-
dem ser imediatamente observados por mi-
croscopia, ou pode-se usar uma resina sintéti-
ca para os preservar por longos períodos. 

or flasks with natural sea water and transport 
them refrigerated.
 
For taxonomical studies, specimens should 
then be submerged in 90% ethanol, until 24h 
after collection. To preserve them for longer 
periods, it is best to then change the animal to 
70% ethanol.

TECHNIQUES FOR IDENTIFICATION 
As said before, spicules and skeleton micro-
scopic observation are essential characters 
for species identification. Here are some direc-
tions for a quick microscopic visualization:
 
Quick preparation of spicules:
On a slide put a small sponge fragment, cover-
ing it with a coverslip. Put a few drops of so-
dium hypochlorite on the slide, letting the piece 
to dissolve. After, wash it a few times with 
water, using filter paper to absorb the water. At 
the end, make a final wash with ethanol and 
leave it to dry.
 
Quick cuts for skeleton observation:
Prior to make the cuts, leave the sponge in 
ethanol, for at least 24 hours. Make relatively 
thin cuts of the sponge (<0,5mm), both longitu-
dinal and transverse. The cuts must be made 
using a very sharp scalpel or razor blade. In 
a watch-glass, submerge the cuts in 100% 
ethanol for approximately 15 minutes, to make 
sure all the water is removed from the tissues. 
After that, put the cuts on  a slide, making sure 
to distinguish between longitudinal and trans-
verse cuts, and let them dry. If the cuts start to 
curl, re-hydrate them with ethanol and then let 
them dry putting a coverslip and a small weight 
on top of the cuts. After drying, the cuts can be 
visualized under the microscope or, to pre-
serve for longer periods, they can be mounted 
with a synthetic resin.  

5
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CLASSIFICAÇÃO

O Filo Porifera divide-se em três classes:

Calcária
Exclusivamente marinhas. Com esqueleto 
mineral inteiramente composto por carbonato 
de cálcio. As espículas são bi, tri ou tetra ra-
diadas. Não possuem microscleras. Descritas 
cerca de 800 espécies.

Hexactinellida
Com esqueleto silicioso e espículas com 6 
raios. Conhecidas como esponjas de vidro, 
ocorrem normalmente em águas profundas. 
Existem cerca de 600 espécies descritas.

Demospongiae
Esponjas compostas por um esqueleto de 
espículas siliciosas e/ou fibras de espongina. 
As espículas podem estar ausentes. Com-
preendem cerca de 85% de todas as espécies 
de Porifera descritas. A maioria são marinhas, 
ocorrendo a todas as profundidades. Existem 
também espécies de água doce.

Neste guia apenas estão presentes espécies 
das Classes Calcária e Demospongiae.

CLASSIFICATION

Phylum Porifera is divided into 3 classes:

Calcaria
Exclusively marine species. Mineral skeleton 
entirely of calcium carbonate. Skeletal ele-
ments are di, tri and tetractines. There are no 
microscleres. There are around 800 described 
species. 
 
Hexactinellida 
Silicious skeleton with 6 rayed spicules. Known 
as glass sponges and normally occur in deep 
waters. There are around 600 different species 
described.
 
Demospongiae 
Silicious spicules and/or spongin fibbers. Spic-
ules can be absent. They comprise about 85% 
of the Poriferan. Most marine occurring at all 
depths, but can also occur in freshwater habi-
tats worldwide.

This guide only comprises species from Cal-
caria and Demospongiae classes.
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Clathrina 
coriacea
(Montagu, 1814)

Classe Class
Calcarea

Subclasse Subclass
Calcinea

Ordem Order
Clathrinida

Família Family
Clathrinidae

ESPICULAS
SPICULES

DESCRIÇÃO
DESCRIPTION
Cor: Amarelo pálido ou branco amarelado (amarela em álcool).
Forma: Pequenas “almofadas”. Constituída por estrutura tubu-
lar tridimensional compacta em forma de trelissa.
Consistência: Delicada, compressível, frágil.
Superfície: Suave. Estrutura tubular forma ósculos, ligeiramen-
te elevados da superfície.
Habitat: Águas rasas, superfícies rochosas limpas, sob pedras 
ou em fendas.

