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Resumo

Com um crescente número de embarcações equipadas com um Sistema Automático de Identifi-
cação cada vez mais dados estão a ser gerados e a criar a oportunidade para novos estudos sobre o
comportamento de embarcações marítimas.

Para resolver o problema de assegurar e proteger vastas quantidades de zonas marítimas seria
interessante a ajuda de um sistema automático de deteção de navios com comportamentos anor-
mais. Foi com esse objetivo em mente que ao longo do desenvolvimento deste projeto se tirou
partido das capacidades de teoria relacionada com Memória Temporal Hierárquica (Hierarchical
Temporal Memory - HTM) e respetivos algoritmos para identificar comportamentos anômalos em
trajetórias de navios de forma a melhorar as capacidades de monitorização e a possibilidade de
avisos mais oportunos e consequente plano de ação desde simples contato até à identificação e
posterior missão de captura ou salvamento.

Ao longo desta dissertação um sistema baseado em HTM foi desenvolvido e aplicado à tarefa
acima com bons resultados na modelação das trajetórias de embarcações ao longo da costa Por-
tuguesa e na identificação de um subgrupo de trajetórias com comportamentos anômalos previa-
mente identificados.
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Abstract

With an increasingly number of ships equipped with an Automatic Identification System (AIS)
more and more data is being generated and creating an opportunity for new studies of the maritime
vessel behaviours.

The problem of securing and protecting vast expanses of the maritime zone could use the help
of an automatic vessel anomalous behaviour system. With that goal in mind the development of
this project took the capabilities of Hierarchical Temporal Memory (HTM) theory and respective
algorithms to help identify anomalous behaviours on vessel trajectories improving sea monitoring
capabilities and the possibility of more opportune warnings and subsequent action plans from
simple contact or vessel identification to arrest or rescue missions.

Along this dissertation an HTM based system was developed and applied to the task above with
good results on the establishment of a model of vessel trajectories on the Portuguese maritime zone
and good performance on the identification of a subset of trajectories with anomalous behaviours
previously identified.

iii



iv



Acknowledgements

I would like to thank Numenta Inc. which open sourced much of their work related with HTM
with careful attention to the internet community which accompanied their work over the years and
to which various materials were made available such as all kinds of videos, papers and implemen-
tations which were very important to the development of this dissertation.

Thanks to Aníbal Matos at FEUP for being available for any need throughout the process,
specially on the preparation and project set-up.

Thanks to Paulo Gomes at Critical Software for pointing out the general direction to pursue
all along.

And finally thanks to my friends and family which in the end of the day are the greatest support
for a continuous arduous work.

José Pedro Gomes

v



vi



Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Fundamental Concepts 7
2.1 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Trajectory Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Previously Employed Data Mining Methods . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Density Based Spatial Clustering of Applications with Noise . . . . . . . 10
2.3.2 Case-Based Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 HTM Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 Hierarchical Temporal Memory . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Sparse Distributed Representations . . . . . . . . . . . . . . . . . . . . 12
2.4.3 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.4 Spatial Pooler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.5 Temporal Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Next step: Anomaly detection with HTM system . . . . . . . . . . . . . . . . . 19

3 Developed System 21
3.1 Processing the data with an HTM based system . . . . . . . . . . . . . . . . . . 21

3.1.1 Anomaly Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Anomaly Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Visualizing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 System Version: 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Experimental Work 27
4.1 Geospatial Coordinates encoder tuning . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Speed Over Ground (SOG) . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.3 Last notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Adding data to input space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.1 SOG Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 COG Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.3 Time Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vii



viii CONTENTS

4.3.4 Distance Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.5 Delta Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Test List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Conclusion 43
5.1 Work Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Limitations and Future Improvements . . . . . . . . . . . . . . . . . . . . . . . 50

A Statistics Sample Results of Tests Data Model 53
A.1 Graphics and Tests Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

References 63



List of Figures

2.1 An Overview of the Steps That Compose the KDD Process (Fayyad, Piatetsky-
Shapiro, and Smyth, 1996, [7]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 DBSCAN algorithm cluster example (Lutins, 2017, [17]) . . . . . . . . . . . . 11
2.3 Union of Sparse Distributed Representations (Numenta, 2018, [21]) . . . . . . . 14
2.4 The encoding of the day of week on a date encoding (Purdy, 2016, [22]) . . . . 15
2.5 Pyramidal Neuron and respective HTM Neuron (Numenta, 2018, [20]) . . . . . 17
2.6 Temporal Memory sequence learning (Numenta, 2018, [20]) . . . . . . . . . . 18

3.1 System component diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Anomaly identification process using HTM (Numenta, 2014, [19]) . . . . . . . 23
3.3 QuantumGIS normal behaviour trajectories visualization on Portuguese coast; layer

visibility selection (left), feature inspection (right), data time manager plugin (bot-
tom left) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Developed plugin user interface for QuatumGIS . . . . . . . . . . . . . . . . . 26

4.1 Visualization of resulting trajectories by using different scale parameter with green
for normal movement and red on courses deemed anomalous (4 months data on
passenger vessels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Visualization of resulting trajectories divided by month; Highlight of anomalous
behaviour on left and normal on right image (1 month data; passenger vessels;
scale:5000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 CBR and HTM anomaly average and waypoints distribution over SOG . . . . . 31
4.4 Waypoints visualization on different Speed Over Ground ranges (speed in knots) 32
4.5 Waypoints (blue) and anomaly average (orange) distribution over weeks and days

of week . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 a) Waypoints (blue) distribution over days of week b) Waypoints (blue) and anomaly

average (orange) distribution over days of week and time of day . . . . . . . . . 34
4.7 Waypoints distribution over days of week (3 weeks: from Sunday to Saturday) . . 35

5.1 Histogram depicting anomaly distribution for all tests on subsets of anomalous
(left) and normal data (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Histogram depicting anomaly likelihood distribution for all tests on subsets of
anomalous (left) and normal data (right) . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Table with quantitative results for all tests; Fβ score with β = 0.5 and threshold
Lt > 0.99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 Table with quantitative results for all parameters maximum value, meaning best or
worst value depending on the parameter type; the tie-breaker was the Fβ Score so
that it is the maximum with the better overall results . . . . . . . . . . . . . . . . 47

5.5 Table with results for all tests overall best result given by the best Fβ Score . . . . 49

ix



x LIST OF FIGURES

A.1 Anomaly Score Distribution for anomalous subset. Note: Scores of 0 were changed
to negative so that it’s possible to easily separate them on the distribution . . . . . 54

A.2 Anomaly Score Distribution for normal subset. Note: Scores of 0 were changed
to negative so that it’s possible to easily separate them on the distribution . . . . . 55

A.3 Anomaly Likelihood Distribution for anomalous subset . . . . . . . . . . . . . . 56
A.4 Anomaly Likelihood Distribution for normal subset . . . . . . . . . . . . . . . . 57
A.5 Rate of anomaly scores equal to 0 for each test with both the rate for the last month

of data (where the model is already reliable) and for the subset of anomalous
flagged data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.6 Rate of anomaly scores equal to 0 for each test with both the rate for the last month
of data (where the model is already reliable) and for the subset of normalcy flagged
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.7 Rate of anomaly scores over 0.9 for each test with both the rate for the last month
of data (where the model is already reliable) and for the subset of anomalous
flagged data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.8 Rate of anomaly scores over 0.9 for each test with both the rate for the last month
of data (where the model is already reliable) and for the subset of normalcy flagged
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.9 Results of anomaly detection for all tests with St > 0 as threshold . . . . . . . . . 60
A.10 Results of anomaly detection for best result parameters using only anomaly score

(St > δ ) as threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.11 Best results of anomaly detection for all tests using only anomaly score (St > δ )

as threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.12 Results of anomaly detection for overall best result parameters . . . . . . . . . . 61
A.13 Overall best results of anomaly detection for all tests . . . . . . . . . . . . . . . 61



List of Tables

4.1 Experimental system tests with settings summary description . . . . . . . . . . . 42

xi



xii LIST OF TABLES



Abbreviations and Symbols

AIS Automatic Identification System
CBR Case-Based Reasoning
SVM Support Vector Machine
BN Bayesian Network
VTMIS Vessel Traffic Monitoring and Information Systems
MSA Maritime Situational Awareness
VTS Vessel Traffic Services
SOG Speed Over Ground
COG Course Over Ground
ROT Rate Of Turn
KDD Knowledge Discovery in Databases
MMSI Maritime Mobile Satellite Identity
SDR Sparse Distributed Representations
HTM Hierarchical Temporal Memory
SP Spatial Pooler
TM Temporal Memory
GIS Geographical Information System
QGIS QuantumGIS
OSGeo Open Source Geospatial Foundation

xiii





Chapter 1

Introduction

On our blue planet where a big part of the surface is covered by water, maritime transportation

represents approximately 80 percent of the volume of global trade (Asaritoris et al., 2013, [3]).

This presents a big challenge on many fronts including efforts to maintain the security of all parts

involved or environment concerns while the need to improve the control over all the traffic that is

entailed in a sector with gigantic economy global repercussions is a continuous challenge.

1.1 Context

With the advance of technologies devices like the Automatic Identification System (AIS), a ship

reporting system that brought great improvements to the Maritime Situational Awareness (MSA)

and that was first developed for collision avoidance and which has lately transformed in the core

of the efforts for better MSA. This device is now an international standard on communications

between vessels or with terrestrial stations and brought an improvement on the general maritime

security and control by helping vessels to avoid collisions and by assisting Vessel Traffic Services

(VTS) on the control of vessels near the coast.

With the ever growing need for better methods of control of the coastline and the appearance

of data sources like the AIS system there was a need to create a new integrated environment that

could allow technicians which needed to have a easier access to the growing amounts of data for a

better performance on tasks like identification of anomalous situations related to the enforcement

of the law or environment protection and better access to the data which is critical on search and

rescue missions. In partnership with the company Critical Software, the Portuguese navy, duty-

bound to perform on those fields, developed a software called Oversee which integrates maritime

information available into one ecosystem that presents this information to navy operators in real

time in a way that allows them to make the best of the integrated data for faster response on all

situations on the Portuguese coastline.

After the development of the software Oversee the result was that nowadays vessels are mon-

itored by human technicians with the use of the new system and when there is a suspicious be-

haviour or emergency situation the operator in charge of monitoring starts the means needed to

1



2 Introduction

understand the suspicious behaviour or to give the necessary support on the emergency response.

Since this is executed manually it consumes a lot of human resources and doesn’t guarantee that

all the suspicious behaviours are detected which presents the possibility for improvement of the

current system.

1.2 Motivation

With the ever growing number of data sources available is expectable that systems factoring this

data for surveillance and providing useful inputs to users were more readily available than they

actually are. Recently there’s been a large investment on the development of systems that make

use of the available data provided by AIS and radars to help on security of maritime space, and

integration of Vessel Traffic Monitoring and Information Systems (VTMIS), such as the Oversee

system, providing intelligence to this systems and making use of their already available informa-

tion system architecture to improve on the information and automation capabilities provided to

end users. This capabilities can range from simple detection and alarm on conditional trigger or

even to the ability of learning with the user input and improving at each new detection, be it from

the automatic system or user provided the goal is to achieve the best results today while in the

future achieving a reliable piece of software able to aid operators accomplish their duty.

So with the idea that "being able to do it automatically would be much more efficient and less

error prone", a new phase that extends the current Oversee system was started. For this using

Machine Learning and the ability to identify these behaviours and learn from it is one of the paths

that is going to be explored. This phase is already midway where related work was previously

developed.

The first objective lies on understanding the different behaviours that would be of interest

to understand and latter identify as a normal or anomalous vessel behaviour. There are several

anomalous behaviours class possibilities identifiable while performing analysis of the AIS trans-

missions data which is one of the most important maritime reporting systems and from where

very large amounts of data are available, examples of these behaviours classes are: deviation from

standard routes, unexpected AIS activity, unexpected port arrival, close approach and zone entry

(Lane et al., 2010, [15]).

