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Hydrological	model-related	uncertainty	is	often	ignored	within	climate	change	hydrological	17	

impact	assessments.	A	MIKE	SHE	model	is	developed	for	the	Mekong	using	the	same	data	as	18	

an	earlier	semi-distributed,	conceptual	model	(SLURP).	The	model	is	calibrated	and	validated	19	

using	discharge	at	12	gauging	stations.	Two	sets	of	climate	change	scenarios	are	investigated.	20	

The	first	is	based	on	a	2	°C	increase	in	global	mean	temperature	(the	hypothesised	threshold	21	

of	‘dangerous’	climate	change),	as	simulated	by	seven	GCMs.	There	are	considerable	22	

differences	in	scenario	discharge	between	GCMs,	ranging	from	catchment-wide	increases	in	23	

mean	discharge	(up	to	12.7%;	CCCMA	CGCM31,	NCAR	CCSM30),	decreases	(up	to	21.6%	in	the	24	

upper	catchments;	CSIRO	Mk30,	IPSL	CM4),	and	spatially	varying	responses	(UKMO	HadCM3	25	

and	HadGEM1,	MPI	ECHAM5).	Inter-GCM	differences	are	largely	driven	by	differences	in	26	
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precipitation.	The	second	scenario	set	(HadCM3,	increases	in	global	mean	temperature	of	1–6	1	

°C)	shows	consistently	greater	discharge	(maximum:	28.7%)	in	the	upper	catchment	as	global	2	

temperature	increases,	primarily	due	to	increasing	precipitation.	Further	downstream,	3	

discharge	is	strongly	influenced	by	increasing	PET,	which	outweighs	impacts	of	elevated	4	

upstream	precipitation	and	causes	consistent	discharge	reductions	for	higher	temperatures	5	

(maximum:	-5.3%	for	the	main	Mekong).	MIKE	SHE	results	for	all	scenarios	are	compared	6	

with	those	from	the	SLURP	catchment	model	and	the	Mac-PDM.09	global	hydrological	model.	7	

Although	hydrological	model-related	uncertainty	is	evident,	its	magnitude	is	smaller	than	that	8	

associated	with	choice	of	GCM.	In	most	cases,	the	three	hydrological	models	simulate	the	same	9	

direction	of	change	in	mean	discharge.	Mac-PDM.09	simulates	the	largest	discharge	increases	10	

when	they	occur,	which	is	responsible	for	some	differences	in	direction	of	change	at	11	

downstream	gauging	stations	for	some	scenarios,	especially	HadCM3.	Inter-hydrological	12	

model	differences	are	likely	attributed	to	alternative	model	structures,	process	13	

representations	and	PET	methods	(Linacre	for	MIKE	SHE	and	SLURP,	Penman-Monteith	for	14	

Mac-PDM.09).	15	

	16	
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1.	Introduction	1	

	2	

It	is	widely	acknowledged	that	climate	change	will	impact	the	global	hydrological	cycle	3	

(Kundzewicz	et	al.,	2007;	Arnell	and	Gosling,	2013),	with	implications	for	human	use	of	water	4	

resources	(Bates	et	al.,	2008;	Gosling	et	al.,	2011b;	Gosling,	2012)	and	aquatic	ecosystems	(e.g.	5	

Poff	et	al.,	2002;	Matthews	and	Quesne,	2009).	Evaluation	of	the	hydrological	impacts	of	6	

climate	change	is	most	commonly	based	upon	driving	a	hydrological	model	with	climatic	7	

projections	derived	from	general	circulation	models	(GCMs)	forced	with	alternative	emissions	8	

scenarios.	This	approach	has	been	used	in	the	assessment	of	climate	change	impacts	for	9	

hydrological	systems	that	vary	in	scale	from	small	wetlands	located	within	wider	catchments	10	

(e.g.	Thompson	et	al.,	2009),	through	small	to	medium	sized	catchments	(e.g.	Chun	et	al.,	11	

2009;	Thompson,	2012),	major	river	basins	(e.g.	Conway	and	Hulme,	1996;	Nijssen,	2001),	to	12	

the	national	(e.g.	Andréasson	et	al.,	2004),	regional	(e.g.	Arnell,	1999a)	and	global	scales	(e.g.	13	

Arnell,	2003;	Nohara,	2006;	Gosling	et	al.,	2010).	14	

	15	

There	are	a	range	of	uncertainties	that	are	introduced	throughout	these	climate	change	16	

hydrological	impact	assessments	(Nawaz	and	Adeloye,	2006;	Gosling	et	al.,	2011a).	17	

Uncertainty	is	firstly	related	to	the	definition	of	the	greenhouse	gas	emissions	scenarios	used	18	

to	force	the	GCMs.	Secondly,	uncertainty	is	associated	with	these	GCMs,	with	climate	model	19	

structural	uncertainty	causing	different	models	to	produce	different	climate	projections	for	20	

the	same	emissions	scenario.	Downscaling	of	GCM	projections	to	finer	spatial	and	temporal	21	

scales	appropriate	for	hydrological	modelling	presents	a	third	source	of	uncertainty.		22	

	23	

The	final	source	of	uncertainty	in	climate	change	hydrological	impact	assessments	is	24	

associated	with	the	hydrological	models	used	to	translate	climatological	changes	to	25	

hydrological	impacts.	Alternative	hydrological	models	that	produce	acceptable	results	for	an	26	
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observed	baseline	period	may	respond	differently	when	forced	with	the	same	climate	change	1	

scenario	(Gosling	and	Arnell,	2011;	Haddeland	et	al.,	2011).	Hydrological	models	include	fully	2	

distributed,	physically	based	models	(e.g.	Refsgaard	et	al.,	2010),	which	can	detail	a	range	of	3	

processes,	potentially	at	a	very	fine	spatial	scale	(e.g.	Thompson	et	al.,	2004;	Hammersmark	et	4	

al.,	2008),	but	which	require	an	extensive	range	of	data.	Semi-distributed	or	lumped	models	5	

(e.g.	Arnold	et	al.,	1998)	adopt	a	more	conceptual	approach	for	process	description,	whilst	6	

global	hydrological	models	(e.g.	Döll,	2003;	Gosling	and	Arnell,	2011)	employ	large	model	grid	7	

sizes	and	simplified	process	descriptions.		8	

	9	

Investigation	of	uncertainty	within	climate	change	hydrological	impact	assessments	has	often	10	

focused	on	GCM	uncertainty.	Methods	have	included	perturbed	physics	ensembles,	in	which	11	

perturbation	of	the	parameterisations	within	a	single	or	a	series	of	GCMs	are	employed	to	12	

provide	many	realizations	of	climate	that	can	be	used	within	hydrological	modelling	studies.	13	

The	2009	UK	Climate	Projections	(UKCP09,	Jenkins	et	al.,	2009),	for	example,	are	based	on	a	14	

large	perturbed	physics	ensemble	using	the	Met	Office	Hadley	Centre’s	HadCM3	GCM	and	15	

results	from	another	twelve	GCMs.	Simple	conceptual	hydrological	models	of	different	16	

wetland	types	have	been	driven	with	all	the	realizations	from	the	UKCP09	projections	to	17	

provide	regionalized	frequency	distributions	of	the	hydrological	and,	in	turn,	ecological	18	

impacts	of	climate	change	(Acreman	et	al.,	2012).	Similarly,	Prudhomme	et	al.	(2003)	used	a	19	

Monte	Carlo	approach	to	define	25,000	climate	scenarios	for	simulation	of	a	number	of	UK	20	

catchments	using	a	conceptual	rainfall-runoff	model.	However,	these	approaches	are	21	

computationally	intensive,	especially	with	complex	hydrological	models.	A	more	common	22	

approach	to	investigating	GCM	uncertainty	is	to	use	a	range	of	projections	for	the	same	23	

emissions	scenario	derived	from	an	ensemble	of	GCMs	(e.g.	Meehl	et	al.,	2007).	24	

	25	



5	
	

This	approach	was	used	within	the	UK	Natural	Environment	Research	Council	QUEST-GSI	1	

(Global	Scale	Impacts)	project	(http://www.met.reading.ac.uk/research/quest-gsi/),	in	which	2	

hydrological	models	for	catchments	around	the	world	were	employed	to	assess	the	impacts	of	3	

a	consistent	set	of	climate	change	scenarios.	For	each	catchment,	only	one	hydrological	model	4	

was	utilised,	giving	no	indication	of	the	impact	of	choice	or	structure	of	hydrological	model	5	

upon	climate	change	impacts.	Prudhomme	and	Davies	(2009)	suggest	that	this	is	relatively	6	

common,	with	hydrological	model	uncertainty	often	being	ignored	within	impact	studies.	7	

Where	different	hydrological	models	of	the	same	catchment	exist,	they	have	invariably	been	8	

developed	by	different	institutions	and	for	different	purposes,	and	are	therefore	rarely	used	9	

to	assess	the	same	climate	change	scenarios.	The	impact	of	hydrological	model-derived	10	

uncertainty	on	climate	change	impacts	may	not,	however,	be	negligible	(e.g.	Dibike	and	11	

Coulibaly,	2005;	Haddeland	et	al.,	2011;	Hagemann	et	al.,	2012).	The	QUEST-GSI	project	12	

provided	an	initial	assessment	of	some	of	these	issues	through	a	comparison	of	catchment	13	

hydrological	model	results	with	those	of	the	Mac-PDM.09	global	hydrological	model	(Gosling	14	

and	Arnell,	2011)	for	the	same	GCM	/	global	mean	temperature	change	scenarios	(Gosling	et	15	

al.,	2011a).	The	comparison	was,	however,	limited	to	the	catchment	outlet,	whereas	in	some	16	

of	the	larger	catchments,	hydrological	models	provided	distributed	responses	in	river	flow	17	

from	major	sub-catchments.	18	

	19	

The	current	study	builds	upon	this	earlier	work,	with	a	particular	focus	on	one	of	the	QUEST-20	

GSI	catchments.	The	Mekong	is	one	of	the	world’s	major	rivers.	It	flows	through	a	catchment	21	

with	spatially	variable	climate,	topography	and	land	cover	and	supports	a	large	and	growing	22	

human	population.	Climate	change	may	exacerbate	the	already	significant	changes	resulting	23	

from	development	within	the	catchment.	A	model	of	the	Mekong	is	created	using	MIKE	SHE,	a	24	

fully	distributed	hydrological	modelling	system	combining	both	physically	based	and	25	

conceptual	components	(see	below).	As	far	as	possible,	this	model	employs	the	same	data	as	26	
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the	model	of	the	basin	used	within	the	QUEST-GSI	project	(Kingston	et	al.,	2011).	A	more	1	

robust	calibration	enables	the	investigation	of	the	response	to	the	QUEST-GSI	climate	change	2	

scenarios	throughout	the	catchment.	These	results	are	subsequently	compared	to	those	that	3	

are	available	for	the	earlier	catchment	model	as	well	as	those	from	the	Mac-PDM.09	global	4	

hydrological	model.	5	

	6	

2.	Materials	and	methods	7	

	8	

2.1.	The	Mekong	Catchment	9	

	10	

The	Mekong	is	the	largest	river	in	southeast	Asia.	It	is	the	world’s	eighth	largest	in	terms	of	11	

annual	discharge	(475	km3),	12th	longest	(c.	4,350	km)	and	21st	largest	by	drainage	area	12	

(795,000	km2)	(e.g.	Kiem	et	al.,	2008).	Rising	in	the	Tibetan	Highlands	at	an	elevation	of	over	13	

5,100	m,	it	passes	through	China,	Burma,	Laos,	Thailand,	Cambodia	and	Vietnam	(Figure	1).	14	

Major	tributaries	include	the	Chi	and	Mun,	which	drain	the	Korat	Plateau	of	eastern	Thailand	15	

and	join	the	Mekong	upstream	of	Pakse,	and	the	Se	Kong	and	Sre	Pok,	which	rise	in	Vietnam’s	16	

Central	Highlands	and	flow	into	the	Mekong	at	Stung	Treng.	Further	downstream,	the	river	17	

both	provides	water	to	and	drains	the	Tonle	Sap	Lake,	depending	upon	the	season,	before	18	

discharging	into	the	South	China	Sea	via	the	distributaries	of	the	Mekong	Delta.	19	

	20	

In	the	upper	catchment	(the	Lancang)	the	river	and	its	tributaries	flow	through	narrow,	steep	21	

gorges.	Land	cover	consists	of	tundra	and	montane	semi-desert.	Further	downstream,	below	22	

Chiang	Saen,	the	river	becomes	largely	navigable	except	for	a	few	waterfalls.	Natural	23	

vegetation	is	dominated	by	evergreen	and	deciduous	forest	(Ishidaira	et	al.,	2008).	Rapid	24	

economic	development	and	a	growing	population	(currently	60	million	and	projected	to	25	
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increase	to	90	million	by	2025	(MRC,	2003))	have	driven	the	expansion	of	agriculture	and	1	

consequent	deforestation,	leading	to	a	large	reduction	in	forest	extent	(Nobuhiro	et	al.,	2008).	2	

	3	

The	dominant	climatic	influence	on	the	Mekong	is	the	Asian	monsoon.	The	rainy	southwest	4	

monsoon	begins	in	mid-May	and	extends	into	early-October.	Over	90%	of	annual	5	

precipitation	falls	within	this	period	(Kite,	2001).	Annual	precipitation	ranges	from	under	6	

1000	mm	on	the	Korat	Plateau	to	over	3200	mm	in	mountainous	parts	of	Laos.	In	the	upper	7	

parts	of	the	basin	within	the	Tibetan	Highlands	and	Yunnan,	precipitation	falls	both	as	rain	8	

and	snow,	the	latter	in	particular	during	the	relatively	dry	November–March	period	when	9	

snow	covers	approximately	5%	of	the	total	Mekong	catchment	(Kiem	et	al.,	2005).	Snowmelt	10	

is	responsible	for	the	initial	rise	in	the	annual	flood	season	within	the	Lancang	sub-catchment.	11	

The	Mekong	River	begins	to	rise	in	May	and	peak	discharges	are	attained	between	August	and	12	

October,	after	which	they	decline,	reaching	their	lowest	levels	in	March–April.		13	

	14	

The	Mekong	has	been	identified	as	a	hotspot	of	global	change	(Takeuchi,	2008).	Rapid	15	

development	and	population	growth	have	resulted	in	the	previously	discussed	deforestation.	16	

Linked	to	these	developments	are	increasing	competition	for	water,	contamination	of	water	17	

by	agriculture,	industry	and	settlements,	and	unsustainable	use	of	resources	such	as	fisheries,	18	

which	currently	sustain	around	300	million	people	within	and	outside	the	catchment	(MRC,	19	

2003).	Dams	in	upstream	parts	of	the	catchment,	most	notably	the	Manwan	(constructed	in	20	