Colour: White to pale yellow (becomes yellow in alcohol).
Shape: Small cushions. Formed by a tightly knit trelliswork of 
tubes.
Consistency: Soft, compressible, fragile, delicate.
Surface: Smooth. Tubular structure forms the oscules, slightly 
elevated from the surface.
Habitat: Common in shallow subtidal under overhangs and in 
the intertidal under boulders and in crevices.

Espículas calcárias do tipo 
triactina de ângulos iguais

Calcareous spicules with re-
gular triacines, equally angled

9
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Aaptos 
papillata 

(Keller,1880)

Classe Class
Demospongiae

Subclasse Subclass
Heteroscleromorpha

Ordem Order
Suberitida

Família Family
Suberitidae

ESPICULAS
SPICULES

DESCRIÇÃO
DESCRIPTION

Cor: Tons de violeta e vermelho. Extremidade das pápilas mais 
claras. Internamente com tom alaranjado.
Forma: Hemisférica, ou em forma de almofada.
Consistência: Firme e difícil de retirar do substrato.
Superfície: Ligeiramente híspida com numerosas pápilas.
Habitat: Enterrada na areia. Apenas detetável pelas pápilas vi-
síveis à superfície.

Colour: Shades of violet, lighter at papillae tips. Orange inter-
nally.
Shape: Hemispheric or pillow shape.
Consistency: Firm. Hard to remove from the substrate.
Surface: Slightly hispid with numerous papillae.
Habitat: Buried on the sand, detectable only by the papillae 
sticking out. Megascleras: 

1. Estrongilos 
2. Estilos (pequenos) 
3. Tilostilos (intermédios)
Microscleras: 
Ausentes

Megascleres: 
1. Strongyloxeas
2. Styles (small)
3. Tylostyles (medium size)
Microscleres: 
Absent

3

2

1
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Polymastia 
agglutinans
Ridley and Dendy, 1886

Classe Class
Demospongiae

Subclasse Subclass
Heteroscleromorpha

Ordem Order
Polymastiida

Família Family
Polymastiidae

ESPICULAS
SPICULES

DESCRIÇÃO
DESCRIPTION
Cor: Amarelo a laranja.
Forma: Forma de almofada com pápilas à superfície.
Consistência: O corpo e as papilas são duros e firmes.
Superfície: Com papilas finas. Numerosas partículas (areia, 
restos de conchas, etc.) incrustadas à superfície.
Habitat: Sob camadas de sedimentos.

Colour: Yellow to Orange.
Shape: Cushion with papillae.
Consistency: Firm.
Surface: With thin papillae. Characterized by the presence of 
foreign material (shell debris, sand etc.) incrusted to the sur-
face.
Habitat: Sandy bottoms.

Megascleras: 
Tilóstilos em três tamanhos dife-
rentes
Microscleras: 
Ausentes

Megascleres: 
Tylostyles in three different sizes
Microscleres: 
Absent

11
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Polymastia
penicillus

(Montagu, 1814)

Classe Class
Demospongiae

Subclasse Subclass
Heteroscleromorpha

Ordem Order
Polymastiida

Família Family
Polymastiidae

ESPICULAS
SPICULES

DESCRIÇÃO
DESCRIPTION
Cor: Corpo com cor cinzento escuro ou laranja amarelado. 
Papilas são amarelas pálidas.
Forma: Forma de almofada, com papilas que se projetam do 
corpo, enterrado no substrato.
Consistência: O corpo e as papilas são duros.
Superfície: Corpo híspido. Os poros e os ósculos encontram-
-se nas extremidades das papilas. As papilas exalantes são 
mais largas e em menor número.
Habitat: Sob camadas de sedimentos, ficando a superfície do 
corpo enterrada na areia, firmemente agarrado à rocha por 
baixo dos sedimentos.