The second is pointed by the need of methods on identification of the behaviours formerly

identified and which make the end solution backbone. Focusing on machine learning approaches

were identified several techniques such as pattern classification techniques or application of Gaus-

sian Processes for normality model creation. It’s now important to expand the range of possibil-

ities and better understand the different pros and cons of the techniques such as ability to adapt

between using new data sets and using knowledge provided by system supervisors or experts on

the preparation phase or along the system life, it’s also important to contemplate data needs and

performance which should relate with the different kinds of behaviour being identified.

The related work previously developed entails the understanding and preprocessing of the

data available which culminated on using data from the AIS system with the main focus on the
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use of GPS positions, source and destination points, Speed Over Ground (SOG) and Course Over

Ground (COG). Using the AIS messages data and after preprocessing them in a way that makes

the amount of data being used more manageable the first prototype was developed, an algorithm

able to classify the course points in start and end point and way-points which refer to any point

between the start and end point. A group of this points can create a track which, at that point of

development, presented as an important unit for the identification of anomalous behaviour. The

most recent work was done using case-based reasoning (CBR) and uses a track as case-unit, similar

tracks are used as comparative cases to establish the normal behaviour which, on the other hand,

allows the identification of anomalous tracks which present behaviours that deviate from the norm

for tracks with similar characteristics.

1.3 Problem Definition

As prior explained above this project comes to cover the needs of an automated system capable

of detecting anomalous behaviours of maritime vessels on the Portuguese coastline improving

the response time and reliability on the identification and necessary actions to handle the diverse

situations that happen daily and that present a threat to the security of the country or simply to in-

dividuals in distress situations on Portuguese maritime space. This project comes as an expansion

of the Oversee project being the "automatic" keyword to the development on this phase. Since this

project is ongoing it’s important to make clear some of the steps already done even if on a tentative

way:

1. AIS messages preprocessing into more compact data sets without reducing relevant data and

down sample of the data into a meaningful rate for better performance;

2. Establishment of three main classes:

• Vessel: represents one vessel identification and contains all information on the current

state like last location transmitted and navigation data, state of the vessel - Sailing,

Stationary or Lost - and, of course, static information like Maritime Mobile Satellite

Identity (MMSI) or ship type which includes code numbers for fishing, passenger,

sailing, tanker, diving or even military vessels.

• Way-point or waypoint: this stands for every geographic point received along the

course and maintains the relevant data like position, state of the vessel at the moment,

transmission time and possible indirect data like a Calculated Speed Over Ground that

depends on the distance and time from the last transmission to obtain an average speed

comparable with the SOG received from the vessel and which brings new informa-

tion. This class can have four states: Track Start, Track End, Stationary Point and

Way-point.

• Track: this represents a group of way-points and is a trajectory performed by a specific

vessel assigned to the track.
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3. Successful application of data mining algorithm based on case-based reasoning to identify

anomalous tracks and respective vessels while using restricted data set with definition of

distance metrics for comparative analysis between cases (database of tracks as models).

Knowing what’s already developed defines the future track of the solution to be achieved, at

this point we have a proof of concept that using case-based reasoning can perform well on a real

time identification of anomalous behaviours, since this is the case it’s expected for the near future

a continuous work on expanding the initial project. Since this expansion comes from the problems

present on the initially found solution it’s important to identify them:

• There’s still problems on the identification of some specific situations that should be abnor-

mal and which are still not being identified meaning the metrics are still inappropriate.

• The solution is limited to a single class of vessels which makes the differentiation of nor-

mal/abnormal behaviour a lot simpler. For the same reason the metrics used for the current

case-based reasoning won’t support the ability to identify normalcy on vessels with very

contrasting behaviours between classes, for example a fishing boat will need very different

metrics since there’s probably little relation between the way a track for a cargo vessel can

be modelled in contrast with a fishing one, this is expected since different classes of ships

have various goals in areas of activity generally unrelated. There’s the need to separate

global metrics and local ones which should only be applied to specific ship classes.

• The CBR implementation isn’t capable of making good use of the natural waypoint temporal

sequence on modelling trajectories from vessel tracks which are modelled more as waypoint

array then as real movement trajectories.

• CBR resulting models are not apt at generalization due to being limited by implementa-

tion which makes use of what are basically spatially distributed statistics to model normal

behaviour.

• There’s yet no way to easily classify (ab)normal tracks manually allowing the case-base

improvement and testing the performance of the algorithms learning ability from expert

knowledge which would represent an important advantage for future growth.

1.4 Goals

The current approach using case-based reasoning has identified with success anomalous behaviours

and presents as a viable solution for the problem of automatic identification of anomalous vessels

behaviours. Despite that it’s still heavily restricted and using only a reduced amount of data and

being applied on a restricted number of vessel classes. It’s able to identify some anomalies but

still not presenting the actual reasoning for the anomaly, while the later could be achieved by using

expert knowledge to define the anomalous cases found, it’s still too early for this but it is by itself

an important characteristic that makes this approach very interesting. Since the current Oversee
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system does manual identification there’s already experts able to do the classification of cases

which should create a positive feedback cycle able to improve the case database and subsequently

the results performance. The application of case-reasoning brings the need to define comparative

metrics still being improved for a better performance on the identification of anomalous behaviour

and the reduction of false-positives.

At first this project had as goals to improve and generalize previous work developed on the

case-based reasoning solution. The big goal of the project was the creation of new metrics or

improvement of the existent ones while abating the restrictions previously established such as the

application of the same algorithm on different classes of vessels which would present new needs on

the identification of new (ab)normal cases. This would present challenges on the current defined

characteristics of normalcy which may have to be adapted per class or create the need to imple-

ment specific metrics per class, the introduction of new data until then deemed as not pertinent

that would improve the case characterisation or other complementary algorithms application. At

some point during preparation of the this project a new approach to solve the problem of anomaly

identification was identified. This approach uses a new algorithm introduced initially by Critical

Software advisor as just a new possibility for analysis namely HTM.

This algorithm or group of algorithms which build the Hierarchical Temporal Memory (HTM)

theoretical framework and which after analysis were considered to have the necessary charac-

teristics for the development of a new HTM based solution had as core feature the capacity of

providing temporal memory. Previously as future possibilities on the CBR system improvements

using temporal data was one of the appointed enhancements since cases were restricted by the im-

plementation based more on a point basis then on a track basis since the sequence of way-points

wasn’t particularly important even if track related information was being used on metrics like dis-

tance to track start. Using HTM provides the ability to describe tracks as specific sequences of

waypoints with well defined characteristics which grouped with good generalization should im-

prove the normal trajectories modelling. The models achieved by using HTM are expected to

improve the ability to discern anomalies between tracks using not just the same information used

previously which was assigned to each point but also the inherent information that is the sequence

defined by these points.

The final goal stands on using Hierarchical Temporal Memory to create an application ca-

pable of identifying anomalous behaviour on maritime vessels and to better understand the use,

restrictions, concerns and capabilities of it’s algorithms and theory at this project end.

1.5 Solution Approach

The first step of the solution should be defined as the development of a software system capable

of retrieving data and processing it using HTM to create a model of the normal data. The initial

system should be simple and use HTM to model vessel trajectories by using their simpler and

meaningful feature, the GPS coordinates. After successful data modelling, anomalies should be
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identified and the results analysed and parameters adapted to setup a basic system capable of

modelling and anomaly identification even if with low performance.

After that new iterations of KDD should start with the need to analyse why performance is

beyond the expected, find the relevant data which can improve characterization of ship class tracks

and evaluate performance globally with other classes and if a crippling of global performance is

found a new metric should be evaluated until the possibilities are exhausted. The next steps should

encompass proceeding with analysis of different classes evaluating how the metric performs for

each class and identifying the classes where worst performance is obtained.

As a complex project developed along years of work where the final result is not well defined

with rather simple ideas of the possibilities present in a solution but where the way to achieve these

results needs to be explored along the way it’s not feasible to architect a solution with a big plan

for all phases and for a final result. This is the kind of project where agile development techniques

shine. Agile where short cycles accompanied by discussion of obtained results with planning for

new short cycle of development should be the best way to achieve results. The solution should

be incrementally developed from the then current point onward trying to improve on the problems

detected and finding new ones while solving the challenges and gaining a better insight of the true

capabilities and limitations of the methods already in use.

The solution should then be created incrementally by refining the application until a bottle-

neck is achieved with exhausted possibilities on the current methods exploration, only then should

be necessary to find a new breakthrough with focus on solving the limitations found during re-

evaluation of the results obtained or introducing new features found relevant to the application at

that point of the development cycle.



Chapter 2

Fundamental Concepts

This section presents relevant information for the development of a solution and to better un-

derstand the present problem and previously work developed which should bring a new grasp on

solution possibilities and on different ways to tackle future problems and challenges from previous

experiences.

2.1 Data Analysis

With the crescent amounts of data availability a well defined approach to the analysis of large pools

of data is crucial. In this project the data available mainly from AIS system is presented in raw text

messages which include a lot of data from which knowledge needs to be extracted, this message

represents in and of itself a huge amount of information with lots of important knowledge to be

extracted but it’s also filled with irrelevant data that won’t bring anything to the expected results

while it represents really huge amounts of resources on computational time and on the hardware

needed to manage all this data. In this project the need of real time analysis of data from one of the

biggest maritime areas in Europe, the Portuguese coast, creates an even more important emphasis

on good application of knowledge extraction methodologies.

Knowledge Discovery in Databases (KDD) (Fayyad, Piatetsky-Shapiro, and Smyth, 1996, [7])

focus exactly on the development of methods and techniques for making sense of data, during this

process the main mission is to transform raw data which, like in this case, represents humongous

amounts of data into models that are capable of represent the entire set of data and could prove

useful to predict future values or tendencies or simply help to abate the relevance of missing data.

KDD is an iterative process and entails several steps 2.1:

1. Understand the domain data being treated, background knowledge and identifying expected

process results;

2. Select a data set with all the necessary variables to apply the process;

3. Clean and pre-process the data treating noise, missing data and dealing with time-sequence

data;

7
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Figure 2.1: An Overview of the Steps That Compose the KDD Process (Fayyad, Piatetsky-
Shapiro, and Smyth, 1996, [7])

4. Reduce and project data depending on the goal of task to achieve dimensionality reduction

or transformation effectively reducing the variable number or establishing invariant repre-

sentations for the data;

5. Map the goals of KDD process to data-mining methods, for example, summarization, clas-

sification, regression, clustering;

6. Exploratory analysis and selection of hypothesis to test, the selection of data mining algo-

rithms to be applied with the respective parameter tuning and taking in consideration that

selected algorithms must match expected goals, resulting models can present different char-

acteristics like predictive capabilities or variable difficulty understanding the model;

7. Data mining: searching for patterns of interest and particular representation form or set;

8. Interpretation of the mined patterns with possibility of returning to previous steps for further

iteration. Visualization of the extracted patterns, models or data from the models can present

useful insights;

9. Act on the discovered knowledge: direct use, incorporate into another system for further

action or simple documentation and report to interested targets. This step can also include

the verification and resolution of potential conflicts with expectations based on previously

believed or extracted knowledge;

Now that we have a methodology to use for the data analysis let’s focus on the seventh step,

data mining. There’s two main categories of methods related with the expected goals, they are

prediction and description. The prediction category emphasis’s methods that give insight into

unknown future values for specific variables using present data. Description is about discovering

interpretable patterns from the existing data. Of course, as sometimes both actions are required

it’s common to find methods that can fit both categories.
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Prediction and description can be achieved using several approaches (Fayyad, Piatetsky-

Shapiro, and Smyth, 1996, [7]):

• Classification: learning a function that maps a data item into one of several predefined

classes. An example is the classification of objects in image databases.