1993)	and	the	Dachaoshan	(2001),	have	been	implicated	in	changes	in	flow	regime,	sediment	21	

flows	and	fisheries	(Hapuarachchi	et	al.,	2008;	Li	and	He,	2008;	Kummu	et	al.,	2010;	Wang	et	22	

al.,	2011)	and	more	are	planned	which	will	likely	exacerbate	these	changes	(Stone,	2010).	23	

	24	

Whilst	useful	and	informative	modelling	studies	have	been	undertaken	for	the	Mekong,	some	25	

have	only	adopted	future	climate	projections	from	a	single	GCM	or	ensemble	means,	thereby	26	
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not	addressing	climate	model	structural	uncertainty	(Kingston	et	al.,	2011).	For	example,	1	

Kiem	et	al.	(2008)	only	used	the	Japanese	Meteorological	Agency	GCM	and	the	IPCC	SRES	A1b	2	

scenario	within	a	gridded	hydrological	model	of	the	catchment,	whilst	Ishidaira	et	al.	(2008)	3	

employed	the	mean	of	the	Tyndall	Centre	v2.03	scenario	set	within	a	distributed	hydrological	4	

model.	To	address	these	issues,	Kingston	et	al.	(2011)	used	the	model	of	the	Mekong	5	

developed	by	Kite	(2000,	2001)	using	the	Semi-distributed	Land	Use-based	Runoff	Processes	6	

(SLURP,	v.12.7)	model	(Kite,	1995).	This	model	was	used	to	assess	the	impacts	of	the	7	

consistent	set	of	climate	change	scenarios	used	throughout	the	QUEST-GSI	project	(Todd	et	8	

al.,	2011).	The	data	employed	within	the	SLURP	model	provided	the	starting	point	for	the	9	

development	of	the	MIKE	SHE	model	of	the	Mekong.		10	

	11	

2.2.	MIKE	SHE	model	development	12	

	13	

MIKE	SHE	can	be	described	as	a	deterministic,	fully	distributed	and	physically	based	14	

hydrological	modelling	system	(Graham	and	Butts,	2005).	It	is	a	comprehensive	model	for	15	

simulating	the	major	processes	of	the	land	phase	of	the	hydrological	cycle	and	has	been	used	16	

in	environments	ranging	from	major	international	river	basins	(Andersen	et	al.,	2001;	Stisen	17	

et	al.,	2008),	through	catchments	of	hundreds	or	thousands	of	km2	(Feyen	et	al.,	2000;	Huang	18	

et	al.,	2010;	Singh	et	al.,	2010,	2011),	to	small	(<50	km2)	catchments	(Sahoo	et	al.,	2006;	Dai	et	19	

al.,	2010;	Thompson,	2012).	MIKE	SHE	has	undergone	decades	of	development	from	the	20	

original	Système	Hydrologique	Europeén	(Abbott	et	al.,	1986a,b).	It	now	includes	a	range	of	21	

process	descriptions,	some	of	which	are	more	conceptual	and	semi-distributed	in	nature.	22	

These	have	advantages	including	a	reduction	in	data	requirements	and	reduced	complexity	23	

compared	to	physically	based	solutions,	and	hence	gains	in	execution	time.	An	example	is	the	24	

linear	reservoir	saturated	zone	module	which	defines	a	series	of	sub-catchments,	in	turn	25	

divided	into	interflow	and	baseflow	reservoirs	based	on	topography,	with	exchanges	between	26	
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reservoirs,	and	ultimately	the	MIKE	11	hydraulic	model	(Havnø	et	al.,	1995),	being	controlled	1	

by	time	constants.	This	method	is	particularly	useful	in	large	catchments	(e.g.	Andersen	et	al.,	2	

2001;	Stisen	et	al.,	2008)	and	so	was	employed	within	the	model	of	the	Mekong.		3	

	4	

The	1	km	×	1	km	USGS	GTOPO30	DEM	employed	by	Kite	(2000,	2001)	for	the	SLURP	Mekong	5	

model	was	used	within	the	MIKE	SHE	model.	The	topographic	grid	was	used	to	define	the	6	

Mekong	catchment	boundary	and	17	sub-catchments	for	the	linear	reservoir	saturated	zone	7	

module	(Figure	1).	Sub-catchments	were	established	based	on	a	combination	of	the	location	8	

of	the	gauging	stations	for	which	data	for	model	calibration	/	validation	were	available,	the	9	

major	tributaries	of	the	Mekong	and	large	changes	in	the	topographic	character	(Figure	1).	10	

The	sub-catchments	included	the	Tonle	Sap	and	the	Mekong	Delta	which,	following	Kite	11	

(2001),	was	simplified	to	one	channel.	This,	and	the	limited	flow	data	available	for	the	Tonle	12	

Sap	River	and	the	Delta,	meant	that	the	most	downstream	location	for	which	model	results	13	

were	reviewed	was	Phnom	Penh.	For	each	sub-catchment,	the	same	topographic	data	were	14	

used	to	define	the	extent	of	three	interflow	reservoirs	such	that	each	covered	approximately	15	

one-third	of	the	sub-catchment	area	(Figure	1).	Two	baseflow	reservoirs	were	specified	16	

within	each	sub-catchment	to	represent	the	faster	and	slower	baseflow	storage,	with	their	17	

extent	defined	as	the	sub-catchment	boundaries.	The	two	time	constants	(interflow	and	18	

percolation)	for	each	interflow	reservoir	and	the	baseflow	time	constant	for	both	baseflow	19	

reservoirs	(i.e.	eight	for	each	sub-catchment),	as	well	as	the	dead	storage	proportion	for	the	20	

lower	baseflow	reservoir,	were	varied	during	model	calibration.	21	

	22	

The	distribution	of	soil	classes	within	a	two-layer	water	balance	unsaturated	zone	module	23	

(Yan	and	Smith,	1994)	was	specified	as	a	1	km	×	1	km	grid	based	on	the	FAO	Digital	Soil	Map	24	

of	the	World	(FAO,	1990).	Using	the	approach	adopted	by	Andersen	et	al.	(2001)	and	Stisen	et	25	

al.	(2008),	soils	were	aggregated	into	four	broad	categories	based	on	textural	classes	(Coarse	26	
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/	Medium,	Medium,	Medium	/	Fine	and	Fine).	Infiltration	rate	and	percentage	water	content	1	

at	saturation,	field	capacity	and	wilting	point	for	each	soil	category	were	taken	from	the	2	

literature	(Clapp	and	Hornberger,	1978;	Carsel	and	Parrish,	1988;	Marshall	et	al.,	1996).	3	

Glaciers	are	an	additional	FAO	class	within	the	catchment.	These	are	located	in	small	areas	in	4	

the	Lancang	and	cover	just	under	0.9%	of	the	total	catchment.	An	infiltration	rate	of	0	m	s-1	5	

and	a	uniform	100%	soil	moisture	water	content	were	applied,	although	the	small	total	area	6	

covered	by	this	category	meant	that	model	results	were	insensitive	to	these	parameter	values.	7	

	8	

Vegetation	distribution	was	represented	by	the	1	km	×	1	km	land	cover	grid	specified	within	9	

the	SLURP	model	and	presented	by	Kite	(2001).	This	was	originally	derived	from	the	USGS	10	

Global	Land	Cover	Characterization	dataset,	with	the	24	land	cover	classes	aggregated	into	11	

nine	categories	(%	of	total	catchment,	dominant	distribution	within	the	catchment):	12	

agriculture	and	pastureland	(38%,	dominant	in	the	Korat	plateau	and	lower	Mekong),	13	

evergreen	forest	(20%,	concentrated	in	Vietnam’s	Central	Highlands),	mixed	forest	(13%,	14	

lower	Lancang	and	sub-catchments	above	Vientiane),	deciduous	forest	(9%,	distributed	in	15	

small	patches	with	other	forest	types),	grassland	and	semi-desert	(10%,	restricted	to	the	16	

upper	and	middle	Lancang),	shrubland	(8%,	dominant	in	lower	sections	on	the	Lancang),	17	

water	(1.3%,	concentrated	in	the	Tonle	Sap	Lake),	tundra	(0.6%,	wholly	within	the	upper	18	

Lancang),	and	urban	(0.1%,	concentrated	in	major	urban	centres	such	as	Phnom	Penh	and	19	

Vientiane).	Variation	in	leaf	area	index	through	the	year	for	each	land	cover,	which	is	required	20	

in	the	MIKE	SHE	interception	and	evapotranspiration	modules,	was	taken	from	Kite	(2000)	21	

and	based	on	a	monthly	time	series	of	NDVI	derived	from	NOAA	AVHRR	imagery.	Root	depths	22	

were	taken	from	the	literature	(Kelliher	et	al.,	1993;	Jackson	et	al.,	1996)	and	an	existing	DHI	23	

(2009)	vegetation	properties	file.	24	

	25	
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The	SLURP	land	cover	grid,	but	with	all	forest	types	combined	into	one	category,	was	used	to	1	

spatially	distribute	Manning’s	M	for	overland	flow	resistance.	Values	were	taken	from	the	2	

literature	(Chow,	1959;	Vieux,	2004;	Sahoo	et	al.,	2006)	and	previous	experience	of	MIKE	SHE	3	

model	development	(Thompson	et	al.,	2004;	Thompson,	2012),	with	a	hierarchy	from	urban	4	

(least	resistance	and	therefore	highest	Manning’s	M)	to	forest	(greatest	resistance).	5	

	6	

The	plan	of	the	main	river	channels	was	digitised	as	a	MIKE	11	river	network	(Figure	1)	from	7	

that	employed	within	the	SLURP	model	(Kite,	2001).	Cross-sections	from	Shopea	(2003)	and	8	

the	Mekong	River	Commission	(http://ffw.mrcmekong.org/)	were	used	to	establish	9	

representative	maximum	cross-section	depths	and	cross-section	profiles	for	different	stream	10	

orders.	Overlaying	the	channel	network	onto	Google	Earth	Pro	enabled	channel	widths	and,	11	

when	combined	with	the	depth	and	cross-section	profile	for	the	relevant	stream	order,	cross-12	

sections	to	be	specified	throughout	the	model.	Cross-sections	were	specified	as	depths	13	

relative	to	the	bank,	with	the	bank	elevation	taken	from	the	relevant	MIKE	SHE	topographic	14	

grid	square	(Thompson	et	al.,	2004).	Manning’s	n	values	were	taken	from	Chow	(1959).	Since	15	

many	of	the	dams	identified	by	Kite	(2000)	as	constructed	or	planned	within	the	catchment	16	

are	not	currently	in	place,	were	completed	after	the	calibration	period,	or	are	relatively	small	17	

with	limited	information	on	their	operation,	they	were	not	represented	within	the	model.	18	

	19	

Meteorological	inputs	of	precipitation,	temperature	and	potential	evapotranspiration	(PET)	20	

were	spatially	distributed	using	the	sub-catchments	employed	within	the	SLURP	model	21	

(Figure	1).	These	were	broadly	similar	to	those	specified	within	the	MIKE	SHE	linear	reservoir	22	

saturation	zone	module.	However,	the	Lancang	was	defined	as	one	sub-catchment	in	SLURP,	23	

whereas	three	separate	linear	reservoir	sub-catchments	were	defined	for	this	part	of	the	24	

Mekong	within	MIKE	SHE.	Similarly,	the	additional	number	of	gauging	stations	used	for	model	25	
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calibration	/	validation	(see	below)	resulted	in	the	division	of	the	central	part	of	the	Mekong	1	

into	a	series	of	linear	reservoirs	replacing	the	one	large	SLURP	sub-catchment.		2	

	3	

Since	an	aim	of	the	current	study	is	to	compare	results	between	the	MIKE	SHE	model	and	4	

those	from	Kingston	et	al.	(2011),	it	was	considered	appropriate	to	maintain	the	original	5	

distribution	of	meteorological	inputs.	Monthly	precipitation	totals	and	mean	temperature	6	

were	obtained	from	the	0.5°	resolution	University	of	Delaware	global	precipitation	dataset	7	

(UDel;	Legates	and	Willmott,	1990)	and	the	CRU	TS	3.0	dataset	(Mitchell	and	Jones,	2005),	8	

respectively.	Monthly	data	from	the	268	grid	cells	covering	the	Mekong	catchment	were	then	9	

stochastically	disaggregated	to	daily	resolution	following	the	procedures	of	Arnell	(2003)	as	10	

described	by	Todd	et	al.	(2011).	This	required	the	coefficient	of	variation	for	precipitation	and	11	

standard	deviation	for	temperature	from	station-based	data	provided	by	the	US	National	12	

Climate	Data	Centre	(NCDC)	global	surface	summary	of	the	day	(GSOD)	meteorological	13	

stations	previously	employed	by	Kite	(2001).	Mean	daily	precipitation	and	temperature	were	14	

subsequently	evaluated	for	each	sub-catchment	used	to	distribute	meteorological	inputs.		15	

	16	

Precipitation	lapse	rates	for	those	sub-catchments	with	a	large	range	in	elevation	were	17	

modified	during	model	calibration.	Similarly,	a	temperature	lapse	rate	was	included	over	the	18	

Lancang,	the	one	sub-catchment	in	which	snow	cover	is	a	regular	feature.	This	lapse	rate	was	19	

adjusted	so	that	the	range	of	temperatures	and	number	of	months	when	temperature	was	20	

below	0	°C	within	specific	MIKE	SHE	grid	squares	approximated	those	at	GSOD	21	

meteorological	stations	located	within	these	grid	squares.	Monthly	PET	was	evaluated	for	22	

each	of	the	sub-catchments	employed	to	distribute	meteorological	data	using	the	Linacre	23	

method,	the	same	PET	scheme	employed	by	Kingston	et	al.	(2011).	Monthly	totals	were	24	

distributed	evenly	throughout	the	month,	following	initial	experiments	that	showed	model	25	

results	to	be	insensitive	to	this	method	compared	to	the	application	of	daily	estimates	of	PET.	26	
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	1	

Although	all	gridded	data	were	specified	using	a	1	km	×	1	km	grid,	the	computational	grid	2	

employed	by	the	model	was	increased	in	size	to	10	km	×	10	km	following	a	series	of	3	

experimental	runs	which	showed	little	change	in	simulated	river	discharge	for	grid	sizes	4	

between	1	km	and	20	km	(see	Vásquez	et	al.,	2002;	Thompson,	2012).	The	larger	grid	size	5	

resulted	in	logistically	appropriate	computation	times	for	the	application	of	the	6	

autocalibration	routines	discussed	below.	This	balance	between	computation	time	and	7	

representation	of	catchment	attributes	is	common	with	distributed	hydrological	models	8	

(McMichael	et	al.,	2006).	Within	MIKE	SHE,	all	input	data	were	automatically	resampled	to	the	9	

larger	grid.	Hypsometric	curves	derived	from	the	resampled	and	original	topography	are	very	10	

similar,	as	are	the	relative	importance	of	the	different	soil	and	land	use	categories,	suggesting	11	

that	the	larger	grid	retains	a	good	representation	of	catchment	characteristics.	12	

