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“…the study of life becomes a hollow, rarefied pursuit if the very 

animals and plants that fired our imaginations as children and 

triggered our curiosity as students should perish.” 

 

Michael E. Soulé and Bruce A. Wilcox 
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Summary 

Species and populations across the globe are currently subjected to dramatic 

climatic changes and rapid habitat loss due to anthropogenic pressures. As a 

consequence, their ability to persist is limited by their ability to track suitable habitat and 

to adapt to new conditions. For species or populations to evolve and adapt to new 

conditions, whether they respond in situ or not, genetic variability is necessary for 

reducing the extinction probability. Species that have undergone extensive population 

declines are particularly likely to have insufficient genetic variability and many may 

already be threatened with extinction: as populations become smaller, genetic drift 

becomes higher, inbreeding increases and genetic diversity decreases, leading to 

reduced fitness and adaptive potential. Thus, to conserve species in the face of current 

climate and habitat changes, especially for those which are already threatened, it is 

important to gain deeper understanding of the species evolutionary history, evaluate the 

amount of current genetic diversity and assess how it is spatially distributed. 

This thesis focuses on a near-threatened rodent endemic to the Iberian Peninsula, 

the Cabrera vole (Microtus cabrerae). This species is specialised on fast disappearing 

damp grassy areas, which are often subject to drainage and conversion as part of 

agricultural land use change. Thus the current main threat for the Cabrera vole is human 

induced habitat loss, which is leading to a decrease in the numbers of individuals, 

promoting high levels of inbreeding and subsequent decreased fitness. 

To increase sampling opportunities and avoid disturbing susceptible species, this 

thesis first describes the development of non-invasive methodologies that allow genetic 

data to be obtained without requiring capture and handling of animals. First, we 

developed a barcoding protocol that confirms the identity of tissue samples, but also that 

identifies non-invasive samples from the field, both faeces and bones from owl (Tyto 

alba) pellets. Due to the low quantity and quality of the DNA found in such samples, 

amplification of nuclear fragments using traditional Sanger sequencing or microsatellite 

genotyping is very low (< 30%), and thus more efficient and reliable methodologies were 

needed for more detailed studies.  

We used both non-invasive and traditional tissue samples for different parts of this 

study. Tissue samples from a variety of vole species were used to examine one of the 

most critical and controversial aspects of Cabrera vole biology: its phylogenetic position. 

The Cabrera vole is attributed to the subgenus Iberomys, of which it is the only living 

representative. We used mitogenomes and genome wide SNPs and show that the 
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Cabrera vole is closely related to the subgenus Agricola, where it was previously placed, 

and for which the field vole (M. agrestis) is currently the only representative. The 

phylogeny that we obtained suggests that these two species (or subgenera) represent 

one of the first expansions of Microtus that extended to Europe from an origin in Asia, at 

an earlier time than the expansions and radiations of the Microtus and Terricola 

subgenera. The claim that M. cabrerae should be elevated to its own genus based on 

the uniqueness of some karyotypic, morphologic and life-history traits was refuted given 

that the species has an internal position to the Microtus phylogeny. 

The fossil record shows the Cabrera vole’s first appearance around 100 kya, and 

that its distribution fluctuated with the climatic oscillations of the Quaternary. Our 

phylogeographic study using mitochondrial and single nuclear loci data estimates the 

time to the most recent common ancestor around 17 kya, suggesting that the last major 

contraction of extant populations occurred during the Last Glacial Maximum (LGM), 

possibly to the south-east of the Iberian Peninsula. After the LGM, the refugial population 

expanded to other areas of Iberia, but were soon interrupted by the subsequent impact 

of the Younger Dryas (YD) cold spell. This event represented another time of contraction 

for the Cabrera vole, with the species apparently restricted to at least two separate 

locations in western and eastern Iberia. We believe that this geographic pattern is the 

basis of the divergence of the two main mitochondrial lineages found today, named west 

and east, as well as the main population subdivision observed with the SNP dataset. The 

fossil record supports this hypothesis by revealing an increased presence of the Cabrera 

vole in peripheral areas of the Iberian Peninsula, both to the west and east. With the 

beginning of the Holocene, we suggest that there was a rapid expansion of the YD 

refugial populations to most areas of the Iberian Peninsula. Currently, however, the 

populations have increasingly limited ranges and low genetic diversity, likely associated 

to habitat loss. The western populations are genetically more homogeneous than those 

found in the east, which likely got separated and gradually diverged during the last major 

expansion of the Cabrera vole, possibly due to the higher topographic complexity of 

eastern Iberia. The Cabrera vole’s current population is thus divided into four main 

geographic nuclei: in the west it is represented by the Lusocarpetan geographic nucleus, 

composed of all populations from Portugal and the Spanish Central System mountain 

range, and in the east by the pre-Pyrenean (pre-Pyrenean massifs), Montiberic (Iberian 

System mountain range) and Betic (Betic System mountain range) geographic nuclei. 

Our phylogeographic analysis further identified a secondary contact between the 

western and eastern groups, which appears to represent a demographic expansion 

rather than selection based on mitochondrial sequence, given that signals of population 
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expansion were also obtained with the single nuclear loci. This secondary contact 

precedes the Cabrera vole decline, c. 3 kya, also observed in the fossil record, although 

genetic exchange between the western and eastern groups may have still occurred for 

a long period of time since the beginning of the decline. 

Aiming at developing a conservation framework, we used the SNPs dataset to 

determine conservation units (CUs) for the Cabrera vole and their functional connectivity. 

By using different sets of SNPs we identified three evolutionarily significant units (ESUs, 

using all loci), five management units (MUs, using neutral loci) and two adaptive units 

(AUs, using outlier loci). ESU1 (Lusocarpetan), is the most widespread CU and has high 

levels of connectivity between most of its populations, especially in the south; ESU2 

(Montiberic and Betic) has the highest levels of genetic diversity, but very low 

connectivity between most of its populations, especially in the Betic geographic nucleus; 

and ESU3 (pre-Pyrenean) is the most isolated and least diverse, but interestingly the 

most divergent of all three, being the one that contributes the most to the Cabrera vole’s 

overall genetic diversity. Only ESU2 is subdivided into three MUs, possibly as a result of 

lack of gene flow between populations, and subsequent divergence of allele frequencies. 

The MUs in the southernmost regions of ESU2 (especially in the Betic region), are very 

distinct genetically and could have characteristics important for adaptation to future 

environmental conditions. However as habitat is increasingly lost in these regions, these 

populations will likely disappear due to high levels of inbreeding and the inability to 

exchange with other populations. As there is mounting evidence that the Cabrera vole’s 

distribution is overestimated in the eastern part of the species range, new assessments 

are needed to ensure that the remaining populations are able to persist, either by the 

protection of suitable habitat or by providing dispersal corridors to more suitable areas. 

Given the importance of monitoring species for conservation, our final aim was to 

use a restriction enzyme-based genotyping-by-sequencing (GBS) method to detect 

SNPs from faecal and bone DNA samples. Although we are still not able to apply HTS 

to individual non-invasive samples, with this preliminary study we were able to 

successfully genotype over 3 000 SNPs on faecal and bone DNA pools and perform 

population assignment, as well as determine various genetic parameters on Cabrera 

vole non-invasive samples. This study shows that non-invasive HTS is possible for non-

model organisms, without the need of genomes or transcriptomes and expensive probe 

design, at a relatively low cost and with reduced laboratory work. 
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Resumo 

As espécies e populações de todo o mundo estão atualmente sujeitas a alterações 

climáticas dramáticas e rápida perda de habitat devido a pressões antropogénicas. 

Como consequência, a capacidade destes organismos de persistir é limitada pela sua 

capacidade de seguir o seu habitat adequado e de se adaptar a novas condições. Para 

as espécies e populações evoluírem e se adaptarem a novas condições, quer 

respondam in situ ou não, é necessária variabilidade genética para reduzir a 

probabilidade de extinção. Espécies que sofreram declínios populacionais extremos são 

particularmente suscetíveis de terem variabilidade genética insuficiente e muitas 

estarem já ameaçadas de extinção: à medida que as populações diminuem, a deriva 

genética torna-se mais forte, aumenta a endogamia e a diversidade genética diminui, 

diminuindo o fitness e o potencial adaptativo. Assim, para conservar as espécies dadas 

as atuais alterações climáticas e de habitats, especialmente para aquelas espécies que 

já estão ameaçadas, é importante obter um entendimento mais detalhado da história 

evolutiva da espécie, avaliar a quantidade de diversidade genética atual e determinar a 

sua distribuição espacial.  

Esta tese baseia-se num roedor quase-ameaçado e endémico da Península 

Ibérica, o rato de Cabrera (Microtus cabrerae). Esta espécie é especializada em habitats 

húmidos em rápido desaparecimento, que são muitas vezes sujeitos a drenagem e 

conversão para uso agrícola. Assim, as principais ameaças atuais para o rato de 

Cabrera são a perda de habitat induzida pelo homem, que está a levar a um acentuado 

decréscimo populacional, elevados níveis de endogamia e à diminuição da aptidão 

adaptativa.  

Para aumentar o número de amostras e evitar perturbar uma espécie já suscetível 

de si, esta tese descreve, em primeiro lugar, o desenvolvimento de metodologias não-

invasivas para obter dados genéticos que não requerem a captura e manipulação de 

animais. Assim, foi desenvolvido um protocolo de barcoding que confirma a identidade 

de amostras de tecido, mas também que identifica as amostras não-invasivas recolhidas 

no campo, tanto fezes como ossos obtidos de egagrópilas de coruja das torres (Tyto 

alba). Devido à baixa quantidade e qualidade do DNA encontrado nestas amostras, a 

amplificação de fragmentos nucleares usando a sequenciação tradicional de Sanger ou 

a genotipagem de microssatélites é muito baixa (<30%) e, portanto, metodologias mais 

eficientes e confiáveis foram necessárias de forma a podermos realizar estudos mais 

detalhados.  
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Utilizamos amostras não-invasivas e de tecido para diferentes partes desta tese. 

Amostras de tecido de várias espécies de Microtus foram usadas para examinar um dos 

aspetos mais críticos e controversos da biologia do rato de Cabrera: a sua posição 

filogenética. O rato de Cabrera é atribuído ao subgénero Iberomys, do qual é o único 

representante atual. Utilizou-se mitogenomas e SNPs distribuídos pelo genoma para 

mostrar que o rato de Cabrera está intimamente relacionado com o subgénero Agricola, 

onde estava colocado previamente e para o qual o rato do campo de cauda curta (M. 

agrestis) é atualmente o único representante. A filogenia que obtivemos sugere que 

estas duas espécies (ou subgéneros) representam uma das primeiras expansões dos 

Microtus para a Europa a partir de uma origem na Ásia, numa altura anterior às 

expansões e radiações dos subgéneros Microtus e Terricola. A sugestão de que M. 

cabrerae deve ser elevado ao seu próprio género baseada na singularidade de alguns 

traços cariotípicos, morfológicos e da sua história de vida foi refutada, dado que a 

espécie tem uma posição interna na filogenia do género Microtus.  

O registro fóssil denota o aparecimento do primeiro rato de Cabrera há cerca de 

100 mil anos, sendo que a sua distribuição foi contraindo e expandindo com as 

oscilações climáticas do Quaternário. O nosso estudo filogeográfico com base em dados 

mitocondriais e nucleares estima que o tempo para o ancestral comum mais recente das 

populações atuais é de cerca de 17 mil anos, sugerindo que a maior contração das 

populações atuais terá ocorrido durante o Último Máximo Glacial. Depois do LGM, esta 

população refugial expandiu-se para outras áreas da península, mas foi rapidamente 

interrompida pelo subsequente impacto das temperaturas baixas do Dryas recente. Este 

evento representou um novo momento de contração para o rato de Cabrera, com a 

espécie aparentemente restrita a pelo menos dois locais distintos no oeste e este da 

Península Ibérica. Acreditamos que este evento tenha resultado na divergência das 

duas linhagens mitocondriais principais encontradas atualmente, chamadas oeste e 

este, bem como na principal subdivisão populacional observada com os dados 

genómicos. O registro fóssil apoia esta hipótese ao revelar uma maior presença do rato 

de Cabrera nas áreas periféricas da Península Ibérica, incluindo Portugal e este da 

Espanha. Com o início do Holoceno, este trabalho sugere que houve uma rápida 

expansão dessas populações refugiais da periferia para áreas mais centrais da 

Península Ibérica. No entanto, atualmente as populações tem distribuições cada vez 

mais restritas e baixa diversidade genética, provavelmente associado a perda do habitat. 

As populações ocidentais são geneticamente mais homogéneas do que as do este, que 

acabaram por gradualmente se diferenciar durante a última grande expansão do rato de 

Cabrera, possivelmente devido à maior complexidade topográfica do este da Península 



xiv   FCUP 
The evolutionary history and conservation of an endemic and threatened Iberian rodent: the Cabrera vole (Microtus cabrerae) 

 

Ibérica. A população atual do rato de Cabrera está assim dividida em quatro principais 

núcleos geográficos: no oeste é representado pelo núcleo geográfico Lusocarpetano, 

composta por todas as populações de Portugal e espanholas do Sistema Central e a 

este pelos núcleos pré-Pirenaico (nos maciços pré-Pirenaicos), Montibérico (no Sistema 

Ibérico) e Bético (no Sistema Bético). A nossa análise filogeográfica identificou ainda 

um contacto secundário destes dois grupos ocidental e oriental, em que a linhagem 

mitocondrial oeste, que parece representar uma expansão demográfica ao invés de uma 

seleção sobre os haplótipos mitocondriais da linhagem oeste, dado que os sinais de 

expansão da população foram também observados a nível dos genes nucleares 

estudados. Este contacto secundário precede o declínio do rato de Cabrera, há cerca 

de 3 mil anos, também suportado pelo registo fóssil, apesar de a troca de genes entre 

os grupos do oeste e este se possa ter mantido por um longo período após o início do 

declínio. 

Com o objetivo de desenvolver um plano de conservação, utilizamos o conjunto 

de dados genómicos (SNPs) para definir unidades de conservação (UCs) para o rato de 

Cabrera, assim como a sua conectividade funcional. Usando diferentes conjuntos de 

SNPs foram identificados três unidades evolutivamente significativas (ESUs, usando 

todos os loci), cinco unidades de gestão (MUs, usando loci neutrais) e duas unidades 

adaptativas (AUS, usando loci outlier). A ESU1 (núcleo Lusocarpetano) é a UC mais 

extensa geograficamente, possuindo níveis de conectividade elevada entre a maioria de 

suas populações, especialmente no sul; a ESU2 (núcleos Montibérico e Bético) tem 

níveis mais altos de diversidade genética, mas muito baixa conectividade entre a maioria 

das suas populações, especialmente no núcleo geográfica Bético; a ESU3 (núcleo pré-

Pirenaico) é a mais isolada e menos diversa, mas curiosamente a mais divergente de 

todos as três ESUs, sendo ainda a que mais contribui para a diversidade genética global 

do rato de Cabrera. Apenas a ESU2 é subdividida em três MUs, possivelmente como 

resultado da falta de fluxo génico entre as suas populações, e subsequente divergência 

das respetivas frequências alélicas. As MUs periféricas da ESU2 (especialmente no 

núcleo Bético) são muito distintas geneticamente e podem ter características 

importantes para a adaptação a futuras condições ambientais mais adversas. No 

entanto, como o habitat favorável à ocorrência do rato de Cabrera está cada vez mais 

ameaçado nessas regiões, estas populações provavelmente desaparecerão devido aos 

altos níveis de endogamia e à incapacidade de fluxo génico com outras populações. 

Com o crescente reconhecimento de que a presença do rato de Cabrera é sobrestimada 

na parte oriental da sua distribuição, são necessárias novas avaliações para assegurar 

que as populações remanescentes são capazes de persistir, quer pela proteção do 
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habitat favorável quer pela proteção de corredores de dispersão para áreas mais 

adequadas. 

Dada a importância de realizar monitorização das espécies para a sua proteção, 

o nosso objetivo final foi utilizar um método de genotipagem por sequenciação (GBS) 

baseado em enzimas de restrição para detetar SNPs de amostras de DNA fecal e ósseo. 

Embora ainda não possamos aplicar HTS a amostras individuais não-invasivas, com 

este estudo preliminar fomos capazes de genotipar mais de 3 000 SNPs em pools de 

DNA fecal e ósseo e realizar a alocação às populações de origem, bem como determinar 

vários parâmetros genéticos em amostras não invasivas de rato de Cabrera; 

adicionalmente muitas outras aplicações são possíveis com dados de Pool-seq. Este 

estudo mostra que o HTS não-invasivo é possível para organismos não-modelo, sem a 

necessidade de genomas ou transcriptomas e desenho de sondas, a um custo 

relativamente baixo e com trabalho de laboratório reduzido. 
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1. Conservation Biology – a crisis discipline 

As early as the 19th century, there was already disquiet about the growing human 

impact on the natural world (Sodhi & Ehrlich 2010). With increasing environmental 

pollution, habitat disturbance and consequent depletion of biodiversity, an appreciation 

of the importance (and complexity) of biotic interactions and a concern about their future 

grew through the 20th century. This concern evolved into a new mind-set that aimed to 

preserve the ‘biota as a whole’, not only to sustain utilitarian resources but, most 

importantly, for maintaining the ecosystem’s health (Leopold 1991; Golley 1993; Sodhi 

& Ehrlich 2010). From this mind-set was born the field of Conservation Biology – a 

discipline that uses the knowledge and tools from all biological disciplines for nature 

conservation (Soulé & Wilcox 1980). It was defined by Soulé (1985) as “the application 

of science to conservation problems, addressing the biology of species, communities 

and ecosystems that are perturbed, either directly or indirectly, by human activities or 

other agents”. Conservation biology is thus in the intersection of science, policy and 

practice, that aims for taxon survival but starts with the threat of their extinction (Frankel 

& Soulé 1981; Soulé 1985; Sodhi & Ehrlich 2010; Haig et al. 2016). 

 

The threatened, the elusive and the neglected 

Over the last hundred years, the rate of species loss faced by the Earth’s biota 

entered a sixth ‘mass extinction’ with an average rate of vertebrate species loss over 100 

times higher than pre-human background rates (Figure 1) (Mills 2013; Ceballos et al. 

2015). However, the proportion of species currently described for each group influences 

the reliability of such estimates. Given that the knowledge we have on each group is a 

result of both opportunity and interest in describing such species, there are particularly 

well documented groups with detailed extinction records, in comparison with other 

groups that are less studied but have higher number of species; for instance vertebrates 

vs invertebrates, or mammals and birds vs reptiles and fish (Baillie et al. 2004). 

Threatened species are found all over the world, particularly in biodiversity hotspots, but 

also in areas where there are higher human densities and where centuries of human 

activities, either direct (e.g. persecution) or indirect (e.g. habitat destruction), have led to 

extensive range contractions and extinctions (Myers et al. 2000; Ceballos & Ehrlich 

2002). 
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Figure 1. Observed and predicted species extinction levels: a) cumulative percentage of species extinctions during the 

last 500 years using a ‘highly conservative’ [i.e. considering only ‘extinct’ (EX) species] scenario for ‘mammals’ and ‘birds’ 

(100% of those described), ‘other vertebrates’ [reptiles (44%), amphibians (88%) and fishes (38%)], as well as all 

vertebrates combined (59%) – dashed black line represents a constant background extinction rate of 2 mammal species 

extinctions per 10 000 species per 100 years; b) number of years required for each group to become extinct under the 

background rate following a ‘highly conservative’ scenario [adapted from Ceballos et al. (2015), with permission]. 

Conserving biodiversity in these disturbed areas can be challenging given that 

favourable habitats are usually small and geographically dispersed as a consequence of 

human occupation; thus alternative conservation strategies in these areas are needed, 

such as those relying on the concept of ‘umbrella species’ (Lambeck 1997). Umbrella 

species are usually charismatic vertebrates, frequently birds and mammals, and their 

protection leads to the conservation of large amounts of natural habitat that include many 

other naturally co-occurring, and possibly threatened, species (Roberge & Angelstam 

2004). Although the ‘umbrella species’ approach accounts for the conservation of the 

target and non-target species and their habitat, there are cases where particular species 

have higher diversity and abundance outside rather than inside protected areas. A 

particular case has been illustrated by Caro (2003), who showed that abundances of 

small mammals inside protected black rhino habitat in East Africa were lower than 

outside the reserve, exemplifying that different strategies may have different success 

rates for different groups. The taxon bias is recognised and well-illustrated in a recent 

study from Pérez-Espona (2017) that analysed conservation genetics studies performed 

on various vertebrate groups, molluscs and vascular plants from 1992 to 2014 in Europe. 

This study shows that some groups have a lower ratio of number of species to total 

number of conservation genetic studies than others, even within the same class, 

especially biased towards charismatic and commercially valuable species. Within 

mammals, most conservation genetic studies target carnivores and ungulates, which 

relates directly to the umbrella species concept. Bats (Chiroptera), shrews and their 
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relatives (Soricomorpha), and rodents (Rodentia), are mammalian orders with a small 

proportion of studies given the large number of extant species, despite their importance 

for ecosystems and frequent need for conservation.  

To determine the threat status of species and their populations, the IUCN Red List 

Categories and Criteria (IUCN 2001) relies mostly on estimates of population size decline 

and geographic range reduction, disregarding that, in addition to ecosystems and 

species, genes are a form of biodiversity that also deserves conservation (McNeely et 

al. 1990). A recent study from Willoughby et al. (2015) showed that the IUCN criteria 

typically used to assign conservation rank tend to overlook species with reduced genetic 

diversity, unless their populations have undergone drastic census size decreases. Thus, 

although the IUCN has recently incorporated genetic diversity in the threat assessments, 

it still only concerns the problems of introducing genetic material from invasive and other 

problematic species into endangered populations (IUCN 2016). The ability of these 

endangered populations to adapt to increasing habitat and climatic change relates to a 

species’ genetic diversity (Eizaguirre & Baltazar-Soares 2014), and so we cannot afford 

to be indifferent about conservation genetics.  

 

2. Conservation Genetics to the rescue? 

Darwin already discussed the importance of morphological diversity for maintaining 

healthy populations on his essays about domestication, demonstrating that humans have 

long been managing domestic populations based on underlying practical notions of 

genetic diversity and inbreeding, even before a knowledge of the mechanics of genetics 

(Darwin 1857). The basic principle of natural selection requires phenotypic variation to 

favour one form over the other and this, in essence, is a result of the expression of 

genetic diversity (Ghalambor et al. 2007; Valladares et al. 2014). The field of 

conservation genetics started with Otto Frankel’s concern both for the genetic diversity 

of domestic species and for wildlife conservation (Frankel & Bennet 1970; Frankel 1974). 

Since genes are the basis for evolutionary change and adaptation, genetic variation is a 

crucial determinant of long term population viability; thus the more genetic diversity a 

population has, the higher the likelihood of it adapting to changes in the environment 

(Frankel & Soulé 1981; Loeschcke et al. 1994; Allendorf et al. 2012; Mills 2013; 

Eizaguirre & Baltazar-Soares 2014; Willoughby et al. 2015). Various works have 

highlighted the importance of genetics in maintaining populations resilient to change, 

however the most difficult and intrinsic part in conservation genetics is detecting 
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population decline before populations suffer from genetic problems, which represent 

some of the most important factors driving extinction (Spielman et al. 2004).  

 

From declining to small populations, and then towards extinction 

Two different paradigms in conservation biology have been considered by 

Caughley (1994). The ‘declining-population paradigm’ focuses on determining the 

causes for population decline. It is the most useful paradigm for conservation but the 

hardest to draw theoretical expectations from due to the great variety of factors likely 

involved, often requiring case-by-case analysis (Figure 2). On the other hand, the ‘small-

population paradigm’ has a much more simple theoretical background as it deals mostly 

with population genetic (internal) factors and associated stochastic (natural) events, 

which can be more or less predicted or at least accounted for (Figure 2). The expectation 

is that smaller populations will have increased risk of extinction due to decrease in 

genetic diversity and thus in their fitness (Frankel & Soulé 1981). This correlation 

between fitness and population size illustrates the ‘Allee effect’ (Stephens et al. 1999). 

A population can be influenced by many types of Allee effects, depending on the species 

life history, current threats and their strength, etc. (Berec et al. 2007). From an ecological 

perspective, lower population densities are often associated with lower fitness through 

the impact on reproductive (e.g. mate finding) and survival (e.g. cooperative anti-predator 

behaviour) mechanisms, and this correlation is termed the ecological Allee effect 

(Stephens et al. 1999; Berec et al. 2007). From a genetic perspective, as populations 

become smaller, the loss of genetic diversity and increased genetic drift, will often result 

in inbreeding (and ultimately inbreeding depression) and in the accumulation of 

deleterious mutations (or mutational load) – the genetic Allee effect (Hedrick & Garcia-

Dorado 2016; Luque et al. 2016). Thus, smaller populations will have decreased fitness 

and lower chances of survival when exposed to new environmental stressors, and often 

negative population growth rates – a phenomenon called the ‘extinction vortex’ (Gilpin & 

Soulé 1986; Amos & Balmford 2001; Charlesworth & Willis 2009; Ellegren & Galtier 

2016). An excellent example of the interaction between small population size, inbreeding 

and relatedness on individual fitness is the study of the Isle Royale wolves (Hedrick et 

al. 2017). Wolves colonised Lake Superior's Isle Royale in the late 1940s but became 

isolated over the years with no new migrants arriving on the island (Peterson & Page 

1988). Over time, the population grew to its maximum of around 50 individuals in the 

80s, but then sharply declined to the two individuals found today (Peterson & Page 1988; 

Hedrick et al. 2017). 
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Figure 2. Schematic representation of the ‘declining-population’ and ‘small-population’ paradigms proposed by Caughley 

(1994), and the extinction vortex as presented by Frankham et al. (2002), by comparing the effects of selective pressures 

(Stressors) on a declining population (A), on fragmented populations (B), where A was divided into two subpopulations 

by a barrier (grey), and on a small population with low genetic diversity (C), represented by one of the two populations 

from B. Geometric forms inside circles represent individuals with different phenotypes associated with different genotypes 

(shape and colour); Stressors: the multiplication factor under each phenotype generates the number of each geometric 

form at that time point; at each of the three time points, genetic drift will remove the least common form (arrow, genetic 

drift) and one of the most common individuals dies (becomes transparent); the extinction vortex is a cycle represented by 

thick black arrows that lead to smaller population sizes (Reduced N); thin black arrows represent factors extrinsic to 

populations that lead to Reduced N and can be either natural instability or human mediated (A). 

 

Most of this decline was not due to fluctuations of its prey (moose) or difficulties in 

finding other individuals for mating, but rather attributed to very high inbreeding and 

accumulation of deleterious mutations – the genetic Allee effect (Hedrick et al. 2014, 

2017). This supports the idea that most species are driven to extinction when genetic 

factors such as low heterozygosity and inbreeding start affecting populations (Spielman 

et al. 2004), leading to an increased risk of genetic variability loss for species that are 
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increasingly threatened (Amos & Balmford 2001). Fagan & Holmes (2006) studied 

several vertebrate populations whose extinction was monitored over 12 years. These 

authors, found that when populations became closer to extinction, the rates of decline 

were larger, as theory predicted. However, this was associated with lower genetic 

diversity of the individuals remaining in the last surviving populations, rather than with a 

lower population size per se. Conservation genetic studies should thus promote the 

persistence of populations by maximising genetic diversity and positively influencing 

evolutionary processes (Frankel 1974; Latta 2008). However, the ecological and genetic 

Allee effects do not operate independently and it is important to consider their interaction  

to avoid false optimistic prognosis on the minimum number of individuals required to 

avoid the extinction vortex, given that these effects are generally additive and can even 

be superadditive (Fauvergue et al. 2012; Wittmann et al. 2016).  

 

Metapopulations are a special kind of small population 

In some species, small groups of individuals exist in patches that are connected 

by dispersal, forming a ‘metapopulation’, where each patch has a given probability of 

being colonised and suffering an extinction event (Gilpin & Hanski 1991; Hanski & 

Gaggiotti 2004). The difference between a metapopulation and a true small population 

is the fact that the first have evolved in a context of balancing recruitment and dispersal 

between patches in such way that the dynamics of colonisation-extinction-recolonisation 

is able to maintain a genetically healthy population (Hanski & Gaggiotti 2004). Despite 

this, a metapopulation is highly susceptible to disturbances such as habitat destruction 

and extinction of local nuclei. Thus the metapopulation equilibrium is often close to the 

extinction threshold and, coupled with decreasing patch size and increasing patch 

isolation, a metapopulation may quickly reach a state of non-equilibrium (Figure 3) (Nee 

& May 1992; Hanski 1998). Amarasekare (1998) formally tested the consequences of 

ecological Allee effects in metapopulations, and showed that these effects may increase 

metapopulation extinction risk at low habitat occupancy even more than habitat 

destruction alone. This is because ecological (and genetic) Allee effects can prevent a 

metapopulation from growing even if suitable habitat is available. 
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Figure 3. Schematic view of the effects of patch size and isolation on the dynamics of metapopulations. Grey and white 

circles represent occupied and vacant habitat patches, respectively; full and dashed outline delimit populations (except 

for vacant habitat patches) and metapopulations, respectively; arrows represent connected populations and the dominant 

direction of dispersal [adapted from Harrison & Taylor (1997) and Fullerton et al. (2011), with permission]. 

 

Genetic rescue 

The genetic Allee effect can be counteracted through translocations or by 

promoting connectivity between populations. These actions may potentiate genetic 

diversity and increase population fitness, and generally are referred to as ‘genetic rescue’ 

(Whiteley et al. 2015; Hedrick & Garcia-Dorado 2016). The expectation is that a low level 

of immigration between small populations will result in increased fitness of the receiving 

population due to heterosis (masking of deleterious alleles) and/or the introduction of 

beneficial alleles (Tallmon et al. 2004; Weeks et al. 2016). There are various types of 

population rescue that, despite being categorised differently, are ultimately linked: 

demographic rescue relates to the movement of individuals from larger to smaller 

populations, resulting in an increase in the number of individuals; genetic rescue relates 

to the movement of alleles from a population with high genetic diversity to populations 

with low genetic diversity to increase fitness; and evolutionary rescue is related to the 

movement of alleles from a population of individuals adapted to given environmental 
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conditions to a population that has recently been exposed to those same conditions but 

does not have similarly well adapted alleles, resulting in increased fitness granted from 

the environmentally beneficial alleles (Vander Wal et al. 2013; Whiteley et al. 2015; 

Richardson et al. 2016). In contrast, immigration of genetically distinct individuals can 

lead to decreased fitness due to outbreeding depression in small populations, such as 

the loss of locally adapted genotypes through allele swamping (Smith & Wayne 1996). 

This might not only be problematic for cases of admixture between species 

(hybridisation) but also within species, leading to the loss of unique genetic diversity, 

often through hybrid maladaptation or inviability (Frankham et al. 2012). Nevertheless, 

the few studies that have tested absolute fitness have found mostly positive effects of 

low levels of migration, or a mix of positive and neutral effects (Whiteley et al. 2015). 

Increasing evidence demonstrates that conservation genetics can help us 

understand population dynamics and how to preserve species and populations (DeSalle 

& Amato 2004; Frankham et al. 2010). One good example of the use of genetics to 

secure population resilience is the Florida panther (Puma concolor coryi). This 

subspecies of puma represented a long isolated population distributed in south-eastern 

United States, with a decreasing number of individuals. Inbreeding led to decreasing litter 

sizes and the appearance of defects not present in pumas captured west of the 

Mississippi river: a cowlick on the back of the neck, kinked tail, developmentally 

malformed sperm, heart valve defects, etc. (Johnson et al. 2010). A decision was made 

to introduce eight pumas from Texas in Florida in order to increase the genetic diversity 

of the Florida panther – an experiment that could compromise the original gene pool 

through outbreeding, but save the Florida panther that was compromised by inbreeding 

(Vander Wal et al. 2013). This genetic rescue generated an increase in heterozygosity, 

number of individuals and survivorship, and a decrease in the mean age of the 

populations, i.e. more young were becoming established in the population (Johnson et 

al. 2010). There are various examples of similar genetic rescue cases such as in bighorn 

sheep in the United States, and adders in Sweden, showing the same trend of enhanced 

population numbers after the introduction of new individuals, and suggesting that 

increased genetic diversity can help endangered populations to recover (Madsen et al. 

1999; Hogg et al. 2006; Hedrick & Fredrickson 2010; Vander Wal et al. 2013). While 

these case studies are excellent examples of genetic rescue, it is usually advisable to 

perform population viability analyses before reaching such critical stages (Shaffer 1987; 

Beissinger & McCullough 2002; Whiteley et al. 2015). Many early viability analyses were 

based on ‘rules of thumb’ for e.g. minimum number of individuals to consider a species 

endangered, but what was readily understood by these studies was that a more nuanced 
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approach to conservation should be based on evolutionary theory and account for both 

neutral and adaptive variation over time through frequent monitoring  (Latta 2008; Flather 

et al. 2011).  

 

Non-invasive genetic sampling: so you can catch them all 

One of the biggest issues regarding the study of threatened species is the 

disturbance that sampling and monitoring may cause to animals and their habitat while 

conducting conservation actions. For these species, which are generally elusive and 

rare, a widely used approach that minimises disturbance is non-invasive genetic 

sampling (NiGS). This methodology allows genetic information to be gathered without 

handling, contacting or even seeing the organisms (Waits & Paetkau 2005; Beja-Pereira 

et al. 2009). The information is obtained using DNA extracted from a variety of samples, 

such as, faeces, hairs, feathers, urine, egg shells, scales, skin, etc. (Smith & Wayne 

1996). In the case of small vertebrates, one can also obtain samples from ‘pellets’ 

(containing indigestible hair and bones) produced by predatory birds at their roosts, in 

particular the cosmopolitan barn owl (Tyto alba). These pellet accumulations represent 

a cost effective way of sampling the prey from an owl’s territory without human 

disturbance of the existing populations (Taberlet & Fumagalli 1996; Avenant 2005). 

 When correctly used (see below), NiGS can provide accurate and valuable 

information relevant to conservation such as: detection of rare species, individual and 

gender identification, population size estimation, determination of social structure, 

measurement of genetic diversity and gene flow, and detection of hybridisation, diseases 

and diets [for a review see Waits & Paetkau (2005)]. NiGS can thus be an excellent tool 

for the conservation of threatened and elusive species. This is well illustrated by Blair & 

Melnick (2012) who collected faecal samples from Central American squirrel monkeys 

(Saimiri oerstedii) and were able to identify over 240 individuals and obtain detailed 

information on population structure, long-term movements and family relationships. This 

work would not have been possible in the same timeframe and with similar effort with a 

traditional capture-mark-recapture approach. Thus, in terms of sampling, studies have 

shown that NiGS can outperform traditional capture-mark-recapture studies in estimating 

animal densities, considering not only a lower sampling effort, but also an increased 

‘capture’ rate (Sabino-Marques et al. in prep). There are specific precautions one must 

have from sample collection to data analyses, including sterile collection conditions, 

dedicated laboratory areas to have especial care regarding contamination from various 

sources, design of specific markers for degraded DNA, replication, and the consideration 
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of the main sources of error when generating and analysing the data (Taberlet et al. 

1999; Waits & Paetkau 2005; Pompanon et al. 2005; Broquet et al. 2007; Beja-Pereira 

et al. 2009). For example, in terms of sampling regime, choosing between systematic or 

opportunistic NiGS schemes results in either higher number of individuals detected or 

recaptures, respectively (Rehnus & Bollmann 2016); also, caution is needed in laboratory 

execution given the samples’ low DNA quality and quantity results in low amplification 

success, genotyping error rates and varying levels of missing data (Taberlet et al. 1999; 

Beja-Pereira et al. 2009). Still, Smith & Wang (2014) performed a series of simulations 

to evaluate the effect of small sample sizes and genotyping errors on the most commonly 

estimated genetic parameters, and determined that reasonable estimates of genetic 

variation and population subdivision can be obtained from non-invasive samples. There 

are many other examples of the utility and feasibility of NiGS, but one of the biggest 

limitations is the low amplification success for nuclear markers. Current high throughput 

sequencing technologies are allowing cost-effective generation of a greater quantity and 

quality of data, which may soon revolutionise NiGS studies by overcoming many of its 

limitations (de Barba et al. 2016). 

 

3. Transitioning to Conservation Genomics 

With the advances of genomic techniques, more markers representative of the 

entire genome are now accessible through the use of high throughput sequencing (HTS) 

methods. These methods allow the generation of large amounts of sequence data, 

providing deeper insights into the patterns and processes involved in maintaining and 

creating genetic diversity (Hoffmann et al. 2015). However, given the generalised 

perception that genetic information is not necessary to conservation management, the 

mystique of genomics may widen this gap (Winter et al. 2013; Shafer et al. 2015; Taylor 

et al. 2017). Nevertheless, the easier access to next generation sequencing technologies 

and the recognition that genomics can provide better substantiated answers to previous 

questions and allow for new ones to be asked, should ultimately overcome the 

genetic/genomic-conservation gap (Taylor et al. 2017).  

 

New tools for old problems 

Whole genome sequencing will likely become the standard for genetic studies of 

natural populations, as it provides the most complete view of genetic variation, however 

its costs can still be prohibitive for many conservation studies (Ekblom & Wolf 2014). 
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There are many advantages in using a reference genome for conservation studies as it 

allows the assignment of reads to chromosomes and annotated loci, with which we can 

more accurately determine population history over time, find functional genes associated 

to selected candidate loci, or areas of the genome under higher or lower selection 

pressures (Benestan et al. 2016). A good example of the use of whole genomes in 

conservation is the detection of long runs of homozygosity (genomic flatlining) in the 

African cheetah, the Iberian lynx and the Channel Island fox (Dobrynin et al. 2015; 

Abascal et al. 2016; Robinson et al. 2016). These authors recognised the presence of 

some regions of the genome significantly more variable than others, usually associated 

to genes linked to key aspects of the animals’ biology. This suggests that there may be 

a selective maintenance of diversity in ‘essential’ genomic regions for the persistence of 

these species, which is maintaining viable populations even in the face of generalised 

genetic depletion. However, most species of conservation concern do not benefit from 

well-developed genomics resources such as a well-annotated genome, and a genome 

is likely unnecessary for many conservation studies (Hoffmann et al. 2015; Shafer et al. 

2015; Allendorf 2017). Several methods of genome complexity reduction can still provide 

a genome wide perspective of genetic variation – these are called reduced-

representation sequencing (RRS) methods (Hoffmann et al. 2015) (Table 1). With these 

methods one can access large numbers of markers that are randomly distributed 

throughout the genome, being representative of the overall variation, and these may 

reflect both neutral and adaptive variation (Ouborg et al. 2010; Shafer et al. 2015). The 

choice of methodologies depends on the research question to be addressed, the 

sampling design, the allocation of sequencing effort and which genomic tools are already 

available, if any (Hoffmann et al. 2015; Benestan et al. 2016; da Fonseca et al. 2016). 

As conservation biology is in essence an applied discipline, most of the questions in 

conservation genetics relate to relatively recent time scales dealing with the preservation 

of current genetic diversity, and aiming for a high impact on management decisions with 

few financial resources (Benestan et al. 2016). The most promising tools in genomics for 

conservation studies include targeted DNA and RNA sequencing and restriction site-

associated DNA (RAD) sequencing (RAD-seq) (Baird et al. 2008; Steiner et al. 2013). 

RAD-seq and other similar restriction-based techniques, such as genotyping-by-

sequencing [GBS, Elshire et al. (2011)], have played a major role in conservation 

genetics given its wide range of applications in studies of species with little or no genomic 

resources (Table 1) (Davey et al. 2011; Narum et al. 2013; Andrews & Luikart 2014; 

Andrews et al. 2016; Benestan et al. 2016). Additionally, restriction-based techniques 

can be used not only in individual samples but also on pools of individuals (Pool-seq), 
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which allows cost-effective studies for addressing a wide range of questions, such as 

population assignment and diversity, genotype-phenotype mapping for adaptation, etc. 

(Schlötterer et al. 2014).  

Still, the major limitations for most conservation studies is the need of 

comprehensive sampling, and here monitoring becomes an essential part of 

conservation genetics which can benefit from the use of HTS methods (Frankham et al. 

2010; Schlötterer et al. 2014). Genetic monitoring may be especially difficult in rare, 

threatened and elusive species due to ethical, financial or logistic reasons, and this is 

where non-invasive genetics may become a valuable tool in conservation genomics 

(Waits & Paetkau 2005). 

Table 1. The utility of different HTS methods to different questions in conservation genetics associated to a simple 

representation of the division of high throughput sequencing methods (HTS) into some of the most commonly used 

approaches [adapted from Corlett (2017), with permission]. 
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Non-invasive genomics 

Considering the new developments of high throughput sequencing (HTS), an 

increasingly large array of techniques is becoming available for potentiating the 

application of NiGS in conservation studies. The first application of HTS to faecal 

samples was developed by Perry et al. (2010), to recover specific regions of the genome 

of the western chimpanzee (Pan troglodytes), by designing DNA probes to perform exon 

capture (targeted approach, Table 1). Due to the degraded nature of the DNA present in 

faecal samples, studies that enrich for endogenous DNA are very useful to NiGS, as it is 

a form of reducing genome complexity by selecting specific genomic regions. The 

advantage is that these endogenous genomic regions can be sequenced in multiple 

samples that usually have a high percentage of exogenous DNA. However they require 

extensive genomic resources such as genomes or transcriptomes to develop the DNA 

probes (Perry 2013). Due to the high costs associated with generating a genome or 

transcriptome, an increasing number of studies are currently attempting to use NiGS 

without such resources. Russello et al. (2015) performed genotyping-by-sequencing 

(GBS) on hair samples of American pika (Ochotona princeps) and were able to detect 

population structure and infer adaptation to altitude within populations. However, the 

collection of hair samples requires planning and monitoring the hair traps, and hair DNA 

is of much higher quality than the average samples used in NiGS (e.g. faeces) due to 

the DNA protection conferred from keratin (Henry et al. 2011). The application of 

genomic tools to more degraded samples such as faeces is still under development. 

Graham et al. (2015) performed the first study on the impacts of sample degradation 

levels for obtaining reliable SNPs with double-digest RAD-seq (ddRAD). They have 

shown that genomic studies on degraded samples are possible up to the point when 

samples are extensively degraded. More recently a study by Costa et al. (2017) 

demonstrated the possibility to build RAD-seq libraries from Equus faecal samples. This 

highlights the potential of non-invasive genomics in population level studies, including 

the definition of conservation units, detecting hybrid zones, determining the origin of 

illegal animal trafficking, etc. 

Despite what is being achieved with genomic tools for NiGS, there are still many 

difficulties in generating reliable data. There are new field-based technologies being 

developed that show great promise for NiGS, where genetic data can be reliably obtained 

and analysed in situ, possibly resulting in direct application to urgent management 

decisions in conservation (Pennisi 2016; Lee 2017). Analogous genomic tools have been 

applied to historical natural history collections, which present similar challenges in terms 
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of DNA quality and quantity, and thus may prime the use of the same techniques in 

conservation studies (Prosser et al. 2016). Because these techniques for natural history 

collections are more substantially developed than for NiGS, they are described in the 

next section. 

 

Natural history collections 

Natural history collection samples have by definition been collected invasively, 

however they do not involve the disturbance of current populations. This greatly 

enhances the use of natural history collections, namely for linking Linnean names to type 

specimens, resolving taxonomic uncertainties, establishing boundaries of evolutionarily 

significant units, among other examples (Paplinska et al. 2011; Holmes et al. 2016; 

Prosser et al. 2016). One of the main advantage of museum collections is the ability to 

compare levels of genetic diversity between historic times and the present (Holmes et 

al. 2016). This is especially important with threatened species given that many of them 

have declined dramatically in the past decades and centuries, and it makes possible to 

quantify the rate of genetic diversity loss over time (Wandeler et al. 2007; Ceballos et al. 

2015). Museum samples require special attention from sampling to data analysis similar 

to that given to modern degraded samples, such as those obtained non-invasively 

(Wandeler et al. 2007; Rowe et al. 2011). Museum samples still pose many challenges 

in terms of exogenous DNA content. Rowe et al. (2011) analysed different museum 

samples of Rattus norvegicus including toes, ankles, lips and molars, and obtained 

around 40% of the sequencing reads assigned to the target species with high confidence. 

These authors found that SNPs obtained from skin and skull samples were highly 

repeatable when compared to a reference genome.  