• Regression is learning a function that maps a data item into real-valued prediction variable,

this means a correlation between two or more variables exists and the prediction depends

on this correlation. An example is the estimation of a patient survival probability using the

results of a set of diagnostic tests.

• Clustering is a descriptive task where one seeks to identify a finite set of categories (clusters)

to describe the data. A simple example can be the clustering of the way-points of vessels

where the direction of movement is well defined which generally can achieve a simple map

of navigation lanes appointed by international regulations for specific destinations.

• Summarization involves methods for finding a compact description for a subset of data. An

example is the use of mean and standard deviation to describe a data set.

• Dependency modelling focuses on finding significant dependencies between variables.

• Change and deviation detection focuses on discovering changes between data and previously

measured or normative values.

2.2 Trajectory Mining

(Mazimpaka and Timpf, 2016, [18]) article defines a trajectory as a set of points where each point

is represented by a spatial location, the time-stamp at which the point occurred and possibly other

information that contextualizes the point history. The article proposes two mining methods:

• Primary methods which generally fall into two types of algorithms previously mentioned:

clustering and classification. Clustering algorithms being unsupervised have the advantage

of not requiring labelled data. On the article algorithms like ST-DBSCAN (Birant and

Kut, 2007, [4]) which are an extension of the to be discussed DBSCAN algorithm on the

next section. Another important alternative mentioned is the TraClus clustering algorithm

(Lee et al., 2008b, [16]) which instead of entire trajectories uses only trajectory sections.

• Secondary methods fall in three types:

– Pattern mining which tries to discover movement patterns in trajectories;

– Outlier detection which tries to discover trajectories not complying with the expected

routes, which requires previous knowledge of what is the expected behaviour, this is a

very interesting approach to solve the problem of anomalous behaviour in trajectories

being limited by the lack of classified normality data.
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– Prediction tries to discover the future location of objects based on already seen trajec-

tories of them and expecting the same results.

2.3 Previously Employed Data Mining Methods

To extract knowledge from a dataset there’s a multitude of methods that can be applied depending

of data and resources availability and performance expectations. Previous work was developed to

solve the problem introduced and revisited on this project which is summarized below.

2.3.1 Density Based Spatial Clustering of Applications with Noise

One of the most used algorithms applied to the set of data obtained from AIS systems is the Density

Based Spatial Clustering of Applications with Noise (DBSCAN) which was also used in the past

during the development of the first solution to the challenges appointed in this project to define the

tracks, it uses the GPS coordinates as points and the SOG and COG to define a distance function

to create clusters of points that can define a trajectory. This is the most common algorithm for

density-based clustering. Given a set of objects, represented by points, this algorithm starts by

labelling each one into three categories (Ester et al., 1996, [6]):

• Core point, meaning that this point has a set of points within a given distance, which is

called Eps and is parameter of the algorithm, and the cardinality of this set is greater than

a given threshold called MinPts, also a parameter of the algorithm. Notice that the points

in this set are said to be in the neighbourhood of the core point and are density-reachable

from it (but the opposite may not be true). Also, the distance function commonly used is the

Euclidean distance, but any function is supported;

• Border point, meaning that this point did not meet the criteria for becoming a core point but

is in the neighbourhood of at least one core point;

• Noise point, meaning that this point did not meet the criteria for becoming neither a core or

border point.

DBSCAN algorithm has important advantages that could make it an easy choice for the objec-

tives, namely:

• Is great at separating clusters of high density versus clusters of low density within a given

dataset

• Is great with handling outliers within the dataset

In the case of the tracks we expect to identify big clusters with several points and with the right

distance function it should be easy to get clusters that describe tracks representing the trajectory

from a start to an end point which could be a stop point or a high degree course change, while the

rest of the points should be outliers pointing to fragmented tracks, stop points like ports or vessels



2.4 HTM Theory 11

Figure 2.2: DBSCAN algorithm cluster example (Lutins, 2017, [17])

lost for a time-period. This method was later discarded since it’s performance wasn’t as good as

the expected specially on the amount of resources needed to perform reasonably well under real

time constraints.

2.3.2 Case-Based Reasoning

Later a new solution was developed where a example-based method of data mining is used, this

method is called case-based reasoning (Kolodner, 1992, [14]), it uses representative examples

from the database to approximate a model of similar tracks to which a track being evaluated will

be compared using a well-defined distance metric. With a good distance function it’s possible to

identify anomalous situations but while the distance-metric complexity can improve performance

it’s also going to deteriorate the ability to identify the reasoning behind the anomaly identification.

Using a group of simple metrics can achieve better reasoning results with the price appearing

on the hight ratio of false-positives turning the distance-metrics into a complex problem. This

solution presented good results with the pre-existence of data to create a model and where the

ability to change the distance metric provides a way to improve the model fitness to detect more

or less specific anomalies and to more easily access why is the current anomaly being assigned.

2.4 HTM Theory

After previously work developed using the above mentioned data mining methodologies a new

one surged as an opportunity to improve current performance. That was the use of HTM theory

derived algorithms to model the AIS data available and use it as a outlier detection algorithm to

perform anomalous behaviour detection. On this section relevant HTM theory will be described

for an easier understanding of later sections and of the reasoning behind the choice of HTM theory

to carry the development of this project.
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2.4.1 Hierarchical Temporal Memory

HTM or Hierarchical Temporal Memory is a theoretical framework based on how the neocortex

functions and which also describes the technology based on neocortical principles. As described

in (Hawkins et al., 2016, [12]), HTM is both a theoretical framework for machine intelligence but

also for a underlying biological intelligence system.

HTM is a biologically constrained theory on how the cortex works, while this is true it doesn’t

mean it attempts to include all biological details. HTM theory has it’s focus on ’intelligence’, to

achieve that it bases it’s theory on the brain neocortex which believes to be the main factor on the

brain. While doing that it tries to extract the structures or algorithms the neocortex makes use to

define a set of tools or long term principles to create intelligence excluding for example biological

details which pertain to the restrictions imposed by a biological brain. It focus on the features

needed on a information-theoretical view while these must rely on compatible principles from the

biological theory.

Three features can be pointed on the neocortex (Hawkins et al., 2016, [12]) which can repre-

sent the basic approach of this theory:

• Memory - each region on the neocortex is a simple memory system

• Temporal - the things being memorized are mainly temporal patterns

• Hierarchy - all regions perform memory operations, learning simple patterns and building

time-based models of inputs which can have increased complexity when regions are hierar-

chically interconnected.

The work developed has been mainly, until the point of this writing, on the development of

a single region with it’s ability to memorize temporal-patterns, learn and make predictions based

on previous memories of similar patterns which on success should result on the building block for

a far more complex and intelligent system. The main components of the theory which translated

into practical algorithms are the Spatial Pooler and the Temporal Memory which rely on Sparse

Distributed Representations (SDR) as common data representations and to transform the system

inputs into an SDR there’s the need for encoders.

2.4.2 Sparse Distributed Representations

Empirical evidence demonstrated that neocortex regions represent information using sparse ac-

tivity patterns in a multitude of areas which include early auditory (Hromádka, DeWeese, and

Zador, 2008, [13]) and visual (Weliky et al., 2003, [24]) areas which correspond to sensory fea-

tures like audio frequencies or visual lines and edges, on later sensory areas more abstract and cate-

gorical information is processed like behaviour planning (Graziano, Taylor, and Moore, 2002, [8]).

A piece of information is encoded on the inhibition of multiple distributed neurons and which

number is a small percentage of the total amount available. That means information is represented

by a sparse distribution of inhibited neurons which was translated into an array of bits where the

binary value of the bit stands to the inhibition state of the neuron.
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SDRs are then a large array of bits where most are zeros and few are ones (Purdy, 2016, [22]),

SDRs are different from standard computer representations in that meaning is encoded directly on

the representation, e.g. two SDRs with 1 bit in the same location share a semantic property and

a bigger number of shared bits implies a closer semantic meaning between the two, in (Hawkins

et al., 2016, [12]) a letter is used as an example, to represent a letter of the alphabet using an SDR

there may be a bit which represents if the letter is consonant or vowel, a bit related to how it sounds

and a bit that represents the general location on the alphabet or on it’s draw characteristics. On

the SDR vector the bits correspondent to characteristics of a specific letter are the ON bits on a

larger list of characteristics, like this if two letters share a lot of characteristics then their meaning

is closer where that meaning is restricted to the list of characteristics chosen, on the SDR the ON

bits shared between two SDRs determine the distance function of different representations. On the

other way it’s possible to infer that even if only a subset of this characteristics or if noisy info is

included there’s still an hight probability of a correct classification of the information on the SDRs

as well as the ability to generalize and learn new information with related context.

The use of SDRs is as explained in (Hawkins et al., 2016, [12]) a key component in HTM

theory and one of the core principles to achieve truly intelligent systems. Sparse Distributed

representations present some important characteristics as evidence to this belief (Hawkins and

Ahmad, 2015, [9]) (Ahmad and Hawkins, 2016, [1]) :

• Hight capacity and low mismatch probability

• Reliable classification of SDRs

• Unions of SDRs

• Robustness against noise both on simple classification and after unions

There are also practical characteristics that won’t appear on traditional computer data struc-

tures like storage (Hawkins et al., 2016, [12]). As a sparse array of bits where generally only 2%

or less of the bits are 1’s there’s no need to store all the bits, it’s possible to store only the ON bits,

on a 10000 bits SDR we could store only 200, to store this SDR we only need to store the location

of these bits. Even better, since the ON bits have semantic meaning we could storage only part

of this bits and still have meaningful info in storage, even if we loosed part of the info it stands

true that the two SDRs are still semantically similar where this operation could perform a useful

generalization function.

Generalization of information stands as a very important component for intelligent systems

and SDRs provide the means to achieve it as on the previous simple example. Using the union

of SDRs property it’s possible to create an SDR capable of containing the semantic meaning of

a group o SDRs. While we can’t know what were the initial SDRs used to form the union it’s

possible to compare a new simple SDR and know if it is a member of the SDRs used to create

the union. This possibility is due to the SDR sparseness which makes the chance of incorrectly

determining the membership very low (Hawkins et al., 2016, [12]). One simple example of

the possibilities of this property is the characterization and generalization on objects. A ball is
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Figure 2.3: Union of Sparse Distributed Representations (Numenta, 2018, [21])

a simple circumference from afar, it’s a circle when close, it’s a round object if touched with

no edges, it has no size limitations or even better it can have a widespread range of sizes, the

same for colour range. So to a ball can be defined by the union of the SDRs from different

balls, perspectives or even censorial information, with this it’s possible to create the generalization

SDR which represents a ball. When our brain or intelligent system compares an SDR with input

information to be evaluated it’s possible to compare it with this union to know how closely related

are the two. Lastly, if when comparing there were contradictions between information it’s possible

to change this union by adding information from the input SDR, this would be the case of child

learning what a ball is and defining and generalizing this term, at first a child could think a ball

was like always like the football one but later it could find on rugby the ball is pretty different but

still be called ’ball’.

2.4.3 Encoder

As discussed above SDRs are the information representations prevalent on HTM systems, to trans-

form general data into SDRs there’s the need to use an encoder. So, an encoder is the system

component that converts the native data format into an SDR to be fed into an HTM system. Tak-

ing into consideration the need of semantic meaning on the converted SDRs it’s important for an

encoder to be able to capture the characteristics on the input information and following the princi-

ple that similar input values should be result in similar sparse representations which implies hight

overlapping rate.

Encoders are analogous to the sensory organs on the humans. Different data types imply very

different types of encoders since the nature of this data and the amount of meaningful information

on this data can be very broad. On (Purdy, 2016, [22]) several aspects are noted as critical to the

encoding process and examined individually in detail, respectively:

1. Semantically similar data should result in overlapping active bits.

2. The same input should always result in the same output.
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Figure 2.4: The encoding of the day of week on a date encoding (Purdy, 2016, [22])

3. The output dimensionality should be invariant with the input.

4. The output should maintain sparsity across all inputs while having enough active bits to

handle sub-sampling and noise.

