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Abstract

Despite different therapeutic approaches, cancer is one of the leading causes of death world-

wide. Therefore, new therapies, like immunotherapy, are being developed to cure cancer. All

immunotherapies have in common that they need targets to recognize malignant cells. Both

the malignant and the benign immunopeptidome have to be examined, to define these new

targets. We herein present a large immunopeptidome dataset of benign tissues containing mul-

tiple tissue types from different individuals. Moreover, we introduce the HLA Ligand Atlas, a

web-interface we developed to accompany the data. It provides user-friendly access to the data,

a fast, interactive search option which can be used to search for tissue specific HLA-peptides,

and provides common statistics to the user.

Using the large dataset of benign samples, we were able to define general properties of the

immunopeptidome. First, we showed that a short time storage of the samples at 8 °C does not

alter the immunopeptidome in terms of the number of found peptides and their quality. Next,

we performed quality control, in which we found an altered immunopeptidome in the samples

of stomach tissue, which might be caused by pepsin in the samples. In addition, we analyzed

both the inter- and the intra-individual variability of the immunopeptidome on protein and

peptide level. This analysis revealed that sample variability was better explained by HLA type

than by tissue-specific peptide presentation. Finally, the large dataset of benign samples allows

us to describe properties like the length distribution of different HLA alleles and the nestedness

of the peptides in the two HLA classes.

In the last part of this thesis, we show how targets can be defined using immunopeptidome

data. In this case, we investigated four different hematological malignancies. We describe

entity-dividing lines by using a unsupervised hierarchical clustering of allotype-specific peptides,

which showed that entity-specific analysis is recommended. Nevertheless, we found "pan-

leukemia"-antigens shared across all four hematological malignancies, which were cancer

exclusive.
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Zusammenfassung

Trotz verschiedenster therapeutischen Behandlungsmethoden ist Krebs noch immer eine der

häufigsten Todesursachen weltweit. Deshalb werden weiterhin neue Therapieansätze, wie zum

Beispiel Immunotherapie, entwickelt, um Krebs zu heilen. Zur Entwicklung von Immunothe-

rapien gegen Tumorzellen werden Angriffsziele benötigt, anhand derer Krebszellen erkannt

werden können. Zur Bestimmung dieser ist es notwendig sowohl das Immunopeptidom von

Krebszellen als auch das von gesundem Gewebe zu kennen. Wir präsentieren einen großen

Immunopeptidomdatensatz von gesundem Gewebe, der sowohl verschiedene Organtypen ei-

nes Individuums, als auch verschiedene Individuen beinhaltet. Wir haben ein Webinterface -

den HLA Ligand Atlas - entwickelt, um einen benutzerfreundlichen Zugriff auf die Daten zu

ermöglichen. Dieses Webinterface erlaubt eine schnelle interaktive Suche im Datensatz, wie

die Suche nach organspezifischen HLA Peptiden, und stellt zusätzliche Statisken bereit. Des

Weiteren erlaubt es die Darstellung der Massenspektrometriespektren in einem interaktivem

Spektrumviewer.

Mit Hilfe des großen Datensatz an Normalgewebe konnten wir allgemeine Eigenschaften

des Immunpeptidom bestimmen. Zuerst zeigen wir, dass das Immunopeptidom sich sowohl

quantitativ als auch qualitativ nicht ändert, wenn die Probe kurzzeitig bei 8 °C gelagert wird.

Als nächsten führten wir eine Qualitätskontrolle durch, die ein verändertes Immunopeptidom

bei den Proben des Magengewebes aufzeigte, welches möglicherweise durch Pepsin in den

Proben verursacht wurde. Zusätzlich untersuchten wir die inter- und intra-individuelle Varia-

bilität des Immunopeptidom auf Protein- und Peptideebene. Die Analyse zeigte hier, dass der

HLA-Typ einen größeren Einfluss auf die Variablität hat als die organspezifische Präsentation.

Der große Datensatz von Normalgewebe erlaubte uns auch die Beschreibung weiterer Eigen-

schaften, wie die Peptidlängenverteilung für verschieden HLA Allele und die Beschreibung von

Längenvarianten in den zwei HLA Klassen.

Im letzten Teil dieser Doktorarbeit zeigen wir wie neue Angriffsziele mit Hilfe von Immuno-

peptidomdaten gefunden werden können. In unserem Fall untersuchten wir vier verschieden

hämatologische Krebsarten. Durch eine unüberwachte hierarchische Clusteranalyse auf allotyp-

spezifischen Peptide wurden hier klare, entitätsspezifische Cluster identifiziert. Dieser Befund

spricht für die Notwendigkeit einer entitätsspezifischen Anaylse solcher Datenätze. Nichtsdesto-
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trotz konnten wir auf allen vier hämatologischen Krebsarten „Pan-leukemia“ Antigene finden,

die krebsexklusiv sind.
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General Remarks

• In accordance with the standard scientific protocol, I will use the personal pronoun we

to indicate the reader and the writer, or my scientific collaborators and myself.
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Chapter 1

Introduction

Cancer is one of the leading causes of death worldwide and despite many available therapies,

8.2 million cancer-related deaths have been reported in 201243. The treatment of cancer

with classical therapies yields only limited success and new therapies are getting developed

with the focus shifting to immunotherapies99. The main concept behind immunotherapies is

the ability of the immune system to recognize and eliminate cancer cells. The recognition is

based on peptides bound to the human leukocyte antigen (HLA) (antigens) and the set of all

peptides bound to HLA is defined as the immunopeptidome3. There are two kinds of antigens

which are important for cancer immunotherapy. The first are tumor-specific antigens (TSAs),

which have never been found on benign tissue and can, for example, contain cancer-specific

mutations. The second ones are tumor-associated antigens (TAAs). These have also been found

on benign tissue but are in general cancer-related, for example strongly over expressed52. To

define TSAs and TAAs both the cancer and the benign immunopeptidome have to be examined.

The former has been analyzed extensively by immunoprecipitation followed by tandem mass

spectrometry19,36,66,70,135. Nevertheless, to find TSAs and TAAs analyzing tumor samples is not

enough and the immunopeptidome from benign tissues is needed as background or negative

dataset to avoid side effects like cross-reactivity. Despite its significance, no large benign antigen

dataset is publicly available. This thesis tries to fill this gap of knowledge, by presenting a large

benign dataset of antigens collected from 85 samples.

Analyzing such a large number of samples can be difficult, considering that each sample

can result in more than 5,000 peptides. Therefore, the field of immunoinformatics developed

tools like binding prediction (e.g., netMHCpan56) and HLA typing (e.g., OptiType122), to

allow for such datasets to be analyzed. Furthermore, databases containing immune system

related data, like lists of HLA peptides and T-cell epitopes (e.g., IMGT76, IEDB130, SystemMHC

Atlas114), have been published, which are are of particular importance for the comparison and

development of possible new targets.
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1. Introduction

1.1 The HLA Ligand Atlas: Providing public access to a benign

immunopeptidome

The development of new cancer immunotherapies and the discovery of new possible TAAs

and TSAs needs numerous immunopeptidome samples. The resulting large amount of data

has to be processed and analyzed. Considering that one single HLA immunopeptidome anal-

ysis from one sample can result in a list of more than 5,000 peptides, with many features

per peptide15, databases are needed to store and access these large amounts of data. In

the context of immunology, the three largest and/or oldest databases are IMGT (the interna-

tional ImMunoGeneTics information system)76 containing information about HLA sequences,

antibodies, and T-cell receptors, IEDB130 (epitopes and epitope-MHC/BCR complexes), and

SYFPEITHI97 (MHC ligands and T-cell epitopes). The latter two contain experimentally de-

rived HLA ligands and in addition, IEDB also non-binding peptides. However, both are mostly

focused on immunologically important peptides such as tumor antigens and do not provide a

complete benign dataset. All three databases allow researchers to access the data via a user-

friendly web interface. For a simple search in the data (e.g., a peptide sequence), this way of

accessing data is preferable since it allows the researcher to gather information without further

knowledge of how the data is stored or internally accessed.

In DNA and RNA sequencing, generating large datasets and providing public access to them

has become standard (e.g., TCGA and Gene Expression Omnibus37). Nowadays large datasets

can also be obtained and are published using mass spectrometry (MS) driven methods, like

proteomics. In 2014, Wilhelm et al. published an MS-based draft of the human proteome143

and in 2015 Uhlen et al. published the human protein atlas, a tissue-based map of the hu-

man proteome126. Both publications provide a quick and user-friendly way to access large

datasets of MS data via a web interface. Furthermore, Shao et al. recently published the

SysteMHC Atlas114, which gathers immunopeptidome datasets published in the PRoteomics

IDEntifications (PRIDE) database and reprocesses the raw files with a standardized pipeline.

The SysteMHC Atlas allows searching for peptides and proteins contained in the samples and

presents a spectrum library.

Inspired by these three publications, we developed a database for immunopeptidome data.

This database contains a large dataset of 85 benign samples from six different individuals.

These samples have been obtained along with standard autopsies and from each individual

multiple different tissue types have been collected. The data was stored in a MySQL database.

In addition, we developed a user-friendly web interface using the python based web framework

Pyramid, as well as state-of-the-art web-design tools, like Bootstrap, DataTables, and jQuery.

This web interface does not only allow searching for peptides, proteins, and HLA alleles but

also contains statistics like tissue-specific peptides and an MS spectrum viewer. The resulting

web page is called "HLA Ligand Atlas" and is publicly available to stimulate further HLA im-
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Analysis of the benign tissue immunopeptidome

munopeptidome research. We hope that the HLA Ligand Atlas enables researchers to find new

antigens and develop new cancer immunotherapies.

1.2 Analysis of the benign tissue immunopeptidome

Despite the possibility of new scientific insights, neither a detailed description nor an extensive

analysis of the benign immunopeptidome has been done so far. In general, the focus of previous

publications was either on malignant samples15,62,67,135 or cell lines71. Because of that, we

performed a comprehensive analysis of the benign immunopeptidome data included in the

HLA Ligand Atlas. In contrast to most other studies, our samples were obtained from autopsies,

which allowed us to take more than one type of tissue sample, but had the drawback of a pos-

sible change of the immunopeptidome during the time between death and autopsy. Therefore,

we performed a time-series experiment, which indicated no change of the immunopeptidome

over a time of 72h. Furthermore, we performed multiple quality control steps, to ensure that

only high-quality data is contained in the HLA Ligand Atlas. This quality control step revealed

disturbed HLA peptide motifs for our two stomach samples, indicating the influence of pepsin

in our samples of stomach tissue.

The raw data of the mass spectrometry experiments can be analyzed using different iden-

tification algorithms. The most common automated database search engines are Mascot94,

SEQUEST40, X!Tandem31, Andromeda30 or Comet38,39. We performed a small benchmark of

the two algorithms Sequest HT and Comet, to evaluate which one is better suited to analyzing

immunopeptidome data. In addition, we tested the influence of Percolator58 on the number

of identified peptides and their quality. This benchmark shows a superiority of Comet over

Sequest HT, especially in combination with Percolator.

Current studies of the tumor immunopeptidome contain at most two different tissue sam-

ples of one individual (e.g., malignant and adjacent benign) and therefore the tissue-variability

of the immunopeptidome inside an individual is not described. Furthermore, although former

studies analyzed tumors from different individuals, an inter-individual analysis of the variation

in the benign immunopeptidome is not published. To fill this research gap, we analyzed both

the inter- and intra-individual variability of the immunopeptidome on protein and peptide

level. This analysis revealed that sample variability was better explained by HLA type than by

tissue-specific peptide presentation.

In previous studies, mono-allelic cell lines have been used to determine the immunopep-

tidome of specific HLA alleles. At the same time, properties of the peptides presented by single

HLA allele have been described1. The large dataset of benign samples allows us to describe

properties like the length distribution of different HLA alleles, which was similar to the ones

described by Abeline et al.1 For the development of possible therapeutic vaccines, HLA class I

peptides that are contained as a substring in HLA class II peptides are of special interest64,113.
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1. Introduction

We therefore also analyzed the general frequency of this phenomenon and calculated the num-

ber of peptide length variations within an HLA class. In addition, we computed the protein

overlap between HLA class I and II and the number of peptide length variations inside an HLA

class. The latter analyses showed that, on average, 8% of HLA class I and 59% of the HLA

class II peptides do have variations in length.

1.3 A meta-analysis of the HLA peptidome composition in differ-

ent hematological malignancies

Antigen-specific immune-checkpoint blockade inhibition has led to major breakthroughs in

the treatment of solid malignancies22,29,48,81,86,100. However, the effect of this treatment have

been found to correlate with the mutational load102,117. This might explain this treatment’s

limited effectiveness for treating hematological malignancies (HM) (excluding Hodgkin lym-

phoma)9,10, which are characterized by a low mutational load. HM can be treated by stem

cell transplantation21,101,141, donor lymphocyte infusion107,108,111 or chimeric antigen receptor

(CAR) T cells44,80,95, but all these methods often show off-target toxicity such as graft-versus-

host disease. Hence, to develop new treatment strategies against hematological cancer new

targets have to be identified.

To describe the antigen landscape of hematological cancer, we performed a meta-analysis

of four different hematological malignancies, which have been described individually by our

group beforehand19,66,118,135. The dataset consists of samples from acute myeloid leukemia

(AML)19, chronic myeloid leukemia (CML)118, chronic lymphocytic leukemia (CLL)66, and

multiple myeloma (MM)135.

In this meta-analysis we first conducted an unsupervised hierarchical clustering of the

source proteins of the immunopeptidome, to gain an overview of the antigen landscape of

the four different HM. However, instead of distinct clustering for the different HM we found

a clustering along non-entity specific common antigens, which was caused by the different

HLA typings of the samples. Therefore, we repeated the analysis, but this time with an HLA

allotype specific immunopeptidome. This dataset was created by assigning the peptides to

their HLA allele using netMHCpan-3.089. In this analysis the clustering of the HLA-A*02:01

peptides showed entity-specific dividing clusters. Next, we subtracted a large in-house im-

munopeptidome dataset of benign samples and did an allotype-specific overlap analysis, which

identified a small panel of naturally presented ’pan-leukemia’ antigens. However, these new

targets have not yet been evaluated for immunogenicity or tumor-specific cytotoxicity.
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Chapter 2

Biological background

This chapter introduces the biological background of this thesis and summarizes the immuno-

logical basis of the presented research. First, an overview of the mechanisms of the immune

system is given (Section 2.1), followed by a detailed review of the HLA ligand processing path-

way (Section 2.2). These sections are based on Janeway’s Immunobiology87. Furthermore,

this chapter contains a short summary of hematological cancer types and possible treatments.

2.1 The immune system

The immune system helps the organism to fight pathogens like viruses, bacteria, and helminths.

Another function of the immune system is the surveillance of endogenous cells and the con-

trolled apoptosis of mutated and dysplastic cells. It can be divided into two parts: the innate

immune system and the adaptive immune system.

2.1.1 The innate immune system

If the pathogen crosses physical barriers like the skin, the innate immune system protects the

organism in a generic way. First, it uses antimicrobial enzymes and peptides, and plasma

proteins known as the complement system. Next, the innate immune cells recognize pathogen-

associated molecular patterns (PAMPs) and kill pathogens by phagocytosis. If the pathogen

withstands the mechanisms of the innate immune system, the adaptive immune system is

needed. It targets the pathogen specifically using antigen-specific lymphocytes and provides

long-lasting specific immunity. This thesis focuses on HLA immunopeptidome, which is part of

the adaptive immune system. Therefore, we will only describe the adaptive immune system in

detail.
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2. Biological background

2.1.2 The adaptive immune system

The adaptive immune system includes a humoral- and cellular-mediated immune response,

which will be both described in the next two sections.

The humoral-immune response

The humoral-immune response uses B cells, which recognize special B-cell antigens using the

B-cell receptors (BCRs). If an antigen binds specifically to a BCR, the B cell secretes antibodies

against the antigen. These antibodies can bind to the antigen presented on the cell and marks

the pathogen for ingestion or elimination by phagocytes. This mechanism is called antibody

opsonization. In the next step, the antibody-dependent cell-mediated cytotoxicity (ADCC) elim-

inates the pathogen. This mechanism uses effector cells, like natural killer cells, macrophages,

neutrophils, and eosinophils, which recognize the antibody bound to the cell or pathogen.

Finally, these cells release enzymes, like granenzymes, which lead to the neutralization of the

cell or pathogen.

The cellular-immune response

The cellular-mediated immune response is based on T cells and therefore also known as T-cell

mediated immune response. This thesis focuses especially on the cellular mediated immune

response and the T-cell HLA interactions. Because of that we will only describe the cellular-

mediated immune response in detail.

The cellular-mediated immune response depends on the presentation of antigens by HLA,

which can be recognized by T cells. In contrast to the innate immune system, most of the

effector T cells act not on the pathogen itself but on other host cells. The development of T

cells starts with immature T cells, which arise in the bone marrow. All T cells undergo first a

positive selection in the thymus. In the positive selection the cells are removed if their HLA

does not bind properly, caused for example by misfolding of the HLA complex. In the negative

selection, T cells are removed which present peptides inherent to the organisms healthy tissue.

These peptides are called self-antigens and T cells presenting them are discarded to avoid

autoimmunity. After maturation in the thymus naive T cells travel through the lymph and blood

until they encounter their antigen which triggers their activation and further differentiation

into memory T cells.

T cells recognize their antigen using the T-cell receptor (TCR). The antigen is a peptide pre-

sented by the human leukocyte antigen. There are two different types of HLA molecules: class I

and class II. Class I presents intracellular antigens, which also cover antigens from pathogens

such as viruses. Class II presents extracellular antigens, which can originate from extracellular

pathogens like bacteria after phagocytosis. The class I HLA peptide complex activates CD8+ T
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cells. CD8 is a transmembrane protein on the T cell and binds as co-receptor to HLA class I. In

contrast, the class II HLA peptide complex activates T cells with the co-receptor CD4. Hence,

these are called CD4+ T cells (Figure 2.1).

After the encounter with an HLA class I complex, the CD8+ T cells can differentiate into

cytoxic killer T cells (CTL), which kill cells presenting the same antigen using cytotoxic effector

molecules like perforin, granzymes, granulysin and Fas ligands. This mechanism is for example

used to kill virus-infected cells that present antigens originating from viral proteins. CD4+ T

cells can differentiate into different types of T-helper cells after encountering their HLA class II

antigen. There are two types of T-helper cells TH1 and TH2. TH1 cells activate macrophages

that present antigens recognized by their TCR. These macrophages then destroy intracellular

microorganisms. Furthermore, TH1 cells can stimulate B cells to produce IgG antibodies against

the pathogen. Another property of TH1 cells is the ability to release cytokines like interferon

gamma, which activate CTLs and stimulate their differentiation. TH2 cells stimulate B cells to

differentiate and to produce non-IgG antibodies.

Before the T cells can recognize the antigens presented by HLA, these antigens have to be

processed and presented on a cell, which is described in the following section.

2.2 The HLA ligand processing pathways

2.2.1 HLA class I

The HLA class I processing pathway begins with the digestion of intracellular proteins by the

proteasome (Figure 2.1. The proteasome is a large intracellular protease consisting of a 20S

catalytic core and two 19S regulatory caps. All three parts consist of multiple subunits. Proteins

are tagged for digestion with markers such as ubiqutin, which are recognized by the 19S caps.

The tagged proteins are digested into peptides, which are released into the cytosol. From

the cytosol, the peptides are transferred by the transporter associated with antigen processing

(TAP) into the endoplasmic reticulum (ER). In the ER, the peptides then bind to the HLA class

I molecule and form the peptide:HLA complex. This binding is associated with the peptide-

loading complex, which consists of four main components: calreticulin, tapasin, ERp57, and

TAP itself. In the last step, the peptide:HLA complex is transported to the cell surface, where

it presents the endogenous antigens to CD8+ T cells. HLA class I presents mostly peptides of

length 8 to 12 amino acids.

2.2.2 HLA class II

The HLA class II processing pathway begins with the uptake of extracellular proteins into

intracellular vesicles. These endosomal vesicles contain proteases, which are activated as

soon as the pH value decreases. The proteases cut the proteins into peptides and the vesicle

7
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containing the peptides then fuses with vesicles enclosing HLA class II molecules. In the joint

vesicle, the peptides bind to HLA and form the class II peptide:HLA complex. In the next step,

the vesicle is transported to the cell surface, where the HLA class II complex is presented and

can be recognized by CD4+ T cells. In contrast to HLA class I, class II presents mostly peptides

of length 12 to 25 amino acids.

2.2.3 HLA binding motifs

The human leukocyte antigen is polygenic. This implies that each individual has several

different HLA class I and class II genes. Additionally, HLA genes are the most polymorphic

genes known in the human genome. This means that there are multiple alleles of each gene in

the population. In detail, every person has at least three different HLA class I (considering HLA-

A, -B, -C) and three HLA class II genes (considering HLA-DP, -DQ, -DR). Furthermore, more

than 16,000 different HLA alleles are known and due to the price-reduction in sequencing

technologies more and more alleles are discovered every year (Figure 2.2). The polygenesis

and polymorphisms are important for the adapted immune system, since the presentation of a

protein depends on the HLA molecule and the sequences of the digested peptides. This means

that a peptide can only bind to an HLA molecule if it fits into its binding cleft. This fit can be

described by peptide binding motifs, which have to be defined for each HLA allele individually.

This binding motif defines which amino acids are allowed or preferred at which position in a

peptide. Furthermore, each allele has a small set of anchor positions, which are more important

and less variable than the others and contribute more to the binding (Figure 2.3).

The binding restrictions of HLA class I and class II differs heavily, which is caused by the

difference in the 3D structure of the HLA proteins. Whereas the binding cleft of HLA class I

can be described as a bathtub form, the HLA class II binding cleft looks more like a hot dog

(Figure 2.4). These two different forms lead to both a variety in the length of the binding

peptides (class I: 8-12, class II: 8-25) and the general binding motif. The strict length of the

HLA class I peptides is caused by the fitting of the peptide into the binding cleft, which does

not allow long dangling ends. In contrast, the form of the HLA class II binding cleft allows long

dangling ends and the peptide can shift inside it. Because of that the binding motif of class II

peptides is not described by a matrix of a length 8-25, but by a binding core, which is again

considered to be nine amino acids long.

Due to the large variety of the binding motifs, the prediction of the HLA binding affinity

of a peptide is not a simple task and a variety of HLA binding prediction software tools has

been developed. Chapter 3.3 provides an comprehensive overview of HLA binding prediction

software.
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(a) HLA class I (5N1Y) (b) HLA class II (5LAX)

Figure 2.4: 3D structures of HLA class I A*02 (blue and white) with the peptide MVWG-
PDPLYV (red) and HLA class II DRB1*04:01 (dark and light blue) with alpha-enolase
peptide 26-40 (orange). Structure obtained from the Protein Data Bank (PDB)20 (5N1Y27,
5LAX47).

2.3 HLA peptide extraction

The analysis of the immunopeptidome requires the sample preparation and the purification

of HLA peptides (Figure 2.5). We here describe in short the main steps necessary to extract

HLA peptides. First, the cells of the sample are lyzed, resulting in a tissue lysate. Second, the

lysate is purified and only solubilized proteins remain. Third, the immunoprecipitation is used

to extract peptides bound to HLA. It is based on affinity chromatography, in which antibodies

specific for HLA are bound on a column. The immunoprecipitation, used for this thesis, utilizes

three different antibodies that are either specific for HLA class I (e.g., W6/32) or class II (e.g.,

Tue39/L243). The lysate runs through the columns coated with the HLA specific antibody

and only HLA molecules or peptide-HLA complexes are bound to it. Once the HLA molecules/

complexes are bound to the column, they are eluted with acid, resulting in a mixture of HLA

molecules and HLA peptides. Last, the peptides are separated using ultrafiltration resulting in

the isolated peptides, which can then be analyzed in the MS. A more detailed description of

the immunoprecipitation is given by Kowalewski et al.69.
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Figure 2.5: Simplified workflow of the isolation of HLA ligands. First, the cells of the
sample are lyzed, resulting in a tissue lysate. Second, the lysate is purified and only
solubilized proteins remain. Third, the immunoprecipitation is used to extract peptides
bound to HLA. It is based on affinity chromatography, in which antibodies specific for
HLA are bound on a column and the lysate runs through the columns and peptide-HLA
complexes are bound to it. Next, they are eluted with acid, resulting in a mixture of
HLA molecules and HLA peptides. Last, the peptides are separated using ultrafiltration
resulting in the isolated peptides

2.4 Hematologic malignancies

In Chapter 6, we use data from four different types of hematologic malignancies. To outline

the differences of these malignancies, we will shortly describe each of them. Furthermore, a

short discussion of possible therapies is presented for each malignancy.

2.4.1 Acute myeloid leukemia

Acute myeloid leukemia (AML) is the result of multiple genetic alterations in hematopoietic

precursor cells132. These genetic alterations result in abnormal growth and differentiation

in the cells, causing large amounts of pathological and immature cells in the bone marrow

and peripheral blood. The main problem is that these cells, despite the ability to divide and

proliferate, cannot differentiate into mature hematopoietic cells and therefore accumulate in

the patient. The overall-survival and prognosis of patients with AML depends significantly on

the age, starting with a 60% five-year survival rate for patients younger than 30 to a decreasing
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rate of 23% for patients between 55 and 6455. The age and the overall condition is also

a limiting factor for the therapy choices. The primary treatment modality is a combination

chemotherapy (cytarbine and anthracyline) and stem cell transplant.

2.4.2 Chronic myeloid leukemia

Chronic myeloid leukemia (CML) is in most cases caused by the Philadelphia chromosome,

which is a mutated Chromosome 22. The Philadelphia chromosome leads to a unique gene

product (BCR-ABL1), a permanently active tyrosine kinase41. Because of its central role in

CML, BCR-ABL1 is often used as treatment target129. CML develops in three disease phases:

the chronic phase, the accelerated phase, and the blast crisis28. Furthermore, CML can develop

into an acute leukemia. The treatment of CML depends on the disease phase, availability of a

donor for hematopoietic cell transplantation, patient age, and the response to treatment with

tyrosine kinase inhibitors. Based on the mentioned factors, there are three main treatment

options for CML: hematopoietic stem cell transplant, tyrosine kinase inhibitors, and palliative

therapy with cytotoxic agents11.