Colour: Body is greyish or orange yellow. Papillae are pale yel-
low.
Shape: Cushion, with papillae projecting from the sediment 
covered body.
Consistency: Body hard and papillae stiff.
Surface: Body hispid. Oscules and pores on the papillae. The 
exhalant papillae are larger and fewer in number.
Habitat: Body beneath a layer of surface, firmly attached to the 
rocks beneath the sediments.

Megascleras: 
Tilóstilos em três tamanhos dife-
rentes
Microscleras: 
Ausentes

Megascleres: 
Tylostyles in three different sizes
Microscleres: 
Absent

12
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Cliona
celata
Grant, 1826

Classe Class
Demospongiae

Subclasse Subclass
Heteroscleromorpha

Ordem Order
Clionaida

Família Family
Clionaidae

ESPICULAS
SPICULES

DESCRIÇÃO
DESCRIPTION
Cor: Amarela. Escurece fora de água. Em álcool pode ficar cas-
tanha.
Forma: Tem duas formas distintas: uma perfurante com papilas 
amarelas visíveis através das rochas calcárias; outra grande e 
massiva com papilas caracteristicamente achatadas.
Consistência: Compacta e firme.
Superfície: Macia. Possui uma camada externa mais dura, co-
berta por papilas inalantes retrácteis. Fora de água as papilas 
retraem-se e fecham. Com ósculos grandes.
Habitat: Rochas. O início de vida (forma perfurante) pode ser 
em pedras calcárias, conchas ou algas vermelhas.

Colour: Yellow, becoming darker outside of water and brown in 
alcohol.
Shape: With 2 distinct forms: one boring form with yellow papil-
lae sticking out of limestone; other large massive, with character-
istic flattened papillae.
Consistency: Firm and compact.
Surface: Smooth, with an outer layer tougher. Covered with in-
halant retractable papilla. These papillae close and retract, be-
coming unnoticeable outside of the water. With big oscules.
Habitat: Massive form occurs on rock. Begins life by boring into 
limestone, shells or calcareous red algae.

Megascleras: 
Tilóstilos com típica região in-
chada mesmo antes da extre-
midade
Microscleras: 
Ausentes

Megascleres: 
Tylostyles with swallen heads 
just bellow the tip
Microscleres: 
Absent

13
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Stelligera
rigida

(Montagu, 1814)

Classe Class
Demospongiae

Subclasse Subclass
Heteroscleromorpha

Ordem Order
Axinellida

Família Family
Stelligeridae

ESPICULAS
SPICULES

DESCRIÇÃO
DESCRIPTION
Cor: Amarelo pálido a laranja.
Forma: Ramificada, com extremidades em forma de bolbos.
Consistência: Firme.
Superfície: Híspida. Ouriçada devido a longas espículas que 
se projetam à superfície. Ósculos pequenos.
Habitat: Locais abrigados mas com alguma corrente.

Colour: Pale yellow to orange.
Shape: Branching-erect, with bulbous-like extremities.
Consistency: Firm.
Surface: Strongly hispid. Bristly due to long projecting spicules. 
With small oscules.
Habitat: Sheltered locations with some current.

Megascleras: 
1. Estilos de diferentes tama-
nhos
2. Oxeas de diferentes tama-
nhos
Microscleras: 
3. Euásteres

Megascleres: 
1. Styles in different sizes
2. Oxeas in different sizes
Microscleres: 
3. Euasters

3

21
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Clathria 
coralloides

(Scopoli, 1772) 

Classe Class
Demospongiae

Subclasse Subclass
Heteroscleromorpha

Ordem Order
Poecilosclerida

Família Family
Microcionidae

ESPICULAS
SPICULES

DESCRIÇÃO
DESCRIPTION
Cor: Vermelho acastanhado.
Forma: Incrustante.
Consistência: Suave, facilmente quebrável.
Superfície: Microhíspida, aveludada.
Habitat: Rochas. Mais comum de águas profundas.