	13	

2.3.	Model	calibration	and	validation	14	

	15	

In	common	with	Kingston	et	al.	(2011),	a	baseline	period	of	1961–1990	was	used	for	16	

calibration	and	the	shorter	1991–1998	period	for	validation.	Whereas	SLURP	was	only	17	

calibrated	using	three	stations	(Chiang	Saen,	Pakse	and	Ubon,	Figure	1),	data	from	a	further	18	

nine	gauging	stations	were	used	for	MIKE	SHE	(Figure	1).	Eight	of	these	are	on	the	main	19	

Mekong	and	the	other	(Yasothon)	on	a	tributary,	the	Chi.	Although	daily	discharge	data	were	20	

available	for	the	full	calibration	period	for	the	majority	of	these	stations,	the	records	for	Stung	21	

Treng,	Kompong	Cham	and	Phnom	Penh	were	limited	to	January	1961–December	1969,	22	

January	1964–March	1974	and	January	1961–March	1974,	respectively.	The	discharge	data	23	

for	Kratie,	which	were	available	for	the	30	year	calibration	period,	were	derived	by	Kite	24	

(2000)	using	Pakse	discharge	and	methods	developed	by	the	Institute	of	Hydrology	(1988).	25	

	26	
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Calibration	was	undertaken	using	the	time	constants	of	the	saturated	zone	linear	reservoirs,	1	

the	dead	storage	proportion	for	the	lower	baseflow	reservoirs,	and,	in	sub-catchments	with	a	2	

wide	elevation	range,	precipitation	lapse	rate.	The	snowmelt	degree-day	coefficient	was	3	

varied	during	calibration	of	the	Lancang	at	Chiang	Saen,	this	being	the	one	sub-catchment	4	

with	snow	cover.	Following	calibration,	a	review	of	the	simulated	snow	cover	was	undertaken	5	

to	confirm	that	extensive	snow	was	only	present	during	the	period	November–March	and	that	6	

its	maximum	extent	was	approximately	equivalent	to	5%	of	the	total	catchment	area	(e.g.	7	

Kiem	et	al.,	2005).	Calibration	was	undertaken	for	each	gauging	station	in	a	downstream	8	

sequence	beginning	at	Chiang	Saen	and	progressing	to	Mukdahan.	The	Chi	and	Mun	sub-9	

catchments	(Yasothon	and	Ubon	gauging	stations)	were	then	calibrated	before	continuing	the	10	

calibration	for	the	gauging	stations	between	Pakse	and	Phnom	Penh.	In	each	case,	only	those	11	

model	parameters	for	sub-catchments	between	the	previously	calibrated	upstream	gauging	12	

station	and	the	current	station	were	varied.	13	

	14	

Initially,	an	automatic	multiple	objective	calibration	was	undertaken	based	on	the	shuffled	15	

complex	evolution	method	(Duan	et	al.,	1992;	Madsen,	2000,	2003).	Two	equally	weighted	16	

calibration	criteria,	the	absolute	value	of	the	average	error	and	the	root	mean	square	error,	17	

were	employed	(Butts	et	al.,	2004),	and	these	were	aggregated	into	one	measure	using	a	18	

transformation	that	compensates	for	differences	in	the	magnitudes	of	the	criteria	(Madsen,	19	

2003).	The	autocalibration	routine	evaluated	the	two	calibration	criteria	at	the	model	time	20	

step	(defined	as	a	maximum	of	48	hours).	However,	as	acknowledged	by	Kingston	et	al.	21	

(2011),	there	is	a	disconnect	between	the	daily	meteorological	input	data	and	discharge	as	a	22	

result	of	generating	the	daily	meteorological	data	using	a	stochastic	weather	generator.		23	

	24	

Whilst	model	performance	following	autocalibration	was	generally	good,	it	was	possible	to	25	

improve	it	through	manual	modification	of	model	parameters,	with	observed	and	simulated	26	
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discharge	being	aggregated	to	mean	monthly	flow	(Kingston	et	al.,	2011).	Model	performance	1	

at	each	gauging	station	was	assessed	using	the	Nash-Sutcliffe	coefficient	(NSE,	Nash	and	2	

Sutcliffe,	1970),	the	Pearson	correlation	coefficient	(r)	and	the	percentage	deviation	in	3	

simulated	mean	flow	from	the	observed	mean	flow	(Dv;	Henriksen	et	al.,	2003).	The	scheme	4	

of	Henriksen	et	al.	(2008)	was	used	to	classify	the	model	performance	as	indicated	by	NSE	5	

and	Dv.	6	

	7	

Following	calibration,	the	implications	of	using	the	stochastic	weather	generator	to	8	

disaggregate	monthly	precipitation	and	temperature	to	a	daily	time	step	was	investigated	9	

using	eight	different	outputs	from	the	weather	generator	for	both	meteorological	inputs.	All	10	

possible	combinations	of	these	time	series	were	employed	(i.e.	64	runs).	Calibration	statistics	11	

were	evaluated	for	each	run.	Subsequently,	the	model	was	run	for	the	shorter	1991–1998	12	

period	for	validation.	Data	for	two	of	the	gauging	stations	used	for	calibration,	Kompong	13	

Cham	and	Phnom	Penh,	were	not	available	for	this	period,	whilst	the	length	of	records	for	the	14	

remaining	ten	stations	varied	from	the	complete	eight	years	to	only	three	years.	15	

	16	

2.4.	Simulation	of	climate	change	17	

	18	

The	same	revised	meteorological	inputs	as	used	by	Kingston	et	al.	(2011)	were	employed	to	19	

simulate	potential	impacts	of,	and	uncertainty	associated	with,	climate	change.	Future	20	

(monthly	resolution)	climate	scenarios	for	temperature	and	precipitation	were	derived	using	21	

the	ClimGen	pattern-scaling	technique	(Arnell	and	Osborn,	2006)	for	a	30	year	period.	22	

ClimGen,	a	spatial	scenario	generator,	employs	the	assumption	that	the	spatial	pattern	of	23	

climate	change,	expressed	as	change	per	unit	of	global	mean	temperature,	is	constant	for	a	24	

given	GCM.	In	this	way,	it	is	possible	for	the	pattern	of	climate	change	from	a	GCM	to	be	scaled	25	

up	and	down	in	magnitude.	This	enables	the	impacts	of	specific	thresholds	of	global	climate	26	
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change	to	be	investigated	(Todd	et	al.,	2011).	Scenarios	were	generated	for	a	prescribed	1	

warming	of	2	°C,	the	hypothesised	threshold	for	‘dangerous’	climate	change	(Todd	et	al.,	2	

2011),	for	seven	GCMs:	CCCMA	CGCM31,	CSIRO	Mk30,	IPSL	CM4,	MPI	ECHAM5,	NCAR	3	

CCSM30,	UKMO	HadGEM1	and	UKMO	HadCM3.	These	were	selected	from	the	CMIP-3	4	

database	(Meehl	et	al.,	2007)	as	exemplar	GCMs	representing	different	future	representations	5	

of	global	climate	system	features.	In	addition,	the	UKMO	HadCM3,	a	widely	employed	GCM	6	

previously	used	for	model	uncertainty	analysis	(e.g.	Murphy	et	al.,	2004),	was	selected	to	7	

derive	scenarios	for	prescribed	warming	of	global	mean	temperature	of	1,	2,	3,	4,	5,	and	6	°C.		8	

	9	

Monthly	scenario	Linacre	PET	was	calculated	for	each	GCM	grid	square	and,	as	for	baseline	10	

meteorological	data,	distributed	on	a	daily	basis	evenly	throughout	each	month.	Scenario	11	

precipitation	and	temperature	for	each	GCM	grid	square	were	downscaled	to	daily	resolution	12	

using	the	stochastic	weather	generator.	Precipitation,	temperature	and	PET	were	averaged	13	

for	each	meteorological	sub-catchment.	Separation	of	the	river	discharge	climate	change	14	

signal	into	that	attributable	to	modifications	in	precipitation,	PET	and	temperature	was	15	

investigated	by	in	turn	specifying	scenario	time	series	for	one	of	the	three	meteorological	16	

inputs	whilst	employing	baseline	time	series	for	the	other	two	(Kingston	et	al.,	2011;	17	

Thompson,	2012).	This	was	undertaken	for	both	sets	of	climate	change	scenarios.	18	

	19	

2.5.	Inter-hydrological	model	comparison	20	

	21	

As	discussed	above,	a	less	frequently	considered	source	of	uncertainty	in	climate	change	22	

hydrological	impact	assessments	is	hydrological	model	uncertainty		(Prudhomme	and	Davies,	23	

2009).	In	this	study,	an	assessment	of	such	uncertainty	was	undertaken	using	results	from	24	

three	alternative	hydrological	models	for	the	same	two	sets	of	climate	change	scenarios.	Table	25	

1	summarises	the	key	attributes	of	these	three	hydrological	models,	including	the	type	of	26	
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model,	the	meteorological	inputs	employed	and	the	spatial	distribution	of	meteorological	1	

inputs,	catchment	characteristics	and	process	simulation.	2	

	3	

The	first	hydrological	model	is	the	MIKE	SHE	model	developed	in	the	current	study	that	4	

comprises	a	combination	of	spatially	distributed,	physically	based	and	semi-distributed,	5	

conceptual	process	descriptions.	The	SLURP	model	of	the	Mekong	developed	by	Kite	(2000,	6	

2001)	and	refined	by	Kingston	et	al.	(2011)	provides	the	second	hydrological	model.	SLURP	is	7	

a	semi-distributed,	conceptual	model	that	uses	a	combination	of	sub-basins	and	land	cover	8	

classifications	to	define	model	elements	in	an	approach	similar	to	the	hydrological	response	9	

units	used	within	models	such	as	SWAT	(e.g.	Arnold	et	al.,	1998).	Vertical	water	balances	are	10	

subsequently	evaluated	for	each	of	these	elements,	with	results	being	aggregated	at	the	sub-11	

catchment	scale.	Of	the	12	gauging	stations	used	in	the	current	study	to	present	MIKE	SHE	12	

results	(Figure	1),	results	from	SLURP	for	the	same	climate	change	scenarios	were	available	13	

for	three	stations:	Chiang	Saen,	Pakse	and	Ubon	(although	results	for	the	latter	station	were	14	

not	presented	in	the	earlier	study).	15	

	16	

The	third	hydrological	model	is	Mac-PDM.09	(“Mac”	for	“macro-scale”	and	“PDM”	for	17	

“probability	distributed	moisture	model”),	an	established	global	hydrological	model	that	18	

simulates	runoff	across	the	global	land	surface	domain	(Arnell,	1999b;	Arnell,	2003;	Gosling	19	

and	Arnell,	2011).	It	calculates	the	daily	water	balance	in	each	of	the	67,420	0.5°	×	0.5°	cells	20	

across	the	global	land	surface,	treating	each	cell	as	an	independent	catchment.	Runoff	is	21	

generated	from	precipitation	falling	on	the	portion	of	a	cell	that	is	saturated,	and	by	drainage	22	

from	water	stored	in	the	soil.	Mac-PDM.09	was	not	specifically	calibrated	for	the	Mekong;	23	

instead,	the	model	was	calibrated	at	the	continental	scale	by	‘tuning’	it	to	help	define	24	

parameter	values.	This	involved	tests	of	precipitation	datasets	and	potential	evaporation	25	

calculations	and	comparisons	with	long-term	average	runoff	and	within-year	runoff	patterns	26	
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for	a	small	number	of	major	river	basins	and	for	a	large	number	of	small	basins	(see	Arnell,	1	

1999b).	The	performance	of	Mac-PDM.09	was	recently	evaluated	by	validating	simulated	2	

runoff	against	observed	runoff	for	50	catchments	across	the	globe,	and	the	model	was	found	3	

to	perform	well	(Gosling	and	Arnell,	2011).	Moreover,	a	recent	inter-hydrological	model	4	

comparison	exercise	showed	that	Mac-PDM.09	performed	as	well	as	other	global	hydrological	5	

models	in	terms	of	simulating	the	patterns	and	magnitudes	of	observed	global	runoff	6	

(Haddeland	et	al.,	2011).		7	

	8	

For	comparison	with	results	from	MIKE	SHE	and	SLURP,	simulated	runoff	from	Mac-PDM.09	9	

for	each	climate	change	scenario	was	aggregated	at	a	monthly	time	step	for	all	the	model	grid	10	

cells	within	the	boundaries	of	the	catchments	of	six	gauging	stations:	Chiang	Saen,	Vientiane,	11	

Nakhon	Phanom,	Pakse,	Phnom	Penh	and	Ubon	(Figure	1).	These	were	selected	in	order	to	12	

provide	a	comparison	of	results	for	the	three	gauging	stations	for	which	results	are	available	13	

for	all	three	hydrological	models	(Chiang	Saen,	Pakse	and	Ubon).	Vientiane	and	Nakhon	14	

Phanom	were	selected	as	stations	in	the	middle	of	the	catchment	upstream	of	the	two	major	15	

tributaries	draining	the	Korat	Plateau	(the	Chi	and	Mun),	whilst	Phnom	Penh	is	the	lowest	16	

station	on	the	river	and	upstream	of	the	ecologically	and	economically	important	Mekong	17	

Delta.	Comparisons	of	results	for	these	stations	are	limited	to	MIKE	SHE	and	Mac-PDM.09.	18	

This	analysis	extends	the	preliminary	inter-model	comparison	undertaken	by	Gosling	et	al.	19	

(2011a)	that	was	limited	to	a	comparison	of	SLURP	and	Mac-PDM.09	for	Pakse	alone.	20	

	21	

3.	Results	22	

	23	

3.1.	Model	calibration	and	validation	24	

	25	
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Model	performance	statistics	derived	for	the	1961–1990	period	for	the	12	gauging	stations	1	

used	in	model	calibration	are	provided	in	Table	2.	As	indicated	above,	these	are	derived	from	2	

mean	monthly	discharges.	For	Stung	Treng,	Kompong	Cham	and	Phnom	Penh,	statistics	are	3	

based	upon	the	reduced	periods	of	observed	discharge.	In	the	case	of	Chiang	Saen,	Pakse	and	4	

Ubon,	the	values	of	Dv	and	NSE	reported	by	Kingston	et	al.	(2011)	from	the	calibrated	SLURP	5	

model	of	the	Mekong	are	also	provided.	According	to	the	classification	scheme	of	Henriksen	et	6	

al.	(2008),	the	performance	of	the	MIKE	SHE	model,	as	indicated	by	the	values	of	Dv	and	NSE,	7	

can	in	general	be	classed	as	“excellent”	(20	out	of	the	24	model	performance	statistics).	8	