2.4.3 Chronic lymphocytic leukemia

Chronic lymphocytic leukemia (CLL) can be characterized by a progressive accumulation of

functionally incompetent mature B cells and is the most common leukemic disorder in the

Western hemisphere23. This accumulation is induced by the inability of B cells to undergo

apoptosis84. CLL is frequently associated with the following genetic lesions: deletion of 17p or

TP53 mutation, a deletion of 11q, trisomy 12, or a deletion of 13q34. Due to its heterogeneity,

the treatment of CLL varies from "watchful waiting" to chemotherapy26. However, CLL cannot

be cured by current treatment options. Therefore, only a treatment of the symptoms of the

disease is attempted.

2.4.4 Multiple myeloma

In multiple myeloma (MM), plasma cells undergo neoplastic proliferation. These proliferating

plasma cells produce monoclonal immunoglobulin and can be found in the bone marrow,

which often causes extensive skeletal destruction74. MM is frequently caused by cytogenetic

changes in the immunoglobulin heavy-chain locus on chromosome 14q32 and one of five other

chromosomes, 11q13, 4p16.3, 6p21, 16q23, and 20q1173,112. The treatmant of MM often

involves autologous stem-cell transplantation. If the patient is not eligible for transplantation,

for example because of his age, lenalidomide in combination with dexamethasone is used for

treatment109.

11



2. Biological background

Figure 2.1: HLA ligand processing pathway for class I and class II proteins. The HLA
class I pathway presents intracellular antigens, which are digested in the proteasome
into small peptides. These peptides are transported into the ER by TAP and there loaded
onto HLA class I molecules. Finally, the peptide:HLA complex is transported via vesicle
to the cell surface, where they can interact with CD8+ T cells. The HLA class II pathway
presents exogenous antigens, which are digested in the endosome into small peptides.
These are then loaded onto HLA and the peptide:HLA complex is again transported to the
cell surface. The HLA class II complex can be recognized by CD4+ T cells. Boxes on top
and bottom highlight processes for which machine-learning based prediction tools exist
(for HLA binding prediction see Section 3.3).Reproduced with permission from Backert &
Kohlbacher, 201513.
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Figure 2.2: Amount of HLA class I and class II alleles contained in the international
ImMunoGeneTics information system(IMGT)104. Statistics obtained from http://www.
ebi.ac.uk/ipd/imgt/hla/stats.html (06.19.2017).

Figure 2.3: HLA binding motif of A*02:01 for nine amino acid long peptides. The
size of the letters reflects how often the corresponding amino acid is in the position.
Anchor positions are in this case amino acid two and nine. The colors of the let-
ters correspond to different groups of amino acids with certain properties, like po-
lar/ unpolar and hydrophilic/ hydrophobic. Image from the netMHC-4.0 webpage
http://www.cbs.dtu.dk/services/NetMHCpan/logos.php(06.19.2017)7.
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Chapter 3

Computational background

All data in this thesis was measured from tissue samples using high-performance liquid chro-

matography (HPLC) coupled to tandem mass spectrometry (LC-MS/MS). This chapter presents

the computational methods used to process and analyze the data acquired from the MS.

Measuring samples in LC-MS/MS results in two different types of spectra, the precursor

spectra (MS1) and the MS/MS fragment spectra (MS2) (Figure 3.1). Before identification,

these spectra have to be peak picked and in the next step, both the precursor spectra and the

corresponding fragment spectra allow to identify the peptides and their source proteins. The

latter process is called peptide identification. After the identification, the peptides are assigned

to an HLA using HLA binding prediction methods, which are based on machine learning (ML).

The methods used in all these steps are described in this chapter.

Figure 3.1: High-performance liquid chromatography coupled tandem mass spectrometry
workflow. HLA peptides are separated by the HPLC and then measured in the mass
spectrometer. The MS reports two kinds of the spectra: the precursor spectra (MS1)
measured in the first MS and the fragment spectra (MS2) acquired in the second MS.
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3. Computational background

3.1 Peptide identification

Peptide identification assigns the MS2 fragment spectra measured in the MS to one or multiple

possible peptides and reports a score or probability for each spectrum-peptide assignment. The

peptide itself can originate from one or multiple source proteins. This allows to assign also

one or multiple possible protein to an spectrum. At the very beginning of the development

of mass spectrometry, spectra were assigned manually to peptides by experts. Since new

mass spectrometers yield thousands of spectra in each run, a manual assignment is no longer

feasible. Nowadays, the identification is done by automated database search engines such as

Mascot94, SEQUEST40, X!Tandem31, Andromeda30 or Comet38,39. In this thesis, the three

peptide identification algorithms Mascot, Sequest, and Comet were used. Therefore, they will

be described below.

Experimental MS2  
Spectrum 

Fragment m/z values comparison 

Scored 
Identifications 

Protein Sequence DB 

Theoretical spectra 

Theoretical m/z values 

Figure 3.2: Simplified peptide identification workflow. First, the experimental MS2 spec-
tra are recorded and theoretical spectra are computed based on a protein database. In the
next step, the theoretical and experimental m/z values of the MS2 spectra are compared
and finally, the identifications are reported including the sequences and software depen-
dent scores. Reproduced from lecture 17 Slide 8 from the Bioinformatics 2 lecture from
Oliver Kohlbacher. Accessible at https://abi.inf.uni-tuebingen.de/Teaching/
Old/ss-2014/BI2/slides-and-handouts/BI2_SS14_17_ProtID.pdf.

3.1.1 Mascot

Mascot was one of the first database-based identification tools and is sold as a commercial

software by Matrix Science94. It uses a probability-based scoring system and supports three

different search types: peptide mass fingerprint, sequence query, and MS/MS ion search.

Peptide mass fingerprints are the result of the digestion of a protein by an enzyme and the
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Figure 3.3: Steps of the SEQUEST workflow. First, tandem mass spectrometry data is
reduced. Second, the database containing the theoretical spectra is searched. Third, the
found hits are scored. Last, cross-correlation analysis of the top 500 identified amino acid
sequences.

sequence query combines this mass data with AA sequence data or physicochemical data.

However, in our case only the MS/MS ion query is relevant. It allows to search a sequence

database in FASTA format and the search itself can be executed in parallel. As MS data input,

Mascot needs peak lists with centroided mass values and intensity values.

The probability-based scoring of Mascot allows to calculate the probability of an observed

match between the experimental data and each sequence in the database. The match with the

lowest probability is then assigned and reported. If a multi-testing correction is performed,

searching large databases with millions of sequences requires very small p values to conclude

that a match is significant. Therefore, Mascot reports the−10log10(P) value as a more readable

score to the user94.

Mascot is server based and provides a free web interface for all three search types http://
www.matrixscience.com/cgi/search_form.pl?FORMVER=2&SEARCH=MIS. However, the

search with the Matrix Science server is limited to 1,200 MS/MS spectra, which is not feasible

for high-throughput mass spectrometry containing thousands of spectra. Therefore, we used

an in-house Mascot server without limitation in spectra count94. Instead of an web interface

this sever was accessed using Proteome Discoverer by Thermo Fisher.

3.1.2 SEQUEST and Comet

In contrast to Mascot, SEQUEST and Comet are based on the correlations between the theoret-

ical and experimental spectra. This concept was first described in 1994 by Eng et al. and has

later been made available as SEQUEST40. SEQUEST is now available as an academic version

and commercial version distributed by Thermo Fisher. The original algorithm described in

1994 consists out of four steps (Figure 3.3)40. The first one is the data reduction of the tandem

MS data. In this step first, the fragment ion mass-to-charge ratios are converted into nearest

integer values and a 10 u window is removed around the precursor ion. This helps to remove

matches of predicted fragment ions to the mass-to-charge ratios of precursors. To eliminate

noise and reduce the run time, SEQUEST only considers the 200 most abundant ions from

the spectrum. In the second step, the database is searched by scanning through all protein

sequences for matching linear combinations of amino acids with the mass of the peptide. This
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Figure 3.4: Representation of mass spectrometry data in SEQUEST as array format. The
data is saved in a dictionary spectra, where m/z value of the spectra are keys and their
intensity the values. Figure based on Eng et al.38

is done by summing up the masses of the amino acids of a subsequence and considering them

as possible matches if they fit with a predefined mass tolerance. After searching the database

for the potential hits, the final score (Sp) is calculated as

Sp =
(
∑

im)ni(1+ β)(1+ p)
nt

(3.1)

where ni is the number of predicted ions matched, im their abundances, nt the number of all

predicted ions for this precursor, and β and p are scoring parameters. The scoring is based on

multiple rules. The first rule describes how the predicted fragment ion masses are compared to

the measured ones and for each match within a tolerance of 1 u, the abundance is summed up.

To give preference to consecutive matches, SEQUEST increments β for each consecutive match.

The second rule characterizes how the scoring parameter p is increased if an immonium ion

for the amino acids His, Tyr, Trp, Met, and Phe is in the sequence, if not it is decreased. After

calculating the scoring, the fourth and last step of the SEQUEST algorithm is conducted, the

cross-correlation analysis. This analysis compares the top 500 identified amino acid sequences

from the search results with the experimental data. First, the computational spectrum is

reconstructed such that all mass-to-charge values of the b- and y-ions are represented by a

magnitude of 50 and their surrounding area of 1 u by 25. To consider neutral losses of ammonia,

water, and carbon monoxide, their magnitude is set to 10. This reconstruction tries to adapt the

appearance of the predicted spectra to the one of the experimental spectra. In the next step, the

experimental spectra are modified by removing the precursor mass and dividing the spectrum

into 10 equal bins. The spectra in each bin are normalized to a magnitude of 50. Finally, the

cross correlation between the theoretical spectrum x i and the experimental spectrum yi can
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Figure 3.5: Representation of mass spectrometry data in Comet as a sparse matrix. a)
Linear representation of the spectrum array. Blue boxes represent bins with spectra. b)
Matrix representation of the spectrum array. c) Sparse matrix format. In rows which do
not contain any values, only the first bin is assigned a null point, which allows freeing the
memory of the rest of the bins in the row. Figure based on Eng et al.38

be calculated as

Cx y =

∫ +∞

−∞
x(t)y(t +τ)dt (3.2)

where x(t) and y(t) are the continuous signals of the spectra x and y , τ is the displacement

value and describes how much the signal is offset by the translation. Since x i and yi represent

discrete input signals, the following form of the cross correlation can be used:

Rτ =
n−1
∑

i=0

x[i]y[i +τ] (3.3)

Finally, SEQUEST performs a Fourier transformation of the two spectra, ny multiplying the

Fourier-transformed first spectrum with the complex conjugate of the second spectrum and

then performs the inverse transformation. The last step is normalizing the resulting value to 1.

Comet is a further development of the described algorithm. To deal with new mass spec-

trometers with higher accuracies and larger datasets, several changes to the SEQUEST scoring

method were necessary. First, the Fourier transformation of the spectra can be avoided, which

is essential for the calculation of the cross-correlation and results in a shorter run time. Next,

SEQUEST stores the spectra as an array, where the m/z values are keys and the intensities are

the values (Figure 3.4). Since the storage consumption grows linearly, this representation is

impractical as soon as the bin size for the keys increase. To allow smaller bin sizes, Comet uses

a sparse matrix representation of the spectra. The aim is to avoid empty bins, which reserve

large blocks of memory. This can be solved by grouping the bins and assigning Null to the first

one in the group if all bins are empty in the group (Figure 3.5). In combination, the avoided

Fourier transformation and the new data storage format allow Comet to identify and score
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peptides in spectra recorded with high-resolution mass spectrometers in a shorter time and

with less memory usage than Sequest.

3.2 Peptide identification statistics

The following section describes how to assess the statistical significance of identified peptides

and is based on a review by Käll et al.58. The identification tools described above only report

how well the spectra fit the theoretical spectra. However, the identified peptide-spectrum

matches (PSMs) may contain false positive (FP) identifications. These FPs occur often due

to the complexity and erroneousness of the data, for example missing ion peaks. Raising the

threshold score for accepting an identification removes many FP identifications, but may also

remove many true positives (TP). Therefore, a score assessing the statistical significance (p-

value) is needed. In this case, the null hypothesis is that the peptide was not measured by the

MS. The most common method to calculate this p-value is the decoy database approach. In this

method, the spectra are also searched against a database of decoy sequences. These decoys

can be created by reversing85 or shuffling the sequences of the target database65. Another

method is to generate random sequences using the same amino acid frequencies from the

target database. To avoid false negatives, it must be assured that the decoy sequences are not

contained in the target database.

The p-value can be calculated for each PSM by determining the percentage of decoy PSMs

that receive the same or higher score as the candidate PSM. Calculating the p-value for each

PSM results in thousands of tests and increases the possibility of accepting a PSM by chance due

to multiple hypothesis testing18. Multiple-testing correction and false-discovery rate (FDR)

estimation are needed to solve this problem. The FDR describes the number of expected

percentage of PSMs that are incorrect for a certain score threshold. In other words, we compute

the ratio between the number of decoy PSMs and target PSMs above the threshold. More

advanced FDR estimation methods also try to incorporate the number of false positive target

PSMs.

In addition to the FDR, we can also compute the q-value. The q-values is defined as the

minimal FDR threshold that accepts a certain PSM120. The q-value represents the significance

of a single PSM, whereas the FDR represents the significance of a set of peptides. As described

above, there are multiple ways to describe the statistical significance of mass spectrometry

identifications. In the next section, we describe the semi-supervised machine learning algorithm

Percolator57,59,123 for calculating further and enhanced statistical properties of PSMs.
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3.2.1 Percolator

Percolator was first introduced by Käll et al. in 200757 to improve the rate of confident

peptide identification in tandem mass spectrometry. Percolator is based on a semi-supervised

machine learning algorithm that can learn and use the differences between decoy and target

identifications to identify true PSMs.

Percolator uses multiple different scores reported by the search algorithms as the input

vector for the machine learning algorithm. Instead of looking at each score independently, the

algorithm combines the scores to gain further information about the spectrum. In addition to

the basic scores such as XCorr (SEQUEST and Comet correlation score), Percolator incorporates

other features that describe the PSM. The most important features are ∆Cn and ∆C L
n , which

describe the difference between the current and the second/fifth XCorr, the mass and ∆M , the

fraction of the b- and y-ions, the number of peptides in the database in the associated m/z

range, the length of the peptide, the charge state, the number of PSMs, which are the best

matching for this peptide, the number of PSMs matching into this protein, and the number

of peptides for this protein. A full list of the features and a description can be found in the

Supplementary Table 1 in Käll et al57. This list also describes enzymatic features. However

these are not used for immunopeptidome data since no enzymatic cleavage is performed.

The Percolator algorithm can be divided into three phases. In the first phase the PSMs are

computed for the target and decoy database and a feature vector for each PSM is computed.

The second phase iterates a fixed number over the following three steps. One: generate a

positive training set, which consists of a high-confidence target PSM. Two: train a linear SVM

using the positive training set and the decoy hits. Three: re-rank all PSMs with the trained

classifier. The third phase re-ranks the target and decoy PSMs using the final SVM. Finally, the

FDR for all target PSMs is estimated as

E{F DR(t)}=
π0

m f
md
|{di > t; i = 1, ..., md}|

|{ fi > t; i = 1, ..., m f }
(3.4)

where fi are the scores of the target PSMs, di are the scores of the decoy PSMs, t is a given

threshold, and π0 is the estimated proportion of incorrect target PSMs. In addition, the q-value

for a PSM with a score t can be calculated as

q(t) =min
t ′≤t

E{F DR(t ′)} (3.5)

In 2016, version 3.0 of the Percolator algorithm was published123, which is optimized to be

used on larger datasets and allows protein interference for mass spectrometry data. However,

the protein interference performed by Percolator is applicable to proteomics data and not to
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immunopeptidome data, because of the different chemical and biological processes, by which

HLA ligands are generated in the cell.

3.3 HLA binding prediction

In silico prediction methods are available for each step of the HLA class I antigen processing

pathway, which includes proteasomal cleavage, TAP transport, HLA binding, and T-cell recogni-

tion (Figure 2.1). However, the quality of the predictions varies greatly between the different

parts of the pathway and is not sufficient to predict the immunopeptidome in silico. HLA

binding prediction alone performs reasonably well. Therefore, we can use it to assign peptides

to HLA types and calculate run properties like the content of binders that can be used as an

additional quality metric. The next paragraph shortly describes different methods for the HLA

binding prediction.

The first developed methods for HLA binding prediction where based on position-specific

scoring matrices (PSSMs) (e.g., SYFPEITHI97, RANKPEP98, or BIMAS92). More recently, meth-

ods based on machine learning have been developed. The most common ones use either

support vector machines (SVMs) (e.g., SVMHC35, SVRMHC137) or artificial neural networks

(ANNs) predictors (e.g., netMHC78). All these methods have advantages and disadvantages,

which have been discussed in detail by Backert & Kohlbacher13.

All described machine learning based prediction methods are supervised methods. They

aim to learn a function that maps a given input (peptides and HLA allele) to its output13.

These functions or predictors have to be trained on a dataset for which both input and output

values are known. The output can be either a classification (e.g., binder vs. non-binder) or

regression (e.g., binding affinity). Once the predictor is trained, it can map the input with

unknown output to its corresponding output, which is also called prediction. In the next step,

the predictor has to be evaluated on a test data set, which was not used in the training step.

This is often done using k-fold cross-validation. In this validation method, the test data is

divided into k disjoint subsets and training is performed on k− 1 of these folds (Figure 3.6).

Next, the resulting predictors are evaluated on the left-out dataset. This evaluation can for

example be the computation of the receiver operating characteristic (ROC) curve for each of

the sets, which then can be combined to a average ROC curve. After the evaluation of the

predictor, the predictor is again trained, but this time on the complete dataset.

To develop an HLA binding predictor, large datasets of binding data for each HLA allotype

have to be available. Since this data is commonly only available for the most frequent HLA

alleles, allele-specific HLA-binding predictors do not cover all 13,000 known HLA alleles105.

To solve this problem, so called pan-specific HLA-binding predictors have been developed,

which allow the prediction of any HLA allele with known protein sequence. The most popular

pan-specific predictors are netMHCpan90 for HLA class I and netMHCIIpan60 for HLA class II.
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Figure 3.6: Generating predictions from data. a Evaluation of the predictor using cross-
validation: first the data-set is split into k-folds (k = 5). Next, five predictors are trained
on four folds and validated on the one left out. Evaluation can be, for example, a receiver
operating characteristic (ROC) curve analysis. Finally, an average ROC curve is generated.
b Training of the final predictor: after evaluation, the final predictor is trained on the
complete data-set. Reproduced with permission from Backert & Kohlbacher, 201513.
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Both predictors are ANN based and were trained mostly on data originating from HLA binding

assays. To overcome the lack of data for the most HLA alleles, both methods try to measure

the distance between alleles without training data (unknown alleles) and alleles with training

data (known alleles). Based on this distance, closely related known alleles are used to predict

the binding for the alleles without training data. In the corresponding publications60,90, it has

been shown that for known alleles these pan-specific methods perform as well as allele-specific

predictors and achieve a reasonable accuracy for unknown alleles.

In this thesis, we used netMHCpan and netMHCIIpan for all HLA binding predictions,

because we consider many HLA allotypes, including allotypes with few or no binding data and

no allele specific predictors.

3.4 Gibbs Clustering

As mentioned above, each individual has multiple HLA alleles, which present peptides with

different binding motifs and sequence properties. Therefore, the measured immunopeptidome

is a mix of peptides presented by different HLA alleles. Furthermore, these peptides have

lengths varying between 8-12 amino acids for HLA class I and 8-25 amino acids for class II. The

Gibbs clustering method by Andreatta et al. helps to deconvolve this mix of peptides by aligning

and clustering them5,6,91. It is based on Gibbs sampling, which is a Markov Chain Monte Carlo

(MCMC) algorithm and named after the physicist Josiah Willard Gibbs46. It allows to get a

sequence of observations, which resemble a multivariate probability distribution.

In the first step the peptide sequences have to be aligned. However, the binding motif

of HLA is short and unspecific, which makes the alignment difficult91. The Gibbs clustering

method developed by Andreatta et al.6 solves this problem by clustering the peptides and

calculating an alignment score based on the Kullback-Leibler distance (KLD). Next, a log-odds

(LO) weight matrix describes the amino acid preference in each position of the alignment. The

LO weight matrix for an amino acid A at position j is calculated using

LOA, j =
n

n+σ
log

p′A, j

qA
(3.6)

where n is the number of peptides in the alignment, σ a weight for the cluster size, p′A, j the

pseudo-count corrected frequency, and qA the background frequency. The weight σ penalizes

small, highly conserved clusters, resulting in larger and more general groups. Finally, a peptide

x can be scored by summing up the LO value for each amino acid in each position.

A general problem in clustering is to determine the number of clusters. The goal is to

find the number of clusters that maximizes intra-cluster fitness while minimizing the similarity
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between clusters. The Gibbs clustering solves this problem by calculating the relationship

S∗i = Si −λ max
1≤n≤g

n6=i

(Sn, 0) (3.7)

where Si is the score of a given peptide to cluster i, max(Sn, 0) calculates the closest cluster

to cluster i, and λ is the weight for the inter-cluster similarity. The Gibbs clustering algorithm

then uses this equation to determine the clusters as follows. At the beginning, all peptides are

distributed randomly in g clusters, where g is a number of clusters set by the user. Then the

Gibbs clustering tries to align and cluster the peptides by moving them. In general, a move is

accepted with the probability

P =min
�

1, e
δE/T
�

(3.8)

where δE is the energy change and T the temperature. The Gibbs clustering uses three different

kinds of moves. The first is the single sequence move, which tries to move a peptide x from

group G0 to Gd . The energy for this move is calculated using δE = S∗d−S∗0. The second move

is the simple shift, which tries to move a peptide X in between a group by applying a random

shift of the alignment core of x . The energy is the score of x in the group after the shift minus

the energy before. The last move is the phase shift, which tries to move the entire alignment

of a group by a random number of positions. The energy is then calculated by subtracting the

score before and after the shift.

The obtained peptides often contain contaminant peptides, which do not fit in any cluster.

Because of that, the Gibbs clustering algorithm allows to include a trash cluster. This cluster is

treated like a normal cluster with the exception that is not included in the overall scoring.

The described algorithm tries to find the best global solution. However, since it a is a

heuristic method, it can get stuck in local optima. The Gibbs clustering tries to solve this

problem by using multiple restarts with different initial seeds.

3.5 Databases and database design

This section is based on the book "SQL- & NoSQL-Datenbanken" from Meier and Kaufmann82

and the book "Foundations of Databases" by Abiteboul et al2.

Today’s analysis technologies, like Next Generation Sequencing (NGS) and mass spectrom-

etry, produce large amounts of data. To store this data and to allow fast access, databases

and database management systems (DBMS) are needed. The DBMS is the bridge between the

user and the physical storage of the data. Most DBMS fulfill the following primary function-

alities: secondary storage management (store data which does not fit into the main storage),

persistence (the data should survive the termination of a database application), concurrency

model (support simultaneous access), human-machine interface (allow access to the database
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via simple queries), distribution, compilation, and optimization (translate requests into exe-

cutable programs)2. Furthermore, a DBMS supports actions like the definition, the creation,

the querying, the update, and other administrative actions of the database82.

There are many DBMS developers. The most used relational DBMS softwares are Oracle,

MySQL (open source), Microsoft SQL Server, PostgreSQL (open source), IBM DB2, Microsoft

Access, and SQLite (open source). For this thesis, only the three (MySQL, PostgreSQL, and

SQLite) open source softwares are of interest. SQLite is the simplest one. It is not server-

based, but is stored in a single file instead. Performance-wise, it is much slower than MySQL

and PostgreSQL. Comparing MySQL and PostgreSQL is much more difficult, as they are both

open source and quite similar. Two advantages of MySQL over PostgreSQL are its superior

performance and a well supported connectivity to web servers. An advantage of PostgreSQL

over MySQL, however, is that it is stricter if incorrect or meaningless values are inserted. For

example, MySQL allows 0000-00-00 as a date, whereas PostgreSQL does not.

3.5.1 Relational databases and normal forms

In this thesis, a relational database is used. Relational databases are based on the rather simple

concepts of relations or tables to represent the data. This simplicity is a major advantage of

relational databases. Each table or relation in a relational database has a name (e.g., protein).

The columns denote attributes (e.g., sequence) of each record. In our case, a record represents

a protein with many attributes to describe it (Figure 3.7)2.

Figure 3.7: Example for a table in a relational database. The table represents proteins in
the database with multiple attributes. Each row corresponds to one protein.

The first step in designing a relational database concept is to create an entity-relationship

(ER) model. The ER model helps to design an abstract model of the data. An entity in an ER

model is an object, which can be uniquely defined and exists independent of other things. In

our example, a protein would be an entity and all different proteins can be described with the

properties of the entity. In addition to the entities, an ER model describes the relationships

between them. In our example a peptide originates from a protein and is connected via a ’has’

relationship (Figure 3.8). A relationship can be described by association types.
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Figure 3.8: Example of a entity-relationship (ER) model. The two entities Protein and
Peptide are connected by a relationship.

In a relational database, there can be three association types: one-to-many, many-to-many,

and one-to-one. In a one-to-many relationship, one row in a table can be connected to multiple

rows in another table (e.g., one protein to many peptides). The many-to-many relationship is

used if one row in a table can be connected to multiple rows in another table, but also vice

versa (one peptide can be found in multiple samples but each sample also contains multiple

peptides). To construct this relationship, an intermediate table called "junction table" is needed,

which contains the primary keys of the two connected tables. A primary key of a table is a

property which is unique and defined for each row. In most cases, it is a consecutive integer,

which is incremented if a new entry is made. A primary key can be used to connect two tables

by adding it as a foreign key to a related table. In addition, foreign keys can also be another

attribute from another table. Finally, the one-to-one relationship is less frequently used because

this relation can be simplified represented by merging both tables into one using the connecting

key.