Colour: Red to brown.
Shape: Incrusting.
Consistency: Smooth, brittle.
Surface: Finely hispid, velvety.
Habitat: Rocky surfaces. Most common in deep waters. Megascleras: 

1. Subtilóstilos 
Microscleras: 
2. Isoquelas palmadas
3. Toxas de dois tamanhos dis-
tintos

Megascleres: 
1. Subtilostyles
Microscleres: 
2. Palmate Isochelae
3. Toxa in two distict sizes

3

2

1
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Ophlitaspongia 
papilla 

Bowerbank, 1866

Classe Class
Demospongiae

Subclasse Subclass
Heteroscleromorpha

Ordem Order
Poecilosclerida

Família Family
Microcionidae

ESPICULAS
SPICULES

DESCRIÇÃO
DESCRIPTION
Cor: Laranja a vermelho forte. Quando espremida, liberta o 
pigmento.
Forma: Finos tapetes ou com forma de almofada.
Consistência: Forte e elástica. Compressível. Parte-se com 
uma bolacha pouco dura.
Superfície: Homogénea, ligeiramente granulada, híspida. Com 
numerosos ósculos distribuídos por toda a superfície.
Habitat: Rochas, conchas. Associada a algas como Fucus 
e Laminaria. Encontra-se em áreas com forte movimento de 
água.

Colour: Bright Orange-red. The pigment is released when 
squeezed.
Shape: Thin sheets. Can develop into cushions.
Consistency: Firm and elastic. Compressible. Brakes like a 
soft cookie.
Surface: Even, very finely granular, hispid. With numerous os-
cules evenly distributed.
Habitat: On rock or shells. Commonly associated with the al-
gae Fucus and Laminaria. In areas of strong water movement.

Megascleras: 
1. Estilos ou subtilostilos, pe-
quenos e gordos 
2. Subtilostilos finos
Microscleras: 
3. Toxas com pontas finas

Megascleres: 
1. Styles or subtylostyles, small 
and fat
2. Subtylostyles thin
Microscleres: 
3. Toxa with smooth tips

3

2 1
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Tedania 
pillarriosae

Cristobo,2002

Classe Class
Demospongiae

Subclasse Subclass
Heteroscleromorpha

Ordem Order
Poecilosclerida

Família Family
Tedaniidae

ESPICULAS
SPICULES

DESCRIÇÃO
DESCRIPTION
Cor: Laranja com tons de castanho na superfície. Interior laran-
ja brilhante. Laranja escuro em álcool.
Forma: Massiva.
Consistência: Firme, pouco compressível, fácil de quebrar.
Superfície: Regular e suave. Pequenas protuberâncias visíveis 
em alguns locais.
Habitat: Zona intertidal ou sublitoral rasa. Em superfícies ro-
chosas graníticas, em fendas e grutas escuras.

Colour: Orange to orange brown at the surface and bright or-
ange inside. Dark orange in alcohol.
Shape: Massive.
Consistency: Firm, barely compressible, easily torned.
Surface: Even, soft. Small conules visible in some parts.
Habitat: On intertidal or subtidal shallow areas. On rocky gra-
nitic surfaces, dark caves, and in crevices.

Megascleras: 
1. Estilos 
(Estronguilos raros ou ausentes)
Microscleras: 
2. Oniquetas

Megascleres: 
1. Styles
(Strongyles rare or absent)
Microscleres: 
2. Onychaetes

2

1
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Phorbas
plumosus

(Montagu, 1818)

Classe Class
Demospongiae

Subclasse Subclass
Heteroscleromorpha

Ordem Order
Poecilosclerida

Família Family
Hymedesmiidae

ESPICULAS
SPICULES

DESCRIÇÃO
DESCRIPTION
Cor: Variável de laranja a violeta acastanhado.
Forma: Massiva, mais ou menos espessa, ou em forma de 
almofada.
Consistência: Compressível, bastante resistente.
Superfície: Mais ou menos macia, ou ligeiramente tubercu-
lada, com numerosos ósculos visíveis, assim como os canais 
exalantes.
Habitat: Águas rasas, zona de algas.
Outras características: Cheiro intenso.