Although genomes are becoming readily available for most groups and the cost of 

sequencing is decreasing very rapidly, there are still many taxa for which a de novo 

approach is the best alternative (Perry 2013). In the case of museum samples, there is 

only one study using a non-targeted approach, in this case GBS, aiming at species 

delimitation in golden rod (Solanum spp.) herbarium specimens (Beck & Semple 2015). 

The authors were able to routinely generate over 1700 SNPs and confirmed that the 

clustering of genetic variation was in line with current species delimitation. Studies like 

this suggest that non-targeted approaches (such as GBS and RAD-seq) can provide 

reliable results when applied to samples with degraded DNA. The combination of the 

study of natural history collections and non-invasive samples can thus result in a cost-

effective strategy for looking into the past and comparing it to the present genetic 
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variation of threatened species. This idea of examining species genetic variation through 

time has been shown to be very powerful for conservation, not only as it puts numbers 

on what extinction is, raising awareness for the decline of many species, but it also allows 

us to understand the species evolutionary history and develop better conservation 

decisions (Crandall et al. 2000). 

 

4. Understanding the past to preserve the future 

As we have seen from various examples of natural history collections studies, it is 

important to look into the past to better protect the present and attempt to ensure the 

future of species. Some species are naturally more genetically diverse than others, and 

it is important to understand the mechanisms behind this variation to determine what is 

causing species decline today and if species will be able to sustain further changes. 

Ellegren & Galtier (2016) proposed that the life history of a given species, its mating 

system, demographic history, gene density across the genome and recombination rate 

are the main determinants of genetic diversity displayed by an individual, population or 

species. It is well established that animals like rodents are often r-strategists, resulting in 

high effective population sizes, and producing many germ cells per generation, leading 

to high mutation rates, rapid evolutionary change and adaptation, and sometimes, 

speciation (Nabholz et al. 2008; Ellegren & Galtier 2016). On the contrary, groups with 

the opposite traits to these (K-strategists) will often have lower genetic diversity on a 

similar evolutionary time frame and be more susceptible to changes to their environment. 

 

Bursts of speciation and extinction through time 

Evolution occurs through both slow and rapid genetic change through time, and 

the pace of this change can be a determinant for adapting to new environmental 

conditions or for becoming extinct. The Red Queen hypothesis states that “takes all the 

running you can do to stay at the same place”, thus the faster the change, the faster 

species need to evolve (Benton 2009). But while faster evolutionary rate is associated to 

speciation and increased adaptive potential, lower evolutionary rates have also shown 

to be correlated with lower extinction rates in ‘living fossils’ (Bennett et al. 2017). There 

are particular time points in the earth’s history when the speed of environmental change 

became too fast for most species to keep up, resulting in mass extinctions (Hallam & 

Wignall 1997). On the other hand, there were periods of time, either after harsh climatic 

conditions or catastrophic events, which allowed species to rapidly spread and speciate 

due to new suitable conditions, empty or new habitats or new advantageous adaptations 
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(Simões et al. 2016). An informative way of studying species formation and extinction 

through time is using phylogenetic analysis (Hey 1992), which has shed light on many 

cases of such rapid radiations, such as neoavian birds (Suh et al. 2015); the African 

great lakes cichlid fiches (Brawand et al. 2014); Philippine shrews (Giarla & Esselstyn 

2015); and arvicoline rodents (Lv et al. 2016). What all of these and other studies have 

helped us to understand is that the Earth’s species composition is ever-changing through 

bursts of speciation and extinctions. However, different species are likely to have 

different responses to change, so by evaluating intraspecific genetic diversity and its 

change through time, we will be able to predict species vulnerability to change in the 

future. Given that change leads to population subdivision and that spatially structured 

populations are genealogically linked, phylogeography emerged as a way of combining 

species’ biogeographic and phylogenetic history (Avise 2000). To understand the 

processes that led to the current genetic diversity of species, and especially aimed at its 

protection, one must first understand the genetic history of species through time and 

space (Hewitt 2000; Benton 2009). 

 

Quaternary glacial refugia (within refugia) 

Before the Anthropocene, the glacial episodes of the Quaternary (2.6 million years 

ago–present) were the main drivers of the present day distribution of species, especially 

with the advance and retreat of the ice sheets through multiple glacial cycles (Provan & 

Bennett 2008). The most recent glaciation event was the Last Glacial Maximum (LGM) 

around 23 000 – 18 000 years before present (Provan & Bennett 2008), which has been 

thoroughly charted in Europe (Hewitt 1999, 2011). Europe is one of the most well-studied 

geographic areas in terms of fossils and phylogeography, where many studies now 

recognise different refugial areas for temperate and cold-adapted species (Sommer & 

Nadachowski 2006; Stewart et al. 2010) (Figure 4). Temperate species are the best 

studied group which largely persisted through glacial maxima in lower-latitude refugia, 

where climatic conditions were less extreme - the Mediterranean refugia (Figure 4A) 

(Hewitt 2000). This is shown by the higher levels of genetic diversity found in species 

that have recolonised mainland Europe from these areas – mostly the Iberian, Italian and 

Balkan peninsulas (Hewitt 1999): as temperature decreases, species distributions 

moved to the south and populations got separated in unconnected geographic areas.  
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Figure 4. (A) Map showing two types of Pleistocene refugia in Europe and western Asia for temperate species (red) and 

interglacial refugia for cold-adapted species (blue). Polygons with transparency represent the ice sheets during the Last 

Glacial Maximum (LGM). (B) Detailed map of the Iberian Peninsula showing the main mountain ranges and the location 

of putative glacial refugia for various terrestrial animal species [adapted from Stewart et al. (2010) and Gómez & Lunt 

(2007), with permission]. 

 

Thereafter, the effects of genetic drift led to the divergence of subdivided 

populations that became genetically distinct over time. Once temperatures increased 

again, a subset of individuals recolonised central Europe; this bottleneck left a signature 

that can be detected by phylogeographic studies as a scenario of ‘southern richness and 

northern purity’ (Hewitt 1996, 1999, 2000, 2011; Taberlet et al. 1998; Provan & Bennett 

2008; Stewart et al. 2010). There is, however, an aspect of refugial areas that has 

recently received more attention. For species with limited dispersal, the geographic 

complexity of the refugial areas often led to further subdivision of the refugial population, 

resulting in ‘refugia within refugia’ (Gómez & Lunt 2007; Abellán & Svenning 2014). It is 

within these isolated enclaves of suitable climate space that relict species and 

populations may have been formed (Hampe & Jump 2011). Specifically within the Iberian 

Peninsula, which is the geographic area of this thesis, we find various geographical 

structures such as mountain ranges and large rivers that are thought to have limited the 

dispersal of various species (Gómez & Lunt 2007) (Figure 4B). These are now known to 

be the origin of various divergent phylogenetic lineages, and for those species that were 

not able to expand out of the peninsula, they are also the last place for these endemic 

relicts. 
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Endemic relicts – small mammal edition 

Endemic (or native) species are organisms that only naturally occur in a given 

geographic area (IUCN 2016). This area can be large or very restricted, and for the latter 

case, species are referred to as highly endemic, which seems to be the case for most 

rare and threatened species (Ohlemüller et al. 2008). There are different hypotheses to 

explain why rare species have restricted ranges (Stebbins 1942): the ‘beginner 

hypothesis’ – rare species are beginners that have not had the time to spread; the 

‘senescent hypothesis’ – rare species were once common but with evolutionary time and 

environmental stability, species evolved from generalists to specialists, and this makes 

them currently unable to spread to different habitats when faced with change; and the 

‘genetic hypothesis’ – widespread species have high genetic diversity associated to 

different ecotypes, while rare species are usually specialised to a single restricted 

ecotype. The first two hypotheses have largely been refuted and the genetic hypothesis 

appears to be the most accepted hypothesis considering the outcome of glaciations on 

temperate species (Stebbins 1942; Ohlemüller et al. 2008).  

As species contracted their ranges to glacial refugia, and often to smaller areas 

within refugia, many populations had very limited connectivity, if any (Gómez & Lunt 

2007). Through processes such as lineage sorting, drift, and possibly adaptation to local 

conditions, these populations may have diverged during these range contractions and 

isolation processes resulted in the high species richness and great intraspecific 

divergence for many taxa found currently in the Mediterranean peninsulas (Hewitt 1996, 

2011). Once conditions improved, some species and lineages expanded out of the 

refugium, but it is currently argued that most species within Mediterranean peninsulas 

represent long term isolates undergoing allopatric speciation (Bilton et al. 1998). This is 

where the concept of relict species or populations arises (Bonn et al. 2002; Habel & 

Assmann 2009). These are usually highly endemic groups characterised by a small 

number of individuals which are restricted to small geographic areas (Habel & Assmann 

2009). The Iberian Peninsula is a good example of the processes mentioned above, 

since we find groups of species with restrict ranges, such as within the soricomorphs 

(Soricomorpha) and rodents (Rodentia) (Palomo et al. 2007). Many lineages have been 

described within these groups in the Iberian Peninsula, which are very different from the 

lineages found elsewhere, such as in the case of the southern water vole (Arvicola 

sapidus) and the field vole (Microtus agrestis) (Centeno-Cuadros et al. 2009a; Paupério 

et al. 2012). In addition, there are five small mammal species endemic to the Iberian 

Peninsula: the Pyrenean desman (Galemys pyrenaicus), the Iberian mole (Talpa 
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occidentalis), the Iberian shrew (Sorex granarius), the Lusitanian pine vole (Microtus 

lusitanicus) and the Cabrera vole (M. cabrerae) (Randi 2007).  

Recent phylogeographic data show that the Pyrenean desman is divided into two 

main mitochondrial lineages with ~1.0% divergence, while at the nuclear level (RAD-seq 

data) it is divided in five clusters (Igea et al. 2013; Querejeta et al. 2016). Given the 

values of nucleotide diversity and heterozygosity, the likely refugial area was inferred to 

be in north-western Iberia (Igea et al. 2013; Querejeta et al. 2016). The Iberian mole is 

distributed throughout most of Iberia with three very distinct mitochondrial lineages 

(divergence ranging between 2.3% and 3.3%), however no structure was found at the 

nuclear level (Nicolas et al. 2017). From distribution modelling the refugial areas during 

the LGM were inferred to be in western Iberia. No detailed phylogeographic studies have 

been carried out for the Iberian shrew so far, but analysing the cytochrome-b sequences 

available at GenBank (Fumagalli et al. 1999; Dubey et al. 2007; Yannic et al. 2008), there 

are two lineages diverging around 1.2% occurring in sympatry in central Iberia, while 

only one of them has been found elsewhere. The Lusitanian pine vole is endemic to the 

northwest quadrant of Iberia, but there is ongoing mitochondrial introgression and 

hybridisation with M. duodecimcostatus, making it difficult to determine which are the 

Lusitanian pine vole’s genetic lineages, their divergence and phylogeography (Bastos-

Silveira et al. 2012). As the target species of this thesis, the Cabrera’s vole 

phylogeographic history will be discussed in detail below. However, as a species 

associated with the Mediterranean bioclimatic region, it is expected that its 

phylogeographic pattern would differ significantly from the four endemic species 

described above since all are associated with the Atlantic bioclimatic region (Bastos-

Silveira et al. 2012; Igea et al. 2013; Suárez-Seoane et al. 2013; Pita et al. 2014). 

The large number of rare species and lineages found within the various refugial 

areas in Iberia possibly result from long term specialisation and inability to spread due to 

geographic barriers such as mountain ranges (Weiss & Ferrand 2007). It is the high 

variability among refugial areas that makes them so important for the conservation of the 

genetic diversity of the species, even when considering common species. This genetic 

diversity can be very important for the adaptation to future climatic conditions, as 

illustrated by those lineages that expanded from refugia compared with others that did 

not. This may be a reflection of higher tolerance of the former and possibly higher 

specialisation to local conditions of the latter (and lower tolerance for ecological variation) 

as seen in Mustela nivalis in central Europe (Hill et al. 2011; McDevitt et al. 2012). 

Understanding past interactions of populations and species and evaluating niche 

conservationism before and after major climatic events, and current human 
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disturbances, allows us to better recognise species susceptibility to change and redirect 

conservation strategies for species protection (Levy 2013; Bolliger et al. 2014). 

 

Change is coming already here… and it’s fast!  

Climate change has been naturally pervasive throughout the earth’s history, either 

by periodic changes in the Earth’s orbit and axis of rotations (Milankovitch cycles, 10-

100 thousand years ago) or more randomly by catastrophic events, and these changes 

are usually marked by the extinction of many species and, sometimes, entire groups 

(Hallam & Wignall 1997; Dynesius et al. 2000). Apart from catastrophic events that have 

occurred a handful of times on the history of the Earth, most changes happened 

gradually, and in these cases some taxa are able to adapt to new conditions and evolve 

(Hallam & Wignall 1997; Mittelbach et al. 2007). In contrast, today we are observing a 

rapid change in the environment associated to human impacts (habitat destruction, 

pollution and direct persecution of species), and considering the last 1500 years (Figure 

5), this change has been especially rapid during the last century (Mann et al. 2008; 

Neukom et al. 2014). 

 

Figure 5. Temperature history during the last 1500 years. The green line was reconstructed from paleoclimate data (with 

shading representing uncertainty) and the blue line is based on instrument measured data [© NASA adapted from Mann 

et al. (2008), with permission]. 

For many species, often endemic to small areas, these climatic changes represent 

an extinction sentence, not only due to the fast pace of change of abiotic factors on such 

a short time scale, but also due to new biotic interactions, such as intra and interspecific 

competition for resources, habitat, etc. (Malcolm et al. 2006; Benton 2009; Cahill et al. 

2012). The ability of species to adjust to environmental change is influenced by many 

factors, both internal and external to species (Williams et al. 2008): at the intrinsic level, 

the species dispersal ability, physiology and genetic diversity are the first line of response 

to a changing environment, as these will affect the sensitivity of species to change 
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(‘fundamental adaptive capacity’); at the extrinsic level, the extent of the regional climatic 

change, the strength of new biotic interactions, the way that species are managed, 

among many other factors, will lead to a higher or lower exposure of species to threats 

(Williams et al. 2008; Beever et al. 2016). The combination of species sensitivity and 

degree of exposure to new threats will result in the vulnerability of each species to 

extinction; i.e. their ‘realised adaptive capacity’ (Dawson et al. 2011).  

 

Dispersal, plasticity and evolutionary change 

Extinction can be avoided in populations that are able to move towards more 

favourable habitats (dispersal), overcome stressful new conditions via phenotypic 

plasticity, or undergo rapid genetic change to adapt to the new conditions depending on 

their adaptive potential (evolutionary change) (Hoffmann & Sgrò 2011). Although there 

are varied types of responses to change, it is already apparent that many species are 

fast shifting their ranges to higher latitudes or altitudes as a result of rapid climate 

warming (Chen et al. 2011). In cases where species are limited by dispersal, either due 

to their specific dispersal ability or the landscape permeability to movement, genetic 

diversity will play a major role in their ability to persist in situ (Schloss et al. 2012; 

Ghalambor et al. 2015). Species tend to respond to change in situ by adjusting within 

the limits of phenotypic plasticity (Ghalambor et al. 2007). For a given trait and 

environment, those traits that are more plastic have a wider tolerance to change and are 

thus more advantageous in heterogeneous environments, however the costs of plasticity 

means that the more plastic genotypes may be outcompeted by highly specialised ones, 

which are better adjusted when environmental conditions are very stable (Figure 6) 

(Chevin et al. 2010). The costs associated with plasticity are factors such as maintaining 

a physiological and developmental capacity for perceiving environmental cues that are 

occasionally expressed, and also producing different responses accordingly (Reed et al. 

2011). As environmental cues shift from the long term optimum, as in the case with 

climate change, the most affected species will be the specialists, which is the case for 

most threatened species (Clavel et al. 2011). With environmental change, individuals 

belonging to specialist species will have locally decreased fitness; with increased habitat 

fragmentation, these individuals will no longer be able to disperse through the 

inhospitable matrix between populations; and with reduced gene flow, populations will 

lose genetic diversity and become inbred, entering the extinction vortex (Frankham et al. 

2012; Hoffmann et al. 2015). Alternatively, species can adapt to the new conditions either 

from standing genetic variation or selection on new mutations, but the first is the 
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alternative likely leading to faster adaptation due to the higher speed and probability of 

fixation of pre-existing alleles (Barrett & Schluter 2008; Teotónio et al. 2009). 

Evolutionary conservation aims at maximising the genetic diversity of species, and thus 

their adaptive capacity as species, allowing evolutionary resilience to future change in 

these novel ecosystems (Sgrò et al. 2011; Eizaguirre & Baltazar-Soares 2014; Beever 

et al. 2016; Corlett 2016).  

 

 

Figure 6. Phenotypic plasticity and population reaction curves to environmental variation in stable and heterogeneous 

environments. The top row shows patterns of variation of an environmental variable, and the frequency of its values given 

a time period (e.g. mean daily temperature over one year); the bottom row shows the tolerance curves, i.e. the fitness for 

a given value of the environmental variable (e.g. for a given temperature) for two populations where individuals have more 

(red) or less (green) phenotypic plasticity, and thus can tolerate more or less variation in the environmental conditions, 

respectively; the dashed red line represents the potential fitness of the population without the cost of plasticity, however 

the observed response shows lower fitness than expected due to the maintenance of plasticity to less optimal conditions 

[based on Chevin et al. (2010), with permission]. 

 

Landscape genetics: conservation in time and space 

The landscape plays a crucial role in promoting or limiting species persistence. As 

organisms are forced to adapt to specific habitat conditions, managing species for 

conservation requires baseline knowledge on how genetic diversity is shaped by the 

landscape (Manel et al. 2003). Landscape genetics combines population genetics, 

landscape ecology and spatial analytical techniques to quantify the effects of the 

landscape on evolutionary processes (Manel et al. 2003; Balkenhol et al. 2016). This is 
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a valuable tool for conservation as it allows: genetic diversity to be mapped explicitly and 

to define conservation units; dispersal and movement (gene flow) between populations 

to be measured; and barriers to movement and matrix resistance to determine levels of 

isolation to be detected (Manel & Holderegger 2013). These are important data to inform 

conservation strategies on how to facilitate or impede gene flow, and thus how to avoid 

inbreeding and outbreeding depression, respectively, and to evaluate the efficacy of 

conservation measures (Segelbacher et al. 2010; Manel & Holderegger 2013; Levy 

2013; Bolliger et al. 2014; van Strien et al. 2014). Depending on the question and the 

evolutionary processes under study, one must: define the landscape (e.g. extent, 

resolution and content); define the unit of study (e.g. individuals or populations); define 

the sampling scheme depending on the population structure; characterise the distribution 

of individuals in the landscape (e.g. through points, neighbourhoods, etc.); and choose 

an adequate method for the analysis (e.g. regression, correlation, ordination, clustering) 

(Balkenhol et al. 2016; Richardson et al. 2016). For a good fit to conservation purposes, 

Keller et al. (2015) proposed some guidelines within this general framework for 

landscape genetics studies (Figure 7). 

 

Figure 7. Flowchart of important steps and respective considerations to account for when designing a landscape genetic 

study to promote its inclusion in conservation planning [from Keller et al. (2015), with permission]. 
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The recent use of genomic approaches in landscape genetics (also called 

landscape genomics) in the context of global changes is now providing substantial 

insights into the impact of the climate change in natural populations, as shown in alpine 

chipmunks (Tamias alpinus) from Sierra Nevada (Moritz et al. 2008; Rubidge et al. 2012; 

Bi et al. 2013; Holmes et al. 2016). Using both museum (from 1915) and modern day 

(from 2004-2008) tissue samples, the authors demonstrated an increase in population 

substructure over the last 100 years, indicating that habitat modifications are creating 

barriers to dispersal in modern populations (Figure 8) (Moritz et al. 2008; Rubidge et al. 

2012; Bi et al. 2013; Holmes et al. 2016). The availability of historical and modern 

specimens from the same localities were fundamental for the assessment of climate 

induced range changes, and only by having a temporally and spatially explicit study, 

were the authors able to detect climate induced range shifts. One good review of the 

application of landscape genetics to conservation is provided by Schwartz et al. (2010).  

 

 

Figure 8. Detection of range shifts on alpine chipmunk, Tamias alpinus, through the comparison of museum and present 

day samples: (A) Elevational range occupied by T. alpinus from historical (left) to modern (right) times; (B) Maps show 

Yosemite National Park (black outline) coloured in blue to brown corresponding to low to high occupancy probability, also 

associated with altitude for T. alpinus in both historical (left) and modern (right) times. Pie charts correspond to 

STRUCTURE population assignment based on the bar plots to the left of the maps [from Holmes et al. (2016) based on 

Moritz et al. (2008) and Rubidge et al. (2012), with permission].  
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In the same way that landscape genetics is used as an exploratory tool for current 

conservation questions, it can also be used for predictive purposes, which is especially 

important in a context of increasing climate change and habitat reduction (van Strien et 

al. 2014). The main questions currently addressed by landscape genetics in its 

intersection with conservation relate to how recent changes in climate and habitats have 

affected the patterns of neutral and adaptive genetic variation and how species will adapt 

to these changes (Manel & Holderegger 2013). As noted above, with the recent 

advances in molecular genomics, we can now collect data on both neutral and adaptive 

loci without access to extensive genomic resources. By using neutral loci we can answer 

questions related to how past and present landscapes affect ecological factors, which in 

turn influence gene flow. By contrast, adaptive loci are directly affected by the landscape 

and climate (via selection), allowing us to answer questions relating to the influence of 

environmental factors on the geographic distribution of genetic variation (Balkenhol et al. 

2016). For non-model species, most landscape genetics studies make use of SNP 

variation to look for the association of environmental gradients and genotypes (Sork et 

al. 2013). Given the uncertainty of what is, and especially what will be adaptive with 

future environmental change, most studies directly applying knowledge of adaptive 

variation for species conservation are restricted to plants and their association to climatic 

regimes, and to commercially valuable species, mainly salmonids, for e.g. the 

maintenance of distinct migratory life-styles (Eckert et al. 2010; Matala et al. 2014; 

Leitwein et al. 2016). A more conservative approach is looking at adaptive (non-neutral) 

variation as a whole, defining the species different adaptation regimes, and promoting 

its diversity across populations to ensure that traits under selection are as variable as 

possible. This is important both for phenotypic traits that are determined by a few genes 

with large effects, as well as for quantitative traits determined by a large number of small 

effect genes, which are more difficult to detect and likely the most commonly associated 

to adaptive responses (le Corre & Kremer 2012). However, the detection of adaptive 

variation in general is still surrounded by high degrees of uncertainty, thus the 

conservation of what is viewed as both ‘adaptive’ and ‘neutral’ genetic diversity is 

important to promote species persistence (le Corre & Kremer 2012; Balkenhol et al. 

2016). 
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5. The Cabrera Vole 

The Cabrera vole (Microtus cabrerae) is a microtine rodent endemic to the Iberian 

Peninsula and considered Near Threatened by the IUCN Red List of Threatened Species 

(Fernandes et al. 2008a). This species is also highly distinctive compared with other 

extant members of Microtus, including in its karyotype (giant sex chromosomes and 

multiple copies of male sex-determining genes in females), molar morphology and life-

history traits (K reproductive strategy, small litters and large body size)(Jiménez et al. 

1991; Bullejos et al. 1997; Ventura et al. 1998; Fernández-Salvador et al. 2001; Cuenca-

Bescós et al. 2014). Ecologically, the Cabrera vole is limited to damp meadows and 

perennial grassland, often near small water courses and temporary ponds (Pita et al. 

2006; Luque-Larena & López 2007).  

 

Past and present distribution 

The Cabrera vole fossil records (first detected around 1 Mya) suggest that its range 

has been always restricted to the Iberian Peninsula and southern France (Laplana & 

Sevilla 2013). The species appears to have contracted and expanded its range following 

the major climatic events of the Quaternary, with periods of lower and higher abundance 

in the glacial and interglacial periods, respectively (López-García & Cuenca-Bescós 

2012; Garrido-García & Soriguer-Escofet 2012; Laplana & Sevilla 2013; Pita et al. 2014). 

The peak of Cabrera vole fossil abundance was observed during the Neolithic, where it 

is assumed that the transformation of the landscape into arable lands might have 

promoted the expansion of the species (Laplana & Sevilla 2013). This is also supported 

by a recent ancient DNA (aDNA) study from Varela (2016) who found signals of 

population expansion during that time period using partial cytochrome-b sequences. 

Since the Neolithic, the species is thought to have declined (especially since the Middle 

Ages) on the basis of an observed decrease in genetic diversity (from aDNA) and 

decrease in fossil records (Garrido-García & Soriguer-Escofet 2012; Laplana & Sevilla 

2013; Varela 2016). The problem of basing inferences of population patterns on the fossil 

record and its DNA is illustrated by Figure 9, which shows that the Cabrera fossil record 

may be biased in terms of likelihood of fossilisation, being more representative of the 

species distribution in eastern Iberia and southern France than in western areas of the 

Iberian Peninsula. 
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Figure 9. Map of the Iberian Peninsula and France illustrating fossil data for the Cabrera vole (circles) since the Last 

Glacial Maximum (LGM) to around 500 years ago. Grey shading represents karst areas known to be well-suited for 

fossilisation (http://web.env.auckland.ac.nz/our_research/karst/); circles represent fossils and their colour the time period 

to which they were assigned based on the legend on the right side of the coloured bar; the times on the left side of the 

bar represent estimates of the respective time periods [fossil data from Laplana & Sevilla (2013)]. 

 

Today the Cabrera vole is distributed in four main geographic nuclei restricted to 

the Iberian Peninsula: the Lusocarpetan (Lc), Montiberic (Mb), Betic (Bt) and pre-

Pyrenean (pP) (Figure 10) (Garrido-García et al. 2013; Laplana & Sevilla 2013). The 

Cabrera vole does not have a continuous distribution within these nuclei, which rather is 

spatially structured and shows metapopulational dynamics, with colonisation-extinction-

recolonisation of available habitat patches both through time and space (Pita et al. 2007). 

A recent study from Mestre et al. (2015) using ecological niche modelling and non-

invasive sampling suggested that many edge populations may not yet be identified, and 

points out that an Iberian census is needed for an accurate assessment of the current 

distribution of this species. Additionally, there are other studies suggesting the existence 

of obsolete records, which may be upward biasing the abundance of this species in other 

regions, especially in eastern Iberia (Garrido-García et al. 2008; Escribano et al. 2016). 
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Figure 10. (A) Cabrera vole (Microtus cabrerae) female from Yecla, Murcia, Spain. Photograph by Soraia Barbosa. (B) 

Distribution of the Cabrera vole in the Iberian Peninsula: current confirmed distribution of the Cabrera vole is represented 

by dark grey 10x10 km UTM squares, where the species has been detected either by live trapping or non-invasive 

sampling; inferred distribution is represented by a grey 10 km buffer around those UTM squares. Geographic nuclei are 

identified according to Garrido-García et al. (2013): Lusocarpetan (Lc), Montiberic (Mb), Betic (Bt) and pre-Pyrenean (pP).  

 

Threats 

The assessment of the Cabrera vole as Near-threatened by the IUCN is related to 

its limited distribution that is potentially in decline (Fernandes et al. 2008a). This species 

is highly restricted to damp marginal habitats, which makes it especially susceptible to 

habitat loss due to conversion to agriculture or pasture (Pita et al. 2006; Garrido-García 

et al. 2013). In addition, since its range in the Iberian Peninsula is at risk of desertification 

and drought under climate change, the persistence of the Cabrera vole may be even 

more threatened (Figure 11). The Cabrera vole has thermoregulatory mechanisms 

adapted to specific bioclimatic zones, which may lead to a population-specific adaptation 

capacity to climate change (Mathias et al. 2003; Castellanos-Frías et al. 2015). This can 

further influence the ability of populations to cope with climate change depending on how 

each of these groups adjust to new abiotic and biotic stressors (Pita et al. 2010, 2011).   
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Figure 11. (A) map from the DISMED project (Desertification Information System for the Mediterranean) showing the 

sensitivity (from low to high) to desertification and drought based on soil quality, climate and vegetation parameters [© 

European Environment Agency, 2008 (http://www.eea.europa.eu/legal/copyright), with permission]. (B) projections of the 

Cabrera vole distribution for three 30 year intervals, and with probability of occurrence from low (white) to high (black) 

(Mestre et al. 2015).  

 

Thus, to enhance the conservation efforts for the current populations of the 

Cabrera vole, below we describe the objectives of this thesis in line with several 

conservation oriented goals for this species. 
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6. Objectives and thesis framework 

Genetics is widely accepted as a critical component of conservation. With 

increasing rates of species extinction, it is essential to evaluate the past and the current 

genetic diversity of species to support effective conservation planning. Although the 

Cabrera vole (Microtus cabrerae) is a near-threatened rodent, endemic to the Iberian 

Peninsula and has a relatively restricted area, very little is known in terms of its 

population genetic structure across its range. Thus, the main goal of this thesis is to 

better understand the evolutionary history of the Cabrera vole and to develop genetic 

evidence-based conservation actions for protecting the current genetic diversity and 

future evolutionary potential of the species. This thesis is organised into five chapters, 

and its workflow is presented below, also showing the main subjects and objectives of 

each chapter (Figure 12). 

The first (present) chapter entitled Chapter I General Introduction presents an 

overview of the emergence of conservation biology and the need to conserve species, 

with a particular emphasis on the effects of genetic depletion in natural populations and 

highlighting the role of genetics in conservation. With the arrival of new sequencing 

technologies, we are now observing a shift to conservation genomics. These techniques 

provide new tools to address old questions, but they also allow us to make new enquiries, 

especially related with adaptation, for a better understanding of the role of evolutionary 

processes in species conservation. However, to preserve a species through future 

environmental change, it is essential to understand what processes influenced its 

populations in the past, so this was also addressed in this chapter. All these conceptual 

elements are brought into perspective for the study of the evolutionary history and 

conservation of the Cabrera vole. 

To accomplish such a detailed study on the genetics of threatened species it is 

important to have a set of molecular tools that help researchers in obtaining data relevant 

to answer a wide range of questions, from species identification, to population structure, 

dispersal and kinship. There are often constraints as to how samples can be collected, 

and for small mammals it is critical to limit the extent to which individuals are live-trapped 

and handled. Thus, the second chapter, entitled Chapter II Molecular conservation tools, 

is composed of one manuscript that is aimed at using non-invasive samples for the study 

of small mammals, providing the opportunity for contemporary genetic sampling of 

species such as the Cabrera vole, without risking individuals and populations. The paper 

focuses on species identification, a necessary first step in conservation measures: 



                                                       FCUP 33 
The evolutionary history and conservation of an endemic and threatened Iberian rodent: the Cabrera vole (Microtus cabrerae)  

 

 
 

 

Paper I. Barbosa S, Paupério J, Searle JB and Alves, PC (2013) Genetic identification 

of Iberian rodent species using both mitochondrial and nuclear loci: 

application to non-invasive sampling. Molecular Ecology Resources, 13, 43-

56. 

Conservation measures should be based on accurate information on species 

biology, and in Chapter III we deepen our knowledge of the evolutionary history of the 

Cabrera vole. For that, we reassess the phylogeny of the genus Microtus using genomic 

tools in order to i) create a well-supported phylogeny for the genus and discuss the 

evolutionary processes that have led to the current observed relationships, and ii) 

discuss the phylogenetic positioning of M. cabrerae which underlie controversies about 

its taxonomy. In the second study of this chapter we assess the species’ phylogeographic 

history and evaluate the species genetic structure. This chapter thus comprises the 

following two papers: 

 

Paper II. Barbosa S, Herman JS, White TA, Paupério J, Alves PC and Searle JB (in 

prep) Phylogenomic analysis of the Microtus genus: insights into inter- 

and intraspecific relationships. 

 

Paper III. Barbosa S, Paupério J, Herman JS, Ferreira CM, Pita R, Vale-Gonçalves HM, 

Cabral JA, Garrido-García JA, Soriguer RC, Beja P, Mira A, Alves PC and 

Searle JB (2017) Endemic species may have complex histories: within-

refugium phylogeography of an endangered Iberian vole. Molecular 

Ecology, 26, 951-967. 

 

With a better understanding of the Cabrera’s vole evolutionary history, in Chapter 

IV we use a landscape genomic approach to support conservation genomics planning in 

the Cabrera vole. The goals of the first study were to define conservation units for this 

species and determine the level of connectivity observed between them, as well as to 

detect population isolation and to prioritise populations for conservation actions. We 

additionally used these new data to test the reliability of using genomic tools with non-

invasive samples. Thus this chapter is formed of the following two articles: 
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Paper IV. Barbosa S, Mestre F, White TA, Paupério J, Alves PC and Searle JB 

(submitted) Integrative approaches to guide conservation decisions: using 

genomics to define conservation units and functional corridors. 

Paper V. Barbosa S, Paupério J, Mitchell S, Alves PC and Searle JB (in prep) Non-

invasive population genomics: applying genotyping-by-sequencing to 

small mammal conservation. 

 

In the final chapter entitled Chapter V General Discussion, all the theoretical 

background is brought together with the research developed in this thesis, which are 

then considered for conservation recommendations. Finally we present the main 

conclusions of this thesis and future perspectives provided by this work. 

 

This thesis was integrated into two projects supported by the Fundação para a 

Ciência e Tecnologia (Portugal) that aimed to understand the role of matrix permeability 

in the dispersal between habitat patches of the Cabrera vole and southern water vole 

(including the interactions between the two of them) at a local scale: “PERSIST – The 

role of matrix permeability for metapopulation PERSISTence in complex agricultural 

landscapes. The cases of Cabrera (Microtus cabrerae) and southern water voles 

(Arvicola sapidus)” (PTDC/BIA-BEC/105110/2008) and “NETPERSIST – NETwork 

analysis of critical connectivity thresholds for metapopulations PERSISTence in complex 

agricultural landscapes” (PTDC/AAG-MAA/3227/2012). 
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Figure 12. Thesis workflow divided in General Introduction (Chapter I), Original Research (Chapters II, III and IV), and 

General Discussion (Chapter V). 
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Genetic identification of Iberian rodent species using both 

mitochondrial and nuclear loci: application to non-invasive 

sampling 

 

Barbosa S, Paupério J, Searle JB and Alves PC 

 

 

1. Abstract 

Species identification through non-invasive sampling is increasingly used in animal 

conservation genetics, given that it obviates the need to handle free-living individuals. 

Non-invasive sampling is particularly valuable for elusive and small species such as 

rodents. Although rodents are not usually assumed to be the most obvious target for 

conservation, of the 21 species or near-species present in Iberia, three are considered 

endangered and declining, while several others are poorly studied. Here, we develop a 

genetic tool for identifying all rodent species in Iberia by non-invasive genetic sampling. 

To achieve this purpose, we selected one mitochondrial gene [cytochrome b (cyt-b)] and 

one nuclear gene [interphotoreceptor retinoid-binding protein (IRBP)], which we first 

sequenced using tissue samples. Both genes allow for the phylogenetic distinction of all 

species except the sibling species Microtus lusitanicus and Microtus duodecimcostatus. 

Overall, cyt-b showed higher resolution than IRBP, revealing a clear barcoding gap. To 

allow these markers to be applied to non-invasive samples, we selected a short highly 

diagnostic fragment from each gene, which we used to obtain sequences from faeces 

and bones from owl pellets. Amplification success for the cyt-b and IRBP fragment was 

85% and 43% in faecal and 88% and 64% in owl-pellet DNA extractions, respectively. 

The method allows the unambiguous identification of the great majority of Iberian rodent 

species from non-invasive samples, with application in studies of distribution, spatial 

ecology and population dynamics, and for conservation. 
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2. Introduction 

The order Rodentia represents over 40% of all known mammalian species (that is, 

c. 1850 species: IUCN 2011), of which a quarter are under some sort of conservation 

threat. However, since rodents are better known as pests, the conservation issues 

relating to many endangered rodent species tend to be overlooked. There is a clear need 

for more studies, as is illustrated well by Iberian rodents, our study system. In the Iberian 

Peninsula there are 21 rodent species (Table 1), one of which is considered ‘Vulnerable’ 

(Arvicola sapidus) and two ‘Near Threatened’ (Eliomys quercinus and Microtus cabrerae) 

in the IUCN Red List of Threatened Species (Bertolino et al. 2008; Fernandes et al. 

2008b). These are statuses which may be valid but which are clearly based on 

incomplete data (e.g. E. quercinus is listed as ‘Data Deficient’ in Portugal and A. sapidus 

is considered ‘Least Concern’ in Portugal as a result of poor species documentation, 

Rigaux et al. 2008). 

The combination of small body size, elusive behaviour and rareness in rodent 

species under conservation threat, make monitoring and status assessment a difficult 

task (e.g. Álvarez-Castañeda & Ortega-Rubio 2003). Rodents are usually not easy to 

observe directly, and live trapping can require considerable effort and costs for some 

species (e.g. Microtus cabrerae, Alasaad et al. 2011) and can be harmful for captured 

specimens (Moncrief et al. 2008). It is, however, possible to reveal the presence of rodent 

species by non-invasive genetic sampling (NIGS, Moran et al. 2008) already applied to 

other rare and elusive animal species with difficulties in capture and handling (Beja-

Pereira et al. 2009; Oliveira et al. 2010; Henry et al. 2011). 

NIGS rests on the principle that DNA can be extracted from many sources of 

animal-derived material which can be obtained without capturing individuals. Faeces are 

the most obvious non-invasive source of rodent DNA, found scattered throughout an 

individual’s activity range (Beja-Pereira et al. 2009; Centeno-Cuadros & Godoy 2010). 

However, amplification success with rodent faeces is likely to be affected by their age;  it 

is known for carnivore scats that DNA has a higher probability of amplification up to one 

week of age, after which amplification success decreases significantly (Piggott 2004). 

Owl pellets are another important source of non-invasive rodent material, providing 

bones that can be used for both morphological (Avenant, 2005) and genetic analysis 

(Poulakakis et al. 2005). Hair from small mammals can also be used for NIGS through 

various sampling strategies, such as hair tubes or duct tape webs (Harris & Nicol 2010; 

Henry et al. 2011; Pocock & Jennings 2006). Because it is difficult to distinguish rodent 

species from hair morphology (Teerink 1991; Bertolino et al.  2009), DNA extracted from 



                                                       FCUP 57 
The evolutionary history and conservation of an endemic and threatened Iberian rodent: the Cabrera vole (Microtus cabrerae)  

 

 
 

hair can be used for both species identification and population genetic analysis 

(Centeno-Cuadros & Godoy 2010; Oliveira et al. 2010; Henry et al. 2011). Overall, NIGS 

has great potential for rodent monitoring programs, including those focusing on 

geographic areas considered diversity hotspots, such as the Iberian Peninsula.  

 

Table 1. Numbers of specimens examined for each rodent species, including number of tissue samples used for 

sequencing the long fragments of the cyt-b and the IRBP genes, and number of successful amplifications of shorter 

fragments of these genes from faecal samples and samples of bones from owl pellets. In addition to the long fragment 

IRBP sequences acquired, short fragment sequences were obtained from degraded tissue samples; these are shown in 

parentheses. For the non-invasive samples the total number of attempted extractions is given in square brackets. 

‘Unknown’ samples are ‘field’ faecal samples (without species identification) for which amplification was attempted and 

failed. 

 

Family Species 
Tissue samples 

Non-invasive samples 

Faeces Bones 

cyt-b IRBP cyt-b IRBP cyt-b IRBP 

Muridae Mus musculus  11 9(1) - - 1[1] 0[1] 

Mus spretus  5 3(2) 7[8] 4[8] 2[2] 1[2] 

Apodemus flavicollis  11 10(1) - - - - 

Apodemus sylvaticus  7 27(3) 7[7] 1[1] 1[2] 2[2] 

Micromys minutus  4 3 - - - - 

Rattus norvegicus  2 4 - - 1[1] 1[1] 

Rattus rattus  2 4(1) - - 2[2] 1[2] 

Cricetidae Arvicola sapidus  7 10(2) - - 0[1] 1[1] 

Arvicola scherman  2 2(4) - - - - 

Chionomys nivalis 3 3(5) - - - - 

Microtus agrestis P† - 11 - - - - 

Microtus agrestis S† - 3 - - 1[1] 0[1] 

Microtus arvalis  2 5 - - 3[3] 3[3] 

Microtus cabrerae  14 16(1) 26[26] 3[10] - - 

Microtus duodecimcostatus  12 6 - - - - 

Microtus lusitanicus  36 6 11[11]  7[10] 3[3] 2[3] 

Microtus gerbei  1 1 - - 4[5] 1[5] 

Myodes glareolus  4 5 - - 4[4] 4[4] 

Gliridae Eliomys quercinus  6 5(1) - - - - 

Glis glis  5* 3(5) - - - - 

Sciuridae Sciurus vulgaris  21 4(2) 1[1] 1[1] - - 

Unknown    [8] [7]  

Total 21 154 140(28) 52[61] 16[37] 22[25] 16[25] 

 

†Microtus agrestis is divided into three taxa by Paupério et al. (2012) and only samples from the two taxa present in Iberia 

(M. agrestis P and M. agrestis S) were considered in this work. *These samples consistently resulted in numt amplification 

for the cyt-b gene and so our analysis relied entirely on published data for this species. 
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Because rodents have high mitochondrial mutation rates (Nabholz et al. 2008), 

mitochondrial markers may be valuable for discriminating closely related taxa (Pfunder 

et al. 2004). However, due to the possible existence of mitochondrial DNA nuclear copies 

(pseudogenes or numts) or mitochondrial introgression, the use of nuclear genes is a 

valuable additional approach (Zhang & Hewitt 2003; Alves et al. 2008). Also, the 

inclusion of nuclear markers can complement mitochondrial data by allowing the 

detection of hybridisation, incomplete lineage sorting etc. (Alves et al. 2006; Heckman et 

al. 2007). As the interphotoreceptor retinoid-binding protein (IRBP) gene has already 

successfully been used for the identification of all carnivores in south-western Europe 

(Oliveira et al. 2009), and has recently proved its usefulness in rodent phylogenetics and 

species identification (Chaval et al. 2010; Pagès et al. 2010), it can be considered a good 

candidate for rodent molecular identification.  

In developing molecular identification protocols in the present study we not only 

concern ourselves with the 21 long-recognised rodent species found in Iberia, but we 

also consider the partition of Microtus agrestis (sensu lato) into two taxa at the borderline 

of species separation:  the ‘Portuguese’ lineage (M. agrestis P) found in western Iberia 

and the ‘southern’ lineage (M. agrestis S) found in north-eastern Iberia and elsewhere in 

southern Europe (Jaarola & Searle 2004; Paupério et al. accepted). Using both tissue 

and non-invasive samples, we utilise the mitochondrial cyt-b and nuclear IRBP genes for 

species identification, through the analysis of single nucleotide polymorphisms (SNPs). 

We describe our results for near-complete gene sequences of cyt-b and IRBP both by 

examining the phylogenetic relationships of the Iberian rodent taxa and also in the 

context of the DNA barcoding approach (Hebert et al. 2003a). Moreover, we develop a 

NIGS approach for faeces and bones from owl pellets, by designing shorter fragments 

of the selected markers. There are difficulties in obtaining amplifiable DNA by NIGS due 

to low DNA quantity and quality, including DNA degradation, presence of PCR inhibitors 

and DNA contamination (Rådström et al. 2004; Waits & Paetkau 2005). Mitochondrial 

markers are easier to use on degraded samples than nuclear markers because of the 

high number of mitochondrial genomes per cell. Nevertheless, as previously mentioned, 

the use of mtDNA alone can give misleading results, thus the inclusion of nuclear genes 

is valuable, even when using non-invasive samples (Oliveira et al. 2010). Following the 

validation of species identification methods for all sample types using the mitochondrial 

and nuclear markers, we consider their value in ecological studies and in the monitoring 

of Iberian rodents and consequently in biodiversity conservation and management of this 

important biogeographical region.  
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3. Material and Methods 

Tissue sample collection and DNA extraction 

We analysed a set of 261 tissue samples from CIBIO’s small mammal repository, 

as well as from museums, comprising all Iberian rodent species (Table 1). These 

samples were selected mainly from Iberia, but also from other locations within the ranges 

of the species in Europe, to maximize the detection of intraspecific variation (Table S1, 

Supporting Information). Tissue samples included ear, foot, tail and diverse internal 

organs and DNA was extracted using the EasySpin® Genomic DNA Minipreps Tissue Kit 

(Citomed, Lisbon, Portugal) following the manufacturer’s instructions. 