While designing a relational database, many false or missing abstraction can be made. This

so-called missing normalization can lead to redundancy, which again can cause anomalies if

updates, insertions, or deletions are performed, which is illustrated by the following example:

when a peptide and protein table are merged, each row in the merged table contains a peptide,

its protein, and the properties of both (e.g., peptide sequence and gene name). If the gene

name of a specific protein has to be updated later on, it must be updated in all rows, to prevent

an update anomaly.

Normal forms have been defined to avoid such anomalies (Figure 3.9) and we will give a

short overview of the first three normal forms. The first normal form enforces atomicity of the

values, meaning that they can not be separated any further. In our case of a protein table, a

protein may have multiple genes. These could be stored as a concatenated string. However,

this would violate the atomicity criterion. As a simple solution each row could be repeated with

only one gene. A relationship is in second normal form if it is in first normal form and if each

non-key property is functionally independent of each key. In our example, the sequence is only

dependent on the protein and not the genes. Therefore, we create a new table to represent

the protein-gene relationship. The third normal form requires the second normal form and

that every non-key property is not transitively dependent on any key of the table. In our case,

the GEO name is a non-key property, which is transitively dependent on the key GEO ID. We
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can create a new table containing the GEO ID and its name to ensure the third normal form.

Using these three normal forms removes most of the potential anomalies, however, there are

multiple more normal forms which try to remove more specific and rare anomalies. These are

described in detail in the book "SQL- & NoSQL-Datenbanken" by Meier and Kaufmann82.

Figure 3.9: Example of the first three normal forms. The first normal form enforces
atomicity. The second normal form ensures the first normal form and that each non-key
property is functional independent from each key. The third normal form requires the
second normal and that every non-key property is not transitively dependent on any key
of the table.

3.5.2 Queries and Views

To access and update the data in a table, queries have to be written. The ANSI (American

National Standards Institute) and the ISO (International Organization for Standardization)

have defined a language called Structured Query Language (SQL), which is used by many

different DBMS (e.g, MySQL and SQLite). SQL itself is descriptive, which means that the user

describes what he wants to retrieve and does not have to write the actual code that the DBMS

uses to calculate the result82. A simple query to retrieve the Name of all proteins with the

Protein_ID equal to "P27361", would be

SELECT Name FROM Protein WHERE Protein_ID == "P27361"
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The SELECT defines the attribute (Name) to query. The FROM describes from which table

(Protein), and the WHERE clause defines criteria, which can be used to filter the result.

To describe more complex structures, like peptide-protein relationships, associations are

needed (Table 3.1). These associations are defined by shared attributes. In our example, a

peptide table could have the attribute Protein_ID used as a foreign key, which would connect

the peptide table with the protein table. A query to select attributes from both tables would

be:

SELECT Protein.Name, Peptide.Sequence FROM Protein
INNER JOIN Peptide ON Protein.Protein_ID == Peptide.Protein_Protein_ID
WHERE Protein_ID == "P27361"

The INNER JOIN describes the relationship between the peptide and the protein table and

connects the two tables using the Protein_ID.

Table 3.1: Table to describe peptides in the database. The foreign key Protein_ID can
be used to express the association to the protein table.

Peptide
Primary Key Sequence Protein ID
1 EALAHPYL P27361
2 AAANFRRL P27453
... ... ...

A design following the normal forms leads to queries with many joins. Writing these large

queries can be inconvenient and often is redundant. Therefore, most DBMS allow creating

views. They are virtual or logical tables defined by a select statement. A view may for ex-

ample contain all peptides found in a specific sample. Instead of having to write the full

query with all joins, the view allows a selection in a table-wise fashion (e.g. SELECT * FROM
sample_has_peptides). This could be also achieved by creating a materialized table with

the content of the select. However, if the database is updated, the table would have to be

updated as well. In contrast, views do not store the data but select them directly from the

original tables. Therefore, they do not need to be updated.
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Chapter 4

The HLA Ligand Atlas

4.1 Introduction and motivation

The analysis of HLA ligands helps to understand the immune system and the gained knowl-

edge can be used to find new treatment targets69. These targets can then be used to develop

new therapies against diseases like cancer. Unfortunately, the identification of such new tar-

gets needs a large number of samples for which the immunopeptidome has to be obtained,

analyzed, and stored. Because one HLA immunopeptidome experiment for one sample can

result in the identification of up to 5,000 different peptides with many parameters such as

identification software specific scores or the number of Peptide-Spectrum Matches (PSMs),

the storage and the analysis can be laborious15. Traditionally, scientists analyze and search

this immunopeptidome data using Excel or other easy-to-use spreadsheet programs. However,

this method is not feasible if, as in this presented study, a large number of different samples

is measured. Therefore, we developed a user-friendly web interface, which allows fast and

simple access to the provided data, to support biologists and biochemists in their analysis of

such large datasets. This interface allows wet-lab scientist to search and perform frequent

meta-analyses on the contained data using only their web browser and thus provides access to

the immunopeptidome dataset for scientists regardless of computer science skills.

The data is stored in a database, in our case, a MySQL database, to allow fast queries of the

data. The standard way to access such a database is via SQL queries. However, these queries

require knowledge of the underlying database schemata and their usage can be difficult for the

average wet-lab scientist. Databases, such as the human protein atlas126 or ProteomicsDB143,

demonstrate that such large databases can be searched by everyone via a web interface. There-

fore, we implemented the HLA Ligand Atlas, a web interface to the collected immunopeptidome

data.

Other websites and databases like the SysteMHC Atlas114, The Cancer Immunome Atlas

(TCIA)24, The Cancer Genome atlas (TCGA https://cancergenome.nih.gov/), and the In-
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ternational Cancer Genome Consortium (ICGC https://icgc.org/) already provide access

to cancer specific data. TCGA and ICGC present information about the genomic, transcrip-

tomic and epigenomic changes in cancer. This information can be obtained either as already

analyzed data, like somatic mutations and overexpression of genes, or raw data, like FASTQ

or BAM files. TCIA contains information on immune-related gene sets, cellular composition

of immune infiltrates, HLA types, neoantigens and cancer-germline antigens, as well as tumor

heterogeneity. These information are obtained using computational genomic methods and

are based on data provided by TCGA, Van Allen et al.127, and Hugo et al.54. Similar to our

HLA Ligand Atlas, the SysteMHC Atlas provides access to peptides presented by MHC/HLA.

It allows to query proteins and peptides, and to filter these results for the binding top allele

and MHC class. In addition, it allows to download spectral libraries for peptides sorted by

their top binding allele. SysteMHC Atlas contains 16 published human immunopeptidomics

projects/datasets and 7 unpublished datasets. All 23 datasets are reprocessed using the raw

data and a standardized pipeline (Comet39, X!Tandem31, PeptideProphet79, and iProphet116).

The aim of the SysteMHC Atlas is to gather and provide information and data across multiple

heterogeneous projects. In contrast, the HLA Ligand Atlas is focused on one homogeneous

project, in which all samples are prepared using the same protocol and are analyzed on one

mass spectrometer. Furthermore, the HLA Ligand Atlas provides additional meta data, like the

tissue or HLA type for each sample. This information can be queried, which allows answering

more detailed questions on the immunopeptidome. On the web interface level, the SysteMHC

Atlas only provides basic queries for proteins and peptides, whereas we developed an interface

which provides more query options and more statistics.

This chapter first describes the design and architecture of the database and the web inter-

face. In the next part, its implementation is described, followed by a description of the data

available trough the database and how the data was processed. The last section summarizes

the results and provides an outlook on the topic.

4.2 Design and architecture

The development of the HLA Ligand Atlas had two main goals. The first was to develop a fast

database to store the immunopeptidome data. The second was to provicde a user-friendly web

interface to access the data. The first goal was achieved with a MySQL database, the concepts

of which are explained at the beginning of this chapter. In the following section, the second

goal, the design and architecture of the web interface is illustrated.
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4.2.1 Database concept and design

The first step of database design is to identify the data structure. This includes the structure

of the raw data collected by the mass spectrometer (e.g. spectra, identified peptides and their

scores) and the metadata of the underlying experiment (e.g., source, tissue, and the individual’s

HLA type). The curation of metadata can be very tedious and requires close communication

with wet-lab scientists. Furthermore, the experimental design has to be understood to develop

such a database concept.

The smallest unit in our experiment is the assignment of a spectrum to a peptide (Figure 4.1).

For each spectrum, potential matching peptides (PSMs) are identified and need to be stored

in the database. We call the table storing all PSSMs spectrum_hit. It will be the table with

the most entries, caused by the thousands of spectra per MS run. These result in a table

with millions of rows. Aside from the peptide information, each PSM has one or multiple

assigned proteins. Technically, this information could be stored in the spectrum_hit as an

additional column. However, this would have two major drawbacks. First, one protein will

contain multiple peptides, which means the protein information will be stored redundantly

in the spectrum_hit table. This reduces efficiency and increases data usage. Second, since

assigned peptides are often contained in multiple closely related proteins, especially if the

protein database contains splice variants or homologous proteins, we would either have to

add an extra row (spectrum 1: protein 1, spectrum 1: protein 2,...) for each spectrum-protein

pair or would have to store the protein information using string concatenation (spectrum 1:

protein 1, protein 2,...).Doing so would also increase data usage. Moreover, especially the string

concatenation is impractical to query.

Instead of storing the protein in an extra column of the spectrum_hit, we use the protein

to form the second table in our database (protein). The number of rows is determined by

the number of proteins contained in the reference database (UniProt: 20,000). After obtain-

ing this table, we model the peptide-protein many-to-many relationship. This relationship

can describe both the fact that multiple peptides will be found originating from one protein,

and that one peptide can map onto multiple proteins. This many-to-many mapping table is

called spectrum_protein_map, which contains foreign keys to the spectrum_hit and the

protein table.

Next, we need to assign the spectra contained in spectrum_hit to their corresponding MS

runs. Therefore, we describe our third main table as ms_run, which contains the information

about the MS experiment. The relationship between the spectrum_hit and the ms_run is a

many-to-one relationship: each row in spectrum_hit is linked via a foreign key to its row

in ms_run. The ms_run table will be small compared to the spectrum_hit and will only

contain a few thousand rows for the final dataset.
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Figure 4.1: Entity Relationship Model of the database of the most important tables. It
shows the relationships between spectrum hit (PSM), protein, MS run, source, HLA type,
and binding prediction. The spectrum_hit table is the smallest unit in the database,
containing the PSMs. It is connected to the protein table via many-to-many relationship,
which is designed as mapping table spectrum_protein_map. Each PSM is recorded
in an MS run, which is represented as the ms_run table. The spectrum_hit table has
a foreign key to this table. The MS runs are then, again via a foreign key, connected to
the table source. The HLA type is represented as hla_type. A mapping table, called
hla_map, is used, to represent the many-to-many relationship between the source and
the HLA type. Finally, the binding_prediction table contains the predicted binding
scores and is linked to HLA allele in hla_type and the sequence in spectrum_hit.

Each of our MS runs belongs to a source. Each source has multiple MS runs and is rep-

resented as a separate table (source). The relationship is again a one-to-many relationship,

solved by a foreign key in the ms_run table. Each source belongs to a donor meaning that

each sample/tissue of a patient is represented as an individual source. However, the number

of sources is small an will be between 100-300 in the final dataset.

One the most important parameters of a source is its HLA type. The number of HLA alleles

for HLA class I are at most 6 (2 HLA-A, 2 HLA-B, 2 HLA-C). For HLA class II this is much more

complex, caused by the pairing of the α and β chains. We created a table hla_type modeling

each HLA allele. In addition, we created the mapping table hla_map, to represent the many-
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to-many relationship between the HLA allele and the source. The reason is the same as for the

peptide-protein relationship: avoiding redundancy and allowing fast and simple queries.

The confidence of the PSMs and the rate of possible false positive identifications are the

most relevant quality metrics for immunopeptidome databases. To assess these metrics, we

calculate the binding affinities of all identified peptides to the corresponding HLA alleles with

netMHCpan/netMHCIIpan and try to verify the identifications. These scores we stored in

the table binding_prediction. The prediction is a combination of the sequence, stored

in spectrum_hit and the HLA allele stored in hla_type. Therefore, we have two for-

eign keys to these two tables. The binding_prediction table could be even larger than

the spectrum_hit table if all sources would have different HLA types. Since multiple tis-

sues are analyzed from each individual and their large overlap in peptide sequences the

binding_prediction table is only the second largest table with below one million rows.

Supplementary Figure C.1 shows an overview of the complete database concept, which

contains many more tables including tables with precomputed statistics to allow a faster access

to queries often requested trough the web interface. The implementation the database concept

will be explained in Section 4.3.

4.2.2 Web interface design

The idea of the HLA Ligand Atlas is to enable non-computer scientists to query and analyze the

large amount of data contained. The access to the data should be simple, intuitive, and fast.

We thought of different scenarios or question the user might want to try or ask, to achieve an

intuitive and simple web interface. These scenarios will be discussed in this section.

The very first question we came up with, is: "I have a peptide sequence. Is it contained

in your database?" The simplest way to answer this question trough a web-interface would

be a search field that allows to search for a peptide sequence. If the peptide is contained

in the database, the result should show further information like which tissue it was found

on and to which HLA it might bind. Furthermore, the information of the source protein

should be provided and since we use MS data the individual spectra for the peptide should

be displayed. These spectra would allow the expert user to decide manually if he trusts the

spectrum and its assigned peptide. The implementation could be similar to the spectra viewer

on https://www.proteomicsdb.org/143. Next, the question could ask for a protein in the

database, which could again be queried using a search field. The result should provide all

peptides that were found and are originate from the respective source protein.

The peptide and protein questions are very basic and result in only one possible hit in the

database. An implementation of only these two questions could be in line with the System MHC

Atlas by Shao et al.114 However, we wanted to provide more features to the user, containing

statistics and larger queries. Therefore, we thought about additional possible requests.
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For example, the user might also ask for all peptides found on one tissue or HLA allele to

be displayed. This question could be again solved trough a search field, but the user might

not know which tissues or HLA alleles are contained in the database. To avoid wild guessing

from the user, we planned to have a list of all analyzed tissues and HLA alleles. If the tissue

or HLA allele is in the database, the user might want to know how many alleles and tissues

are contained and how many peptides could be identified for them. In addition, he might also

ask for minor statistics of the presented peptides, like tissue-specific peptides or the length

distribution of the peptides assigned to the HLA allele.

In the end, the user might ask for information about the sample preparation or the analysis

pipeline. Furthermore, and because it is required by law an imprint should be provided. Users

may also require the possibility to download the MySQL database or a link to the RAW files on

PRIDE.

All these different questions and their answers have to be connected and interactively

accessible. A central navigation menu and a central search field would fulfill these requirements.

The concept of the structure of the menu can be found in Figure 4.2.

Figure 4.2: The structure of the main menu of the HLA Ligand Atlas. The main menu is
structured into four drop-down menus. The first one allows accessing the Tissue Browser
and the Tissue Table. The second one navigates to the HLA Browser, which is separated
into HLA class I and II. The third drop-down menu features FAQ, Background, Database
Statistics, Contact, and the Imprint. The last menu item leads to the download page.

4.3 Implementation

The following chapter will discuss the implementation of the database and the web interface.

First, we will present the used software. Second, we will shortly describe how the database

was implemented and optimized to allow fast access to the data.
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4.3.1 Used software

An overview of the software described in this chapter is shown in Figure 4.3. Additionally, the

used software including its versions is listed in Table 4.1.

After the collection of spectra by the MS and identification of the corresponding peptides

(Chapter 4), the data has to be stored in a database to allow fast access. In our case, we use a

MySQL database. The main reasons for this choice are that MySQL is a mature, open-source

software with stable releases and that the data that has to be stored is well suited for a relational

database. This means, that the data can be organized in formally-described tables (Section

3.5). An alternative to MySQL could be SQLite. It is easier to handle, since no database server

is needed (everything is stored in one file), but performance-wise it is much slower than MySQL

and not suited for large datasets, such as those contained in the HLA Ligand Atlas. Another

alternative could be a NoSQL solution like MongoDB. In contrast to MySQL, MongoDB is a

non-relational database which is beneficial if the data is not structured. Due to the relational

data and its superior performance, we decided to use MySQL. After the development of an

appropriate database design, the data was imported and the web interface was implemented.

We used the Pyramid web framework as the basis for the development. Pyramid is based

on Python and has been developed as a part of the Pylons Project. Like MySQL, it is open

source software. There are many other web frameworks, which allow developing websites. The

simplest solution would have been to develop out interface without any web framework instead

using plain HTML. However, this is very impractical. We chose Pyramid for two reasons: due to

its good connectivity to the MySQL database and, due to it being based on Python. Compared

to other programming languages, Python is easy to learn and is nowadays one of most popular

programming language. Besides Pyramid, there are several of other big Python-based web

frameworks like Django, Flask, and web2py. Especially Django is very similar to Pyramid, and

our decision to chose Pyramid over Django was made at random.

We use SQLAlchemy to connect the web interface and the MySQL database. SQLAlchemy

is a Python library which represents MySQL tables as Python objects. Using these objects,

it is much simpler to retrieve data from the database than with plain MySQL. Furthermore,

SQLAlchemy validates queries before submitting them to the server, which can detect simple

problems (e.g., selecting unknown columns) and more complicated ones (e.g., incorrect joins).

It also tries to optimize the query before execution and provides a sophisticated SQL injection

protection.

The HLA Ligand Atlas is written in HyperText Markup Language (HTML). In addition, we

used multiple JavaScript (JS) libraries to enhance the view and usability. The most used library

is JQuery, a small, feature-rich JS library that simplifies working with HTML objects and JS

itself.
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Figure 4.3: Overview of the software used to implement the HLA Ligand Atlas. First,
the data from mass spectrometer is modeled with an ERM and then stored in a MySQL
database. The website was developed using the web framework Pyramid. The com-
munication between the database and the web framework is achieved by SQLAlchemy.
The interface was implemented using Bootstrap, JQuery, HTML and other JS libraries.
The website was run on a Python-based web server called Gunicorn. The MS data is
compressed in parallel and indexed as idXML files using OpenMS and later parsed and
sent to the server using OpenMS and the JSON file format. Database image from http:
//cliparts.co/clipart/2829444; File image from https://openclipart.org/
detail/38899/new-file.

The main design was implemented using the Bootstrap framework, which claims to be the

most popular HTML, JS, and Cascading Style Sheets (CSS) framework for mobile first projects.

This means that the HLA Ligand Atlas is developed not only for desktop PCs with normal screen

sizes but also for mobile devices with very small screens, too. Although the target user will

probably use a desktop PC, the website is displayed correctly on smaller devices like mobile

phones. Bootstrap enables the programmer to develop web interfaces, which look state-of-the-

art, but are very easy to design. All interactive tables are implemented using the DataTables

JS library. DataTables supports various data formats and we used JavaScript Object Notation

(JSON) to hand the data from the Pyramid framework to the web interface. JSON is human

readable and language independent, which allows passing JSON objects between Python and

JS. DataTables provides options to adjust the tables for many purposes. For example, DataTables

allows pagination, multi-column ordering, searching inside the table, and downloading the

table in multiple formats. Additionally, there is a Bootstrap theme for DataTables, which

was used to achieve a uniform style for the website. The diagrams were implemented using

HighCharts (Figure 4.10), which allows adding interactive charts using JS. It is available

under a free non-commercial license. The communication between the python framework and

HighCharts is again based on JSON. Although we used HighCharts only to create bar charts, it
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Table 4.1: List of software used for the development of the HLA Ligand Atlas, including
the context of usage and their version.

Software Usage Version

MySQL Database 5.7
SQLAlchemy Server database communication 1.0.9
Pyramid Web framework 1.5.7
Gunicorn Webserver 19.7
HTML Webdesign 5
CSS Webdesign -
JavaScript Webdesign and functionality -
JQuery Webdesign and functionality 2.1.4
Bootstrap Webdesign 3.3.5
DataTables Interactive tables 1.10.9
HighCharts Interactive charts 4.1.9
OpenMS idXML filtering and indexing 2.1.0
Lorikeet Spectrum viewer -

supports much more diagram types, like area charts, line charts, pie charts, and many other

chart types.

For experts in mass spectrometry, we included a spectrum viewer in the web interface.

It is based on the JS plugin Lorikeet by John Chilton https://github.com/jmchilton/
lorikeet. Lorikeet uses spectrum data in JSON format. The Python library of OpenMS is

used, to read the spectrum data stored in idXML files.

A web server is needed to run and serve the website. We use Gunicorn (Green Unicorn),

a Python-based WSGI HTTP server, which runs the Python-based Pyramid web framework

and claims to be light on server resources and fairly fast. An alternative was an Apache

server. However, Apache would need to run WSGI programs an extra module called mod_wsgi.

Therefore, we decided to use Gunicorn.

The code of the HLA Ligand Atlas is freely accessible at https://github.com/linusb/
ligandomat-2.0. It can be used under the BSD 3-Clause License, which means it free for

private and commercial use. Furthermore, it is allowed to modify and distribute the code, but

there is no guarantee for liability and no warranties are provided. The only condition for using

the code is that the license and the copyright notice is always included.

Database implementation and optimization

The main tables of the database were implemented based on the model described in subsec-

tion 4.2.1 (complete ERM Supplementary Figure C.1) and the required parameters were added

to each table. Each row in the spectrum_hit now stores further parameters besides the se-

quence, like the retention time, the mass-to-charge ratio (m/z value), the charge of the peptide,
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the injection time, the mass of the peptide, the mzML ID (for the spectrum viewer), the pre-

cursor area, the search engine score, the e-, and the q-value. The protein table is comprised

of the protein name, the gene name, the protein sequence, and the protein description. The

ms_run table contains the antibody and its mass, as well as the original filename, the date, the

sample mass and volume, and many flags for the processing of the data. The source table

includes many parameters to describe the metadata, like the organ/ tissue, the organism, the

immunoprecipitation date, and the organism/ patient ID (ZHXX). The hla_type table now the

describe an HLA allele with the name and the number of digits (2: A*02, 4: A*02:01). Finally,

the binding_prediction table contains the binding score, the binding rank, the method

(netMHCpan or netMHCII and version), and a boolean indicating whether the peptide binds

to the HLA or not (rank < 2). The data types for each column of the tables were determined

by a trade off between flexibility (e.g., text) and smallest possible size (e.g., tiny integer).

One of the biggest issues in the development of the HLA Ligand Atlas was to achieve a

reasonable performance for the required queries. Since it is a web interface, the user may

only be willing to wait a few seconds for the page to load. Therefore, all queries on one page

should take less than 5 seconds. Achieving this loading time was not possible when using only

the main tables described in subsection 4.2.1. Therefore, many different optimizations were

implemented to reduce loading time. In this section, we will give some examples of the used

optimization techniques.

In the MySQL database, each matched spectrum of each MS run is represented by an

entry in the spectrum_hit table. A spectrum hit is the smallest unit of an MS experiment

with all spectrum information. However, most of the times users search for the peptides in

a run, which means that all spectra for each peptide have to be accumulated. This can be

done in MySQL using group by statements in combination with aggregate functions like

Count and Sum (Algorithm D.1). When a user searches for the peptides in a run, the MySQL

server has to calculate the query containing the group by and the aggregate functions. In

general, MySQL caches the result of frequent queries in temporary tables, but not if group
by and aggregate functions are combined. To overcome this issue we used a materialized

view, called peptide_run (Supplementary Figure C.1). For each run and peptide it contains

the accumulated information and has to be recomputed only when the database is updated.

This precomputed table reduces the time needed to find all peptides in a run from minutes to

milliseconds (Table 4.2).

The statistics shown on the different pages of the HLA Ligand Atlas create an additional

problem with performance. It takes bewtween multiple seconds and minutes to query and com-

pute these statistics. Because all pages should load rapidly, the statistics cannot be calculated

each time a user accesses one of these pages. Therefore, all the statistics are precomputed

and stored in additional tables. Especially the calculation of tissue-specific and HLA-specific
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Table 4.2: Benchmark of the query for all peptides and their properties in one or multiple
MS runs. The old query is shown in Supplementary Algorithm D.1. The new query accesses
all columns in the new materialized view peptide_run.

Number of MS runs Old [s] New [s]

all (377) 277.254 0.005
300 207.550 0.008
200 106.467 0.002
100 52.280 0.002
50 8.839 0.002
1 0.068 0.003

peptides is time-consuming and therefore stored in the tables tissue_specific_peptides
and tissue_hla_specific_peptides (Supplementary Figure C.1).

The implementation of the spectrum viewer resulted in the problem that large amounts of

data had to be stored. Considering that each peptide has multiple spectra and each spectrum

contains multiple peaks, this quickly results in millions of data points and multiple gigabytes

of data. Therefore, we stored the spectrum/peaks data in IdXML files, which are saved and

indexed for each run separately, to avoid having to store this large amount of data in the MySQL

database. The IdXML file format is XML based and optimized to store MS identifications. The

indexing of these files allows a very a fast access of individual spectra. Furthermore, we added

a column in the spectrum_hit table containing the index of the spectrum in the file to access

these indexes. These IdXML files can be very large (up to 1 GB) and have to be stored for

each MS run, resulting in large storage costs. Therefore, we preprocessed the IdXML files and

removed all un-assigned spectra, resulting in files approximately a tenth of their original size.

The files are stored locally on the server hard drive. If the spectrum viewer is opened, the

corresponding file is opened using OpenMS and the spectra information are extracted using

the index of the file. The read information is then converted to JSON and sent to the server.