Although	an	equivalent	classification	for	the	correlation	coefficient	is	not	employed,	the	value	9	

of	this	statistic	is	above	or	very	close	to	0.95	for	ten	of	the	12	gauging	stations.	10	

	11	

Figure	2	shows	monthly	mean	observed	and	simulated	discharge	for	five	gauging	stations	12	

along	the	main	Mekong	for	the	calibration	period.	These	stations	are	selected	as	13	

representative	of	results	for	the	main	stem	of	the	Mekong	above	Kratie,	the	latter	being	the	14	

lowest	gauging	station	for	which	flow	data	(albeit	in	this	case	derived	from	another	station)	15	

are	available	for	the	full	simulation	period.	Flow	duration	curves	derived	from	observed	and	16	

simulated	mean	monthly	discharges	at	all	gauging	stations	(not	shown)	confirm	the	good	17	

performance	of	the	MIKE	SHE	model.	When	compared	to	SLURP,	model	performance	at	18	

Chiang	Saen	is	superior,	with	MIKE	SHE	Dv	and	NSE	values	exceeding	those	obtained	using	19	

the	earlier	model	(Table	2).	Dv	for	SLURP	falls	in	the	“very	good”	as	opposed	to	“excellent”	20	

category.	Figure	3,	which	shows	observed	and	simulated	river	regimes	for	all	12	gauging	21	

stations	including	those	from	SLURP	for	the	stations	where	they	are	available,	demonstrates	a	22	

considerable	overestimation	by	SLURP	in	recession	discharge	following	the	annual	peak	at	23	

Chiang	Saen.	In	contrast,	discharges	at	this	time	of	year	simulated	by	MIKE	SHE	more	closely	24	

follow	the	observed.	Similarly	good	reproduction	of	the	river	regimes	at	other	stations	25	

between	Chiang	Saen	and	Pakse	by	MIKE	SHE	is	also	demonstrated.	At	the	latter	station,	the	26	
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performance	statistics	are	comparable	for	MIKE	SHE	and	SLURP.	A	higher	NSE	value	is	1	

obtained	for	the	former,	whilst	simulated	mean	flow	is	closer	to	the	observed	for	SLURP.	2	

However,	Figure	3	demonstrates	that	the	seasonal	peak	discharge	(August)	is	underestimated	3	

by	SLURP	by	on	average	nearly	2640	m3s-1	(10%)	compared	to	under	300	m3s-1	(1.1%)	for	4	

MIKE	SHE	(although	in	September	underestimation	by	MIKE	SHE	increases	to	4.6%).	5	

	6	

Further	downstream	on	the	main	Mekong,	the	values	of	Dv	for	Kompong	Cham	and	Phnom	7	

Penh,	for	which	discharge	data	is	limited	to	the	first	half	of	the	calibration	period,	fall	below	8	

the	“excellent”	category	and	are	instead	classified	as	“very	good”	and	“fair”,	respectively	9	

(Table	2).	The	NSE	values	for	these	two	stations	are	still,	however,	classified	as	“excellent”.	10	

Reduction	in	model	performance	at	these	two	stations	is	evident	in	Figure	3,	as	simulated	11	

discharge	leads	observed	more	than	at	the	other	stations	on	the	main	Mekong	for	which	data	12	

are	available	for	the	full	calibration	period.	This	feature	is	also	evident	(although	to	a	smaller	13	

extent)	at	Stung	Treng,	where	observed	data	are	also	limited	in	duration,	suggesting	that	14	

model	performance	may	be	influenced	by	this	reduction	in	the	length	of	observed	discharge.	15	

	16	

Model	performance	is	relatively	weak	for	the	Chi	and	Mun	sub-catchments	(Table	2),	with	17	

peak	seasonal	discharge	being	underestimated	(Figure	3).	In	comparison	to	other	gauging	18	

stations,	simulated	flows	deviate	further	from	the	observed.	During	calibration	it	was	not	19	

possible	to	raise	peak	discharges	without	increasing	discharge	during	the	annual	rise	and	20	

recession,	which	are	reasonably	well	reproduced.	These	changes	would	result	in	21	

overestimation	of	mean	discharge	causing	Dv,	currently	classified	as	“excellent”,	to	increase.	22	

This	trade-off	is	evident	in	SLURP	results	for	Ubon.	Whilst	the	magnitude	of	the	simulated	23	

peak	corresponds	well	with	the	observed	(Figure	3),	overestimation	of	discharge	through	24	

most	of	the	rest	of	the	year	causes	Dv	to	be	classified	as	“very	poor”	(Table	2).	The	NSE	value	25	

for	this	gauging	station	for	MIKE	SHE	is	a	class	above	that	of	SLURP	(“fair”	compared	to	26	
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“poor”).	At	Yasothon,	the	NSE	value	just	falls	short	of	the	“fair”	category.	Therefore,	although	1	

MIKE	SHE	does	not	perform	as	well	for	these	two	sub-catchments	as	it	does	for	gauging	2	

stations	on	the	main	Mekong,	results	are	considered	to	be	superior	to	those	of	SLURP.	3	

	4	

Results	from	the	64	runs	over	the	same	30	year	calibration	period	using	the	calibrated	model	5	

and	eight	alternative	precipitation	and	temperature	time	series	from	the	stochastic	weather	6	

generator	showed	that	the	model	was	not	sensitive	to	the	disaggregation	procedure.	NSE	and	7	

r	for	Chiang	Saen	varied	by	only	0.03	and	0.02,	respectively,	whilst	at	Pakse	the	corresponding	8	

ranges	were	0.02	and	0.01.	Further	downstream	at	Kratie,	the	ranges	of	both	statistics	were	9	

only	0.01.	Very	similar	results	were	obtained	for	the	other	gauging	stations.	These	findings	10	

concur	with	the	results	of	Kingston	et	al.	(2011),	who	employed	a	smaller	set	of	10	alternative	11	

model	runs	to	assess	the	sensitivity	of	the	SLURP	model	to	weather	generator	inputs.	12	

	13	

Table	3	shows	performance	statistics	for	the	shorter	validation	period	(1991–1998).	As	14	

indicated,	the	length	of	observed	discharge	records	varies	between	gauging	stations.	The	15	

corresponding	values	for	Chiang	Saen	and	Pakse	reported	by	Kingston	et	al.	(2011)	are	also	16	

provided	(values	for	Ubon	were	not	reported	in	the	earlier	study).	Good	performance	of	the	17	

MIKE	SHE	model	is	indicated,	although	performance	is	inferior	to	the	calibration	period.	18	

Where	NSE	values	are	available	for	SLURP,	they	are	lower	than	those	from	MIKE	SHE.	Three	19	

NSE	values	retain	the	“excellent”	classification	whilst	five	are	classified	as	“very	good”.	The	20	

remaining	two	are	classed	as	“fair”.	One	of	these	(Stung	Treng)	is	based	on	only	three	years	21	

due	to	limited	observed	data,	whilst	the	other	(Yasothon	with	five	years	of	data)	is	the	station	22	

with	the	largest	underestimation	of	mean	discharge.	Values	of	r	follow	the	pattern	of	NSE,	23	

with	values	above	or	close	to	0.9	associated	with	“excellent”	NSE	values.	Most	values	exceed	24	

0.8,	whilst	those	for	Stung	Treng	and	Yasothon	are	lower.	Eight	gauging	stations	have	values	25	

of	Dv	that	are	classified	as	“very	good”,	whilst	Stung	Treng	and	Yasothon	are	again	classified	26	
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as	“fair”.	At	all	the	gauging	stations,	mean	discharge	is,	however,	underestimated.	SLURP	1	

results	show	that	at	Chiang	Saen,	overestimation	of	mean	discharge	for	the	calibration	period	2	

is	reduced	for	the	validation	period,	whilst	at	Pakse,	the	slight	overestimation	of	the	3	

calibration	period	is	replaced	by	a	larger	underestimation	for	the	later	period.	4	

	5	

In	light	of	the	relatively	short	validation	period	and	given	an	emphasis	of	the	current	study	to	6	

compare	alternative	models	of	the	catchment	using	the	same	input	data,	the	overall	7	

performance	of	the	MIKE	SHE	model	is	considered	appropriate.	For	the	three	(two)	gauging	8	

stations	for	which	results	are	available	for	SLURP	for	the	calibration	(validation)	period,	MIKE	9	

SHE	results	are	generally	superior.	Similarly,	MIKE	SHE	compares	very	favourably	with	10	

previous	models	of	the	catchment,	although	precise	comparisons	are	hindered	by	alternative	11	

performance	statistics	and	simulation	periods.		For	example,	values	of	NSE	for	a	number	of	12	

gauging	stations	used	by	Hapuarachchi	et	al.	(2008)	varied	between	0.7	and	0.83,	13	

predominantly	lower	than	those	obtained	using	MIKE	SHE,	with	the	exception	of	Yasothon	14	

and	Ubon,	whilst	the	model	of	Västilä	et	al.	(2010)	obtained	an	NSE	for	Kratie	of	0.63	15	

compared	to	0.90	for	the	calibration	period	(validation:	0.73)	in	the	current	study.	16	

	17	

3.2.	Climate	change	scenarios:	2°C	increase	using	seven	GCMs	18	

	19	

3.2.1.	Changes	in	climate	20	

	21	

Baseline	annual	precipitation	and	PET,	and	percentage	changes	from	these	totals,	for	each	of	22	

the	2	°C,	seven	GCM	scenarios	are	shown	for	eight	sub-catchments	in	Table	4	(top	half).	23	

Results	for	the	other	sub-catchments	are	not	shown	as	they	are	relatively	small	and	changes	24	

are	represented	by	one	or	more	of	those	in	Table	4.	Mean	monthly	precipitation	and	PET	for	25	

the	baseline	and	each	scenario	are	shown	for	four	sub-catchments	in	Figure	4.	Again,	these	26	
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are	representative	of	changes	over	the	remaining	sub-catchments.	Changes	in	temperature	1	

are	not	presented	here	since,	in	most	sub-catchments,	changes	in	temperature	are	reflected	in	2	

modified	PET.	The	exception	is	the	Lancang,	the	one	sub-catchment	in	which	snow	and	its	3	

seasonal	melt	influences	runoff.	Changes	in	mean	annual	temperature	over	this	sub-4	

catchment	range	from	+2.3	°C	(CCCMA)	to	+2.9	°C	(IPSL).	Temperatures	increase	throughout	5	

the	year	in	all	scenarios	with	the	largest	changes	(up	to	+3	°C)	between	October	and	March.	6	

Summer	temperature	increases	are	on	average	lower	(+2.0–2.3	°C).	7	

	8	

Wide	variation	in	the	magnitude	and	direction	of	annual	changes	in	precipitation	occurs	9	

between	GCMs.	These	were	described	by	Kingston	et	al.	(2011)	and	are	summarised	here	and	10	

in	Table	4.	CCCMA,	MPI	and	NCAR	exhibit	increasing	annual	precipitation	for	all	sub-11	

catchments.	Increases	are	greater	in	upstream	sub-catchments	for	CCCMA	and	NCAR,	and	in	12	

downstream	sub-catchments	for	MPI.	CSIRO	simulates	reduced	annual	precipitation	across	all	13	

sub-catchments,	whilst	reductions	occur	across	all	but	three	south-central	sub-catchments	14	

(Chi-Mun,	Mekong	2	and	Sre	Pok)	for	IPSL.	HadCM3	shows	increased	precipitation	over	the	15	

four	most	northern	sub-catchments	(Lancang	to	Mekong	1).	Increases	in	this	part	of	the	16	

catchment	are	restricted	to	the	top	two	sub-catchments	for	HadGEM1,	whilst	precipitation	17	

also	increases	over	the	lower	three	sub-catchments.	18	

	19	

Seasonal	changes	in	precipitation	also	vary	widely	between	GCMs	(Kingston	et	al.	2011;	20	

Figure	4).	CCCMA	and	NCAR	experience	peak	increases	in	April	and	September,	with	21	

decreases	concentrated	in	November–February/March.	A	notable	exception	is	Lancang	for	the	22	

CCCMA	GCM,	which	experiences	increasing	precipitation	in	every	month.	Inter-seasonal	23	

changes	in	precipitation	for	the	MPI	GCM	are,	in	contrast,	unimodal,	with	increases	being	24	

concentrated	between	May	and	November.	For	CSIRO,	increases	in	precipitation	are	limited	to	25	

September	over	upstream	sub-catchments	(e.g.	Lancang	and	Mekong	1,	Figure	4).	This	period	26	
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expands	to	June–September	in	the	far	south	(e.g.	Mekong	3).	The	distribution	of	change	1	

through	the	year	for	IPSL	is	also	unimodal,	with	increases	being	limited	to	August–September	2	

and,	in	the	far	south,	September–October	(Figure	4).	HadCM3	and	HadGEM1	exhibit	a	bimodal	3	

distribution	in	the	seasonal	pattern	of	changes	in	precipitation,	with	the	largest	increases	4	

occurring	in	May	and	September	(HadCM3)	/	October–November	(HadGEM1).	5	

	6	

Differences	in	the	PET	climate	change	signals	between	the	seven	GCMs	are	smaller	than	those	7	

for	precipitation	(Table	4,	Figure	4).	Annual	PET	increases	across	the	Mekong	for	all	GCMs.	8	

With	the	exception	of	three	sub-catchments	(Chi,	Mun	and	Chi-Mun),	the	smallest	increases	in	9	

annual	PET	are	associated	with	NCAR	(on	average	+10.9%).	In	the	three	sub-catchments	10	

where	this	is	not	the	case,	the	lowest	PET	increases	result	from	HadGEM1,	although	these	are	11	

only	slightly	lower	than	those	of	NCAR.	There	is	a	systematic	geographical	pattern	for	the	12	

GCMs	that	produce	the	largest	increases	in	annual	PET.	In	the	four	most	northerly	sub-13	

catchments	(1–4,	Figure	1),	IPSL	produces	the	largest	changes	(mean:	+16.0%).	In	the	middle	14	

Mekong	(sub-catchments	5–9),	the	largest	changes	are	associated	with	CSIRO	(mean:	15	

+15.7%),	followed	by	IPSL	or	HadCM3,	whilst	in	the	lower	part	of	the	catchment	(sub-16	

catchments	10–13),	HadCM3	(CSIRO	for	sub-catchment	9)	produces	the	largest	increase	in	17	

PET	(mean:	+15.5%),	followed	by	CSIRO.	Many	of	the	GCMs	show	a	relatively	constant	climate	18	

change	signal	throughout	the	year	(Figure	4).	Notable	exceptions	are	the	peaks	for	CSIRO	in	19	