 

Sample amplification, sequencing and analysis 

The whole cyt-b gene was amplified in 154 samples using the primers L14727-SP 

and H15915-SP (Jaarola & Searle 2002). The polymerase chain reaction (PCR) thermal 

cycling profile consisted of a touch-down protocol ranging from 60 to 56ºC. The IRBP 

gene was amplified in 140 samples with new universal rodent primers: IRBP.F2S: 5’-

GCAGGCTATGAAGAGTCRTG -3’; IRBP.R2S: 5’- AGCACGGAYACCTGAAACA -3’. 

The PCR thermal profile for most species consisted of a touch-down protocol from 60 to 

54ºC. A different reverse primer was necessary to amplify samples from Myodes 

glareolus (IRBP.R1S: 5’-GCAGGTAGCCCACATTGC-3’), with an annealing temperature 

of 63ºC. 

PCR reactions were performed with a total of 5 µl using 2 µl Qiagen© PCR 

Multiplex Kit Master Mix (Qiagen, Hilden, Germany), 0.2 μM of each primer and 10-20 

ng of genomic DNA. The product obtained was purified using ExoSAP-IT® PCR clean-

up Kit (GE Healthcare, Piscataway, NJ, USA) and sequences were generated with the 

amplification primers. Cycle sequencing reactions were carried out using the BigDye® 

Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems, Carlsbad, California, USA). 

Samples were subsequently sequenced for both strands on a 3130xl Genetic Analyser 

Sequencer (Applied Biosystems/HITASHI, Carlsbad, California, USA). Forward and 

reverse sequences were assembled and edited in Sequencher 4.7 (Gene Codes Corp., 

Ann Arbor, MI, USA), verified by eye and then aligned using ClustalW (Thompson et al. 

1994) as implemented in BioEdit 7.0 (Hall 1999). Using the collector’s morphological 

identification and GenBank sequences as reference, each new sequence was assigned 

to the best-matching species. The assignment was based on the existence of single point 
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mutations, or combinations of these, that were unique and consistent for each species 

(Belfiore et al. 2003), that we here term ‘species discriminating sets of SNPs’.  

Sequences obtained for the IRBP gene were phased using the software PHASE 

as implemented in DNAsp 5.10 (Librado & Rozas 2009). For each species, 1000 burn-

in steps and 1000 iterations were performed, and the haplotypes selected had a 

minimum base call probability of 80%.  

In addition to our sequences, we retrieved 85 cyt-b and 10 IRBP sequences from 

GenBank, which we incorporated into the analysis (Table S1, Supporting Information), 

giving a total of 239 sequences for cyt-b and 150 for the IRBP analysis. Since the use of 

highly divergent sequences of the same species from distant (or isolated) geographic 

areas can sometimes result in an increased intraspecific divergence due to unrecognized 

taxonomic differentiation (e.g. Paupério et al. accepted), we selected only sequences 

from European localities (up to ten sequences per species for cyt-b and all sequences 

available for the IRBP). This allowed us to minimise the detection of uninformative 

genetic diversity (from taxonomic subdivisions) while maximising the detection of 

relevant intraspecific variation.  

Diversity indices, namely haplotype number (H) and diversity (Hd), nucleotide 

diversity (π), number of variable sites (V) and number of parsimony informative sites (Pi) 

were calculated for each species in both genes using DnaSP 5.10 (Librado & Rozas 

2009). MEGA 5 (Tamura et al. 2011) was used to estimate nucleotide composition 

(%GC), to check for the presence of stop codons, as well as determine the number of 

non-synonymous substitutions for each gene and species. 

Bayesian inference was used for both cyt-b and IRBP to build phylogenetic trees 

and determine species boundaries. The best-fit model of sequence evolution for each 

locus alignment was selected based on the Akaike information criterion and using the 

software jModelTest version 1.0 (Posada 2008). Trees were generated by MrBayes 3.1 

(Huelsenbeck & Ronquist 2001) at the Bioportal server (www.bioportal.uio.no), using the 

rabbit (Oryctolagus cuniculus; Lagomorpha) as outgroup. Bayesian posterior 

probabilities were estimated from two runs with four chains of 10 million generations, 

with a sampling frequency that provided a total of 10 000 samples for each run, excluding 

25% burnin. Tree visualisation was conducted using the software FigTree 1.3.1 

(Rambaut 2009). 

The species and other phylogenetic groupings were subject to further analysis. 

Intraspecific and interspecific mean pairwise genetic divergences (both within and 

among rodent families) were calculated for both loci employing Kimura two-parameter 

(K2P) distances in MEGA 5 (Tamura et al. 2011). Based on these divergence estimates, 
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histograms were built for each taxon independently to test for a gap between the intra- 

and interspecific values, called the ‘barcoding gap’ (Hebert et al. 2003b). The detection 

of very low inter- and very high intraspecific divergence values, often indicative of 

incomplete lineage sorting, admixture of previously isolated lineages or concealed 

divergence, can lead to an absence of the barcoding gap (Johnsen et al. 2010). Hence, 

to evaluate its real extent, a second graphical analysis of pairwise divergence was 

performed, comparing the mean and maximum intraspecific divergence of each taxon 

with the mean and minimum interspecific divergence of that taxon with the remaining 

species from the same family (Meier et al. 2008). 

 

DNA extraction from non-invasive samples 

DNA extractions were attempted on 61 faecal samples and 25 bone samples from 

owl pellets. Faecal samples were collected from live-traps, within less than 24 h of 

production, labelled as ‘trap’ (n=29), or opportunistically collected in the field, labelled as 

‘field’ (n=32). The time of exposure for the ‘field’ samples could not be assessed 

accurately but was >24h. DNA was extracted using the QIAamp® DNA Micro Kit 

(Qiagen, Hilden, Germany), following the ‘Isolation of genomic DNA from forensic case 

work samples’ protocol, and half of the reagent volumes. DNA was eluted with 20, 30 or 

40 µl AE buffer depending on whether it originated from 1, 2 or 3 faecal pellets 

respectively.  

Bone samples were obtained from owl pellets collected in Iberia and identified to 

species using dichotomous keys (Blanco 1998; Gosàlbez & Noguera 1987). Mandibles 

and skulls were extracted using the DNeasy® Blood & Tissue Kit (Qiagen, Hilden, 

Germany) following the ‘Purification of total DNA from compact animal bone’ protocol 

with some adaptations, as follows: Briefly, bone fragments, usually consisting of a half 

mandible or a piece of the skull, were first cleaned externally with bleach (40%) and left 

under UV light for a short period of time (~15 min) in order to eliminate any contaminant 

on the exterior of the bone. The bones were then placed in a 2 ml tube with two 4 mm 

stainless steel balls and grinded for 3 min at 30 Hz in a Mixer Mill MM 400 (Retsch, Haan, 

Germany). The tubes were centrifuged in a microfuge for 1 min at 8000 rpm to remove 

loose bone powder from the lid of the tube and the balls were carefully removed after the 

addition of the lysis buffer. The remaining extraction procedures were performed as 

described in the protocol. DNA was eluted in 65 µl AE buffer. 

All non-invasive extraction procedures were performed in a physically isolated 

room maintaining conditions to reduce risk of DNA contamination (Gilbert et al. 2005). 
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Amplification of non-invasive DNA samples 

Shorter DNA fragments were selected from each gene to increase the amplification 

success in non-invasive samples (and also in degraded tissue samples), targeting 

regions rich in species discriminating sets of SNPs. These regions were identified from 

our analysis of the long gene fragments. New primers were designed for both cyt-b 

(CYTB.F2S: 5’-ATGAGGMCAAATATCATTCTGAGG -3’; CYTB.R2S: 5’-

CAYGAAACAGGATCYAACAACC -3’) and IRBP genes (IRBP.F5S: 5’-

TAYATCCTSAAGCAGATGCG -3’; IRBP.R5S: 5’- CAGRGTGAGGATRGCCA -3’), 

resulting in two fragments of 220 bp and 238 bp, respectively. The primer design followed 

the recommendations of Waits & Paetkau (2005) for fragment size in highly degraded 

DNA samples, not exceeding 300 bp. The PCR thermal profiles consisted of a touch-

down protocol from 56 to 51ºC for cyt-b and 58 to 52ºC for IRBP, with a final extension 

of 10 min and a total of 45 cycles. Amplification was performed in a final volume of 10 µl 

that consisted of: 4 µl of Qiagen© Multiplex PCR Kit Master Mix, 0.4 µM of each primer 

and 2 µl of genomic DNA. Samples were sequenced and analysed as already described 

for the tissues, allowing them to be typed for species. This molecular identification could 

be compared with the morphological species assignment, given that for the ‘trap’ faecal 

pellets and skull samples there was already information available on the species of origin 

(based on morphological identification of either the captured specimen or the skull). In 

the cases where incongruence between molecular and morphological species 

identification was observed, the species assignment of each sample was corrected 

according to the molecular identification. Using these results, misidentification 

percentages were calculated from the number of samples corrected for species 

identification out of the total number of samples analysed. 

Haplotype maps were constructed for both the cyt-b and IRBP short fragments, 

using all available sequences (all relevant sequences in GenBank and our new 

sequences) by creating a consensus sequence for each species in BioEdit (Hall 1999), 

then importing into MEGA 5 (Tamura et al. 2011) and exporting as tables. The species-

specific states were identified manually. 

 

4. Results 

Species identification using mitochondrial and nuclear markers 

Cytochrome-b gene: From the 239 cyt-b sequences assembled (85 from 

GenBank) we analysed 1128 bp of the 1143 bp amplified, corresponding to positions 
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14145–15273 in Bibb et al. (1981). We obtained a total of 189 haplotypes. These 

sequences had a GC content of 41.5%, 46.1% parsimony informative sites, and 23 

positions with nonsynonymous substitutions, none of which resulted in stop codons. 

Haplotype and nucleotide diversities for each species are shown in Table S2, Supporting 

Information. Some samples from specimens of the genera Apodemus and Glis 

generated numts (pseudogenes) which were excluded from the analysis (this particularly 

reduced the number of haplotypes for G. glis). For the Apodemus species, pseudogene 

sequences have already been described in the literature (see Dubey et al. 2009). Glis 

glis pseudogenes were identified by the presence of numerous positions with base 

changes, mostly transitions, together with a four base deletion, which is highly indicative 

of the presence of a numt (Gojobori et al. 1982; Li et al. 1984; Triant & DeWoody 2007). 

The Bayesian tree inference for cyt-b was performed using the GTR+I+G model. 

The tree recovered the four rodent families present in Iberia with high posterior 

probability (≥0.95) (Figure 1). Within each family, all species formed monophyletic groups 

(posterior probability ≥0.85), with the exception of Microtus lusitanicus, which forms a 

paraphyletic group with M. duodecimcostatus. Samples of M. lusitanicus from the 

northwest quadrant of Iberia form an independent group with posterior probability of 1, 

however M. lusitanicus individuals from southern localities clustered closer to M. 

duodecimcostatus. Given this unresolved separation, these two taxa were combined and 

will be referred to as Microtus DL from now onwards. Other intraspecific lineages were 

recovered, such as those already reported in Apodemus sylvaticus (Michaux et al. 2003). 

There is a small overlap between intraspecific (orange) and interspecific (within 

families, blue) K2P divergences for cyt-b (Figure 2A), which require a more detailed 

analysis (Figure 2B). Despite the high K2P intraspecific divergence observed in some 

species (Chionomys nivalis, 4.3%, Apodemus sylvaticus, 4.5%) or species complex 

(Microtus DL, 5.5%), and the low interspecific divergence obtained between Microtus 

agrestis P and M. agrestis S (3.3%), a barcoding gap is observed in all taxa. 

 

IRBP gene: For the IRBP gene, 1040 base pairs were evaluated in 150 sequences 

(ten recovered from GenBank), corresponding to positions 286–1325 in Danciger et al. 

(1990). This fragment, with a GC content of 59.9%, displayed 38.8% parsimony 

informative sites and a total of 72 nonsynonymous substitution positions, none resulting 

in stop codons. These sequences resulted in 126 different haplotypes (Table S2, 

Supporting Information). 

Bayesian tree inference was performed using the GTR+I+G model in MrBayes 3.1, 

the closest to the IRBP best fit model (TrNef+I+G) selected by jModelTest. The IRBP 
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phylogeny recovered the four rodent families present in Iberia with high posterior 

probability (Figure 3), however the phylogenetic relations among these families were 

different from those obtained with cyt-b (Figure 1). For the IRBP gene, all four families 

were recovered with posterior probability of 1 and most species formed monophyletic 

groups (posterior probabilities ≥71%). Once more, the pair Microtus duodecimcostatus 

and M. lusitanicus had shared haplotypes, representing a paraphyletic group. 

Finally, possible hybridisation events were detected when comparing samples 

amplified with both the cyt-b and IRBP genes. Four Mus individuals from Cádiz (Spain) 

were identified as M. spretus by the cyt-b gene and as M. musculus by the IRBP gene. 

Levels of K2P divergence for the IRBP gene were generally lower than those 

observed for cyt-b (Figure 4A). Despite that, a well-defined gap is observed between the 

interspecific within family (blue) and the interspecific between family (black) divergences 

and, in this last category, a gap can also be observed between the comparisons within 

the mouse- or squirrel-related clades (left peak) and comparisons between these clades 

(right peak) (mouse-related clade: murids and cricetids; squirrel-related clade: sciurids 

and glirids: Blanga-Kanfi et al. 2009; Churakov et al. 2010). However, the overall 

interspecific divergence within families overlaps with intraspecific divergence, which 

translates into the absence of a barcoding gap. In particular, Mus spretus, both 

Apodemus species and three Microtus taxa showed either high intra- or low interspecific 

divergence values, which resulted in the absence of a barcoding gap for those particular 

taxa (Figure 4B). The overall mean value of intraspecific divergence is 0.31%, where 

Apodemus sylvaticus shows the highest maximum intraspecific divergence value (1.4%). 

The mean value of interspecific divergences for species from the same family was 5.1%, 

though values ranged from 0.2% (Microtus DL/M. gerbei) to 10.1% (Rattus 

norvegicus/Micromys minutus).  

 

Amplification success for non-invasive samples 

Of the 61 faecal samples analysed, 85% (52/61) showed amplifiable DNA for cyt-b, 

whereas only 43% (16/37) provided positive results for IRBP. Faeces less than 24 h old 

(‘trap’) had greater amplification success (85%) than those that were older (‘field’, 44%). 

We obtained a positive relationship between amplification success and number of faecal 

pellets in ‘field’ samples (Figure 5). For the 25 samples of bones from owl pellets, 88% 

(22/25) provided positive amplifications for cyt-b and 64% (16/25) for IRBP. Species 

misidentification for faecal samples was estimated at 10% (6/61), and 12% (3/25) for 

bone samples. Amplification success did not vary detectably among species 
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Figure 1. Bayesian inference tree for the cyt-b long fragment showing the phylogenetic relationship of all 21 Iberian rodent 

taxa. Posterior probabilities of major nodes are indicated. Asterisks represent posterior probabilities of 1. Outgroup: 

Oryctolagus cuniculus.  
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Figure 2. A) Histogram of K2P cyt-b divergence values of the 21 Iberian rodent taxa. (Microtus duodecimcostatus and M. 

lusitanicus were analysed as a single taxon, Microtus DL, due to lack of differentiation in the phylogenetic analysis.) 

Intraspecific divergence appears in orange, interspecific within families in blue and interspecific among families in black. 

B) Summary of pairwise divergences involving sequences of each species showing mean (orange dot) and maximum 

(orange dash) intraspecific divergences and mean (blue dot) and minimum (blue dash) interspecific divergences 

(comparing sequence from the named species with other species in the same family). Grey bars characterize the extent 

of the barcoding gap. 

 

Variability of short fragments 

For the cyt-b gene short fragment, 369 sequences were analysed, comprising 239 

long fragment sequences and 74 non-invasive samples, along with 56 additional 

GenBank sequences from European individuals (Table 1; also see Table S1.A, 

Supporting Information). From these, 166 haplotypes were generated, with a total of 75 

variable nucleotide positions along the entire fragment (Tables S2 and S3, Supporting 

Information). Despite the short size of the selected fragment, the observed high variability 

always allowed the identification of all Iberian rodent species, with the exception of the 

species complex Microtus DL.  
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For the IRBP gene, 210 sequences were analysed (150 long fragment sequences 

and 60 non-invasive and degraded tissue samples; Table 1; also see Table S1.B, 

Supporting Information), resulting in a total of 58 haplotypes with 66 variable positions 

(Tables S2 and S4, Supporting Information). This fragment was able to positively 

distinguish most rodent species with the exception of Apodemus flavicollis/A. sylvaticus, 

Microtus agrestis P/M. agrestis S and Microtus DL/M. gerbei. The haplotype diversity for 

each species, as well as inter- and intraspecific divergence, were generally lower than 

the values obtained for cyt-b (Table S2, Supporting Information).  

 

 

Figure 3. Bayesian inference tree for the IRBP long fragment illustrating the phylogenetic relationship of the 21 Iberian 

rodent taxa. Posterior probabilities of major nodes are indicated. Asterisks represent posterior probabilities of 1. Outgroup: 

Oryctolagus cuniculus.   
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Figure 4. A) Histogram of K2P IRBP divergence values of the 21 Iberian rodent taxa. (Microtus duodecimcostatus and 

M. lusitanicus were analysed as a single taxon, Microtus DL, due to lack of differentiation in the phylogenetic analysis.) 

Intraspecific divergence appears in orange, interspecific within families in blue and interspecific among families in black. 

B) Summary of pairwise divergences involving sequences of each species showing mean (orange dot) and maximum 

(orange dash) intraspecific divergences and mean (blue dot) and minimum (blue dash) interspecific divergences 

(comparing sequence from the named species with other species in the same family). Grey bars characterize the extent 

of the barcoding gap; dark grey bars represent the cases where there was an overlap of intraspecific and interspecific 

divergences and show the extent of that overlap.  

 

Figure 5. Amplification success for the 

IRBP and the cyt-b gene using DNA from 

faecal material. For each gene, the data is 

divided into ‘Trap’ and ‘Field’ depending 

on whether the faecal samples were 

collected from traps or opportunistically in 

the field. The data are further subdivided 

to show the amplification success for 

extractions performed with one (I), two (II) 

or three (III) faecal pellets 
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5. Discussion 

Phylogenetic and barcoding gap approaches  

The mitochondrial and nuclear genes that we analysed proved to be able to 

differentiate the large majority of the Iberian rodent species studied. As expected, the 

mitochondrial gene phylogeny showed higher discriminative power, especially for the 

more recent nodes, due to the higher mutation rate associated to mitochondrial DNA. 

Even though mutational saturation is expected for the deeper nodes (Hassanin et al. 

1998), such events did not influence the cyt-b gene phylogeny unduly, which was 

supported with high posterior probability values. The average mammalian cyt-b neutral 

substitution rate is nearly 60 times higher than that of the IRBP gene (Nabholz et al. 

2008) with particularly high values recorded in the family Arvicolidae (Galewski et al. 

2006; Triant & DeWoody 2006). For this family we found examples of high intraspecific 

phylogenetic divergence between cyt-b lineages (as in Chionomys nivalis) but this 

tendency also extends to some non-arvicolid rodents, such as Apodemus sylvaticus, as 

already described by Michaux et al. (2003). Both C. nivalis and A. sylvaticus have large 

geographical ranges and the high intraspecific divergence levels mirror those found in 

other widely distributed rodent species (Michaux et al. 2003; Grill et al. 2009; Wójcik et 

al. 2010). Eliomys quercinus is also a widely distributed species which, according to 

Nombela et al. (1982), shows karyotypic differentiation. This might explain the 

occurrence of highly distinct lineages for the IRBP gene, however such differentiation 

was not recorded for cyt-b. Discordance between mitochondrial and nuclear phylogenies 

is quite common among mammals, often attributed to mitochondrial introgression, e.g, 

in Myodes voles (Boratyński et al. 2011) and in hares (Alves et al. 2008). These results 

emphasize the importance in using nuclear genes in addition to mtDNA to reveal major 

genetic differentiation. 

All species formed monophyletic groups for both genes, with the exception of the 

pair Microtus duodecimcostatus and M. lusitanicus (Figures. 1 and 3), and in the IRBP 

gene the species M. gerbei could only be distinguished from this species complex on the 

basis of a single SNP. These three vole species form a monophyletic group in mtDNA 

with higher support for the closer relatedness of M. lusitanicus and M. duodecimcostatus 

(Jaarola et al. 2004; Tougard et al. 2008a), further supported by comparative dental 

morphometry and cytogenetics (Chaline et al. 1999). The lack of differentiation between 

M. lusitanicus and M. duodecimcostatus presumably reflects incomplete lineage sorting 

or hybridisation (Bastos-Silveira et al. accepted, and our study). In addition, due to the 

low sample size of M. gerbei, we cannot be sure that this species can reliably be 
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distinguished from the species complex M. duodecimcostatus/M. lusitanicus with the 

IRBP gene. 

Three levels of comparison were considered in the barcoding analysis: 

intraspecific, interspecific within families and interspecific between families. At the 

interspecific divergence between families level, both genes showed a bimodal 

distribution of values (Figures 2A and 4A) which represent the comparisons within and 

between the mouse-related (murid and cricetid) and the squirrel-related (glirid and 

sciurid) rodent clades identified in several previous phylogenetic studies (Blanga-Kanfi 

et al. 2009; Churakov et al. 2010).  

Considering the intra- and interspecific (within family) variation a barcoding gap 

was detected for most species in both genes, which was more substantial for cyt-b 

(Figures 2B and 4B). The threshold for species delimitation using the cyt-b was around 

3%, which is consistent with the maximum limit of intraspecific variation detected for the 

COI gene in mammals, the common mitochondrial gene used for barcoding (Luo et al. 

2011). However, for the IRBP gene it is not possible to define a threshold for species 

delimitation because, when all species are analysed together, an overlap of intra- and 

interspecific variation is observed due to the low divergences between closely related 

taxa (Figure 4A), a common finding for nuclear exons (Zhang & Hewitt 2003). In the 

specific analysis of the IRBP gene, we observe that the two Apodemus species, M. 

agrestis P, M. agrestis S, Microtus DL and Mus spretus showed overlap of intra- and 

interspecific divergences (dark grey in Figure 4B). These represent cases where there 

are closely related species, which reduces the probability of a barcoding gap for a 

sequence type that is not exceptionally variable. 

Even though nuclear genes like IRBP may show limitations for discrimination 

between closely related species, they have particular value in the detection of 

hybridisation events, as revealed between Mus musculus and Mus spretus. We found 

that some specimens identified as M. musculus morphologically and from IRBP 

sequences were classified as M. spretus from the mitochondrial D-loop (S. Gabriel, 

personal communication) and cyt-b (this study). Hybridisation of these two species has 

long been recognised (Orth 2002) and recent studies suggest adaptive introgression of 

rodenticide resistance from M. spretus into M. musculus (Song et al. 2011). 

Using nuclear genes also avoids the problem of confusion between mitochondrial 

genes and numts. In this study we detected numts of the cyt-b gene in Apodemus and 

Glis, which showed co- or preferential amplification (Dubey et al. 2009). A recent study 

from den Tex et al. (2010) confirms that the use of universal primers tends to increase 

the likelihood of numt amplification. Numt co-amplification has been described for many 
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rodent species (Groenenberg & Dekker 2011; Mirol et al. 2000; Phillips & Dudı 2008; 

Triant & DeWoody 2008) and their occurrence could severely compromise efforts to 

make species identifications based purely on mitochondrial markers (Dubey et al. 2009).  

Thus, we believe the simultaneous use of nuclear and mitochondrial genes 

increases substantially the likelihood of accurate species identification and provides the 

opportunity for further perspectives (such as subdivision within species, hybridisation, 

etc.). 

 

Applicability to non-invasive sampling 

We obtained successful cyt-b amplifications for the majority of faecal samples 

(85%, 52/61). The results when using fresh samples (‘trap’: 93%, 27/29) were similar to 

those reported previously for arvicolids (95%, Alasaad et al. 2011). Regarding the use of 

exposed rodent faecal samples from the field, our amplification success (78%, 25/32) 

was also comparable to that obtained in other studies with small mammals (80%, Moran 

et al. 2008).  

As expected, the amplification success for the IRBP gene was lower than for cyt-

b, with an average of 44% (16/37) positive amplifications for faeces. For samples labelled 

as ‘trap’ only, there were 78% (14/18) positive amplifications, and using ‘field’ faecal 

pellets, there was 11% (2/19) amplification success. The DNA amplification success that 

we obtained for nuclear genes from fresh rodent faeces was comparable to that obtained 

for previous studies of faeces, specifically from Apodemus (83.3%, Moran et al. 2008).  

There have been particular efforts to obtain DNA from carnivore scats. Considering 

nuclear gene amplification, generally there has been similar DNA amplification success 

for fresh carnivore scats (71.7%, Murphy et al. 2007; 79.2%, Oliveira et al. 2010) and 

fresh rodent faeces (78%, our study; 90%, Alasaad et al. 2011; 83.3%, Moran et al. 

2008). However, it is difficult to confirm such a pattern for exposed faecal samples, as, 

to our knowledge, there is no previous literature making use of rodent faeces collected 

in the field to amplify nuclear loci. For exposed carnivore scats, nuclear DNA 

amplification success varies over a wide range of values (20-49%, Murphy et al. 2007; 

26%, Michalski et al. 2011; 48%, Kohn et al. 1999; 54%, Mukherjee et al. 2010; 84.1%, 

Oliveira et al. 2010). Our amplification success for nuclear genes regarding ‘field’ 

samples (11%) is lower than any value recorded for carnivore scats. Nevertheless, the 

size of rodent faecal pellets must be considered, as these are smaller and presumably 

contain less amplifiable DNA than larger carnivore faecal samples. 
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From our results, it is desirable to collect rodent faeces for DNA extraction as soon 

as possible after they have been produced. Rodents have a tendency to leave faecal 

pellets on clean surfaces such as cardboard or wooden boards (Emlen et al. 1957). 

Therefore, dropping stations may provide a good solution for collecting fresh faeces for 

genetic analysis. 

Regarding the extractions from bones collected from owl pellets, we obtained 

positive amplifications for 88% (22/25) of samples using the cyt-b gene, which is 

marginally lower than some equivalent studies (97%, Taberlet & Fumagalli 1996; 92%, 

Poulakakis et al. 2005), but higher than the 62% obtained by Centeno-Cuadros et al. 

(2009). We obtained 64% (16/25) positive amplifications for IRBP, which can only be 

compared to the 38% amplification success in Taberlet & Fumagalli (1996), although 

these authors present some possible explanations for their low amplification success. 

Skulls of small mammals from museum collections can provide greater amplification 

success for nuclear genes, judging by the 100% obtained by Asher et al. (2010) and 

Asher & Hofreiter (2006). 

Overall, we found 10% (6/61) and 12% (3/25) morphological misidentifications of 

faecal and bone samples, respectively. In ‘trap’ faecal samples, most identification errors 

were between Apodemus sylvaticus and Mus spretus. This might indicate that the 

trapped species were also misidentified, but cross contamination due to multiple 

captures cannot be ruled out. For bone samples, misidentification occurred between 

similar species of the same genus (Microtus gerbei / M. lusitanicus; Microtus arvalis / M. 

agrestis; Rattus rattus / R. norvegicus), which reinforces the value of molecular 

techniques for accurate identification of morphologically similar species. 

As expected, nucleotide and haplotype variation generally decreased when 

comparing the long to the short fragments (Table S2, Supporting Information), but 

successful species identification was nevertheless possible with the short fragments, 

with the exception of Apodemus sp., Microtus gerbei, M. agrestis P and M. agrestis S for 

the IRBP gene and M. lusitanicus and M. duodecimcostatus for both genes. SNP 

haplotype maps of both markers (Tables S3 and S4, Supporting Information) can be 

used as a reference, either for allocating samples collected in Iberia to the correct 

species or for providing the basis for developing a species-specific diagnostic test. 
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6. Conclusions and conservation implications 

In this study we were able to distinguish all Iberian rodent species using a 

mitochondrial and a nuclear gene, with the exception of the species complex Microtus 

duodecimcostatus and M. lusitanicus. Examining both the cyt-b and IRBP genes 

provided an effective methodology for species identification, whether applied to living or 

well preserved specimens (tissue samples), museum samples, or to non-invasive 

samples (faeces and/or bones from owl pellets). In general, we had a high DNA 

extraction success for the non-invasive samples and the short amplified fragments 

allowed identification of all the taxa studied with a few exceptions for the IRBP gene. 

Basing the analysis on the cyt-b and IRBP genes showed the value of using highly 

variable genetic markers to distinguish very similar taxa.  

The methodology we have developed provides a major advance for the 

conservation genetics of Iberian rodents, since NIGS avoids specimen handling and 

disturbance. There are opportunities for fine-scale population studies of rodents by faecal 

analysis. Considerable increases in population sample sizes and geographic coverage 

may also be achieved by using owl pellets. Additionally, owl pellets of course provide 

NIGS data on owl diet, which in itself may provide insights relevant to the conservation 

of both owls and rodents. The sophistication that can be achieved by these various 

approaches can be substantial given the success that we have demonstrated in 

amplifying short fragments of nuclear DNA. This allows the use of microsatellite and 

other markers that can be applied to a wide range of population genetic analyses. 

Thus, through our studies, there is the opportunity to carry out detailed non-

invasive studies of those rodents that are viewed as under conservation threat in Iberia, 

either locally or throughout the region. 
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Table S1. Sequence information obtained in this study and from GenBank for both the ‘long’ and ‘short’ (selected for non-invasive 

samples) fragments of: (A) cyt-b; and (B) IRBP (see text for further details). Haplotype names are provided for the new sequences 

obtained in this study; those including an extra ‘S’ are short fragment haplotypes. The number of individuals that generated long 

fragment sequences is listed per locality (short fragments in parentheses). The location of GenBank sequences is represented by 

an asterisk.  
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Mmin1 JX457740 This study               4 

R
a

t
t
u

s
 

n
o

r
v

e
g

ic
u

s
 

 AJ428514 Nilsson et al. 2003              *  

Rnor1 JX457741 
This study 

1 1              

RnorS1 § (1)               

R
a

t
t
u

s
 

r
a

tt
u

s
 

 FJ355927 Nilsson et al. 2010 (2)             *  

Rrat1 JX457743 
This study 

 1              

Rrat2 JX457742 1               

A
r
v

ic
o

la
 s

a
p

id
u

s
  FJ539342 

Centeno-Cuadros & 
Godoy 2010 

 *              

Asap1 JX457748 

This study 

1               

Asap2 JX457744 1               

Asap3 JX457745 1               

Asap4 JX457746 1               

Asap5 JX457747 2               

Asap6 JX457749 1               

A
r
v

ic
o

la
 

s
c

h
e

r
m

a
n

 

Asch1 JX457750 

This study 

 1              

Asch2 JX457751  1              
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S
p

e
c

ie
s

 

Haplotype 
GenBank 

Accession 
Number 

Author 

Locality 

P
T

 

E
S

 

A
D

 

F
R

 

G
B

 

C
H

 

IT
 

B
E

 

N
L

 

D
N

B
 

P
L

 

C
Z

 

B
L

K
 

S
K

D
 

F
I 

C
h

io
n

o
m

y
s

 n
iv

a
li

s
 

 AY513847 

Jaarola et al. 2004 

         *      

 
AY513846       *         

AY513848  *              

 AM392367 Galewski et al. 2006  *              

 GQ150791 

Castiglia et al. 2009 

            (*)   

 GQ150792             (*)   

 GQ150795       (*)         

 GQ150797       (*)         

 GQ150799       (*)         

 GQ150802       (*)         

 AY332716 Pfunder et al. 2004      (*)          

 GU954316 Fink et al. 2010      (*)          

Cniv1 JX457753 

This study 

 1              

Cniv2 JX457754  1              

Cniv3 JX457752  1              

M
ic

r
o

t
u

s
 a

g
r
e

s
t
is

 P
 

 AY167186 
Jaarola & Searle 

2002 
*               

 JX284253 

Paupério et al. 2012 

*               

 JX284254 *               

 JX284267 *               

 JX284268 *               

 JX284262 *               

 JX284259 *               

 JX284270 *               

 JX284257 *               

 JX284265 *               

 AY303160 Jaarola &Searle 2004 (*)               

M
ic

r
o

t
u

s
 a

g
r
e

s
t
is

 S
 

 AY167187 

Jaarola & Searle 
2002 

 *              

 AY167160  *              

 AY167161  *              

 AY167162  *              

 AY167163  *              

 AY167164  *              

 JX284274 

Paupério et al. 2012 

 *              

 JX284273  *              

 JX284282   *             

 JX284283   *             

 AY303159 
Jaarola & Searle 

2004 

 (*)              

 AY303155  (*)              

 AY303156 (*)               

MagSS1 § This study  (1)              

M
ic

r
o

t
u

s
 a

r
v

a
li

s
 

 EU439459 Borkowska & 
Ratkiewicz 2008 

          *     

 EU439457           *     

 AY220783 

Haynes et al. 2003 

    *           

 AY220788     *           

 AY220780     *           

 AY220785     *           

 AY220787    *            

 AY220789  *(3)              

 AM991095 
Tougard et al. 2008b 

   *            

 AM991094    *            

 AY708505 

Fink et al. 2004 

           (*)    

 AY708461          (*)      

 AY708507          (*)      
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S
p

e
c

ie
s

 

Haplotype 
GenBank 

Accession 
Number 

Author 

Locality 

P
T

 

E
S

 

A
D

 

F
R

 

G
B

 

C
H

 

IT
 

B
E

 

N
L

 

D
N

B
 

P
L

 

C
Z

 

B
L

K
 

S
K

D
 

F
I 

M
ic

r
o

t
u

s
 a

r
v

a
li

s
 

 AY708495 

Fink et al. 2004 

         (*)      

 AY708481      (*)          

 AY708513      (*)          

 AY708503  (*)              

 AY708502  (*)              

Marv1 JX457755 This study  1              

M
ic

r
o

t
u

s
 c

a
b

r
e

r
a

e
  AY513789 

Jaarola et al. 2004 
*(19)               

 AY513788 *               

 JX284284 Paupério et al. 2012 *               

Mcab1 JX457756 

This study 

5               

Mcab2 JX457759 2(7)               

Mcab3 JX457757 3               

Mcab4 JX457758 3               

Mcab5 JX457760 1               

M
ic

r
o

t
u

s
 d

u
o

d
e

c
im

c
o

s
t
a

t
u

s
 

 AJ717744 Tougard et al. 2008a    *            

 AY513797 
Jaarola et al. 2004 

*               

 AY513796 *               

Mduo1 JX457799 

This study 

 1              

Mduo2 JX457797 1               

Mduo3 JX457798 1               

Mduo4 JX457800 1               

Mduo5 JX457801 1               

Mduo6 JX457802 1               

Mduo7 JX457803 2               

Mduo8 JX457804 2               

Mduo9 JX457805 1               

Mduo10 JX457806 1               

M
ic

r
o

t
u

s
 l

u
s

it
a

n
ic

u
s

 

 AJ717746 Tougard et al. 2008a  (2)  *            

 AY513813 
Jaarola et al. 2004 

 *              

 AY513812  *              

Mlus1 JX457769 

This study 

 1              

Mlus2 JX457770  1              

Mlus3 JX457771  1              

Mlus4 JX457773  1              

Mlus5 JX457774  1              

Mlus6 JX457775  1              

Mlus7 JX457776  1              

Mlus8 JX457763 1               

Mlus9 JX457764 1               

Mlus10 JX457762 1               

Mlus11 JX457761 1(1)               

Mlus12 JX457772 1               

Mlus13 JX457780 1               

Mlus14 JX457781 1               

Mlus15 JX457782 1               

Mlus16 JX457777 1               

Mlus17 JX457786 1               

Mlus18 JX457787 1               

Mlus19 JX457778 1               

Mlus20 JX457779 1               

Mlus21 JX457788 1               

Mlus22 JX457789 1               
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S
p

e
c

ie
s

 

Haplotype 
GenBank 

Accession 
Number 

Author 

Locality 

P
T

 

E
S

 

A
D

 

F
R

 

G
B

 

C
H

 

IT
 

B
E

 

N
L

 

D
N

B
 

P
L

 

C
Z

 

B
L

K
 

S
K

D
 

F
I 

M
ic

r
o

t
u

s
 l

u
s

ia
n

ic
u

s
 

Mlus23 JX457783 

This study 

1               

Mlus24 JX457796 1(2)               

Mlus25 JX457790 1(1) (1)              

Mlus26 JX457791 1               

Mlus27 JX457792 1               

Mlus28 JX457793 1               

Mlus29 JX457794 1               

Mlus30 JX457795 1               

Mlus31 JX457765 1               

Mlus32 JX457766 1               

Mlus33 JX457767 1               

Mlus34 JX457784 1               

Mlus35 JX457768 1               

Mlus36 JX457785 1               

MlusS1 § 

 

(2)               

MlusS2 § (4)               

MlusS3 § (1)               

M
ic

r
o

t
u

s
 g

e
r
b

e
i 

 AY513799 

Jaarola et al. 2004 

 *(1)              

 AY513800  *(3)              

 AY513801  *              

 AY513802  *              

 AJ717748 Tougard et al. 2008a  *              

Mger1 JX457807 This study  1              

M
y

o
d

e
s

 g
la

r
e

o
lu

s
 

 AF119272 Conroy & Cook 1999               * 

 AY309420 
Cook et al. 2004 

    *           

 AY309421     *           

 FJ881473 

Wójcik et al. 2010 

          *     

 FJ881474           *     

 FJ881475           *     

 FJ881476           *     

 FJ881477           *     

 FJ881478           *     

 FJ881479           *     

 HQ288403 

Malé et al. 2012 

             (*)  

 HQ288339             (*)   

 HQ288349            (*)    

 HQ288331          (*)      

 HQ288365              (*)  

 HQ288385    (*)            

 DQ768151 Direct submission          (*)      

 HE604965 Colangelo et al. 2012       (*)         

Mgla1 JX457811 

This study 

  1             

Mgla2 JX457808  1              

Mgla3 JX457810  1              

Mgla4 JX457809  1              

MglaS1 §  (1)              

MglaS2 §  (3)              

E
li

o
m

y
s

 

q
u

e
r
c

in
u

s
 

 HE613994 

Direct submission 

            (*)   

 HE614002          (*)      

 HE614004        (*)        

 HE614000       (*)         

 HE614006    (*)            

 HE613991 (*)               
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S
p

e
c

ie
s

 

Haplotype 
GenBank 

Accession 
Number 

Author 

Locality 

P
T

 

E
S

 

A
D

 

F
R

 

G
B

 

C
H

 

IT
 

B
E

 

N
L

 

D
N

B
 

P
L

 

C
Z

 

B
L

K
 

S
K

D
 

F
I 

E
li

o
m

y
s

 

q
u

e
r
c

in
u

s
 Eque1 JX457812 

This study 

 1              

Eque2 JX457813  1              

Eque3 JX457816  1              

Eque4 JX457814 1               

Eque5 JX457815 2               

G
li

s
 g

li
s

 

 AJ001562 Reyes et al. 1996    *            

 FM160664 
Hurner et al. 2010 

            (*)   

 FM160651          (*)      

S
c

iu
r
u

s
 

v
u

lg
a

r
is

 

 AJ238588 1 Reyes et al. 2000 (1)               

Svul1 JX457817 
This study 

20               

Svul2 JX457818 1               

Country codes: PT – Portugal; ES – Spain; AD – Andorra; FR – France; GB – Great Britain; CH – Switzerland; IT – Italy; BE – 

Belgium; NL – Netherlands; DNB – Danubian River Countries (Austria, Hungary, Slovakia and Germany); PL – Poland; CZ – 

Czech Republic; BLK – Balkans (Greece, Bulgaria, Macedonia, Montenegro, Bosnia and Herzegovina, Croatia and Slovenia); 

SKD – Scandinavia (Sweden, Norway and Denmark); FI – Finland. 1 Location of origin of the haplotype not available. The 

haplotypes not listed in GenBank (§) are available in Dryad (doi: 10.5061/dryad.fv21h).  
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B. IRBP gene 
S

p
e

c
ie

s
 

Haplotype 
GenBank 

Accession 
Number 

Author 

Locality 

P
T

 

E
S

 

A
D

 

F
R

 

G
B

 

C
H

 

IT
 

N
L

 

P
L

 

F
I 

M
u

s
 

m
u

s
c

u
lu

s
 

(Lab strain) NM_015745 Danciger et al. 1990 3(2) 3         

Mmus1 JX457616 This study 3 9         

M
u

s
 

s
p

r
e

t
u

s
 (Lab strain) 

AJ698883-1 
Chevret et al. 2005 

(12) *(2)         

AJ698883-2  *         

Mspr1 JX457618 

This study 

4          

Mspr2 JX457619-1  1         

Mspr3 JX457619-2  1         

A
p

o
d

e
m

u
s

 f
la

v
ic

o
ll

is
 

 AB032860 Serizawa et al. 2000      *     

Afla1 JX457620 

This study 

    3      

Afla2 JX457621-2     1      

Afla3 JX457622-1  1(2)         

Afla4 JX457622-2  1         

Afla5 JX457623-1          2 

Afla6 JX457623-2         1 2 

Afla7 JX457624-1         2  

Afla8 JX457625         5  

Afla9 JX457626-2         1  

Afla10 JX457627-2         1  

A
p

o
d

e
m

u
s

 s
y

lv
a

t
ic

u
s

 

 AB032863 Serizawa et al. 2000 (3) 2(4)      *   

Asyl1 JX457629 

This study 

1(2) 1   4      

Asyl2 JX457630  1   2      

Asyl3 JX457631-1 1(1) 1         

Asyl4 JX457633 2 3         

Asyl5 JX457632-2  1         

Asyl6 JX457634-1  1         

Asyl7 JX457635-1  1         

Asyl8 JX457635-2 1 1         

Asyl9 JX457636-1 (1) 1         

Asyl10 JX457636-2  1         

Asyl11 JX457637-1  1         

Asyl12 JX457637-2  1         

Asyl13 JX457639-1 1 1         

Asyl14 JX457640  2         

Asyl15 JX457641  2         

Asyl16 JX457642-2  1         

Asyl17 JX457643-1 2          

Asyl18 JX457643-2 1          

Asyl19 JX457644-1 1          

Asyl20 JX457644-2 1          

Asyl21 JX457645-1 1          

Asyl22 JX457645-2 1          

Asyl23 JX457646-1 1          

Asyl24 JX457646-2 1          

Asyl25 JX457647-2 2          

Asyl26 JX457648-2 1(1)          

Asyl27 JX457649-1 1          

Asyl28 JX457649-2 1          

Asyl29 JX457650-2 1          

Asyl30 JX457651-2 1          
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S
p

e
c

ie
s

 

Haplotype 
GenBank 

Accession 
Number 

Author 

Locality 

P
T

 

E
S

 

A
D

 

F
R

 

G
B

 

C
H

 

IT
 

N
L

 

P
L

 

F
I 

A
p

o
d

e
m

u
s

 

s
y

lv
a

t
ic

u
s

 

Asyl31 JX457653 

This study 

2          

Asyl32 JX457654-1 1          

Asyl33 JX457654-2 1          

M
ic

r
o

m
y

s
 

m
in

u
t
u

s
 

Mmin1 JX457656 

This study 

         4 

Mmin2 JX457655-2          1 

Mmin3 JX457657-2          1 

R
a

t
t
u

s
 

n
o

r
v

e
g

ic
u

s
 

Rnor1 JX457658-2 

This study 

1(2) 1         

Rnor2 JX457659 3 3         

R
a

t
t
u

s
 

r
a

t
t
u

s
 

Rrat1 JX457660 This study 2(2) 6(2)         

A
r
v

ic
o

la
 s

a
p

id
u

s
 Asap1 JX457661-1 

This study 

4(2) (4)         

Asap2 JX457661-2 1          

Asap3 JX457662 6          

Asap4 JX457668 6          

Asap5 JX457663-2 1          

Asap6 JX457664-2 1          

Asap7 JX457666-2 1          

A
r
v

ic
o

la
 

s
c

h
e

r
m

a
n

 

Asch1 JX457669 

This study 

 2(8)         

Asch2 JX457670  2         

C
h

io
n

o
m

y
s

 

n
iv

a
li

s
 Cniv1 JX457673 

This study 

 3(9)         

Cniv2 JX457672  3         

CnivS1 JX457608-2  (1)         

M
ic

r
o

t
u

s
 a

g
r
e

s
t
is

 P
 

MagP1 JX457674-1 

This study 

7          

MagP2 JX457674-2 1          

MagP3 JX457675-2 3          

MagP4 JX457676-2 1          

MagP5 JX457677-2 1          

MagP6 JX457678-2 1          

MagP7 JX457679-1 1          

MagP8 JX457679-2 4          

MagP9 JX457680-2 2          

MagP10 JX457682-2 1          

M
ic

r
o

t
u

s
 

a
g

r
e

s
t
is

 

S
 

MagS1 JX457683 

This study 

 1 2        

MagS2 JX457685  2         

MagS3 JX457684-2  1         

M
ic

r
o

t
u

s
 

a
r
v

a
li

s
 

Marv1 JX457686 

This study 

 2(2) 3        

Marv2 JX457687-2   1        

Marv3 JX457688-2  2         

Marv4 JX457689-1  1         

Marv5 JX457689-2  1         

MarvS1 JX457609  (4)         

M
ic

r
o

t
u

s
 

c
a

b
r
e

r
a

e
 Mcab1 JX457690 

This study 

19(8)          

Mcab2 JX457691-2 2          

Mcab3 JX457692 4          

Mcab4 JX457694-2 3          
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S

p
e
c

ie
s

 

Haplotype 
GenBank 

Accession 
Number 

Author 

Locality 

P
T

 

E
S

 

A
D

 

F
R

 

G
B

 

C
H

 

IT
 

N
L

 

P
L

 

F
I 

M
ic

ro
tu

s
 

c
a

b
re

ra
e

 

Mcab5 JX457695-2 

This study 

1          

Mcab6 JX457696-2 3          

M
. 

d
u

o
d

e
c

 

Mduo1 JX457699 This study 12          

M
ic

r
o

t
u

s
 l

u
s

it
a

n
ic

u
s

 

Mlus1 JX457701 

This study 

(4) 2         

Mlus2 JX457702 4(6) (2)         

Mlus3 JX457703-1 2          

Mlus4 JX457703-2 3          

Mduo1 JX457699 1          

MlusS1 JX457611-1 (2)          

MlusS2 JX457612 (2)          

MlusS3 JX457613  (2)         

M
ic

r
o

t
u

s
 

g
e

r
b

e
i Mger1 JX457700 

This study 

 2(1)         

Mlus1 JX457701  (1)         

M
y

o
d

e
s

 g
la

r
e

o
lu

s
 

Mgla1 JX457705-1 

This study 

 1         

Mgla2 JX457705-2  2         

Mgla3 JX457707-1  1(6)         

Mgla4 JX457707-2  2         

Mgla5 JX457706-2  1         

Mgla6 JX457708-2  1         

Mgla7 JX457709-1  1         

Mgla8 JX457709-2  1         

MglaS1 JX457614  (2)         

E
li

o
m

y
s

 q
u

e
r
c

in
u

s
 

 AB253958 

Nunome et al. 2007 

      *    

 AB253957-1  (1)  *       

 AB253957-2    *       

 FM162056-1 Blanga-Kanfi et al. 
2009 

     *     

 FM162056-2      *     

Eque1 JX457710-1 

This study 

 1         

Eque2 JX457710-2  1         

Eque3 JX457711-1  1         

Eque4 JX457711-2  1         

Eque5 JX457712-1  1         

Eque6 JX457712–2  1         

Eque7 JX457713-1 1          

Eque8 JX457713–2 1          

Eque9 JX457714-1 1          

Eque10 JX457714–2 1          

EqueS1 JX457615-1 (1)          

G
li

s
 

g
li

s
 

 AB253961 
Nunome et al. 2007 

      *     

 AB253962  6(6) (4)    *    

S
c

iu
r
u

s
 

v
u

lg
a

r
is

 

 AY227620 Mercer and Roth 2003 
8(6

) 
    *     

Country codes: PT – Portugal; ES – Spain; AD – Andorra; FR – France; GB – Great Britain; CH – Switzerland; IT – Italy; 

NL – Netherlands; PL – Poland; FI – Finland. The haplotypes are available in Dryad (doi: 10.5061/dryad.fv21h). 
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N
 –
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ta
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n
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b
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e
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 o
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w

h
ic
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 G
e
n
B

a
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H
 –
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u
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b
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a
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p
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H
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 d
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 d
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V
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o
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v
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b
le

 s
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 t
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b
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 s
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 i

n
 p
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n
th

e
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F
o
r 

th
e
 ‘

S
h
o
rt

 F
ra

g
m

e
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The Microtus voles: resolving the phylogeny of one of the most 

speciose mammalian genera with nuclear- and mito-genomes 

 

Barbosa S, Paupério J, Pavlova SV, Alves PC and Searle JB 

 

1. Abstract 

Rapid radiations pose some of the greatest challenges in phylogenetics, especially 

when analysing only a small number of genetic markers. Given that most of these events 

occurred in a very short period of time, at various points in time, particular challenges 

have to be addressed to determine the phylogenetic relationships, namely branching 

order and the time since divergence. With the development of high throughput 

sequencing, thousands of markers can now readily be obtained to revisit and resolve 

some of these questions. Microtus is a speciose genus currently composed of 65 species 

that evolved in a very short period of time in the last 2 million years. Although it is a very 

well-studied group, there is still phylogenetic uncertainty. Building upon previous studies 

that used mostly a few mitochondrial and nuclear loci, in this work we used partial 

mitogenomes and 3 426 SNPs obtained through genotyping-by-sequencing (GBS) to 

clarify the taxonomic position of the described subgenera and the phylogenetic 

relationships of some species of particular interest. Both types of genome (mitochondrial 

and nuclear) generated similar tree topologies, with a basal split of the Nearctic (M. 

ochrogaster) and Holarctic (M. oeconomus) species, and then a subdivision of the five 

Old World species into two subgroups. These data support the occurrence of two 

radiations to Europe (or vicariance within Europe) and a single radiation event to North 

America, with a later expansion of M. oeconomus from Asia to the west and the east. 