However, this implementation assumes that most of the users do not access the spectra since it

would result in a very high hard drive usage and a bad overall performance. If this assumption

is not met and there are more requests of the spectrum viewer than expected, there are two

possible solutions. One would be to move the data to a fast storage (e.g., solid state discs). A

second possibility would be to use a second MySQL server with a spectral database to reduce

hard drive usage. However, this would require the development of an additional database

scheme, which was not reasonable for a minor feature of the HLA Ligand Atlas.
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Web interface implementation

Concurrently to the implementation of the database concept, we implemented the design

of the web interface. We programmed all features described in subsection 4.2.2, and their

implementation is described in the following section.

Homepage

The first page shown by the browser is called the homepage. Its content and design are

most crucial, because the user decides based on a first glance whether he will browse further.

We decided to provide a short overview text about the database and basic statistics on the

homepage (Figure 4.4). These two elements are important for first-time users, as they provide

an overview of the web page and furthermore show the amount of data contained. In addition,

we added a quick search bar, to allow for fast data access. This element allows searching

the database for peptides by simply typing their sequence into the search field. Furthermore,

the main navigation menu can be accessed trough the header of the web interface. It will be

described in the next paragraph.

Figure 4.4: Homepage of the HLA Ligand Atlas. The homepage contains an information
text about the website, basic statistics of the database, a quick search field that can be used
to query the database for peptide sequences, and the navigation bar to browse through
the content of the database.

42



Implementation

Navigation menu

The navigation menu allows to browse the web page in a straightforward way. It is shown

on all pages of the web interface and leads the user to the most important navigation pages

and content (structure, see Figure 4.2). The first element directs to the Tissue Browser and

the second element to the HLA Browser. Both pages are main navigation pages. The Tissue

Browser allows looking at the data with a focus on different tissues types. The HLA Browser

allows access via HLA types. Both are explained in the next paragraph in detail. The About

section leads to Frequently Asked Question (FAQ), the Background, a short information page

about the experimental methods used, the Contact information and finally the imprint. The

last element, the Database download, allows accessing all the data stored in the HLA Ligand

Altas in spreadsheet format and as a MySQL dump. In addition to the navigation menu, the

header of the web page redirects the user to the home page by clicking on the HLA Ligand

Atlas logo. Furthermore, we implemented a search field in the upper right corner, which will

be explained in detail later.

Tissue Browser and HLA Browser

The tissue browser is an exploratory navigation menu and it enables users to quickly see the

available tissues and navigate to tissue-specific pages within the HLA Atlas. Each tissue is

shown as pictogram (Figure 4.5). Because the HLA Ligand Atlas contains more tissues than an

illustration as individual pictograms would allow, we developed two features to allow a faster

and reasonable view on all kinds of tissues. First, we changed the color of gender-specific

(in this case female). This shall allow the user to find gender-specific tissues faster and to

differentiate them from shared tissues. Second, we grouped related tissues into tissue group

pictograms. For example, we grouped different kinds of neurological tissues under the brain

pictogram. When a user clicks the brain pictogram, a drop-down menu opens and shows all

neurological tissues, i.e. brain, cerebellum, small brain, myelon and bone marrow (Figure 4.6).

Now, when the user clicks on a tissue name, he is forwarded to the page of the selected tissue.

The pictographic symbols for the tissues are an intuitive way to discover the different kinds

of tissues in the HLA Ligand Atlas. However, experienced users may want to have an exhaustive

view of all included tissues at a glance. Therefore, we additionally provided the Tissue Table.

It is an interactive table that lists all tissues and contains the number of samples per tissue.

This table is, like all interactive tables in the HLA Ligand Atlas, sortable and searchable.
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4. The HLA Ligand Atlas

Figure 4.5: Tissue Browser of the HLA Ligand Atlas. The Tissue Browser shows all tissue
groups included in the HLA Ligand Atlas as intuitive pictograms. When a user clicks
on the pictograms, a drop-down menu opens containing links to all sub-tissues in the
group (Figure 4.6). Female gender-specific tissues are color coded in orange, to allow a
differentiation from tissues that are not gender-specific.

Figure 4.6: The drop-down menu of the Tissue Browser (Figure 4.5). The drop-down
menu allows the access to sub-tissues that where grouped into one pictogram. In this
example, the brain pictogram encompasses all neurological tissues, like brain, cerebellum,
small brain, myelon, and bone marrow. When the user selects one of the tissues in the
menu he is forwarded to the corresponding tissue page.
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Figure 4.7: HLA Browser for HLA class I. The HLA Browser lists all HLA class I types that
are available in the HLA Ligand Atlas. For each HLA type, the number of sources and the
number of assigned peptides is shown. The table is sortable and can be searched using
the search field in the upper right corner.

The second major navigation tool is the HLA Browser, which allows the user to get an

overview of all HLA types available in the HLA Ligand Atlas. This information is visualized

in an interactive table with further details such as the number of samples and the number

of binding peptides for each HLA type (Figure 4.7). When the user clicks an HLA type, he is

forwarded to the individual page of the selected HLA type. We divided the two HLA classes

into two separate tables to provide a concise overview of each class.

Tissue page

Through the Tissue Table or the Tissue Browser, the user arrives at the tissue page (Figure 4.8).

This page presents all gathered information about the selected tissue and answers the most

common questions asked by biologists, such as how many samples were collected for this type

of tissue or: How many and which peptides were identified on this tissue type. A short table

that contains this basic information answers both questions. Additionally, the user can click on

the number of peptides to access all identified peptides. This triggers a database search for all

peptides identified on the tissue, which is presented as an interactive table (Figure 4.9).

After the basic overview of the tissue, we provide a more comprehensive data analysis for

each tissue. By comparing all tissue types, we identified all proteins and peptides, which were

found only on the selected tissue. These peptides are presented in an interactive plot, with
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Figure 4.8: The tissue page for the brain. It contains statistics on the number of found
peptides and the number of samples. Furthermore, an interactive table on the comprehen-
sive analysis of tissue-specific proteins is shown. In this case, only two brain-specific HLA
class I proteins have been found. The interactive plots allow to access further information
of the proteins by clicking on the bars, which redirects to the corresponding protein page.
A drop-down menu in the upper right corner allows the user to filter the tissue for a
specific HLA type.

additional features such as clickable protein bars. When the user clicks the bar of peptides he

is forwarded to the specific protein page. The plot and the underlying data can be downloaded

in various formats (Figure 4.8).

Finally, we added a filter option to allow a combined analysis of tissue and HLA. Selecting

this filter leads to a page with a similar presentation of information, where the data is filtered

based on a combined search for the tissue and the selected HLA type (e.g., Brain and A*01:01).

HLA page

The HLA page gives an overview of each HLA type (Figure 4.10). A table shows the number of

binding peptides and the number of sources (upper left). Furthermore, an interactive diagram

(right) gives a more comprehensive view on which tissues are contained in the database for

the selected HLA type. The pictograms represent the same tissue groups as used in the Tissue
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Figure 4.9: Interactive result table for a query of the database. The database was searched
for all peptides presented by HLA-A*11:01. Besides the peptide sequence, it contains
information about the source protein, the gene name, the tissue it was found on, and the
assigned HLA type. The table is sortable and allows pagination. Furthermore, all data in
the table can be downloaded as Excel, CSV, and PDF file. For a secondary search inside
the table, a search box is provided.

Browser. Clicking on a bar opens in a drop-down list that contains a detailed view of the tissues

in the category and the corresponding number of available samples for the HLA type. Accessing

one of the individual tissues refers to a view with combined information on the HLA type and

the tissue, as described in the paragraph above.

Already at the very beginning of the discovery and research of the HLA molecule, binding

motifs for individual HLA types were described97. These binding motifs can be best displayed

as sequence logos. Therefore we provide sequence logos that were generated with Seq2logo125

for each HLA allele and peptide length (Figure 4.11). The peptide length distribution for each

allele is also included in the HLA page as a diagram (lower left in Figure 4.10). Clicking the

peptide length bar searches the database for peptides of the HLA type with the specific length.
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Figure 4.10: Overview of the HLA page for A*01:01. The HLA page contains a small
statistics table, which contains the number of binding peptides and samples with the HLA
type in the database. Furthermore, the number of samples from each tissue for the HLA
type is shown as a bar plot (right). To access all sub-tissues of a tissue group the user
can click the bar to open a dropdown menu with a more detailed list. The peptide length
distribution is shown in the lower left. The bars can be clicked to query the database
for all A*01:01 peptides of a specific length. The bar plot and the data behind it can be
downloaded using the drop-down menu in the upper right corner of the plot. The HLA
page also contains a plot of the peptide binding motifs (Figure 4.11).

Protein page

The protein page provides information on the protein such as the gene name and the UniProt

accession ID and shows the complete protein sequence with all peptides found in the protein

underlined (Figure 4.12). This view can present proteins of any length and can underline up to

sixteen overlapping peptides. Therefore, length variants of peptides, which are a common case

in immunopeptidome data, can be found by just looking at the protein sequence. Additionally,

peptides found in the protein are also shown in a tabular format. This table shows if a peptide

was also found in other proteins, which is a very important information for HLA studies. A

more detailed table that shows similar information about the peptides found in the protein

similar to the table is shown in Figure 4.9.
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Figure 4.11: Peptide binding motif view for HLA A*01:01. Binding motifs are calculated
for each peptide length and can be accessed via the tabs. The sequence logos were created
using Seq2Logo125. The height of the letters is equal to the information they contain at
each amino acid position. The colors of the letters symbolize amino acid properties.

Figure 4.12: The sequence of a protein as shown on the protein page. Blue lines mark
peptides and their position in the protein. This illustration is suitable for proteins of any
length and can mark up to sixteen overlapping peptides. Starting from sequence position
135 a cluster of overlapping peptides that contains multiple length variants of one core
peptide is shown.

Peptide and spectrum page

The smallest units of information in the database are the peptides and the corresponding

spectra. The peptide page shows from which proteins the peptide originates and its position in

the source protein. For each peptide, we predicted the binding affinity and the rank to identify

its source HLA. In addition, it also shows on which tissues the peptide was found in a similar

fashion as the tissue distribution shown on the HLA page (Figure 4.10).
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The peptide page also provides access to the most crucial and for some biologist the most

important information about the peptide: the individual spectra of the peptide. When the

user requests the spectra, a spectrum viewer opens and shows the spectrum for the peptide

(Figure 4.13). This viewer allows marking different ions, like y-, b-, a-, and z-ions and assigns

their charge in the view. The spectrum viewer can also mark neutral losses (NH3, H2O, and

H3PO4), immonium ions, and reporter ions. The mass tolerance can be set to either Th or ppm

and the peak can be assigned to either the most intense peak or the nearest match. For offline

comparison, a static view of the plot can be downloaded or printed via the spectrum viewer.

Figure 4.13: Interactive spectrum view of a peptide. The spectrum viewer allows to
interactively show the spectra of the peptide. It can mark different ions types, like y-, b-,
a-, z-ions. Furthermore, it assigns their charge in the view. Furthermore, she spectrum
viewer can also mark neutral losses (NH3, H2O, and H3PO4), immonium and reporter
ions. The mass tolerance can be set to either Th or ppm and the peak can be assigned to
either the most intense peak or the nearest match. The whole plot can be downloaded
and printed.

Interactive global search

As mentioned in the description of the navigation menu, we implemented a search field in

the header, which is always available. This search allows querying the database for almost

all stored categories. However, no category has to be selected to search for any item. This

is possible because the database is queried for all categories in parallel and every hit will be

reported for each category. The most common search item is the peptide sequence. To search
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for peptides, you either type in the full peptide sequence or a subsequence. This allows searches

for fragments like "SYF", which will report all sequences containing "SYF". To look up a protein,

you can either type the UniProt identifier or the gene name. Furthermore, you can search

for tissue types (e.g., "brain") and HLA types (e.g., "A*01:01"). The search will report any hit

in any of the mentioned categories, which allows a fast and powerful query of the database

without knowledge of the structure of the data or the available categories.

4.4 Discussion

The HLA Ligand Atlas presents the largest publicly available benign immunopeptidome dataset.

At the time of writing, it contained the immunopeptidome of 6 individuals. We provide the raw

data and allow the biologists to access the data via an interactive interface. This interface helps

the wet-lab scientist to search the data using their web browser and answers many different

immunological questions. These question can vary from a simple peptide sequence search

to the identification of tissue-specific peptides. In addition, the interface provides interactive

plots and tables that provide a personalized view of the data and can be downloaded for use

in presentations. If new questions raised by the users require additional plots and tables, the

flexible framework can easily be extended using the tools at hand.

Besides the intuitive interface, the focus was on a fast response time for the queries, which

necessitated database optimization. Finally, the web page will be publicly available and all raw

data will be provided for downloading and offline presentation and analysis. At the moment,

the database contains 6 individuals. However, this is only a first release and the aim is to extend

the database with more individuals to cover more tissues and HLA types. Furthermore, the

contained data is only from benign samples, but the future aim is to add data from malignant

samples, which are also measured in our lab. However, this data from malignant samples

contains various tumor types and stages, which would need an extension of the metadata

information stored in the database.

The SysteMHC Atlas by Shao et al.114 provides access to various MHC peptide datasets.

However, these datasets are from different studies, that differ in the methods and instruments

used. In contrast, the HLA Ligand Atlas contains data from one study that were obtained using

homogenous methods and were analyzed on only one instrument. Furthermore, the System

MHC Atlas provides only basic possibilities to query the contained data, whereas the HLA

Ligand Atlas further statistics provides beside basic queries, such as overviews and an included

spectrum viewer. As soon as the raw data is uploaded on PRIDE and publicly accessible, the

System MHC Atlas can access this data and rerun the processing using their pipeline. This will

help researchers to compare the dataset with others using the System MHC Atlas website and

especially access the then extended spectrum library.
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In contrast to The Cancer Immunome Atlas (TCIA)24, the HLA Ligand Atlas contains HLA

peptides, which are detected by mass spectrometry and not only predicted based on sequencing

data.

We hope to receive feedback on the statistics that are available trough the website, when

it goes public. This feedback will help us to provide answers to frequent questions and to

implement a solution for them, which will enhance the website and make it even more useful.

Especially, as soon as data from malignant sample is added, there will be new tumor-related

questions, which we will try to answer with dedicated statistics and analyses. Many of these

statistics and visualizations can be adapted from other websites that encompass proteomics

data from both benign and malignant samples, like the ProteinAtlas126 and ProteomicsDB143.

The HLA Ligand Atlas is optimized for fast queries and a fast response time. However, we

cannot fully anticipate the number of requests that will be received. As of yet, only a small

number of users has access to the website, causing only minor traffic. Therefore, we will

certainly have to optimize parts of the website for larger traffic, but the potential bottlenecks

are not yet predictable. This optimization could be done by either avoiding large queries trough

adjusting interface content or by optimizing the underlying MySQL database scheme. Another

option could be installing the web server and the MySQL server on dedicated or distributed

servers to allow parallelized access and queries.

After the presentation of the HLA Ligand Atlas, the next chapter will provide an overview

of the contained data, the processing pipeline, and an extended statistical analysis of the data

in the HLA Ligand Atlas.
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Chapter 5

Analysis of the benign tissue

immunopeptidome

5.1 Introduction

In the last decade many immunopeptidome analyses and datasets have been published15,62,67,71,135.

However, most of these are either focused on malignant tissue15,62,67,135 or cell lines71. If these

analyses contain normal or healthy tissue, in most of the cases, they are obtained from the

same patient as the tumor sample (adjacent benign tissue). Although the immunopeptidome

should be different to the malignant tissue, it might be affected by the disease or even might

partly contain malignant tissue. This creates a problem when these benign samples are used as

a negative data set to calculate the difference between the malignant and the benign tissue, as

the malignant contamination or influence can alter the immunopeptidome leading to incorrect

conclusions. This is especially problematic, if possible tumor targets are excluded because they

were found also on adjacent benign tissue, which was influenced by the nearby tumor.

In the field of proteomics126,143 and transcriptomics72, the comparison of different benign

tissue types is a frequent analysis and large data sets are publicly available. These data sets

allow to find similarities and differences between the different tissues types. Furthermore, if

multiple samples of the same individual are obtained, the variability between the tissues within

one person can be assessed. However, in the field of immunopeptidome data, there is no such

data set. We try to fill this gap with data provided here, which are also accessible in the HLA

Ligand Atlas.

Most of the immunopeptidome studies are focused on finding new targets for cancer ther-

apies. Hence, a detailed description of the properties of the immunopeptidome in general is

not available. Other non-cancer related studies only try to define the binding motifs of the

different HLA alleles16 and are often focused on cell lines33. We therefore try to present a

large-scale analysis of the immunopeptidome of different tissue types and individuals. Within
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this theses, we present an analysis of the intra- and inter-individual variability, the differences

between various tissue types of one individual, and the variance between the same tissue

type of different individuals. Furthermore, we try to define more general properties of the

immunopeptidome, such as the length distribution of HLA ligands or the overlap of class I and

II proteins. Another interesting aspect we present is the analysis of different length variations

of one peptide and how frequent this event is.

As mentioned above, there are many different studies on the immunopeptidome. However,

most of these studies do not publish their raw data, but at most lists of peptides. In contrast,

we here will publish all raw data of all MS runs. We hope that with this large dataset at hand,

new tumor targets can be discovered and new computational methods can be developed using

it as training data set.

5.2 Material and Methods

5.2.1 Sample acquisition and measurement

All samples were obtained from autopsies at the University Hospital Zurich. Between death

and autopsy, the bodies were stored in a cold room at 4 °C. After obtaining them, the samples

were snap frozen until immunoprecipitation. In the immunoprecipitation, the pan-class I HLA

antibody W6/32 and the class II antibodies Tue39 (HLA-DR, HLA-DP, and HLA-DQ) and L243

(HLA-DR) were used. A simplified overview of the immunoprecipitation is shown in Figure

2.5. Afterwards, the samples were measured in the HPLC coupled tandem mass spectrometer.

All samples, except for the time-series experiment, were measured on an Orbitrap Lumos. The

time-series experiment was conducted on an Orbitrap XL coupled with an HPLC.

The experiments on the Orbitrap Lumos were done using the Nano Trap Collumn C18

75µm x 2cm and PepMap C18 50µm x 250mm NV FS column, both by Fisher Scientific, in the

HPLC. The column used in combination with the Orbitrap XL were the same. The Orbitrap

Lumos recorded all spectra with a fragment mass tolerance of 0.02 Da and precursor mass

tolerance of 5 ppm. The Orbitrap XL recored with a fragment mass tolerance of 0.5 Da and

precursor mass tolerance of 5 ppm. The spectra of the Orbitrap Lumos were next centroided

by Orbitrap Fusion Lumos Tune Application (version 2.1.1565.23) by Thermo Scientific.

5.2.2 Sample processing

Efficient data processing is crucial for the development of a large database like the HLA Ligand

Atlas. This section provides an overview of the whole processing workflow, which is also shown

in Figure 5.1.
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Material and Methods

Figure 5.1: Processing workflow of the HLA Ligand Atlas, including filter criteria. After
measuring the samples in the mass spectrometer, we used the identification software
Comet with 5 ppm precursor mass tolerance and 0.02 Da fragment mass tolerance to
identify peptides. Then we processed the identified peptides with Percolator, using a 5%
FDR for the test- and training-set, and no cleavage specificity. We used only hits with an
FDR below 5%. We filtered the identified peptides by length for their corresponding HLA
class (Class I: 8-12 amino acids, Class II: 8-25 amino acids). Then, we predicted binding
affinities for the length-filtered peptides with netMHCpan-3.0 or netMHCIIpan-3.1. We
considered peptides to be binders if their binding rank was below 2%.

After the data was recorded in the mass spectrometer, it had to be processed to identify the

peptides. To process the data set, we used Comet (version 2017.01 rev. 2 ), with the precursor

mass tolerance (5 ppm) and fragment mass tolerance (0.02 Da) described above. Furthermore,

we allowed methionine oxidation as variable modification. We used Comet to search the

UniProt124 reviewed human proteome version September 2013 (former SwissProt) for peptide

identification. Comet is described in detail in Subsection 3.1.2 and is available at http:
//comet-ms.sourceforge.net/. Next, we processed the results of Comet with Percolator

(version 3.1) available at http://percolator.ms/. We used a 5% FDR for the training and

test set and set no enzyme specificity. Finally, we filtered the results of Comet+Percolator with

an FDR of 5% and a length restriction of 8-12 amino acids for HLA class I and of 8-25 amino
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5. Analysis of the benign tissue immunopeptidome

acids for HLA class II. We used OpenMS (version 2.1), to simplify file handling between the

different tools.

To create benchmarks for Comet and Sequest HT, we processed samples with the following

combinations: Comet, Comet+ Percolator, Sequest HT, and Sequest HT+ Percolator (Percolator

version 2.05 + tryptic digestion). After the identification of the peptides, we assigned them

to their corresponding HLA molecule, based on the individual’s HLA type and the binding

affinity, which we predicted with netMHCpan-3.0 and netMHCIIpan-3.1 (see Section 3.3). We

considered a peptide to be a binder if it has a binding rank below 2%.

5.2.3 Heat map and hierarchical clustering

All distance heat maps were created using the gplots package140 in R. The distance was calcu-

lated as the Jaccard index between each pair:

J(A, B) =
|A∩ B|
|A∪ B|

=
|A∩ B|

|A|+ |B| − |A∩ B|
. (5.1)

where A and B are sample sets containing either peptides or proteins. The hierarchical cluster-

ing algorithm used complete linkage and a Euclidean distance.

5.3 Results

5.3.1 Available data

For the HLA Ligand Atlas, we collected tissue samples from six different individuals. From

each individual we obtained multiple different tissues and analyzed the immunopeptidome.

Table 5.1 gives an overview of the collected samples. For each sample, we measured the HLA

class I and II ligands in five replicates. Three of these were recorded with Data-Dependent

Acquisition (DDA), the other two with Data Independent Acquisition (DIA). We integrated only

the three DDA replicates into the HLA Ligand Atlas and therefore only these are accessible via

the web interface. However, we will make the raw data of all five replicates publicly available

trough the PRoteomics IDEntifications (PRIDE) database as soon as the HLA Ligand Atlas is

published. In addition to the raw data via PRIDE, we will make the whole database, including

all identified peptides, available for download from the HLA Ligand Atlas web page.

5.3.2 Time-series experiments

The samples for the HLA Ligand Atlas were obtained during autopsies. However, autopsies

are often not conducted right after a person’s death, but for example, on the next day if an

individual dies during the night. Typically, the body is stored at 4 °C until the autopsy is
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Table 5.1: Summary of all individuals, tissues, and the corresponding number of samples
contained in the HLA Ligand Atlas.

Tissue ZH02 (f) ZH05 (m) ZH06 (f) ZH08 (m) ZH09 (m) ZH13 (m) Total

Adrenal Gland 0 0 1 1 0 0 2
Aorta 0 0 1 1 0 1 3
Bladder 1 0 1 1 0 1 4
Bone Marrow 0 0 1 1 1 1 4
Brain 1 0 1 1 1 1 5
Cerebellum 1 0 1 1 1 1 5
Colon 0 0 1 1 0 1 3
Esophagus 0 0 1 1 1 1 4
Heart 0 1 1 1 1 1 5
Kidney 0 1 0 1 1 1 4
Liver 0 1 1 1 1 1 5
Lung 1 1 1 1 0 1 5
Lymph node 0 0 1 1 1 1 4
Muscle 0 0 1 1 1 0 3
Myelon 1 0 0 0 0 0 1
Pancreas 0 0 0 0 0 1 1
Skin 0 1 1 1 0 1 4
Small intestine 1 0 1 1 0 1 4
Duodenum 0 0 0 0 0 1 1
Skin 0 0 0 0 1 0 2
Spleen 0 0 1 1 1 1 3
Stomach 0 0 0 1 0 1 2
Testis 0 0 0 0 1 0 2
Thyroid 1 1 1 1 1 1 6
Tongue 0 0 1 1 0 0 2
Trachea 0 0 1 0 0 1 2

Total 7 6 19 20 13 20 85

conducted and the samples can be taken. Before we could collect and measure the samples, we

evaluated the time-dependent degradation of the immunopeptidome. To this end, we carried

out a time-series analysis as follows. A liver sample was taken at an autopsy in the morning,

to minimize the time between death and sample extraction, and stored at 4 °C. After 8, 16,

24, 45, and 72 hours, a small part of the sample was measured using immunoprecipitation

and MS. The number of identified peptides was constant over all time points and both HLA

classes (Figure 5.2a and 5.3a ). Furthermore, the amount of binding peptides predicted with

netMHCpan/netMHCIIpan did not change (Figure 5.2b and 5.3b). In conclusion, the purity,

which is the defined as the number of binders divided by the total number of identified peptides,

was constant over time (Figure 5.2c and 5.3c). For all comparisons not tests were performed,
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5. Analysis of the benign tissue immunopeptidome

as technical instead of experimental replicates were conducted. In addition, we evaluated

whether the distribution of peptides belonging to different HLA types changed, but found no

changes in the the composition of either HLA class I or HLA class II (Figure 5.2d and 5.3d).

0

500

1000

1500

2000

2500

16h 24h 48h 72h 8h
Timepoints

N
um

be
r 

of
 B

in
de

rs

(a) Number of identified peptides

0

500

1000

1500

2000

2500

16h 24h 48h 72h 8h
Timepoints

N
um

be
r 

of
 B

in
de

rs

(b) Number of theoretically binding peptides

0

25

50

75

100

16h 24h 48h 72h 8h
Timepoints

%
 B

in
de

rs

(c) Purity of runs

0

25

50

75

100

16h 24h 48h 72h 8h
Timepoint

%
 B

in
de

rs

HLA
A0101
A2402
B0801
B4101
C0701
C1701
None Binder

(d) HLA allotype distribution

Figure 5.2: Time-dependent degradation of the immunopeptidome for HLA class I. For
each time point, three technical replicates (MS runs) were measured. We used netMHCpan-
3.0 to assign peptides to their corresponding HLA type.
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Figure 5.3: Time-dependent degradation of the immunopeptidome for HLA class II.
For each time point, three technical replicates (MS runs) were measured. We used
netMHCIIpan-3.1 to assign peptides to their corresponding HLA type.