April	and	May	and	for	MPI	in	April,	which	are	most	clearly	evident	in	central	and	lower	sub-20	

catchments	(e.g.	Mekong	1,	Mun	and	Mekong	3;	Figure	4).		21	

	22	

3.2.2.	Changes	in	river	flow	23	

	24	

Table	5	presents	the	values	of	the	mean,	Q5	and	Q95	(discharges	exceeded	5%	and	95%	of	the	25	

time,	respectively)	discharges	for	the	baseline	and	the	percentage	changes	in	these	discharges	26	
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for	each	of	the	2	°C,	seven	GCM	scenarios.	These	are	provided	for	eight	gauging	stations	which	1	

are	representative	of	changes	at	the	other	four	stations	used	in	model	calibration	/	validation.	2	

Mukdahan	represents	the	changes	at	Nakhon	Phanom	approximately	100	km	upstream.	3	

Similarly,	discharge	at	Stung	Treng,	which	is	not	shown,	responds	in	the	same	way	to	Kratie	4	

(c.	150	km	further	downstream),	whilst	Phnom	Penh	is	representative	of	the	changes	in	5	

simulated	discharge	at	Kompong	Cham	(c.	90	km	upstream).	Results	for	the	Mun	at	Ubon	6	

represent	those	in	the	smaller	catchment	of	the	Chi	at	Yasothon.	The	simulated	baseline	and	7	

scenario	river	regimes	for	the	same	eight	gauging	stations	are	shown	in	Figure	5.	8	

	9	

Of	the	three	GCMs	for	which	precipitation	increases	in	all	sub-catchments,	two	(CCCMA	and	10	

NCAR)	result	in	increases	in	mean	discharge	for	all	gauging	stations	(Table	5).	The	magnitude	11	

of	the	changes	is	relatively	uniform	along	the	main	stem	of	the	Mekong	for	CCCMA,	albeit	with	12	

a	small	increase	at	stations	in	middle	reaches	(Mukdahan	and	Pakse).	The	much	larger	13	

increase	in	mean	discharge	of	the	Mun	at	Ubon	is	indicative	of	other	sub-catchments	in	this	14	

part	of	the	catchment,	which	results	in	enhanced	flows	from	these	tributaries	to	the	Mekong,	15	

although	absolute	magnitudes	are	relatively	small.	In	the	upper	catchment	(Chiang	Saen),	16	

increasing	annual	discharge	is	a	result	of	higher	flows	during	the	initial	rise	in	discharge,	17	

which	could	be	partially	attributable	to	enhanced	snowmelt,	and	then	higher	discharge	during	18	

the	recession	and	low	flow	period	(Figure	5).	Peak	annual	discharge	is,	however,	slightly	19	

(<1%)	lower	and	still	occurs	in	August.	As	a	result,	Q5	decreases	slightly,	whilst	Q95	increases	20	

(Table	5).	Further	downstream,	peak	flows	begin	to	increase	and	by	Vientiane,	mean	21	

discharge	in	August	and	September	are	approximately	equal.	For	gauging	stations	below	22	

Vientiane,	discharges	are	higher	in	September	than	August,	the	opposite	for	baseline	river	23	

regimes.	This	is	due	to	the	large	September	increases	in	precipitation.	24	

	25	
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A	similar	pattern	of	change	occurs	for	NCAR,	although	in	most	cases	changes	are	larger	than	1	

those	associated	with	CCCMA	(particularly	in	the	middle	section	of	the	catchment	between	2	

Luang	Prabang	and	Pakse;	Table	5).	Table	4	shows	that	whilst	increases	in	precipitation	over	3	

this	part	of	the	catchment	are	smaller	for	NCAR	compared	to	CCCMA,	PET	rises	by	smaller	4	

amounts	for	NCAR,	accounting	for	the	enhanced	river	flow.	A	relatively	consistent	change	in	5	

the	river	regime	at	all	stations	is	shown	in	Figure	5.	Baseflows	are	higher,	especially	in	the	6	

upstream	part	of	the	catchment,	and	the	seasonal	rise	begins	slightly	earlier,	although	for	the	7	

majority	of	this	period,	deviations	from	the	baseline	are	small.	The	month	of	highest	mean	8	

discharge	shifts	from	August	to	September,	although	(with	the	exception	of	Chiang	Saen)	9	

mean	discharge	in	August	also	increases.	Following	the	peak,	discharges	during	the	recession	10	

are	higher	than	the	baseline,	especially	in	upper	and	middle	parts	of	the	catchment.	11	

	12	

Precipitation	increases	in	all	sub-catchments	for	MPI.	However,	the	magnitude	of	these	13	

changes	is	relatively	small	in	upstream	parts	of	the	catchment	compared	to	CCCMA	and	NCAR,	14	

whilst	increases	in	PET	are	larger	than	for	these	two	GCMs	(Table	4).	Mean	annual	flow	at	15	

Chiang	Saen	and	Luang	Prabang	therefore	decline	(by	2.3%	and	1%,	respectively,	Table	5).	16	

Below	these	stations,	gains	in	precipitation	are	larger	and	mean	discharge	increases	in	a	17	

downstream	direction,	although	by	smaller	amounts	than	for	CCCMA	and	NCAR	(Figure	5).	18	

Where	mean	discharge	declines	it	is	largely	due	to	reductions	in	the	post-peak	recession.	19	

Flows	at	other	times	only	increase	by	very	small	amounts.	As	a	result,	Q5	increases,	whilst	20	

Q95	experiences	very	modest	declines	at	most	gauging	stations	except	for	Pakse	(small	21	

increase)	and	Ubon	(a	larger	increase	of	6.8%).	22	

	23	

The	patterns	of	change	in	mean,	Q5	and	Q95	discharge	for	the	CSIRO	and	IPSL	GCMs	are	24	

broadly	similar	(Table	5).	All	three	discharge	measures	decline	at	stations	on	the	Mekong	(Q5	25	

increases	at	Ubon	for	IPSL)	for	both	GCMs,	with	CSIRO	resulting	in	consistently	larger	26	
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reductions.	The	magnitude	of	reductions	in	mean	flow	and	Q95	reduce	in	a	downstream	1	

direction	for	both	GCMs	and	for	Q5	in	the	case	of	CSIRO.	There	are	some	departures	from	this	2	

trend	in	Q5	for	ISPL,	with	relatively	small	reductions	at	Pakse	due	to	increased	wet	season	3	

and	mean	annual	precipitation	in	this	part	of	the	catchment.	The	river	regimes	from	both	4	

GCMs	display	a	delayed	response	in	the	annual	rise	in	river	discharge,	whilst	discharge	during	5	

the	post-peak	recession	and	the	dry	season	are	relatively	unaffected	(Figure	5).	On	average,	6	

mean	discharge	for	each	month	declines	at	stations	on	the	Mekong	for	CSIRO	and	there	is	a	7	

shift	from	August	to	September	for	peak	flows.	On	the	Mun	at	Ubon	peak	discharge,	which	8	

occurs	in	October,	exceeds	the	baseline.	Results	for	ISPL	show	a	gradual	downstream	shift	9	

from	peak	flows	occurring	in	August	(Chiang	Saen	and	Luang	Prabang),	through	10	

approximately	equal	mean	discharge	in	August	and	September	(Vientiane),	to	September	11	

discharge	exceeding	flows	in	August	(Nakhom	Phanom	and	downstream).	On	the	Mun	and	Chi	12	

tributaries,	mean	discharges	in	September	and	October	exceed	those	of	the	baseline.	13	

	14	

Increases	in	annual	precipitation	for	the	Lancang	and	Nam	Ou	for	HadGEM1	result	in	a	small	15	

(<0.5%)	increase	in	mean	annual	discharge	at	Chiang	Saen.	Further	downstream,	discharge	16	

declines,	with	the	magnitude	of	reductions	increasing	with	movement	downstream	until	17	

Pakse	(Table	5).	Modest	increases	in	annual	precipitation	over	the	lower	catchment	stops	this	18	

trend,	with	reductions	in	mean	discharge	for	the	stations	between	Stung	Treng	and	Phnom	19	

Penh	ranging	between	9.0%	and	9.1%.	Q5	and	Q95	discharges	respond	in	a	similar	way.	The	20	

largest	changes	in	river	regimes	are	reductions	in	discharge	concentrated	in	August	and	21	

September,	the	period	of	peak	flow	(Figure	5).	Between	Stung	Treng	and	Phnom	Penh,	mean	22	

discharge	in	these	months	declines	by	on	average	17.9%	and	13.7%,	respectively.		23	

	24	

The	large	increases	in	annual	precipitation	over	the	Lancang	and	their	extension	further	25	

downstream	for	HadCM3	ensures	that	mean	discharge	increases	between	Chiang	Saen	and	26	
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Pakse,	albeit	with	a	downstream	reduction	in	magnitude	(Table	5).	Further	downstream,	in	1	

response	to	declining	precipitation	and	higher	PET,	mean	discharges	decline.	Throughout	the	2	

catchment,	August	remains	the	month	of	peak	discharge,	although	mean	discharge	in	this	3	

month	declines	(Figure	5).	Increases	in	mean	discharge	in	the	upper	catchment	are	largely	4	

driven	by	higher	discharge	in	September	and	the	subsequent	recession	that	also	increases	Q5	5	

as	far	downstream	as	Vientiane.	From	Mukdahan	downstream,	mean	discharges	in	both	6	

August	and	September	are	below	the	baseline	(by	6.7%	and	4.7%,	respectively	at	Phnom	7	

Penh).	Very	modest	increases	in	dry	season	discharge	are	common	to	all	gauging	stations	on	8	

the	main	Mekong	and	results	in	higher	Q95	discharges	(Q95	declines	for	Ubon).	9	

	10	

Figure	6	summarises	the	percentage	change	in	mean	annual	discharge	at	four	representative	11	

gauging	stations	for	each	of	the	2	°C,	seven	GCM	scenarios.	For	each	scenario,	the	12	

corresponding	changes	resulting	from	the	alternate	specification	of	scenario	time	series	for	13	

one	meteorological	input	(precipitation,	PET	and	temperature),	whilst	using	baseline	time	14	

series	for	the	other	two,	are	also	shown.	It	is	apparent	that	the	inter-GCM	differences	are	15	

largely	driven	by	differences	in	precipitation.	As	a	result	of	the	consistent	increases	in	annual	16	

PET	for	the	seven	GCMs,	mean	discharge	at	all	12	stations	declines	if	only	scenario	PET	is	17	

specified.	These	declines	occur	in	each	month	and	the	range	of	change	in	mean	discharge	at	18	

individual	gauging	stations	is	narrow	(between	a	range	of	-3.6%	for	Phnom	Penh	and	-6.3%	19	

for	Yasothon),	reflecting	the	relatively	small	inter-GCM	differences	in	PET.	In	contrast,	the	20	

much	larger	differences	in	precipitation	between	the	GCMs	ensure	that	the	specification	of	21	

scenario	precipitation	with	baseline	PET	and	temperature	enhances	the	inter-GCM	differences	22	

in	discharge.	The	smallest	range	of	change	in	mean	discharge	for	gauging	stations	on	the	main	23	

Mekong	(21.1%,	between	-3.2%	and	17.9%)	is	for	Phnom	Penh	compared	to	the	largest	24	

(32.5%,	between	-6.8%	and	25.7%)	for	Chiang	Saen.	Inter-GCM	differences	are	larger	on	the	25	

two	tributaries	(e.g.	42.1%,	between	-10.0%	and	32.1%	for	the	Mun	at	Ubon).		26	
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	1	

Figure	6	demonstrates	very	small	changes	from	the	baseline	when	scenario	temperature	is	2	

employed	with	baseline	precipitation	and	PET.	Within	the	MIKE	SHE	model,	changes	in	3	

temperature	are	already	incorporated	within	the	alternative	scenario	PET,	so	that	4	

temperature	influences	snowmelt	alone.	As	a	result,	the	largest	(but	still	small)	changes	in	5	

mean	flow	occur	at	Chiang	Saen	(reductions	in	mean	discharge	of	between	0.04%	and	1.2%),	6	

closest	to	parts	of	the	catchment	that	experience	snow	cover.	The	magnitude	of	these	changes	7	

declines	downstream,	and	for	tributaries	in	which	snow	is	not	a	feature,	changes	in	8	

temperature	alone	have	no	impact	on	discharge	(e.g.	the	Mun,	Figure	6).	Small	changes	in	the	9	

river	regime	at	Chiang	Saen	are	associated	with	a	slightly	earlier	increase	in	discharge	due	to	10	

earlier	snowmelt	and	lower	peak	discharges,	but	variability	between	the	different	GCMs	is	11	

small.	For	example,	the	increase	in	May	discharge	ranges	from	19.9%	to	25.0%	(although	12	

absolute	discharge	is	small),	whilst	August	discharge	declines	by	between	4.4%	and	5.4%.	13	

	14	

3.2.3.	Comparison	of	MIKE	SHE	results	with	SLURP	and	Mac-PDM.09		15	

	16	

Figure	7	shows	percentage	changes	in	mean	discharge	(runoff	for	Mac-PDM.09)	at	six	gauging	17	

stations	for	each	of	the	2	°C,	seven	GCM	scenarios,	as	simulated	by	the	three	hydrological	18	

models.	As	described	above,	results	are	only	available	for	three	stations	for	SLURP.	Direction	19	

of	change	in	mean	discharge	(runoff)	for	a	given	GCM	is	predominantly	the	same	for	all	the	20	

hydrological	models.	Of	the	42	gauging	station	/	GCM	combinations	(six	stations	/	seven	21	

GCMs),	only	three	exhibit	changes	in	mean	discharge	(runoff)	which	differ	in	sign	between	22	

hydrological	models.	These	are	for	stations	towards	the	southern	part	of	the	catchment.	23	

Results	for	HadCM3	for	Pakse	show	increases	in	discharge	(runoff)	for	MIKE	SHE	and	Mac-24	

PDM.09.	For	MIKE	SHE,	the	climate	change	signal	(mean	discharge:	+1.4%)	is	the	smallest	of	25	

all	the	GCMs	at	this	station,	and	SLURP	shows	a	reduction	in	mean	discharge	of	a	comparable	26	
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magnitude	(-1.6%).	In	contrast,	Mac-PDM.09	runoff	increases	by	8.4%.	At	Phnom	Penh,	this	1	

same	GCM	is	associated	with	a	reduction	in	MIKE	SHE	mean	discharge	of	2.1%,	whilst	Mac-2	

PDM.09	runoff	increases	by	2.5%	(SLURP	results	are	not	available).	Finally,	at	Ubon,	both	3	

MIKE	SHE	and	SLURP	simulate	reductions	in	mean	discharge	(of	3.0%	and	5.1%,	respectively)	4	

for	the	IPSL	GCM,	whilst	mean	runoff	from	Mac-PDM.09	increases	by	a	very	small	amount	5	