Examples of well documented encoders are also present on the paper (Purdy, 2016, [22])

which include:

• Encoders for numbers

– Simple scalar encoder for ranged input

– More flexible encoder capable of encoding an essentially limitless amount of numbers

using an hash function

– A log encoder that captures similarity between numbers differently based on how large

the number is.

– A delta encoder which is designed to capture the semantics of the change in a value

rather than the value itself

• Encoders for categories

• Encoder for time

• Encoder for geospatial data

On 2.4 the encoding of the category ’day of week’ which is only part of the meaningful

information on a date input is performed as a simple example with a very limited number of

bits but which can illustrate the encoding process. On this example the position of the bits ON

represents the day of week, this position is meaningful and for example allows the presence of

other information like the time of day, if all the one-bits are perfectly distributed around a day like

Friday then it could be the middle of the day, on the other hand if most of the active bits are on the

right then the current date is closer to the following day, Saturday. When designing the encoder

it’s possible to decide if the encoder will make use of certain information or not, in this case if the

designer of this encoder just wants an emphases on the category with no need for other information

then he can choose to discard that information. Still, meaningful information like the closeness to

other days of the week can also be included, in this case with this limited amount of bits it’s easy

to verify that there’s one-bits that are shared for three different days as a result that specific bit has
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by itself the capability to restrict the range of a date. An example of the usefulness of this would

be on the generalization of some action like the trash truck always comes on a Friday, Saturday or

Sunday, for this range there’s two bits generally more active on this bit array, if this two bits on the

date encoder are added to the trash truck general SDR when later something happens and the trash

truck comes on a Thursday the expectations based on the current information aren’t compatible

with the current happenings so it’s possible to identify an anomalous behaviour. This happens

even if the Thursday shares bits with Friday, while on the other hand this information can improve

the quantification of the anomaly because it turns out it didn’t came on the expected date but it

came on a date which shares some semantic meaning with previously dates.

2.4.4 Spatial Pooler

The HTM spatial pooler, originally described in (Hawkins, Ahmad, and Dubinsky, 2011, [11]), is

also a key component of an HTM system, it is responsible of converting arrays of bits previously

encoded from sensory inputs into SDRs with a specific low sparsity making the best use of the

information on the provided stream of bits from the encoder. This stream can be just one encode

of one field input or on the case of multiple fields it’s the concatenation of the results of the

different encoders. While encoders should be designed to take in account some of the necessary

properties of an SDR, they aren’t necessarily met, for example, if one of the fields is being encoded

into a binary category which should weight the same as all other characteristics which implies that

the number of one-bits, W , should be the same as other encoders, then to create a binary category

encoder the total amount of bits would be only 2×W where W bits on leftmost part would be

ones or the rightmost W bits would be the ones. This encoder is a very practical example and

illustrates an encoder that by itself won’t create a proper SDR since the sparsity of the result is

50%, unless bits with no meaning are introduced the result won’t be a proper SDR. Here comes

part of the responsibilities of the SP which needs to translate the encoded input bit stream into

a proper SDR with fixed number of total bits and sparsity, the SP does this and optimizes this

operation by learning the recurrent patterns on the input streams and by selectively activating

particular one-bits when this input pattern is detected.

The HTM spatial pooler is designed to achieve a set of computational properties that support

downstream operations with SDRs, on (Cui, Ahmad, and Hawkins, 2017, [5]) several functional

properties of the HTM spatial pooler are systematically analysed, this properties include:

• preserving topology of the input space by mapping similar inputs to similar outputs;

• continuously adapting to changing statistics of the input stream;

• forming fixed sparsity representations;

• being robust to noise;

• being fault tolerant.

The way the spatial pooler algorithm works can be simplified into some simple ideas:
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Figure 2.5: Pyramidal Neuron and respective HTM Neuron (Numenta, 2018, [20])

1. The SP number of bits n and the number of active one-bits w are fixed in number and each

bit represents a neuron capable of creating, enforcing or enfeeble connections with specific

multiple input bits on the input space;

2. Initially all neurons have attributed to them a set of random connections to a subset of the

input space bits;

3. Every time a new input happens the w neurons with the most enforced connections to active

bits on the input space are activated which results on the SDR with a fixed number of active

neurons w. When this happens the connections between the active neurons and input one-

bits are enforced while other connections are enfeebled or degrade. Inactive neurons suffer

no changes.

Like this neurons on the SP are able to learn specific patterns on the input space, these are simple

spatial patterns but are an important step to make use of the semantic information present on the

input space to create SDRs which can be easily recognized by downstream neurons and which

improve performance on an overall HTM system.

2.4.5 Temporal Memory

The Temporal Memory (TM) algorithm allows two things:

• Learn sequences of SDRs formed by the spatial pooling algorithm

• Make predictions based on current input and in the context of previous inputs

Temporal memory extends the spatial pooler to achieve the goals above, this is done by ex-

tending the previous idea where the spatial pooler made connections from neurons into input space
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Figure 2.6: Temporal Memory sequence learning (Numenta, 2018, [20])

to make neurons learn and recognize specific patterns on the input space. In the case of the spa-

tial pooler the connections represent proximal dendrite segments which are linearly summed to

determine the activation of a cell within the neuron, now the Temporal Memory introduces the

idea of a neuron as columns which are a stack of cells which share the same proximal connections

(Hawkins and Ahmad, 2016, [10]). With no further changes all the cells in a column would share

their activation state so differences between the stacked cells are the new distal dendrite segments

which instead of being connected to the input space are connected to cells on other columns. On

2.5 both the basic neuron and respective HTM structure are presented including both proximal

and distal connections for feedback and context respectively. This connections share the same

principles previously mentioned with possible reinforcement or enfeeblement based on slight dif-

ferent method where instead of choosing the top w neurons a new neuron state is introduced called

predictive state that is the core to the decision. A cell in a column enters a predictive state if

the number of distal connections is over a threshold. This predictive state implies an expectation

which when verified which means the predictive neuron column which the predictive cell was

included is active on subsequent input then the connections that were previously responsible to

induce the predictive state are reinforced. In the case a predicted cell exists on the column being

activated then only the predicted cell is activated, on other cases columns without predictive cells

have all their cells activated which would contribute to the activation of more predictive cells and

to the ability of learning faster when the column is active on unknown context. On 2.6 a basic

Temporal Memory progressive learning process is presented.

Basically Temporal Memory will provide information of the current context which is activating
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the neuron and is basis to the ability of learning temporal patterns. More information on the TM

algorithm including pseudo-code is included on (Hawkins et al., 2016, [12]) as well as some

numbers that can further enlighten the capabilities of this algorithm, e.g. if each column has 4

cells and every input is represented by 100 active columns, (w = 100), then there’s 4100 ways

of representing the same input where each context will be represented by a different set of cells

within the columns. Now that we represent the same input in so many ways it is important to know

how unique each of those representation is, in (Hawkins et al., 2016, [12]) is stated that nearly all

random pairs of representations will have a 25% cell overlap, this means that while there’s still a

sizeable amount of shared meaning between the two the context still makes use of the other 75%

to make inputs with different contexts easily distinguishable.

2.5 Next step: Anomaly detection with HTM system

Recalling the objectives of this project which are to create a system able to do the identification

of anomalous behaviours on vessels using AIS data we saw earlier that many methods exist to

achieve this, some were already used in which some problems like performance on using clustering

algorithms or some difficult to solve restrictions like on cased-based reasoning where the current

work isn’t able to make good use of the temporal sequence of tracks which has the potentially to

provide important information to the trajectories model.

Now that HTM theory was presented it’s possible to point it’s most important characteristic

which is the ability to provide temporal sequence context into data, learn and make predictions

which provides the necessary stage to implement a anomaly detection system since by having

predictions it’s possible to consider unpredictable situations as anomalies which makes this HTM

based system a very interesting proposal to solve the current challenges.
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Chapter 3

Developed System

In this chapter is described the overall system developed using HTM theory to detect anomalous

behaviours on vessels movements described by AIS data through Portuguese maritime zone. The

developed system is mainly divided on two main components:

1. A component that processes and uses HTM theory to model the AIS data;

2. A visualization application component providing the necessary means to better analyse the

data both raw to understand the available data and to grasp the results obtained after pro-

cessing the data.

3.1 Processing the data with an HTM based system

With the goal of processing the AIS data from maritime vessels and knowing that previously work

had been developed to extract the relevant data from AIS log messages and which was stored on

a MongoDB database which could easily be accessed from different applications written on about

any programming language. Since there was the need to implement a system which would use

the HTM algorithms and based on (Numenta, 2014, [19]) which uses HTM theory through NuPIC

(Numenta Platform for Intelligent Computing) which is an implementation of the HTM algorithms

by Numenta which is the company researching, developing and open sourcing HTM theory, on the

paper NuPIC which is available as a python package is used to build a demonstration application

using GPS data as input and the HTM learning and predictive abilities to detect anomalies when

the described trajectory goes out of the predicted expectations after a learning period. With this

and since there was no restriction against the choice of programming language Python was chosen

since there was a well documented implementation of the HTM algorithms.

The basic application for processing the AIS data identified on Figure 3.1 as the oversee.py

component can be divided from a functional standpoint into several blocks:

• The first block uses pymongo, a python driver package to the MongoDB database, to load

the right data to process; a standalone mongo parameter file which can be changed to fulfil

21
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Figure 3.1: System component diagram

the user specifications is available which decides what data is selected and loaded using

MongoDB query and aggregation options

• The second block which includes all the steps necessary to process the data using the HTM

algorithms modelling it and calculating the anomaly results. It’s internal process is described

in the Figure 3.2 where CLA stands for Cortical Learning Algorithm which includes both the

Spatial Pooler and Temporal Memory algorithms. There’s also a standalone HTM parameter

file where all options related to HTM algorithms can be tweaked where things like learning

rate, memory decaying rate, model capacity and encoder parameters can be found.

• The last block simply saves the results from the HTM model to the database by updating

the current information of the processed waypoint adding the current test ID and respective

results.

The initial system only has a GPS coordinates encoder so only makes use of the vessels posi-

tion which was the starting point to the work developed later which will include the test of different

data to characterize the vessel trajectories and to the definition of corresponding encoders which

will be explored in a later chapter.
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Figure 3.2: Anomaly identification process using HTM (Numenta, 2014, [19])

3.1.1 Anomaly Score

The main output of this program is the anomaly score which is given by the direct calculation of

the prediction error, it’s computation is given by (Ahmad et al., 2017, [2]):

St = 1− π(xt−1) ·a(xt)

|a(xt)|
(3.1)

where:

• xt is the current input

• a(xt) is the sparse encoding of the current input and |a(xt)| is it’s scalar norm, i.e. the

number of one-bits in a(xt)

• π(xt−1) is the sparse vector representing the HTM internal prediction of a(xt)

From 3.1 the anomaly score will be 0 if the current a(xt) one-bits are all matched in the prediction

and 1 if none of the bits were predicted. An interesting characteristic of this metric which measures

how well the model predicts the current input xt is that branching sequences are handled well since

the π(xt−1) prediction vector includes multiple predictions formed by the union of all cells on

predictive states which should include all possible predictions related to the current context.