Based on the results of the time-series experiment, we included only samples that were

obtained less than 72 hours after death as we cannot be sure no changes occur after this time

frame. The first QC step was part of the sample collection, as we only collected healthy tissues,

which in our case means that we included only benign tissue. Furthermore, we did not acquire

samples from individuals who died from diseases affecting most of the body (e.g., sepsis).
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5.3.3 Quality control

A database is only as good as the quality of the contained data. Therefore, quality control (QC)

was crucial for the creation of the HLA Ligand Atlas and its data. We performed multiple QC

steps during the data acquisition. First we did an QC on MS run level, comparing different

properties like the number of features or identifications using Spearman correlation and hier-

archical clustering. The second part is the study QC. It consists of the detailed analysis of the

immunopeptidome of the stomach and the definition of contaminants in the immunoprecipita-

tion.

Quality control of MS runs

Comet provides numerous properties that can be used to assess the quality of an MS run, after

the mass spectrometry runs were processed. We used these properties to identify differences

between the runs. The most valuable metrics for an MS run are the number of identifications

and the number of identified features. These two metrics and their ratio can indicate several

problems. For example, a high number of features and a low number of identifications may

indicate problems during peptide identification or the presence of contaminants in the sample.

We first calculated the Spearman correlation between the number of features and the

number of identifications (Figure 5.4a). We found a mediocre correlation (R=0.67). This

was expected because more IDs can be identified in runs with more features. However, not

all contained features can be associated with a peptide. Mainly caused by the variance in

the spectrum quality. We also calculated the Spearman correlation between the number of

features and the number of binders and between the number of features and the ratio of

binders to identifications (Figure 5.4b and 5.4c). Whereas the number of binders correlates

with the number of features, we found no correlation between the number of features and

the ratio of binders to identification. Therefore, we concluded that the number of features

is associated with the number of binders but not with the ratio of binders to identifications.

However, the mediocre Spearman correlation between the number of features and the number

of identifications, the number of binders, and the binder-identification ration, indicates that

the number of feature only is a weak criteria for the QC of MS runs. Therefore, we used 12

properties to examine the quality of our MS runs (Table 5.2). These features were extracted

from the idXML files using the qcExtractor tool included in OpenMS136. It generated qcML

files containing the necessary information, which could be used to ensure the quality of the MS

run. For 101 of the 435 runs, we were not able to extract all 12 features. These were discarded

from further QC analyses.

After the extraction of the run properties, we calculated Euclidean pairwise distances for

the scaled property values. We used column-based z-score scaling to normalize the range of

the different properties. Figure 5.5 illustrates the calculated pairwise distances in a heat map.
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Figure 5.4: Spearman correlation between (a) number of features and number of iden-
tifications, (b) number of features and number of binders, and (c) number of features
and percentage of binders in identifications for HLA class I. We used netMHCpan-3.0 to
predict binding.
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The heat map shows that most of the runs are very similar (red) and only few runs are different

(yellow). To identify these specific runs, we obtained the top 10 runs with the largest mean

distance (Table 5.3). The top 10 runs are mostly from samples of stomach tissue, as well as one

spleen and two skin tissue samples. All these runs have above average numbers of identification

and features. Furthermore, most of their features could be assigned to identifications. Because

most of the highly-different runs originate from stomach samples, we analyzed these in detail

in the next section.

Table 5.2: Mass spectrometry run properties used to calculate the distance matrix.

Property

number of identifications with charge 1
number of identifications with charge 2
number of identifications with charge 3
number of identifications with charge 4
number of identifications
number of non-redundant identifications
number of protein hits
number of features
total ion current in features
number of peptide identifications without an assigned feature

Table 5.3: The ten mass spectrometry runs with the largest mean Euclidean distance,
including the main properties. All results are computed without FDR filtering.

Run Mean distance Identifications Non-redundant
identifications

Protein hits Features

ZH09_Stomach_class2_#2 9.86 20,267 12,449 2,529 22,339
ZH09_Stomach_class2_#3 9.57 20,503 12,374 2,592 22,528
ZH09_Stomach_class2_#1 9.44 19,909 11,585 2,509 21,717
ZH09_Stomach_class1_#1 7.20 15,974 8,043 2,675 19,500
ZH09_Stomach_class1_#2 6.90 16,029 8,814 2,746 21,172
ZH06_Spleen_class2_#2 6.88 13,982 7,140 1,890 23,346
ZH09_Stomach_class1_#3 6.85 15,923 8,830 2,735 21,253
ZH09_Skin_class2_#2 6.54 11,968 6,537 2,078 26,275
ZH09_Skin_class2_#3 6.47 11,804 6,321 1,988 26,071
ZH13_Stomach_class2_#3 6.42 15,013 8,285 1,808 23,518

Mean (all runs) 4.05 5,881 2,784 1,401 12,971
Standard deviation (all runs) 0.97 3,870 2,042 910 5,396
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Figure 5.5: Pairwise distance of 346 MS runs in the HLA Ligand Atlas. We calculated
the pairwise Euclidean distance with a z-score scaled property vector. The properties are:
number of identifications with charge 1 to 4, number of identifications, number of non-
redundant identifications, number of protein hits, number of features, total ion current in
features, number of peptide identifications without an assigned features. The heat map
shows that most of the runs are very similar (red) and only few runs are different (yellow).
To identify these specific runs, we obtained the top 10 runs with the largest mean distance
(Table 5.3).

5.3.4 Study quality control

The immunopeptidome of the stomach

In the previous section, we performed a pairwise distance calculations of the MS runs, in which

the stomach samples showed a high distance to the other MS runs. Therefore, we will have

a closer look into their properties and the identified peptides. The analysis of the HLA class I

immunopeptidome of the two HLA class I stomach samples yielded large amounts of peptides

(ZH09: 9783, ZH13: 6956). However, the number of peptides that bind to the individual’s HLA
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type (predicted by netMHCpan-3.0) was very low (ZH09: 1916 binders /19.6%, ZH13: 1451

binders /20.0%). Furthermore, the average number of features and the pair-wise distances

were larger than for the other samples. Therefore, we analyzed the identified peptides with

the Gibbs-clustering algorithm to assign them to their sequence motifs. The optimal number

of clusters was two for ZH13 (Figure 5.7) and three for ZH09 (Figure 5.6). Position 9 was

the most important in the motifs of all resulting clusters. All clusters had either leucine (L),

isoleucine (I) or phenylalanine (F) at position 9. Next, we compared the cluster motifs with

the motifs of the individual’s HLA type (Figure 5.6 and 5.7). The motifs of ZH09 showed a

possible overlap of the motifs of A*24:02 and cluster 1. However, cluster 1 has only a week

signal for tyrosine (T) and phenylalanine in position two. Furthermore, B*13:02, B:35:08,

C*04:01, and C*06:02 have either leucine or phenylalanine at the anchor at position 9, but

none of their first anchors at position 2 can be found in any of the clusters of ZH09. The

comparison of the clusters of ZH13 and its HLA type showed a weak overlap at anchor position

9 for HLA A*02:05, A*11:01, B*58:01, C*02:02, and C*07:02. Again this overlap is either

leucine or phenylalanine. As for ZH09, no additional anchor at position 2 can be found. The

identification of the clusters of ZH09 and ZH13 reveals an overlap of the amino acid frequency

at position 9. Both leucine or phenylalanine can be found at this position.

The comparison of the HLA binding motifs and the clusters indicated that the measured

peptides originated from sources other than HLA or were processed before, during, or after

the immunoprecipitation. After a closer look at the stomach environment, we suspected the

cause to be pepsin. Pepsin cleaves phenylalanine, tyrosine, tryptophan, and leucine in either

the P1 or P1’, where P1 is the C-terminus and P1’ the N-terminus of the resulting peptides61.

However, at pH 1.3 pepsin is more specific and cleaves phenylalanine and leucine in position

P1. The cleavage specificity at pH 1.3 matches the sequence motifs of the stomach peptides.

Although we could explain the genesis of our peptides, we could not determine when the

digestion occurs. It could either happen in the living individual, after death, or during the

immunoprecipitation. However, if the digestion happened in the living individual or after its

death, that would mean that pepsin can digest HLA peptides while they are bound to the HLA,

which is unlikely. Therefore, we assume that the digestion occurred during immunoprecipi-

tation, although most of the time the immunoprecipitation is conducted at 4 °C and protease

inhibitors are added during the preparation of the cell lysate. The used protease inhibitor is

the cOmplete Protease Inhibitor by Roche, which inhibits serine, cysteine, and acidic proteases.

Although pepsin is a aspartatic protease in cleaves bet in acidic solutions, it might not be spe-

cific enough to inhibit pepsin. In addition, the peptides could also be normal proteins digested

by pepsin in the organism. If they are present in high concentrations, they might not be filtered

out during the immunoprecipitation, which would mean they are not HLA-related.
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Results

(a) Cluster 1 from ZH09 stomach peptides
(n=469)

(b) Cluster 2 from ZH09 stomach peptides
(n=381)

(c) Cluster 3 from ZH09 stomach peptides
(n=496)

(d) Kullbach-Leibler distance for the clusters of
ZH09

(e) HLA-A*24:02 (f) HLA-A*30:01 (g) HLA-B*13:02

(h) HLA-B*35:08 (i) HLA-C*04:01 (j) HLA-C*06:02

Figure 5.6: Gibbs clustering of the peptides from the stomach sample ZH09. (a)-(c)
show the motifs of the three clusters of the Gibb clustering. (d) shows the Kullbach-
Leibler distance for the clusters, resulting in an optimal number of cluster of three. (e)-(j)
Sequence motifs of the HLA alleles of ZH09. These public sequence motifs have been
obtained from http://www.cbs.dtu.dk/services/NetMHCpan/logos.php89 (ac-
cessed 04.05.2017).

65

http://www.cbs.dtu.dk/services/NetMHCpan/logos.php


5. Analysis of the benign tissue immunopeptidome

(a) Cluster 1 from ZH13 stomach peptides
(n=2741)

(b) Cluster 2 from ZH13 stomach peptides
(n=3130)

(c) Kullbach-Leibler distance for the clusters of ZH13

(d) HLA-A*02:05 (e) HLA-A*11:01 (f) HLA-B*40:02

(g) HLA-B*58:01 (h) HLA-C*02:02 (i) HLA-C*07:01

Figure 5.7: Gibbs clustering of the peptides from the stomach samples ZH13. (a)-(b)
show the motifs of the three clusters of the Gibb clustering. (c) shows the Kullbach-
Leibler distance for the clusters, resulting in an optimal number of cluster of two. (d)-(i)
Sequence motifs of the HLA alleles of ZH13. These public sequence motifs have been
obtained from http://www.cbs.dtu.dk/services/NetMHCpan/logos.php89 (ac-
cessed 04.05.2017).
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Results

For the HLA Ligand Atlas, we measured only two stomach samples. Further experiments

with pepsin specific inhibitors are necessary to find the time point of digestion and to investigate

if pepsin cleavage occurs in vivo or during immunoprecipitation. Because most of the identified

peptides do not match any HLA binding motif, we excluded both stomach samples from the

further analysis.

Contaminants in the immunoprecipitation analysis

After removing the two stomach samples from the dataset, we looked for contaminations that

might occur in immunoprecipitation samples. Mostly expert knowledge is used to identify

contaminants. However, this approach may be biased and is not feasible for large datasets like

the HLA Ligand Atlas. Therefore, we tried to distinguish the contaminations with an unbiased

approach that uses multiple different features which describe peptide and protein properties.

We used all 68,845 HLA class I peptides to find the best method for the definition of the

contaminants. We calculated the receiver operating characteristic (ROC) curve and its area

under the curve (AUC) for each, to compare the methods. In addition, the peptides were

classified into non-binding and binding peptides with netMHCpan-3.0 to calculate the false

positive rate (FPR) and true positive rate (TPR), to calculate the ROC and AUC.

The first approach that we tested used the occurrence of peptides across all 216 HLA class I

runs. Because we analyzed six different individuals with a very small HLA type overlap (for

the individual’s HLA type, see Supplementary Figure D.1 and D.2), we expect that only few

peptides would be shared between the individuals. We found 53 peptides that were detected in

more than 50% (108) of the runs (Supplementary Table D.3). These peptides had 96 distinct

source proteins, the most common ones (occurrence > 5) belonging to the gene families

of actin, hemoglobin and histones. Especially actin is a well known contaminant in mass

spectrometry and is brought into the experiment by the lab scientist. All three genes are listed

in the CRAPome database83 (http://www.crapome.org/) and are also frequent in other

mass spectrometry experiments. Since our experiment is not a standard proteomics analysis,

we also find peptides belonging to HLA-A,-B, and -C, which is caused by our experimental setup.

Next, we benchmarked the peptide cut off. The calculation of the TRP and FPR including the

ROC curve and the AUC resulted in an AUC of only 0.41 (Figure 5.8). Therefore, we discarded

this approach.

In the second approach used, we changed the focus from peptide to protein level. This

also allows the translation to HLA class II, for which no valid peptide binding predictors are

available. The first protein feature level was the number of runs in which the protein was

found. Again, we observed a poor AUC of 0.47. Next, we tried protein coverage, which is

commonly used in MS and proteomics experiments. The protein coverage describes how many

amino acids of a protein are found in an experiment normalized, by the length of the protein.
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Figure 5.8: Receiver operating characteristic (ROC) curve for different features. The
AUCs for the features are: HLA class I peptide sampling density=0.51, Peptide Occur-
rence=0.41, Protein Coverage=0.65, Protein Coverage per Run=0.67, Protein Occur-
rence=0.47.

This coverage can be either calculated per run or for all experiments combined. We calculated

the AUC for both methods and observed an AUC of 0.67 for the coverage per run and 0.65

for all experiments combined. Furthermore, we computed the HLA class I peptide sampling

density for each protein as defined by Bassani-Sternberg et al.17. This yielded a poor AUC of

0.51. We also tried to combine properties such as protein coverage and protein occurrence,

but these combinations did not yield better AUCs. Based on these results, we decided to use

the protein coverage to assess contamination. This has the added benefit that it can be applied

to any new immunopeptidome experiments.

After having defined a way to assess contamination, we had to determine the coverage

threshold that marks proteins as contaminants. Removing FN proteins is crucial in our analysis,

because they could be of biological significance. Hence, we allowed only 1% of FNs and set

the coverage threshold to >40% (Figure 5.9). We applied the filter and removed a total of

1581 proteins in the 216 runs (136 unique proteins, see Supplementary Table D.4). Many of

these contaminants are well-known contaminants in proteomics (e.g., actin), others, such as

the different hemoglobin proteins occur in most of our immunoprecipitation experiments and

are mainly represented by non-binding peptides. In addition, many of these contaminants are

listed in the CRAPome database and are common in MS experiments. However, like in the

peptide contaminant definition, we found HLA-A, -B, and -C in our contaminants list, which

are specific for immunopeptidome experiments.
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Figure 5.9: Percent of FN, FP, TN, and TP dependend on the protein coverage per run.

Taken together, we flagged 136 proteins as contaminants in our immunopeptidome experi-

ments based on AUCs.

5.3.5 Benchmark of the identification algorithms: Sequest HT vs. Comet + Per-
colator

The MS raw data can be processed with commercial programs(e.g., the Proteome Discoverer

by Thermo Fisher) or with open-source toolboxes (e.g., OpenMS106). Both types of software

have advantages and disadvantages. Proteome Discoverer is specialized on processing raw files

from mass spectrometers of the same distributor, which allows user-friendly analysis. On the

other hand, the whole software is a black box, meaning that neither the source code is available

nor a full access to the integrated algorithms is possible. In contrast, open-source software

like OpenMS allows full access to the algorithm and supports more than one MS manufacturer.

However, OpenMS only has a limited user interface, which makes setting up a processing

pipeline for the data more difficult. On the other hand, due to the free source code, almost

every parameter and algorithm can be optimized for the specifc machine and experimental

set-up. Here, we provide a benchmark of four identification pipelines (Figure 5.10). We

implemented the first two in the Proteome Discoverer 1.4 and used either Sequest HT or

Sequest HT + Percolator (version 2.04)123. We used OpenMS to implement the other two,

which use either Comet38,39 or Comet + Percolator (Comet: 2017.01 rev. 2; Percolator: 3.1).

Only runs in which Comet identified more than 300 peptides were used in the benchmark (122

HLA class I/ 62 class II runs). Excluding runs with very few peptides removes outliers, which

would cause large standard deviation. The whole benchmark was like in all analyses in this

thesis performed with an run level FDR of 5%. Our benchmark compares first the number

69



5. Analysis of the benign tissue immunopeptidome

of identified HLA class I and II peptides per sample, and second the fraction of binding HLA

class I peptides and the number of identified peptides (binding predicted with netMHCpan-3.0).

These two parameters provide a good estimate for assessing which identification pipeline and

algorithm performs best.

Figure 5.10: Workflow of the benchmark of the identification algorithms. First, Comet
and Sequest HT are used for identification. Next, either the data was directly FDR filtered
or advanced identification statics calculated using Percolator. After filtering, the binding
affinity is predicted using netMHCpan-3.0. Last, the data is evaluated and compared.

Figure 5.11 shows an overview of the number of identified HLA class I and II peptides per

sample. The results indicate that the choice of the identification software has a large influence

on the number of identifications. The median number of identified peptides is two times larger

with Comet than with Sequest HT. Furthermore, we were interested in the potential gain of

identified peptides when Percolator is used. Therefore, we used Comet and Sequest HT with

and without Percolator. Figure 5.12 shows a median gain of 50% more peptides if Percolator

is used. The comparison for HLA class II also shows a gain in identified peptides by Comet.

However, the median gain is only 35% without Percolator and 12.5% with Percolator. We

did not perform any binding prediction for HLA class II, because no good peptide binding

predictors are available.

With Sequest HT we hat to use an old version of Percolator (2.04) because no newer

version is available for the Proteome Discoverer. With Comet, we used Percolator 3.1. In the

Comet + Percolator setting, we used OpenMS and set the digestion enzyme to none. Proteome

Discoverer always uses trypsin as the digestion enzyme for Percolator and does not provide

an option to change it. Since, our peptides are not tryptic digested this provides the machine

learning algorithm a wrong prior knowledge, which could result in a incorrect learning of the
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Figure 5.11: Results of the benchmark of Sequest HT, Sequest HT + Percolator, Comet,
and Comet + Percolator. The number of identified HLA class I peptides per MS run (122
runs) is shown on the left. The number of binding peptides (binders) is on the right. The
binding was predicted with netMHCpan-3.0 and the individuals’ HLA type. Due to its bad
prediction performance, no prediction for HLA Class II was performed. The line inside
the boxplots represents the median, the box borders are the first and third quantile (25th
and 75th percentiles), and the whiskers are the largest value no further than 1.5 x IQR
from the hinge (IQR is the inter-quartile range, or distance between the first and third
quartiles)144.

peptide properties and a wrong significance calculation. Nonetheless, Percolator was robust

and assigned more significant peptide identifications even when the wrong enzymatic cleavage

was set by the Proteome Discoverer.

In addition to the number of identified peptides, we were also interested in the number of

putative binders in our dataset. The number of binders can be used to verify that the found

peptides are viable identifications. We calculated the binding affinity with netMHCpan-3.0 and

the individual’s HLA type. Figure 4.11 shows that we also gain more peptides when we use

Comet + Percolator than with Sequest HT + Percolator. Furthermore, we calculated the ratio

of binders to identified peptides. The percentage of binders was slightly higher with Sequest

HT + Percolator (2.2% on average).

The benchmark between Sequest HT and Comet showed that Comet is superior to Se-

quest HT. This result was coherent with the benchmark results by Eng et al.38. Although both
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Figure 5.12: Results of the benchmark of Sequest HT, Sequest HT + Percolator, Comet,
and Comet + Percolator. The fraction of binding HLA class I peptides and the number of
identified peptides of 122 MS runs is shown as quality measurement. The binding was
predicted with netMHCpan-3.0 and the individuals’ HLA type. The line inside the boxplots
represents the median, the box borders are the first and third quantile (25th and 75th
percentiles), and the whiskers are the largest value no further than 1.5 x IQR from the
hinge (IQR is the inter-quartile range, or distance between the first and third quartiles)144.

algorithms are based on the Sequest algorithm, Comet has been shown to be superior. Because

Sequest HT is a commercial software no detailed description of the algorithm is available.

Therefore, we can only assume that the slight changes in the base algorithm made by Comet

and two decades of development led to the massive gain of identifications38. As a consequence

of the benchmark, we used Comet + Percolator to identify our peptides. There are many other

identification algorithms like Mascot94, OMMSA45, MaxQuant30, or MSGF+63, which we did

not consider in this benchmark. The results of multiple identification algorithms could also be

combined, which might result in even better identifications. However, a complete benchmark

of all identification algorithms would go beyond the scope of this thesis.

5.3.6 Data overview

In total, we performed 435 DDA mass spectrometry runs (class I = 216, class II = 219).

These resulted in 64,534 unique class I peptide identifications and 90,958 class II peptide

identifications. These peptides mapped uniquely to 13,516 class I proteins and 13,398 class II

proteins. Figure 5.13 and 5.14 provide an overview of the number of identified peptides per

tissue and patient. The samples varied massively in the number of identified peptides. The

highest number of identified peptides for class I was 4,953 and the lowest 13, for class II the

highest was 5,564 and the lowest 93. This variation was not tissue- or patient-specific but
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rather based on technical issues, such as heterogeneity of the tissue material or the amount

of peptides after immunoprecipitation. Furthermore, the number of identified peptides did

not depend on the quantity of sample used as immunoprecipitation input. Next, we predicted

the binding affinity of the identified peptides to the individual’s HLA type. Then, the number

of binders divided by the number of identification, provided an estimation of the quality of

the sample (Figure 5.15). Using this metric we again identified the deviant properties of the

stomach samples. However, due to the lack of reliable HLA class II binding predictors, this

quality measurement was not usable for HLA class II runs.
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Figure 5.13: Number of identified class I peptides for each tissue and patient. The error
bars show the standard deviation across the three technical replicates.
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Figure 5.14: Number of identified class II peptides for each tissue and patient. The error
bars show the standard deviation across the three technical replicates.
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Figure 5.15: Ratio of HLA binding class I peptides to identified peptides for each tissue and
patient. The error bars show the standard deviation across the three technical replicates.
Binding prediction was performed with netMHCpan-3.0.

5.3.7 Properties of the immunopeptidome

After the first overview of data contained in the HLA Ligand Atlas, this section focuses on

the description of the properties of the immunoprecipitation. First, we describe the length

distribution of the peptides in conjunction with the HLA type to which they are predicted to
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bind. Second, we investigate the overlap on presented proteins on HLA class I and class II.

Last, we look into class I peptides which can be found nested in class II peptides and describe

how often length variations of the same core peptide can be found in HLA class I and class II

separately.

Peptide length distributions of different HLA alleles

Different HLA alleles bind different peptides. This hypothesis does not only apply to the

sequence of the peptides, but also to the length of the binding peptide. Therefore, we analyzed

the length distribution of the peptides belonging to each HLA class I type. In the first step,

we assigned the peptides of each individual to an HLA allele using Gibbs clustering. After the

clustering, we assigned found motifs by visually comparing the cluster motif to the binding

motif of the individual’s HLA type. We assigned only distinct motifs to each HLA allele. Due

to imperfectly described binding motifs of HLA-C, we did not assign any motifs to HLA-C.

Supplementary Table C.2 - C.7 show the resulting clusters for each individual and their HLA

allele assignments. After the assignment to an HLA allele, we calculated the peptide length

distribution (Figure 5.16).

As we had expected, most of the found peptides had length nine. However, we found

small changes in the distribution for HLA-A alleles (Figure 5.16a). The relative abundance

in length ten varied between the alleles. We observed a larger variation for HLA-B alleles

(Figure 5.16b). HLA-B*14:02 had a high relative abundance for length eight peptides and only

very few peptides with a length larger than nine. Furthermore, B*13:02 and B*49:01 had very

few 10 to 12mers. A similar observation has recently been made by Abelin et al. (2017)1.

They show an even more variable length distribution for HLA-B alleles. Furthermore, they

achieve a relative abundance of 80% for length 9 for some alleles, which is not the case in

our dataset. However, the comparison between their distribution and ours in general showed

very similar results. Because Abelin et al. obtained their peptides from monoallelic HLA cell

lines, this indirectly confirmed the use of the Gibbs clustering method for allelic separation

of the peptides. To conclude, the length of the peptides presented by each HLA allele varied,

but still most of the HLA class I peptides were of length nine. We did not use this method for

HLA class II, because no clearly separated clusters could be obtained, presumably due to the

shifting binding core of HLA class II.

HLA class I and II overlap

HLA class I presents endogenous proteins whereas HLA class II presents exogenous proteins.

Although this paradigm holds, both can theoretically present similar proteins. However, due to

their different antigen processing pathway (see Section 2.2) and the allele-specific presentation

preferences, the proteins from which the presented peptides originate differ between class I
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Figure 5.16: Frequency of the length of the peptides for each allele. We assigned the
peptides to their allele with Gibbs clustering. We used only distinct clusters to assign
peptides to HLA allele and merged alleles that occurred in more than one individual. n is
the number of peptides found for the allele.

and II. Here, we calculated how much overlap exists on protein level between both HLA classes.

First, we mapped all found HLA class I and II peptides back to their source protein and excluded

all peptides that mapped to multiple proteins (Figure 5.17). Next, we calculated the overlaps

between the proteins found on each patient, tissue, and across all samples. Based on the

computed overlap, we calculated the Jaccard-similarity score for the two sets. The average

Jaccard-similarity score was 0.109 (median 0.104). On average, we found 18.2% (median

15.5%) of all class I proteins also in class II. The comparison between tissue- and individual-

specific overlap and the overall overlap showed, that most of the known human proteins were

presented on both HLA classes if all samples are combined. However, if the proteins of only

one sample are compared (e.g., only liver ZH05) there is a very low overlap. These results

suggest that, although both HLA classes can present most of the human proteins, the two HLA

classes in each tissue do not redundantly present source proteins.