(0.5%).	Beyond	these	differences	there	is	general	agreement	in	the	order	of	magnitude	of	6	

changes	for	the	seven	GCMs	for	the	different	hydrological	models.	At	most	stations,	when	7	

listed	in	order	of	increasing	change	in	mean	discharge,	the	GCMs	appear	in	the	same	order	for	8	

both	MIKE	SHE	and	Mac-PDM.09,	with	the	exception,	in	most	cases,	of	a	single	pair	of	GCMs.	9	

	10	

Where	mean	discharge	(runoff)	at	a	gauging	station	increases	for	an	individual	GCM	for	all	11	

three	hydrological	models	(MIKE	SHE	and	Mac-PDM.09	where	SLURP	results	are	not	12	

available),	the	smallest	changes	are	for	SLURP,	followed	by	MIKE	SHE	and	then	Mac-PDM.09	13	

(Figure	7).	The	greater	increases	for	Mac-PDM.09	are	particularly	apparent	at	upstream	14	

stations.	At	Chiang	Saen,	the	percentage	increase	in	mean	runoff	for	Mac-PDM.09	for	the	four	15	

GCMs	associated	with	increased	mean	river	flow	is	on	average	5.7	and	3.8	times	as	large	as	16	

those	of	SLURP	and	MIKE	SHE,	respectively.	These	values	are	skewed	by	large	changes	for	17	

HadCM3	and	large	inter-hydrological	model	differences	(but	small	absolute	changes)	for	18	

HadGEM1.	HadCM3	stands	out	as	a	GCM	for	which	differences	between	the	catchment	and	19	

global	hydrological	models	are	particularly	large,	especially	in	upstream	parts	of	the	Mekong.	20	

Percentage	increases	in	mean	runoff	at	Chiang	Saen	for	Mac-PDM.09	for	HadCM3	are	9.4	and	21	

4.1	times	as	great	as	those	for	SLURP	and	MIKE	SHE,	respectively.	Further	downstream,	inter-22	

hydrological	model	differences	in	the	magnitude	of	increases	in	discharge	/	runoff		(when	23	

they	occur	for	all	the	models)	are	smaller.	This	is	exemplified	in	results	for	Ubon,	where	the	24	

increases	in	runoff	for	Mac-PDM.09	for	the	three	GCMs	with	higher	river	flow	for	three	25	
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hydrological	models	are,	on	average,	less	than	1.4	times	as	large	as	the	increases	in	MIKE	SHE	1	

discharge.	Mac-PDM.09	increases	are	still	4.6	times	as	large	as	those	simulated	by	SLURP.	2	

	3	

The	dominant	trend	for	GCMs	associated	with	declines	in	annual	flow	at	gauging	stations	on	4	

the	main	Mekong	for	all	(both)	hydrological	models	is	for	the	largest	changes	to	result	for	5	

Mac-PDM.09,	followed	by	MIKE	SHE	and	SLURP	(Figure	7).	Exceptions	are	MPI	at	Chiang	Saen	6	

and	CSIRO	at	Pakse,	where	the	reverse	order	of	magnitude	of	changes	occurs	whilst,	as	noted	7	

above,	at	Phnom	Penh	MIKE	SHE	simulates	a	decline	in	mean	discharge	for	HadCM3	whilst	8	

mean	runoff	increases	for	Mac-PDM.09.	Inter-model	differences	(in	particular	between	MIKE	9	

SHE	and	Mac-PDM.09	and	especially	downstream	of	Chiang	Saen)	in	the	magnitude	of	the	10	

declines	are	smaller	than	for	those	GCMs	where	river	flow	increases.	For	three	GCMs,	11	

reductions	in	the	mean	discharge	at	Ubon	are	larger	for	MIKE	SHE	than	for	Mac-PDM.09	(and,	12	

as	discussed	above,	for	IPSL	MIKE	SHE	mean	discharge	declines	whilst	mean	runoff	for	Mac-13	

PDM.09	increases	slightly).	Results	for	SLURP	for	Ubon	show	that,	in	most	cases,	reductions	in	14	

mean	discharge	are	larger	(when	they	occur)	than	for	the	other	two	models.	Differences	15	

between	MIKE	SHE	and	SLURP	are	relatively	small.	The	exception	is	HadGEM1,	where	the	16	

decline	in	SLURP	discharge	is	of	a	similar	magnitude	to	that	of	Mac-PDM.09.	17	

	18	

Following	the	approach	of	Gosling	et	al.	(2011a),	Figure	8	shows	mean	monthly	total	19	

discharge	(runoff	for	Mac-PDM.09)	expressed	as	a	percentage	of	the	annual	total	for	five	20	

(three	in	the	case	of	SLURP)	gauging	stations	simulated	by	the	three	hydrological	models	for	21	

the	baseline	and	each	of	the	2	°C,	seven	GCM	scenarios.	Results	for	Vientiane,	which	are	not	22	

shown	in	the	interests	of	clarity,	are	similar	to	those	for	Nakhon	Phanom.	Given	the	dominant	23	

seasonal	precipitation	signal	of	the	Asian	monsoon,	it	is	unsurprising	that	all	three	24	

hydrological	models	simulate	large	seasonality	in	river	flow.	The	amplitude	of	this	cycle	is,	25	

however,	greater	for	Mac-PDM.09.	Beyond	this,	the	most	obvious	differences	in	the	seasonal	26	
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cycle	simulated	by	the	three	hydrological	models	are	associated	with	the	scenario	results	for	1	

Chiang	Saen.	SLURP	simulates	a	consistent	earlier	rise	in	the	annual	hydrograph,	which	2	

Kingston	et	al.	(2011)	attributed	to	earlier	snowmelt	and	a	subsequent	smaller	proportion	of	3	

the	annual	total	discharge	occurring	in	peak	months	for	all	the	scenarios.	This	is	not	the	case	4	

for	MIKE	SHE	or	Mac-PDM.09.	MIKE	SHE	simulates	some	modest	increases	in	early	season	5	

(May)	discharge	for	some	scenarios,	but	both	this	model	and	Mac-PDM.09	simulate	a	reduced	6	

significance	of	flows	during	subsequent	months	(June	and	July)	for	the	same	scenarios.	The	7	

greater	concentration	of	annual	flows	in	August	and	September	for	some	scenarios	is	evident	8	

for	MIKE	SHE	and	Mac-PDM.09.	The	increased	significance	of	flows	in	the	first	of	these	9	

months	for	IPSL	is	clearly	evident,	although	the	significance	of	September	flows	also	increases	10	

for	CSIRO	and	NCAR.	This	consistency	between	MIKE	SHE	and	Mac-PDM.09	is	repeated	for	11	

Nakon	Phanom.	12	

	13	

The	broad	agreement	between	MIKE	SHE	and	Mac-PDM.09	is	repeated	for	the	other	two	14	

gauging	stations	further	downstream	on	the	main	Mekong.	Figure	8	shows	that	for	Pakse	the	15	

influence	of	the	earlier	rise	in	discharge	simulated	by	SLURP	has	diminished,	although	16	

scenario	results	still	suggest	greater	significance	of	discharge	at	this	time	of	year	for	many	for	17	

the	GCMs,	which	is	contrary	to	MIKE	SHE	and	Mac-PDM.09	(with	the	exception	of	MPI).	MIKE	18	

SHE	does	show	some	consistency	with	the	results	of	the	other	two	models,	such	as	the	shift	of	19	

peak	flows	from	August	to	September	for	GCMs	including	CSIRO,	IPSL	and	NCAR.	Results	for	20	

Ubon	show	a	general	agreement	between	the	three	hydrological	models.	Both	MIKE	SHE	and	21	

SLURP	simulate	a	greater	concentration	of	the	annual	total	discharge	in	October	for	all	the	22	

GCMs	with	the	exception	of	HadGEM1	for	SLURP	(an	almost	negligible	decline).	Mac-PDM.09	23	

simulates	similar	increases	for	five	GCMs	although	for	CCCMA	and	MPI	runoff	in	this	month	24	

decreases	slightly	in	significance.	Other	inter-model	similarities	include	the	increase	in	the	25	

significance	of	discharge	during	the	latter	part	of	the	annual	rise	(August)	for	the	MPI	GCM.	26	
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	1	

3.3.	Climate	change	scenarios:	1–6°C	increase	using	HadCM3	2	

	3	

3.3.1.	Changes	in	climate	4	

	5	

Table	4	(lower	half)	presents	mean	annual	precipitation	and	PET	for	eight	representative	6	

meteorological	input	sub-catchments	for	each	of	the	1–6	°C,	HadCM3	scenarios.	Mean	monthly	7	

precipitation	and	PET	for	the	baseline	and	each	scenario	are	shown	for	four	sub-catchments	8	

in	Figure	9.	Temperature	changes	are	not	presented	and	the	patterns	of	these	changes	are	9	

reflected	in	the	modifications	to	PET.	Over	the	Lancang	(where	snow	is	a	feature)	changes	in	10	

mean	annual	temperatures	are	above	the	prescribed	increase	in	global	mean	temperature	(for	11	

example	1.3	°C,	5.1	°C	and	7.7	°C	for	1	°C,	4	°C	and	6	°C,	respectively).	In	common	with	the	2	12	

°C,	seven	GCM	scenarios,	largest	temperature	increases	occur	between	October	and	March.	13	

	14	

Changes	in	annual	precipitation	exhibit	a	distinct	geographical	pattern.	Over	the	four	sub-15	

catchments	that	are	furthest	upstream	(sub-catchments	1–4,	Figure	1),	annual	precipitation	16	

increases	in	a	consistent	linear	pattern	with	increasing	temperature	(Table	4).	The	magnitude	17	

of	these	increases	declines	in	a	downstream	direction	(cf.	Lancang	vs	Mekong	1;	Table	4).	In	18	

the	downstream	part	of	the	Mekong	(sub-catchments	9–13),	annual	precipitation	declines	for	19	

all	scenarios.	The	magnitude	of	these	reductions	increases	with	prescribed	warming.	There	is	20	

also	a	downstream	trend,	so	that	whilst	the	maximum	change	in	annual	precipitation	over	the	21	

Se	Kong	(sub-catchment	9)	is	-3.2%,	for	Mekong	3	it	is	-6.7%.	In	the	central	Mekong	(sub-22	

catchments	5–8),	annual	precipitation	responds	in	a	non-linear	way	to	increased	prescribed	23	

warming	(as	a	result	of	differing	linear	seasonal	trends	–	see	following	paragraph	and	Figure	24	

9).	As	Table	4	illustrates	for	the	Mun	(sub-catchment	6),	annual	precipitation	initially	declines	25	

with	rising	temperature,	but	later	increases,	such	that	for	the	5	°C	and	6	°C	scenarios	annual	26	
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precipitation	is	above	the	baseline.	However,	in	all	the	scenarios,	the	magnitude	of	the	1	

changes	is	small	(<	±1%).	The	same	pattern	is	evident	for	Chi,	Chi-Mun	and	Mekong	2.	2	

	3	

For	any	given	sub-catchment	and	month,	precipitation	changes	linearly	with	increasing	global	4	

mean	temperature	(Figure	9).	There	is,	however,	a	downstream	trend	in	the	inter-seasonal	5	

pattern	of	precipitation	change,	as	the	number	of	months	in	which	precipitation	increases	6	

declines	from	north	to	south.	For	example,	over	the	Lancang,	precipitation	increases	in	every	7	

month	except	April	(Figure	9).	The	largest	percentage	changes	occur	in	May–June	and	8	

September–October,	either	side	of	the	wettest	months.	By	Mekong	1,	increases	in	9	

precipitation	are	limited	to	five	months	(in	particular	May–June	but	also	September–October	10	

and	December).	Precipitation	in	the	wettest	baseline	months	(June–July)	is	reduced,	although	11	

the	extension	of	the	wet	season	on	either	side	of	these	two	months	results	in	the	overall	12	

increase	in	annual	precipitation,	albeit	of	a	smaller	magnitude	to	the	Lancang.	For	the	four	13	

central	sub-catchments,	increasing	precipitation	is	restricted	to	four	months.	Relatively	large	14	

gains	in	precipitation	are	concentrated	in	the	early	part	of	the	monsoon	season.	In	the	15	

southernmost	sub-catchments	(e.g.	Mekong	3),	late	monsoon	precipitation	declines,	and	16	

increases	in	monthly	totals	are	limited	to	May	and	June.	The	magnitudes	of	these	increases	are	17	

considerably	smaller	than	those	experienced	in	these	months	further	upstream	(e.g.	May	18	

increase	for	the	1°	C	and	6	C	°scenarios	are	2.3%	and	13.8%,	respectively).	19	

	20	

Throughout	all	the	sub-catchments,	annual	PET	increases	linearly	with	prescribed	warming	21	

(Table	4).	Magnitudes	of	these	changes	are,	in	general,	larger	in	the	southern	(warmer)	part	of	22	

the	catchment	compared	to	the	northern	(cooler)	sub-catchments.	PET	increases	throughout	23	

the	year	with,	in	most	cases,	a	relatively	constant	climate	change	signal	for	each	month	24	

(Figure	9).	A	notable	exception	is	the	elevated	PET	for	April	in	some	sub-catchments	(e.g.	25	

Mekong	1),	especially	for	the	larger	increases	in	temperature.	In	addition,	percentage	changes	26	
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in	PET	early	and	late	in	the	year	over	some	northern	sub-catchments	(e.g.	the	Lancang)	are	1	

larger	than	those	in	summer	due	to	the	larger	changes	in	temperature	in	these	months.	2	

Absolute	values	of	PET	at	this	time	of	year	remain,	however,	relatively	low.	3	

	4	

3.3.2.	Changes	in	river	flow	5	

	6	

Values	of	the	mean,	Q5	and	Q95	discharges	for	eight	gauging	stations	for	the	baseline	and	the	7	

percentage	changes	in	these	discharges	for	each	of	the	1–6	°C,	HadCM3	scenarios	are	shown	8	

in	Table	6.	Figure	10	provides	the	corresponding	baseline	and	scenario	river	regimes.	The	9	

eight	gauging	stations	are	the	same	as	those	used	to	present	results	for	the	2	°C,	seven	GCM	10	

scenarios,	and	are	representative	of	gauging	stations	for	which	results	are	not	shown.	11	

	12	

Changes	in	mean	discharge	for	the	1–6	°C,	HadCM3	scenarios	follow	the	same	geographical	13	

pattern	as	changes	in	annual	precipitation.	Mean	discharge	at	the	three	upstream	gauging	14	

stations	increases	linearly	with	prescribed	warming	(Table	6).	This	suggests	that	increases	in	15	

precipitation	more	than	compensate	for	higher	PET.	In	most	cases,	mean	monthly	discharge	16	

increases	throughout	the	year,	with	the	magnitude	of	the	increase	rising	with	degree	of	17	

prescribed	warming	(Figure	10).	Exceptions	are	August	for	the	2	°C	and	4	°C	scenarios	at	all	18	

three	stations	and	the	1	°C	scenario	at	Luang	Prabang	and	Vientiane,	for	which	discharge	19	

declines	slightly	(<3%).	This	may	be	indicative	of	increases	in	evapotranspiration	in	this	20	

month	outstripping	enhanced	precipitation.	Table	6	shows	that,	in	general,	Q5	increases	21	

consistently	with	degree	of	prescribed	warming,	exceptions	being	the	1	°C	scenario	for	Chiang	22	