3.1.2 Anomaly Likelihood

It was later added to the system a new way to measure anomalies which is described in (Ahmad

et al., 2017, [2]) as anomaly likelihood. While prediction error is an instantaneous measure of the

predictability of the current input, the new measure instead of directly using the error St , models

it into an indirect metric as the distribution of error and uses this to calculate the likelihood that

the current state is anomalous. Anomaly likelihood is a probabilistic metric on how anomalous

the current state is based on the prediction history of the model. The algorithm to compute the

anomaly likelihood is described by (Ahmad et al., 2017, [2]):

1. Maintain a window of the last W predictive error values St

2. Model the distribution as a rolling normal distribution where sample mean, µt , and variance,

σ2
t , are continuously updated from error values in 1 following:

µt =
Σ

i=W−1
i=0 St−i

W
(3.2)
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σ
2
t =

Σ
i=W−1
i=0 (St−i−µt)

2

W −1
(3.3)

3. Compute a recent short term average of prediction errors, µ̃t

µ̃t =
Σ

i=W ′−1
i=0 St−i

W ′
(3.4)

where W ′ is a window for a short term moving average and W ′�W

4. Calculate the Gaussian tail probability, Lt , using a Q-function:

Lt = 1−Q(
µ̃t −µt

σt
) (3.5)

5. Apply a threshold to Lt based on user-defined parameter ε to report an anomaly. An anomaly

is detected if:

Lt ≥ 1− ε (3.6)

Currently the last step is not executed by the system while processing the data but the anomaly

likelihood, Lt , is saved for later use which permits later research on the best fitting threshold, ε , in

different circumstances.

3.2 Visualizing data

This project involves working with big datasets which can include millions of points which include

different related information and which can form trajectories and big movement patterns. Since

one objective is to process this data and find anomalies the ability to analyse the available data

and to interpret the results using an expressive canvas is fundamental. Since all the data can be

spatially distributed on a map for better interpretation a Geographical Information System (GIS)

was the right choice as visualization and data analysis tool. Instead of developing a new GIS tool

which wasn’t the focus of this project the open source GIS tool QuantumGIS (QGIS), an official

project of the Open Source Geospatial Foundation (OSGeo), was the geographical information

system of choice. This is a well documented, multi-platform and open source GIS with various

tools to aid on the exploration and analysis of data with a very important characteristic which is

an extensible plugin architecture and libraries that can be used to create plugins or to integrate it

into a new application, both using C++ or Python.

The QGIS application has a lot of general tools which will help on the design of visualiza-

tions, on the selection and inspection of different features which can be found on Figure 3.3 and

on data loading from different sources. Unfortunately there was no way to load data from Mongo

databases which was solved by making use of the plugin architecture and developing a simple

plugin which could use the previously mentioned pymongo package to load data from the different

mongo databases. On the MongoDB application different databases house collections with infor-

mation pertaining to the waypoints, tracks and vessels. Each database has these three collections



3.2 Visualizing data 25

Figure 3.3: QuantumGIS normal behaviour trajectories visualization on Portuguese coast; layer
visibility selection (left), feature inspection (right), data time manager plugin (bottom left)

but are correspondent to different vessel types like tanker, fishing or passenger vessels. The initial

plugin was a simple script but after the growing need to use other scripts to perform some simple

functions which include:

1. The loading of different databases from MongoDB and the choice of versions of anomaly

scores resulting from different tests

2. The layer setup and creation of trajectory lines based on the vessel waypoints

3. The ability to save different complex and personalized layer styles and to automatically

apply them later on loaded data layers

On Figure 3.4 the developed plugin user interface is shown where these functions are available.

The plugin main purpose is to facilitate the data loading and necessary layer setup process since

with the right options the process is then carried automatically. When having various big databases

and tests which can’t all be permanently loaded due to performance issues and being a recurrent

action a simple plugin can be very helpful and turn the data analysis process a lot more agile.

Other plugins for feature (geometric figures such as points, lines or polygons) selection were

developed without user interface such as:

• Similar features selection plugin which when selecting features on the QGIS interface auto-

matically expands selection to all other features with similar parameter, generally with same

track or vessel IDs

• Plugin to manage flags on the database waypoints collection used to aid the creation of

sub-datasets such as an anomaly or normalcy flagged dataset.
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Figure 3.4: Developed plugin user interface for QuatumGIS

These plugins while simple can be easily developed and adapted to perform the needed function-

ality and were a very useful tool to improve the application usability on specific contexts.

3.3 System Version: 1.0

The developed system was divided on the two respective components, data processing and visual-

ization, then further use of the Python matplotlib, numpy and jupyter notebook packages to aid on

the statistic analysis of the results. It was not objective of this project to assimilate all these into

a full-fledged application but it is still interesting to note the possibility of joining these compo-

nents to create a flexible and comprehensive application for Geospatial data modelling, anomaly

detection, visualization and analytics’s.

On further chapters the research is mainly focused on improving the described basic system for

this specific problem by tweaking on the HTM system parameters and by adding new information

to the model with new input data and encoders. Those are more specific to the current problem

while the previously described system has the capability and expectation of establishing itself

as the core to be used under different circumstances on geospatial data modelling and anomaly

detection.



Chapter 4

Experimental Work

This chapter introduces part of the experimental work performed along this project. The main

goal of the described work is to improve the previously featured basic system by incrementally

adapting it to fit the expected purpose. This is achieved mainly by tuning the necessary encoders

and by analysing the data to understand the potential information to be added into the system input

space to improve normal trajectories modelling.

4.1 Geospatial Coordinates encoder tuning

The first step taken to improve the basic system was tuning the Geospatial encoder. This encoder

described in (Purdy, 2016, [22]) makes use of an hash function to encode unlimited positions

in a bounded SDR and assimilates speed to improve the encoder performance. The way this

works is quite complex but some principles are important to understand it and perform the encoder

parameter tuning so next some of them will be summarily described:

• The encoder creates an SDR where the position of a square is decided by using an hash

function which creates a correspondence between coordinate positions and positions on the

bounded SDR;

• The active W bits to describe the current position are bounded by this square and weighing

scheme is used on the bits which will give weights to specific bits making them more likely

to be the active ones inside a square bounded area;

• The size of the square is decided using the speed input which makes this encoder more

adaptable. This will make the square smaller for low speeds in which case the set of active

bits are chosen from a smaller set. This means that only other very close positions and with

small square bounds (and speed) will share many active bits necessary to identify positions

as the same. On the other hand it will make positions while on hight speed a lot more general

so that even relatively far positions can be interpreted as similar.

27



28 Experimental Work

Figure 4.1: Visualization of resulting trajectories by using different scale parameter with green for
normal movement and red on courses deemed anomalous (4 months data on passenger vessels)

• The concept of closeness above is decided by a parameter named scale. Scale basically

decides the range in which positions are described with very similar SDRs in which case are

basically the same positions.

Now that the encoder was described it’s possible to realize the importance of the scale parameter.

The objective of this work is to model general trajectories of vessels on maritime zone where there

are no roads to limit the vessels movements and while there are limited zones for some specific

travel courses these are not physical barriers so the trajectories are always defined by lanes several

kilometres wide. This fact implies the need to use a big scale to enable the system to model the

general trajectories instead of modelling very particular tracks.

There’s also a different factor which will contribute to the scale choice namely the positions

rate. The data being used in this project have tracks with positions at regular intervals of about 1

hour, this interval is not small at all and on high velocity trajectories vessels will have positions

with distances going easily above dozens of kilometres. To model a trajectory all intermediate

positions need to be filled so one more time the need for high scale values is the conclusion

which in this case could be made up by using more data if available with limitations since the

generalization performance on the trajectory models would still be affected if the scale is too

small.

With the above factors it is the case that the scale for this encoder and while using this par-

ticular dataset needs to be on the several kilometres limit while some level of tuning is needed to

find the right number where the generalization performance is neither too good or too bad. At this

point where the project just started the simplest way to solve this problem was by experimentation

where the resulting models were compared using visualizations which made clear the learned tra-

jectories. Models were defined using scales between 2 and 10 km from where some information

could be extracted:

• A scale of 10 km is too big resulting in problems since a great number of positions will

be deemed as similar and each position encompasses too big of an area which creates an

over generalization of the model in where any movement around within the trajectories

neighbourhood area can be considered normal.
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Figure 4.2: Visualization of resulting trajectories divided by month; Highlight of anomalous be-
haviour on left and normal on right image (1 month data; passenger vessels; scale:5000)

• 2 km is too small and even with large amounts of data the model still has difficulties on the

generalization of trajectories.

In the end the scale chosen was of 5 km taking note that if more data is available smaller values

could be a better choice. The dataset being used here and in future experiments unless explicitly

indicated in contrary is representative of 4 months of data with vessel positions distanced by

1 hour. On Figure 4.1 is presented the resulting visualization of passenger vessels processed

data with scales of 2 and 5 km and by using the anomaly scores to distinguish between learned

trajectories with scores of 0 or very close and remaining ones ranging from yellow to red marking

colour depending on how anomalous were considered by the system.

It’s also possible to divide the data into different periods of time to better understand the
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progressive learning of trajectories. On Figure 4.2 every pair of images corresponds to one month

of data where the left image highlights anomalous behaviours and the right image normal ones.

Some information can be summed:

1. On the first month there’s anomalous behaviours on all possible trajectories, the model ap-

parently started learning the trajectory between the Mediterranean and the north of Europe;

2. On the months after this trajectory presents almost no anomalous behaviour while on the

fourth month when apparently there’s more activity some slight accumulation of generally

yellow positions can be found which should improve the generalization of this trajectory.

3. On the later couple of months other trajectories start to be modelled including the ones from

Mediterranean to Madeira Archipelago.

4. The maritime activity on various trajectories can be very different depending on the time

period. On the second month there’s very little activity compared to the other periods.

The choice of the scale parameter can be extremely relevant to the performance of the mod-

elling process and that’s why it was important to describe the factors which can affect it and what

are some of it’s consequences in the results. While only this type of vessel, respectively the passen-

ger vessels database, was used along this section other vessel type databases were used during the

decision process and the result achieved was similar with the modelling of the major trajectories

using 4 months of data.

4.2 Data Analysis

After having the basic system tuned it was time to understand how the data available for each

waypoint could be used to better model trajectories. For that reason some data analysis was needed

which will, in part, be described on this section. The subsequent descriptions stand as examples

of some of the possible results made during the analysis process and has it’s focus on the analysis

of the fishing vessels database.

4.2.1 Speed Over Ground (SOG)

The speed over ground (SOG) was previously already used on the Geospatial encoder, while this is

true it is used as a mean to improve the results when using positions in which case the speed per se

has a much lesser weight on the SDR results specially when the objective is to model trajectories

where positions have very hight generalization. To better understand if using the speed as an input

space variable could improve the system results some data analysis was performed, since speed

over ground was previously used on the CBR metrics it made sense to use some data from there

to better understand the difference between approaches. The results expected were that anomaly

score average should be a lot higher from a SOG threshold onwards since vessels with hight

velocities are unexpected specially since the vessels are of the fishing kind. On Figure 4.3 it’s

possible to make some observations:
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Figure 4.3: CBR and HTM anomaly average and waypoints distribution over SOG

1. There’s a huge number of very low speed waypoints that mostly represent places where

vessels stop (SOG between 0 and 1). It’s also important to note that the CBR discards most

of the very low speed waypoints while the HTM is modelling them as any other points which

explains the strange discrepancy on this speed segment.

2. Most waypoints are between the speed range of 1 and 12 with two apparent cluster on from

1 to 5 and 5 to 12. The HTM anomaly average on the 5 to 12 slightly increases which

doesn’t happen on the CBR.

3. On the speed range of 12 to 17 where some very small number waypoints can be counted the

anomaly average increases steeply on the CBR and while still evident on the HTM system

is not nearly explicit.

4. From a speed of 17 onwards there’s even less points where the high anomaly average is

clear.

5. There are some points with a SOG value of 102 which should have been identified by both

systems with highly anomalous average since that’s the actual SOG maximum possible on

any AIS messages and very unlikely to be real. In this case most likely than not the value on

the message doesn’t reflect the actual vessel speed because some problem occurred on this

vessel AIS system.