We further resolved the positioning of M. cabrerae as sister group of M. agrestis, and 

refute the claim that this species should be elevated to its own genus (Iberomys). Finally, 

we found evidence of ongoing speciation events, especially within M. agrestis, with high 

level of genetic divergence supporting the claim of three different species within this 

taxon. Similar high levels of divergence were also found within M. oeconomus. 
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2. Introduction 

It appears that diversification often occurs through rapid radiations, where an 

ancestral form takes advantage of a geographical or ecological opportunity that leads to 

subdivision into many new taxa with distinct ecological niches (Simões et al. 2016; 

Stroud & Losos 2016). The driving factors of rapid radiations are extremely interesting 

and their elucidation would benefit from detailed phylogenies, but the synchrony of the 

initial radiation creates challenges in deciphering the branching order and the time since 

divergence (Whitfield & Lockhart 2007; Giarla & Esselstyn 2015). As well as multiple 

contemporary divergences over space being a serious challenge to phylogenetics, the 

analysis of multiple divergences over different time scales can be difficult, because such 

events are likely affected by different types of evolutionary forces (Jeffroy et al. 2006; 

Degnan & Rosenberg 2009). The ability of molecular phylogenetics to deal with these 

issues has been hampered in studies using limited data, such as one or two 

mitochondrial loci, and sometimes a small number of nuclear loci (Simon et al. 2006). 

There are several issues relating to the sole use of mitochondrial DNA (mtDNA) and 

there has been a recent tendency for a combined approach using different types of 

markers reflective of different evolutionary trajectories (Morin et al. 2004; Simon et al. 

2006; Melo-Ferreira et al. 2012). Fast evolving mitochondrial genes, provide enough 

resolution to distinguish between recently diverged taxa, but also are more prone to 

effects of genetic drift and haplotype fixation given their smaller effective population size, 

and long branch attraction (LBA), given the high chance of mutational saturation and 

difference in evolutionary rates among lineages (Bergsten 2005; Nabholz et al. 2008; 

Yang & Rannala 2012; Su & Townsend 2015). Thus, mitochondrial DNA often becomes 

unsuitable for the study of older rapid radiations, but can prove to be very helpful for 

recent divergences (Hurst & Jiggins 2005) including applying contemporary calibrations 

(Herman & Searle 2011). Slower evolving markers, namely nuclear exons and introns, 

have the advantage of avoiding many of the problems of using mitochondrial markers 

alone (such as LBA), but they often do not display enough genetic variation to resolve 

recent divergences, being more prone to effects of incomplete lineage sorting (ILS) 

(Giarla & Esselstyn 2015). With the arrival of high throughput sequencing, genome-wide 

single nucleotide polymorphism (SNP) variation and whole genome sequences are 

revolutionising evolutionary studies (Morin et al. 2004), including solving difficult issues 

in phylogenetics. Some examples of the applications of these recent high throughput 

sequencing methods in phylogenetics (‘phylogenomics’, Jeffroy et al. 2006) range from 

deep evolutionary events like the eutherian radiation (Murphy et al. 2001; Song et al. 
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2012), to more recent diversifications, like the African cichlid fish (Seehausen 2006; 

Brawand et al. 2014). Phylogenomics is increasingly going to replace studies with single 

or low numbers of markers but it is still desirable to include both nuclear and 

mitochondrial data in phylogenetics, even at a genomic scale (Moore 1995; Duchêne et 

al. 2011; Filipi et al. 2015; Leaché et al. 2015).  

The genus Microtus is part of the rodent family Cricetidae and more specifically the 

subfamily Arvicolinae, and represents one of the most rapid documented radiations in 

extant mammals. The Microtus radiation was proposed to have originated in central Asia 

with expansion both westwards – to Europe [c. 1 million years (Mya)] – and eastwards – 

to North America (c. 450 kya), followed by multiple speciation events in both regions at 

various points in time (Repenning 1993; Conroy & Cook 1999, 2000; Jaarola et al. 2004; 

Weksler et al. 2010). The later expansion of M. oeconomus to Europe and North America 

is thought to have been occurred c. 150 kya, given the estimates of the second 

opportunity to cross over Beringia – leading to a Holarctic distribution for this species, 

which is supported by both fossil and molecular data (Lance & Cook 1998; Brunhoff et 

al. 2003; Galbreath & Cook 2004). The biogeographic history of Microtus can thus help 

us better understand the historical biogeography of the northern continents given that 

this group has species across the  Palearctic, Nearctic and Holarctic regions (Conroy & 

Cook 2000). There are 65 Microtus species currently recognised by the IUCN, which are 

thought to have diversified during the last 2 million years (IUCN 2016): there are 44 

species belonging to 5 subgenera that are found in the Old World; there are 20 species 

belonging to 7 subgenera representing the first wave of subgenera that colonised the 

New World; and there is one species, Microtus oeconomus, with a Holarctic distribution 

that represents a more recent colonisation of North America (Conroy & Cook 2000).  

Many molecular phylogenetic studies on Microtus have used mitochondrial cyt-b 

and found that most subgenera represent true monophyletic clades (Conroy & Cook 

2000; Jaarola et al. 2004; Bannikova et al. 2010). Other studies have used both 

mitochondrial and nuclear markers (single/low numbers of gene sequences and AFLPs) 

which have added support to the idea of a rapid radiation and two to three independent 

expansions from central Asia to Europe and two to North America, with associated bursts 

of speciation (Galewski et al. 2006; Robovský et al. 2008; Fink et al. 2010; Martínková & 

Moravec 2012). These studies set the first steps towards a greater understanding of the 

Microtus radiation, but the high mitochondrial mutation rate observed in Microtus is likely 

a limiting factor when aiming to resolve the initial splits of this rapid adaptive radiation 

(due to LBA), and the slower mutation rate of nuclear loci does not allow the effects of 
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incomplete lineage sorting to be parsed out (Whitfield & Lockhart 2007; Giarla & 

Esselstyn 2015). As a result, these studies are impaired by phylogenetic inconsistencies 

across loci, conspecifics splitting into different groups, and low support for the more basal 

nodes, which is expected when using a small number of loci in groups that have 

undergone rapid radiations (Fink et al. 2010; Martínková & Moravec 2012; Giarla & 

Esselstyn 2015).  

As well as the interest in the overall Microtus phylogeny and its biogeographic 

history, there is an interest in the phylogenetic position of certain species. In particular, 

the Cabrera vole (Microtus cabrerae) has one of the most unresolved positions within 

the genus which, although an European species, it has been found to often cluster with 

the North American species (Jaarola et al. 2004; Robovský et al. 2008; Fink et al. 2010). 

The Cabrera vole is classified in the subgenus Agricola together with the field vole 

(Microtus agrestis) based on its karyotype (Zagorodnyuk 1990), however many still 

prefer its first classification by Chaline (1974) as the sole member of a separate 

subgenus Iberomys (López-García & Cuenca-Bescós 2012; Pita et al. 2014). Given the 

combination of numerous differentiating morphological and biological features – e.g. 

molar morphology, body size, reproductive strategy, chromosomes (Pita et al. 2014) – 

Cuenca-Bescós et al. (2014) have recently proposed the elevation of the Cabrera vole 

to its own genus, Iberomys. However, the elevation of this species to its own genus 

needs to be considered carefully and be justified on phylogenetic grounds.  

The aim of this study was to help clarify the phylogeny of the genus Microtus, using 

mitochondrial and nuclear genomes in a biogeographical context. Given that subgenera 

are typically monophyletic, we compare taxa from five subgenera defined 

morphologically following Wilson & Reeder (2005): Agricola (M. agrestis and M. 

cabrerae), Alexandromys (M. oeconomus), Microtus (M. arvalis and M. levis), Pedomys 

(M. ochrogaster) and Terricola (M. subterraneus). Our phylogenomic approach using a 

partial mitogenome and genotyping-by-sequencing (GBS) SNP data demonstrates that 

increasing the number of loci and their representability of the genome can improve 

phylogenetic inferences, especially at more recent time scales. However, it is important 

to be aware that greater detail can be obtained from haplotype rather than SNP data, 

and even then, rapid radiations might still be very difficult to disentangle.   
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3. Material and Methods 

Sampling 

We sampled seven Microtus species representative of five out of the 12 recognised 

subgenera, distributed across the entire northern hemisphere (Figure S1, Supporting 

information). M. (Alexandromys) oeconomus, has a Holarctic distribution, M. (Pedomys) 

ochrogaster is only found in the New World, and five species only occur in the Old World: 

M. (Agricola) agrestis, M. (Agricola) cabrerae, M. (Microtus) arvalis, M. (Microtus) levis 

and M. (Terricola) subterraneus, representing all the subgenera found in Europe. Up to 

three individuals per taxon were analysed to account for intra-specific variation (Table 

1). Whenever possible, conspecific individuals were chosen from geographically distant 

localities (Figure S1, Supporting information). We also analysed two Arvicola sapidus 

individuals (outgroup), given its close relationship to Microtus (Buzan et al. 2008; 

Martínková & Moravec 2012), encompassing a total of 18 specimens analysed 

separately for their mitochondrial and nuclear genomes (see Table 1 for details). One M. 

ochrogaster and one additional M. levis mitochondrial genomes were obtained from 

GenBank, which were not analysed for nuclear variation. For the nuclear analysis we 

obtained the full genome of M. ochrogaster from GenBank to use as a reference for the 

SNP calling pipeline, but this genome was not incorporated as a representative of M. 

ochrogaster in our analyses. 

 

Mitochondrial data 

Mitochondrial capture: All samples were barcoded for the complete cytochrome-

b (cyt-b) gene following Barbosa et al. (2013) to verify species ID and these sequences 

were later included in the mitogenomic analyses. To obtain mitochondrial sequences we 

performed a mitochondrial capture technique on two Arvicola and 14 Microtus samples, 

following Fu et al. (2013), that consisted of two main steps: 1) bait preparation and 2) 

hybridisation capture. For the bait preparation we performed long-range PCR using one 

sample of Microtus cabrerae, targeting two areas of the mitochondrial genome, one 

approximately 3 700 base pairs (bp) and the other approximately 4 000 bp (details in 

Figure S2, Supporting information). We then sheared the DNA into smaller fragments to 

an average size of 400 bp and prepared the bait for hybridisation with each of our 16 

samples (Table 1), which were then individually labelled by double indexing. Library 

preparation followed Meyer & Kircher (2010) with the modifications described in Kircher 

(2012) using the standard Illumina multiplex adaptors and indexing PCR followed 
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Dabney & Meyer (2012). The hybridisation products were sequenced in a paired-end run 

(500 bp) on a MiSeq desktop sequencer (Illumina) using the MiSeq v2 Reagent Kit. After 

the run, reads were demultiplexed using the FASTX toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit) and mitogenomes for each sample were 

assembled with GENEIOUS v8.1.8 (Kearse et al. 2012) following two steps: 1) all reads 

from the same taxon were mapped to the closest related mitochondrial genome available 

on GenBank [following the phylogeny of Jaarola et al. (2004)] to produce a taxon specific 

reference; 2) reads from each sample were mapped to the taxon specific reference. Only 

genomic regions with at least 3x coverage were maintained and due to the small size of 

these genomes, the alignments could be verified by eye. Mitochondrial divergence (Dxy) 

was estimated using p-distances between different groups with MEGA v6 (Tamura et al. 

2013), and the degree of differentiation found both within and between closely related 

species was compared. 

Phylogenetic analyses: For the mitochondrial phylogenies we used only genomic 

regions with coverage for all 16 samples (plus the two sequences from GenBank) (Figure 

S2, Supporting information). Sequences were aligned using the ClustalW algorithm 

(Thompson et al. 1994) implemented in Geneious v8.1.8 (Kearse et al. 2012). We then 

built Maximum Likelihood (ML) and Bayesian (BA) trees using RAxML v8.1 (Stamatakis 

2014), and ExaBayes v1.4 (Aberer et al. 2014), respectively. For all mitochondrial 

analyses we partitioned the dataset into 5 fully and 2 partially sequenced mitochondrial 

coding genes and the 10 fully sequenced tRNAs (see ‘Results’ and Figure S2, 

Supporting information), for independent analysis. For the ML analysis we applied the 

GTRGAMMA model with 1000 bootstraps and a rapid ML search. For the BA trees we 

used ExaBayes v1.4 (Aberer et al. 2014) to run four replicates until the average and 

maximum standard deviation of split frequencies (‘asdsf’) was lower than 5%, running at 

least for 1 million generations, each with four heated chains, and sampling every 500 

generations using the default model (GTR). Default values were used for tuning and 

branch swap parameters and branch lengths among partitions were linked. Convergence 

and proper sampling of the posterior distribution of parameter values were assessed by 

checking that the effective sample sizes of all estimated parameters and branch lengths 

were greater than 200 in the Tracer v1.5 software (Rambaut & Drummond 2015), and 

by ensuring that the ‘asdsf’ was below 1% (assumed to represent “excellent 

convergence”) and that the potential scale reduction factor across runs was close to 1% 

(values below 1.1% are considered good convergence). Finally, to check for 

convergence in topology and clade posterior probabilities, we summarised a consensus 
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tree from 1 800 post burn-in trees using the ExaBayes ‘consense’ tool for the four runs, 

after excluding 10% of the run as burnin.  
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Nuclear data 

Genotyping-by-sequencing and SNP calling: We performed genotyping-by-

sequencing (GBS; Elshire et al. 2011) at the Cornell Genomic Diversity Facility on 14 

Microtus and two Arvicola samples, following the same protocol as described in White et 

al. (2013) (Table 1). Filtering and SNP calling were performed using the ‘TASSEL’ 

pipeline (Bradbury et al. 2007), and Microtus ochrogaster as reference genome. A 

minimum base call of five reads and a maximum locus missing data of 20% was defined. 

For post processing we excluded all loci with missing data and indels, and kept only 

those loci that had both alleles present in a homozygous state in different individuals (i.e. 

loci that only had AA and AB individuals were excluded; loci with AA and BB or AA, AB 

and BB were kept). These filters were applied due to the ML analysis requiring SNP data 

to fit the ASC_GTRCAT [Lewis correction (Lewis 2001)] model. We additionally 

calculated Nei’s genetic distance (Nei 1972) between all pairs of samples using the 

function nei.dist from the poppr R package (Kamvar et al. 2014). 

 

Phylogenetic analyses: An initial phylogeny was estimated with the concatenated 

SNP dataset using maximum likelihood (ML) in the program RAxML v.8.1.16 

(Stamatakis, 2014), and the GTR model of nucleotide evolution. Likelihood calculations 

were corrected for ascertainment bias (-m ASC_GTRCAT). This option is useful for SNP 

datasets that contain no invariable sites, which will cause the algorithm to exit with errors. 

Support was assessed by 1 000 nonparametric bootstrap replicates, followed by a 

search for the best-scoring maximum likelihood tree, using Arvicola sapidus as outgroup. 

For the Bayesian analysis, we ran ExaBayes in the same way as for the mitochondrial 

data, except that we did not partition the data and ran 2 chains of 1 million generation 

sampling every 500 generations. Evaluation of convergence followed the same protocol 

as for the mitochondrial data. 

 

4. Results 

Mitochondrial data 

For all 16 voles analysed, we confirmed the species ID by matching the cyt-b 

sequences to references in the GenBank nucleotide database and were able to capture 

mitochondrial DNA using the Microtus cabrerae mitochondrion as bait. Capture was not 

influenced by taxonomic distance, but rather by the initial DNA concentration of the 

samples concerned (data not shown). Mean base pair (bp) length of each read was 

around 129 bp and mean coverage was 182 reads (29 - 443) (Table 1). We obtained full 
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coverage for the target regions and a portion of the flanking regions, resulting in 5 

complete coding regions (ATP6, COI, COII, COIII, ND5), two partial coding regions (cyt-

b and ND4) and 10 tRNAs, including for the two sequences from GenBank (Figure S2, 

Supporting information). With these data we generated consensus sequences for all 

samples with varying lengths and mitochondrial regions covered (Figure S2, Supporting 

information). For the sample for the Microtus agrestis Southern lineage (SM0372, Table 

1), we found two mitochondrial sequences spanning a large portion of the targeted 

regions, one similar to the remaining M. agrestis mitochondria, and the other differing in 

a large number of positions. To recover the putative true mitochondrial sequences, we 

used GENEIOUS to align these reads to the consensus sequence of the remaining two 

M. agrestis samples and kept the least divergent reads. The discarded reads resulted in 

a sequence with stop codons in coding regions and several insertions and deletions (data 

not shown), presumably representing a large numt (a nuclear copy of a mitochondrial 

sequence). 

For the mitochondrial phylogenetic analyses, both the ML and BA runs resulted in 

phylogenies with the same topology and similar levels of support for specific nodes 

(Figure 1): Microtus ochrogaster is basal to the mitochondrial radiation, followed by M. 

oeconomus; both of these species are ancestral to two well supported groups 

represented by M. agrestis/M. cabrerae and M. arvalis/M. levis/M. subterraneus; the 

divergence between M. agrestis and M. cabrerae is of similar magnitude as M. 

subterraneus from M. arvalis/M. levis. Within M. agrestis, the northern lineage ‘N’ showed 

equal level of divergence from the remaining M. agrestis lineages as M. arvalis from M. 

levis (Dxy = 5.8%) (Figure 1). The remaining Dxy values show a variety of intraspecific 

mitochondrial divergences that vary greatly across species (Figure 1), from 0.4% in M. 

subterraneus to 3.6% in M. oeconomus.  

  

Nuclear data 

Using the TASSEL GBS pipeline and the M. ochrogaster genome as a reference, 

we obtained over 246 400 nuclear SNPs, which were reduced to 5 151 SNPs after 

excluding all missing data. Additionally, we only maintained loci that showed both alleles 

present in the homozygous state, resulting in a final supermatrix of 3 426 SNPs with no 

missing data. The within-species Nei’s distance values are very similar to those obtained 

for the mitochondrial genome, varying from 0.5% in M. levis to 3.8% in M. arvalis (Figure 

1).  
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Similarly to the mitochondrial data, the ML and BA phylogenetic analyses for the 

nuclear dataset also show very similar results with equal topology and equivalent support 

for the different nodes (Figure 1): M. ochrogaster and M. oeconomus are basal to the 

Microtus phylogeny, with very low support to determine confidently which of these 

species is the most basal; the M. arvalis/M. levis/M. subterraneus complex is well 

supported; M. agrestis and M. cabrerae are clustered together, although with low 

support, and show a higher divergence than that observed between M. subterraneus and 

M. arvalis/M. levis; there is deep divergence between lineages within M. agrestis, with 

the Portuguese lineage ‘P’ as basal. 

 

5. Discussion 

 Microtus evolutionary history 

The radiation of Microtus has long been studied with mitochondrial and nuclear 

single markers, including AFLPs, however the diversification order and some clustering 

patterns are inconclusive across studies, as observed in other rapid radiations (Fink et 

al., 2010; Galewski et al., 2006; Giarla and Esselstyn, 2015; Jaarola et al., 2004; 

Martínková and Moravec, 2012; Robovský et al., 2008). In this study we used both 

mitochondrial and nuclear data to study the rapid radiation within the genus Microtus in 

a genomic context, using partial mitogenomes and genotyping-by-sequencing (GBS) on 

seven species representing five Microtus subgenera and the main biogeographic ranges 

where this group occurs. One of the questions we address is the branching order of the 

different subgenera. Both types of genome (nuclear and mitochondrial) indicate that M. 

ochrogaster and M. oeconomus are basal to the remaining Microtus species analysed, 

which represent all subgenera currently found in Europe (Figure 1). This pattern has 

already been observed in previous studies, but with little statistical support (Jaarola et 

al., 2004; Martínková and Moravec, 2012). However, the genomic dataset used in our 

study was not able to discriminate accurately which of these species (or the subgenera 

they represent) is the most basal, maybe reflecting a true polytomy or something close 

to it, as expected with rapid radiations (Giarla and Esselstyn, 2015). Although GBS has 

shown to resolve the coffee interspecific phylogeny which is thought to have radiated in 

a similar time frame (c. 2 - 4 Mya) (Hamon et al., 2017; McCormack et al., 2013), it was 

not able to provide high support values for the deeper nodes of the Microtus phylogeny. 

This may imply the need of applying other high throughput sequencing methods that 

target specific genomic regions and may provide more power for understanding the 

deeper branches of phylogenies (i.e. Zeng et al., 2014). The European subgenera are 



110   FCUP  
The evolutionary history and conservation of an endemic and threatened Iberian rodent: the Cabrera vole (Microtus cabrerae) 

 

separated in two well-supported groups, Terricola + Microtus and Agricola + Iberomys, 

suggesting two independent events of diversification in the western Palearctic, possibly 

representing two colonisation waves to Europe. The close relation of Terricola and 

Microtus subgenera, supported both at the mitochondrial and nuclear level has been 

consistently observed across phylogenetic studies [e.g. Jaarola et al. (2004), Martínková 

& Moravec (2012)]. The difference in our study is that we observed a consistent 

clustering of M. agrestis and M. cabrerae for both types of genome, although with low 

support at the nuclear level. One particular question we were interested in resolving with 

this study was the phylogenetic positioning of the Cabrera vole. Previous studies have 

shown a dubious phylogenetic positioning of M. cabrerae among the Nearctic species, 

to which M. ochrogaster belongs (e.g. Jaarola et al. 2004; Fink et al. 2010; Martínková 

& Moravec 2012). However, in our study we were able to place M. (Iberomys) cabrerae 

within the European clade, as a sister group to M. (Agricola) agrestis, though with low 

support at the nuclear level (Figure 1). Our results suggest that previous studies may 

reflect the effect of long branch attraction (LBA), possibly due to the long time since the 

divergence of the Iberomys and Agricola subgenera from other Microtus subgenera and 

among themselves (Bergsten 2005). The bias in previous studies could have been the 

result of heterogeneity in molecular evolutionary rates due to high selective pressures 

(leading to very distinct evolutionary trajectories thereon), high levels of homoplasy and 

thus, LBA with very distinct lineages (Philippe et al. 2011; Ellegren 2014; Ho 2014). This 

lineage specific high molecular evolutionary rate could be associated with the distinct 

Cabrera vole morphology, life history, and karyotypic characteristics, possibly reflecting 

strong selective pressures due to its ecological specialisation and multiple bottlenecks 

since the Pleistocene (Ellegren 2014; Pita et al. 2014). Based on this distinctiveness, 

Cuenca-Bescós et al. (2014) have recently proposed to elevate the subgenus Iberomys 

to the rank of genus with the Cabrera vole as its sole representative, Iberomys cabrerae. 

In this work we found support for the subgenus Iberomys given that both mitochondrial 

and nuclear data show deep branching in its divergence from M. agrestis, even older 

than the Terricola – Microtus subgenera split. However, the elevation of Iberomys to the 

rank of genus is not supported by our data as it is internal to the phylogeny of the genus 

Microtus. Thus, considering Iberomys as a new genus would make the genus Microtus 

paraphyletic (Figure 1), and therefore inappropriate. 

 

 

Microtus biogeographic history 
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The subgenera analysed in this study are particularly important for the 

biogeographic history of Microtus. Previous studies using mitochondrial and nuclear 

markers (traditional nuclear loci and AFLPs) support the hypotheses of two to three 

independent expansions from central Asia to Europe, and two to North America, with 

associated bursts of speciation (Galewski et al. 2006; Fink et al. 2010; Martínková & 

Moravec 2012). Our study detected only one radiation in North America, represented by 

M. ochrogaster, and a later expansion by M. oeconomus, but the number of species 

analysed is limited. However, our sampling among the European species includes all five 

recognised subgenera (Agricola, Iberomys, Terricola, Microtus and Alexandromys), and 

our results appear to support the hypothesis that Europe was colonised in two waves of 

colonisation and diversification from the east: one resulting in the radiation of the 

ancestor of M. agrestis/M. cabrerae, with early divergence of these two species; and the 

other resulting in the expansion of the ancestor of the Microtus and Terricola subgenera, 

and their radiations; with a third later expansion by M. oeconomus (Figure 1). M. 

oeconomus is assumed to have expanded both east and west from its central Asian 

origin, resulting in three main intraspecific lineages with a branching consistent with a 

recent rapid expansion (Brunhoff et al. 2003; Haring et al. 2011). This indicates that this 

species possibly colonised Europe and North America at the same time, which has been 

estimated to have occurred around the time of the Zyryanka glaciation c. 70 - 55 kya, 

thereby being the most recent colonisation out of the three expansions to Europe and 

the last to North America (Lance & Cook 1998; Galbreath & Cook 2004). Tougard (2017) 

focussing on the Terricola subgenus suggested that there were various time periods of 

diversification of this group starting in its origin around 4 Mya in the Near East, with its 

divergence from the Microtus subgenus around 5 Mya. This contrasts with the finding 

that most extant Terricola species coalesce to c. 0.5 Mya and that the putative common 

ancestor of all Microtus species, Allophaiomys, is only found in the European fossil 

record from the Early Pleistocene onwards (2.4-2.0 Mya) (Chaline et al. 1999). The 

inconsistences may reflect the uncertainty associated to fossil calibrations (dos Reis 

2016). In any case, there was an initial divergence of the Terricola subgenus in the 

vicinity of the Near East (here represented by M. subterraneus), while M. arvalis and M. 

levis diverged from each other at a later time (Tougard 2017). This author further 

proposes that a combination of dispersal and vicariance, associated to a muroid like 

speciation rate, have resulted in the high number of species of this group, following a 

geographic radiation (Simões et al. 2016).  

Little information is available regarding the colonisation of Europe by the ancestors 

of M. agrestis and M. cabrerae, although the first representative of the Iberomys 
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subgenus appeared in the Iberian Peninsula around 0.78 Mya, thus predating the 

expected time of arrival of M. oeconomus to Europe, around 0.25 – 0.15 Mya (Brunhoff 

et al. 2003; Galbreath & Cook 2004; Laplana & Sevilla 2013; Cuenca-Bescós et al. 2014; 

Pita et al. 2014).  

 

Continued radiations in relation to geography and climate 

The use of SNP variation from restriction enzyme-based techniques such as RAD-

seq and GBS has previously proven to be useful for species delimitation (Pante et al. 

2015). In our study, all species were recovered with maximum support, but we found 

additional support for the subdivision of various vole lineages, specifically for the field 

vole (M. agrestis), the common vole (M. arvalis) and the root vole (M. oeconomus) 

(Figure 1). Although very recent, some of these lineages might already represent 

different species or are in the process of becoming so. Mitchell-Jones et al. (1999) 

proposed the subdivision of M. arvalis into two species, based on their karyotypes: an 

eastern ‘obscurus’ and a western ‘arvalis’ form, which is supported by our results, given 

the observed divergence levels (Dxy = 2.7%) (Figure 1). Previous mitochondrial studies 

found little genetic divergence between the two forms, although more recent studies 

support the existence of parapatric distributions and existence of a contact zone (Haynes 

et al. 2003b; Bulatova et al. 2010). The M. oeconomus samples used in this study belong 

to the ‘Northern European’ and ‘Central Asian’ clades and, as in previous studies, have 

a divergence of about 3.6%, which is similar to that observed between the M. agrestis 

‘Southern’ and ‘Portuguese’ lineages (Brunhoff et al. 2003; Paupério et al. 2012). 

Building on the initial proposal of Jaarola & Searle (2002, 2004) and later Paupério et al. 

(2012), our findings support the subdivision of M. agrestis into different species: M. 

rozianus (Portuguese form), M. levernedii (Southern form) and M. agrestis (Northern 

form). These three taxa are thought to have diverged within the time span of the last 

glacial period (up to 100 kya), which in our phylogenetic estimates is equivalent to the 

observed divergence between M. arvalis from M. levis for both marker types [Figure 1, 

Paupério et al. (2012)]. However, there is a cyto-nuclear discordance that it is confirmed 

with our genomic data. While the ‘Northern’ form is the first to diverge on the basis of the 

mitochondrial data, the nuclear data suggest that the ‘Portuguese’ form is the more 

basal. As seen in previous studies, this might reflect differential lineage sorting of the 

mitochondrial and nuclear DNA, associated to the different evolutionary rates (Paupério 

et al. 2012). The sample from the M. agrestis Southern lineage (SM0372, Table 1), 

showed two mitochondrial sequences spanning a large proportion of the targeted region. 

The discarded group of mitochondrial sequences likely represent nuclear copies (numts) 
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given the presence of indels and stop codons in the coding regions of the mitochondria, 

which has been observed frequently in other arvicolines including many Microtus, even 

though we only found this pattern in this particular sample (Triant & DeWoody 2008). 

The presence of numts has already been observed in samples from a specific population, 

in Eugui, Navarre, Spain (J Paupério, pers. comm.), and might be indicative of further 

substructure within the field vole lineages. 

 

6. Conclusions 

Our results show that the use of mitogenomes and SNPs from genotyping-by-

sequencing improve the accuracy and confidence of the phylogeny of rapid radiating 

groups, like Microtus. We found that M. oeconomus and M. ochrogaster are the most 

basal species, representing the Holarctic and Nearctic groups, respectively. Our data 

suggest at least two movements into North America, one radiation by the group of 

Nearctic species and the other an expansion by M. oeconomus. Europe appears to have 

been colonised by three groups, one consisting of M. (Agricola) agrestis and M. 

(Iberomys) cabrerae, another consisting of M. (Terricola) subterraneus, M. (Microtus) 

arvalis and M. (Microtus) levis, and a third one represented by M. (Alexandromys) 

oeconomus. Speciation has been pervasive throughout the history of the genus Microtus, 

and ongoing diversification can be found within many recognised species, possibly 

masking the true number of species present in this group. In this study we confirmed the 

cryptic divergence previously observed within M. agrestis, M. arvalis and M. oeconomus. 

At a different scale, we show here that phylogenomic studies are also very important to 

clarify specific questions that are associated with deeper divergences, such as the 

positioning of M. cabrerae. Finally, with this study we were able to confirm the 

phylogenetic position of M. cabrerae as a member of the Microtus genus and sister 

species to M. agrestis, although belonging to its own subgenus, Iberomys. 
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8. Supporting information 

 

Figure S1. Distribution maps of the Microtus species analysed in this study (colours) and location of the samples (white 

circles), excluding those from GenBank. Some samples were used for the mitochondrial (mt) or nuclear (nu) analyses 

only and are thus labelled accordingly. Copyright: Microtus agrestis, M. cabrerae and M. arvalis images were obtained 

from Palomo & Gisbert (2002), © Jordi Mateos, with permission; M. levis image was obtained from “Latvijas daba” online 

encyclopaedia, © Askolds Kļaviņš, Ltd. “Gandrs” (https://www.latvijasdaba.lv), with permission; M. subterraneus and M. 

oeconomus illustrations were adapted with permission from images obtained from www.ecosystema.ru; M. ochrogaster 

image is a painting from Kays and Wilson's Mammals of North America, Princeton University Press (2002), by © Todd 

Zalewski and used with permission. Species distributions were downloaded from the IUCN Red List of Threatened Species 

website (IUCN 2016). 

 

https://www.latvijasdaba.lv/
https://translate.googleusercontent.com/translate_c?depth=1&hl=en&rurl=translate.google.com&sl=ru&sp=nmt4&tl=en&u=http://www.ecosystema.ru/&usg=ALkJrhjL1el-7GNe6hj6T4LPodcQwwNm1Q
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Figure S2. Mitochondrial DNA structure (outer layer) coloured by protein coding genes (blue and light blue for transcription 

in the heavy and light strains, respectively), ribosomal RNA genes (yellow), and tRNA genes (black and orange thick lines 

for transcriptions in the heavy and light strains, respectively), all labelled by standardised abbreviations. Thin lines 

represent gene boundaries and oblique strokes represent areas of transcription overlap between neighbouring genes 

[based on Taylor & Turnbull (2005), with permission]. Sequencing effort is represented on the intermediate layer, where 

bars around the mitochondrion represent the average coverage for a given portion of the mitochondrial genome obtained 

with the samples analysed in this study (ranging from 0 to 100%). Grey represents non-target areas, while green and red 

represent target areas with the following primer pairs: Green forward – 5’-TCTACACCTTCGAATTTGCAATT-3’, Green 

reverse – 5’-TGTCARTAYCATGCTGCTGCTTC-3’ resulting in a fragment of approximately 4030 base pairs (bp); Red 

forward – 5’-TCTGCCTBCGACAAACAGAC-3’, Red reverse 5’-GAAGGCRAARAATCGTGTGAG-3’ resulting in a 

fragment of approximately 3685 bp. For the long range PCR reactions we used TaKaRa LA Taq® Hot Start (Takara, 

Kyoto, Japan) with the following thermocycling profile: 94ºC for 1 min, followed by 35 cycles of 98ºC for 10 s and 68ºC for 

7 min, and ended with an extension at 72ºC for 10 min. Inside circumferences represent the portion of the mitochondrial 

DNA covered for each individual analysed in this study coloured by species: Arvicola sapidus (grey), Microtus agrestis 

(black), M. cabrerae (purple), M. arvalis (red), M. levis (brown), M. subterraneus (blue), M. oeconomus (green) and M. 

ochrogaster (yellow).
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1. Abstract 

Glacial refugia protected and promoted biodiversity during the Pleistocene, not 

only at a broader scale, but also for many endemics that contracted and expanded their 

ranges within refugial areas. Understanding the evolutionary history of refugial endemics 

is especially important in the case of endangered species to recognise the origins of their 

genetic structure and thus produce better informed conservation practices. The Iberian 

Peninsula is an important European glacial refugium, rich in endemics of conservation 

concern, including small mammals, such as the Cabrera vole (Microtus cabrerae). This 

near-threatened rodent is characterized by an unusual suite of genetic, life history and 

ecological traits, being restricted to isolated geographic nuclei in fast-disappearing 

Mediterranean subhumid herbaceous habitats. To reconstruct the evolutionary history of 

the Cabrera vole, we studied sequence variation at mitochondrial, autosomal and sex-

linked loci, using invasive and non-invasive samples. Despite low overall mitochondrial 

and nuclear nucleotide diversities, we observed two main well-supported mitochondrial 

lineages, west and east. Phylogeographic modelling in the context of the Cabrera vole’s 

detailed fossil record supports a demographic scenario of isolation of two populations 

during the Last Glacial Maximum from a single focus in the southern part of the Iberian 

Peninsula. In addition, our data suggest subsequent divergence within the east, and 

secondary contact and introgression of the expanding western population, during the late 

Holocene. This work emphasizes that refugial endemics may have a phylogeographic 

history as rich as that of more widespread species, and conservation of such endemics 

includes the preservation of that genetic legacy. 
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2. Introduction 

Much of phylogeographic reconstruction has involved tracking the colonisation of 

widespread temperate species from ‘glacial refugia’ (Hewitt 2000). However, geographic 

and climatic heterogeneity within glacial refugia may often have subdivided populations 

into several discrete areas during the last glaciation, referred to as ‘refugia within refugia’ 

(Gómez & Lunt 2007; Abellán & Svenning 2014). The occurrence of subdivision within 

refugia is not only important for interpreting the genetic structure of widespread species 

that have expanded their ranges far beyond the refugia; it is also critical for species that 

are currently restricted to these refugial areas, that is refugial endemics (Bilton et al. 

1998; Kryštufek et al. 2007). Even considering the whole refugium, such as one of the 

classical Mediterranean refugia of Iberia, Italy and the Balkans (Hewitt 1999), for some 

refugial endemics there may be difficulty in maintaining a viable population under current 

conditions of habitat degradation/destruction and climate change. Therefore, refugial 

endemics must, by definition, be of conservation concern, and an appreciation of their 

genetic structure and origin is critical for effective conservation (Avise 2000; D’Amen et 

al. 2013; Malaney & Cook 2013; Moritz & Potter 2013). While such refugial endemics 

have been identified, and genetic structure determined in some cases, there has been 

little attempt to use the recent advances in demographic inference and phylogeographic 

modelling to infer their detailed colonisation histories. We do this for a small mammal 

endemic to the Iberian refugium: the Cabrera vole (Microtus cabrerae). Understanding 

the phylogeography of the Cabrera vole is important for the conservation of this species, 

and it can provide clues about the colonisation history of many other Iberian endemics. 

Finally, in a context of climate change and habitat loss, such analyses can help to identify 

the main obstacles to range change that refugial endemic species might face today and 

in the future. 

 The Cabrera vole is highly distinctive compared with other extant members of 

Microtus, including in the important taxonomic character of dental morphology, causing 

some to argue that it should be placed in a separate genus, Iberomys (Cuenca-Bescós 

et al. 2014). It has an unresolved phylogenetic position within Microtus based on 

mitochondrial and nuclear molecular markers (Jaarola et al. 2004; Fink et al. 2010). It 

exhibits giant sex chromosomes that are unique in mammals in having multiple copies 

of the SRY gene in both sexes (Jiménez et al. 1991; Bullejos et al. 1997). In terms of life 

history, the species is unusual for Microtus in having a K reproductive strategy 

associated with monogamy, small litters and large body size (Ventura et al. 1998; 

Fernández-Salvador et al. 2001). Ecologically, the Cabrera vole is narrowly specialized 
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to the thermo- and meso-mediterranean bioclimates, which are characterized by 

subhumid conditions (Rivas-Martínez 1981). Within these climatic ranges, the species is 

largely confined to very particular habitats, consisting primarily of meadows and 

perennial herb communities, often near small water courses and temporary ponds (Pita 

et al. 2006; Luque-Larena & López 2007). The Vulnerable conservation status of the 

Cabrera vole in Portugal and Spain, as well as the global Near Threatened status 

attributed by the IUCN Red List of Threatened Species (Palomo & Gisbert 2002; Cabral 

et al. 2005; Fernandes et al. 2008), is certainly a consequence of these narrow ecological 

requirements. Major threats to the species are related to habitat loss through agricultural 

intensification, including wetland drainage, overgrazing and poor management of 

possible dispersal corridors (Pita et al. 2014), and it may also be severely affected by 

climate change (Mestre et al. 2015).  

A recent study by Garrido-García et al. (2013) describes the Cabrera vole in four 

main geographic nuclei (Figure 1): Lusocarpetan (Lc), extending from the southwest to 

the northeast of Portugal and into Spain throughout the Central mountain system; 

Montiberic (Mb), along the Iberian mountain system extending to the province of Valencia 

and north of the Murcia region; Betic (Bt), comprising the eastern Betic mountain chain 

and the provinces of Albacete, Jaén, Granada and Murcia; and pre-Pyrenean (pP), 

where it is restricted to very few locations in the pre-Pyrenean massifs. This distribution 

suggests a trend of contraction of a previously widespread species into increasingly 

isolated populations, possibly driven by climatic factors (Mira et al. 2008; Mestre et al. 