Next, we calculated the overlap between the sets of peptides found in each sample, which

led to a low average Jaccard-similarity score of 0.024 (median 0.016) and an overlap of class I

peptides of 6.3% (median 3.0%). Because HLA class I and class II present peptides of different

length, these results were not surprising. Therefore, we subsequently searched for class I

peptides nested in class II peptides. On average, we found 9.6% of the class I peptides in class

II peptides (median 5.7%).

In addition, we were interested in the nestedness of the peptides within each HLA class. To

identify nested peptides, we searched for length variations of the peptides within each class and

counted the peptides with length variations. A nested peptide was defined as a peptide with

a length variation (e.g., SYFPEITH and SYPEITHI). Each peptide with a length variation was

counted as one nested peptide and was not combined with the other peptides of the same core

peptide. On average, 8.0% (median 6.4%) of HLA class I and 59.3% (median 61.8%) of HLA
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class II peptides were nested. This was consistent with the 3D structure of HLA. As described

in Subsection 2.2.3, the protein structure of HLA class I is like a bathtub and allows only short

dangling ends. Furthermore, the anchor positions of the binding motifs are at the beginning

and end of the peptide sequence, which prevents a shortening of the peptide. In contrast, the

3D structure of HLA class II allows dangling ends and only needs a matching binding core to

bind the peptides. Therefore, the large number of length variations in HLA class II peptides

was consistent with the structure of HLA class II. However, if there is a biological function of

nested peptides is not yet discovered.

3056 293810460

Class I Class II

Figure 5.17: Source protein overlap for HLA class I and class II. The overlap was calculated
based on the proteins of all patients and tissue types.
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Figure 5.18: Peptide length variations inside each HLA class, which is defined as the
number of nested peptides divided by the total number of peptides for each run. A nested
peptide was defined as a peptide with a length variation (e.g., SYFPEITH and SYPEITHI).
Each peptide with a length variation was counted as one nested peptide and was not
combined with the other peptides of the same core peptide.
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5.3.8 Individual and organ differences in immunopeptidome

In former studies of the immunopeptidome, the focus was mostly on specific tumor types and

therefore on specific tissues12,15,68. In contrast, the HLA Ligand Atlas contains various tissue

types from multiple individuals. To assess the similarity of the immunopeptidome of different

tissues, we calculated the pairwise Jaccard-similarity score of the sets of peptides and proteins

found on each tissue. Based on these distances, we performed a hierarchical clustering of

individuals and tissues (HLA class I: Figure 5.19; HLA class II: Supplementary Figure C.8). The

clustering does not show any similarities between tissues of different individuals. However, in

our dataset the number of shared HLA class I alleles between the individuals was very small

(Allele: occurrence, A*11:01: 3, A*68:01: 2, B*07:02: 2, B*15:01: 2, C*03:03: 2, C*04:01:

2, C*07:01: 2, C*07:02: 2, other alleles: 1) and therefore we found a clear HLA binding

specificity separation on peptide level. Next, we tried to remove the influence of the HLA

binding. We mapped the peptides to their source protein and calculated the Jaccard-similarity

score and the hierarchical clustering (HLA class I: Figure 5.20; HLA class II: Figure C.9). Again,

the resulting heat maps showed a clear clustering by individual and not by tissue type. This

result implies that the HLA type of an individual also defines the majority of the presented

proteins. In addition, we tried to remove the individual’s background. We subtracted the

mean/median presentation frequency of each peptide/protein per individual and recreated

the heat map with the Euclidean distance (Figure C.10-C.17). In the resulting clustering the

individuals are still clustered and only some tissues types group together. However, removing

the mean/median peptide presentation of an individual is a simple method and more complex

methods like deconvolution using Bayesian models might yield a better separation on the

tissue level. Furthermore, a larger HLA type overlap might result in more distinct clustering of

tissues after subtraction of the individual background. To this end, we will have to expand the

database and measure the immunopeptidome of more individuals with similar HLA types.
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Figure 5.19: Heat map of pariwise distances of sets of identified HLA class I peptides for
patients and tissues. We calculated the pairwise distance as the Jaccard-similarity score
on presence and absence of identifications. The color coded dendogram on top shows
individuals’ ID, the dendogram on the left shows the tissue types.
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Figure 5.20: Heat map of pariwise distances of sets of identified HLA class I proteins for
patients and tissues. We calculated the pairwise distance as the Jaccard-similarity score on
presence and absence of proteins. The color coded dendogram on top shows individuals’
ID, the dendogram on the left shows the tissue types 79
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5.3.9 Tissue-specific Proteins

Above we demonstrated with a clustering that the immunopeptidome is more similar within

individuals than within tissue samples obtained from the same tissue in different individuals.

Nevertheless, we searched for tissue-specific proteins, which we defined as proteins that were

exclusively found on one tissue and never on any other tissue. We analyzed only tissues, for

which we had obtained at least three different samples to avoid random hits. Table 5.1 shows

that we had at least three samples for 17 different tissue types. However, we only considered

proteins that were found on at least three different samples, which reduced the number of

tissues to five for HLA class I (brain, kidney, liver, lung, thyroid) and six for HLA class II (brain,

colon, heart, kidney, liver, lung, thyroid). Table 5.4 lists the tissue-specific proteins for HLA

class I and Table 5.5 lists those for HLA class II. The protein expression data was obtained from

www.proteomicsdb.org143.

We found only one protein - Opalin - to be both tissue-specific in its presentation on HLA

and its expression on protein level. In addition, for five tissue-specific proteins presented on

HLA, we found no protein expression at all in the specific tissue (TAF7L, KCNJ9, PREB, TMPS2,

and WDR75). All other tissue-specific proteins presented on HLA were at least expressed in

their tissue on protein level and many were expressed in high levels. In addition, we more

frequently found tissue-specific HLA peptides with high compared to low expression. However,

it has to noted that the tissue-specific protein presented on HLA may be present on other

tissues with high-protein expression that we did not include in our dataset yet. Therefore, the

expansion of the HLA Ligand Atlas should include further tissue types to ensure a more diverse

view on the immunopeptidome. In addition, with more data we could combine similar tissue

types such as brain and cerebellum to search for peptides or proteins specific for biological

systems or functions rather than individual tissues.
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Table 5.4: Tissue-specific HLA class I proteins. The count column shows the number
of tissue samples on which we found peptides from proteins. Protein-expression data
obtained from www.proteomicsdb.org.

Tissue Protein Gene Count High

protein

expres-

sion

Tissue-

specific

protein

Name

Brain Q16650 TBR1 3 Yes No T-box brain protein 1

Brain Q96PE5 OPALI 3 Yes Yes Opalin

Kidney O00476 NPT4 3 No No Sodium-dependent phosphate

transport protein 4

Kidney Q9UHE5 NAT8 4 Yes No N-acetyltransferase 8

Kidney Q8TCC7 S22A8 3 Yes No Solute carrier family 22 mem-

ber 8

Liver Q9NQ94 A1CF 3 Yes No APOBEC1 complementation

factor

Lung O95436 NPT2B 3 Yes No Sodium-dependent phosphate

transport protein 2B

Lung P11686 PSPC 4 Yes No Pulmonary surfactant-

associated protein C

Lung O95171 SCEL 4 Yes No Sciellin

Thyroid Q5H9L4 TAF7L 4 Not

found

Not

found

Transcription initiation factor

TFIID subunit 7-like

Thyroid Q92806 KCNJ9 3 Not

found

Not

found

G protein-activated inward rec-

tifier potassium channel 3

Thyroid Q9HCU5 PREB 3 Not

found

Not

found

Prolactin regulatory element-

binding protein

81

www.proteomicsdb.org


5. Analysis of the benign tissue immunopeptidome

Table 5.5: Tissue-specific HLA class II proteins. The count column shows the number
of tissue samples on which we found peptides from proteins. Protein-expression data
obtained from www.proteomicsdb.org.

Tissue Protein Gene Count High

protein

expres-

sion

Tissue-

specific

protein

Name

Brain O76070 SYUG 3 Yes No Gamma-synuclein

Brain P42658 DPP6 3 Yes No Dipeptidyl aminopeptidase-like

protein 6

Brain P06307 CCKN 3 Yes No Cholecystokinin

Colon P01282 VIP 3 Yes No VIP peptides

Heart P19429 TNNI3 3 Yes No Troponin I, cardiac muscle

Heart O14639 ABLM1 3 Yes No Actin-binding LIM protein 1

Kidney P02489 CRYAA 3 Yes No Alpha-crystallin A chain

Liver P06133 UD2B4 4 Yes No UDP-glucuronosyltransferase

2B4

Liver P22310 UD14 3 Yes No UDP-glucuronosyltransferase 1-

4

Liver P22760 AAAD 3 Yes No Arylacetamide deacetylase

Lung P08476 INHBA 3 Yes No Inhibin beta A chain

Lung P11686 PSPC 5 Yes No Pulmonary surfactant-

associated protein C

Lung O15393 TMPS2 3 Not

found

Not

found

Transmembrane protease ser-

ine 2

Lung Q8IWA0 WDR75 3 Not

found

Not

found

WD repeat-containing protein

75

Lung Q6UY14 ATL4 3 No No ADAMTS-like protein 4

Lung P07988 PSPB 3 Yes No Pulmonary surfactant-

associated protein B

Thyroid P07202 PERT 6 Yes No Thyroid peroxidase
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5.4 Discussion and Outlook

With 85 samples, the HLA Ligand Atlas is currently the largest publicly available benign im-

munopeptidome dataset. Here, we described a detailed analysis of the immunopeptidome of

HLA class I and II. We performed a statistical analysis of the immunopeptidome and described

in detail the several quality control steps during data generation and analysis. First, we showed

with a time-series experiment that when the individuals were stored for up to 72 h at 4 °C, the

quality and quantity of the immunopeptidome barely change over time. Next, we checked for

outlier runs with mass spectrometry run properties. We used Gibbs clustering and identified

atypical HLA binding motifs for two stomach samples that we found to be outliers. These

binding motifs were explained by the cleavage specificity of pepsin. However, we could not

determine when (before or during immunoprecipitation) and where (in vivo or in vitro) the

pepsin cleavage occurred. Further experiments with additional pepsin inhibition during the

immunoprecipitation may help to evaluate if the digestion occurs during the immunoprecipita-

tion. If the pepsin digestion is not an artifact of the immunoprecipitation, we have to perform

more experiments to ensure that the digestion already occurs in the living organism and not

during the storage of the body at 4 °C. This could be done by using fresh stomach samples from

biopsies instead of samples from autopsies. To avoid non-HLA specific peptide contamination,

we excluded the stomach samples from our further analyses. In the next step of the quality

control we looked for typical contaminants in the immunoprecipitation. We benchmarked dif-

ferent quality measurements and chose the protein coverage, which performed best. Next, we

discarded peptides from proteins with more than 40% coverage in any run. With this method

we cannot exclude all contaminants. In particular, peptide contaminants from proteins with

low coverage will pass this filter. One way to mark these peptides as contaminants and remove

them from the analysis would be to use a blacklist of peptides that could be created based

on expert knowledge and years of experience. However, this blacklist could be biased by the

presumption of the expert. Therefore, we only use the unbiased approach described above.

After ensuring the quality of the immunopeptidome data, we benchmarked our identifica-

tion and processing pipeline. We compared Sequest HT and Comet including Percolator and

showed that Comet + Percolator outperformed Sequest HT, with and without Percolator. Here,

we focused on two identification tools and did not include others such as Mascot94, OMMSA45,

MaxQuant30, or MSGF+63. Since, a complete benchmark of all identification algorithms would

go beyond the scope of this thesis.

The FDR accumulation in these large datasets is an often-raised concern. When we combine

many runs that were individually processed, the FDR can accumulate, which results in a total

FDR higher than 5%. This problem does not only concern the HLA Ligand Atlas but also

proteomics data bases like the ProteomicsDB143 and the Human Protein Atlas126. In proteomics

databases, a protein-based FDR can be calculated to reduce the problem, which is not possible
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for our immunopeptidome dataset. We were not able to correct for the FDR accumulation

because no method dealing with the problem has been published yet.

In the next section, we defined properties of the immunopeptidome. First, we analyzed the

length distribution of the peptides belonging to specific HLA allele. We assigned the peptides

using Gibbs Clustering and a manual assignment of the motifs to its HLA type. This manual

assignment is very time-consuming and will no longer be possible when the database grows

and the number of patient increases. To solve this problem, we assigned each cluster to an HLA

allele with netMHC and used the cluster assignment for the peptides. However, in our analysis

we did not assign all clusters to avoid trash clusters. Therefore, we did a quality measurement

to remove these clusters before an automatic assignment was used. Next, we assessed the

overlap between HLA class I and class II, length variations within each HLA class, and between

the classes. We showed that when we combine the dataset most of the proteins can be found

in both HLA classes but when only one sample is analyzed, the protein overlap is rather small.

Furthermore, the length variation analyses showed that only few HLA class I peptides can be

found in HLA class II peptides. However, nested peptides are of general interest for vaccination

approaches64,113. Finally, we identified a large group of nested peptides in HLA class II, but

not in HLA class I.

In the last two sections, we compared the samples across individuals and tissue types. First,

we calculated a Jaccard distance matrix on peptide and protein level and showed that the

HLA type of the individuals is critical for the selection of presented peptides and proteins.

In addition, we subtracted the individual-specific background presentation. However, the

resulting clustering did only slightly change to a tissue-based grouping. Our background

subtraction method was a very simple approach and more advanced methods to deconvolute

the individual- and tissue-specific presentation could be used (e.g., Bayesian-based methods).

Furthermore, our analyzed individuals shared only very few HLA types. Therefore, additional

samples should be obtained from individuals with similar HLA types.

In the last section, we tried to identify tissue-specific proteins. However, we found only

one protein that was both tissue-specific on immunopeptidome and proteomics level. The

rather small amount of tissue-specific proteins was likely caused by the few samples that were

available for each tissue type, which could be solved by obtaining more samples from specific

tissues. In addition, new tissue types would be needed to ensure that these tissue-specific

proteins are not presented on other not analyzed tissues. To sum up, we presented different

quality control steps, an identification method benchmark, and a comprehensive description

of the benign immunopeptidome.
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Chapter 6

A meta-analysis of HLA peptidome

composition in different

hematological entities

This part of the thesis describes a meta-analysis of the HLA peptidome in different hematologi-

cal entities. It shall be an example of how immunopeptidome data of malignant and benign

tissues can be analyzed and especially demonstrate the importance of a large dataset of benign

tissues like the HLA Ligand Atlas. The content is based on and has been published by Backert

et al.12

A meta-analysis of HLA peptidome composition in different hematological entities: Entity-specific

dividing lines and "pan-leukemia" antigens

Backert L*, Kowalewski DJ*, Walz S, Schuster H, Berlin C, Neidert MC, Schemionek M, Brüm-

mendorf T, Vucinic V, Niederwieser D, Kanz L, Salih HR, Kohlbacher O, Weisel K, Rammensee HG,

Stevanovic S, Stickel JS

6.1 Introduction

In contrast to the recent breakthrough advances in the treatment of solid malignancies by

antigen-unspecific immune-checkpoint blockade22,29,48,81,86,100 the success of this highly promis-

ing treatment modality has so far been limited in hematological cancers8,77 with the prominent

exception of Hodgkin lymphoma9,10. As clinical effectiveness of checkpoint inhibition has been

shown to be directly correlated to mutational load in solid tumors102,117 and mutation-derived

neoepitopes have been identified as targets of the resultant anti-tumor T-cell responses49,50,121,

it may be surmised that the suboptimal effectiveness in hematologic malignancies (HM) may

at least in part be attributed to the predominantly low mutational burden of these cancer enti-
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ties4,131. On the other hand, HM can be effectively treated by stem cell transplantation21,101,141,

donor lymphocyte infusion107,108,111 or the more recently developed adoptive approaches uti-

lizing chimeric antigen receptor (CAR) T cells, which showed breakthrough effectiveness, even

in previously therapy-resistant forms of malignancy44,80,95. However, apart from the latter,

these approaches are hampered by their infrequent effectiveness and, more importantly, severe

off-target toxicity such as graft-versus-host disease. As CAR T-cell therapy likely will remain

restricted to only a handful of cell surface (differentiation) antigens (e.g. CD1980, HER2145,

CEA51), there is a pressing need to identify new targets and suitable treatment strategies for

hematological malignancies not amenable to CAR T-cell therapy. For this aim, the identification

of HLA-restricted T-cell epitopes on HM and their implementation in adoptive, engineering- or

vaccine-based T-cell immunotherapy is a highly attractive option, rendering a vast array of in-

tracellular - and potentially more specific - HM antigens amenable to immunological targeting.

To this end our group and others have extensively studied the HLA-presented immunopep-

tidome of hematological cancers including acute myeloid leukemia (AML)19, chronic myeloid

leukemia (CML)119, chronic lymphocytic leukemia (CLL)67 and multiple myeloma (MM)135,

which led to the identification of multiple pathophysiologically relevant epitopes of anti-HM

T-cell responses and inspired the notion that immune control in these low-mutational entities

may effectively be mediated by T cells targeting non-mutated epitopes70. As the development

of novel immunotherapeutic compounds is a highly cost- and time-intensive enterprise133,138,

such non-mutant, common antigens represent highly attractive targets for off-the-shelf im-

munotherapy, which may be suited for the effective treatment of a substantial proportion of

the patient population.

In this study we present a meta-analysis of our previous studies on the immunopeptidomes

of the four major hematologic cancers in adults, AML19, CML119, CLL67 and MM135, addressing

the similarity of these malignancies on the immunologically pivotal level of HLA-restricted

presentation with the dedicated aim of investigating the existence and prevalence of potential

"pan-leukemia antigens".

6.2 Material and Methods

6.2.1 Patient blood and bone marrow samples

Peripheral mononuclear cells (PBMC) from AML, CLL and CML patients and bone marrow

mononuclear cells (BMNC) from MM patients (provided by the Departments of Hematology and

Oncology in Tübingen, Leipzig and Aachen, Germany) at the time of initial diagnosis or relapse

prior to therapy were isolated by density gradient centrifugation (Biocoll, Biochrom GmbH,

Berlin, Germany) and erythrocyte lysis (EL buffer, Qiagen, Venlo, Netherlands) (Table 6.1).

For all AML and CLL samples the frequency of malignant cells within the PBMC isolate was >
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80%. For MM samples the percentage of malignant plasma cells within the BMNC fraction was

> 60%. For CML we analyzed whole blood samples of 12 CML patients in the chronic phase

(no blasts), two in the accelerated phase (18-20% myeloid blasts) and two in a blast crisis

(50-60% myeloid blasts). Informed consent was obtained in accordance with the Declaration

of Helsinki protocol. The study was performed according to the guidelines of the local ethics

committee (373/2011BO2, 142/2013BO2). HLA typing was carried out by the Department

of Hematology and Oncology, Tübingen, Germany. Samples were stored at -80°C until further

use.

6.2.2 Healthy control tissue samples

PBMC and bone marrow mononuclear cells (BMNC) from healthy volunteers were isolated by

density gradient centrifugation (Biocoll, Biochrom GmbH, Berlin, Germany) and erythrocyte

lysis (EL buffer, Qiagen, Venlo, Netherlands). Normal tissue samples from patients and autopsy

material were provided by the University Hospital Tübingen, Germany and the University

Hospital Zürich, Switzerland (Table 6.1). Specimens were frozen in liquid nitrogen immediately

after resection. Informed consent was obtained in accordance with the Declaration of Helsinki

protocol

6.2.3 Myeloma cell lines (MCL)

For HLA ligandome analysis the myeloma cell lines (MCLs, U266, RPMI8226 and JJN3) were

cultured in the recommended cell media (RPMI1640 (Gibco, Carlsbad, CA, USA), IMDM (Lonza,

Basel, Switzerland)) supplemented with fetal calf serum, 100 IU/L penicillin, 100 mg/L strep-

tomycin, and 2 mmol/L glutamine at 37°C and 5% CO2.

6.2.4 Isolation of HLA ligands from primary samples and MCLs

HLA class I molecules were isolated using standard immunoaffinity purification as described

before in Berlin et al.19, Kowalewski et al.69, and section 2.3, using the pan-HLA class I specific

mAb W6/32 (produced in house) to extract HLA ligands.

6.2.5 Analysis of HLA ligands by LC-MS/MS

HLA ligand extracts were analyzed in five technical replicates as described previously66 . In

brief, peptide samples were separated by nanoflow HPLC (RSLCnano, Thermo Fisher, Waltham,

MA, USA) using a 50 µm× 25 cm PepMap RSLC column (Thermo Fisher) and a gradient ranging

from 2.4 to 32.0% acetonitrile over the course of 90 min. Eluting peptides were analyzed in

an online-coupled LTQ Orbitrap XL mass spectrometer (Thermo Fisher) using a top 5 CID

(collision-induced dissociation) fragmentation method.
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Table 6.1: Tissue samples and peptide yields comprised in the non-malignant primary
tissue database. Reproduced with permission from Backert et al.12

Tissue Number of analyzed samples Unique peptide IDs

Brain 5 2208
Kidney 30 16045
Lung 3 5427
Muscle 2 583
Small Intestine 2 3098
Spleen 2 4585
Bladder 1 1416
Heart 1 1128
Myelon 1 383
Pancreas 2 1576
Skin 2 543
Stomach 1 1198
Thyroid 1 1451
Adrenal Gland 1 690
Esophagus 1 392
Liver 13 10081
Testicle 1 1736
Trachea 1 334
Bone Marrow 9 3591
PBMC 30 17322
Granulocytes 3 4224
Colon 32 12539
Ovary 3 1036

6.2.6 Database search and HLA annotation

Data processing was performed using the software Proteome Discoverer (v1.3, ThermoFisher)

and the Mascot search engine (Mascot 2.2.04; Matrix Science, London, UK)94. The search

database was the human proteome as comprised in the Swiss-Prot database (20,279 reviewed

protein sequences, September 27th, 2013) without enzymatic restriction. Precursor mass tol-

erance was set to 5 ppm, and fragment mass tolerance was set to 0.5 Da. Oxidized methionine

was allowed as a dynamic modification. The peptide-level false discovery rate (FDR) was

estimated using a decoy database consisting of the shuffled target database and the Percolator

algorithm (v2.04)57. The results were filtered with q ≤ 0.05 (5% FDR). Peptide lengths were

limited to 8-12 amino acids. Protein inference was disabled, allowing for multiple protein

annotations of peptides. HLA annotation was performed using NetMHCpan (v3.0)89, anno-

tating peptides with IC50 scores ≤ 500 nM and/or percentile ranks ≤ 2% as ligands of the

corresponding HLA allotype. Samples for which only two-digit HLA typings were available,
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the missing sub-alleles were inferred based on the assumption of the most frequent four-digit

allotype. For quality control, yield thresholds of ≥200 unique HLA class I ligands for primary

samples and ≥1,000 unique HLA class I ligands for MCL were applied.

6.2.7 Software and statistical analysis

Data processing and analysis was performed in Python 2.7.10 and FRED42 (binding prediction).

Statistical analyses were conducted using in R 3.3.196. All R scripts can be accessed at https:
//github.com/linusb/pan_leukemia. The heat maps were created using the R package

gplots139. The Jaccard index graphs were visualized using the igraph32 package, and the Venn

diagrams were plotted using the R package VennDiagram25. The clustering and distance graph

analysis was performed using complete linkage clustering and the Jaccard distance, which

measures the qualitative dissimilarity between two HLA peptidomes. The Jaccard distance in

these analyses was calculated as the difference of the size of the union minus the intersection

of HLA peptidomes, divided by the size of their union.

dJ (A, B) = 1− J(A, B) =
|A∪ B| − |A∩ B|
|A∪ B|

(6.1)

dJ is the Jaccard distance and J the Jaccard index. A and B represent the sets of peptides for the

two samples. For all possible sample combinations, this pairwise comparison was computed.

The Jaccard distance was selected as it is equivalent to overlap visualization by Venn diagrams

commonly utilized in HLA peptidomics studies. The thresholds were defined empirically, with

Jaccard similarities of 0.1 yielding optimal sensitivity and specificity. For the clustering, the

Jaccard distance graphs, and the overlap analysis of "cancer-exclusive" HLA ligand, the normal

tissue immunopeptidome was subtracted. In addition, HLA ligands occurring only once across

all samples were discarded and only samples containing more than five unique HLA class I

ligands were included. The layout of the distance graph analysis was computed using the

Fruchterman-Reingold layout algorithm.

6.3 Results

6.3.1 Hierarchical clustering of HLA-restricted antigens on source protein level
does not discern specific hematological malignancies

In order to obtain a comprehensive overview of the antigenic landscape of the four major HM

and their immunological relatedness, we first performed an unsupervised hierarchical cluster-

ing of source proteins (8,053 unique source proteins) represented by HLA-restricted peptides

(40,361 unique peptide IDs) in the immunopeptidomes of primary AML (n=19), CML (n=16),

CLL (n=35) and MM/myeloma cell line MCL (n=9/4, Figure 6.1). Without stratification of
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patients for expression of specific HLA allotypes, this source protein level analysis did not delin-

eate clusters along entity lines but rather revealed that the antigenic landscape is divided into

a smaller subset of non-entity specific common antigens (Figure 6.1, upper box) juxtaposed

with a larger, highly heterogeneous set of sample-specific antigens (Figure 6.1, lower box).

Whereas the larger group of sample and subset-specific source proteins clearly reflects a high

degree of tumor/patient individuality, the presence of a smaller common subset of antigens

hints at the potential presence of highly frequent and entity-spanning pan-leukemia antigens.