On Figure 4.4 we can see multiple visualizations which correspond with the previously con-

sidered interesting ranges. It’s now possible to identify that on these ranges different kinds of

vessels can be distinguished:

• SOG 0 to 4 - the biggest concentration of vessels is in this range and corresponds with the

fishing vessels around the coastline. The trajectories for these are generally well modelled,
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Figure 4.4: Waypoints visualization on different Speed Over Ground ranges (speed in knots)

at least on the current position basis, there’s probably the need to add other informations

to identify specific anomalies on this range since vessels with low speed and very close

consecutive positions will create a very general trajectory all around the coastline.

• SOG 4 to 7 - this is the range that marks the increase of anomaly average, it’s possible to

identify some points which aren’t so close to the coast.

• SOG 7 to 12 - on this range it’s possible to find both the faster fishing vessels close to

the coastline as well as vessels on long course trajectories which only now can be clearly

identified. While it’s possible to clearly identify some long course trajectories it’s also

possible to observe that they aren’t well modelled being identified as anomalous which is

the most probable cause for the previously noted increase in the average anomaly.

• SOG 12 to 22 - this time only long course trajectories are visible, on this range almost no

trajectories close to the coast can be observed. The system wasn’t able to model these tra-

jectories quite well when they were out of the coastline zone where the previous trajectories

were, on the other hand even with higher speed the trajectories close to the coastline are still

being considered normal which indicates that even with enough speed difference they are

being predicted based on the model of the low speed generalized positions. This is indica-

tive that using SOG as an explicit input could help to better separate trajectory models, this

should be relevant specially in zones where the concentration of waypoints is very hight.

• SOG 102 - The speed affecting the Geospatial encoder isn’t enough to be critical, positions

close to the coast are still being identified as normal even with unprecedented high speed.
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Figure 4.5: Waypoints (blue) and anomaly average (orange) distribution over weeks and days of
week

With previous observations it was concluded that SOG could be a very good input to improve the

trajectories modelling. The different ranges show that SOG could help to better separate data of

very different kinds of trajectories specially on hight waypoints concentration zones which if more

data is available would include most areas.

4.2.2 Time

After looking into the speed as a possibility to improve the trajectories model it was possible to

note that information to aid on the differentiation of trajectory types could improve the capacity of

generalization while limiting the wrong assimilation of data from apparent unrelated ones. This

kind of data works as a category which would improve the trajectory differentiation. On HTM

systems which rely heavily on temporal/sequence memory where patterns are identified one of

the inputs which can be generally found is the time since lots of patterns can be better described

if related with time based information. For example if the current system was used to process

traffic data at distinct geographic locations the use of time related data would most likely than

not be very important since most normal spikes on traffic should be related with specific times of

the day like early morning or late afternoon. On the other hand to identify strange spikes on the

traffic volume it would be quite important to have time related information since if no info on the

time was provided the sequence would be distorted from the anomalous spike on and until it was

learned again, if time based info is provided after an anomalous spike at unexpected time other

spikes are still related to time and can be considered normal even if sequent to a sequence which

took the model into unpredictable results.

On our data every position message is accompanied by a timestamp which can perfectly tem-

porally locate the message. On 2.4.3 one of the encoders mentioned on (Purdy, 2016, [22]) was

the time encoder which can be composed of multiple simpler encoders, from a timestamp a lot

of data can be extracted and since SDRs make use of semantic information it is a good idea to

use a composite SDR which makes the best use of the relevant information present on different
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Figure 4.6: a) Waypoints (blue) distribution over days of week b) Waypoints (blue) and anomaly
average (orange) distribution over days of week and time of day

situations which means information with little meaning to the goal at hand can be forsaken. This is

actually quite relevant since if meaningless information is added on a model used to make anomaly

detection it will only distort the results, e.g if the time of day is added but no actual patterns relate

to this variable than the only influence would be that even when other inputs aren’t correctly pre-

dicted and an anomaly would be detected the time of day could still be correctly predicted which

would only lower the anomaly score on this situation. Some of the time related information which

can be extracted into different SDRs are listed next:

• Weekday vs weekend

• Day vs night

• Month of the year

• Day of the month

• Day of the week

• Time of the day

• Minute of the hour

To find out which kind of information could be relevant to current data some analysis was

needed, on 4.5 it is possible to observe the waypoints and anomaly distribution over the weeks,

some information can be noted:

1. As expected, along the weeks overall anomaly average decreases since most trajectories are

modelled.

2. It’s also possible to observe some anomaly spikes on weekends (day 1 and 7) accompanied

by the negative spikes on the number of waypoints. Most likely specific types of trajectories

on the weekends are not well modelled by the system.
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Figure 4.7: Waypoints distribution over days of week (3 weeks: from Sunday to Saturday)

Other analysis were performed on the data by aggregating the data into specific time periods

where the results were that no other information seemed to be as relevant as the weekdays since

no other related time patterns were identified, the presence of a simple pattern over the time of

day could be found but with very little impact, reason why it was noted but will very probably

be dismissed later. To better understand the impact of the day of week and time of day patterns

the data was aggregated over both time intervals and resulted on the graphics on Figure 4.6 from

which we can observe:

• Clearly skewed distribution of the waypoints towards weekdays with hight anomaly average

on weekends which confirms a clear pattern where most likely some trajectories are mainly

on weekdays. Since the vessels are of the fishing type it’s expected that during the weekdays

the normal work is performed with rest on the weekends.

• It’s also possible to observe patterns over the time of day but not so evident and which is

still connected with the day of the week since there’s a pattern on weekdays and a different

one for weekends.

It was possible to identify the possibility of using week days or the weekend binary category

as additional information since it looked like two distinct patterns for both waypoints and anomaly

average distribution were identifiable. Still there was the need to understand if this information is

related with different trajectories since it was possible that it was simply related with a reduced

activity rate on those days without difference in terms of normal trajectories in which case this

information won’t provide any benefits. To better understand this question the simpler way was

to create a visualization representative of the different week days to test these hypothesis. On

Figure 4.4 it’s possible to see some of the results observed, answers about the usefulness of using
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weekdays weren’t quite conclusive since while it’s possible to clearly identify very different levels

of activity that’s not the kind of anomalies being identified, since this reduced activity looks to be

affecting all kinds of trajectories it could be considered as not very useful to help on the modelling

process, it is not particular able to categorize any subset of trajectories.

4.2.3 Last notes

Previously we have seen how to find if certain information could be more or less useful if added to

the system input space, this kind of analysis can be very important to better understand not just the

variables being analysed but also to better understand the current results. These were just examples

on the current project but which can clarify on how the analysis can be performed by using infor-

mation both from raw data and from the current system results. While doing this analysis the main

finding about the current state of the model was that in lots of cases the generalization is too deep

since there’s not enough information to separate trajectories efficiently which indicates the need

of data to help better categorize them specially on zones with lots of activity. This need is possibly

emphasized by the restriction created by the use of a big scale value on the geospatial encoder

which results in the easy creation of models with a big generalization level while contributing

negatively to the anomaly detection process. The way chosen to solve this problem was then to

add more information to the model. The simplest data to add to better categorize trajectories are

the speed over ground previously seen since it helps distinguish different types of trajectories by

speed, on the other hand there’s actually other info which is implicit on previous visualizations

which is the course over ground which implies the directionality of the trajectory movement and

could help on diminishing the effects of over generalization.

4.3 Adding data to input space

As discussed before there is the need of an encoder to add any data to the HTM system input space.

Of course, most data can make use of open source developed encoders previously mentioned in

which case the real work is not in designing a new encoder but in choosing, adapting and tuning

the encoders into the project accordingly with pretended goals and with the data characteristics.

While this is true it’s important to note that encoders described further in this section were the

ones found to achieve the best results but maybe there were other possibilities not considered with

better performance.

4.3.1 SOG Encoder

The first new input added was the speed over ground, this value comes directly from the AIS

position messages and has the following characteristics:

1. It represents a vessel speed over ground in knots at the position in the message

2. It is limited between 0 and 102
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These characteristics are very simple and there’s even a value range thus it was expectable this

value could simply be encoded by a scalar encoder while in practice this wasn’t so simple as that.

The first test used a Scalar Encoder with:

• Width, w = 5 —- Number of active bits on the SDR

• Bucket, n = 35 —- Total number of bits on the SDR

Most of the simple encoders can be tuned by these values plus other specific information, in this

case the range given by minimum value and maximum which were identified previously, 0 and

102 respectively. The w and n parameters also represent the encoder resolution and radius, this

values could be given directly in which case other parameters shouldn’t be provided since they are

dependent. In this case:

• range = max−min = 102−0 = 102

• radius = range
n/w = 102

35/5 = 17, which means that semantically, only representations for num-

bers with a difference of at least 17 units are totally different, numbers within the 17 range

will share bits which means they are semantically closer.

• resolution = range
n = 102

35 = 2.9, this means that numbers need a difference of at least 2.9

units to have different representations

These parameters were based on the analysis of the SOG distribution, it was possible to identify

some limits like 17 which isolated a very specific type of trajectories coupled with a 2.9 resolution

which would enable the difference between the various ranges which related to trajectories on 4.4.

After applying this Scalar Encoder with these parameters adding SOG as an input the first

results observed, based mostly on the histograms of anomaly scores and probability for both an

anomalous and a normal subset, were summarily:

• An improvement on the performance of the model on the identification of expected trajec-

tories with the average anomaly decreasing.

• An increase on the average anomaly probability when detecting anomalous behaviours.

• A general improvement of the anomaly detection since the average anomaly probability

decreased in general and increased on the anomalous population.

It was later identified the possibility that the value of w= 5 should be too low since the standard

value for Scalar encoders was 21 and taking in account that the value standard for the geospatial

encoder was 50 which made the difference between the weights of the inputs apparently too large.

A new model was obtained with:

• Width, w = 21 —- Number of active bits on the SDR

• Bucket, n = 147 —- Total number of bits on the SDR
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which is basically a scaled version of the previous encoder with the changes being the weight and

an improvement on the resolution of the encoder which could actually reduce the generalization

since a bigger number of different values were now possible. The results were that the average

anomaly was further reduced but the anomaly detection suffered since the average anomaly on the

anomalous population decreased to levels worst than both the previous version with SOG encoder

and the initial version.

After further analysis of the encoders options, results and of the goals of using the encoder

a potential problem was identified with different resolutions and it’s relations with the ranges of

speeds. A lower resolution should improve the generalization capability while adding a new cat-

egorization on the trajectories which would improve both general average anomaly and anomaly

detection. On the other hand with higher resolution the generalization shouldn’t be so good which

shouldn’t have improved the results which was also true to the anomaly detection since only the av-

erage anomaly decreased which doesn’t really improve detection, i.e. if both the average anomaly

on the anomalous subset and on the normal subset decreases there’s no increase on the differ-

ence so no improvement on the detection. At this point the question was why would the average

anomaly decrease if the generalization was worst, to this question no definite answer was found.

On the hypothesis that the previous possibility was right and the problems were related with

the resolution a new encode was designed. Using the properties of a Log Encoder to have a vari-

able resolution. According to previous data the encoder for SOG should probably have a lower

resolution on higher values and higher resolution on lower ones. The LogEncoder used had the

same w = 21 but radius = 0.3 and minimum value changed to 1 (values under 1 would be encoded

as 1), which meant complete different representations of:

100,100.3,100.6,100.9,101.2,101.5,101.8,102.1 ≈ 1,2,4,8,16,32,63,126

which should allow a good range generalization since trajectories with SOG around this values

should have a similar representation with the adequate resolution, i.e the meaning difference be-

tween 1 and 2 is about the same as 16 and 32, this results in a better description of the idea of speed

ranges. The results for this encoder were better than all previous ones, there was an even sharper

decrease of the anomaly average in general while the anomalous subset suffered an increase in the

anomaly average, together these results mean the general improvement on anomaly detection.