2015). Likewise, the excellent fossil record of the Cabrera vole indicates that its past 

distribution has fluctuated throughout the climatic oscillations of the Late Pleistocene, 

with colonisation–extinction–recolonisation dynamics (Garrido-García & Soriguer-

Escofet 2012; Laplana & Sevilla 2013). In any case, it is postulated that climate induced 

aridification would have been enhanced by anthropogenic activities that gradually 

decreased forest area, impacting the Iberian Peninsula more intensely from the south to 

the north (Garrido-García et al. 2013; Laplana & Sevilla 2013). This led to a sharper 

contraction of the species distribution in the southernmost regions, where the species is 

now absent, and created more open areas in central Iberia, associated with extensive 

agro–silvo–pastoral systems, where the species is known to thrive (Pita et al. 2014).  

So far, only two studies have analysed genetic differentiation of the Cabrera vole 

in a geographic context: one using allozymes (Cabrera-Millet et al. 1982) and the other 

using RAPD-PCR (Alasaad et al. 2013). The first compared the two previously 

recognized morphological subspecies (Ellerman & Morrison-Scott 1951) and failed to 

find any genetic divergence between those, while the latter did find a possible subdivision 
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into two main geographic forms (one in the southern and the other in the northern half of 

Iberia, not coincident with the morphological subspecies), albeit with high population 

connectivity. These studies were based on small numbers of populations and on markers 

with low variability and did not characterize the entire range of the species. Thus, having 

in mind the study of the evolutionary history and the conservation of refugial endemics, 

we used mitochondrial and nuclear genetic markers to determine genetic structure of the 

Cabrera vole over the current species range (restricted to Iberia) and to infer the 

demographic processes leading to the observed pattern of variation. Furthermore, we 

combined all the available genetic data to distinguish between various phylogeographic 

scenarios inferred from both the genetic results and the fossil record. Our study 

represents a detailed analysis of the colonisation history of an endemic species in one 

of the main glacial refugial areas in Europe and emphasizes that refugial endemics with 

limited distributions may have as complex phylogeographic history as more widespread 

species. 

 

3. Methods 

Sample collection and DNA extraction 

Being a species of conservation concern, we combined non-invasive sampling with 

minimal invasive sampling (ear biopsy) from live-caught (and released) Cabrera voles. 

The non-invasive samples included bones from museum specimens (six samples, 

collected 1976 - 1984), and from barn owl (Tyto alba) pellets (two samples collected in 

1905 and 74 samples collected 1980 - 2012), which substantially increased the sampling 

coverage in many parts of the species distribution (Figure 1). Altogether, we analysed a 

set of 202 tissue samples and 82 bone samples, totalling 284 voles (Figure 1). DNA from 

tissue samples was extracted using the EasySpin Genomic DNA Minipreps Tissue Kit 

(Citomed, Lisbon, Portugal) following the manufacturer’s instructions. Bone samples 

included mandibles and femurs, and DNA was extracted following the protocol described 

in Barbosa et al. (2013), in a laboratory dedicated to the extraction of samples with low 

DNA quality and quantity to avoid contamination by good quality DNA. Samples within 

<10 km of each other were combined into a common geographic coordinate using the 

Integrate tool in ArcGIS v10.0 (http://www.esri.com/arcgis) - resulting in 35 localities [Live 

Trapping and Non-invasive (LTNI) localities, Table S1, Supporting information], 22 of 

which comprised tissue samples [Live Trapping (LT) localities, Table S1, Supporting 

information]. By clustering individuals within 10 km clusters, we limited the impact of site-

by-site variation for spatial analyses and accounted for uncertainty in the location of the 
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vole samples represented by the bones in the barn owl pellets, given that the radius of 

an owl’s hunting territory may be up to 5 km (Taylor 1994). 

 
Figure 1. Sampling localities on a map of the Iberian Peninsula with the current distribution of Microtus cabrerae in grey 

10 x 10 UMT squares (Mira et al. 2008; Fernandez-Salvador et al. 2002; Garrido-García et al. 2013; this study). The lines 

enclosing different parts of the species distribution specify the four geographic nuclei: Lusocarpetan (Lc - full line), pre-

Pyrenean (pP - wide dashed line), Montiberic (Mb - narrow dashed line) and Betic (Bt - dotted line). Black and white circles 

indicate tissue and bone samples, respectively. Numbers specify locations where tissue samples were collected. 

 

DNA amplification and sequencing 

We analysed one mitochondrial gene for cytochrome b (cyt-b) in all 284 samples. 

For tissue samples we used the primers developed by Jaarola & Searle (2002) (Appendix 

S1, Supporting information). For bone samples, we first confirmed the species ID by 

amplifying a small fragment of the cyt-b gene (Barbosa et al. 2013), and the complete 

cyt-b fragment was obtained using four pairs of primers that produced overlapping 

fragments (Appendix S1, Supporting information). Fragments of 10 nuclear loci were 

amplified in a subset of 79 tissue samples from 22 populations representative of the 

species range [Figure 1 and Live Trapping (LT) localities, Table S1, Supporting 

information]. Due to DNA degradation, non-invasive samples could not be used for 

nuclear analysis, thus reducing substantially the number of available samples per 
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population (Barbosa et al. 2013). For each population, we selected available samples 

(between 1 and 9 voles), maximising the geographic distribution of the sampled 

individuals within each locality, while minimising kinship associated bias. These samples 

were used to amplify the following autosomal loci: exon 11 of the BRCA1 gene, exon 1 

of the IRBP gene and exon 1 of the RAG1 gene; intron 4 of the COPS7A gene, intron 5 

of the OSTA gene, intron 3 of the PNPO gene, and intron 8 of the SLC38A7 gene. 

Additionally, we amplified three sex chromosome loci: introns 5 and 7 of the DBX gene 

from the X-chromosome and intron 7 from the SMCY gene from the Y-chromosome, also 

used for gender assignment. Further details of markers used, samples and laboratory 

procedures are provided in Appendix S1 and Table S1 (Supporting information).  

 

Diversity analysis and summary statistics  

We used DnaSP v5 (Librado & Rozas 2009) to calculate the number of sequences 

(Nseq), number of segregating sites (Nseg), number of haplotypes (Nhap), haplotype 

diversity (h), nucleotide diversity (π) and Watterson´s Theta (θW, computed from the 

number of segregating sites). Nuclear sequences were phased using the software 

PHASE as implemented in DnaSP, with 1000 burn-in steps and 1000 iterations. Indels 

were manually phased given their rarity and the existence of homozygous individuals to 

help infer the indel phase. We further used MEGA v6 (Tamura et al. 2013) to calculate 

divergence between lineages (Dxy) using p-distances (with 1000 bootstrap replicates to 

calculate standard deviation). Significant differences between π values of different 

groups were assessed variously with different marker types: for the cyt-b gene we 

compared πmt between mitochondrial lineages and the four geographic nuclei; for the 

nuclear loci, we calculated the average nucleotide diversity (�̅�𝑖) for each of the four 

geographic nuclei (i) as follows:  

�̅�𝑖 =
1

𝑛
 ×  ∑ (

𝜋𝑖𝑗

𝑚𝑎𝑥𝑖(𝜋𝑖𝑗)
)

𝑛

𝑗=1

 

where j represents each of the nine nuclear loci (seven autosomal and two sex-

linked loci, excluding SMCY7), πij represents the πnuc observed in the ith geographic 

nucleus for the jth locus, and maxi(πij) represents the maximum πnuc among all i for the jth 

locus. We finally normalized between πmt and all average πnuc to have proportions 

between 0 and 1. The overall tests comparing all groups were performed using one-way 

ANOVA and the Tukey HSD post-hoc test (Abdi & Williams 2010).  

To provide a better visualization of the geographic distribution of mitochondrial 

variation, we depicted the haplotypes and πmt per locality on maps of the Iberian 
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Peninsula using data from all 284 voles sampled [analysis adapted from Igea et al. 

(2013)]. To evaluate geographic nucleus specific genetic variation, we grouped samples 

in 100 km groups (minimum distance between geographic nuclei) and for each recorded 

the number of individuals (Nind), segregating sites (Nseg) and haplotypes (Nhap), and 

estimated hmt and πmt (and respective error, calculated as the percentage of standard 

deviation) (Table S3, Supporting information). For localities comprising more than one 

mitochondrial lineage within the respective buffer zone, the calculation of πmt was 

performed in two alternative ways: 1) the total πmt considering all sequences in that 

respective buffer zone; and 2) the total πmt per lineage in the respective buffer zone. We 

finally interpolated πmt values over the distribution of the Cabrera vole using an Inverse 

Distance Weighting with the Interpolation tool implemented in the software QGIS v 2.4.0 

(QGIS Development Team 2008). 

 

Gene genealogy analyses 

Gene genealogy networks for all loci were computed with a median-joining 

algorithm implemented in the software Network v4.6.0.0 (Bandelt et al. 1999; 

http://www.fluxus-engineering.com). For the cyt-b gene, we used the entire data set (284 

samples) to estimate the genealogy using maximum likelihood (ML), as implemented in 

MEGA v6, and from a Bayesian posterior distribution of trees that was generated using 

a coalescent model in BEAST v2.3.2 (Bouckaert et al. 2014). For the latter analysis, we 

made use of the CIPRES Science Gateway online platform (Miller et al. 2010). The best-

fit model of sequence evolution for the ML analysis was the Tamura–Nei model (Tamura 

& Nei 1993) with a proportion of invariable sites (TrN+I) based on the corrected Akaike 

and Bayesian information criteria implemented in the software jModelTest 2.0 (Darriba 

et al. 2012). For the Bayesian analysis, we used Path and Stepping Stone Sampling to 

estimate marginal likelihoods of each model that were then used to determine the Bayes 

factor for preference of one model over the other (Baele & Lemey 2013). Bayes factors 

for comparisons between models were interpreted according to the widely-used criteria 

of Kass & Raftery (1995). The selected site substitution model, molecular clock model 

and tree prior were the Hasegawa-Kishino-Yano model [HKY; Hasegawa et al. (1985)], 

uncorrelated lognormal relaxed clock (Drummond et al. 2006) and the coalescent 

Bayesian skyline (Drummond et al. 2005), respectively. The genealogies were calibrated 

using a substitution rate estimated for Microtus arvalis [3.2x10-7 substitutions/site/year; 

Martínková et al. (2013)], which was obtained using a combined analysis of modern and 

ancient DNA. This substitution rate is of similar magnitude to cytochrome b substitution 
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rates (3.887x10-7 and 4.572x10-7 substitutions/site/year) estimated for M. agrestis using 

land-bridge calibration (Herman & Searle 2011; Herman et al. 2014) and has previously 

been used for other Microtus species over the timescale applicable here (Beysard & 

Heckel 2014; Hope et al. 2014). We performed four replicate runs of 20 million 

generations for each model, sampling trees and parameter estimators every 2000 

generations, with the exception of the Bayesian skyline tree prior model, where we 

included four replicate runs of 50 million generations. In each case, 10% burn-in was 

removed using LogCombiner v2.3.0, part of the BEAST package. Tracer v1.5 (Rambaut 

& Drummond 2007) was used to check for convergence and sufficient sampling (effective 

size above 200 for each parameter) for the combined runs. The maximum clade 

credibility tree was obtained from the posterior sample of trees using TreeAnnotator 

v2.3.1 and visualized with FigTree v1.3.1 (Rambaut 2009). We used Tracer v1.5 to 

obtain Bayesian skyline plots (BSPs) of effective female population size over time, for 

the complete cyt-b gene and each main lineage.   

For the nuclear loci, although different genes might have different evolutionary 

histories, here we wished to test for a general common pattern. Mean pairwise genetic 

divergences were calculated between all 79 individuals selected and respective haploid 

copies in MEGA v6, using p-distances for distance calculation and using 1000 bootstraps 

to determine standard deviation. The SMCY7 locus was excluded from these analyses 

given that it did not show nucleotide variation beyond the embedded microsatellite and 

an adjacent indel. The pairwise distance matrices were used to calculate multilocus 

interindividual distances using the software POFAD v1.03 (Joly & Bruneau 2006). The 

distances were averaged and rescaled so that equal weights were given to each locus. 

The standardized multilocus distances were used to construct a distance network using 

the NeighborNet algorithm (Bryant & Moulton 2004) in SplitsTree v4.11.3 (Huson & 

Bryant 2006). Given that the loci used were selected randomly with no bias towards 

particular parts of the genome, we assume that there is recombination between all of 

them. Additionally, we tested for recombination within each locus using the software RDP 

v3.44 (Martin & Rybicki 2000) and we found no evidence for such recombination. 

 

Spatial structure analyses 

For comparative purposes, in these analyses, we only used the individuals with 

information for both mitochondrial and nuclear loci (79 individuals represented in the LT 

localities, Table S1, Supporting information). We used the software BAPS v6 (Corander 

et al. 2007) to test for spatial structure of the mitochondrial and nuclear data using the 
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Spatial clustering of individuals option. With the nuclear data, we used the Clustering 

with linked loci option to generate the preprocessed data. For both analyses, we 

systematically tested for the best number of populations (K) from K = 20 downwards, as 

suggested by the software developers. The Voronoi tessellation pictures with the optimal 

K were plotted on the map of the study area for each data set, and used as reference to 

assign the underlying UTM squares to the respective population. To determine the 

amount of genetic variation explained by population structure, we performed an analysis 

of molecular variance (AMOVA) and calculated the average values of population 

differentiation (FST) in Arlequin v3.5 (Excoffier & Lischer 2010) separating the loci in three 

data sets corresponding to maternally (cyt-b), paternally (SMCY7) and biparentally 

(remaining nine nuclear loci concatenated) inherited markers. 

 

Demographic analyses 

To investigate the possible mito-nuclear discordance (see Results – ‘Spatial 

structure analysis’), we considered whether mitochondrial and nuclear genetic variation 

could be explained by sex-biased dispersal/isolation-by-distance (IBD), demographic 

expansions/contractions, and/or selective pressures over one or more loci. For 

comparative purposes, we used only the 79 individuals with information for both 

mitochondrial and nuclear loci (LT localities, Table S1, Supporting information). 

To test for sex-biased dispersal and IBD, we performed a distance-based 

redundancy analyses (dbRDA) (Legendre & Anderson 1999) with the capscale function 

implemented in the R-package VEGAN (Oksanen et al. 2013), following Pavlova et al. 

(2013). As observations we used mitochondrial and mean pairwise nuclear p-distance 

genetic distance matrices. As predictors we used two geographic variables – latitude and 

longitude, analysed together for ease of interpretation (LatLong), and the first significant 

(p < 0.05) principal coordinate of the neighbourhood matrix (PCNM) axis, calculated as 

detailed in Pavlova et al. (2013). The geographic pairwise distance matrix used in the 

above analyses was calculated using the software Geographic Distance Matrix 

Generator v1.2.3 (Ersts 2015). DbRDAs were then used to test the influence of the 

predictors (geographic location and distance) in explaining mitochondrial/nuclear genetic 

distances between samples alone and when controlling for one another. For this, we 

performed two analyses: fitting each predictor independently to the observations 

(marginal tests); and fitting each variable to the observations after excluding the weight 

of the other variable (conditional tests). Statistical significance was assessed using 999 
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permutations, and then, each predictor was accepted as valid if explaining a significant 

amount of variance in both the marginal and conditional tests.  

To evaluate a scenario of population expansion/decline and/or selection explaining 

the mito-nuclear discordance, we used DnaSP to test for departures from a neutral 

demographic model. For this, we calculated three neutrality test statistics, Tajima's 

(1989) D, Fu's (1997) FS and Ramos-Onsins & Rozas's (2002) R2, and evaluated their 

significance using 10 000 coalescent simulations of the genealogy. These tests were 

employed over each gene and respective groups (mitochondrial lineages for the cyt-b 

gene, and the geographic nuclei for all loci). For each of these groups, we also tested for 

selection by calculation of deviations from neutral expectations of the dN/dS ratio, with 

the Z-test of selection implemented in MEGA v6. In a first round, we tested for deviations 

to neutral expectations (dN ≠ dS). If the ratio was significantly smaller or greater than 

one, we then tested for either positive (dN > dS) or purifying (dN < dS) selection, 

respectively. 

 

Modelling alternative phylogeographic scenarios 

The development of the phylogeographic scenarios was informed by the fossil 

record and aimed to provide realistic alternative explanations for the genetic results 

obtained. We modelled the probability of each specified scenario using Approximate 

Bayesian Computation (ABC), as implemented in DIYABC v.2.0.4 (Cornuet et al. 2014). 

We combined all information from the 11 loci (mitochondrial and nuclear), amplified for 

the 79 individuals of the LT localities (Table S1, Supporting information), and applying 

the parameters described in Table S4 (Supporting information). The samples were 

grouped into the four geographic nuclei Lc: 37 individuals, Mb: 14, Bt: 20, pP: 8. We 

employed a two-phase study, where in phase I we selected five different general 

scenarios, representing a comprehensive range of alternative phylogeographic 

hypotheses, for each of which we performed an independent DIYABC analysis keeping 

the basic topological structure and permuting the four geographic nuclei at the tips, to 

determine the best supported tree for each topology: SC1, a model of a complete 

polytomy of all four populations arising from a common ancestral population; SC2, a 

model of divergence of the most distinct population and then a polytomy of the remaining 

three; SC3, simultaneous divergence of two lineages in populations pairs; SC4, splitting 

of one population every time point from a continuous main population; and SC5, 

divergence of two main lineages with recent secondary contact of two of the four 

diverged populations. The tree with the highest posterior probability for each general 
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scenario was selected for phase II (as reported here) where we compared the best trees 

for each general scenario against each other. 

Further details of the model specifications and DIYABC run parameters are 

presented in Table S4 (details in footnotes) and Figure S1 (Supporting information). 

 

4. Results  

Multilocus diversity analysis 

A total of 44 cyt-b haplotypes were identified, which grouped into two well-

supported mitochondrial lineages, here designated west and east, with the exception of 

a distinct haplotype (H38) that was not closely associated with either (Figures 2 and 3). 

From the 284 Cabrera voles analysed, 228 belong to the west lineage (orange), 

comprising 34 different haplotypes; the east lineage (blue) included 51 voles, 

representing nine haplotypes; and H38 (purple) was found in five voles (Table S2, 

Supporting information, and Figure 3). The median tMRCA (time to most recent common 

ancestor; and respective 95% highest posterior density) obtained from the Bayesian 

coalescent analysis of the complete data set was estimated to be 23.7 kya (10.5–46.7), 

while for the west and east lineages, it was 10.7 (5.1–18.5) and 12.2 (5.0–21.5) kya, 

respectively (Figure 2). The west lineage is the most widespread, found in three 

geographic nuclei (Lc, Mb and Bt), with most haplotypes being geographically restricted 

(Figure 4). The east lineage is also composed of geographically restricted haplotypes 

that have similar levels of differentiation between localities as the west lineage 

haplotypes, however having major gaps in distribution between nuclei (Figure 4). H38 is 

restricted to one locality in the southernmost sampling site of the nucleus Mb. The 

haplotype that has by far the widest geographic range is H1, which is central within the 

west lineage median-joining network and found in most geographic nuclei, with exception 

of pP (Figures 3 and 4).  

The overall mean cyt-b gene haplotype (hmt) and nucleotide (πmt) diversities, and 

respective standard deviations, are 0.896±0.014 and 0.500±0.031%, respectively. There 

is a significantly lower πmt for the west (0.218±0.014%) than for the east (0.563±0.022%) 

lineage (p < 0.05; Table S2, Supporting information). The average nucleotide divergence 

(Dxy) between the two main mitochondrial lineages is 1.078±0.024%. Overall, πmt is 

highest in the southeast of the Iberian Peninsula (Figure S2A, Supporting information).  
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Figure 2. Cyt-b MCC tree from coalescent genealogical modelling. The two cyt-b lineages are highlighted by their 

respective colour: west (orange) and east (blue). The H38 haplotype is coloured in purple. Open and closed circles 

represent nodes with posterior probabilities > 0.90 and > 0.95, respectively, and for the two lineages there is information 

for the Bayesian posterior probability above, and maximum likelihood bootstrap below the nodes; grey bars represent 

node height 95% HPD for the root and the points of coalescence for the sequences in the west and east lineages. The 

bar below the tree gives timescale using the common vole (Microtus arvalis) substitution rate (µ = 3.2 x 10-7 

substitutions/site/year) according to Martínková et al. (2013); white represents glacial periods and black, warm periods; 

timings given of Last Glacial Maximum (LGM) and Younger Dryas (YD) in Iberia (López-García et al. 2012; Bañuls-

Cardona et al. 2014); kya – kiloyears ago. 

 

 

 

Figure 3. Median joining cyt-b haplotype 

network. Numbered circles represent 

haplotypes belonging to one of the two 

major cyt-b lineages: west (orange) and 

east (blue), and the H38 haplotype 

(purple), with individual patterning for 

each haplotype. The circle area is 

proportional to the number of sequences 

of a given haplotype and the dashed outer 

line indicates the proportion of non-

invasive samples. Haplotypes 

represented by a single sequence are 

shown as closed circles with an outer line 

colour according to the respective 

lineage, inferred haplotypes are 

represented by open circles; connecting 

lines between circles correspond to one 

mutational step, with extra mutations 

shown by perpendicular strikes. 
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Figure 4. Cyt-b haplotype frequencies on map of the Iberian Peninsula with the current distribution of Microtus cabrerae 

in grey (Mira et al. 2008; Fernandez-Salvador et al. 2002; Garrido-García et al. 2013; this study). Samples within 10 km 

are grouped into pies; the size of the circles is proportional by area (min. 1 sample, max. 25 samples); colours represent 

the two mitochondrial lineages: west (orange) and east (blue), and the H38 haplotype (purple); following Figure 2 each 

pattern represents a particular haplotype and black indicates singleton haplotypes which are distinguished by their 

identification numbers.  

 

However, considering the variation within each lineage, the east has the highest 

πmt in Bt and pP (Figure S2B, Supporting information), while the west has the highest πmt 

in the north of Lc (Figure S2C, Supporting information).Considering the geographic 

nuclei independently, we found that Lc has exclusively west lineage haplotypes, having 

significantly lower πmt when compared to the remaining three geographic nuclei 

(0.216±0.015%) (Figures 4 and S2A, and Table S2, Supporting information). pP has 

exclusively east haplotypes, and it is the eastern geographic nucleus with the lowest πmt 

(0.355±0.065%), however significantly (p < 0.05) higher than Lc (purely west). Mb and 

Bt include haplotypes from both lineages and as a consequence have the highest πmt 

(Mb: 0.555±0.042%; Bt: 0.582±0.040%). Nucleotide diversities are all significantly 

different among the four geographic nuclei (p < 0.05), with the highest πmt recorded in 

Bt, followed by Mb, pP and finally Lc. 
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For the 10 nuclear loci, we screened 79 voles: 53 and 24 assigned to the west and 

east mitochondrial lineages, respectively, and 2 with the H38 mitochondrial haplotype 

(Table S2, Supporting information). Within the 39 males, the SMCY7 variation was 

mostly limited to the embedded microsatellite (TTTTCn repeat motif). Only one male 

(locality 17, Figure 1) showed variation at the sequence level for this locus – a 5 bp 

deletion adjacent to the 5’ end of the microsatellite. Considering only the microsatellite, 

we obtained a total of 11 alleles, ranging from 150 to 200 bp. Eight of the alleles were 

present in Lc, four in Mb, three in Bt and two in pP (3, 0, 1 and 2 were private, 

respectively) (Figure S3, Supporting information). Regarding the remaining nine loci, 

PNPO showed the highest h (0.916±0.011%) and π (0.414±0.017%), while DBX7 had 

the lowest h (0.290±0.054) and BRCA1 the lowest π (0.053±0.010%) (Table S2, 

Supporting information). Some individual nuclear loci networks showed clearer 

geographic partitioning than others, but specific haplotypes were never limited to 

particular geographic areas (Figure S3, Supporting Information). pP had a significantly 

lower (p < 0.05) proportional πnuc (0.303±0.069) than the other geographic nuclei, which 

did not differ significantly from each other (Lc: 0.685±0.097; Mb: 0.692±0.099; Bt: 

0.735±0.135). 

 

Spatial structure analysis 

The BAPS test for possible geographic division of mitochondrial and nuclear 

genetic diversity showed the best supported number of clusters to be K = 3 and K = 2 (p 

= 1), respectively (Figure S4A, S4B, Supporting information). The two nuclear clusters 

show no concordance to the distribution observed with the cyt-b lineages, for which the 

software additionally identified a third population (pP; Figure S4A, Supporting 

information).  

The AMOVA results show contrasting patterns for the different types of markers 

(mitochondrial and nuclear), considering the allocation of genetic diversity within and 

among the four geographic nuclei (Figure S5, Supporting information). For the cyt-b 

gene, 42.8% of the genetic variation is attributed to differences among nuclei (Figure 

S5A, Supporting information). For SMCY7 and autosomal data, the equivalent values 

are 10.1%and 21.3%, respectively (Figure S5B and S5C, Supporting information). 

Concordantly, average FST between samples was the lowest for SMCY7 (0.27, p < 0.05), 

intermediate for the remaining nuclear loci (0.47, p < 0.05), and the highest for cyt-b 

(0.68, p < 0.05). The concatenated autosomal NeighborNet showed shallow 
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substructure, with only some degree of geographic isolation for pP (Figure S5C, 

Supporting information). 

 

Demographic analyses 

We found a significant proportion of mitochondrial genetic variance explained by 

both geographic location (LatLong, 37.1%) and geographic distance (PCNM, 12.6%), 

which increased after controlling for the other variable (40.3% and 15.8%, respectively) 

(Table 1). Regarding the nuclear loci, we also found a significant proportion of variance 

explained by both predictors (17.9% for LatLong and 9.6% for PCNM), but only LatLong 

was significant after controlling for the other variable (10.0% for LatLong and 1.7% for 

PCNM). 

A hypothesis of genetic neutrality was rejected for cyt-b considering either the 

whole data set, or the west mitochondrial lineage and Lc geographic nucleus separately, 

based on D, R2 and Fs tests, and a significantly higher proportion of nonsynonymous to 

synonymous substitutions results for the Z-tests for all groups (Table S2, Supporting 

information). Given that neutrality test results may indicate population expansion, the 

BSP is relevant. The BSP suggests stable population sizes over time both for the 

complete data and the west and east lineages separately, but there are some signs of 

recent slight population growth in the west lineage (from about 5000 years ago) and 

possible decline in the east lineage (from about 2000 years ago) (Figure S6, Supporting 

information). For the nuclear loci, the various tests indicate deviations from neutrality (p 

< 0.05) for six of the nine nuclear genes (BRCA1, IRBP, RAG1, OSTA, PNPO and DBX7) 

including a higher proportion of nonsynonymous to synonymous substitutions for RAG1 

(Table S2, Supporting information). Considering each geographic nucleus separately, 

we found deviations from neutral expectations at 6 (Lc), 2 (Mb), 2 (Bt) and 0 (pP) of the 

9 loci (Table S2, Supporting information).  

 

Phylogeographic scenarios  

Given that the tMRCA for cyt-b dates on average to the LGM (Figure 2), and the 

highest number of fossils from this time derive from southern Iberia, all scenarios were 

hypothesized to begin with a single southern population from which different groups 

expanded or diverged after expansion. After testing all possible combinations within each 

of five plausible phylogeographic scenarios in phase I and selecting the best supported 

version (results not shown), these selected versions of the five scenarios were 
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themselves compared in phase II (Figure S1, Supporting information, and the “Methods” 

section for further details).  

  

 
Figure 5. Phylogeographic scenario with the highest posterior probability in the DIYABC analysis (see also text, Table S4 

and Figure S1, Supporting information). On the left there is a graphical representation of the phylogenetic tree with a time 

scale in kya (kiloyears ago) for the estimated time points of each split. On the right there is a schematic representation of 

the supported population splits and the expected cyt-b characteristics (colours) of the voles in each geographic area at 

each given time point; ancestral lineage (grey), west lineage (orange), east lineage (blue) and both lineages (green); 

arrows indicate population expansion into new areas: Lusocarpetan (Lc), pre-Pyrenean (pP), Montiberic (Mb) and Betic 

(Bt). 

 

In phase II, the scenario representing allopatric formation of the east and west 

lineages and secondary contact (SC5) was far better supported (73.6%) than the SC1 

(14.7%), SC2 (6.1%), SC3 (1.7%) and SC4 (3.9%) scenarios (parameter values in Table 

S4, Supporting information). We performed bias and precision and model checking 

estimation within the DIYABC package for the best scenario and obtained congruence 

between observed and simulated parameters, respectively (Tables S4 and S5, 

Supporting information, respectively). We generated new pseudo-data sets sampling 

from SC5 to test for type I error, and sampling from SC1 (second best supported scenario) 

for type II error, comparing one with the other on both analyses using a logistic approach. 

Error results were 14.4% and 7.8%, respectively, indicating that the wrong model would 

be chosen under 15% of the time. The parameter estimates for SC5 are thus very robust, 

with low bias values, but they have broad confidence intervals and match to a large 

extent that of the priors (Table S4, Supporting information). The separation of the west 

and east groups is estimated at 22.9 kya (mean), at time point t3. A subsequent 
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separation of pP from the rest of the east group (t2) is estimated at c. 17 kya (Figure 5 

and Table S4, Supporting information). The secondary contact between the west and 

east lineages (t1) is estimated to be very recent at c. 3 kya.  

 

5. Discussion 

Spatial genetic structure 

The Cabrera vole is subdivided into two well-supported mitochondrial lineages, 

here designated west and east, which partially overlap with the genetic units defined in 

Alasaad et al. (2013) based on RAPD-PCR. The mitochondrial west lineage has a central 

haplotype (H1) around which appears to have been a star-like radiation (Figure 3). This 

contrasts with the east lineage, which shows a much more dispersed structure with 

significantly higher nucleotide diversity (0.563% vs. 0.218%), but fewer haplotypes (9 vs. 

34) despite a proportional sampling effort. These results suggest that the west lineage 

may have undergone a more recent radiation than the east lineage (see Bamshad & 

Wooding 2003; Brace et al. 2012). We also identified one ‘intermediate’ haplotype with 

uncertain phylogenetic positioning (H38) in animals captured in a peripheral and likely 

declining population (Figures 2–4). 

Most haplotypes have a restricted geographic distribution (Figure 4), especially in 

the east of Iberia, where a more complex geology might have promoted greater isolation 

of populations (Vera 2004). The west lineage central haplotype, H1, however, has a 

widespread distribution, being found from southwest Portugal, through central to 

southeast Spain, and is thus present in Lc, Mb and Bt, but not in pP (Figure 4). In a 

scenario of secondary contact between the two lineages, the western more 

homogeneous landscape could have facilitated the rapid expansion of this haplotype into 

the east, leading to the high mitochondrial nucleotide diversity in the eastern nuclei of Bt 

and Mb. Concordantly, if we consider diversity on a lineage-by-lineage basis, the regions 

with the highest πmt differ from the overall picture: for the west lineage it becomes the 

northern portion of Lc; and for the east lineage, it is especially pP and, to some extent, 

Bt (Figure S2, Supporting information). These various perspectives need to be 

considered in relation to possible phylogeographic scenarios (see next section). 

Because mitochondrial DNA is maternally inherited, it is also important to 

determine how nuclear genetic variation is structured for a complete picture of the 

population history (Edwards & Bensch 2009). Among the 10 nuclear loci analysed, none 

showed a clear phylogeographic pattern coinciding with the described geographic nuclei 

or the identified mitochondrial lineages. The highest total average nuclear nucleotide 
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diversities (�̅�𝑖) were observed in Bt, Mb and Lc, while pP displayed a significantly lower 

value and was also the most divergent geographic nucleus for all categories of markers 

(Figures S3 and S5C, Supporting information), possibly reflecting its small effective 

population size and geographic isolation. This nucleus is further identified as distinctive 

in the BAPS mitochondrial analysis, but with the nuclear data pP is part of a very shallow 

west–east trend resulting from low genetic divergence (Figure S4, Supporting 

information).  

There is much that differs between the nuclear and mitochondrial DNA results. The 

AMOVA and dbRDA results for cyt-b show that mitochondrial genetic diversity is mostly 

explained by differences among geographic nuclei, with a pattern of IBD; while at the 

nuclear level, more genetic variation is found within than among populations (Table 1 

and Figure S5, Supporting information). These results are consistent with sexbiased 

dispersal (Toews & Brelsford 2012). Male-biased dispersal is well documented in 

mammals and, together with female philopatry, can lead to patterns similar to those 

observed with our data, as previously reported for another monogamous vole, Microtus 

townsendii (Lambin 1994; Lawson Handley & Perrin 2007). However, with our data alone 

we cannot rule out that the greater genetic structure for mitochondrial DNA might merely 

reflect a higher mitochondrial mutation rate and thus faster lineage sorting (Avise 2000). 

Another difference between nuclear and mitochondrial data is that the secondary contact 

of both cyt-b lineages occurs within the eastern part of the species’ range, while the 

nuclear variation is difficult to delimit, spanning from west to east Figure S4, Supporting 

information). This could reflect introgression of cyt-b haplotype H1 and its derivatives, 

fitting with the three fold increase in female Nef in Figure S6B (Supporting information). 

The Lc nucleus is where the mitochondrial haplotype H1 presumably originated and 

where it and its derivatives predominate. Lc has a similar proportion of nuc to Mb and 

Bt, but was significantly less variable in mitochondrial diversity than any other group, 

including pP, which is the least variable group at the nuclear level (Table S2 and Figure 

S7, Supporting information). This discrepancy between Lc and the other geographic 

nuclei presumably reflects expansion of haplotype H1 and its derivatives, which likely 

indicates a demographic event, given that in Lc there is departure from neutrality at both 

mitochondrial and nuclear loci. Also the Z-tests of selection do not indicate a specific 

response for Lc but rather indicate that mitochondrial variation is under purifying 

selection in all populations (Table S2, Supporting information).  
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Glacial refugia and post-glacial expansion  

The Cabrera vole fossil record shows a continuous presence in Iberia as its 

divergence from Microtus (Iberomys) brecciensis during the Middle-Late Pleistocene (c. 

130 kya, kiloyears ago), and in France intermittently until the end of the Last Glacial 

Maximum (LGM, c. 24 – 20 kya), from when it has been continuously present until the 

Middle Ages (c. 1.5 – 0.5 kya) (Garrido-García & Soriguer-Escofet 2012; Laplana & 

Sevilla 2013). Using the mitochondrial data alone, with the mitochondrial mutation rate 

reported by Martínková et al. (2013), we estimated the tMRCA for the Cabrera vole to 

date back to c. 24 kya, around the LGM (see also Bañuls-Cardona et al. 2014). Given 

the confidence interval of the tMRCA, and uncertainties associated with using a mutation 

rate from another species (albeit from the same genus), the coalescence point of all 

current cyt-b sequences may have occurred at a later time. Before the LGM, the fossil 

record suggests that the Cabrera vole was widely distributed in the Iberian Peninsula 

and southern France (Garrido-García & Soriguer-Escofet 2012; Laplana & Sevilla 2013; 

Bañuls-Cardona et al. 2014). Hence, we propose that, during the LGM, harsh climatic 

conditions and perhaps competition with other species resulted in the extinction of most 

Cabrera vole populations. The LGM was associated to a steppe-like environment in 

central Iberia, judging from the replacement of the Cabrera vole by cold tolerant species 

like Microtus oeconomus in the well-studied archaeological assemblages of that period. 

At that time, Cabrera vole fossils are only found in the southern half of the Iberian 

Peninsula and the warmer areas of the Mediterranean coast, possibly following the first 

episode of range contraction for the species (Pita et al. 2014). Accordingly, all the 

scenarios tested in our phylogeographic modelling assume an expansion from a single 

southern Iberian focus during or after the LGM, including the favoured scenario, which 

shows expansion of two main groups presumably to the northwest and northeast c. 22.9 

kya (SC5 – t3, Figure 5 and Table S4, Supporting information).  

After the LGM, there was a period of increase in temperature and humidity, the 

Bølling-Allerød period (from c. 15 to 13 kya), that likely created favourable habitat for the 

species to quickly recolonize the north and periphery of the Iberian Peninsula, and reach 

southern France (López-García et al. 2012; Laplana & Sevilla 2013), which agrees with 

the separation of the pre-Pyrenean geographic nucleus, around 17 kya (Figure 5 and 

Table S4, Supporting information). The time of the population subdivision and the time 

of emergence of the mitochondrial lineages have very wide confidence intervals which 

may result from the low genetic diversity observed in the Cabrera vole, and we cannot 

exclude the possibility of these events being older than the averages presented here, as 
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discussed later on. There was, however, a subsequent cold period - the Younger Dryas 

(YD) (c. 13–11.4 kya) - that marked the end of the Pleistocene. At this point, the Cabrera 

vole’s favoured habitat would have become scarcer once again for a short period of time 

as fossil abundance from this period is low (Robinson et al. 2006; Garrido-García & 

Soriguer-Escofet 2012; Laplana & Sevilla 2013; Bañuls-Cardona et al. 2014). Such 

conditions might have favoured further subdivision within each geographic nucleus, as 

reflected by the high mitochondrial haplotype diversity (Figure 2). Phylogeographic 

subdivision driven by the YD has previously been suggested for Microtus agrestis 

(Herman & Searle 2011).  

With the beginning of the Holocene (c. 11.4 kya), temperatures increased, 

maximising at the Holocene Climatic Optimum (around 9 - 5 kya), leading to wide 

availability of habitats and expansion of the Cabrera vole (Fletcher et al. 2010; Laplana 

& Sevilla 2013). Few of the available fossils date from the Holocene (11.7 kya onwards), 

but this is more likely due to lack of studies of microfauna on archaeological sites, than 

the absence of the species itself. In the favoured phylogeographic model, the extant 

populations spread in the Holocene from their YD refugia, with increasing effective 

population sizes and signals of expansion, as well as a later introgression of the west 

group into the east estimated at around 3 kya (Figure 2 and Tables S2 and S4, 

Supporting information). It is unlikely that selective pressures drove the expansion of the 

Lusocarpetan population into the eastern populations, given that all geographic nuclei 

show signals of being under purifying selection for the mitochondrial gene. It seems more 

parsimonious that the expansion of Lc was mostly a demographic event possibly driven 

by favourable anthropogenic modifications of the landscape (Laplana & Sevilla 2013). 

Further support for the demographic hypothesis is given by the deviations to neutrality in 

other loci, affecting only Lc, indicating that this might be a generalized pattern over the 

genome.  

Although we found evidence of population expansion for the west lineage, overall 

the Cabrera vole may have had a declining effective population size in recent years 

based on the BSP (Figure S6B, Supporting information). This decline could be related to 

climate-driven habitat loss, specifically associated with the increasing aridity of the late 

Holocene, most recently associated with agricultural intensification (Laplana & Sevilla 

2013). However, human influence on the species is complex and may have an opposite 

consequence, that is population expansion due for instance to the creation of more open 

habitat (Garrido-García & Soriguer-Escofet 2012). These results need to be considered 

carefully: the eastern geographic nuclei might have been isolated from each other for 

some time, and thus might violate the assumptions of panmixia, leading the BSP to 
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falsely indicate population decline (Heller et al. 2013). The influence of humans in altering 

habitat and climate and thereby impacting the Cabrera vole needs to be understood 

through the Holocene.  

Finally, we need to stress that the DIYABC phylogeographic modelling results need 

to be viewed with caution. The models tested here do not reflect an exhaustive 

comparison of all possible scenarios, but are instead based on a selection of hypothesis 

that we believe are most likely to represent our data (Csilléry et al. 2010). More 

specifically, our analyses show that posterior probabilities of the model parameters are 

often as wide as their respective priors [mainly for population size estimates (N) and the 

transition/transversion ratio (k1)], even after increasing most of the prior parameters 

range over 200%. This indicates that there is little resolution in our data to estimate 

values accurately. Our study likely reflects a case where approaches such as ABC may 

not have enough power to accurately determine population parameters, either because 

of low genetic diversity or not enough geographic structure, as has already been seen in 

other studies (Chen et al. 2012; Gaubert et al. 2015). 

 

The Cabrera vole as an example of a refugial endemic 

It is very unusual for a refugial endemic to have a fossil history as detailed as that 

of the Cabrera vole, and we have been able to exploit that together with a thorough 

analysis of contemporary genetic structure, using mitochondrial and nuclear markers, 

and historic distribution information. This work clearly indicates the existence of at least 

two mitochondrial lineages of Cabrera vole, and the best supported phylogeographic 

model suggests that they occupied different YD refugia within the Iberian peninsula, in a 

pattern consistent with the concept of ‘refugia within refugia’ (Gómez & Lunt 2007). 

 The Cabrera vole exhibits interesting similarities with other species of Iberian small 

mammals also characterized by multiple lineages, both in terms of their population 

history within the Iberian Peninsula and their conservation needs. One example is the 

field vole (Microtus agrestis), which is divided into three cryptic taxonomic units over its 

wide Eurasian distribution, two of which - the Portuguese and Southern lineages - existed 

in separate LGM refugial areas in western and eastern Iberia, respectively (Paupério et 

al. 2012). The Pyrenean desman (Galemys pyrenaicus) is another threatened small 

mammal that is restricted to northern Iberia. Although the existing estimates of tMRCA 

for the desman are c. 0.35 my, they are based on fossil calibrations with very distant 

taxonomic groups (Dornburg et al. 2011; Igea et al. 2013), and the true divergence time 

between the two desman lineages is likely to be much more recent and more comparable 
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to our estimates for the Cabrera vole lineages. Based on the comparison of genetic 

variation with the Cabrera vole, the Pyrenean desman likely contracted to northwest 

Iberia during the LGM, from where the two lineages diverged, also supported by recent 

genomic analyses (Querejeta et al. 2016).  

The complexity of the Cabrera vole colonisation history at a local scale is very 

informative, and the subdivision of other species, such as the field vole and the Pyrenean 

desman into multiple lineages in Iberia, suggest similar yet individual histories for other 

species as well. The multiple refugia, range shifts and genetic introgression seen in the 

Cabrera vole mean that there is a rich population history, albeit recent, with associated 

genetic variation in this refugial endemic, and, as far as possible, this genetic legacy 

should be conserved. There is particular anxiety because the species as a whole is 

already endangered due to the ongoing land use intensification and climate change and, 

therefore, special efforts are needed to ensure the conservation of the multiple parts of 

its remaining distribution. Refugial endemics such as the Cabrera vole are, by definition, 

of conservation concern and these species illustrate the considerable care that is needed 

for their conservation from a genetic perspective. 

Our study on the Cabrera vole is unusually detailed, and employs contemporary 

molecular clock and fossil data. It provides a phylogeographic perspective on a refugial 

endemic species comparable to that achieved for more widespread species. As we have 

shown, refugial endemics should not just be considered forms that reside, immobile, in 

a region that happens to have been protected from the extremes of the Late Pleistocene. 

Instead, they represent dynamic systems that have changed their ranges just as 

dramatically as more widespread species, but at a more local scale. Other groups of 

Iberian small vertebrates seem to share similar patterns of genetic variation, and 

combined phylogeographic analyses with some of the many other species which 

occupied ‘refugia within refugia’ (Gómez & Lunt 2007; Centeno-Cuadros et al. 2009; 

Vega et al. 2010; Fitó et al. 2011; Miraldo et al. 2011; van de Vliet et al. 2014), would 

permit generalizations of the colonisation history of refugial endemics comparable to the 

generalizations for species that spread outside the refugia (Hewitt 1999). 
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Table S2. Number of samples, genetic diversity indices and neutrality test statistics calculated for the complete dataset for each 

locus, the three identified cyt-b lineages west (W), east (E) and haplotype H38 for the cyt-b gene only, and for each geographic 

nucleus [Lusocarpetan (Lc), Montiberic (Mb), Betic (Bt) and pre-Pyrenean (pP)] for all loci*.  