In order to evaluate the presence of such targets in the HM dataset, we shifted our analysis

to the HLA peptidome level, specifically filtered for HLA ligands which were exclusively de-

tected on tumor tissue and subsequently performed HLA allotype-specific immunopeptidome

profiling and cluster analyses for the seven most common HLA allotypes (A*01:01, A*02:01,

A*03:01, A*24:02, B*07:02, B*08:01, B*18:01; >95% population coverage in the Caucasian

population)110. To this end, we first subtracted from the dataset of HM-derived HLA ligands

any peptide (irrespective of HLA restriction) also contained in our comprehensive in-house

database of HLA ligands detected on non-malignant primary tissue specimens (n=147, num-

ber of unique peptides: 44,541, Supplementary Table 6.1). For the remaining set of peptides,

which were only detected on malignant samples (from now on referred to as "cancer-exclusive")

we computationally assigned the restricting HLA allotypes and compiled allotype-specific HLA

ligand datasets for further analysis (Supplementary Table D.5).

Importantly, we cannot rule out presentation of these "cancer-exclusive" HLA ligands on

normal (sub-)tissues or cell populations at levels below the limit of the detection or on sample

types missing in our normal tissue database.
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Figure 6.1: Unsupervised clustering analysis of HLA ligand source proteins represented
in the immunopeptidomes of HM. Peptides identified by LC-MS/MS in HLA class I ligand
extracts of AML (light green, n=19), CML (dark green, n=16), CLL (red, n=35) and
MM/MCL (orange/yellow, n=9/4) were mapped to their source proteins. For conserved
sequences mapping to multiple proteins all protein annotations were retained. Complete
linkage clustering was performed based on the Jaccard similarity coefficient of HLA ligand
source proteins. A subset of source proteins shared across samples and entities with high
frequencies of presentation is highlighted in the blue box; infrequent, sample/entitity-
specific source proteins are highlighted in the purple box. Reproduced with permission
from Backert et al.12
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6.3.2 HM entities and lineages can be distinguished purely based on HLA allotype-
specific immunopeptidome composition

Unsupervised clustering analysis of the HLA-A*02:01-restricted HM immunopeptidomes (AML

(n=9), CML (n=6), CLL (n=16), MM/MCL (n=4/1)) resulted in clear clustering of samples be-

longing to the same hematological cancer entities, as well as coherent clustering of the lineages

these malignancies arise from (Figure 6.2A). This suggests that the HLA ligandome directly

reflects tumor/lineage-specific biology, which is further underscored by the findings of gene

ontology analyses (GO Term BP) using DAVID53, which identified B-cell receptor signaling (GO

ID: 0050853) as a significantly enriched biological process (P<0.05 after Benjamini-Hochberg

correction for multiple testing) represented selectively in the immunopeptidome of the lym-

phatic lineage (CLL and MM/MCL).

Figure 6.2: Unsupervised clustering analysis and Jaccard distance graphs of "cancer-
exclusive" HLA-A*02:01 ligands on hematological cancers "Cancer-exclusive" HLA-A*02:01
ligands identified on AML (light green, n=9), CML (dark green, n=6), CLL (red, n=16)
and MM/MCL (orange/yellow, n=4/1) were analyzed by: A. Complete linkage clustering
based on the Jaccard similarity coefficient of A*02:01 immunopeptidomes. B. Jaccard
distance graphs. Samples showing ≥10% Jaccard similarity of their "cancer-exclusive"
HLA-A*02:01 immunopeptidomes were linked by edges, with the thickness of the edge
positively correlating with the degree of similarity. Reproduced with permission from
Backert et al.12
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To further investigate and visualize the inter-relatedness of samples and to assess lineage-

specific dividing lines, we performed Jaccard distance graph analysis, which identified sub-

networks of closely related (≥10% immunopeptidome overlap, linked by edges) CLL and CML

samples. AML on the other hand showed a chainlike structure of related samples, which covers

a vast range of possible A*02:01 immunopeptidome compositions. Connections across entity

boundaries were only identified in two isolated cases (Figure 6.2B). For the other HLA allotypes

similar observations were made, with clear entity-specific dividing lines detected in all cases

and CLL universally clustering in centralized subnetworks (Supplementary Figures 6.3 & 6.4).

Together, these findings suggest that peptide-specific T-cell immunotherapy in hematologic

malignancies may have to be designed in an entity-specific fashion. However, it has to be noted

that the underlying analysis was selectively implemented to assess similarities in immunopep-

tidome composition and, by proxy, tumor biology-and does not provide the sensitivity to detect

individual shared pan-leukemia antigens. To specifically achieve this goal and evaluate the

potential presence of broadly applicable targets for off-the-shelf immunotherapy of multiple

HM with a single peptide cocktail, we further sought for individual, shared HLA ligands across

the different HM entities.

6.3.3 Overlap analysis identifies a small panel of naturally presented "pan-leukemia"
antigens

For the allotype-specific overlap analysis, we assigned the HLA ligands to an HLA type using

netMHC and computed the ’cancer-exclusive’ presentation of these HLA ligands. The allotype-

specific overlap analysis of HM-derived HLA ligands identified 25 unique HLA ligands (A*01:01:

0; A*02:01: 11; A*03:01: 9; A*24:02: 0; B*07:02: 2; B*08:01: 0; B*18:01: 3) showing

"cancer-exclusive" presentation on all four HM simultaneously (Figure 6.5A, supplementary

Table 6.2), supplementary Figure S3 in Backert et al.12). Thus, universal antigen presentation

across entity boundaries is a very rare phenomenon, which is further aggravated by the fact

that shared antigens typically show low presentation frequencies within the different HM

entities (Figure 6.5B). A single pan-leukemia peptide with presentation frequency of more

than 20% across all entities was identified for HLA-A*02:01 (POLA2470-480, GLTSTDLLFHL).

Furthermore, lineage-specific analysis highlights three myeloid lineage-specific antigens and six

lymphatic lineage-specific antigens with presentation frequencies above 20% (with a minimum

value of n≥ 4 allotype positive samples applied for the calculation of presentation frequencies,

Figure 6.5B, supplementary Table 6.2). However, these targets were so far not evaluated for

immunogenicity or tumor-specific cytotoxicity. Together, these results clearly argue in favor of

entity-specific antigen discovery for T-cell immunotherapy in HM, albeit our analysis identified

very few novel, broadly presented candidate targets, which may be amenable for further drug

development.
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Figure 6.3: HLA allotype-specific clustering analysis of "cancer-exclusive" HLA ligands
on hematological cancers. A: "Cancer-exclusive" HLA-A*01:01 ligands identified on AML
(light green, n=1), CML (dark green, n=4), CLL (red, n=4) and MM/MCL (orange/yellow,
n=0/0) were analyzed by complete linkage clustering based on the Jaccard similarity
coefficient. B: "Cancer-exclusive" HLA-A*03:01 ligands identified on AML (light green,
n=5), CML (dark green, n=6), CLL (red, n=9) and MM/MCL (orange/yellow, n=2/2)
were analyzed by complete linkage clustering based on the Jaccard similarity coefficient.
C: "Cancer-exclusive" HLA-A*24:02 ligands identified on AML (light green, n=1), CML
(dark green, n=1), CLL (red, n=3) and MM/MCL (orange/yellow, n=2/1) were analyzed
by complete linkage clustering based on the Jaccard similarity coefficient. D: "Cancer-
exclusive" HLA-B*07:02 ligands identified on AML (light green, n=1), CML (dark green,
n=3), CLL (red, n=7) and MM/MCL (orange/yellow, n=3/2) were analyzed by complete
linkage clusterin based on the Jaccard similarity coefficient. E: "Cancer-exclusive" HLA-
B*08:01 ligands identified on AML (light green, n=2), CML (dark green, n=2), CLL
(red, n=6) and MM/MCL (orange/yellow, n=0/0) were analyzed by complete linkage
clustering based on the Jaccard similarity coefficient. F: "Cancer-exclusive" HLA-B*18:01
ligands identified on AML (light green, n=1), CML (dark green, n=2), CLL (red, n=2) and
MM/MCL (orange/yellow, n=1/1) were analyzed by complete linkage clustering based
on the Jaccard similarity coefficient. Reproduced with permission from Backert et al.12
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Figure 6.4: HLA allotype-specific Jaccard distance graphs of "cancer-exclusive" HLA
ligands on hematological cancers. Samples showing ≥10% Jaccard similiarity of their
"cancer-exclusive" HLA peptidomes were linked by edges, with the thickness of the edge
positively correlating with the degree of similarity. A: Jaccard distance graph based on
"cancer-exclusive" HLA-A*01:01 ligands identified on AML (light green, n=1), CML (dark
green, n=4), CLL (red, n=4) and MM/MCL (orange/yellow, n=0/0). B: Jaccard distance
graph based on "cancer-exclusive" HLA-A*03:01 ligands identified on AML (light green,
n=5), CML (dark green, n=6), CLL (red, n=9) and MM/MCL (orange/yellow, n=2/2).
C: Jaccard distance graph based on "cancer-exclusive" HLA-A*24:02 ligands identified
on AML (light green, n=1), CML (dark green, n=1), CLL (red, n=3) and MM/MCL (or-
ange/yellow, n=2/1). D: Jaccard distance graph based on "cancer-exclusive" HLA-B*07:02
ligands identified on AML (light green, n=1), CML (dark green, n=3), CLL (red, n=7) and
MM/MCL (orange/yellow, n=3/2). E: Jaccard distance graph based on "cancer-exclusive"
HLA-B*08:01 ligands identified on AML (light green, n=2), CML (dark green, n=2), CLL
(red, n=6) and MM/MCL (orange/yellow, gn=0/0). F: Jaccard distance graph based on
"cancer-exclusive" HLA-B*18:01 ligands identified on AML (light green, n=1), CML (dark
green, n=2), CLL (red, n=2) and MM/MCL (orange/yellow, n=1/1). Reproduced with
permission from Backert et al.12
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Figure 6.5: Presentation of "cancer"-exclusive HLA-A*02:01 ligands across different hema-
tological malignancies. A: Overlap analysis of "cancer-exclusive" HLA-A*02:01 ligands
identified on AML (n=9), CML (n=6), CLL (n=16) and MM/MCL (n=4/1). B: HLA-
A*02:01 restricted "pan-leukemia" antigens identified across all four hematological ma-
lignancies. Peptides represented with frequencies ≥20% across all entities are marked in
dark red, peptides represented with frequencies ≥20% across entities of the same lineage
are marked in light red. A minimum value of n≥4 allotype positive samples was required
for the calculation of presentation frequencies. Reproduced with permission from Backert
et al.12

Table 6.2: "Pan-leukemia" antigens for HLA-A*03:01, HLA-B*07:02, and HLA-B*18:01
identified across all four hematological malignancies. Peptides represented with frequen-
cies≥20% across all entities are marked in dark red, peptides represented with frequencies
≥20% across entities of the same lineage are marked in light red. A minimum value of
n≥ 4 allotype positive samples was required for the calculation of presentation frequen-
cies. Reproduced with permission from Backert et al.12

HLA ligand Source protein

Number of positive

hematological malignancies (Frequency [%])

HLA-A*03:01 AML (n=5) CML (n=6) CLL (n=9) MM/MCL (n=2/2)

GLDDPRLEK LRPAP1 3 (60.0) 3 (50.0) 1 (11.1) 1 (25.0)

GLDPSQRPK CHTF18 2 (40.0) 1 (16.7) 3 (33.3) 2 (50.0)

KLYEKKLLKL TMPO 1 (20.0) 1 (16.7) 3 (33.3) 2 (50.0)

KLYPTLVIR ELP3 4 (80.0) 1 (16.7) 4 (44.4) 1 (25.0)

KMKEALLSIGK FAM136A 2 (40.0) 1 (16.7) 1 (11.1) 2 (50.0)

RIAKLEAAY UTP20 1 (20.0) 2 (33.3) 1 (11.1) 2 (50.0)

RLMDRPIFY GALNS 1 (20.0) 2 (33.3) 1 (11.1) 1 (25.0)

RLNHYVLYK PSMD3 2 (40.0) 1 (16.7) 2 (22.2) 2 (50.0)

RVVDGKDLTTK FANCD2 1 (20.0) 1 (16.7) 4 (44.4) 2 (50.0)

HLA-B*07:02 AML (n=1) CML (n=3) CLL (n=7) MM/MCL (n=3/2)

APKRPPSAFF HMGB1P1, HMGB1, HMGB2 1 (100.0) 1 (33.3) 2 (28.6) 2 (40.0)

SPIEKSGVL CASC5 1 (100.0) 1 (33.3) 1 (14.3) 2 (40.0)

HLA-B*18:01 AML (n=1) CML (n=2) CLL (n=2) MM/MCL (n=1/1)

DEAPPEHSF DGKZ 1 (100.0) 1 (50.0) 2 (100.0) 2 (100.0)

DEHHSVNF RPL7A 1 (100.0) 1 (50.0) 2 (100.0) 2 (100.0)

DETSALKF SMIM10 1 (100.0) 1 (50.0) 1 (50.0) 1 (50.0)
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6.4 Discussion

In the wake of the clinical success of immune checkpoint modulation, it became more and

more evident that novel, supplementary therapeutic interventions may be required for a range

of malignancies and patient collectives showing low response rates to checkpoint inhibitor

monotherapy75,102. For this reason therapeutic strategies aimed at inducing antigen-specific

anti-tumor T-cell responses have experienced a surge of renewed interest93. Common prereq-

uisite to all these approaches is the exact knowledge of clinically effective targets specifically

presented on HLA molecules on malignant cells. While the current paradigm views mutation-

derived neoepitopes as the most highly effective targets of anti-tumor T-cell responses103,117,128,

this mutation-centric view severely limits the range of malignancies deemed eligible for T-cell

immunotherapy4,131. Furthermore, mutation-specific strategies would, at least in most cases,

be patient-individualized and thus require massively time-and cost intensive target discovery

and validation, which currently poses a severe limitation to the number of patients eligible

for such approaches133,138. Together, these circumstances prompted us and others to com-

prehensively investigate the non-mutant antigenic landscape presented by HLA molecules on

different low-mutational cancer entities17,36,88,115,119,134. Importantly, our previous studies in

hematological malignancies demonstrated that 1) vast arrays of non-mutated but nevertheless

cancer-specific HLA ligands are presented on these cancers, which may be explained by altered

antigen processing in malignant cells70 2) these peptides are immunogenic and targeted by

physiologically occurring T-cell responses in patients19,135 and 3) that anti-leukemia T-cell re-

sponses do correlate with improved patient survival in CLL patients underlining their central

role in cancer immune control67.

Based on these studies we herein conducted a meta-analysis aimed at assessing the par-

ticularities of four major HM on the immunopeptidome level and gauged the possibility of

identifying a set of universal "pan-leukemia" antigens. In order to evaluate whether the im-

munopeptidome directly reflects the different biology of the four HM, we assessed the relat-

edness of all samples on the HLA ligand source protein level. This did not result in grouping

of samples according to their respective entities but revealed the existence of a common set

of "housekeeping" antigens represented across all entities. This was expected based on our

previous studies and is in line with findings of another study on the immunopeptidome of cell

lines derived from different tissue origins17.

Even though our analysis was aimed at removing the impact of different HLA types from

the equation by clustering on the level of HLA ligand source proteins, a pattern of HLA allotype-

dependent selection for specific source proteins is clearly evident when comparing this cluster

analysis with the results of HLA allotype-stratified clustering of HM ligands. Where source

protein clustering did not result in coherent grouping of samples along entity lines, the allotype-

specific analysis clearly delineated samples according to their entity and lineage of origin,

97



6. A meta-analysis of HLA peptidome composition in different hematological entities

indicating a major influence of sample HLA types on protein representation in the immunopep-

tidome. Importantly, robust clustering of entity and lineage subgroups was observed for all

seven HLA allotypes analyzed in this study. This underscores the robustness of our analytical

pipeline and demonstrates that tumor- and lineage specific biology is reflected in the HLA

peptidome, which points to the possibility of confidently identifying and assigning pathology

purely based on immunopeptidome data (an approach which was previously presented for

proteomics data14). On the other hand, this finding hints at the limited occurrence of broadly

shared antigens, which led us to employ simple overlap analysis as a sensitive means to identify

this sparse population of entity-spanning HLA ligands. This verified the rarity of "pan-leukemia"

antigens, as such peptides were only detectable for four out of seven HLA allotypes and further-

more typically showed only low frequencies of presentation within the different entities. None

of these "pan-leukemia" antigens derives from established tumor-associated genes, which may

be explained by a distorted correlation of gene expression and HLA restricted antigen presen-

tation and underscores the importance of direct antigen discovery by mass-spectrometry17,142.

However -importantly- it also has to be noted that several factors pose central challenges for

mass spectrometry based antigen discovery: limited sensitivity and dynamic range as well as

the stochasticity of sampling in data-dependent mass spectrometry may lead to false-positive

tumor-exclusive detection.

Our central finding is the presence of entity- and lineage-specific dividing lines, which may

vitally impede the development of entity-spanning antigen-specific compounds. This strongly

argues in favor of entity-specific approaches for the development of antigen-specific T-cell

immunotherapy in hematological malignancies.
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Chapter 7

Conclusion and Outlook

Immunotherapies are among the most promising recently developed treatment options for

cancer99. However, the development of immunotherapies is based on the identification of ther-

apeutic targets. One group of potential targets are antigens that are presented by HLA, called

epitopes. Mass spectrometry-based immunoprecipitation allows measuring the immunopep-

tidome (i.e. all HLA-bound peptides) of a tissue or cancer type19,36,66,70,135. One major concern

in immunotherapies is cross-reactivity, which occurs if the immune system attacks other benign

or healthy parts of the body besides the target tissue. To control for potential cross-reactivity

of new targets, the immunopeptidome of healthy tissues is needed.

The HLA Ligand Atlas

The anticipated user base of the HLA Ligand Atlas consists of immunologists. Therefore, the

raw MS data and the result of subsequent analyses have to be presented, so that they can

quickly and comfortably access the information they are invested in. To this end, we developed

a browser-based web interface, which allows wet-lab scientists to perform simple analyses that

build on preprocessed MS data and the search for specific peptides and proteins. The HLA

Ligand Atlas also provides tissue- or HLA-specifc lists of the peptides that we identified with our

automated QC and processing pipeline. Currently, our dataset contains 435 mass spectrometry

runs, which encompass up to 5,000 peptides each. As the backend for the HLA Ligand Atlas,

we use an MySQL database, which provides fast access to the data. Because the access to the

HLA Ligand Atlas is restricted until publication and only available for test users, we cannot

foresee how much traffic will occur when many users access the database simultaneously. We

assume that minor changes in both the database and the interface have to be made to allow a

smooth user experience. In addition, we hope to enhance the interactive analysis and statistics

provided trough the HLA Ligand Atlas based on user requests and feedback. With this feedback,

we will implement analyses to answer frequent questions, which will add value to the website.

Currently, the HLA Ligand Atlas only contains benign samples. However, adding malignant
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tissues would add significant new content and would allow answering cancer-related questions.

However, adding these cancer samples will require significant changes to the metadata structure

of the database.

Analysis of the benign tissue immunopeptidome

In addition to the developing of the HLA Ligand Atlas, we perfomred a detailed analysis of

the benign immunopeptidome data that is contained in the database. Before we analyzed the

immunopeptidome data, we performed multiple quality control steps. First, we performed

a time-series experiment, to ensure the stability of the immunopeptidome over time at 4 °C.

Furthermore, we discovered that both samples from stomach tissue were pepsin digested.

However, we could not determine when (before or while immunoprecipitation) and where

(in vivo or in vitro) the digestion occurred. Further experiments are needed to verify that this

pepsin-specific cleavage is not an immunoprecipitation artifact. Finally, we identify typical

protein contaminants based on their coverage. Although we removed these contaminants,

peptide contaminants and known peptide impurities may still be confounders of the analysis.

To identify and remove these contaminants, a blacklist could be compiled based on expert

knowledge, similar to the Crapome in proteomics studies83. After we had excluded low quality

data from the HLA Ligand Atlas, we showed that the open-source software Comet38,39 per-

formed better than the proprietary software Sequest HT on immunopeptidome data. However,

we did not compare Comet and Sequest HT with other identification software such as Mas-

cot94, OMMSA45, MaxQuant30, or MSGF+63, which can therefore not be judged. Next, we

assessed common properties of HLA class I and class II ligands. We observed that the length

variation varies between HLA types. A deconvolution with Gibbs clustering yielded results that

are similar to those shown by Abelin et al. (2017)1. In addition, we calculated the peptide

and protein overlap between HLA class I and class II and found minor overlaps on sample level

and a large protein overlap when we combined all samples from one class. Furthermore, we

showed that HLA class II peptides often contain length variations of the same core peptide

(nested peptides). In contrast, HLA class I peptides had only few length variants. In the last

part of the analysis of the HLA Ligand Atlas data, we compared inter- and intra-individual

differences. We found that the HLA type has a major impact on both the presented peptides

and the proteins. In both cases, an unsupervised hierarchical cluster analysis grouped samples

by individuals rather by tissues. Only when we subtracted each individual’s background, minor

tissue clusters were identified. Although the individuals had only a small HLA type overlap

between, we identified tissue-specific proteins. In total we found 12 tissue-specific proteins for

HLA class I and 17 for HLA class II. A comparison of these proteins and their protein expression

obtained from the ProteomicsDB143 showed that only one of these proteins was also tissue-

specific on the protein expression level. This implies that more data is needed to find clearly
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tissue-specific HLA proteins. This data should be obtained from individuals with more overlap-

ping HLA alleles. Furthermore, the number of different tissue types should be expanded. In

general, the aggregation of more samples is the next crucial step before the final publication

of the HLA Ligand Atlas. Furthermore, the integration of public data, like links to the IMGT76

(peptides and HLA) or Uniprot124 (proteins) database or integration of information contained

in SYFPEITHI97 would provide new insights to the user.

A meta-analysis of HLA peptidome composition in different hematological entities

In the last chapter of this thesis, we describe a meta-analysis of the HLA immunopeptidome

of different hematological entities. The chapter explains how tumor-associated antigens can

be found and how an analysis of a larger cancer dataset can be performed. This analysis

used a large benign dataset similar to the HLA Ligand Atlas as a negative dataset to avoid

cross-reactivity and to remove benign background presentation.

The study was motivated by new breakthroughs in therapies using immune checkpoint

modulation75,102. However, these new therapies are not suitable for all types of malignancies

and furthermore not all patients benefit from them. Therefore, other therapies have to be de-

veloped. These new approaches have in common that they need a tumor-specific target, which

can be identified using HLA immunopeptidome analysis. We analyzed 83 HLA immunopep-

tidome samples of four different hematologic malignancies (19 AML, 16 CLM, 35 CLL, and 13

MM/MCL), which resulted in 40,361 unique HLA class I peptides. This meta-analysis aimed

to find "pan-leukemia" antigens and to describe shared properties between the malignancies.

These properties were analyzed using the source proteins of the identified peptides. However,

neither a hierarchical clustering nor a graph- and Jaccard-similarity-score-based approach re-

sulted in a clustering of hematological entities but revealed a group of common "housekeeping"

antigens presented across all malignancies. Next, we assigned our immunopeptidome to the

patients HLA types, and rerun the analysis only on peptides assigned to and patients with a

specific HLA type. This HLA type-specific analysis resulted in a clustering of the hematological

malignancies for all seven analyzed HLA types. Furthermore, it showed evidence that the

HLA type has a strong influence on which proteins are presented. Next, we searched for "pan-

leukemia" antigens, using again the HLA type assigned peptides and a simple overlap analysis.

We found in only four of the seven analyzed HLA types broadly shared antigens. None of the

found shared antigens were known tumor-associated genes defined in the literature. However,

this could be explained by the weak correlation between gene expression and HLA presentation

and demonstrates the importance of immunoprecipitation-based antigen discovery17,142. This

analysis showed entity-lineage-specific dividing lines, which might be of importance when we

try to identify "pan-leukemia"-antigens. However, this finding also supports the continuation
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of the approach of finding entity-specific antigens for T-cell immunotherapy in hematological

malignancies.

General conclusions and outlook

The development of new immunotherapy treatment options relies on the discovery of new

target antigens. These antigens can be identified by analyzing the HLA immunopeptidome.

In the context of this thesis, we presented the HLA Ligand Atlas: a large publicly available

database and web page for benign immunopeptidome data. It was developed with the aim

of providing easy access and fast data queries through an intuitive web interface. During

the development of the HLA Ligand Atlas, the SysteMHC Atlas114 has been published, which

also provides access to many different immunopeptidome datasets. However, the interface of

SysteMHC does only allow querying for peptides, proteins and HLAs, and does not support

further information besides a spectral library. Furthermore, SysteMHC aims to collect all

immunopeptidome datasets and to process them in consistent way. It provides access to them,

but does not allow to analyze the data in the interface. We think that both databases can

coexist, since they focus on different features.

In addition, this thesis contains an extensive analysis of the benign dataset. It describes

quality control criteria and properties of HLA class I and class II peptides and proteins. Fur-

thermore, an inter- and intra-individual analysis described herein shows a clear clustering of

the immunopeptidome data by individuals. Finally, we identified 27 tissue-specific antigens.

Although the presented dataset is to the best of our knowledge the largest benign dataset

available, it certainly has to be enlarged. The acquisition of new samples should be focused

on individuals with similar HLA types. In addition, new tissue types should be collected to

capture the full complexity of the HLA immunopeptidome. This new data will support the

search for new targets for cancer treatment, but also the development of new immunoinfor-

matics software. For example, the recently published new version of netMHCpan-4.056 uses

HLA ligand data to train and to enhance the binding prediction. The dataset presented here

can be included in such algorithms and will allow better binding predictions. However, since

we focus on the acquisition of samples with similar HLA types, the data will be more likely

to improve predictions of the binding of specific HLA alleles than the prediction across all

HLA alleles. Furthermore, new methods for the identification of HLA peptides from MS data

can be developed with the provided raw files. This would be especially interesting, since the

immunopeptidome analysis differs from the standard peptidomics analysis (e.g., enzymatic

digestion).

We characterized the immunopeptidome from four different hematologic malignancies.

This analysis resulted in a clustering along entity-specific dividing lines when only peptides

belonging to one HLA type were considered at a time. In addition, we defined "pan-leukemia"

102



antigens. However, the complete meta-analysis showed that entity-specific antigens were to

be favored over "pan-leukemia" ones. Therefor, entity-specific research projects should be

conducted in the future to discover new hematologic malignancy targets.