The final encoder parameters are:

• Log Encoder

• w = 21

• radius = 0.3

• min = 1 & max = 102

4.3.2 COG Encoder

The course over ground is also directly obtained on the AIS position message, it’s characteristics

are:
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1. It represents the vessel direction at the position on the message.

2. It’s value is expressed in degrees ranging from 0 to 360

One more time the encoder used was a Scalar encoder, since the goal of adding the COG to the

input is to improve the categorization of trajectories it is important for the encoder to have a

relatively big radius, this means the ranges of values which should share a lot of meaning need to

be reasonable to allow the generalization of certain directions. The radius used on this encoder

was of 15 which meant there would be in general 12, (360/15 = 12), directions. This number was

simply chosen considering that the general difference between tracks directions couldn’t be that

big to model a particular trajectory while there shouldn’t be that many directions, this represents

the fact that if a track is 15 degrees off from all the expectations that it should be considered

anomalous. One difference in this encoder was that it was a periodic encoder since the meaning

between 360 and 0 is the same, the encoder needs to encode that meaning in the SDR. The final

encoder parameters are:

• periodic scalar encoder

• w = 21

• radius = 15

• min = 0 & max = 360

The results of adding this encoder to the initial system were the expected improvement on

the general average anomaly which went down, this stands true since the majority of the data is

expected to be detected as normal. On the other hand there was no actual improvement on the

anomaly detection capabilities, while this is true this evaluation is based on a specific dataset of

anomalous tracks which could not be very susceptible to this input. If possible further tests should

be done with other datasets and which of course is true for other results.

4.3.3 Time Encoder

As discussed before sometimes having some measure of time as an input in the system may aid

on the modelling of time related patterns. On the majority of the vessel databases evaluated that

wasn’t the case since what generally could be considered a time related pattern wasn’t trajectories

but the level of activities in particular maritime zones. Still, on the case of fishing vessels there

was the possibility of some time related patterns, with this possibility in mind an encoder for time

was added to the system to try and see if the results could present any particularly interesting

anomalies.

In 4.2.2 was identified the possibility of making use of information related to the day of week

to improve the model, more objectively the necessary information can be reduced to a simple

category encoder with information pertaining to the current day classification between weekday

or weekend. The encoder used was exactly a weekend encoder, a subclass of date encoders with
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the previous characteristics, for this encoder the only needed parameter was the width, w, in which

case w = 21 was used again since for previous encoders it worked well.

After application of this encoder the results as expected didn’t improve, no actual anomalous

behaviours correlated with this information could be regarded as real. While it is disappointing

these were the expected results since in the previous analysis it was already noted that most likely

the related patterns were more on activity levels then on trajectories, of course, it isn’t meaning-

less since now we can be more clear on the real impact of this input. The results observed were a

decrease in the average anomaly in general without any improvement on the detection of anoma-

lous behaviour. This is expected since there’s no real pattern which relate to this input and after

enough learning the only result should be that there are similar trajectories for both weekdays and

weekends, like this in most cases the prediction will be right on the first or second waypoint of

a trajectory and from then on the next prediction should be generally right for this input since a

step of context should be enough to know what the current day was. Basically in most cases the

predictions related with this input and which will be right result in the decreased average anomaly.

4.3.4 Distance Encoders

After discussing time related patterns and while looking into information to improve the model

the idea of using the space surged. Of course the system already uses time and space information

since by using the HTM sequence memory the model being made describes successive positions

time related. To make use of different information to characterize the trajectories the idea is to use

distance. Three different distances were used in experiences:

1. distanceDelta meaning distance to last known position - this information is expected to help

on the identification of vessels which stopped the AIS system during some time or even on

the verification of the position and speed informations since distance depends on both and

if both are normal for some trajectory then the distance also should be normal.

2. distanceFromSog0 meaning distance from track start - the distance between the start point

coordinates and the current position - generally the track start was given by entry on the

maritime space or by a stop point when the vessel SOG was 0. With this input it should

be easier to detect anomalous transitions between trajectories, e.g. if a vessel goes on one

trajectory and changes into a different one only during the transition could this behaviour

be detected, after enough context which could be as little as a single waypoint the change in

trajectory happened and the new one could be predicted without further anomalies.

3. distanceFromSequenceStartDelta meaning the difference between:

- distance from track start calculated using distance between current and start position

- distance from track start by accumulating distance between consecutive positions

the goal of this information is to help characterize trajectories where the course isn’t well

defined, i.e. the objective isn’t in getting to some specific place. This idea had as focus the

fishing ships which have a very random travel course but on specific zones, for example,
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lots of fishing vessels trajectories start by travelling some distance afar of the pier, then just

go around fishing and later get back to the same pier. This example can be described by

the continuous increase of the distance from start point which is then almost maintained

followed by the decreasing distance from track start.

All these distance encoders share some characteristics that come from the features of distances

data types. Distance is a counter of space accumulated since something, in this case since other

position, this is important since because it’s an accumulation the error between tracks distances

will accumulate differently and for bigger distances the expected error will be bigger. Without

taking this into account it’s very difficult to use distance metrics to characterize trajectories. To

solve this the encoder used on distances is a Log Encoder which as seen before is able to provide

various ranges with varying resolutions which is what we need here, i.e. for bigger distance values

the differences between tracks can be wider which means resolution should decrease with the

distance.

The resulting encoders were respectively:

1. Log Encoder, w = 21, min = 1, max = 100, radius = 0.3

2. Log Encoder, w = 21, min = 10, max = 1000, radius = 0.2

3. Log Encoder, w = 21, min = 10, max = 6000, radius = 0.1

The results obtained with distanceDelta and distanceFromSog0 weren’t very conclusive but at

least to the subset of anomalous behaviours used there was no improvement on the detection of

anomalies while the average anomaly distribution increased a little further decreasing the anomaly

detection. On the other hand distanceFromSequenceStartDelta actually didn’t have any major

change on the results which was accepted as a good result since at least it meant this information

was able to characterize the trajectories correctly while there was the possibility of using it to aid

on the identification of the related anomalous behaviour previously identified noting that the per-

formance of the detection is dependent on the subset of anomalous data but the ability to represent

the trajectories affects the overall model.

4.3.5 Delta Encoders

Other then the previously mentioned encoders to add previous data to input space some exper-

iments with Delta Encoders were also performed. Delta encoders are specific encoders which

instead of using values provided as the base to the encoding of meaningful information into an

SDR make use of the difference between consecutive values. Delta encoders were used in trials

with the SOG, COG and distanceDelta and none of the cases the results were relevant to the im-

provement of the system which in general is normal since none of these types of data change rate

should show better results in characterizing a trajectory. Still it was possible to observe some hints

about it’s usability in the results, for example, on the model using a Delta encoder with the SOG

input it was very easy to identify zones of abrupt speed changes which were in general classified

as abnormal since in these points spikes are detected.
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4.4 Test List

From the initial simple system v1.0 with only a geospatial encoder and until the best fitting system

settings are found lots of work was needed to better understand which information could improve

the system, how to provide the system with that information and so on. In the next table a brief

summary of the different tests from which data was stored along this project is presented with a

brief description.

Table 4.1: Experimental system tests with settings summary description

Test ID Changes Description Based on Test
v10-10000 Geospatial Encoder scale = 10000
v10-2000 Geospatial Encoder scale = 2000
v10-5000 Geospatial Encoder scale = 5000
v11-5000 + SOG Scalar Encoder w=5 n=35 min=0 max=102 v10-5000
v12-5000 + Weekend Date Encoder w=21 v11-5000
v13-5000 + SOG Scalar Encoder w=21 n=147 min=0 max=102 v10-5000
v14-5000 + SOG Log Encoder w=21 radius=0.3 min=1 max=102 v10-5000
v14d-5000 SOG (Log -> Delta) Encoder v14-5000
v15-5000 + COG Scalar Encoder w=21 radius=15 min=0 max=360 v10-5000
v15d-5000 COG (Scalar -> Delta) Encoder v15-5000
v16-5000 + distanceDelta Log Encoder v10-5000

w=21 radius=0.3 min=0 max=102
v16d-5000 + distanceDelta (Log -> Delta) Encoder v16-5000
v17-5000 SOG Log Encoder && COG Scalar Encoder v14-5000 + v15-5000
v17-2000 Geospatial Encoder scale=(5000 -> 2000) v17-5000
v17-3000 Geospatial Encoder scale=(5000 -> 3000) v17-5000
v17-4000 Geospatial Encoder scale=(5000 -> 4000) v17-5000
v17a-5000 COG Log Encoder w=(21 -> 51) v17-5000
v17b-5000 COG Log Encoder radius=(15 -> 5) v17-5000
v17c-5000 COG Log Encoder radius=(15 -> 10) v17-5000
v18-5000 - Geospatial Encoder v17-5000
v19-5000 + distanceFromSequenceStartDelta Log Encoder v17-5000

w=21 radius=0.1 min=10 max=6000
v20-5000 + distanceFromSog0 Log Encoder v17-5000

w=21 radius=0.2 min=10 max=1000
v20b-5000 + distanceFromSog0 Log Encoder v10-5000

w=21 radius=0.2 min=10 max=1000



Chapter 5

Conclusion

On this chapter we will go over the overall results obtained during all the tests performed to better

understand the real improvements achieved as well as the real system results as the solution to the

challenge of detecting anomalies in vessels behaviours.

5.1 Work Results Summary

Along the development of this dissertation and with the objective of solving the problem of detect-

ing anomalous behaviours by making use of AIS data various decisions were made, the first one

was to try to use an HTM theory based system to solve the problem. All along the final objective

was the detection of anomalies which was taken as the string to guide all following decisions.

Detecting anomalous behaviour implied the need to have a good model to describe our data so

that it was possible to discern which behaviours are normal and which are anomalous. With that

in mind all the work progressed as was explained in previous chapters until it was time to take this

dissertation and project phase as finished and so it is now time to evaluate the progress achieved.

During all this project development decisions were made based on the analysis of data wether

it was the raw data to create the model or results achieved by the different tests to try and keep

improving, to better understand what was being modelled or how it was modelled and how that

contributed to the final goals. Various tests using the previous developed system and encoders

were made and identified on 4.1 and various results obtained which we will briefly go over next.

In Figure 5.1 it’s possible to see the overall change on the anomaly score distribution for both

an anomalous and a normal subset of the population. These kinds of charts when seen as a single

one can be very interesting to observe overall results, for these charts the overall objectives while

performing the tests were:

1. On the right group for the distribution of anomalies on the normal dataset the goal was to

concentrate the majority of the population on the minimum of bars possible and of course on

the lower side which would mean that most points should have very low anomalies scores

and that the normal population was being well identified.

43
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Figure 5.1: Histogram depicting anomaly distribution for all tests on subsets of anomalous (left)
and normal data (right)

2. For the left group the goals were the other way around meaning that most distribution should

go to the higher side with anomaly scores being the higher the better.

3. Of course good results can only be achieved if a good compromise between 1 and 2 are

achieved, in practice if the results on the right show that almost 100% of the population was

on the first column than it means that all points within other columns can be considered

anomalous. On the other hand if the distribution is all over then it’s very difficult to infer

which values correspond to anomalies.