Gene Nind Nseq Nseg Nhap h (SD) π [%] (SD) θw [%] (SD) D FS R2 Ratio dN/dS 

cyt-b 284 284 71 44 0.896 (0.014) 0.500 (0.031) 0.998 (0.232) -1.52 -12.73 0.040 4.458  

W 228 228 44 34 0.847 (0.020) 0.218 (0.014) 0.641 (0.164) -1.95 -21.19 0.040 3.478  

E 51 51 23 9 0.845 (0.022) 0.563 (0.022) 0.447 (0.151) 0.67 4.27 0.138 3.858  

H38 5 5 0 1 - - - - - - - - 

Lc 179 179 38 29 0.841 (0.021) 0.216 (0.015) 0.577 (0.155) -1.83 -15.92 0.032 3.077  

Mb 34 34 16 5 0.758 (0.036) 0.555 (0.042) 0.340 (0.129) 2.08 7.93 0.198 3.694  

Bt 54 54 25 9 0.821 (0.031) 0.582 (0.040) 0.480 (0.159) 0.68 4.75 0.132 3.693  

pP 17 17 11 4 0.669 (0.091) 0.355 (0.065) 0.285 (0.128) 0.92 3.99 0.180 3.314  

BRCA1 76 152 15 12 0.466 (0.049) 0.053 (0.010) 0.232 (0.078) -2.02 -9.11 0.033 -0.400 ≠ 

Lc 36 72 6 7 0.495 (0.065) 0.050 (0.008) 0.107 (0.050) -1.27 -3.58 0.053 -1.107 ≠ 

Mb 13 26 5 5 0.409 (0.117) 0.046 (0.016) 0.114 (0.060) 1.70 -2.52 0.090 -0.694 ≠ 

Bt 19 38 10 6 0.555 (0.077) 0.078 (0.026) 0.206 (0.086) -1.88 -1.69 0.100 1.708 ≠ 

pP 8 16 0 1 - - - - - - - - 

IRBP 78 156 22 29 0.785 (0.032) 0.170 (0.013) 0.413 (0.125) -1.64 -25.39 0.036 -0.337 ≠ 

Lc 37 74 12 18 0.804 (0.037) 0.163 (0.016) 0.260 (0.098) -1.03 -12.02 0.065 -0.578 ≠ 

Mb 13 26 6 7 0.723 (0.080) 0.111 (0.021) 0.166 (0.083) -0.98 -2.82 0.087 -0.206 ≠ 

Bt 20 40 13 12 0.868 (0.034) 0.254 (0.025) 0.322 (0.126) -0.66 -3.36 0.088 -0.138 ≠ 

pP 8 16 1 2 0.125 (0.106) 0.013 (0.011) 0.032 (0.032) -1.16 -0.70 0.242 1.011 ≠ 

RAG1 69 138 35 39 0.949 (0.007) 0.323 (0.012) 0.509 (0.143) -1.09 -22.37 0.057 2.695  

Lc 33 66 17 19 0.909 (0.017) 0.227 (0.020) 0.286 (0.100) -0.61 -7.45 0.082 2.332  

Mb 12 24 19 13 0.917 (0.036) 0.344 (0.039) 0.407 (0.158) -0.56 -3.41 0.056 2.214  

Bt 17 34 21 20 0.934 (0.027) 0.325 (0.027) 0.411 (0.149) -0.72 -10.28 0.090 3.019  

pP 7 14 4 4 0.692 (0.094) 0.153 (0.025) 0.101 (0.060) 1.71 1.08 0.239 1.111 ≠ 

COPS7A 77 154 10 10 0.622 (0.039) 0.110 (0.011) 0.229 (0.087) -1.25 -4.17 0.043 - - 

Lc 36 72 8 9 0.696 (0.054) 0.123 (0.015) 0.212 (0.090) -1.07 -3.67 0.060 - - 

Mb 13 26 4 5 0.557 (0.104) 0.083 (0.019) 0.135 (0.077) -1.03 -1.96 0.086 - - 

Bt 20 40 2 3 0.304 (0.084) 0.040 (0.012) 0.060 (0.044) -0.64 -0.67 0.102 - - 

pP 8 16 3 3 0.508 (0.126) 0.113 (0.033) 0.116 (0.075) -0.07 0.73 0.147 - - 

OSTA 71 142 13 12 0.406 (0.052) 0.064 (0.010) 0.270 (0.095) -1.96 -10.10 0.027 - - 

Lc 35 70 9 8 0.265 (0.070) 0.051 (0.016) 0.215 (0.088) -2.01 -6.27 0.044 - - 

Mb 11 22 3 4 0.463 (0.120) 0.058 (0.017) 0.094 (0.060) -0.98 -1.43 0.099 - - 

Bt 17 34 5 6 0.693 (0.065) 0.112 (0.019) 0.140 (0.073) -0.53 -1.55 0.098 - - 

pP 8 16 0 1 - - - - - - - - 

PNPO 77 154 17 28 0.916 (0.011) 0.414 (0.017) 0.397 (0.129) 0.12 -11.50 0.093 - - 

Lc 35 70 12 15 0.845 (0.029) 0.350 (0.026) 0.326 (0.123) 0.20 -3.69 0.110 - - 

Mb 14 28 12 11 0.873 (0.037) 0.490 (0.034) 0.404 (0.167) 0.71 -1.58 0.149 - - 

Bt 20 40 11 14 0.906 (0.024) 0.454 (0.023) 0.338 (0.138) 1.04 -3.18 0.156 - - 

pP 8 16 4 5 0.700 (0.080) 0.171 (0.021) 0.158 (0.079) 0.27 -0.75 0.156 - - 
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Table S2 (cont.). Number of samples, genetic diversity indices and neutrality test statistics calculated for the complete dataset 

for each locus, the three identified cyt-b lineages west (W), east (E) and haplotype H38 for the cyt-b gene only, and for each 

geographic nucleus [Lusocarpetan (Lc), Montiberic (Mb), Betic (Bt) and pre-Pyrenean (pP)] for all loci*.  

Gene Nind Nseq Nseg Nhap h (SD) π [%] (SD) θw [%] (SD) D FS R2 Ratio dN/dS 

SLC38A7 73 146 8 11 0.831 (0.014) 0.330 (0.012) 0.233 (0.096) 0.95 -0.83 0.127 - - 

Lc 33 66 8 10 0.854 (0.023) 0.324 (0.019) 0.272 (0.117) 0.49 -1.44 0.124 - - 

Mb 14 28 7 7 0.807 (0.040) 0.348 (0.020) 0.292 (0.138) 0.58 -0.34 0.151 - - 

Bt 18 36 4 5 0.651 (0.049) 0.187 (0.018) 0.156 (0.088) 0.47 -0.06 0.143 - - 

pP 8 16 6 4 0.642 (0.103) 0.325 (0.057) 0.293 (0.153) 0.38 1.43 0.162 - - 

DBX5 79 119 3 4 0.292 (0.050) 0.134 (0.024) 0.249 (0.151) -0.80 -1.49 0.050 - - 

Lc 37 54 1 2 0.073 (0.048) 0.032 (0.021) 0.098 (0.098) -0.88 -0.95 0.036 - - 

Mb 14 24 1 2 0.522 (0.030) 0.232 (0.013) 0.119 (0.119) 1.60 1.59 0.261 - - 

Bt 20 31 2 3 0.340 (0.100) 0.159 (0.050) 0.223 (0.164) -0.58 -0.56 0.089 - - 

pP 8 10 0 1 - - - - - - - - 

DBX7 79 119 5 6 0.290 (0.054) 0.106 (0.022) 0.303 (0.150) -1.35 -3.94 0.036 - - 

Lc 37 54 5 6 0.512 (0.076) 0.195 (0.037) 0.346 (0.176) -1.04 -2.46 0.064 - - 

Mb 14 24 0 1 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.00 0.00 0.00 - - 

Bt 20 31 1 2 0.125 (0.077) 0.039 (0.024) 0.078 (0.078) -0.77 -0.47 0.062 - - 

pP 8 10 0 1 - - - - - - - - 

*except for SMCY7, for which there was no sequence variation.  

Parameters are abbreviated as follows: number of individuals (Nind), number of sequences (Nseq), number of segregating sites 

(Nseg), number of haplotypes (Nhap), haplotype diversity and standard deviation [h(SD)], percentage of nucleotide diversity and 

standard deviation [π [%] (SD)], percentage of Watterson’s theta mutation rate and standard deviation [θw [%] (SD)], Tajima's 

D, Fu's FS, Ramos-Onsins & Rozas’s R2; Z-test of selection using the ratio of non-synonymous to synonymous substitutions in 

coding regions (Ratio), with the respective alternative hypotheses tested (dN/dS: if there were significant differences in the Ratio 

(dN ≠ dS), we performed a second test for purifying selection (<), given that all significant Ratio values were positive); numbers 

and symbols in bold are significant (p < 0.05). 
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Table S3. Mitochondrial haplotype and nucleotide diversities for groups of individuals within a geographic nuclei 

and each 100 km buffer zone.  

Groups 

Centroid Genetic diversity 

Latitude Longitude Nind Nseg Nhap h (SD) Ehap (%) π [%] (SD) Enuc (%) 

Lc 39.621 -7.039 179 38 29 0.841(0.021) 2.5 0.216(0.015) 6.9 

I 38.445 -8.357 97 13 11 0.686(0.044) 6.4 0.136(0.012) 8.8 

II 40.580 -6.930 61 20 15 0.791(0.037) 4.7 0.213(0.031) 14.6 

III 40.313 -4.428 15 13 6 0.769(0.081) 10.5 0.252(0.054) 21.4 

Mb 39.479 -1.517 34 16 5 0.756(0.038) 5.0 0.559(0.041) 7.3 

W 39.479 -1.517 16 2 3 0.592(0.067) 11.3 0.057(0.010) 17.5 

E 39.479 -1.517 13 0 1 - - - - 

Bt 38.178 -2.301 56 25 9 0.810(0.034) 4.2 0.569(0.042) 7.4 

W 38.178 -2.301 35 10 5 0.632(0.075) 11.9 0.160(0.037) 23.1 

E 38.178 -2.301 23 16 5 0.704(0.063) 8.9 0.401(0.062) 15.5 

pP 42.307 -0.891 17 11 4 0.669(0.091) 13.6 0.355(0.065) 18.3 

Parameters abbreviated as follows: total number of individuals (Nind), number of segregating sites (Nseg), number 

of haplotypes (Nhap), haplotype diversity and respective standard deviation [h (SD)], percentage of error of 

haplotype diversity estimation [Ehap (%)], nucleotide diversity and respective standard deviation [π [%] (SD)], 

percentage of error of nucleotide diversity estimation [Enuc (%)]. Groups of 100 km buffer zones are listed in 

Figure S2: Lusocarpetan (Lc) I, II and III, pre-Pyrenean (pP), Montiberic (Mb) and Betic (Bt). All parameters 

were also calculated independently for each lineage where there is lineage sympatry within the 100 km buffer 

zones [west (W) and east (E) lineage]. 
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Table S4. Parameters used in the DIYABC analysis, respective priors, estimated results and bias computed for scenario SC5. 

Priors Results Bias and precision 

Parameter Conditions Distribution [min-max] mean median mode Q2.5 Q97.5 true mean 

N1 Lc Uniform [10 - 300 000] 163 000 161 000 165 000 57 800 282 000 145 200 151 900 

N2 Mb Uniform [10 - 300 000] 61 000 44 900 30 100 9 100 226 000 153 400 162 600 

N3 Bt Uniform [10 - 300 000] 62 600 48 900 44 700 11 500 218 000 155 300 156 900 

N4 pP Uniform [10 - 300 000] 17 300 9 620 6 910 2 170 93 800 156 600 165 600 

N5.5   Uniform [10 - 300 000] 170 000 176 000 281 000 19 000 295 000 136 800 150 600 

N5.6  Uniform [10 - 300 000] 68 400 50 700 30 300 8 270 240 000 154 900 150 200 

N5.7   Uniform [10 - 300 000] 193 000 207 000 297 000 33 900 296 000 153 000 147 400 

N5.8  Uniform [10 - 300 000] 19 100 16 300 12 700 3 380 49 700 142 100 127 600 

t5.1   Uniform [10 - 60 000] 3 070 2 640 1 910 696 7 980 15 090 13 730 

t5.2 t5.2>t5.1 Uniform [10 - 60 000] 17 000 15 400 11 100 4 810 38 500 30 770 28 090 

t5.3 t5.3>t5.2 Uniform [10 - 60 000] 
22 900 20 200 15 500 5 460 53 700 45 640 42 220 

r1(M)   
Uniform [0.001 - 

0.999] 0.553 0.561 0.554 0.100 0.950 0.522 0.536 

r2(B)   
Uniform [0.001 - 

0.999] 0.470 0.459 0.463 0.068 0.921 0.522 0.518 

µmic  Uniform [10-4 - 10-3] 
5.37x10-4 5.25x10-4 4.57x10-4 1.83x10-4 9.45x10-4 5.57x10-4 5.70x10-4 

Pmic   Uniform [10-1 - 3x10-1] 
0.18 0.17 0.10 0.10 0.28 0.20 0.20 

SNImic  Log-u [10-8 - 10-5] 
1.52x10-7 2.59x10-8 1.00x10-8 1.00x10-8 1.25x10-6 1.36x10-6 1.67x10-6 

uexo HKY Uniform [10-9 - 10-7] 
2.47x10-8 2.04x10-8 1.50x10-8 5.63x10-9 6.79x10-8 4.88x10-8 4.69x10-8 

k1exo HKY Uniform [0.05 - 20] 11.40 12.00 20.00 0.87 19.90 9.84 9.66 

uint HKY Uniform [10-9 - 10-7] 
1.78x10-8 1.46x10-8 9.81x10-9 4.42x10-9 5.17x10-8 5.06x10-8 4.81x10-8 

k1int HKY Uniform [0.05 - 20] 11.10 11.60 20.00 0.79 19.90 9.90 9.66 

usex HKY Uniform [10-9 - 10-7] 
3.01x10-8 2.47x10-8 1.38x10-8 5.32x10-9 8.11x10-8 4.85x10-8 4.41x10-8 

k1sex HKY Uniform [0.05 - 20] 11.10 11.60 20.00 0.76 19.80 9.93 9.90 

ucyt-b HKY 
Uniform [8.0x10-8 – 

3.2x10-7] 1.07x10-7 9.97x10-8 9.09x10-8 8.03x10-8 1.83x10-7 1.97x10-7 2.00x10-7 

k1cyt-b HKY Uniform [0.05 - 20] 
10.60 10.70 20.00 0.70 19.70 9.77 8.93 

Parameters: Labels regarding effective population sizes (N), time of events in generations (t) and admixture rates (r) are represented 

in the models depicted in Figures 5 and S1, Supporting information; Microsatellite (mic) parameters: mean mutation rate (µ), a 

parameter determining the shape of the gamma distribution of the individual locus mutation rate (P), and the Single Nucleotide 

Insertion rate (SNI). Exonic (exo), intronic (int), sex-linked (sex) and mitochondrial (cyt-b) locus parameters: per site and generation mutation 

rate (u) and transition/transversion ratio (k1). Conditions: Twin letters indicate the respective geographic nucleus: Lusocarpetan (Lc), 

Montiberic (Mb), Betic (Bt) and pre-Pyrenean (pP); time of events (t) are controlled relative to each other; admixture rates (r) for each 

admixed population have information on the contribution of N5.6 to M (r1) and B (r2) respectively, and the contribution of N5.5 is 1-rn; the 

sequence data were simulated under a Hasegawa-Kishino-Yano (HKY) mutation model. Distribution: For all models, parameter 

distributions were left as default with the exception of maximum N values, which were set to four times the estimated mitochondrial 

effective population size (Ne); maximum t values, set to 60 kya (kiloyears years ago) above the upper 95% CI of the tMRCA using the 

cyt-b gene; minimum and maximum mutation rate for the cyt-b gene (ucyt-b) were set for the slowest [estimated for the Microtus voles, 

Brunhoff et al. (2003)] and fastest [estimated for the Microtus arvalis, Martínková et al. (2013)] rates available. The same priors were 

used for the modelling of all scenarios, only varying the number of populations (N) and time points (t) accordingly. Results: Q2.5 – 

quintile 2.5%; Q97.5 – quintile 97.5%. Bias and precision: true – true simulated values; mean – mean average values estimated for 

the preferred model. 
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Table S5. Model checking of summary statistics used on the DIYABC analysis with values corresponding to the simulations of 

scenario SC5 using the posterior distribution of parameters. SumStat: summary statistics; Obs: observed values; Sim<Obs: 

goodness-of-fit of the observed value of each statistic with its simulated distribution by providing the proportion of simulated values 

lower than observed values. In bold are p-values ≤ 0.05 and ≥ 0.95, representing the probability that the simulated data could be 

more extreme than the observed data. 

 

SumStat Obs Sim<Obs 

NAL_M_1 8.0 0.229 

NAL_M_2 3.0 0.339 

HET_M_1 0.9 0.232 

HET_M_2 0.8 0.339 

HET_M_3 0.8 0.083 

VAR_M_1 27.6 0.832 

VAR_M_2 18.8 0.668 

VAR_M_3 10.9 0.391 

MGW_M_1 0.4 0.016 

MGW_M_2 0.3 0.217 

MGW_M_3 0.4 0.157 

MGW_M_4 0.6 0.313 

N2P_M_1&2 8.0 0.113 

N2P_M_1&3 9.0 0.116 

N2P_M_1&4 10.0 0.308 

N2P_M_2&3 6.0 0.109 

N2P_M_2&4 5.0 0.235 

N2P_M_3&4 5.0 0.029 

H2P_M_1&2 0.8 0.113 

H2P_M_1&3 0.9 0.292 

H2P_M_1&4 0.9 0.312 

H2P_M_2&3 0.9 0.231 

H2P_M_3&4 0.8 0.115 

V2P_M_1&2 25.5 0.765 

V2P_M_1&3 29.4 0.799 

V2P_M_1&4 41.2 0.883 

V2P_M_2&3 16.8 0.491 

V2P_M_2&4 43.1 0.890 

V2P_M_3&4 74.5 0.964 

FST_M_1&3 0.1 0.945 

FST_M_2&3 0.2 0.934 

LIK_M_1&2 0.6 0.035 

LIK_M_1&3 1.0 0.724 

LIK_M_1&4 1.0 0.651 

LIK_M_2&3 0.6 0.827 

LIK_M_2&4 0.5 0.532 

LIK_M_3&1 0.7 0.490 

LIK_M_3&2 0.8 0.710 

SumStat Obs Sim<Obs 

LIK_M_3&4 0.8 0.641 

LIK_M_4&1 1.8 0.790 

LIK_M_4&2 1.3 0.508 

LIK_M_4&3 1.5 0.687 

DAS_M_1&2 0.2 0.967 

DAS_M_1&3 0.1 0.319 

DAS_M_1&4 0.0 0.111 

DAS_M_2&3 0.0 0.090 

DAS_M_2&4 0.0 0.259 

DAS_M_3&4 0.0 0.168 

DM2_M_1&2 1.6 0.322 

DM2_M_1&3 34.0 0.894 

DM2_M_1&4 108.5 0.905 

DM2_M_2&3 21.0 0.788 

DM2_M_2&4 136.1 0.933 

DM2_M_3&4 264.1 0.989 

NHA_E_1 14.7 0.600 

NHA_E_2 8.3 0.525 

NHA_E_3 12.7 0.684 

NSS_E_1 11.7 0.402 

NSS_E_2 10.0 0.477 

NSS_E_3 14.7 0.555 

MPD_E_1 1.7 0.463 

MPD_E_2 2.0 0.501 

MPD_E_3 2.5 0.603 

VPD_E_1 1.8 0.436 

VPD_E_2 2.5 0.506 

VPD_E_3 2.9 0.539 

DTA_E_1 -1.0 0.556 

DTA_E_2 -1.1 0.346 

DTA_E_3 -1.1 0.438 

DTA_E_4 0.2 0.634 

PSS_E_1 6.0 0.395 

PSS_E_2 2.0 0.242 

PSS_E_3 5.7 0.531 

PSS_E_4 1.0 0.271 

MNS_E_1 5.5 0.506 

MNS_E_2 2.4 0.345 
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SumStat Obs Sim<Obs 

MNS_E_3 3.5 0.514 

MNS_E_4 2.0 0.330 

VNS_E_1 32.7 0.347 

VNS_E_2 3.4 0.274 

VNS_E_3 11.2 0.494 

NH2_E_1&2 19.7 0.594 

NH2_E_1&3 23.0 0.629 

NH2_E_1&4 15.7 0.521 

NH2_E_2&3 16.0 0.563 

NH2_E_2&4 9.7 0.468 

NH2_E_3&4 13.7 0.585 

NS2_E_1&2 17.0 0.419 

NS2_E_1&3 21.0 0.464 

NS2_E_1&4 13.0 0.367 

NS2_E_2&3 17.0 0.460 

NS2_E_2&4 11.3 0.440 

NS2_E_3&4 15.7 0.509 

MP2_E_1&2 1.7 0.474 

MP2_E_1&3 1.8 0.504 

MP2_E_1&4 1.6 0.464 

MP2_E_2&3 2.3 0.587 

MP2_E_2&4 1.6 0.465 

MP2_E_3&4 2.2 0.583 

MPB_E_1&2 2.2 0.553 

MPB_E_1&3 2.4 0.592 

MPB_E_1&4 2.1 0.491 

MPB_E_2&3 2.3 0.568 

MPB_E_3&4 2.0 0.457 

HST_E_1&2 0.2 0.901 

HST_E_1&3 0.2 0.918 

HST_E_1&4 0.2 0.685 

HST_E_2&3 0.0 0.313 

HST_E_2&4 0.0 0.147 

HST_E_3&4 -0.1 0.083 

NHA_I_1 10.8 0.728 

NHA_I_2 6.8 0.677 

NHA_I_3 7.3 0.569 

NHA_I_4 3.5 0.794 

NSS_I_1 9.8 0.622 

NSS_I_2 6.8 0.594 

NSS_I_3 5.8 0.399 

NSS_I_4 3.5 0.745 

SumStat Obs Sim<Obs 

MPD_I_1 1.5 0.726 

MPD_I_2 1.8 0.753 

MPD_I_3 1.5 0.655 

MPD_I_4 1.1 0.753 

VPD_I_1 1.5 0.637 

VPD_I_2 1.8 0.674 

VPD_I_3 1.3 0.565 

VPD_I_4 1.2 0.670 

DTA_I_1 -0.7 0.651 

DTA_I_2 -0.2 0.829 

DTA_I_3 -0.1 0.930 

DTA_I_4 0.1 0.581 

PSS_I_1 4.0 0.484 

PSS_I_3 1.3 0.152 

MNS_I_1 6.4 0.731 

MNS_I_2 4.0 0.851 

MNS_I_3 5.7 0.922 

MNS_I_4 2.5 0.613 

VNS_I_1 37.8 0.528 

VNS_I_2 8.0 0.779 

VNS_I_3 23.3 0.931 

VNS_I_4 3.7 0.952 

NH2_I_1&2 12.8 0.647 

NH2_I_1&3 14.0 0.651 

NH2_I_1&4 11.3 0.649 

NH2_I_2&3 10.5 0.594 

NH2_I_2&4 8.0 0.645 

NH2_I_3&4 8.8 0.582 

NS2_I_1&2 11.0 0.497 

NS2_I_1&3 11.8 0.488 

NS2_I_1&4 10.3 0.551 

MP2_I_1&2 1.6 0.733 

MP2_I_1&3 1.5 0.703 

MP2_I_1&4 1.5 0.725 

MP2_I_2&3 1.6 0.701 

MP2_I_2&4 1.6 0.760 

MP2_I_3&4 1.4 0.672 

MPB_I_1&2 1.8 0.754 

MPB_I_1&3 1.6 0.687 

MPB_I_1&4 1.7 0.661 

MPB_I_2&3 1.8 0.733 

MPB_I_2&4 2.0 0.755 
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SumStat Obs Sim<Obs 

MPB_I_3&4 1.8 0.716 

HST_I_1&2 0.1 0.737 

HST_I_1&3 0.1 0.489 

HST_I_1&4 0.1 0.410 

HST_I_2&3 0.1 0.889 

HST_I_2&4 0.2 0.569 

HST_I_3&4 0.2 0.754 

NHA_S_1 4.5 0.600 

NHA_S_2 2.0 0.251 

NHA_S_3 2.5 0.296 

NSS_S_1 4.0 0.617 

NSS_S_2 5.0 0.786 

NSS_S_3 1.5 0.285 

MPD_S_1 0.5 0.575 

MPD_S_2 0.6 0.616 

MPD_S_3 0.2 0.268 

VPD_S_1 0.7 0.732 

VPD_S_2 3.2 0.950 

VPD_S_3 0.2 0.279 

DTA_S_1 -0.9 0.302 

DTA_S_2 -0.3 0.607 

DTA_S_3 -0.7 0.420 

DTA_S_4 0.0 0.467 

PSS_S_1 3.5 0.788 

PSS_S_2 4.5 0.963 

PSS_S_3 0.5 0.261 

PSS_S_4 0.0 0.244 

MNS_S_1 2.8 0.396 

MNS_S_2 6.0 0.974 

MNS_S_3 2.5 0.506 

VNS_S_1 2.1 0.388 

VNS_S_3 0.5 0.334 

VNS_S_4 0.0 0.375 

NH2_S_1&2 5.5 0.533 

NH2_S_1&3 5.5 0.486 

NH2_S_1&4 4.5 0.514 

NH2_S_2&3 3.0 0.259 

NH2_S_3&4 2.5 0.249 

NS2_S_1&2 9.0 0.782 

NS2_S_1&3 5.0 0.510 

NS2_S_1&4 4.0 0.542 

NS2_S_2&3 6.0 0.653 

SumStat Obs Sim<Obs 

NS2_S_2&4 5.0 0.710 

MP2_S_1&2 0.5 0.607 

MP2_S_1&3 0.4 0.526 

MP2_S_1&4 0.5 0.586 

MP2_S_2&3 0.4 0.443 

MP2_S_2&4 0.5 0.600 

MP2_S_3&4 0.2 0.273 

MPB_S_1&2 0.7 0.648 

MPB_S_1&3 0.4 0.446 

MPB_S_1&4 0.3 0.326 

MPB_S_2&3 0.5 0.517 

MPB_S_2&4 0.4 0.467 

HST_S_1&2 0.3 0.804 

HST_S_1&4 -0.8 0.117 

HST_S_2&3 0.2 0.946 

HST_S_3&4 -0.7 0.116 

NHA_C_1 15.0 0.314 

NHA_C_2 5.0 0.078 

NHA_C_3 6.0 0.065 

NHA_C_4 3.0 0.500 

NSS_C_1 18.0 0.184 

NSS_C_2 16.0 0.319 

NSS_C_3 20.0 0.326 

NSS_C_4 9.0 0.832 

MPD_C_1 2.3 0.134 

MPD_C_2 6.8 0.683 

MPD_C_3 7.2 0.700 

MPD_C_4 2.3 0.711 

VPD_C_1 2.7 0.154 

VPD_C_2 22.3 0.813 

VPD_C_3 23.3 0.829 

VPD_C_4 12.2 0.885 

DTA_C_1 -1.6 0.195 

DTA_C_2 1.4 0.980 

DTA_C_3 1.0 0.971 

PSS_C_1 14.0 0.383 

PSS_C_2 8.0 0.516 

PSS_C_3 11.0 0.448 

PSS_C_4 7.0 0.835 

MNS_C_1 2.6 0.147 

MNS_C_2 4.3 0.974* 

MNS_C_3 5.4 0.979* 
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SumStat Obs Sim<Obs 

MNS_C_4 1.0 0.207 

VNS_C_1 5.0 0.118 

VNS_C_2 3.3 0.777 

VNS_C_3 10.8 0.969 

VNS_C_4 0.0 0.220 

NH2_C_1&2 19.0 0.183 

NH2_C_1&3 20.0 0.152 

NH2_C_1&4 18.0 0.316 

NH2_C_2&3 10.0 0.029* 

NH2_C_2&4 8.0 0.111 

NH2_C_3&4 9.0 0.089 

NS2_C_1&2 32.0 0.250 

NS2_C_1&3 36.0 0.272 

NS2_C_1&4 34.0 0.516 

NS2_C_2&3 29.0 0.269 

NS2_C_2&4 27.0 0.548 

NS2_C_3&4 29.0 0.465 

MP2_C_1&2 2.8 0.175 

SumStat Obs Sim<Obs 

MP2_C_1&3 3.4 0.217 

MP2_C_1&4 2.3 0.137 

MP2_C_2&3 7.0 0.716 

MP2_C_2&4 5.7 0.693 

MP2_C_3&4 6.5 0.704 

MPB_C_1&2 6.6 0.588 

MPB_C_1&3 7.3 0.659 

MPB_C_2&3 8.4 0.758 

MPB_C_2&4 12.8 0.909 

MPB_C_3&4 11.1 0.842 

HST_C_1&2 0.6 0.946 

HST_C_1&3 0.5 0.943 

HST_C_1&4 0.8 0.971 

HST_C_2&3 0.2 0.713 

HST_C_2&4 0.6 0.829 

HST_C_3&4 0.4 0.748 

   

Summary statistics description contains the analysis code, followed by the locus type and finally, for which population(s) the 

analysis is being performed for. Microsatellite (M) ‘One sample summary statistics’: NAL – mean number of alleles, HET – mean 

genic diversity, VAR – mean size variance, MGW – mean Garza-Williamson’s M; ‘Two sample summary statistics’: N2P – mean 

number of alleles, H2P – mean genic diversity, V2P – mean size variance, FST - FST,  LIK – classification index, DAS – shared 

allele distance, DM2 – (dμ)2 distance. Sequence [exon (E), intron (I), sex-linked (S) and mitochondrial (C)], ‘One sample summary 

statistics’: NHA – number of haplotypes, NSS – number of segregating sites, MPD – mean pairwise differences, VPD – variance 

of pairwise differences, DTA – Tajima’s D, PSS – private segregating sites, MNS – mean of numbers of the rarest nucleotide at 

segregating sites, VNS – variance of numbers of the rarest nucleotide at segregating sites; ‘Two sample summary statistics’: NH2 

– number of haplotypes, NS2 – number of segregating sites, MP2 – mean pairwise differences (W), MPB – mean pairwise 

differences (B), HST – FST (Hudson et al. 1992). Population codes are as follow: 1 – Lusocarpetan, 2 – Montiberic, 3 – Betic, 4 – 

pre-Pyrenean. 
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Figure S1. Phylogeographic models tested for the 79 Microtus cabrerae tissue samples amplified for the complete loci dataset. 

Parameters for effective population size (Nx), time splits (tx) and recombination rates (r), as well as the mutation models specifics 

for each different marker types, are the same as for SC5 (as listed in Table S4, Supporting information). 

 

Figure S2. Maps of the Iberian Peninsula with interpolated nucleotide diversities using the cyt-b dataset. Cyt-b sequences from 

tissue and non-invasive samples (circles) within 10 km were grouped. Nucleotide diversities were calculated for the centroid of 

samples grouped within 100 km buffer zones, and the values were then interpolated for the rest of the species distribution. The four 

geographic nuclei are the Lusocarpetan (LcI, LcII and LcIII), pre-Pyrenean (pP), Montiberic (Mb) and Betic (Bt). A) Total nucleotide 

diversities per group; B) Nucleotide diversities per group considering only samples with east lineage haplotypes; C) Nucleotide 

diversities per group considering only samples with west lineage haplotypes. 
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Figure S3. Median-joining haplotype networks for the three nuclear exons (white background), the four nuclear introns (grey 

background) and the three sex-linked loci (dark grey background). Circles represent haplotypes; shades of grey within circles 

identify the four geographic nuclei: Lusocarpetan (grey), pre-Pyrenean (white), Montiberic (dark grey) and Betic (black); the 

area of the circle is proportional to the number of sequences; white dots represent inferred haplotypes and each connecting 

line between any circle corresponds to one mutational step, with extra mutations shown by perpendicular strikes; dashed 

black represent indels (with the respective number of bp difference); dashed grey lines represent single microsatellite repeats. 

SMCY7 

SLC38A7 

DBX5 DBX7 

IRBP BRCA1 RAG1 
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Figure S4. Spatial distribution of the genetic groups supported by BAPS, typed for the 79 Live Trapping (LT) population samples (black 

circles) for the mitochondrial (A) and nuclear (B) loci. The four geographic nuclei are the Lusocarpetan (Lc), pre-Pyrenean (pP), Montiberic 

(Mb) and Betic (Bt). A) Spatial clustering using cyt-b resulting in K = 3 populations inferred by BAPS (p = 1; orange, blue and grey); B) 

Spatial clustering using nine nuclear loci (exons: BRCA1, IRBP and RAG1; introns: COPS7A, OSTA, PNPO and SLC38A7; X-linked: 

DBX5, DBX7) resulting in K = 2 populations (p = 1, orange and blue); The Voronoi tessellation picture was overlaid onto the M. cabrerae 

distribution and UTM squares were coloured according to the inferred K colour for that location. 

 

 

Figure S5. Median-joining haplotype networks for the cyt-b gene [A, Live trapping (LT), 79 samples] and SMCY7 locus (B, 39 males), 

and NeighborNet for the remaining concatenated nuclear loci (C, 79 samples, exons: BRCA1, IRBP and RAG1; introns: COPS7A, OSTA, 

PNPO and SLC38A7; X-linked: DBX5, DBX7), and their respective AMOVA results (as pie-charts). For the cyt-b and SMCY7 results (A 

and B), circles represent haplotypes and the area of the circle is proportional to the number of sequences; for cyt-b, white dots represent 

inferred haplotypes and each connecting line corresponds to one mutational step, with extra mutations shown by perpendicular strikes; 

for SMCY7 the dashed black line represents a 5 bp indel and the dashed grey lines represent single microsatellite repeats. For the 

NeighborNet (C), each branch tip represents one sample and the distances between them is a proxy for genetic divergence. Shades of 

grey identify the four geographic nuclei: Lusocarpetan (grey), pre-Pyrenean (white in the networks and light grey in the NeighborNet 

network), Montiberic (dark grey) and Betic (black).  
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Figure S6. Bayesian skyline plots for M. cabrerae based on cyt-b data, for A) the whole species assuming a single 

panmictic population, and B) for the west (orange) and east (blue) lineages separately, assuming two divergent lineages 

relevant to a model of secondary contact (see text). The full lines represents the estimated median effective female 

population size (multiplied by mean generation time T) over time for each lineage, with 95% confidence interval (CI) in 

dashed lines; along the full lines, circles represent the average time to the most recent common ancestor and vertical 

dashes, the 95% HPD for that estimate; the X axis indicates time in kiloyears ago (kya); the Y axis indicates effective 

female population size (Nef x T) on a logarithmic scale. 

 

 

Figure S7. Locus-by-locus nucleotide diversity as a proportion of the highest population value, averaged over all loci, 

comparing nuclear and mitochondrial loci. Shades of grey within triangles represent the four geographic nuclei: 

Lusocarpetan (grey), pre-Pyrenean (white), Montiberic (dark grey) and Betic (black). The dashed line defines a 1:1 ratio. 
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Integrative approaches to guide conservation decisions: using 

genomics to define conservation units and functional corridors 

 

Barbosa S, Mestre F, White TA, Paupério J, Alves PC and Searle JB 

 

 

1. Abstract 

Climate change and increasing habitat loss greatly impact species survival, 

requiring range shifts, phenotypic plasticity and/or evolutionary change for long term 

persistence, which may not readily occur unaided in threatened species. Therefore, 

remediation requires a detailed assessment of evolutionary factors, following the 

principles of ‘evolutionary conservation’. Existing genetic diversity needs to be 

thoroughly evaluated and spatially mapped to define conservation units (CUs) in an 

evolutionary context, and the levels of gene flow between them assessed to determine 

functional connectivity. In this study, we propose a new approach to determine functional 

connectivity between CUs by including genetic diversity in the modelling while controlling 

for isolation-by-distance and phylogeographic history. We evaluate our approach on a 

near-threatened Iberian endemic rodent by analysing genotyping-by-sequencing (GBS) 

genomic data from 107 Cabrera voles (Microtus cabrerae), screening the entire species 

distribution to define subtypes of CUs and their connectivity: we defined five 

management units (MUs) which can be grouped into three evolutionarily significant units 

(ESUs) or two adaptive units (AUs). Thus, we demonstrate that three different subtypes 

of CU can be objectively defined using genomic data, and their characteristics and 

connectivity can inform conservation decision-making. With our newly proposed 

approach we established that connectivity is very limited in the south-east of the Cabrera 

vole distribution, which is an area of high habitat loss and where genetically very distinct 

populations are found. We argue that a multidisciplinary framework for CU definition is 

essential, and that this framework needs a strong evolutionary basis.  
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2. Introduction 

Among the most pressing factors leading to biodiversity decline are habitat loss 

and climate change. In this context, species’ survival can occur through a combination 

of three main processes: tracking their optimal habitat (range shifts), tolerating less 

optimal conditions within their physiological tolerance (phenotypic plasticity), and/or 

adapting to the new conditions by rapid evolutionary (genetic) change over generations 

(adaptation) (Mills 2013; Harrisson et al. 2014). Climate change induced range shifts will 

depend on a combination of factors relating to the speed of the climate change, the 

permeability of the landscape, and the species-specific dispersal abilities (Schloss et al. 

2012). Species with lower dispersal abilities will be less able to track their preferred 

habitats, and will often be constrained to increasingly small habitat patches and exposed 

to new climatic conditions in situ (Allendorf et al. 2012). Adjusting to new stressors in situ 

can result in a first instance from phenotypic plasticity, but for long term persistence, 

evolutionary adaptations from standing genetic variation over generations are very 

important - responding to the environmental change and leading to environment-

dependent phenotype expression (Ghalambor et al. 2007, 2015; Barrett & Schluter 2008; 

Harrisson et al. 2014). Given the importance of evolutionary factors there is a need for 

‘evolutionary conservation’ – an approach to conservation that maximises genetic 

variability of species in order to potentiate beneficial associations with the environment, 

i.e. maximising the ‘evolutionary potential’ (Eizaguirre & Baltazar-Soares 2014). An 

evolutionary conservation approach is particularly important for threatened and patchily 

distributed species with limited dispersal ability, since decreasing effective population 

sizes (Ne) leads to loss of genetic diversity, increased genetic drift and inbreeding, and 

therefore less fit populations – a sequence known as the ‘extinction vortex’ (Frankham 

et al. 2010).  

Given the importance of genetic diversity for natural populations, one of the main 

challenges currently faced in conservation planning is to maximise the species 

evolutionary potential by defining and being guided by appropriate conservation units 

(CUs) in an evolutionary context (Reed & Frankham 2003; Balkenhol et al. 2016). 

Following this approach the best established CUs are ‘evolutionarily significant units’ 

(ESUs) and although various definitions have been proposed over the years, there is 

common acceptance that ESUs should reflect major genetic diversity within species 

(Ryder 1986; Moritz 1994; Funk et al. 2012).  
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Figure 1. Scheme of the categorisation of conservation units (CUs) into different subtypes, as adapted from Funk et al. 

(2012). Black dots represent populations, zig-zag lines of different thickness represent barriers to dispersal of different 

strengths (e.g. rivers or mountain ranges of different magnitude), and the shading gradient represents an ecological 

gradient associated with adaptive variation. Rectangles of different colour represent the different subtypes of CU: 

evolutionarily significant units (ESUs, thick black line) – defined using all identified loci and representing groups of 

populations with different evolutionary histories; management units (MUs, grey line) – identified using neutral loci and 

representing groups of populations that maintain current gene flow; adaptive units (AUs, red line) – identified using outlier 

(putatively adaptive) loci and representing groups of MUs that have similar allele frequencies. In summary, on this scheme, 

ESUs, AUs and MUs are all CUs; an MU is always within one particular ESU and one particular AU; ESUs and AUs are 

two different ways of characterising groups of MUs; ESUs and AUs may or may not be equivalent (in this hypothetical 

example they are not). 

 

With the arrival of genomic tools, the definition of CUs can now encompass greater 

detail of the species neutral and adaptive variation to provide a more accurate 

classification of two further subtypes of CU: management units (MUs) and adaptive units 

(AUs), respectively (Figure 1, Moritz 1994; Funk et al. 2012). The combination of such 

comprehensive genomic datasets with species ecology and the landscape, allows better 

predictions on the effects of habitat and climate change on species distribution and 

genetic variation (Steiner et al. 2013; Balkenhol et al. 2016). In a genomic context, Funk 

et al. (2012) proposed that ESUs should be identified using all available loci (e.g. SNPs), 

reflecting the overall evolutionary processes that have shaped genetic variation up to the 

present (i.e. biogeographic, demographic, adaptive, etc.); then, by identifying neutral and 

adaptive loci, we can respectively determine MUs, that reflect groups of populations 

within ESUs that are connected by current gene flow, and AUs, that reflect groups of 

MUs sharing adaptive variation (Figure 1). While AUs are important to promote different 

adaptive groupings of MUs and to maintain the current evolutionary potential of ESUs 

(Funk et al. 2012), MUs are the basis for short-term management of ESUs, more 

indicative of population monitoring and demographic studies (Moritz 1994). However, 
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there are some caveats in terms of the influence of species history on the currently 

observed genetic structure, important in the definition of MUs, given that such species 

history may represent events such as demographic responses to the most recent glacial 

cycles (phylogeographic history), rather than reflecting current connectivity – a type of 

‘time lag’ (Landguth et al. 2010; Wang 2010). Especially at broader geographic scales, 

effects of phylogeography or isolation-by-distance (IBD) might become more difficult to 

parse from current gene-flow (Lowe & Allendorf 2010). Given the effects that the ‘time 

lag’ might have on current genetic variation, in this study we build upon the proposal of 

Funk et al. (2012), using an approach that controls for the species phylogeographic 

history and IBD in defining current gene flow between MUs, and hence better assessing 

their functional connectivity. Furthermore, while AUs can be identified from loci under 

divergent selection between populations (Funk et al. 2012), in cases where there are no 

functional studies relating genotypes to phenotypes or the environment, we argue that 

overall measures of ‘adaptive’ genetic diversity (based, for example, on FST outlier loci 

detection) should be used as a proxy for species ‘adaptive potential’ (Eizaguirre & 

Baltazar-Soares 2014), without targeting particular loci assumed to have associations to 

the environment. Thus, prioritisation of CUs should aim to detect and preserve distinctive 

genetic diversity, especially in small and isolated populations that are susceptible to 

extinction (Hampe & Jump 2011). Isolated CUs require high logistic and financial 

investment for their preservation, which highlights the importance of testing for 

connectivity/isolation between CUs for conservation planning. Usually, connectivity is 

evaluated by determining the species distribution model with the best fit to the observed 

genetic variation and to assume that areas with high species presence suitability 

between populations are the most likely dispersal corridors (Johnson & Omland 2004; 

Balkenhol et al. 2016). These connecting areas are thought of as areas of functional 

connectivity and are often targets for conservation efforts in order to avoid genetic 

isolation. Here we propose that genetic data can be included in the connectivity 

estimation model, to integrate the areas of climatic suitability (inferred from the species 

presence probability) with gene flow (a genetic connectivity matrix), providing realistic 

functional connectivity between MUs.  

We evaluated our approach using data for an Iberian endemic rodent, that is ‘near-

threatened’ according to the IUCN: the Cabrera vole, Microtus cabrerae (Fernandes et 

al. 2008a). This species is highly specialised to wet meadows and perennial herb 

communities near small streams and temporary ponds across the thermo- and meso-

mediterranean bioclimates, and is typically distributed as metapopulations, often 
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subjected to high landscape dynamics (Rivas-Martínez 1981; Pita et al. 2006, 2007; 

Luque-Larena & López 2007). The main threats for the Cabrera vole relate to habitat 

reduction by husbandry activities that lead to smaller, more isolated and more 

susceptible populations restricted to the increasingly smaller habitat patches available 

(Pita et al. 2014). In this context, the protection of these sparsely distributed habitat 

patches that appear and disappear through both space and time is likely to reduce the 

susceptibility of more isolated metapopulations to extinction, preventing a generalised 

loss of genetic diversity (Frankham et al. 2010; Mills 2013). Previous phylogeographic 

studies identified two main mitochondrial lineages that likely diverged during and after 

the Last Glacial Maximum and that are now in secondary contact (Barbosa et al. 2017). 

However, the observed nuclear differentiation (based on the analysis of a few autosomal 

and sex-linked loci) was very low overall and inadequate to define CUs. In the present 

study, we use genomic tools to elucidate CUs and we use a multidisciplinary approach 

(based on genetic, ecological and climate suitability data) to evaluate population 

connectivity and determine potential corridors, helping to establish conservation priorities 

for the MUs of the Cabrera vole. We finally discuss these results in the light of currently 

defined conservation practices for the species. 

 

Figure 2. Map of the Iberian Peninsula with the distribution of the Cabrera vole (Microtus cabrerae) in grey (Barbosa et 

al. 2017); dots represent the sampled populations used for the GBS analyses and their size is proportional to the number 

of samples (Table S1, Supporting Information); colours of the dots represent their assignment to the four geographic 

nuclei as defined by Garrido-García et al. (2013) and Barbosa et al. (2017): Lusocarpetan (Lc, orange), Montiberic (Mb, 

purple), Betic (Bt, blue) and pre-Pyrenean (pP, green).  
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3. Material and methods 

Overall population structure 

In this study we performed genotyping-by-sequencing (GBS; Elshire et al. 2011) at 

the Cornell Genomic Diversity Facility on 107 Cabrera vole samples following the same 

protocol as in White et al. (2013). All samples were previously used in Barbosa et al. 