Saen	and	Vientiane	(modest	decreases)	and	the	3	°C	scenario	at	the	second	of	these	stations	(a	23	

reduction	in	the	magnitude	of	the	increase	compared	to	the	2	°C	scenario).	Peak	flows	24	

characteristically	remain	in	August,	although	for	the	4	°C	scenario	at	all	three	stations	and	the	25	

6	°C	scenario	for	Vientiane,	the	highest	mean	monthly	discharge	occurs	a	month	later.	The	26	
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higher	dry	season	flows	simulated	cause	Q95	to	increase	with	the	magnitude	of	prescribed	1	

warming,	although	the	size	of	these	increases	declines	with	movement	downstream.	2	

	3	

Results	for	Mukdahan	(and	Nakhon	Phanom,	not	shown)	indicate	larger	mean	flows	as	the	4	

magnitude	of	prescribed	warming	increases	although,	unlike	further	upstream,	there	is	not	a	5	

linear	response	to	higher	temperatures	and	changes	for	the	2	°C	and	3	°C	scenarios	are	similar	6	

(Table	6).	Whilst	discharges	during	the	annual	rise	and	recession	increase	with	prescribed	7	

warming,	peak	flows	in	August	and	September	are	lower	(Figure	10).	These	reductions	are	8	

not	related	linearly	to	degree	of	warming,	with	the	largest	associated	with	the	4	°C	scenario.	9	

This	reflects	the	balance	between	lower	precipitation	and	higher	PET	in	these	months.	Whilst	10	

Q5	declines	for	the	1–4	°C	scenarios,	very	modest	increases	result	from	the	warmest	11	

scenarios.	Higher	dry	season	flows	cause	Q95	to	increase	with	prescribed	warming.	These	12	

increases	are	sustained	by	flows	from	upstream	rather	than	local	runoff,	as	precipitation	over	13	

the	Mekong	1	sub-catchment	declines	as	PET	increases	(Figure	9).	The	downstream	reduction	14	

in	the	magnitude	of	increases	in	low	flows	continues	(Table	6).	15	

	16	

A	similar	pattern	of	change	is	evident	at	Pakse,	although	a	decline	in	the	magnitude	of	17	

increases	in	mean	discharge	for	the	3	°C	scenario	and	very	similar	changes	for	the	2	°C	and	4	18	

°C	scenarios	interrupt	the	progressive	increase	with	prescribed	warming	(Table	6).	Changes	19	

are	an	order	of	magnitude	lower	than	those	further	upstream.	Mean	monthly	discharge	20	

during	the	annual	rise	and	recession	are	still	higher	than	for	the	baseline,	although	the	size	of	21	

these	changes	is	also	smaller	(Figure	10).	Mean	discharge	in	August	and	September	declines	22	

progressively	with	prescribed	warming.	The	largest	reductions	occur	in	August,	so	that	for	the	23	

warmest	scenario	peak	discharge	occurs	in	September.	Q5	declines	for	all	scenarios,	although	24	

not	following	a	linear	trend.	Modest	increases	in	dry	season	discharge	result	in	higher	Q95	25	

discharges,	although	the	downstream	reduction	in	the	magnitude	of	these	changes	continues.		26	
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	1	

Results	for	the	Mun	at	Ubon,	which	flows	into	the	Mekong	just	upstream	of	Pakse,	are	2	

representative	of	the	impacts	of	modest	changes	in	annual	precipitation	coupled	with	large	3	

increases	in	PET	over	this	part	of	the	catchment.	Mean	flow	declines	consistently	with	degree	4	

of	prescribed	warming	(Table	6).	Changes	are,	in	percentage	terms,	as	large	as	those	5	

experienced	at	upstream	gauging	stations,	albeit	of	an	opposite	direction.	Particularly	large	6	

reductions	in	discharge	occur	in	months	with	the	highest	baseline	flows	(Figure	10),	7	

accounting	for	the	further	declines	in	peak	flows	in	the	Mekong	at	Pakse.	Small	increases	in	8	

mean	monthly	discharge	are	limited	to	August	(the	1	°C	scenario)	and	June–July	(3	°C–6	°C	9	

scenarios).	Declines	in	discharge	throughout	most	of	the	year,	in	particular	during	the	annual	10	

recession	and	subsequent	dry	season,	demonstrate	that	increases	in	discharge	within	the	11	

main	Mekong	at	this	time	are	dependent	upon	enhanced	flows	from	upstream.	12	

	13	

For	gauging	stations	in	the	lower	parts	of	the	Mekong,	a	consistent	pattern	of	changes	in	14	

discharge	is	evident.	Contributions	from	lower	tributaries	decline	in	a	similar	way	to	those	15	

described	for	Ubon.	Mean	discharge	at	the	four	stations	on	the	lower	Mekong	therefore	16	

declines	with	prescribed	warming	and	movement	downstream	(Table	6).	Changes	in	the	river	17	

regime	are	characterised	by	further	reductions	in	peak	discharges	that	are	very	slightly	larger	18	

as	the	magnitude	of	prescribed	warming	increases	(Figure	10).	Whilst	for	the	1	°C	and	2	°C	19	

scenarios	mean	monthly	discharge	declines	in	June	and	then	between	August	and	October,	20	

declines	occur	throughout	the	period	June–October	for	the	warmer	scenarios.	The	month	with	21	

the	highest	mean	monthly	discharge	shifts	from	August	to	September	for	the	most	extreme	(6	22	

°C)	scenario	at	all	four	gauging	stations	(and	for	the	4	°C	scenario	for	Phnom	Penh).	The	Q5	23	

discharges	decline	at	all	four	gauging	stations,	with	the	magnitude	of	these	reductions	initially	24	

increasing	with	prescribed	warming,	but	showing	less	variability	between	the	3	°C	and	6	°C	25	

scenarios	(Table	6).	Figure	10	shows	very	modest	increases	in	dry	season	flows	at	Kratie	and	26	
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Phnom	Penh	(repeated	at	Stung	Treng	and	Kompong	Cham)	and	as	a	result	the	values	of	Q95	1	

increase.	These	increases	are	smaller	compared	to	those	for	gauging	stations	upstream	and	2	

are	again	the	result	of	enhanced	runoff	in	upstream	parts	of	the	catchment	as	opposed	to	local	3	

runoff	at	this	time	of	year.	There	is	less	variability	in	these	changes	between	prescribed	4	

warming	scenarios	except	for	the	two	extremes	cases	(the	1	°C	and	6	°C	scenarios).	5	

	6	

Figure	11	shows	percentages	changes	in	mean	annual	discharge	for	four	gauging	stations	7	

resulting	from	the	1–6	°C,	HadCM3	scenarios	as	well	as	those	which	result	when	one	of	each	8	

of	the	three	meteorological	inputs	are	modified	in	turn	whilst	retaining	baseline	values	for	the	9	

other	two.	It	confirms	the	dominant	influence	of	change	in	precipitation	over	upstream	parts	10	

of	the	catchment	(e.g.	Chiang	Saen).	Consistent	increases	in	precipitation	with	prescribed	11	

warming	far	outweigh	increases	in	PET	and	are	responsible	for	progressive	increases	in	mean	12	

discharge.	Further	downstream,	changes	in	discharge	due	to	precipitation	are	smaller	and	13	

begin	to	approximate	those	due	to	PET	(e.g.	Mukdahan	and	especially	Phnom	Penh).	For	14	

tributaries	in	the	south	of	the	catchment	in	which	discharge	is	not	dominated	by	flows	from	15	

upstream	parts	of	the	main	Mekong,	changes	in	PET	exert	a	much	larger	influence	(e.g.	the	16	

Mun	at	Ubon).	Results	show	that	mean	discharge	is	relatively	insensitive	to	changes	in	17	

temperature	(excluding	its	influence	upon	PET),	especially	in	lower	parts	of	the	catchment.	18	

	19	

3.3.3.	Comparison	of	MIKE	SHE	results	with	SLURP	and	Mac-PDM.09		20	

	21	

Percentage	changes	in	mean	discharge	(runoff	for	Mac-PDM.09)	at	six	gauging	stations	(three	22	

for	SLURP)	for	each	of	the	1–6	°C,	HadCM3	scenarios,	as	simulated	by	the	three	hydrological	23	

models,	are	shown	in	Figure	12.	Just	as	MIKE	SHE	demonstrates	a	spatially	variable	response	24	

of	river	flow	to	these	scenarios,	the	inter-model	differences	in	the	discharge	(runoff)	climate	25	

change	signal	also	vary	throughout	the	catchment.	The	systematic	increase	in	mean	discharge	26	
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with	magnitude	of	warming	that	occurs	from	Chiang	Saen	to	middle	parts	of	the	catchment	1	

(Nakhon	Phanom)	for	MIKE	SHE	are	repeated	for	Mac-PDM.09	and	probably	SLURP,	although	2	

results	are	limited	to	Chiang	Saen.	However,	the	magnitude	of	these	changes	varies	between	3	

hydrological	models.	The	smallest	changes	are	associated	with	SLURP,	at	Chiang	Saen	ranging	4	

between	+1.6%	and	+19.8%	for	the	1	°C	and	6	°C	scenarios,	respectively.	On	average,	the	5	

changes	simulated	by	MIKE	SHE	are	just	over	twice	as	large	as	those	for	SLURP,	although	the	6	

very	small	change	for	the	1	°C	scenario	for	SLURP	skews	this	value.	In	contrast,	much	larger	7	

increases	in	mean	runoff	are	simulated	by	Mac-PDM.09	(range	for	Chiang	Saen:	+21.1%	to	8	

+120.4%).	On	average,	these	are	4.2	and	8.0	times	as	large	as	those	simulated	by	MIKE	SHE	9	

and	SLURP,	respectively.	The	same	pattern	is	repeated	at	Vientiane	and	Nakhon	Phanom.	The	10	

magnitude	of	increases	in	runoff	declines	in	a	downstream	direction	for	Mac-PDM.09,	just	as	11	

they	do	for	MIKE	SHE	(from	a	120.4%	increase	at	Chiang	Saen	to	48.5%	at	Nakhom	Phanom).	12	

	13	

Results	for	Ubon	demonstrate	that	all	three	hydrological	models	respond	in	a	similar	way	to	14	

the	generally	lower	precipitation	and	consistently	higher	PET	as	prescribed	warming	15	

increases	(Figure	12).	The	order	of	magnitude	of	the	resulting	declines	in	mean	discharge	16	

(runoff)	is,	however,	different	to	the	increases	in	the	upper	Mekong.	MIKE	SHE	produces	the	17	

largest	reductions,	whilst	the	smallest	result	from	Mac-PDM.09,	with	the	exception	of	the	2	°C	18	

scenario	(SLURP>MIKE	SHE).	Reductions	simulated	by	MIKE	SHE	are,	on	average,	just	under	19	

twice	as	large	as	the	declines	from	Mac-PDM.09.	The	discharge	reductions	for	SLURP	are	20	

between	those	of	these	two	models	and	are	generally	closer	to	those	of	Mac-PDM.09.		21	

	22	

Differences	in	the	magnitude	and	direction	of	flow	changes	in	the	upper	and	middle	sections	23	

of	the	Mekong	are	responsible	for	the	variable	responses	of	the	three	hydrological	models	at	24	

downstream	gauging	stations	on	the	Mekong	(Figure	12).	Whilst	mean	discharge	simulated	by	25	

MIKE	SHE	continues	to	increase,	albeit	not	consistently	with	prescribed	warming,	results	for	26	
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SLURP	at	Pakse	demonstrate	a	variable	response.	Mean	discharge	declines	for	all	but	the	4	°C	1	

scenario.	However,	the	largest	decline	is	associated	with	the	3	°C	scenario	and	the	smallest	2	

with	the	6	°C	scenario.	In	contrast,	the	much	larger	increases	in	runoff	upstream	which	are	3	

simulated	by	Mac-PDM.09	ensure	that	mean	runoff	at	Pakse	continues	to	increase	with	4	

prescribed	warming,	despite	reductions	in	runoff	from	downstream	sub-catchments.	The	5	

magnitude	of	the	increases	in	mean	runoff	does,	however,	continue	to	decline	in	a	6	

downstream	direction.	The	largest	increase	(6	°C	scenario)	is	21.3%	compared	to	48.5%	for	7	

Nakhom	Phanom.	This	trend	continues	further	downstream	so	that	whilst	Mac-PDM.09	runoff	8	

at	Phnom	Penh	increases	with	prescribed	warming,	the	largest	increase	is	only	6.0%.	In	9	

contrast,	the	smaller	increases	in	discharge	from	upstream	catchments,	coupled	with	the	10	

largest	declines	in	discharge	from	southern	sub-catchments,	results	in	the	previously	11	

reported	declines	in	mean	discharge	at	Phnom	Penh	that	are	simulated	by	MIKE	SHE.	The	12	

magnitude	of	these	declines	almost	mirrors	the	increases	simulated	by	Mac-PDM.09.	13	

	14	

Mean	monthly	discharge	(runoff	for	Mac-PDM.09)	expressed	as	a	percentage	of	the	annual	15	

total	is	shown	in	Figure	13	for	five	(three	for	SLURP)	gauging	stations	for	the	baseline	and	16	

each	1–6	°C,	HadCM3	scenario.	Results	for	Nakhon	Phanom	are	representative	of	those	for	17	

Vientiane	(not	shown).	Whilst	for	Chiang	Saen,	SLURP	shows	increased	significance	of	flows	18	

during	the	first	months	of	the	year	and	the	start	of	the	annual	rise,	both	MIKE	SHE	and	Mac-19	

PDM.09	show	only	modest	changes	at	these	times.	Results	for	both	MIKE	SHE	and	SLURP	do,	20	

however,	show	a	smaller	concentration	of	the	total	annual	discharge	during	the	peak	season	21	

(August	and	September),	with	the	monthly	percentages	declining	with	magnitude	of	22	

prescribed	warming.	Conversely,	both	models	show	small	increases	(of	greater	magnitude	23	

with	degree	of	prescribed	warming)	in	the	proportion	of	total	annual	discharge	that	occurs	24	

during	the	recession	period.	In	contrast,	Mac-PDM.09	simulates	a	consistently	increasing	25	
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concentration	of	total	annual	runoff	during	the	peak	season	(June–October)	with	prescribed	1	

warming	and	a	subsequent	decline	in	the	significance	of	recession	flows.		2	

	3	

At	Nakhon	Phanom,	results	for	MIKE	SHE	and	Mac-PDM.09	are	broadly	in	agreement.	Smaller	4	

proportions	of	the	annual	total	discharge	/	runoff	occur	in	peak	months	of	August	and	5	