To conclude, we presented and analyzed a large dataset of benign HLA immunopeptidome

samples, which hopefully helps future researchers to discover new immunotherapy targets and

to develop new, safe, and effective immunotherapies for cancer patients.
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Cell NonâĂŞSmall-Cell Lung Cancer. New England Journal of Medicine, 373(2):123–135, jul

2015. 4, 85

[23] F. Caligaris-Cappio and T. J. Hamblin. B-cell chronic lymphocytic leukemia: a bird of a different

feather. Journal of clinical oncology : official journal of the American Society of Clinical Oncology,

17(1):399–408, jan 1999. 11

[24] P. Charoentong, F. Finotello, M. Angelova, C. Mayer, M. Efremova, D. Rieder, H. Hackl, and

Z. Trajanoski. Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Rela-

tionships and Predictors of Response to Checkpoint Blockade. Cell Reports, 18(1):248–262, 2017.

31, 52

[25] H. Chen and P. C. Boutros. VennDiagram: a package for the generation of highly-customizable

Venn and Euler diagrams in R. BMC Bioinformatics, 12(1):35, 2011. 89

[26] CLL Trialists’ Collaborative Group. Chemotherapeutic options in chronic lymphocytic leukemia: a

meta-analysis of the randomized trials. CLL Trialists’ Collaborative Group. Journal of the National
Cancer Institute, 91(10):861–8, may 1999. 11

[27] D. K. Cole, A. M. Bulek, G. Dolton, A. J. Schauenberg, B. Szomolay, W. Rittase, A. Trimby,

P. Jothikumar, A. Fuller, A. Skowera, J. Rossjohn, C. Zhu, J. J. Miles, M. Peakman, L. Wooldridge,

P. J. Rizkallah, and A. K. Sewell. Hotspot autoimmune T cell receptor binding underlies pathogen

and insulin peptide cross-reactivity. Journal of Clinical Investigation, 126(6):2191–2204, may

2016. 9

[28] J. E. Cortes, M. Talpaz, S. O’Brien, S. Faderl, G. Garcia-Manero, A. Ferrajoli, S. Verstovsek, M. B.

Rios, J. Shan, and H. M. Kantarjian. Staging of chronic myeloid leukemia in the imatinib era: an

evaluation of the World Health Organization proposal. Cancer, 106(6):1306–15, mar 2006. 11

[29] J. Couzin-Frankel. Cancer Immunotherapy. Science, 342(6165):1432–1433, dec 2013. 4, 85

107



Bibliography

[30] J. Cox and M. Mann. MaxQuant enables high peptide identification rates, individualized

p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology,

26(12):1367–1372, dec 2008. 3, 16, 72, 83, 100

[31] R. Craig and R. C. Beavis. TANDEM: matching proteins with tandem mass spectra. Bioinformatics,
20(9):1466–1467, jun 2004. 3, 16, 32

[32] G. Csárdi and T. Nepusz. The igraph software package for complex network research, 2006. 89

[33] M. Di Marco, H. Schuster, L. Backert, M. Ghosh, H.-G. Rammensee, and S. Stevanović. Unveiling
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Appendix A

Abbreviations

A
ADCC antibody-dependent cell-mediated cytotoxicity

AML Acute myeloid leukemia

ANSI American National Standards Institute

AUC Area under the curve

B
BCR B cell receptor

C
CML Chronic myeloid leukemia

CLL Chronic lymphocytic leukemia

CSS Cascading Style Sheets

CTL Cytoxic killer T cells

D
DDA Data Dependent Acquisition

DIA Data Independent Acquisition

E
ER Endoplasmic reticulum

F
FDR False-discovery rate

FP False positive

FPR False positive rate
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A. Abbreviations

G
GSEA Gene set enrichment analysis

H
HM Hematological Malignancies

HLA Human leukocyte antigen

HTML HyperText Markup Language

I
IMGT the international ImMunoGeneTics information system

ISO International Organization for Standardization

J
JS JavaScript

JSON JavaScript Object Notation

K
KLD Kullback-Leibler distance

L
LC-MS/MS Liquid chromatography coupled tandem mass spectrometry

M
ML Machine learning

MS Mass spectrometry

MOWSE Molecular weight search

MM Multiple myeloma

N
NGS Next Generation Sequencing

P
PAMPs Pathogen-associated molecular patterns

PRIDE PRoteomics IDEntifications database

PSM Peptide Spectrum Match

PSSM Position specific scoring matrix

Q
QC quality control
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R
ROC Receiver operating characteristic

S
SQL Structured Query Language

T
TAA Tumor associated antigen

TAP Transporter associated with antigen processing

TCR T-cell receptor

TP True positive

TRP True positive rate

TSA Tumor specific antigen

V

Y
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Figure C.1: ERM diagram of the whole MySQL database, including the main tables (gray),
the peptide_run tables (green), and multiple precomputed statistic tables to allow a faster
access to common queries (blue).128



(a) Kullbach-Leibler distance for the clusters.

(b) HLA-A*11:01 (c) HLA-B*35:03

(d) HLA-A*68:01 (e) HLA-B*15:01

Figure C.2: Gibbs clustering of all HLA class I peptides found for ZH02
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C. Supporting Figures

(a) Kullbach-Leibler distance for the clusters.

(b) HLA-A*11:01 (c) HLA-B*07:02

(d) HLA-A*01:01 (e) Unassigned cluster

(f) HLA-B*49:01

Figure C.3: Gibbs clustering of all HLA class I peptides found for ZH05
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(a) Kullbach-Leibler distance for the clusters.

(b) HLA-A*68:02 (c) HLA-B*14:02

(d) Unassigned cluster (e) HLA-A*03:01

(f) HLA-B*07:02

Figure C.4: Gibbs clustering of all HLA class I peptides found for ZH06
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C. Supporting Figures

(a) Kullbach-Leibler distance for the clusters.

(b) HLA-B*15:01 (c) HLA-A*32:01

(d) HLA-B*44:02 (e) HLA-A*68:01

(f) Unassigned cluster

Figure C.5: Gibbs clustering of all HLA class I peptides found for ZH08
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(a) Kullbach-Leibler distance for the clusters.

(b) Unassigned cluster (c) HLA-B*35:08

(d) Unassigned cluster (e) HLA-B*13:02

(f) HLA-A*24:02 (g) Unassigned cluster

Figure C.6: Gibbs clustering of all HLA class I peptides found for ZH09. No distinct cluster
was found for HLA-A*30:01.
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C. Supporting Figures

(a) Kullbach-Leibler distance for the clusters.

(b) Unassigned cluster (c) HLA-A*02:05

(d) HLA-B*58:01 (e) HLA-B*40:02

(f) HLA-A*11:01 (g) Unassigned cluster

Figure C.7: Gibbs clustering of all HLA class I peptides found for ZH13.
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Figure C.8: Identification-based distance matrix heat map for HLA class II peptides. Pair-
wise distance was calculated using Jaccard-similarity score on presence and absence of
identifications. The matrix is symmetrical and the upper colors show the individuals ID,
whereas the left colors show the tissue type.
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Figure C.9: Protein-based distance matrix heat map for HLA class II. Pairwise distance
was calculated using Jaccard-similarity score on presence and absence of proteins. The
matrix is symmetrical and the upper colors show the individuals ID, whereas the left colors
show the tissue type.
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Figure C.10: Identification-based distance matrix heat map for HLA class I peptides with
subtraction of the individual mean peptide occurrence. Pairwise distance was calculated
using Euclidean-similarity score. The matrix is symmetrical and the upper colors show
the individuals ID, whereas the left colors show the tissue type.
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C. Supporting Figures
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Figure C.11: Identification-based distance matrix heat map for HLA class I peptides with
subtraction of the individual median peptide occurrence. Pairwise distance was calculated
using Euclidean-similarity score. The matrix is symmetrical and the upper colors show
the individuals ID, whereas the left colors show the tissue type.
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Figure C.12: Identification-based distance matrix heat map for HLA class II peptides with
subtraction of the individual mean peptide occurrence. Pairwise distance was calculated
using Euclidean-similarity score. The matrix is symmetrical and the upper colors show
the individuals ID, whereas the left colors show the tissue type.

139
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Figure C.13: Identification-based distance matrix heat map for HLA class II peptides with
subtraction of the individual median peptide occurrence. Pairwise distance was calculated
using Euclidean-similarity score. The matrix is symmetrical and the upper colors show
the individuals ID, whereas the left colors show the tissue type.
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Figure C.14: Protein-based distance matrix heat map for HLA class I proteins with sub-
traction of the individual mean protein occurrence. Pairwise distance was calculated
using Euclidean-similarity score. The matrix is symmetrical and the upper colors show
the individuals ID, whereas the left colors show the tissue type.
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C. Supporting Figures
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Figure C.15: Protein-based distance matrix heat map for HLA class I proteins with sub-
traction of the individual median protein occurrence. Pairwise distance was calculated
using Euclidean-similarity score. The matrix is symmetrical and the upper colors show
the individuals ID, whereas the left colors show the tissue type.
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Figure C.16: Protein-based distance matrix heat map for HLA class II proteins with sub-
traction of the individual mean protein occurrence. Pairwise distance was calculated
using Euclidean-similarity score. The matrix is symmetrical and the upper colors show
the individuals ID, whereas the left colors show the tissue type.
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Figure C.17: Protein-based distance matrix heat map for HLA class II proteins with sub-
traction of the individual median protein occurrence. Pairwise distance was calculated
using Euclidean-similarity score. The matrix is symmetrical and the upper colors show
the individuals ID, whereas the left colors show the tissue type.
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Appendix D

Supporting Tables

Algorithm D.1: MySQL query to select all peptides from all MS run and to calculate

summarized properties. The peptides are grouped by each MS run. To calculate the

different scores, the MySQL standard methods MAX, MIN, and COUNT are used.

SELECT

d i s t i n c t sp . sequence ,

length ( sp . sequence ) ,

m. ms_run_id ,

s . source_id ,

max( sp . RT) ,

min( sp . RT) ,

max( sp .M),min(sp.M) ,

max( sp . search_eng ine_score ) ,

min( sp . search_eng ine_score ) ,

max( sp . e_value ) ,

min( sp . e_value ) ,

max( sp . q_value ) ,

min( sp . q_value ) ,

count ( sp . spec t rum_hi t_ id )

from spectrum_hi t sp

jo in

ms_run m on m. ms_run_id = sp . ms_run_ms_run_id

jo in

source s on s . source_ id = m. source_source_ id

jo in

hla_map hm on hm. fk_source_ id = s . source_ id

jo in

hla_type h on h . h la_ type_ id = hm. fk_h la_ type_ id

WHERE h . h l a _ s t r i n g NOT LIKE ’D% ’

group by m. ms_run_id , sp . sequence ;
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D. Supporting Tables

Table D.1: HLA class1 typing of the individuals contained in the HLA Ligand Atlas.

Individual HLA-A HLA-A HLA-B HLA-B HLA-C HLA-C

BD-ZH02 A*11:01 A*68:01 B*15:01 B*35:03 C*03:03 C*04:01
BD-ZH05 A*01:01 A*11:01 B*07:02 B*49:01 C*07:01 C*07:02
BD-ZH06 A*03:01 A*68:02 B*07:02 B*14:02 C*07:02 C*08:02
BD-ZH08 A*32:01 A*68:01 B*15:01 B*44:02 C*03:03 C*07:04
BD-ZH09 A*24:02 A*30:01 B*13:02 B*35:08 C*04:01 C*06:02
BD-ZH13 A*02:05 A*11:01 B*40:02 B*58:01 C*02:02 C*07:01
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D. Supporting Tables

Table D.3: List of shared peptides across all HLA class I samples.

Peptide Occurrence Occurrence [%] Peptide Occurrence Occurrence [%]

AAMLDTVVFK 113 0.523148148 SVSNVVITK 144 0.666666667
AGDDAPRAVF 137 0.634259259 TPEEKSAVTAL 155 0.717592593
ASLSTFQQM 167 0.773148148 TVLTSKYR 118 0.546296296
ASVSTVLTSKY 108 0.5 VVYPWTQRF 174 0.805555556
AVALPLQTK 115 0.532407407 YASGRTTGIVL 109 0.50462963
DEVGGEALGRL 143 0.662037037 YASGRTTGIVM 152 0.703703704
ETFNTPAMY 124 0.574074074 GTMTGMLYK 116 0.537037037
FESFGDLSTPDA 110 0.509259259 IAVGYVDDTQF 150 0.694444444
FRLLGNVL 184 0.851851852 VAIQAVLSL 133 0.615740741
FTLGNVVGMY 113 0.523148148 VDIINAKQ 143 0.662037037
GTFGGLGSK 108 0.5 YEVSQLKD 113 0.523148148
GTYVSSVPR 116 0.537037037 EVGGEALGRL 130 0.601851852
KTYGEIFEK 120 0.555555556 PTTKTYFPHF 133 0.615740741
KVTEGSFVYK 119 0.550925926 VHLTPEEKSAVT 108 0.5
LASVSTVLTSKY 163 0.75462963 IYNEALKG 116 0.537037037
LLIENVASL 136 0.62962963 FGEHLLESDL 114 0.527777778
LPGQNEDLVLT 134 0.62037037 FLLFPDMEA 113 0.523148148
LRVAPEEHPTL 169 0.782407407 FRVVPQFVVF 119 0.550925926
LRVAPEEHPVL 183 0.847222222 KYPENFFLL 116 0.537037037
PENFRLLGNVL 147 0.680555556 LERMFLSF 135 0.625
RLFVGSIPK 142 0.657407407 LVGLFEDTNL 141 0.652777778
RVAPEEHPTL 146 0.675925926 MRYVASYL 152 0.703703704
RVAPEEHPVL 204 0.944444444 MRYVASYLL 153 0.708333333
SIFDGRVVAK 130 0.601851852 VAHVDDMPNAL 140 0.648148148
STIEYVIQR 108 0.5 YLVGLFEDTNL 114 0.527777778
SVQGIIIYR 109 0.50462963 YVAIQAVLSL 136 0.62962963
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Table D.4: List of protein contaminant.

Protein Gene Protein Gene Protein Gene

P30443 1A01 Q99878 H2A1J P24844 MYL9
P04439 1A03 Q6FI13 H2A2A A6NDD8 NBPFL
P13746 1A11 Q8IUE6 H2A2B O15239 NDUA1
P30447 1A23 Q16777 H2A2C O00483 NDUA4
P05534 1A24 Q7L7L0 H2A3 P0DJD8 PEPA3
P16188 1A30 Q9BTM1 H2AJ P0DJD7 PEPA4
P30455 1A36 Q71UI9 H2AV P0DJD9 PEPA5
P30464 1B15 P16104 H2AX P62937 PPIA
P03989 1B27 P0C0S5 H2AZ P62891 RL39
P18463 1B37 Q96A08 H2B1A P22626 ROA2
Q04826 1B40 P33778 H2B1B P62249 RS16
P30485 1B47 P62807 H2B1C P62269 RS18
P62736 ACTA P58876 H2B1D P39019 RS19
P60709 ACTB Q93079 H2B1H P62308 RUXG
Q562R1 ACTBL P06899 H2B1J P06703 S10A6
P68032 ACTC O60814 H2B1K P05109 S10A8
P63261 ACTG Q99880 H2B1L P0DJI8 SAA1
P63267 ACTH Q99879 H2B1M P0DJI9 SAA2
P68133 ACTS Q99877 H2B1N Q01995 TAGL
P12235 ADT1 P23527 H2B1O Q71U36 TBA1A
Q09666 AHNK Q16778 H2B2E P68363 TBA1B
P02647 APOA1 Q5QNW6 H2B2F Q9BQE3 TBA1C
P02652 APOA2 Q8N257 H2B3B Q13748 TBA3C
P02656 APOC3 P57053 H2BFS P68366 TBA4A
P56381 ATP5E P68431 H31 Q13885 TBB2A
P61769 B2MG Q16695 H31T Q9BVA1 TBB2B
P62158 CALM Q71DI3 H32 Q13509 TBB3
Q5ZPR3 CD276 P84243 H33 P04350 TBB4A
P51911 CNN1 Q6NXT2 H3C P68371 TBB4B
P23528 COF1 P62805 H4 P07437 TBB5
P09669 COX6C P69905 HBA Q9BUF5 TBB6
P15954 COX7C P68871 HBB P62328 TYB4
P10176 COX8A P02042 HBD O14604 TYB4Y
P31327 CPSM P69891 HBG1 P0CG47 UBB
P17927 CR1 P69892 HBG2 Q96IX5 USMG5
P14406 CX7A2 Q9Y241 HIG1A P08670 VIME
P81605 DCD P04792 HSPB1 Q9HCL3 ZFP14
P17661 DESM P52789 HXK2 Q9UII5 ZN107
Q16555 DPYL2 P02686 MBP Q03924 ZN117
P04406 G3P P10620 MGST1 Q99676 ZN184
P0C0S8 H2A1 P14174 MIF O14709 ZN197
Q96QV6 H2A1A P19105 ML12A P0DKX0 ZN728
P04908 H2A1B O14950 ML12B Q8N4W9 ZN808
Q93077 H2A1C P10916 MLRV Q03923 ZNF85
P20671 H2A1D Q9UKN1 MUC12
Q96KK5 H2A1H P60660 MYL6
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D. Supporting Tables

Table D.5: "Cancer-exclusive" & overall HLA ligand IDs on hematological malignancies.
"Cancer-exclusive" peptides (overall HLA ligand IDs) identified from AML (n=16), CML
(n=15), CLL (n=33) and MM/MCL (n=9/3) samples were annotated using NetMHCpan
3.0 and their respective sources’ HLA type and only binding peptides (netMHC IC50âL’d’500
nM and/or percentile rank≤2) were retained for further analysis. Only samples expressing
at least one of the 7 major HLA allotypes (A*01:01, A*02:01, A*03:01, A*24:02, B*07:02,
B*08:01, B*18:01) are listed. For clustering, Jaccard distance graphs and overlap analysis
of tumor-exclusive HLA ligand datasets, HLA ligands occurring only once across all samples
were discarded and only samples containing ≥5 unique HLA class I ligands were included.
Reproduced with permission from Backert et al.12

Sample HLA Typing Sample

A*01:01 A*02:01 A*03:01 A*24:02 B*07:02 B*08:01 B*18:01
AML01 A*02, A*11, B*35, B*44 0.9 - 4 (57) - - - - -
AML04 A*03:01, B*39:01, B*51:01 1.0 - - 87 (438) - - - -
AML05 A*02, B*07, B*40 0.4 - 263 (641) - - 139 (447) - -
AML06 A*02, A*03, B*44:25, B*52:15, 1.6 - 19 (164) 118 (535) - - - -
AML11 A*02:01, A*03:01, B*38:01, B*44:02, 2.8 - 28 (235) 41 (373) - - - -
AML14 A*03:01, A*26:01, B*35:01, B*38:01, 1.7 - - 11 (211) - - - -
AML15 A*02, A*66, B*40 , B*15, 8.4 - 112 (560) - - - - -
AML36 A*02:01, A*23:01, B*44:02 , B*49:01 0.4 - 23 (208) - - - - -
AML37 A*02:01, B*13:02, B*51:01 0.2 - 122 (610) - - - - -
AML48 A*02:01, A*03:01, B*18:01 2.6 - 10 (153) 19 (218) - - - 212 (511)
AML49 A*02, A*26:01, B*27:05 4.9 - 1 (28) - - - - -
AML59 A*02, A*24, B*44, B*50 19.0 - 27 (29) - 45 (294) - - -
AML64 A*01:01, A*23:01, B*44:03 0.5 10 (175) - - - - - -
AML65 A*02:01, A*11:01, B*08:01, B*57:01 0.5 - 11 (209) - - - 15 (154) -
AML66 A*01, A*02, B*08, B*13 0.5 34 (255) 132 (600) - - - 115 (322) -
AML70 A*03:01, A*32:01, B*57:01, B*35:01 0.5 - - 6 (143) - - - -
CML01 A*23, A*25, B*18, B*57 0.9 - - - - - - 11 (81)
CML02 A*03, B*35, B*52 4.8 - - 127 (691) - - - -
CML03 A*01, B*08 0.4 22 (228) - - - - 40 (132) -
CML04 A*03, A*68, B*07, B*44 5.0 - - 55 (294) - 30 (216) - -
CML05 A*24, A*28, B*27, B*57 2.9 - - - 11 (148) - - -
CML06 A*01, A*03, B*07, B*08 5.0 8 (103) - 17 (145) - 27 (205) 19 (143) -
CML07 A*02, A*03, B*13, B*15 5 - 58 (382) 63 (387) - - - -
CML08 A*01, A*02, B*08, B*50 6 33 (212) 43 (165) - - - 17 (72) -
CML09 A*03, B*07, B*35 1,3 - - 32 (287) - 19 (170) - -
CML10 A*02, A*11, B*35, B*44 0.5 - 159 (570) - - - - -
CML13 A*02:01, A*03:01, B*07:01, B*51:01 2.0 - 50 (340) 34 (364) - 0 (0) - -
CML15 A*01:01, A*02:01, B*51:01 0.5 8 (86) 7 (118) - - - - -
CML16 A*02:01, A*11:01, B*07 0.5 - 20 (197) - - 20 (141) - -
CML18 A*02, B*18, B*57 17 - 76 (396) - - - - 67 (217)
CML19 A*01:01, B*15:03 7.6 29 (132) - - - - - -
CLL02 A*02, A*11, B*39, B*40 20.0 - 22 (154) - - - - -
CLL04 A*02:01, B*35:01, B*39:01 6.2 - 30 (207) - - - - -
CLL08 A*25, A*26, B*18, B*38 1.8 - - - - - - 184 (487)
CLL09 A*02, B*55, B*57 2.4 - 15 (109) - - - - 0 (0)
CLL10 A*02, A*23, B*15, B*41 5.8 - 32 (269) - - - - -
CLL12 A*01, A*24, B*08, B*27 11.5 104 (484) - - 159 (555) - 244 (534) -
CLL13 A*02, A*03, B*18, B*35 5.2 - 12 (154) 30 (322) - - - 107 (332)
CLL16 A*24, A*31, B*15, B*38 6.4 - - - 0 (33) - - -
CLL17 A*03, A*30, B*07, B*13 0.8 - - 231 (764) - 269 (772) - -
CLL18 A*02, A*03, B*07, B*55 2.6 - 55 (294) 50 (390) - 344 (983) - -
CLL20 A*01, A*02, B*27, B*37 0.5 8 (132) 19 (192) - - - - -
CLL21 A*02, A*68, B*15, B*27 3.6 - 88 (474) - - - - -
CLL27 A*02, A*03, B*35, B*57 0.9 - 2 (80) 3 (93) - - - -
CLL28 A*02, B*15, B*44 2.8 - 22 (266) - - - - -
CLL30 A*24, B*07, B*49:01 2.4 - - - 26 (161) 36 (177) - -
CLL32 A*01, A*68, B*08, B*44 2.0 12 (197) - - - - 57 (193) -
CLL34 A*02, A*03, B*40 1.4 - 21 (169) 4 (171) - - - -
CLL37 A*02, A*11, B*35, B*37 0.4 - 0 (24) - - - - -
CLL38 A*01, A*03, B*08, B*51 0.8 14 (193) - 12 (282) - - 114 (293) -
CLL41 A*02, A*03, B*07, B*44 1.0 - 9 (120) 8 (196) - 56 (401) - -
CLL43 A*24, B*35, B*50 1.5 - - - 2 (90) - - -
CLL47 A*24, A*32, B*27, B*51 1.5 - - - 7 (91) - - -
CLL49 A*03, B*07 1.2 - - 34 (218) - 53 (216) - -
CLL52 A*01, A*02, B*08, B*13 0.9 9 (183) 70 (369) - - - 39 (211) -
CLL55 A*03, A*26, B*07, B*08 2.0 - - 36 (325) - 221 (791) 233 (665) -
CLL56 A*01, A*32, B*07, B*44 120.0 75 (277) - - - 260 (759) - -
CLL59 A*02, A*03, B*35, B*40 3.9 - 9 (122) 26 (304) - - - -
CLL60 A*02, A*24, B*51, B*57 1.9 - 7 (104) - 17 (189) - - -
CLL70 A*02, A*03, B*40, B*44 0.2 - 29 (280) 8 (186) - - - -
CLL71 A*02, A*11, B*35 0.5 - 33 (179) - - - - -
CLL72 A*02, B*08, B*51 0.5 - 30 (292) - - - 60 (273) -
CLL80 A*02, A*24, B*51 0.2 - 9 (79) - 3 (76) - - -
CLL84 A*02, B*40, B*51 1 - 7 (140) - - - - -
MM34 A*01, A*24, B*08, B*18 2 (72) - - 0 (34) - 1 (7) 3 (92)
MM36 A*01, A*02, B*08, B*37 1.2 12 (106) 9 (143) - - - 7 (57) -
MM37 A*02, A*33, B*15, B*18 1.8 - 27 (248) - - - - 120 (542)
MM38 A*03, A*26, B*40, B*55 1.2 - - 39 (362) - - - -
MM39 A*02, A*24, B*07, B*27 4.5 - 32 (275) - 129 (360) 74 (362) - -
MM40 A*02,A*03, B*07, B*35 0.1 - 1 (48) 1 (69) - 9 (122) - -
MM49 A*24, A*25, B*39, B*40 1.3 - - - 49 (347) - - -
MM50 A*02, B*07, B*44 0.5 - 54 (541) - - 26 (285) - -
MM56 A*03, A*33, B*07 0.4 - - 12 (128) - 59 (310) - -
MM1S A*23:01, A*24:02, B*18:01, B*42:01 2 - - - 494 (953) - - 171 (372)
U266 A*02:01, A*03:01, B*07:02, B*40:01 2 - 246 (573) 260 (657) - 581 (1084) - -
JJN3 A*03:01, A*33:01, B*07:02, B*14:02 2 - - 295 (810) - 308 (750) - -
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