In reality the previously described anomaly likelihood makes use of this way of thinking to im-

prove the anomaly detection performance by comparing the latest subset of results to the overall

results history and computing a probability that the current results are anomalous. On Figure 5.2

we can see the corresponding anomaly likelihood distribution, for the likelihood and derivative to

the way it was computed the values are ranged between 0.5 and 1 instead of 0 and 1 like on the

anomaly score case, it’s also important to note that in general it was expected the need of using a

very high value as a threshold as described in Ahmad et al. (2017, [2]) in which ε = 10−5 was

considered a good general threshold value to separate the occurrence of anomalies in a wide range

of domains. On this project that value which would mean having anomalies only detected when

the anomaly likelihood was over 0.99999 (Lt ≥ 1− ε ⇔ Lt ≥ 0.99999) didn’t really fit and so a

domain-specific one was found and which we will briefly go over later. On this Figure it is quite
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Figure 5.2: Histogram depicting anomaly likelihood distribution for all tests on subsets of anoma-
lous (left) and normal data (right)

easy to understand the overall improvement since we can observe that in later tests the anomaly

likelihood distribution for both subsets is generally quite well defined:

• For the anomalous subset distribution it’s possible to observe various tests where the values

are mostly distributed close to 1;

• On the normal subset distribution it’s even more clear to see that from the early tests (top dis-

tributions) on there’s a general improvement with most values being on the central column

between 0.7 and 0.75;

• With both populations well defined the tests should show large improvements on the ability

to detect anomalies. On the other hand there’s also later tests (close to the bottom) where

it’s possible to identify the decrease on the anomalous population characterization which are

generally indicative of mostly failed tests where some change was introduced and proved

armful to the overall results.

On all these charts it was possible to observe the general qualitative improvement on the dif-

ferent tests and to understand even better the results, to better compare them and to really quantify

it a measure of the tests accuracy was needed. The measure of choice was the F-measure (Van

Rijsbergen, 1979, [23]) generally used on the statistical analysis of binary classification problems

which in this case is the classification between normal and anomalous.
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Figure 5.3: Table with quantitative results for all tests; Fβ score with β = 0.5 and threshold Lt >
0.99

The F-measure is the harmonic mean between precision and recall and basically it takes into

consideration:

• Recall: The number of relevant items which are selected;

• Precision: The number of selected items which are relevant;

where for this project the relevant items are all anomalous waypoints. The formula correspondent

to the harmonic mean or F1score is:

F1 = 2 · precision · recall
precision+ recall

(5.1)

where:

Precision =
truepositive

truepositive+ f alsepositive
; Recall =

truepositive
truepositive+ f alsenegative

(5.2)

The general formula can be expressed as:

Fβ =
(1+β 2) · truepositive

(1+β 2) · truepositive+β 2 · f alsenegative+ f alsepositive
(5.3)

and where Fβ measures the classification effectiveness and attaches β times as much importance

to recall as precision (Van Rijsbergen, 1979, [23]).

On Figure 5.3 we can see various quantitative results for all tests. These results were obtained

using the subsets of anomalous and normal behaviour and in which case all points of each subset

was considered to have as true classification the overall set classification. On this table it’s possible

to identify various results related with every test including:

• True Positive Rate, True Negative Rate, False Positive Rate and False Negative Rate

• Positive Likelihood and Negative Likelihood



5.1 Work Results Summary 47

Figure 5.4: Table with quantitative results for all parameters maximum value, meaning best or
worst value depending on the parameter type; the tie-breaker was the Fβ Score so that it is the
maximum with the better overall results

• Diagnostic

• Precision

• F1 Score and Fβ Score

The measure which was taken as the deciding factor on choosing the best results was the Fβ Score,

this was the one measure which could best reflect the test performance. The use of the Fβ Score

instead of the F1 Score is due to the fact that in our data the expected ratio of negative classification

is much higher than the rate of positive, with this by using a β ≤ 1 the effect of false negatives

was attenuated which resulted on choices for better results with higher true negative rates with

some cost on the true positive rate. The value for β was of 0.5 and was the value used on all

specifications of Fβ Score.

To find the better options to optimize results various settings were used:

• Thresholding using:

1. Anomaly Score

2. Anomaly Likelihood

3. Anomaly Score AND Anomaly Likelihood

4. Anomaly Score OR Anomaly Likelihood

• Thresholds for:

1. Anomaly Score: 0 or 0.1

2. Anomaly Likelihood: ranging between 0.79 and 0.99

In Figure 5.4 are presented the overall maximum results obtained after running with all different

parameters, the results represent the maximum parameter across all settings and with the best
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overall performance decided by using the Fβ Score as tie-breaker. On the threshold cells are all

the information necessary to know which threshold configurations were used for that result, the

information is composed by:

• <Threshold>_<AnomalyType> - with anomaly type being aL,aS, respectively anomaly Like-

lihood and Score

• <AnomalyLikelihoodThreshold>_<AnomalyType><Logic><AnomalyType> - with anomaly

type being aL,aS,1S, respectively anomaly Likelihood, anomaly Score (with threshold 0)

and anomaly Score (with threshold 0.1); with logic being x,+, respectively Logical AND

and OR

We can observe some very good results like:

• True negative rate of 99.9% while still being able to detect almost 25% of the anomalous

waypoints. This test has the ID v17-5000 and uses as threshold for anomalies:

Lt > 0.98 ∨ St > 0

• The best test given by the maximum F1 Score has a true negative rate of 94.1% and is able

to detect almost 65% of the anomalous waypoints. This test has the ID v17b-5000 and uses

as threshold for anomalies:

Lt > 0.93 ∧ St > 0.1

• The best overall test is given by the maximum Fβ Score and has a true negative rate of 98.5%

while still being able to detect almost 50% of the anomalous waypoints. This test has the

ID v17b-5000 and uses as threshold for anomalies:

Lt > 0.86 ∨ St > 0

From these it’s possible to conclude that the best system settings were the variations on the tests

v17 with the general best balanced results which means that for modelling the trajectories corre-

spondent with these results which were from the database of vessels of type tanker the best settings

were the ones from the test 17b-5000 which means:

• Geospatial Encoder scale = 5000

• SOG Log Encoder w=21 radius=0.3 min=1 max=102

• COG Periodic Scalar Encoder w=21 radius=5 min=0 max=360

Finally in Figure 5.5 where the best result obtained by each test is presented the previous state-

ment is one more time confirmed with the top results being achieved by the various v17 variations.

It’s also possible to conclude that the various tests improved the overall anomaly detection per-

formance as well as better understand and compare the impact of the addition of new inputs or

encoders changes on the system performance mentioned on the previous chapter. Lastly a note

on the importance of the threshold method used to decide the anomalous behaviour classification
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Figure 5.5: Table with results for all tests overall best result given by the best Fβ Score

which as can be seen on the Figure there wasn’t a particular threshold method which performed

better on all tests but the majority of the best performing tests used as threshold a combination of

both the anomaly score and the anomaly likelihood.

5.2 Contributions

All along goals of this dissertation were to verify the feasibility of using an HTM based system to

perform anomaly detection on maritime vessels and better understand how and how well could an

HTM based system model maritime vessel trajectories using AIS data. With the end of the project

there are various contributions to make and which can be helpful on the choice and design of an

HTM based system, respectively:

• HTM based system can achieve very good results on the modelling of data which has a tem-

poral sequence to it and even if the rate of sequent data is limited it can perform reasonably

with the right parameters. On this project the initial system makes use of positions tempo-

rally spaced by one hour and with the right scale the system models the main trajectories

pretty accurately.

• Trajectories can be modelled using simply GPS coordinates where generalization is obtained

out of the box by the fact that HTM makes use of SDRs to hold information which perform

very well on the task.

• To improve trajectories characterization the addition of other inputs data can be a very sim-

ple solution. By using speed and movement directionality which could also be directly

extracted by using pairs of positions, even if not provided by measuring devices, which was

the case in this project where the data was provided on the AIS position messages by us-

ing vessel measuring devices, it was possible to improve the overall trajectory model and

with that the anomaly detection effectiveness. On the other hand it is important to note that
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adding data into a model can very easily negatively affect the model predictive ability which

will strongly affect the anomaly detection performance and so the choice of data to add into

a HTM model for anomaly detection has to be made carefully and take into account that it

should contain meaningful information which could characterize the model by it’s sequence

instead of it’s instantaneous values, i.e. data with no natural sequence patterns won’t be

predictable.

• The anomaly detection on HTM based systems is by design very natural since the model is

predictive. For specific domains the exploitation of different thresholds limits and modes

of operation proved by the results of different tests can improve system performance on the

anomaly detection vector.

5.3 Limitations and Future Improvements

The final system while having a much better performance than earlier versions is still quite limited.

It’s ability to model trajectories is dependent on the trajectories courses and if these courses are

very difficult to generalize and predict the anomaly detection performance will decrease sharply.

The tests using distance to the start point for example try to make use of a different trajectory

characteristic to model it, the results weren’t particularly interesting but it’s a possible way to

improve on this limitation.

Other limitation of the system is parameter tuning which since the production of a model with

relevant results implies the need to process large amounts of data which with limited processing

power and time constraints puts a difficult barrier on the possibility of optimizing the parameters.

On the other hand this limitation isn’t as important on a deployed system since there the model

while doing it in real time will only need to process data on a much lower rate that the current

tests which use a batch of months of data instead of stream of AIS data. There’s also an important

limitation which would create the need to redesign the way the inputs are fed to the system in

a real time environment since to model trajectories the data is divided in tracks which have a

sequence rationale to them, this is an indispensable characteristic since if the data is fed without

this rationale it’s impossible for the system to learn sequences, context or make predictions based

on it. On a real time environment the model may have the sequences learned by using batches of

tracks but it will still need context to understand the new input, this will not happen naturally with

the data stream from an AIS system which will receive messages from all vessels in it’s disordered

way and would need to be solved by providing a number of historic data for each vessel point

previous positions so that the system computes the anomaly likelihood of the current point based

on the historic provided.

The current system uses a single HTM model for all trajectories being only separated by vessel

type which can have high performance and efficiency costs, it would be interesting to use multiple

models instead. The same way different models were used for different vessel types the same logic

could be applied for other characteristics, for example:
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• Model different geographical zones separately by dividing the maritime zone into a grid

of zones each with a particular model which could be more accurate on it’s trajectories

characterization.

• Create different models for different tracks average velocity ranges.

These were just some possible limitations and improvements identified which could be re-

served for future work and of course there’s also the possibility to keep doing the same work of

analysing other data for input in the model or optimizing the current encoders taking into account

specific vessel types for example.
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Appendix A

Statistics Sample Results of Tests Data
Model

In this appendix are presented further statistic examples about the test results which were used

during the result analysis of each test. Some of which were presented before with lower resolution

and are present here again for reference with higher resolution to provide a better understanding

of the interpretations and decisions made along the project. The database of tanker vessels with

about 461000 waypoints was the one chosen for these examples since this was the one in which

the later part of the project had it’s decisions based.

These include:

• Anomaly Distribution

• Zero Anomaly Score Rate

• Anomalous Rate

• Anomaly detection results over different thresholds

A.1 Graphics and Tests Data

53
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Figure A.1: Anomaly Score Distribution for anomalous subset.
Note: Scores of 0 were changed to negative so that it’s possible to easily separate them on the
distribution
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Figure A.2: Anomaly Score Distribution for normal subset.
Note: Scores of 0 were changed to negative so that it’s possible to easily separate them on the
distribution
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Figure A.3: Anomaly Likelihood Distribution for anomalous subset
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Figure A.4: Anomaly Likelihood Distribution for normal subset
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Figure A.5: Rate of anomaly scores equal to 0 for each test with both the rate for the last month of
data (where the model is already reliable) and for the subset of anomalous flagged data

Figure A.6: Rate of anomaly scores equal to 0 for each test with both the rate for the last month of
data (where the model is already reliable) and for the subset of normalcy flagged data
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Figure A.7: Rate of anomaly scores over 0.9 for each test with both the rate for the last month of
data (where the model is already reliable) and for the subset of anomalous flagged data

Figure A.8: Rate of anomaly scores over 0.9 for each test with both the rate for the last month of
data (where the model is already reliable) and for the subset of normalcy flagged data
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Figure A.9: Results of anomaly detection for all tests with St > 0 as threshold

Figure A.10: Results of anomaly detection for best result parameters using only anomaly score
(St > δ ) as threshold

Figure A.11: Best results of anomaly detection for all tests using only anomaly score (St > δ ) as
threshold
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Figure A.12: Results of anomaly detection for overall best result parameters

Figure A.13: Overall best results of anomaly detection for all tests
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