(2017), and are distributed in 22 localities comprising individuals within 10 km of each 

other (Figure 2 and Table S1). Filtering and SNP calling were performed using the 

UNEAK pipeline (Lu et al. 2013), where we defined a minimum base call of five reads, a 

maximum locus and individuals missing data of 20% and 30%, respectively. Post 

processing was performed to combine forward and reverse reads of the same loci and 

exclude potential paralogs following White et al. (2013). We then performed a principal 

coordinate analysis (PCoA), using the dudi.pco function of the ade4 package in R (Dray 

& Dufour 2007), to visualise the distribution of genetic variance between the Cabrera 

vole individuals, in a model-free approach. To evaluate the species evolutionary history 

using genomic data we generated a maximum clade credibility tree following Lischer et 

al. (2014) using the entire dataset (‘all loci’), performing a random sampling of the 

genotypes with the software RRHS (1000 replicates). Genetic distances were calculated 

with the Dnadist program of the PHYLIP package (Felsenstein 1993) using p-distances, 

and phylogenomic trees were inferred using a neighbor-joining approach implemented 

in the program Neighbor of PHYLIP. We summarised the trees by calculating a majority 

rule consensus tree with mean branch length in SplitsTree v4.13 (Huson & Bryant 2006). 

We finally performed a simple Mantel test (Mantel 1967) to test for isolation-by-distance 

(IBD) comparing all pairs of individuals and using the function mantel from the R package 

ecodist (Goslee & Urban 2007). We plotted Nei’s genetic distances (Nei 1972, 1978), 

calculated using the function dist.genet from the ade4 R package, against Euclidean 

geographic distances to visualise the trend. For this analysis we also evaluated the local 

density of points, measured using a two-dimensional kernel density estimation with the 

function kde2d from the MASS R package (Venables & Ripley 2002). 

 

Delimitation of conservation units (CUs) 

Evolutionarily significant units (ESUs): To detect ESUs we used the software 

STRUCTURE (Pritchard et al. 2000) to test for genetic subdivision using all loci. For that 

we calculated five replicates of each K (1 – 23) with 20 000 iterations each (10% burnin). 

From this analysis we determined the best-supported number of populations (KESU) as 
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determined by the Evanno method (Evanno et al. 2005). Gene diversity [�̂�, Nei (1987)] 

and pairwise population differentiation [FST, Weir & Cockerham (1984)] were calculated 

respectively within and between the defined ESUs in Arlequin v3.5 (Excoffier & Lischer 

2010). The significance of the �̂� comparisons was assessed using one-way ANOVA and 

the Tukey HSD post-hoc test (Abdi & Williams 2010). The significance of the FST values 

comparison was assessed through 100 bootstraps over loci using the function diffCalc 

implemented in the diveRsity R package (Keenan et al. 2013). 

 

Management units (MUs): To identify MUs we first distinguished between neutral 

loci and outlier loci (potentially under selection). For that we performed an FST outlier 

analysis using BayeScan v2.01 (Foll 2012) to define ‘neutral loci’ and ‘outlier loci’ 

datasets. We set the prior odds for the neutral model to 1000 (recommended when there 

are thousands of markers), and Log10 values of the posterior odds (PO) larger than 1.5 

were taken as ‘very strong’ evidence for selection (Foll 2012). We then analysed the 

‘neutral loci’ in STRUCTURE (Pritchard et al. 2000) to test for genetic subdivision within 

each ESU. We assigned each individual to their respective KESU and then ran five 

replicates of each K (1 – 23) with 20 000 iterations each (10% burnin), initialising the run 

at the KESU (STARTPOPINFO option) to determine the best number of KMU populations 

given the ESU structure previously obtained. Gene diversity (�̂�) and pairwise population 

differentiation (FST) were calculated respectively within and between the defined MUs in 

Arlequin v3.5 (Excoffier & Lischer 2010). For each of the populations (1-22) we 

additionally calculated the inbreeding coefficient (FIS). 

Prioritising MUs for conservation: For each MU we calculated a measure of 

population distinctiveness, the Shapley metric (SH), which is similar to the evolutionary 

distinctiveness metric used by the Zoological Society of London 

(www.edgeofexistence.org), with the difference that it can be estimated from an unrooted 

tree (Volkmann et al. 2014). For this we used the pairwise FST values between all pairs 

of MUs to build a NeighborNet network using SplitsTree v4.13 in order to obtain split 

weights for the calculations of SH. These measures, together with the expected degree 

of isolation obtained from the functional connectivity analysis (see below), were used to 

prioritise populations based on uniqueness and isolation.  

 

Adaptive units (AUs): To test for differentiation of AUs, we evaluated adaptive 

variation by calculating an index of adaptive divergence, based on Bonin et al. (2007), 

where the allele frequencies of the ‘outlier loci’ are compared between MUs. For that we 
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calculated the average MU allele frequency of the alleles at each of the three ‘outlier 

loci’. We then evaluated the correlation between different MUs for ‘outlier loci’ allele 

frequencies using the rcorr function, applying the Spearman test for data not normally 

distributed, from the Hmisc R package (Harrell Jr 2008). MUs with allele frequency 

correlations above 95% (and p < 0.05) were considered as the same AU. The tests 

comparing all groups were performed using one-way ANOVA and the Tukey HSD post-

hoc test (Abdi & Williams 2010). Finally, we averaged across all three loci and depicted 

the assignment of each population in the study area to a gradient from fixation of allele 

A to fixation of allele B for a more intuitive visualisation of adaptive divergence. 

 

Determining functional connectivity between CUs 

Figure 3 represents a workflow of our analysis: first, we obtained an ecological 

niche model (ENM) for the Cabrera vole using the model described in Mestre et al. 

(2015), except that we estimated it at a 1x1 km scale (Figure 3A). We then used 

Circuitscape (Shah & McRae 2008) to generate a connectivity map between all samples 

based on that ENM (Figure 3B). For a broad-scale approach, circuit theory is relatively 

insensitive to choice of cell size and it has been shown to outperform conventional gene 

flow models by assuming that organisms are capable of using the entire landscape 

(McRae & Beier 2007). Also, circuit theory has been shown to outperform standard 

models of genetic differentiation because it incorporates effects of 

environmental/landscape resistance and range shape, and does not assume that gene 

flow is mediated by single, optimal pathways, but instead takes into account how alleles 

move over multiple pathways through intervening populations over many generations 

(McRae 2006; McRae & Beier 2007). In our approach, the ENM was not fitted to the 

genetic data but was only based on ecological data instead, to avoid redundancy when 

later incorporating the genetic connectivity matrix (Figures 3C and 3D). Secondly, we 

created a genetic connectivity matrix in R which converted the ‘neutral’ SNP genepop 

file into a distance matrix of percentage of allelic dissimilarity using the function diss.dist, 

part of the poppr R package (Kamvar et al. 2014, 2015). With this matrix we performed 

a distance based redundancy analysis (dbRDA) to control for the effect of IBD and 

phylogeographic history on the observed genetic divergence (Figure 3C). For this we 

used the capscale function from the vegan package in R (Oksanen et al. 2013), 

correlating the individuals’ pairwise percent of allelic dissimilarity to a) their Euclidean 

geographic distance as a proxy for isolation-by-distance (GEO, Figure 3C), and b) to a 

binary distance matrix representing historical fragmentation among sampled 
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populations, as a proxy for phylogeographic history (PHY, Figure 3C). For this binary 

distance matrix we assigned a value of 1 to pairs of individuals separated during specific 

historical events and 0 to pairs that were not historically separated. In our case we 

divided the samples in the three ESUs identified in this work, which correspond to the 

three groups identified in previous work on the phylogeography of the Cabrera vole 

during the Younger Dryas (Barbosa et al. 2017). 

 

Figure 3. Incorporation of genetic differentiation between populations into ecological niche modelling and connectivity 

inference between all 22 populations of Cabrera vole used for GBS analysis (see Figure 2). A. Ecological niche model: 

BIOMOD probability of presence of the Cabrera vole in the Iberian Peninsula (Mestre et al. 2015). B. Environmental 

connectivity: Circuitscape connectivity analysis between the 22 populations studied using the ecological niche model as 

a conductance matrix. C. dbRDA: Distance based redundancy analysis testing the effect of predictor variables – 

geographic distance (GEO) and phylogeographic history (PHY), here shown with hypothetical values – in explaining the 

percent of allelic dissimilarity (AD) using the function capscale (AD ~ GEO + PHY) implemented in the vegan R package 

(Oksanen et al. 2013): ADconst – AD constrained by the predictor variables; ADresVar – residual variation, i.e. not constrained 

by the predictor variables; phylogeographic history (PHY) – binary pairwise matrix with 0 and 1 for populations respectively 

connected and separated during given past time event, in our case the Younger Dryas (Barbosa et al. 2017), where lines 

represent barriers and population colours represent populations in the same group. Equation 1. Genetic connectivity 

(GC): inverse of the AD residual variation (1 – ADresVar); Equation 2. Pairwise average connectivity ( ) of each 

population to every other. D. Genetic connectivity: Interpolation of  to the study area. E. Functional connectivity: 

Product of environmental and genetic connectivity maps. For maps A, B, D and E, grey and red represent low and high 

suitability/connectivity, respectively. For purposes of comparison, all maps present normalised values varying from 0 to 1. 
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The dbRDA provides the percentage of variation explained by each explanatory 

variable, the percentage of variation explained by the conditional variance (in the case 

of the conditional tests) and the unconstrained variation (i.e. not explained by the tests). 

We further calculated pseudo-F values, which is a measure of the significance of the 

overall analysis, along with its significance, using the anova.cca function from the vegan 

R package (Oksanen et al. 2013). Residual variation from this analysis was inverted to 

represent similarities (equation 1, Figure 3) and then assumed to represent 

contemporary gene flow. We then used this matrix to calculate the average pairwise 

percent of genetic connectivity between all pairs of populations (equation 2, Figure 3). 

This variation was then interpolated into the study area using standardised inverse 

distance weighting (IDW) in QGIS v2.4.0 (QGIS Development Team 2008) (Figure 3D). 

To create the functional connectivity map, we multiplied the environmental and genetic 

connectivity maps using a raster calculator in QGIS, where realised connectivity (genetic 

connectivity) then shapes the predicted connectivity (environmental connectivity), 

highlighting the connectivity of suitable environmental/landscape corridors that are 

maintaining gene flow between populations (Figure 3E).  

Finally, for each population we calculated an average cost for individuals to reach 

other populations over time by first inverting the values of the matrix (1 – Functional 

Connectivity) and then calculating the least cost paths (LCP) between all pairs of 

populations using the function costDistance implemented in the gdistance R package 

(van Etten 2012). We averaged and normalised between 0 and 1 all pairwise LCP for 

each sampled locality to represent their genetic, geographical and ecological isolation. 

 

4. Results 

We performed GBS on 107 Cabrera voles from 22 populations, obtaining 3 341 

unique single nucleotide polymorphisms (SNP) with less than 20% missing data for loci 

and 30% missing data for samples. The two principal coordinates of the PCoA analysis 

explained 13.9% or the total genetic variation and reflected very closely 

latitude/longitude, identifying three main clusters: Lusocarpetan (Lc) – 42 voles, 

Montiberic with Betic (Mb+Bt) – 55 voles and pre-Pyrenean (pP) – 10 voles (Figure S1A, 

Supplementary information). The main clusters of the neighbor-joining majority rule 

consensus tree correspond to geographic nuclei with high bootstrap support for most 

splits, including all the basal nodes, and also separate Mb from Bt and population 17 

within Mb (Figure S1B, Supplementary information). The IBD analysis indicated a strong 
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correlation between genetic and geographic distance (r2 = 0.40, p = 0.001) (Figure S2, 

Supplementary information). 

 

Conservation units 

The STRUCTURE analysis of ‘all loci’ (3 341 SNPs) identified three main 

populations (KESU) or ESUs (Figures 4A and S3A, Supplementary information): ESU1 

(42 voles, populations 1 – 13), ESU2 (55 voles, populations 14 – 21); and ESU3 (10 

voles, population 22). Levels of gene diversity (�̂�) of ESU2 were significantly higher than 

ESU3 but not ESU1 (Table 1). Levels of FST show ESU1 and ESU2 as the most similar 

and ESU3 to be the most distinctive (Table 1). The STRUCTURE analysis also indicated 

substantial admixture between ESU1 and ESU2 (Figures 4A and S3A, Supplementary 

information).  

 

Table 1. Genetic diversity and divergence values using ‘all loci’ dataset (3 341 SNPs) between the three ESUs identified 

for the Cabrera vole: ESU1 (populations 1 – 13), ESU2 (populations 14 – 21) and ESU3 (population 22) (see Figure 4A). 

Diagonal shows average gene diversity (�̂�) over loci [and respective 95% confidence interval (CI)], and below diagonal 

shows average pairwise FST values (and respective 95% CI). All values differ significantly from zero (p < 0.05). 

 

 ESU1 ESU2 ESU3 

ESU1 
0.209 

(0.180-0.240) 
  

ESU2 
0.080 

(0.076-0.085) 

0.259 

(0.230-0.290) 
 

ESU3 
0.245 

(0.237-0.256) 

0.196 

(0.194-0.202) 

0.148 

(0.100-0.190) 

  

 

Table 2. Genetic diversity and divergence values using the ‘neutral loci’ dataset (3 229 SNPs) between the five MUs 

identified for the Cabrera vole: MU1 (populations 1 – 13), MU2 (populations 14 – 16), MU3 (populations 17 – 19), MU4 

(populations 20 – 21) and MU5 (population 22) (see Figure 4B). Diagonal shows average gene diversity (�̂�) over loci [and 

respective 95% confidence interval (CI)], and below diagonal shows average pairwise FST values (and respective 95% 

CI). All values differ significantly from zero (p < 0.05). 

 

 MU1 MU2 MU3 MU4 MU5 

MU1 
0.205 

(0.180-0.230) 
    

MU2 
0.121 

(0.114-0.127) 

0.240 

(0.19-0.290) 
   

MU3 
0.088 

(0.084-0.093) 

0.081 

(0.077-0.087) 

0.257 

(0.210-0.300) 
  

MU4 
0.163 

(0.154-0.174) 

0.156 

(0.147-0.165) 

0.113 

(0.105-0.120) 

0.185 

(0.120-0.250) 
 

MU5 
0.246 

(0.244-0.248) 

0.247 

(0.244-0.249) 

0.220 

(0.219-0.221) 

0.337 

(0.329-0.345) 

0.144 

(0.100-0.190) 
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Figure 4. Definition of conservation units (CUs) for the Cabrera vole: A) grouping of populations into evolutionarily 

significant units (ESUs, where numbers refer to populations in Table S1) using ‘all loci’ (3 341 SNPs) and showing 

proportion of assignment to ESU1 (orange), ESU2 (dark blue) and ESU3 (green); for reference, the distribution of the two 

main mitochondrial lineages identified in Barbosa et al. (2017) is shown, where west and east lineages are represented 

in orange and blue, respectively, and the purple circle represents a lineage that is not closely related to either; B) grouping 

of populations into management units (MUs) using the ‘neutral loci’ dataset (3 229 SNPs) showing proportion of 

assignment to MU1 (orange), MU2 (purple), MU3 (dark blue), MU4 (light blue) and MU5 (green); C) grouping of 

populations into adaptive units (AUs) based on ‘outlier loci’ dataset (3 loci) showing average assignment to AU1 (orange) 

and AU2 (dark blue) alleles; and D) combined view of the Cabrera vole CUs following the same scheme as in Figure 1. 

For parts A, B and C, the pie area represents number of individuals analysed from 1 – 13 (e.g. population 10 and 18, 

respectively). 
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For the definition of MUs and AUs we distinguished between neutral and adaptive 

variation by identifying FST outliers, of which there were 14, three with high FST values (it 

is this more restrictive set of loci that we refer to as the ‘outlier loci’ from here on - Figure 

S4, Supplementary information). Using the ‘neutral loci’ (3 229 SNPs), the STRUCTURE 

analysis recovered five populations (KMU) or MUs (Figure 4B): MU1 (42 voles, 

populations 1 – 13), MU2 (19 voles, populations 14 – 16), MU3 (27 voles, populations 

17 – 19), MU4 (9 voles, populations 20 – 21) and MU5 (10 voles, population 22). 

Considering �̂�, the observed values did not differ significantly (p > 0.05) between most 

MUs, except MU2 and MU3 from MU5 (Table 2). FST was lowest between MU2 and MU3 

and highest between MU4 and MU5, although values between MU5 and all other MUs 

are generally high (Table 2). FIS values per population indicate that there are very 

different values of inbreeding within populations of each MU, no MU showing a 

particularly higher susceptibility to inbreeding than any other (Table S2, Supplementary 

information).  

In order to prioritise MUs, we calculated the Shapley metric (SH) using FST 

distances between MUs to generate a NeighborNet network using the software 

SplitsTree (Figure S5, Supplementary information). SH values in increasing order from 

lower to greater contribution of MUs to the Cabrera vole genetic variation were obtained 

for MU3 (0.03), MU2 (0.06), MU1 (0.08), MU4 (0.10) and MU5 (0.18).  

Considering the five identified MUs we used the ‘outlier loci’ for the definition of the 

AUs. This resulted in a separation of MU1 from the remainder MUs, which show a 

correlation above 95% in their ‘outlier’ allele frequencies, with p < 0.05 (Table S3, 

Supplementary information). This variation is depicted in Figure 4C where AU1 has 

mostly A alleles and AU2 has mostly B alleles, but there appears to be more AU2 alleles 

in AU1 than vice versa, similar to that observed with ‘all loci’ from ESU2 into ESU1. 

 

Functional connectivity between populations 

The environmental connectivity map obtained from the ecological niche model 

(Figure 3A, Mestre et al. 2015) is shown in Figure 3B. For the genetic connectivity 

analysis, we performed a dbRDA controlling for geographic distance (GEO) and 

phylogeography (PHY) on the observed genetic variation. Tests for each predictor alone 

(marginal tests) showed significant effects of both GEO and PHY in explaining genetic 

variation (74.8% and 18.1%, respectively; Table S4, Supporting information). When we 

controlled for the other variable (conditional tests), GEO still significantly explained 

56.7% of neutral genetic variation, but PHY explained none. Residual variation after 
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controlling for both variables (GEO+PHY) represented 25.2% of the total genetic 

diversity, which was used to calculate the percent of allelic dissimilarity (AD) per pair of 

populations (Figure 3C and Table S4, Supplementary information). Applying Equations 

1 and 2 (Figure 3), we interpolated these values in the study area to obtain a genetic 

connectivity map (Figure 3D). The functional connectivity display that we ultimately 

obtained (Figure 3E) shows high connectivity in the southwest and low connectivity in 

the southeast, and the pre-Pyrenees (i.e. ESU3/MU5) also highly isolated (population 

22, Table S1, Supplementary information). Connectivity between MU2 and MU3 appears 

to be maintained through populations 16 and 17, rather than through more central 

possibly unsampled populations between both MUs. 

 

5. Discussion 

Population structure and conservation units 

The Cabrera vole genomic diversity appears to fit the geographic division into 

population nuclei described by Garrido-García et al. (2013) together with a strong pattern 

of isolation-by-distance (IBD) (Figures 2, 4A, and S1 and S2, Supplementary 

information). This may be indicative of the low dispersal ability of the species, which in 

terms of conservation may lead to increasingly isolated populations given increasing 

habitat degradation and climate change. In the absence of dispersal corridors, such 

isolated populations are susceptible to genetic drift and inbreeding (Allendorf et al. 2012; 

Balkenhol et al. 2016).   

Evolutionarily significant units (ESUs): We identified three Evolutionarily 

Significant Units (ESUs): ESU1 overlaps with the Lusocarpetan (Lc) geographic nucleus, 

ESU2 with the Montiberic (Mb) and Betic (Bt), and ESU3 with the pre-Pyrenean (pP) 

(Figures 2 and 4A). Previous phylogeographic studies also found an east/west split at 

the mitochondrial level that was further supported using phylogeographic modelling with 

autosomal and sex-linked loci, where the west was represented by Lc – ESU1, and the 

east was represented by Mb, Bt and pP – ESU2 and ESU3 (Barbosa et al. 2017). In the 

present study this split corresponds to the first population division (K=2) of the 

STRUCTURE analysis using both ‘all loci’ (Figure S6, Supporting information) and 

‘neutral loci’ datasets (data not shown - equivalent results as for ‘all loci’). However, in 

other analyses we show ESU3 to be very divergent from the remaining groups, including 

ESU2: it has significantly lower �̂�, likely reflecting its degree of geographic isolation and 

possibly a declining trend in population size; it is also more divergent from ESU1 than 
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ESU2, suggesting a closer common origin with the south-eastern Iberian populations 

(Table 1 and Figure S6, Supporting information: K = 2). In our study we also found 

evidence of admixture between ESU1 and ESU2 (orange and blue, respectively; Figures 

4A and S3A, Supplementary information), with a gradient from a higher proportion of 

ESU2 alleles in ESU1 populations closer to ESU2 (e.g. populations 12 and 13, Figure 

2), to their absence in the southwestern-most part of ESU1, furthest away from ESU2 

(populations 1, 2 and 4, Figure 2). This is in clear contrast with the mitochondrial results 

obtained in Barbosa et al. (2017), where the authors described a west lineage (ESU1) 

presence in southern east lineage populations (ESU2). Already with the small number of 

nuclear loci examined in Barbosa et al. (2017) there were indications of mito-nuclear 

discordance, but it is now much clearer in our study given the extensive coverage of the 

nuclear genome. Thus, on the basis of the comparison of the mitochondrial data in 

Barbosa et al. (2017) and the nuclear data in the present study, it appears that the mito-

nuclear discordance originates between ESU1 and ESU2 with nuclear ESU2 alleles in 

the west and mitochondrial ESU1 alleles in the east. Various processes can lead to mito-

nuclear discordance, most commonly sex-biased dispersal, demographic and/or 

adaptive processes, and these can arise in situ or following isolation (primary vs. 

secondary contact, Toews & Brelsford 2012). This mito-nuclear discordance highlights 

the fact that there has been past connectivity between both western and eastern ESUs, 

which is important to take into account when delineating conservation strategies. For 

further discussion see below. 

 

Management units (MUs): When we tested for further substructure using only 

‘neutral’ variation, we found that only ESU2 was subdivided in three MUs (MU2, MU3 

and MU4, Figures 4B and S3B, Supplementary information). This subdivision may be 

due to the high degree of isolation of the populations found in ESU2 that, together with 

declining population sizes, has led to a divergence of allele frequencies between these 

populations (Allendorf et al. 2012; Mills 2013). Moreover, the admixture observed in MU1 

appears to originate from MU3 rather than the neighbouring MU2 (Figures 4B and S3B, 

Supplementary information). This might indicate a previous connection between MU1 

and MU3 that could have been lost or interrupted by MU2 in more recent times. Of all 

management units, MU2 and MU3 are the most diverse, but only MU5 shows 

significantly lower gene diversity than other MUs. MU5 is also the most divergent 

[especially from MU4 (Table 2)], which means that this MU, as well as being the one with 

the lowest genetic diversity, appears to have very distinct genetic characteristics. This 
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fact is shown by the Shapley metric that holds MU5 as the one with the highest 

contribution to the overall genetic diversity of the Cabrera vole (Figure S5, 

Supplementary information). This is again likely a reflection of the small size and long 

term isolation of this CU that should be considered important to the overall genetic 

constitution for this species. Additionally, there appears to be further substructure at 

smaller scales, especially within MU3 (Figure S6, Supporting information: K = 8, 

populations 17 – 19), mirroring the lower overall functional connectivity between 

populations in this MU (Figure 3E and Table S2, Supporting information). All of this 

contributes to population isolation in the Cabrera vole, of concern given that its 

metapopulation structure relies heavily on dispersal to avoid inbreeding depression and 

getting caught in an ‘extinction vortex’ (Frankham et al. 2010; Allendorf et al. 2012; 

Balkenhol et al. 2016). Thus, the effects of a decreasing population trend and loss of 

habitat may lead to the loss of important genetic variation in many populations of the 

Cabrera vole (Pita et al. 2014).  

 

Adaptive units (AUs): When examining adaptive variation – based on the ‘outlier 

loci’ - we found two AUs that divide the Cabrera vole populations in an east-west manner, 

in the same way previous mitochondrial results did (Barbosa et al. 2017), however with 

a contact zone more similar to that observed in the present study with all nuclear loci 

(Figures 4A and 4C). Although we believe our method for detection of AUs to be 

appropriate, caution is needed with our particular results with the Cabrera vole given the 

small number of outlier loci detected. The similarity of the result with AUs and all nuclear 

loci may be because the detected ‘adaptive’ variation is not in fact adaptive but instead 

reflects a random distribution of genetic variation that resulted in outlier loci; alternatively, 

the analysed ‘outlier loci’ may truly be revealing an adaptive introgression of ESU2 into 

ESU1, which also influences the analysed ‘neutral loci’ (Figure 4B). There may be further 

substructure of the identified AUs, however due to the low number of outlier loci (and 

therefore alleles) there is not enough power to detect it. In any case, we wish to argue 

that our generalised approach is appropriate because locus specific associations of 

adaptive variation with the environment need to be very well substantiated to be used for 

conservation decision making – there is a high potential for erroneous associations that 

may lead to incorrect prioritisation of populations (Balkenhol et al. 2016). Thus, in the 

majority of cases a general maximisation of ‘adaptive’ genetic diversity should be 

preferred over choosing specific adaptive loci as a means to increase the species overall 

adaptive potential. 
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Mito-nuclear discordance 

Altogether, the GBS data support the division of the Cabrera voles into three ESUs, 

two of which (ESU1 and ESU2) have had extensive secondary contact after a period of 

isolation. However there is a decay of nuclear ESU2 alleles from east to west but a decay 

of mitochondrial ESU1 alleles from west to east (Figure 4A). Mito-nuclear discordances 

arise from various processes: incomplete lineage sorting, sex-biased dispersal, 

mitochondrial DNA introgression, demographic disparities or contact-zone movement 

(Toews & Brelsford 2012). Incomplete lineage sorting tends to result in unstructured 

variation, at odds with the high level of nuclear and mitochondrial structuring observed 

here (Figure 4); sex-biased dispersal can be associated with monogamous species such 

as the Cabrera vole, but ecological and genetic studies in this species have shown little 

to no evidence of such a phenomenon (Lawson Handley & Perrin 2007; Pita et al. 2014; 

Barbosa et al. 2017); mitochondrial DNA introgression could be a viable hypothesis given 

that there is extensive mitochondrial admixture from the west into the east lineage not 

found for the nuclear data, however previous studies showed that the whole 

mitochondrion is under purifying selection, so there is no particular advantage for ESU1 

mitochondria to be expanding (Barbosa et al. 2017); finally, it is possible that the 

secondary contact zone between both lineages was initially located within what is now 

ESU1 and as this unit began to expand to the east, it displaced ESU2 haplotypes from 

western Iberia. However, at the same time, the mitochondria seem to have moved far 

beyond the current nuclear contact zone as west lineage mitochondrial haplotypes are 

widely represented in ESU2 (Figure 4). This leads once more to the possibility of 

mitochondrial DNA introgression and thus further studies on the mitochondrial variation 

of the species are needed to establish the actual processes behind this discordance. 

 

Functional connectivity 

The dbRDA results indicate a substantial influence of geography (74.8%) on the 

genetic variation we found in the Cabrera vole, supporting the finding that isolation-by-

distance (IBD) is a strong determinant of the neutral genetic variation (Table S4 and 

Figure S2, Supplementary information). The phylogeographic history of the Cabrera vole 

appears to be tightly linked with its demographic history, given that there is conditional 

genetic variation explained by phylogeography within that explained by geography 

(18.1%). However, the effect of phylogeography when controlling for geography was not 

significant. The residual genetic variation from the dbRDA analysis (25.2%), when 

combined with the environmental connectivity model (Figure 3B), shows lower 
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connectivity between the east and the west than would be expected given the ecological 

niche model alone (Figure 3A and 3E). It also shows a highly connected western Iberia 

and a patchier eastern Iberia, the latter especially prominent in both the extreme north 

and south of the species distribution. Thus, in the east the pre-Pyrenean CU 

(ESU3/MU5) again appears highly disconnected from the remaining populations, as is 

also the case for most populations from MU3 and MU4 (Figures 3E and 4, and Table S2, 

Supporting information). Interestingly, the connectivity between MU2 and MU3 appears 

to be via populations 16 and 17, with an inferred corridor between these populations. 

MU1, which is the largest CU, has higher connectivity between its populations, possibly 

reflecting a more homogenous landscape than the east of the Iberian Peninsula (Vera 

2004). Nonetheless, there is variation in connectivity within this CU, being higher in the 

southwest than the northeast. 

With climate change it is expected that the rear edge populations that are older 

and often more genetically diverse will either track the new environmental conditions or 

disappear (Hampe & Petit 2004). Thus there may be lineage extinctions if individuals are 

not able to track their preferred habitat, or mixing of these ancient lineages if they are 

able to move from their previous locations, possibly explaining the admixture levels 

observed in some of the Cabrera vole populations, e.g. MU2/MU3 and MU3/MU4 (Figure 

4B). Some CUs seem to have been connected in the past, and appear to continue to be 

connected – such as MU2 and part of MU3; while others seem to have been connected 

and have recently lost that connectivity or show greatly reduced gene flow – e.g. 

MU1/MU3 and MU3/MU4 [also supported by Barbosa et al. (2017)]; and finally, some 

have long been isolated from the main populations, like MU5 from all others.  

The new framework we have developed in this study to infer functional connectivity 

shows the importance of considering both demographic and phylogeographic processes 

when aiming to determine current gene flow. With this approach we were able to control 

for the effects of IBD and phylogeographic history on the current patterns of connectivity, 

and determine which populations have higher conservation priority given not only their 

contribution to the species genetic diversity (Figure S5, Supporting information), but also 

given their overall isolation (Figure 3E). Determining the level of genetic/geographic 

isolation of a given MU is very important in terms of conservation because it provides 

guidelines for effort allocation, which is especially important in a crisis discipline with 

often limited financial resources. Moreover, with climate change, these evolutionary 

conservation parameters are essential to estimate in our efforts to allow species to track 

their optimal habitat or survive the new conditions in situ.  
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Conservation guidelines 

The overall results suggest that varying conservation measures are needed to 

manage the different CUs of the Cabrera vole. Firstly, it is evident that the pre-Pyrenean 

CU (ESU3/MU5, Figure 4) is of very high conservation priority. This CU harbours genetic 

diversity not found anywhere else in the species distribution [Figures 4 and S1, S3 and 

S5, Supplementary information; see also Barbosa et al. (2017)] and it shows a high 

degree of isolation from the more central populations (Figure 3E and Table S2). At the 

opposite end of the spectrum is ESU1/MU1 (Figure 4): this CU is very widespread with 

similar levels of genetic diversity throughout. There is, however, some admixture present 

in the central Iberian mountains, down to the centre/south of Portugal, which might 

indicate past connectivity that has been lost, given the absence of a defined corridor from 

any of the MUs in ESU2 to ESU1 (Figure 3E). As a conservation priority, we suggest that 

the connectivity between ESU1 and ESU2 should be promoted through the maintenance 

of field verges in the inferred corridors associated to extensive agriculture, given that the 

species has a natural capacity to colonise these habitat patches in a stepping-stone 

manner (Mira et al. 2008; Pita et al. 2013). Within ESU2 the preservation of rear end 

populations is important, given that these possibly represent climate relicts associated 

with different ecological regimes than those found in the rest of the populations, thus 

having distinct adaptations and high genetic diversity (Hampe & Jump 2011; Barbosa et 

al. 2017). MU4 is in fact the second largest contributor to Cabrera vole genetic diversity 

(Figure S5, Supplementary information), and considering its level of functional isolation 

(Figure 3E), it is highly likely that this variation will be lost due to habitat conversion into 

farmland and increasing aridification. This is because, especially in this area of the 

species distribution, there have been many recent extinctions of previously existing 

populations due to habitat loss associated with overgrazing and agricultural expansion 

(Fernández-Salvador 2007; Garrido-García et al. 2013). 

In sum, all of the Cabrera vole CUs are unique and represent different and 

meaningful contributions to the species genetic diversity. In Spain, where most of the 

species genetic diversity is found, there should be a higher concern in maintaining and 

increasing the available habitat for the species, especially in the southern Betic (MU4) 

and the northern pre-Pyrenean (MU5) nuclei, which are the most threatened at this time. 

We further propose that the conservation of the Lusocarpetan geographic nucleus (MU1) 

should result from a combined effort of both Portugal and Spain, given that, although this 

is the most widespread and homogenous CU, it still encompasses many regional clusters 

of genetic diversity, some apparently expanding (in the northeast of Portugal) others 
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apparently declining (in the southwest of Portugal and central Spain), and maybe of 

importance for the future of this species in a context of human induced habitat changes. 
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7. Supporting information 

Table S1. Details of the localities and number of Cabrera voles sampled per locality. Individuals are grouped into localities 

when sampled within a 10 km radius and coordinates represent the centroid of those samples. 

Map 

code 
Latitude Longitude Nind Locality District/Province Country 

1 37.609 -8.794 5 Cabo Sardão Beja Portugal 

2 37.753 -8.755 7 Vila Nova de Milfontes Beja Portugal 

3 37.828 -8.523 2 Bicos Beja Portugal 

4 37.959 -8.771 7 Sines Setúbal Portugal 

5 38.098 -8.561 1 Grândola Setúbal Portugal 

6 38.632 -8.045 3 Évora Évora Portugal 

7 38.870 -8.725 2 Benavente Santarém Portugal 

8 39.763 -7.399 3 Monforte da Beira Castelo Branco Portugal 

9 41.343 -6.577 3 Mogadouro Bragança Portugal 

10 41.304 -7.183 1 Mirandela Bragança Portugal 

11 40.114 -5.256 4 Candeleda Ávila, Castilla y Leon Spain 

12 40.349 -4.350 2 Navas del Rey Madrid Spain 

13 40.622 -3.877 2 Becerril de la Sierra Madrid Spain 

14 39.861 -2.158 7 Las Valeras Cuenca, Castilla-la-Mancha Spain 

15 40.026 -1.817 11 Cañada del Hoyo Cuenca, Castilla-la-Mancha Spain 

16 39.508 -1.291 1 Utiel Valencia Spain 

17 38.730 -1.184 3 Yecla Murcia Spain 

18 38.512 -2.401 
10 Riopar Albacete, Castilla-la-Mancha Spain 

3 Paterna de la Madera Albacete, Castilla-la-Mancha Spain 

19 38.407 -2.597 11 Siles Jaén, Andalucia Spain 

20 37.895 -2.649 2 Canal de San Clemente Granada, Andalucia Spain 

21 37.950 -1.888 7 Caravaca de la Cruz Murcia Spain 

22 42.438 -0.466 10 Sabiñanigo Huesca, Aragón Spain 

Total   107    

Nind - Number of individuals sampled. Map code indicates the populations in Figure 2.
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Table S2. Inbreeding coefficient (FIS) for each population of Cabrera vole sampled and functional cost value representing 

normalised average genetic, geographical and ecological isolation of each sampled locality calculated using least cost paths 

(see text). Significant values of FIS (p < 0.05) are in bold.  

 

Map code indicates the populations in Figure 2. 

 

 

Table S3. Correlation of average allele frequency (%) of the three ‘outlier’ loci between MUs of the Cabrera vole identified 

in Figure 4B. Adaptive units (AUs) are represented by squares in thick lines, defined as those sharing more than 95% of 

allele frequency correlation (p < 0.05, bold). 

 MU1 MU2 MU3 MU4 MU5 

MU1 100     

MU2 -38 100    

MU3 -26 97 100 

 

 

MU4 -38 100 97 100  

MU5 -24 98 96 98 100 

 

 

 

 

Map code FIS Functional cost 

1 0.250 0.029 

2 0.126 0.000 

3 0.028 0.365 

4 0.161 0.052 

5 0.000 0.123 

6 0.237 0.418 

7 0.047 0.421 

8 0.021 0.529 

9 0.388 0.584 

10 0.000 0.587 

11 0.548 0.655 

12 0.512 0.666 

13 0.320 0.682 

14 0.136 0.754 

15 0.142 0.773 

16 0.000 0.730 

17 0.164 0.835 

18 0.076 0.940 

19 0.092 0.974 

20 0.442 1.000 

21 0.241 0.978 

22 0.146 0.961 
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Table S4. Results of the dbRDA analysis for ‘neutral loci’ (3 229 SNPs), testing the percentage of genetic variation (given by 

pairwise distance matrices) among individuals explained by two predictor variables, geographic distance (GEO) and 

phylogeographic structure (PHY). The first row for each predictor is a marginal test, calculating the percentage of variance 

(%Var) and respective F value explained by that predictor. When significant (p < 0.05, bold), we performed conditional tests 

controlling for the listed variable on the predictor. 

Predictor Conditional F %Var % Conditional % Unconstrained 

GEO  2.7 74.8 - 25.2 

 PHY 2.1 56.7 18.1 25.2 

PHY  11.5 18.1 - 81.9 

 GEO 0.0 0.0 74.8 25.2 

GEO + PHY  2.7 74.8 - 25.2 

Predictors: For the GEO matrix, distances between individuals are given in km. For the PHY matrix, individuals from the same 

ESU have distance 0, and individuals from different ESUs have distance 1.  

 

 

 

 

Figure S1. Clustering analysis using 107 Cabrera voles for the total SNP dataset (3 341 loci) (see text for further details). A) 

Principal coordinate analysis (PCoA) using the dudi.pco function implemented in the R package ade4 1.7.3 (Dray & Dufour 

2007). B) Majority rule consensus tree with random sampling haplotypes obtained using the RRHS software (1000 replicates); 

branch numbers indicates bootstrap values below 90%, values are indicated on the respective branch in red. Dots in both 

analyses represent samples coloured by the geographic nucleus of origin: Lusocarpetan (Lc, orange), Montiberic (Mb, purple), 

Betic (Bt, blue) and pre-Pyrenean (pP, green).  
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Figure S2. Isolation-by-distance plot between all Cabrera vole individuals. Nei’s distances provide the genetic distance 

measure. Black dots represent pairwise comparisons, with fitted trend line; colours illustrate dot density from low (blue) to 

high (red). *** p < 0.001. 

 

 

 

 

Figure S3. Population assignment cluster analysis for the Cabrera vole using the software STRUCTURE indicating the 

proportion of sample assignment to each of the inferred best K number of populations (colours) using A) ‘all loci’ (3 341 SNPs) 

to define the three evolutionary significant units (ESUs), and B) the ‘neutral loci’ dataset (3 229 SNPs) to define the five 

management units (MUs). Horizontal black bars and respective numbers refer to the sampled populations shown in the 

accompanying map and listed in Table S1. 
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Figure S4. BayeScan FST outlier analysis using 3 341 SNP loci from 107 Cabrera voles, considering the 22 sampled populations. 

FST for each locus (dots) is plotted against the Log10 of the posterior odds (PO). The grey area corresponds to PO between -1.5 

and 1.5, where there is low confidence in locus classification to either ’neutral loci’ or ‘outlier loci’. From the identified outliers 

(14 loci) we selected those with high FST for the ‘outlier loci’ dataset as they are assumed to represent markers under positive 

selection (3 loci); the 3 229 ‘neutral loci’, non-outlier, are shown on the left of the grey area; locus density is depicted with 

increasing darkness proportional to the overlap of the dots. 

 

Figure S5. NeighborNet network of the five MUs of Cabrera vole identified in Figure 4B, calculated using pairwise FST values 

(Table 2). Numbers on branches represent split weights [i.e. phyletic distance (Fitch 1997)] and numbers in red around each 

MU refer to their respective Shapley metric value. 
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Figure S6. Population assignment clustering analysis for the Cabrera vole using the software STRUCTURE indicating 

the proportion of sample assignment to each of the inferred K number of populations (colours) using ‘all loci’ (3 341 SNPs) 

from K=2 to K=8. Bars and respective numbers refer to the populations in Figure 2. 
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Non-invasive population genomics: applying genotyping-

by-sequencing to small mammal conservation 
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1. Abstract 

Collection of genetic data from elusive or endangered species poses a challenge 

for many conservation studies. Non-invasive genetic sampling (NiGS) does not require 

animal capturing or handling, but provides genetic data useful to answer a variety of 

ecological or evolutionary questions relevant to conservation-orientated studies. The 

main drawback of using NiGS is the low DNA quantity and quality, which demands 

special precautions in the early stages of sample collection to the final data analyses. 

Current directions involving NiGS include the optimization of novel high throughput 

sequencing techniques and the development of analytical tools that account for the 

inherent problems of non-invasive DNA. In this study we tested a simple, inexpensive 

protocol using GBS (Genotyping-by-Sequencing) on small mammal faecal samples and 

bones from owl pellets, as two means of monitoring small mammals without using 

invasive (trapping) techniques. As anticipated, results show a high proportion of non-

target DNA, with a maximum of 1.6% and 3.0% of reads belonging to the target species 

in faecal and bone DNA pools, respectively. However, we were able to recover the full 

panel of SNPs identified in previous genomic studies, with a low level of missing data 

per sample (4-6%). This novel approach allowed us to identify the geographic origin of 

both NiGS DNA pools (faecal and bones) when using a reference database previously 

obtained with tissue samples, although the genetic diversity of the NiGS DNA pools was 

low, for unknown reasons. Thus, we have shown that it is possible to obtain usable 

genomic data from NiGS DNA pools at low sequencing cost for non-model species, in 

this case using two viable methods for monitoring small mammals (faeces and bones 

from owl pellets). Our results open new opportunities in the application of genomic data 

for the conservation of elusive or endangered species using NiGS.  
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2. Introduction 

Our understanding of the field biology of rare species has benefited greatly from 

the use of genetic information (DeSalle & Amato 2004). However, collecting genetic data 

from elusive or threatened species poses a challenge, which may be seen by wildlife 

managers and conservation practitioners as a barrier to its applicability (Taylor et al. 

2017). Even so, over the past decade, numerous conservation-orientated studies have 

used non-invasive samples (e.g. faeces, hairs, feathers, skin, etc.) from endangered 

species to obtain DNA samples (Reed et al. 1997; Henry et al. 2011). Non-invasive 

genetic sampling (NiGS) does not require capturing or handling the animals, but provides 

genetic data for various applications that can have conservation relevance: species 

detection/distribution/abundance, phylogeography, population genetics, adaptation, 

social behaviour, hybridisation, predator diet, and forensics (Ogden 2011; Paupério et 

al. 2012; Barbosa et al. 2013, 2017; Bi et al. 2013; Mumma et al. 2015, 2016; Mestre et 

al. 2015; Bischof et al. 2016). The major drawback of using NiGS is the low quantity and 

quality of DNA obtained [e.g. Beja-Pereira et al. (2009)]. To overcome these problems, 

special precautions are necessary from sample collection to the laboratory bench and 

with data analyses, imposing severe quality control systems, which significantly increase 

the workload and costs per sample (Waits & Paetkau 2005; Beja-Pereira et al. 2009).  

The probability of successful NiGS strategies has increased with current 

improvements in DNA sequencing, such as the optimization of high throughput 

sequencing (HTS) for difficult samples and the development of analytical tools that 

account for the inherent problems of extraction of non-invasive DNA extraction (Perry et 

al. 2010; Bohmann et al. 2014; Peñalba et al. 2014; Costa et al. 2017). Although it is 

possible to sequence whole genomes using degraded DNA samples, such studies rely 

mostly on museum specimens that hold higher amounts of DNA than those found in 

samples like faeces, and on the existence of a reference genome (Rowe et al. 2011). 

Specifically for non-invasive samples, reduction of genome complexity is desirable to 

increase the chances of amplifying homologous genomic regions in different samples. 

This may be accomplished by using probes or hybridisation capture protocols (Andrews 

et al. 2016; Lynn et al. 2016). However, such techniques are technically challenging and 

costly as they require a priori definition of target sequences using a reference genome 

from a closely related taxon, thus limiting opportunities for non-model species (Bi et al. 

2013; Lynn et al. 2016). Moreover, the cost of analysing individuals using NiGS can 

become prohibitive given the low success of amplification of all genomic regions of 

interest. In these cases, it can be cost-effective to use restriction site associated next-
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generation DNA sequencing on pools of DNA, as long as there is enough DNA and its 

degradation is not too extensive (Schlötterer et al. 2014; Graham et al. 2015).  