Colour: Orange to violet-brown.
Shape: Massive, more or less thick, or cushion shape.
Consistency: Compressible, very resistant.
Surface: More or less smooth, or slightly tuberculate, with nu-
merous visible oscules. Excurrent channels also visible.
Habitat: Typically in shallow waters, in the kelp zone.
Other remarks: Strong smell.

Megascleras: 
1. Acantóstilos em dois tama-
nhos distintos
2. Tornotes
Microscleras: 
3. Isoquelas arqueadas

Megascleres: 
1. Acanthostyles in two different 
sizes
2. Tornotes
Microscleres: 
3. Arcuate isochelae

3

21
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Amphilectus 
fucorum

(Esper,1794)

Classe Class
Demospongiae

Subclasse Subclass
Heteroscleromorpha

Ordem Order
Poecilosclerida

Família Family
Esperiopsidae

ESPICULAS
SPICULES

DESCRIÇÃO
DESCRIPTION

Cor: Vermelho alaranjado (incolor em álcool). Pode ser incolor 
em águas profundas. Quando espremida liberta pigmento.
Forma: Elevado polimorfismo. Em zonas com pouca corrente 
pode apresentar longos filamentos.
Consistência: Macia e quebrável, com contração leve.
Superfície: Uniforme. Com pequenos poros exalantes e óscu-
los dispersos por toda a superfície, podendo emergir ligeiramen-
te, ou situarem-se no topo de projeções em forma de vulcão. 
Possui uma fina camada transparente e viscosa.
Habitat: Pode ser encontrada em correntes fortes. Sobre ro-
chas. Poderá crescer junto com a alga Laminaria, conchas ou 
ascídios. Típica de águas pouco profundas.
Outras características: Possui cheiro forte e desagradável.

Colour: Orange reddish (colourless in alcohol). Can be colour-
less in deep waters. When squeezed, a reddish pigment is re-
leased.
Shape: Extremely polymorphic. Can present long filaments in 
areas of low tide.
Consistency: Soft and easily torn. Slight contraction.
Surface: The surface is covered with small exhalant pores and 
oscules, slightly raised from the surface, or on top of volcano 
shaped projections. Covered with a thin, transparent and slimy 
layer.
Habitat: Characteristic from strong tide areas. Appears on rock 
surfaces. Commonly near the green algae Laminaria, shells and 
ascidians. Occurs normally in shallow waters.
Other remarks: Presence of a strong and unpleasant smell.

Megascleras: 
1. Estilos lisos e curvados, com 
tamanho variável
Microscleras: 
2. Isoquelas palmadas peque-
nas (podem ser raras)

Megascleres: 
1. Styles smooth and slightly 
curved 
Microscleres:
2. Isochelae palmate small (can 
be rare)

2

1
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Halichondria 
(Halichondria)

panicea 
(Pallas, 1766)

Classe Class
Demospongiae

Subclasse Subclass
Heteroscleromorpha

Ordem Order
Suberitida

Família Family
Halichondriidae

ESPICULAS
SPICULES

DESCRIÇÃO
DESCRIPTION
Cor: Amarela alaranjada. Esverdeada em locais bem ilumina-
dos, possivelvente devido à presença de microssimbiontes.
Forma: Variável; Normalmente incrustante.
Consistência: Compressível e pode facilmente partir-se.
Superfície: Espécimes a crescer em zonas intertidais muito ex-
postas ao mar podem possuir a superfície completamente lisa, 
quase sem chaminés osculares visíveis. Em zonas mais prote-
gidas, desenvolvem chaminés em forma típica de vulcão, com 
ósculos relativamente grandes.
Habitat: Trata-se de uma espécie oportunista. Encontra-se nas 
rochas ou outros substratos duros, como conchas.
Outras características: Forte odor

Colour: Orange-yellow or pale yellowish green. Greener when 
exposed to sun light, possibly due to the presence of microsym-
bionts.
Shape: Variable. Normally incrusting.
Consistency: Firm, compressible, easily torn.
Surface: Specimens growing in the intertidal region, exposed to 
the full oceanic surf may be entirely smooth with barely visible 
oscular chimneys. More intermediate environments show the 
typical volcano-shaped chimneys, with oscules relatively large.
Habitat: It is an opportunistic species. Found on rocks and other 
hard substrates, like shells.
Other remarks: Strong odour.