A recent study by Beck & Semple (2015) analysed plant museum specimens with 

genotyping-by-sequencing (GBS), a restriction enzyme-based HTS technique (Elshire et 

al. 2011), to obtain informative single nucleotide polymorphisms (SNPs) from species 

with no previous genomic data. Additionally, an experimental study by Graham et al. 

(2015) has shown that restriction enzyme-based HTS methods are very robust to DNA 

degradation. These works gave credence to the application of restriction-based HTS to 

non-model species using small amounts of low quality DNA. In the present study, we 

applied GBS to DNA extracted from faecal samples and bones from owl pellets of a near-

threatened rodent endemic to the Iberian Peninsula, the Cabrera vole (Microtus 

cabrerae). Faeces and owl pellets represent two of the most readily detected types of 

non-invasive sampling for small mammals in general, and for this species in particular 

(Barbosa et al. 2013, 2017). Like the plant species analysed previously (Beck & Semple 

2015), the Cabrera vole does not have a sequenced reference genome, which is also 

typical for most small mammals, including endangered species. The goal of this study 

was to determine the possibility of gathering a substantial number of genome-wide SNPs 

from pooled DNA samples extracted from M. cabrerae faeces and skeletal material of M. 

cabrerae from owl pellets. Additionally, we wanted to test whether the SNPs obtained 

can properly be used for population assignment and to estimate genetic diversity, by 

comparing the DNA pools from NiGS to a reference collection of tissue samples 

representative of the same distribution areas as the NiGS samples. Given that genomic 

data will soon become the standard for conservation genetic assessments of current 

populations, we further discuss the application of NiGS for threatened small mammals, 

obviating the need for techniques which may potentially be more detrimental to 

individuals and populations, and which can be more labour intensive and costly (e.g. live-

trapping). 

 

3. Material and Methods 

Preparation of pooled NiGS DNA samples and construction of GBS libraries 

We used DNA extracted three years previously from 67 Cabrera vole bone 

samples obtained from barn owl (Tyto alba) regurgitated pellets collected over a wide 

geographic range in Portugal, and 8 freshly collected and extracted faecal samples 

collected in the south of Portugal (Figure 1 and Table S1, Supporting information). The 
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DNA extraction protocol followed Barbosa et al. (2013). All DNA samples were 

individually amplified for a short fragment of the mitochondrial cytochrome b (cyt-b) for 

species identification (Barbosa et al. 2013). After confirming the samples as Microtus 

cabrerae, we quantified the DNA using a Qubit dsDNA HS Assay Kit (Invitrogen, 

Carlsbad, CA) and pooled individual DNA samples into two groups, hereafter referred to 

as ‘bone’ and ‘faecal’ DNA pools. Pooled DNA samples were quantified again using a 

Qubit dsDNA BR Assay Kit (Invitrogen, Carlsbad, CA). GBS libraries were then prepared 

from pooled DNA samples (100 ng) following Elshire et al. (2011) with the adaptations 

from Wallace & Mitchell (2017). After checking the library fragment size profiles on a 

capillary instrument (Experion, Bio-Rad), 100 bp single-end sequences were collected 

on the HiSeq2500 (Illumina). GBS data from 107 individual tissue samples were already 

available from previous work (Barbosa et al. submitted). 

 

Bioinformatics  

For the tissue samples and the two non-invasive DNA pools we evaluated 

sequence quality using the software FastQC (Andrews 2011). For all three categories, a 

random subsample of 500 reads were BLASTed against the NCBI nucleotide database 

to determine the proportion of reads that belonged to target (mammalian genomes) and 

non-target DNA (e-value < 1x10-4). For SNP calling and filtering we applied the UNEAK 

pipeline (Lu et al. 2013), using GBS data previously obtained from 107 tissue samples 

representative of 22 Cabrera vole populations (see Figure 1; Barbosa et al. submitted) 

combined with the sequences obtained for the bone and faecal samples. For this 

analysis, we defined a minimum base call of 50 reads in all 109 samples. We also set 

the minor and major allele frequency threshold to 5% and 50%, respectively. Filtering on 

a 5% minor allele frequency allows us to avoid errors from nucleotide base deamination 

that are common in degraded DNA samples and to eliminate Illumina sequencing errors, 

by excluding alleles only present in five or less samples (Hofreiter et al. 2014). Post-

processing of the data was performed to combine forward and reverse reads of the same 

loci and to exclude potential paralogs following White et al. (2013): filtering out loci with 

more than 75% heterozygosity and with over 20% missing data and filtering out samples 

with over 25% missing data. Finally, we plotted the read counts per locus for the two 

DNA pools and the average of all tissue samples. 
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Population genomics analyses 

We first performed a principal coordinate analysis (PCoA), using the dudi.pco 

function of the ade4 package in R (Dray & Dufour 2007), to visualize the distribution of 

genetic variance between the Cabrera vole individuals and to match the genetic similarity 

of the pooled DNA samples to existing populations, in a model-free approach. We then 

used the software STRUCTURE (Pritchard et al. 2000) to test for genetic subdivision 

using all loci, calculating five replicates of each K (1 – 23) with 20 000 iterations each 

(10% burnin). From this analysis we determined the best-supported number of 

populations (K) as determined by the Evanno method (Evanno et al. 2005). Given that 

we did not perform individual ID for the pooled DNA samples, we could not estimate the 

observed heterozygosity for the non-invasive DNA pools, but we could calculate 

expected heterozygosity (He) from the number of reads for each allele at each locus as 

a proxy for gene diversity. We calculated expected heterozygosity (He) using the software 

GenAlEx v6.5 (Peakall & Smouse 2012) for each geographic region and for both DNA 

pools. We additionally selected two groups of tissue samples representing populations 

with overlapping geographic range with the DNA pools, to test for similarity in genetic 

parameters: the faecal DNA pool was compared to population 2 (P2) and the bone DNA 

pool was compared to populations 3-10 (P3-10) (Figure 1 and Table S1, Supporting 

information). The significance of the He comparisons was assessed using one-way 

ANOVA and the Tukey HSD post-hoc test (Abdi & Williams 2010). 

4. Results 

GBS of pooled DNA samples 

Quantifications showed that the pooled DNA of 8 faecal and 67 bone samples 

amounted to 360 and 175 ng of DNA, respectively. The FastQC results showed that 

sequences from the pooled DNA samples were mostly high quality (Figure S1, 

Supporting information). Many of the sequences from the DNA pools returned no BLAST 

hits in the NCBI nucleotide database (64.4% and 35.4% for the faecal and bone DNA 

pools, respectively) (Figure 2). When BLAST results were positive, they showed very low 

percentages of target DNA (blasting to mammalian genomes), with 1.6% and 3.0% for 

the faecal and bone DNA pools, respectively, while most of the remaining hits were 

assigned to bacteria or adapters (Figure 2). The number of reads per locus differed 

between sample types, with the bone DNA pool resembling the average tissue read 

depth, but the faecal DNA pool had higher average read depth (Figure S1, Supporting 

information).  
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Figure 1. Map of the Iberian Peninsula with the distribution of the Cabrera vole (Microtus cabrerae) in grey (Barbosa et 

al. 2017); numbered and coloured dots represent 107 tissue samples from 22 populations genotyped in Barbosa et al. 

(submitted), which are distributed in four geographic nuclei as defined by Garrido-García et al. (2013) and Barbosa et al. 

(2017): Lusocarpetan (Lc, orange), Montiberic (Mb, purple), Betic (Bt, blue) and pre-Pyrenean (pP, green); grey and white 

dots represent the 8 faecal samples and 67 bones from owl (Tyto alba) pellets used this study, respectively (Table S1, 

Supporting Information); size of the circles is proportional to the number of samples at the same sampling location (1-13 

samples).  

 

Figure 2. Pie charts of BLASTn results of 500 randomly selected sequencing fragments each for the faecal pools, the 

bone pools and tissue samples, screened against the NCBI nucleotide database. Colors refer to the same categories 

across pie charts 
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Population genomic analyses 

We obtained a total of 3 968 unique single nucleotide polymorphisms (SNP). The 

faecal and bone DNA pools showed very low percentages of missing data, with 5.6% 

and 4.2%, respectively. The two principal coordinates of the PCoA analysis explained 

13.1% of the total genetic variation and reflected well the sampling geography (Figure 

3A). Three main clusters were identified corresponding to previously identified ESUs 

(Barbosa et al. submitted): ESU1 [Lusocarpetan (Lc) region] – 42 voles plus bone and 

faecal DNA pools, ESU2 [Montiberic with Betic (Mb+Bt)] – 55 voles and ESU3 [pre-

Pyrenean (pP)] – 10 voles (Figure 3A). The STRUCTURE analysis identified three main 

populations (K), matching the PCoA clusters (Figure 3B); the bone and faecal DNA pools 

clustered with ESU1 in both analyses (Figure 3). 

 

 

Figure 3. A) Principal coordinate analysis (PCoA) with the 3 968 loci identified in this study using the dudi.pco function 

implemented in the R package ade4 1.7.3 (Dray & Dufour 2007); coloured dots represent samples coloured by the 

geographic nucleus of origin as in A, and the grey and white dots represents the faecal and bone pools, respectively; 

black ellipses delimit samples belonging to the populations with the respective numbers, which have a similar geographic 

range as the non-invasive pools. B) Population assignment cluster analysis for the Cabrera vole using the software 

STRUCTURE indicating the proportion of sample assignment to each of the inferred best K number of populations 

(colours) that represent the three evolutionary significant units (ESUs) identified in Barbosa et al. (2017). Horizontal black 

bars and respective numbers and codes refer to the sampled populations as in A. Faecal and bone pools are represented 

by a grey and white outline, respectively. 
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The values of expected heterozygosities (He) are listed in Table 1. He values show 

that Lc diversity is not significantly different from P3-10. The non-invasive DNA pools 

have significantly lower He than the populations within the same geographic range 

(faecal DNA pool vs. P2 and bone DNA pool vs. P3-10). However, we must point out that 

the temporal time frame of sampling of the non-invasive DNA pools and their respective 

comparative populations are not the same: whereas P2 and P3-10 tissues were collected 

between 2011-2012 and 2003-2012, respectively, the respective non-invasive samples 

were collected in 2014 for the faecal DNA pool, and in 1980, 1996, 2010-2011 for the 

bone DNA pool.  

 

Table 1. Genetic diversity for the fecal and bone non-invasive pools based on 3 968 SNPs presented as expected 

heterozygosities (He; mean and standard error). For comparison, population 2 (P2) and P3-10 represent sampled Cabrera 

vole populations of the same geographic range as the DNA pools, and Lc, Mb, Bt, and pP are the results based on all 

voles typed in each of the four geographic nuclei (see Figure 1).  

 

 

 

5. Discussion 

This study confirms the application of high-throughput sequencing using a 

restriction enzyme-based method on degraded DNA pool samples, by gathering data 

appropriate for accurate population assignment. The electrophoretic patterns of the non-

invasive DNA pools did not mimic exactly that of the tissue samples, and this was 

reflected in the low percentage of target sequencing found in both pools, which varied 

between 1.6% and 3.0% (Figures 2 and S1, Supporting information). Per base quality 

was found to be high on average for the non-invasive DNA pools, but we also found a 

higher than expected GC content in these samples, possibly reflecting the high 

proportion of bacterial sequences that are known to be very GC rich (Lassalle et al. 

2015). However, with the non-invasive DNA pools we were able to recover the full panel 
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of SNPs identified in the previous tissue-based studies, with a low level of missing data 

per sample (4-6%). 

Using the software STRUCTURE, we were able to confidently assign the faecal 

DNA pool to the south-west of Lc, where the faecal samples came from, and the bone 

DNA pool to the middle of Lc, as this was a mix of DNA from samples originally from the 

geographic area of P3-10, from different parts of Lc (Figure 3). Looking at the values of 

expected heterozygosity (He) as a proxy for gene diversity, we found that the DNA pools 

had generally lower diversity than the comparative populations (Table 1). This could be 

interpreted as a lower power to detect genetic diversity using these samples due to, for 

example, allele dropout. However, the differences could also reflect the temporal 

difference in the collection of the tissue vs. the non-invasive DNA pools, given that the 

different sample types were not collected during the same time period. 

This work demonstrates the possibility of conducting genomic studies using NiGS 

in small mammals. Moreover, we have shown that genomic data can be obtained for 

non-model species with no genomic resources available other than control data based 

on the genotyping of available tissue samples. Up to now, most studies based on NiGS 

that have not required prior genomic resources were restricted to museum samples, due 

to their generally higher DNA concentration than most field non-invasive samples (Beck 

& Semple 2015). However, previous studies have shown that restriction enzyme-based 

HTS can be applied to samples with very low DNA quality with high success (Graham et 

al. 2015). Our study opens new opportunities in conservation genetics, such as 

identifying the population of origin of migrants and, in more extreme cases: in wildlife 

traffic; determining population structure; compare levels of genetic diversity between 

populations; etc. Future work should include the use of individual barcoding on non-

invasive samples to test if there is enough coverage of orthologous SNPs for individual 

based studies in conservation, as is possible for studies based on well-preserved tissues. 
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7. Supporting information 

Table S1. Sample types and location of the Cabrera vole specimens used in this study. Map code is only available for 

tissue samples and it refers to the numbers in Figure 1. 

Map Code Type Number  of samples Community/District Country Latitude Longitude 

1 Tissue 5 Beja Portugal 37.609 -8.794 

2 Tissue 7 Beja Portugal 37.753 -8.755 

3 Tissue 2 Beja Portugal 37.828 -8.523 

4 Tissue 7 Setúbal Portugal 37.959 -8.771 

5 Tissue 1 Setúbal Portugal 38.098 -8.561 

6 Tissue 3 Évora Portugal 38.632 -8.045 

7 Tissue 2 Santarém Portugal 38.870 -8.725 

8 Tissue 3 Castelo Branco Portugal 39.763 -7.399 

9 Tissue 3 Bragança Portugal 41.343 -6.577 

10 Tissue 1 Bragança Portugal 41.304 -7.183 

11 Tissue 4 Ávila Spain 40.114 -5.256 

12 Tissue 2 Madrid Spain 40.349 -4.350 

13 Tissue 2 Madrid Spain 40.622 -3.877 

14 Tissue 7 Cuenca Spain 39.861 -2.158 

15 Tissue 11 Cuenca Spain 40.026 -1.817 

16 Tissue 1 Valencia Spain 39.508 -1.291 

17 Tissue 3 Murcia Spain 38.730 -1.184 

18 Tissue 13 Albacete Spain 38.512 -2.401 

19 Tissue 11 Jaén Spain 38.407 -2.597 

20 Tissue 2 Granada Spain 37.895 -2.649 

21 Tissue 7 Murcia Spain 37.950 -1.888 

22 Tissue 10 Huesca Spain 42.438 -0.466 

 Fecal 1 Odemira Portugal 37.744 -8.736 

 Fecal 1 Odemira Portugal 37.745 -8.743 

 Fecal 1 Odemira Portugal 37.742 -8.736 

 Fecal 1 Odemira Portugal 37.752 -8.755 

 Fecal 1 Odemira Portugal 37.750 -8.753 

 Fecal 1 Odemira Portugal 37.750 -8.742 

 Fecal 1 Odemira Portugal 37.745 -8.737 

 Fecal 1 Odemira Portugal 37.748 -8.738 

 Bone 2 Aljustrel Portugal 37.960 -8.260 

 Bone 4 Aljustrel Portugal 37.930 -8.300 

 Bone 1 Ferreira do Alentejo Portugal 38.030 -8.270 

 Bone 2 Setúbal Portugal 38.070 -8.530 

 Bone 1 Santarém Portugal 38.954 -8.628 

 Bone 1 Santarém Portugal 38.946 -8.615 
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 Bone 2 Santarém Portugal 39.341 -8.473 

 Bone 2 Santarém Portugal 38.790 -8.820 

 Bone 1 Santarém Portugal 38.770 -8.830 

 Bone 1 Castelo Branco Portugal 39.828 -7.503 

 Bone 1 Castelo Branco Portugal 40.231 -7.178 

 Bone 2 Castelo Branco Portugal 39.757 -7.330 

 Bone 8 Salamanca Spain 40.488 -6.570 

 Bone 1 Salamanca Spain 39.737 -6.736 

 Bone 1 Salamanca Spain 40.447 -6.762 

 Bone 1 Salamanca Spain 40.717 -6.753 

 Bone 1 Salamanca Spain 40.624 -6.638 

 Bone 1 Bragança Portugal 41.422 -6.343 

 Bone 1 Bragança Portugal 40.994 -7.142 

 Bone 2 Bragança Portugal 41.518 -6.885 

 Bone 3 Bragança Portugal 40.890 -7.036 

 Bone 1 Bragança Portugal 40.950 -7.050 

 Bone 1 Bragança Portugal 41.002 -7.021 

 Bone 2 Bragança Portugal 41.375 -7.288 

 Bone 1 Bragança Portugal 40.894 -6.901 

 Bone 1 Bragança Portugal 40.818 -6.862 

 Bone 1 Bragança Portugal 41.330 -7.356 

 Bone 4 Bragança Portugal 41.379 -7.276 

 Bone 2 Bragança Portugal 41.205 -7.095 

 Bone 1 Bragança Portugal 41.236 -7.085 

 Bone 1 Bragança Portugal 41.277 -7.075 

 Bone 3 Bragança Portugal 41.357 -7.186 

 Bone 4 Bragança Portugal 41.383 -6.562 

 Bone 1 Bragança Portugal 41.581 -6.514 

 Bone 2 Bragança Portugal 41.573 -6.323 

 Bone 2 Bragança Portugal 41.625 -6.277 

 Bone 1 Bragança Portugal 41.361 -7.289 

Samples from localities with Map Code were obtained from Barbosa et al. (submitted) 
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CHAPTER V.  

GENERAL DISCUSSION 

 



 

 



                                                       FCUP 221 
The evolutionary history and conservation of an endemic and threatened Iberian rodent: the Cabrera vole (Microtus cabrerae)  

 

1. Discussion 

The main goal of this thesis was to understand the evolutionary history of the 

Cabrera vole, to provide a broader context for conservation planning in this species. This 

goal was achieved using molecular tools, given that genetic diversity contributes to 

decrease a species’ extinction risk, being also a predictor of a species evolutionary 

potential (Moritz & Potter 2013; Willoughby et al. 2015).  

It is commonly accepted that many species are facing extinction due to human 

induced climate change and habitat loss, and due to the consequential population 

reduction, genetic diversity is expected also to be decreasing (Lacy 1987; Ceballos et al. 

2015). Given that genetic diversity plays a fundamental role in maintaining healthy 

populations, effective conservation measures for particular taxa need to take into 

account how much genetic diversity there is, how it is distributed across the landscape, 

and what were the evolutionary factors driving the observed patterns (Crandall et al. 

2000; Allendorf et al. 2012; Mills 2013). 

 

Molecular conservation tools 

One of the limitations in obtaining genetic data from wildlife is the difficulty in 

collecting samples from rare, threatened and elusive species, for which the disturbance 

of the individuals in their natural habitat needs to be minimised (Waits & Paetkau 2005; 

Beja-Pereira et al. 2009; Bastos et al. 2011; Paupério et al. 2012; Latinne et al. 2013). 

As our model species was the Cabrera vole, we first developed a DNA-based protocol 

using both mitochondrial and nuclear markers to make use of non-invasive samples 

(faeces, hairs and bones) of all rodents from the Iberian Peninsula (Paper I). We were 

able to accurately identify all species of Iberian rodents with the exception of Microtus 

lusitanicus and M. duodecimcostatus, which are currently hybridising (Bastos-Silveira et 

al. 2012). We confidently identified and distinguished Cabrera voles by genetic typing of 

ear biopsies (the species may be confused with juvenile Arvicola sapidus when caught 

in the field), and also were able to identify the species from faecal samples based on 

small DNA fragments (< 300 bp). The molecular protocol developed for the Iberian rodent 

species identification has already been applied in ecological niche modelling of the 

Cabrera vole and population dynamic studies and using non-invasive samples (Mestre 

et al. 2015; Ferreira et al. in prep). Additionally, for the other Iberian rodents we observed 

a broad range of intra- and interspecific genetic distances, highlighting the importance of 

wide-scale barcoding initiatives to increase our understanding of taxonomy and 
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evolutionary processes. We were able to assess the feasibility of using nuclear markers 

on non-invasive population genetic studies, particularly when working with small 

samples, a limitation typically shown by small mammals.  

 

The evolutionary history of the Cabrera vole 

Phylogenetic positioning 

The genus Microtus represents one of the fastest mammalian radiations known to 

date, thought to have diversified during the last 2 Mya into 12 subgenera and 65 species 

currently recognised by the IUCN (Conroy & Cook 1999, 2000; IUCN 2016). Its 

subgenera are very well supported at the genetic level, distributed throughout the entire 

northern hemisphere (Jaarola et al. 2004; Galewski et al. 2006; Fink et al. 2010; 

Martínková & Moravec 2012). In our study we have sampled five of those subgenera, 

three found in the Palearctic, one in the Nearctic and one Holarctic (Paper II). Our data 

is consistent with the contention that the Cabrera vole belongs to its own subgenus, 

Iberomys, given the time since divergence from the sister subgenus Agricola, and by 

comparison to the divergence time of the other two well established Palearctic 

subgenera, Microtus and Terricola (Chaline 1974). The separation of Agricola and 

Iberomys from Microtus and Terricola suggests that these groups represent two 

independent radiations from Asia into Europe, while only one radiation into North 

America has been detected, originating all the endemic species existing in this region. 

Finally, it appears that M. (Alexandromys) oeconomus shows a Holarctic distribution as 

a result of more recent expansions from Asia both west and east. To the best of our 

knowledge, Agricola and Iberomys are monospecific subgenera, represented by the field 

(M. agrestis) and Cabrera (M. cabrerae) voles, respectively. This implies that the Cabrera 

vole’s closest living relative is the field vole (M. agrestis), a proximity that is also 

supported by karyotypic similarities, which previously have led to the placement of the 

Cabrera vole in the Agricola subgenus (Zagorodnyuk 1990). However, the Cabrera vole 

is a highly distinctive species within Microtus due to various life history, morphologic and 

karyotypic features, and this led some authors to propose the elevation of the Cabrera 

vole to its own genus, Iberomys (Cuenca-Bescós et al. 2014; Pita et al. 2014). It has 

been suggested that the Iberian Peninsula was the site of origin of highly specialised and 

distinct arvicoline lineages such as Iberomys during the Pleistocene (Cano et al. 2013). 

Our results based on a phylogenomic approach support the distinctiveness of species 

such as the Cabrera and field voles but confidently disprove the hypothesis of Iberomys 
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as a separate genus, given that the elevation of the Cabrera vole to its own genus would 

make the genus Microtus paraphyletic.  

 

Phylogeographic history 

For the study of the Cabrera vole phylogeographic history we sampled 284 tissue 

and NiGS (bones from owl pellets) samples from the entire distribution of the species. 

The use of NiGS (Paper I) was necessary to obtain a good representation of some of the 

geographic nuclei occupied by the Cabrera vole (of which there are four: Paper III), 

especially the Lusocarpetan (Lc) and the pre-Pyrenean (pP)  

Despite its long divergence within the Iberomys subgenus, assumed to have 

occurred in western Europe around 100 kya, our study on the phylogeography of the 

Cabrera vole suggests that the mitochondrial tMRCA of current populations dates to the 

LGM (Paper III). Combining mitochondrial and traditional nuclear loci with the Cabrera 

vole fossil record, we determined that this species expanded from a single refugium 

around 17 kya, possibly in south-eastern Iberia, as expected from the species fossil 

record and for a species adapted to the Mediterranean climate (Paper III) (Garrido-

García & Soriguer-Escofet 2012; Laplana & Sevilla 2013). However, it is important to 

avoid pinpointing precise refugial locations as, for instance, there is a bias towards a 

greater likelihood of fossilisation around south-eastern Iberia (Laplana & Sevilla 2013), 

which can also bias our perceptions. 

The modelling that we carried out in Paper III suggests that, as a result of increased 

available suitable habitat after the LGM, there was a population expansion followed by 

the separation of various populations, including (but likely not limited to) the current 

western (Lc) and eastern [pP, Montiberic (Mb) and Betic (Bt)] populations (López-García 

et al. 2012). By then, the fossil record suggests that the Cabrera vole had established 

resilient populations in the pre-Pyrenean massifs and southern France (Garrido-García 

& Soriguer-Escofet 2012; Laplana & Sevilla 2013). We consider that these range 

expansions were interrupted by the last cold period that marked the end of the 

Pleistocene, the Younger Dryas (YD). We argue that during this time period, from c. 13 

– 11 kya, the Cabrera vole populations got separated in west and east Iberia, leading to 

the divergence in allopatry of the two currently known well supported mitochondrial 

lineages, west and east (Paper III). This is further supported in Paper IV, where we used 

a wider genomic approach (3 341 SNPs) and observed that at K=2, the populations are 

genetically divided into western and eastern Iberia, and only at K=3 the pre-Pyrenean 

(pP) geographic nucleus is considered a different cluster. Interestingly, the higher 
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divergence of pP within the eastern populations is inferred from both mitochondrial and 

nuclear data, suggesting an older divergence from the other eastern populations, or a 

greater divergence as a consequence of long term isolation (Paper III and Paper IV).  

A recent study from Varela (2016) analysing ancient DNA of Cabrera voles shows 

a significant increase in genetic diversity a few thousand years after the YD, during the 

Neolithic (c. 7.5 - 5 kya), indicative of population expansions, also supported by an 

increased representation in the fossil record (Laplana & Sevilla 2013). These expansions 

may be associated to human alterations of the landscape, such as forest reduction and 

the emergence of the initial vegetation succession stages, in which the Cabrera vole is 

known to thrive (Fernandes et al. 2008a; Laplana & Sevilla 2013). The time of 

diversification of the two Cabrera vole lineages is consistent with these time periods, 

right after the YD (Paper III). The Neolithic haplotype and nucleotide diversities appear 

to be maintained until the Bronze and Iron ages (c. 2 kya) (Varela 2016). From this point 

on, a decrease in genetic diversity and population reduction in the fossil records may be 

associated with extinctions of many eastern Iberian and southern French populations 

due to increased human pressures on the Cabrera vole habitat (Laplana & Sevilla 2013; 

Varela 2016).  

 

Mito-nuclear discordance 

In the Cabrera vole, it is possible that the mitochondrial west lineage started 

expanding east during the Neolithic population growth, coming into secondary contact 

with the east lineage (Paper III). We also found evidence of such secondary contact in 

Paper IV, using a landscape genomic approach based on 3 341 SNPS, where we 

observed an extensive admixture between eastern and western alleles in populations of 

Lc, i.e. in the opposite direction of the mitochondrial data. This mito-nuclear discordance 

suggests that: i) there is mitochondrial introgression of the west lineage into the eastern 

populations; and/or ii) the initial contact zone was located further west and there was a 

replacement of the mitochondrial east lineage haplotypes in the west; and/or iii) 

differential introgression of both mitochondrial and nuclear loci occurred, though this is 

more frequent in taxa that are more divergent than the Cabrera vole lineages (Carling & 

Brumfield 2008; Toews & Brelsford 2012; Gralka et al. 2016). We further observed that 

the nuclear admixture originated mostly from Bt rather than the closer Mb, which 

suggests that this secondary contact might have happened after the establishment and 

vicariance of the current eastern geographic nuclei.  
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Molecular conservation planning 

Given our new knowledge of the past and current patterns of genetic diversity in 

the Cabrera vole, there is now the opportunity for effective evidence-based conservation 

planning (Crandall et al. 2000).  

In Paper IV we conducted a study that integrated genomics with landscape 

analysis, aiming to define conservation units (CUs) for the Cabrera vole. We found that 

the species is divided into three well-defined evolutionarily significant units (ESUs): 

ESU1 is coincident with the Lc geographic nucleus; ESU2 is represented by the Mb and 

Bt geographic nuclei; and ESU3 is represented by the pP geographic nucleus. ESU1 is 

the most widespread CU and it appears to be genetically more homogenous than the 

remaining ESUs. This population currently appears to be expanding especially in the 

north, possibly as a sign of climate induced habitat range shifts (Vale-Gonçalves & 

Cabral 2014). In the northern and central regions of ESU1 we observed some levels of 

admixture with ESU2 possibly from past connectivity (Paper III and Paper IV). ESU2 is 

currently the most diverse, and it is subdivided into three MUs (MU2, MU3 and MU4; 

Paper IV). This is also related to the fact that connectivity is very limited between most 

of its populations, especially between and within MU3 and MU4, similarly to the 

increased structure associated to population decline found in the populations of the 

alpine chipmunk (Holmes et al. 2016). The most recent population assessments show 

that various southern populations of ESU2 have disappeared due to habitat destruction, 

and also possibly because they are located at the species environmental tolerance limits 

(Garrido-García et al. 2013); as edge populations, these MUs can store genetic diversity 

of importance for the species survival and evolution, and their extinction could lead to a 

serious loss for the Cabrera vole gene pool (Hampe & Petit 2004). The increased genetic 

structure observed within ESU2 might already be an effect of inbreeding within these 

MUs, which makes allele frequencies very similar within populations due to high levels 

of identity-by-descent (Allendorf et al. 2012), but which leads to divergence between 

populations. ESU3 is currently the least diverse and most isolated conservation unit, and 

also has some of the lowest levels of heterozygosity (Paper IV). Thus, it should be 

considered as a priority for conservation given that it is also the one that contributes the 

most to the Cabrera vole genetic diversity (Paper IV). In terms of adaptive variation, we 

observed a west-east separation of ‘adaptive’ genetic diversity, consistent with the 

patterns of nuclear variation (Paper IV). However, this was based on very few outlier loci 

and conclusions are thus very limited.  
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The small number of populations, their isolation, small number of individuals, and 

genetic homogeneity are likely to lead to strong genetic and ecological Allee effects 

which may, in turn, cause the extinction of many of the Cabrera vole populations (Fagan 

& Holmes 2006; Garrido-García et al. 2013; Luque et al. 2016). This is especially 

problematic in the Cabrera vole given that the species is distributed in metapopulations 

and, with increasing genetic diversity loss, theory predicts that the species will have 

decreased colonisation ability, even if favourable habitat is available (Amarasekare 

1998). On this basis, we must rely on overall levels of variation as a proxy for evolutionary 

potential and, as such, there is a need to protect as much genetic diversity as possible 

to ensure that the species has the best chances of persisting under increasingly dynamic 

environmental conditions (Eckert et al. 2008; Moritz & Potter 2013; Eizaguirre & Baltazar-

Soares 2014).  

Given the importance of population genetic studies in conservation and the power 

of genomics to detect population structure, a combination of genomics with non-invasive 

sampling could greatly benefit the study of threatened species and their populations. 

Microsatellites have been the markers of choice when using non-invasive samples like 

faeces, as they are usually represented by small fragments (< 300 bp), and have high 

levels of polymorphism (due to high mutation rates), allowing a variety of ecological and 

evolutionary questions to be answered (Selkoe & Toonen 2006). However, 

microsatellites lack standardisation across laboratories and also suffer from high error 

rates (allele dropout, false alleles) (Taberlet et al. 1999). With the arrival of high 

throughput sequencing, new techniques are rendering microsatellite limitations less 

pronounced (de Barba et al. 2016). Nevertheless, SNPs are rapidly becoming the marker 

of choice for population genetic studies and monitoring due to their higher genotyping 

efficiency, data quality, genome wide coverage, and analytical simplicity, while allowing 

the study of a greater variety of questions on multiple evolutionary scales, including a 

focus on adaptation (Morin et al. 2004; Selkoe & Toonen 2006; Schwartz et al. 2007; 

Kraus et al. 2015). So far, the biggest limitation of SNP application to non-invasive 

studies is the need of targeted methodologies to maximise the probability of amplification 

of homologous DNA sequences. However, targeted methodologies (e.g. exon capture, 

SNPchips) are very costly to develop as they require a reference genome/transcriptome 

and the design of hundreds to thousands of probes, and they may additionally suffer 

from ascertainment bias (Andrews et al. 2016). We thus aimed at developing a non-

invasive genotyping methodology based on a genomic approach that could be useful for 

conservation studies. This required a methodology based on anonymous sequencing, 

such as RAD-seq (and GBS), allowing for studies in non-model species that usually have 



                                                       FCUP 227 
The evolutionary history and conservation of an endemic and threatened Iberian rodent: the Cabrera vole (Microtus cabrerae)  

 

few genomic resources available (Morin et al. 2004). However, these non-targeted 

methodologies can lead to high levels of missing data, especially in samples with 

degraded DNA. We tested the applicability of GBS in DNA pools extracted from Cabrera 

vole faecal and bone (from owl pellets) samples, in order to perform population 

assignment and assessment of levels of genetic diversity (Paper V). We obtained a very 

low percentage of missing data (around 5%), even when compared to the tissue sample 

dataset, and were able to achieve a reliable indication of the population of origin of the 

two DNA pools. This information was obtained from less than 3% of all reads, which 

suggest that increasing the endogenous DNA sequencing with techniques such as 

double-digest RAD-seq could greatly improve the amount of information obtained from 

an individual sample (Graham et al. 2015). Moreover, these methodologies can be 

reused with additional samples, either from the same or different species, for different 

questions that may arise in the future. Further discussion can be found in Future 

perspectives. 

 

2. Conservation recommendations 

As previously indicated, the Cabrera vole populations are divided into three ESUs 

and five MUs, and each of which have different priorities for conservation.  

The most distinctive and also the most vulnerable population is ESU3 (or MU5) 

that represents the pP geographic nucleus. This population has the lowest estimates of 

genetic diversity and is the population with the lowest connectivity to the remaining 

Cabrera vole distribution (Paper IV). Even so, levels of inbreeding appear to be low. This 

is further supported by recent census of the population in the province of Huesca, 

Aragón, that have detected various UTM squares with newly described Cabrera vole 

colonies (Jato R, pers. comm.), suggesting that there are ample opportunities for 

outbreeding. In any case, it is important not to be complacent about ESU3. For instance, 

a recent study from Escribano et al. (2016) shows that the Cabrera vole is currently 

extinct in Navarra, within the pP geographic nucleus, given that most records are more 

than 10 years old and a recent census confirmed the absence of the species in most 

areas where it was previously described. As population censuses are conducted in an 

increasing number of areas of the Cabrera vole distribution, it is common to conclude 

that many of the textbook locations are no longer occupied. Garrido-García et al. (2008) 

found that most populations in Andalucía (southern areas of ESU2) have recently 

become extinct, which suggests that the population is also receding in the southernmost 
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regions of the Cabrera vole distribution. As previously mentioned, this area encapsulates 

a high proportion of the overall species genetic diversity, and the connectivity between 

and within MUs appears to be highly limited, possibly due to conversion of suitable 

habitat into farmland, associated to increase in temperature and decrease in precipitation 

(Mira et al. 2008; Laplana & Sevilla 2013). 

The studies on the current distribution of the Cabrera vole suggest that its 

populations, which have extreme colonisation-extinction-recolonisation dynamics, need 

to be carefully managed. There is a need for a reassessment of suitable available habitat 

and the protection of corridors that facilitate dispersal between habitat patches, 

especially within MUs (do Rosário & Mathias 2007; Albert et al. 2017). A framework for 

the preservation of Cabrera vole populations should encompass the following (Crandall 

et al. 2000; Fraser & Bernatchez 2001; Albert et al. 2017):  

 

1) the generation of habitat quality and resistance maps for the species and its 

ESUs;  

2) the analysis of the connectivity of ESUs habitat networks, quantifying the 

contribution of each habitat pixel to short- and long-range connectivity to define 

corridors through time;  

3) the modelling of changes of climate suitability at various time points in the future;  

4) the identification of spatial conservation priorities based on a set of criteria (e.g. 

contribution to the species overall diversity, most diverse and/or isolated 

populations, etc);  

5) the establishment of different prioritisation schemes into the future with spatially 

explicit dynamic land-use simulations.  

 

At a broader scale, Cabrera vole conservation should be integrated in a wider 

conservation approach for the Iberian Peninsula, considering various vertebrate species 

that represent the range of bioclimates, dispersal abilities, and responses to habitat 

fragmentation and climate change observed in Iberian species, so that protected areas 

and dispersal corridors can provide effective conservation outcomes (Albert et al. 2017). 

The Cabrera vole is mostly found in agro-silvo-pastoral ecosystems and farmlands, 

particularly agricultural fields and road verges, that maintain tall grass for the species to 

find shelter, feed and disperse with a low predation risk (Pita et al. 2006; Santos et al. 

2006). Thus corridors need to be incorporated in the intensively managed Iberian 

farmland, which for the short term might just be a matter of avoiding vegetation 

succession, especially on road verges (Pita et al. 2014). It is also important to maintain 
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small ‘stepping-stone’ habitat patches around 1000 m apart, particularly in areas with 

low vole densities. This would allow efficient colonisation of dispersing individuals and of 

moving colonies, given that the few estimates of Cabrera vole dispersal abilities were 

one individual dispersing c. 500 m in one night and an entire colony dispersing 1300 m 

in eight months (do Rosário & Mathias 2007; Pita et al. 2007). 

ESU1 appears to be the most stable CU, with high connectivity between many of 

its populations, especially in southwestern Iberia. However, connectivity with the central 

Iberian populations and the northwest are apparently decreasing (Paper IV). In addition, 

with increasing pressures in southern areas of the species distribution, it is likely that 

those populations will undergo dramatic range contractions as is happening in ESU2, 

and thus maintaining connectivity to northern suitable areas will be very important. The 

difference in functional connectivity currently observed within the west and the east of 

the species distribution might be related to the topography of the terrain, given that 

western Iberia is more homogenous than central and eastern Iberia (Vera 2004). Thus 

effective conservation management will require the protection of dispersal corridors from 

less suitable to more suitable areas. Finally, we would like to stress the importance of 

developing international conservation strategies for the Cabrera vole given that most of 

the genetic variation is currently found in Spain, but most of the suitable habitat for the 

species and the most stable and suitable areas in the future appear to be present in 

Portugal (Mestre et al. 2015). 

 

3. Conclusions 

We found that non-invasive methodologies can greatly benefit the study of species 

under conservation concern, either by providing more extensive sampling without 

capturing animals, or by granting access to more detailed genetic variation 

representative of the genome wide population diversity. We were able to identify all 

species of rodents present in the Iberian Peninsula, using mitochondrial and nuclear 

markers, with exception of Microtus lusitanicus and M. duodecimcostatus. We 

additionally optimised the barcoding method for non-invasive samples, including bones 

from barn owl (Tyto alba) pellets, hair and faecal samples. We used this protocol in order 

to obtain a comprehensive sampling of the Cabrera vole’s distribution using bones from 

barn owl pellets. 

Our data suggest that the Cabrera vole represents a distinct subgenus (Iberomys) 

within Microtus, and one of the first Microtus radiations to Europe, together with M. 

(Agricola) agrestis. This resolves previous uncertainties about the species phylogenetic 
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positioning, often placed together with Nearctic species. We also found that the three 

lineages of M. agrestis are highly distinctive (consistent with them being different 

species), and that other species such as M. arvalis and M. oeconomus have also very 

distinct genetic lineages throughout their ranges. After the spread of Microtus to Europe 

from a likely source area in Asia, the Iberomys subgenus started diverging, leading to 

the appearance of the Cabrera vole in Western Europe around 100 kya. The distribution 

of the species would have fluctuated with the Quaternary glaciations, with the last major 

contraction during the LGM. From an Iberian LGM refugium, it appears that the species 

expanded and got separated once again during the YD, around the time of divergence 

of the two western and eastern Iberian groups. Expansions after this last cold period 

apparently led to secondary contact of these lineages, likely associated to the 

emergence of agriculture. 

The Cabrera vole is currently distributed in four main geographic nuclei, which we 

deemed to be represented in three ESUs. The most threatened of these ESUs is the pre-

Pyrenean, which shows the lowest diversity and highest divergence, being also the one 

that contributes the most to the species overall genetic diversity. The ESU representing 

eastern and south-eastern populations has the highest diversity, but its southernmost 

populations have already lost functional connectivity and may soon become extinct. The 

ESU representing western and central Iberian populations has the larger range and likely 

will occupy the majority of suitable habitat areas for the Cabrera vole in the future. The 

conclusions of this thesis need to be carefully considered for the planning for the 

conservation planning of the Cabrera vole.  

Finally, we found that it is possible to perform genomic-based population 

monitoring on non-model species of rodent even with non-invasive procedures and in 

the absence of pre-existing genomic resources. 
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4. Future perspectives 

The research conducted in this thesis allowed us to develop new tools for the study 

of wild populations using NiGS, but also better understand the evolutionary history of the 

Cabrera vole, as well as its conservation needs. However, various questions have arisen 

that remain unanswered or could benefit from further research: 

 

Resolving and timing the Microtus rapid radiation 

Previous phylogenetic studies on the Microtus genus could not determine the 

branching order of this rapid radiation. We proposed to do so by analysing a partial 

mitogenome and genome wide SNP data, however the velocity of this radiation might 

not ever allow certain answers to such questions. We gained further clarity on the 

phylogenetic relations within this genus, however it would be interesting to include more 

species, especially from the Asian and Nearctic species, to see if the branch supports 

would be stronger, given a more complete picture of the entire radiation. Future studies 

should use sequences rather than SNPs given that mutation models could then easily 

be incorporated, possibly improving the support of the deeper nodes. 

Another interesting aspect would be to incorporate fossils into the estimation times 

of these vicariant events, especially given that the genus Microtus has an abundant fossil 

record. 

This is an especially interesting group given that the number of species in a given 

habitat is thought to be positively correlated with the time the lineage has occupied that 

habitat for (Wiens et al. 2013). In such conditions, the fact that the climatic niche is stable 

over time, gives species the opportunity to adapt to different regimes – a phenomenon 

called ‘climatic niche conservationism’ (Bonetti & Wiens 2014). However, Lv et al. (2016) 

suggest that the Arvicoline rapid radiation is mostly a result of ecological opportunity, 

where the expansion and adaptation to warmer areas of the Palearctic led to an 

explosion in the number of lineages, rather than the adaptation to very similar climatic 

niches. Looking at adaptive variation within this group might bring new clues to the 

process of its radiation and associating it with environmental changes through time might 

be the way to solve some of the major basal splits. 

 

Cabrera vole improved phylogeography and mito-nuclear discordance 

The Cabrera vole phylogeographic history can now be studied in increased depth 

given the existence of genomic data. One of the future steps would naturally be the 
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detection of refugial areas using range expansion theory, to determine the likely origin of 

the current genetic diversity for various points in time. Coupled with ecological niche 

modelling and the fossil record, it would be interesting to evaluate if the Cabrera vole’s 

niche was maintained or if it changed, when comparing genetic estimates to the fossil 

record. This could also help determine the demographic processes behind the detected 

mito-nuclear discordance, which at this point appears to be driven mostly by 

demographic factors rather than associated to selective pressures. Further research is 

needed to explain the observed patterns, especially on the role of selection in the 

Cabrera vole mitochondria and its historical demography using SNP variation. This could 

inform on whether the observed patterns are a result of allele surfing or selection. 

 

Design of protected areas accounting for genetic diversity 

It would be important to use the knowledge on the current genetic variation of the 

Cabrera vole and its dispersal ability to design conservation areas that account for future 

areas of suitability for the species. This would imply determining areas of future climatic 

suitability and designing corridors that would be managed through time and as the 

species tracks its niche, so that we guarantee that the most genetic diversity is 

maintained, but also avoiding connecting populations that would undergo outbreeding 

depression. Outbreeding could be tested in experimental populations by performing 

crossings of individuals from different ESUs and determine the outcome of hybridisation 

at those ex-situ locations.  

Another important aspect would be to perform comprehensive genome wide 

association studies on different ESUs evaluating their adaptive capacity to increasing 

temperatures and aridity, to make sure that those populations with the highest fitness 

are maintained in case dramatic management practices are necessary. 

 

The promise of non-invasive genomics 

With the non-invasive GBS study we tested the feasibility of using HTS methods 

in non-invasive DNA pools. Ideally, this protocol should be tested using individual 

barcoding, i.e. each individual can be identified, so that we can move from population to 

individual-based non-invasive studies. This would greatly benefit wildlife conservation of 

non-model organisms as it could be the standard for monitoring natural populations using 

NiGS. 

One by-product of the non-invasive genomics study was the presence of various 

other non-target reads. As expected for these sample types, bacteria were the non-target 
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group with the highest representation in both the faecal and the bone DNA pools. In the 

case of the faecal material, that opens up the opportunity for microbiome work, with 

opportunities for future analyses relating to comparative phylogeography, population 

genetics and individual health. 
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