Megascleras: 
Oxeas ligeiramente curvadas
Microscleras: 
Ausentes

Megascleres: 
Oxeas slightly curved
Microscleres: 
Absent
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Hymeniacidon 
perlevis

(Montagu, 1814)

Classe Class
Demospongiae

Subclasse Subclass
Heteroscleromorpha

Ordem Order
Suberitida

Família Family
Halichondriidae

ESPICULAS
SPICULES

DESCRIÇÃO
DESCRIPTION
Cor: Laranja, avermelhada (fica castanho/preta em álcool).
Forma: Tapetes finos, forma de pequenas almofadas ou massi-
vas.
Consistência: Compacta, firme e compressível.
Superfície: Variável, macia, formando tubérculos ou projeções. 
Ósculos espalhados pela superfície, ao mesmo nível que esta 
ou no topo dos ramos.
Habitat: Encontra-se em pedras, rochas, conchas. Vários in-
vertebrados encontram-se associados a esta espécie.
Outras características: É a esponja mais comum da costa do 
Oeste da Europa. Possui um cheiro ligeiramente adocicado.

Colour: Orange, reddish (dark brown.to black in alcohol).
Shape: Thin sheets, cushions, to massive-forms.
Consistency: Firm, compact and compressible.
Surface: Variable, smooth, tuberculate or covered with branch-
ing processes. Oscules scattered, at surface level or on top of 
branching processes.
Habitat: On stones, rocks, shells. Many invertebrates are as-
sociated with this species.
Other remarks: The most common species along the coasts of 
Western Europe. Smell sweetish.

Megascleras: 
Estilos (podem apresentar duas 
categorias de tamanho)
Microscleras: 
Ausentes

Megascleres: 
Styles (can appear in two diffe-
rent sizes)
Microscleres: 
Absent
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Haliclona 
sp.

Classe Class
Demospongiae

Subclasse Subclass
Heteroscleromorpha

Ordem Order
Haplosclerida
Família Family

Chalinidae

ESPICULAS
SPICULES

DESCRIÇÃO
DESCRIPTION
Cor: Entre o branco e o rosa.
Forma: Massiva com fistulas que surgem da zona superior e la-
teral da esponja. Podem surgir fistulas mais finas e sem ósculos.
Consistência: Firme, ligeiramente frágil.
Superfície: Macia. Nas fistulas surgem ósculos bastante largos.
Habitat: Locais relativamente protegidos mas com movimenta-
ção de águas. Mais frequente em substratos verticais que hori-
zontais.

Colour: Whitish to pinkish.
Shape: Massive, commonly with fistules arising from the upper 
and side parts of the sponge. Thinner fistules, with no oscules 
may be present.
Consistency: Rather firm, slightly brittle.
Surface: Smooth. Oscules present in the thicker fistules.
Habitat: In fairly sheltered places with moderate water move-
ment. More frequent on vertical than on horizontal substrates.

Megascleras: 
Oxeas a direito ou ligeiramente 
curvadas
Microscleras: 
Ausentes

Megascleres: 
Oxeas, straight or slightly curved
Microscleres: 
Absent
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Haliclona
simulans

(Johnson, 1842)

Classe Class
Demospongiae

Subclasse Subclass
Heteroscleromorpha

Ordem Order
Haplosclerida
Família Family

Chalinidae

ESPICULAS
SPICULES

DESCRIÇÃO
DESCRIPTION
Cor: Várias escalas de castanho, amarelo, laranja ou cinzento. 
Áreas em volta dos ósculos são mais esbranquiçadas.
Forma: Extremamente polimórfica. Pode formar tapetes muito 
finos a grandes massas.
Consistência: Firme, incompressível.
Superfície: Forma extensões com ósculos bem visíveis.
Habitat: Debaixo de rochas e em fendas.

Colour: Various shades of brown, yellow, orange and grey. Ar-
eas surrounding the oscula are whitish.
Shape: Extremely polymorphic. From thin sheets to large mass-
es.
Consistency: Hard, uncompressible.
Surface: Form extensions with visible oscules.
Habitat: Under rocks or crevices.

Megascleras: 
Oxeas
Microscleras: 
Ausentes

Megascleres: 
Oxeas
Microscleres: 
Absent
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Dysidea 
fragilis

(Montagu, 1814)

Classe Class
Demospongiae

Subclasse Subclass
Keratosa

Ordem Order
Dictyoceratida
Família Family

Dysideidae

ESPICULAS
SPICULES

DESCRIÇÃO
DESCRIPTION
Cor: Esbranquiçada ou cinza. Também pode ser castanha.
Forma: Incrustante ou massiva.
Consistência: Variável. Elástica (dependendo da quantidade 
de espongina). Normalmente resistente.
Superfície: Macia, formando pequenas estruturas semelhantes 
a cones. Ósculos dispersos.
Habitat: Rochas, fendas, sedimento, conchas, areia.

Colour: Whitish to grey. Can also be brown.
Shape: Incrusting or lobate.
Consistency: Variable. Elastic (depending on the amount of 
spongin). Usually tough.
Surface: Smooth and conulose. Oscules scattered.
Habitat: Rocks, crevices, on shells or gravel.

Sem espiculas

No spicules
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Ircinia 
variabilis 

(Schmidt, 1862)

Classe Class
Demospongiae

Subclasse Subclass
Keratosa

Ordem Order
Dictyoceratida
Família Family

Irciniidae

ESPICULAS
SPICULES

DESCRIÇÃO
DESCRIPTION
Cor: Variável: cinzento, esverdeado, castanho, esbranquiçado, 
violeta.
Forma: Variável: incrustante a massiva.
Consistência: Firme. Difícil de partir.
Superfície: Coberta por pequenas estruturas conulosas. Óscu-
los distribuídos irregularmente e elevados da superfície.
Habitat: Superfícies rochosas, protegidos da luz solar, em cavi-
dades ou grutas.

Colour: Variable: grey, greenish, brown, whitish, violet.
Shape: Incrusting or massive.
Consistency: Firm. Hard to tear or cut.
Surface: Covered with small conules. Oscules scattered 
throught the surface and slightly elevated.
Habitat: Rocky surfaces, protected from direct sun light, on 
caves or crevices.

Sem espiculas

No spicules
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Aplysilla 
rosea

(Barrois, 1876)

Classe Class
Demospongiae

Subclasse Subclass
Keratosa

Ordem Order
Dendroceratida

Família Family
Darwinellidae

ESPICULAS
SPICULES

DESCRIÇÃO
DESCRIPTION
Cor: Vermelho rosado.
Forma: Incrustante, formando um tapete muito fino.
Consistência: Suave e compressível.
Superfície: Coberta de pequenas projeções de fibras (efeito 
“pele de galinha”). Entre as projeções é bastante macia. Com 
muitos ou apenas 1 ósculo, situado no topo de chaminés oscu-
lares.
Habitat: Rochas na zona intertidal. Em zonas de sombra, pro-
tegidas.

Colour: Brick or deep red.
Shape: Incrusting and thin.
Consistency: Soft and compressible.
Surface: With projections at the surface forming low conules of 
protruding single fibbers (“goose flesh” effect). Smooth between 
conules. With one or more oscules at the top of oscular chim-
neys.
Habitat: Common under boulders in the intertidal region. On 
shaded locations.

Sem espiculas

No spicules
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