September.	Both	models	indicate	some	increase	in	the	significance	of	flows	during	the	annual	6	

rise,	whilst	a	noticeable	increase	in	the	October	percentage	is	evident	for	Mac-PDM.09.	In	all	7	

cases,	the	magnitude	of	changes	increases	with	prescribed	warming.	Similar	broad	agreement	8	

is	evident	between	the	three	hydrological	models	for	Pakse	and	between	MIKE	SHE	and	Mac-9	

PDM.09	for	Phnom	Penh.	Results	for	all	the	models	at	these	stations	repeat	the	reduced	10	

concentration	of	annual	flows	in	the	peak	season	and	the	enhanced	importance	of	flows	11	

during	May–July,	the	latter	being	particularly	evident	for	SLURP.	However,	the	enhanced	12	

percentages	of	annual	runoff	occurring	in	October	(both	stations)	and	the	small	reduction	in	13	

the	percentages	for	November	(Phnom	Penh)	that	are	demonstrated	for	Mac-PDM.09	are	not	14	

apparent	for	the	other	hydrological	models.	Results	for	Ubon	for	the	three	models	also	display	15	

similarities.	All	show	increasing	percentage	of	annual	discharge	/	runoff	during	June	and	July	16	

followed	by	reductions	for	August	and	September	for	most	scenarios.	Whilst	MIKE	SHE	and	17	

SLURP	suggest	that	the	proportion	of	total	annual	discharge	occurring	in	the	peak	month	18	

remains	largely	unchanged,	Mac-PDM.09	does	suggest	declines	followed	by	increases	for	the	19	

following	month	that	are	replicated	at	gauging	stations	on	the	main	Mekong.		20	

	21	

4.	Discussion	22	

	23	

4.1.	MIKE	SHE	model	performance	24	

	25	
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The	MIKE	SHE	model	of	the	Mekong	was	developed	using	a	combination	of	physically	based,	1	

spatially	distributed	process	descriptions	alongside	relatively	simple	conceptual,	semi-2	

distributed	approaches	appropriate	for	such	a	large	catchment.	Much	of	the	data	employed	3	

was	taken	from	the	earlier	SLURP	model	(Kingston	et	al.,	2011).	However,	the	use	of	observed	4	

discharge	data	from	12	gauging	stations	instead	of	the	three	employed	by	Kingston	et	al.	5	

(2011)	provides	a	more	robust	calibration	and	assessment	of	model	performance.	This	6	

includes	the	extension	of	model	results	further	downstream	as	well	as	greater	confidence	in	7	

the	model’s	ability	to	simulate	discharge	through	the	catchment.	Model	performance	for	the	8	

30	year	calibration	period	is	generally	classified	as	“excellent”,	especially	for	gauging	stations	9	

on	the	main	Mekong	upstream	of	and	including	Kratie.	Performance	statistics	are	superior	to	10	

those	obtained	for	the	SLURP	model	using	the	same	calibration	period	and	compare	very	11	

favourably	with	previous	models	of	the	Mekong	(Hapuarachchi	et	al.,	2008;	Västilä	et	al.,	12	

2010).	The	performance	of	the	model	for	the	calibration	period	is	weaker	for	gauging	stations	13	

in	the	lowest	part	of	the	catchment	(although	it	is	generally	still	classified	as	“very	good”	or	14	

“fair”),	but	this	may	be	related	to	the	shorter	(10–13	years)	discharge	records.	Model	15	

performance	for	the	two	tributaries	draining	the	Korat	Plateau	(the	Chi	and	Mun)	is	notably	16	

poorer,	echoing	the	results	for	SLURP,	although	it	is	still	superior	to	those	of	this	earlier	study.	17	

	18	

Model	performance	for	the	shorter	validation	period	is	generally	classified	as	“very	good”	19	

(some	statistics	retain	the	“excellent”	classification),	although	mean	discharge	is	consistently	20	

underestimated.	This	may	be	due	to	changes	in	the	catchment	not	represented	within	the	21	

model.	A	number	of	dams	have	been	constructed	with,	for	example,	the	Manwan	hydropower	22	

dam	on	the	Lancang	being	completed	during	the	validation	period.	Lu	and	Siew	(2006)	23	

examined	the	effects	of	three	Chinese	dams	built	in	the	1990s.	They	showed	that	whilst	they	24	

had	some	impacts	on	seasonality	of	flows,	there	was	no	consistent	impact	on	annual	25	

discharges	since	the	hydropower	dams	are	non-consumptive	(apart	from	relatively	small	26	
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evaporative	losses).	Alternatively,	discharge	underestimation	may	be	related	to	land	cover	1	

change.	Deforestation	within	the	Mekong	has	resulted	from	rapid	economic	development	2	

(Nobuhiro	et	al.,	2008)	and	has	compounded	earlier	land	cover	change	resulting	from	conflict	3	

(Lacombe	et	al.,	2010).	However,	in	the	absence	of	time	series	of	vegetation	cover	(e.g.	4	

Delgado	et	al.,	2010),	land	cover	remains	constant	through	the	calibration	and	validation	5	

periods,	an	approach	also	adopted	by	Kingston	et	al.	(2011).	Land	cover	change	can,	however,	6	

significantly	impact	runoff	by	altering	evapotranspiration	rates	(Brown	et	al.,	2005).	Large-7	

scale	forest	clearance	can	increase	runoff	(Bruijnzeel,	2004),	and	over	parts	of	the	Mekong	8	

variations	in	rainfall-runoff	relationships	have	been	attributed	to	land	cover	modifications	9	

(Lacombe	et	al.,	2010).	Initial	exploratory	experiments	in	which	MIKE	SHE	grid	squares	10	

specified	as	the	three	types	of	forest	were	progressively	changed	to	agriculture	caused	11	

discharge	to	increase.	Discharge	overestimation	in	the	most	extreme	case	was	of	a	similar	12	

magnitude	of	(and	in	some	cases	exceeded)	underestimation	in	the	validation	period.	Detailed	13	

assessments	of	the	impact	of	land	cover	change	would	merit	further	exploration	using	the	14	

MIKE	SHE	model.	Similarly,	inclusion	of	the	extant	and	planned	dams	within	the	MIKE	11	15	

model	could	assess	their	impacts	under	baseline	conditions	and	the	climate	change	scenarios.		16	

	17	

The	use	of	the	same	data	as	employed	in	the	SLURP	model	within	MIKE	SHE	inevitably	18	

resulted	in	the	adoption	of	some	approaches	that	may	have	differed	if	the	new	model	had	19	

been	developed	in	isolation	from	this	earlier	study.	In	particular,	alternative	meteorological	20	

inputs	and	their	spatial	distribution	may	have	been	used.	For	example,	different	sub-21	

catchments	defined	the	meteorological	inputs	and	saturated	zone	linear	reservoirs	(the	22	

former	taken	from	SLURP	and	the	latter	being	influenced	by	gauging	station	location	and	23	

catchment	topography).	The	same	spatial	distribution	for	both	might	instead	have	been	used.	24	

This	could	have	advantages	for	the	Lancang,	which	extends	over	a	relatively	large	latitudinal	25	

range	and	has	a	wide	range	of	elevations,	but	is	represented	by	one	meteorological	input	sub-26	
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catchment	(and	three	saturated	zone	linear	reservoirs).	Precipitation	and	temperature	lapse	1	

rates	result	in	some	spatial	variation	in	meteorological	inputs,	but	the	division	of	this	large	2	

sub-catchment	into	smaller	units	could	more	properly	account	for	this	variation.	3	

Alternatively,	meteorological	inputs	could	be	distributed	using	the	0.5°	×	0.5°	grid	employed	4	

within	these	datasets.	This	would	be	analogous	to	changing	inputs	from	station-based	records	5	

(a	single	time	series	applied	to	a	relatively	large	area)	to	gridded	datasets.	As	demonstrated	6	

by	previous	research,	this	would	likely	require	recalibration	of	the	model	(e.g.	Mileham	et	al.,	7	

2008;	Xu	et	al.,	2010),	but	would	enable	the	inclusion	of	smaller	scale	variations	in	8	

meteorological	inputs	under	both	baseline	conditions	and	the	climate	change	scenarios.	9	

	10	

Time	series	of	precipitation	used	in	the	MIKE	SHE	model	were	derived	from	the	UDel	dataset,	11	

as	adopted	in	the	SLURP	model.	This	followed	initial	difficulties	in	calibrating	SLURP	using	12	

CRU	precipitation	(Kingston	et	al.,	2011).	UDel	is	derived	from	fewer	meteorological	stations	13	

than	CRU	and	it	is	possible	that	explains	the	relatively	poor	performance	of	MIKE	SHE	for	the	14	

Chi	and	Mun	sub-catchments.	Recalibration	of	the	model	using	this	alternative	precipitation	15	

dataset	and	the	assessment	of	its	impact	on	scenario	discharge	could	provide	an	extension	of	16	

the	current	study.	Similarly,	initial	attempts	to	calibrate	the	SLURP	model	employed	the	more	17	

data-intensive	Penman-Monteith	PET	method,	with	all	input	data	deriving	from	the	CRU	18	

dataset	(Kingston	et	al.,	2011).	Model	performance	using	these	PET	data	was	not	satisfactory	19	

and	it	was	argued	that	this	might	result	from	the	additional	requirement	for	humidity,	wind	20	

speed	and	net	radiation	data.	These	data	are	typically	less	reliable	in	gridded	datasets	as	a	21	

result	of	measurement	difficulties	and	limited	number	of	meteorological	stations,	especially	22	

for	wind	speed	and	net	radiation	(New	et	al.,	1999).	As	a	result,	the	less	data	intensive	Linacre	23	

PET	was	used	and	so	was	adopted	for	the	MIKE	SHE	model.	Previous	research	has,	however,	24	

shown	that	different	PET	methods	produce	different	climate	change	signals	(e.g.	Kingston	et	25	

al.,	2009),	with	implications	for	climate	change	assessments	of	catchment-scale	water	26	
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resources	(e.g.	Kay	and	Davies,	2008;	Bae	et	al.,	2011).	The	implications	of	this	additional	1	

source	of	uncertainty	could	be	addressed	using	the	MIKE	SHE	model,	through	its	recalibration	2	

using	alternative	PET	methods	and	subsequent	simulation	of	the	climate	change	scenarios.	3	

	4	

The	disconnect	between	daily	meteorological	inputs	and	observed	discharge	data	used	in	5	

model	calibration	results	from	using	monthly	precipitation	totals	and	mean	temperature	and	6	

their	disaggregation	to	a	daily	resolution	using	a	stochastic	weather	generator.	Although	7	

autocalibration	routines	(which	evaluated	objective	functions	at	a	time	step	of	48	hours)	8	

provided	generally	good	performance,	it	was	improved	through	manual	modifications	of	9	

parameters	and	the	aggregation	of	observed	and	simulated	discharge	to	mean	monthly	flows.	10	

This	approach	prevents	the	selection	of	a	range	of	parameter	sets	close	to	the	autocalibration	11	

optimum	that	could	be	used	to	assess	equifinality-related	uncertainty	in	climate	change	12	

impacts	on	river	discharge.	Future	research	could	employ	alternative	external	autocalibration	13	

(e.g.	PEST;	Doherty,	2010),	enabling	the	evaluation	of	objective	functions	at	a	monthly	time	14	

step.	Definition	of	multi-site	objective	functions	based	on	comparisons	of	observed	and	15	

simulated	discharge	at	more	than	one	gauging	station	(as	opposed	to	sequential	calibration	in	16	

a	downstream	direction)	could	facilitate	model	parameter	set	selection	along	the	Pareto	front,	17	

as	described	by	Madsen	(2003),	for	subsequent	climate	change	scenario	simulation.	18	

	19	

4.2.	Climate	change	impacts	on	river	flow	simulated	by	MIKE	SHE	20	

	21	

Results	from	the	scenarios	associated	with	a	2	°C	increase	in	global	mean	temperature	22	

indicate	considerable	uncertainty	in	Mekong	discharge	as	simulated	by	MIKE	SHE	between	23	

the	seven	GCMs.	Inter-CGM	differences	are	predominantly	driven	by	differences	in	24	

precipitation.	For	some	GCMs	(CCCMA	and	NCAR),	mean	discharge	increases	throughout	the	25	

catchment,	for	others	(CSIRO	and	IPSL)	discharge	declines	at	all	gauging	stations.	Results	for	26	
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three	GCMs	indicate	changes	that	depend	upon	location	within	the	catchment.	Declines	in	1	

mean	discharge	occur	in	the	upstream	for	MPI,	whilst	further	downstream	discharge	2	

increases.	The	reverse	trend	is	evident	for	HadGEM1.	For	HadCM3,	increases	in	mean	3	

discharge	extend	from	upstream	to	central	parts	of	the	catchment	whilst	discharge	declines	at	4	

the	lowest	gauging	stations.		The	spatial	pattern	for	HadCM3	remains	the	same	for	increases	5	

in	global	mean	temperature	of	between	1	°C	and	6	°C,	with	the	magnitude	of	changes	6	

generally	increasing	with	higher	temperatures	except	in	central	parts	of	the	catchment.	7	

Upstream	changes	are	driven	by	increases	in	precipitation,	whilst	with	movement	further	8	

downstream,	the	influence	of	higher	precipitation	is	equalled	and	then	exceeded	by	the	9	

impact	of	higher	PET,	especially	for	the	most	extreme	warming	scenarios.	10	

	11	

Although	MIKE	SHE	demonstrates	differences	in	river	flow	between	different	GCMs	for	the	12	

same	climate	change	scenario	and	for	alternative	scenarios	for	the	same	GCM,	an	evaluation	of	13	

the	uncertainty	in	the	environmental	or	water	resources	implications	of	these	differences	14	

would	merit	further	research.	For	example,	approaches	such	as	the	Indicators	of	Hydrological	15	

Alteration	(IHA),	which	defines	ecologically	appropriate	limits	of	hydrological	change	(Richter	16	

et	al.,	1996,	1997),	could	provide	a	method	for	assessing	uncertainty	in	the	impacts	of	changes	17	

in	flow	regime	upon	environmental	flow	conditions	within	the	Mekong.	More	applied	18	

research,	such	as	that	based	on	these	ecological	impacts,	is	required	before	the	concept	of	2	°C	19	

as	a	threshold	for	dangerous	climate	change	can	be	validated.	20	

	21	

4.3.	Comparison	of	climate	change	impacts	between	hydrological	models:	GCM-	versus	22	

hydrological	model-related	uncertainty	23	

	24	

Comparison	of	climate	change	scenario	results	from	MIKE	SHE	with	those	from	an	alternative	25	

catchment	hydrological	model	(SLURP)	and	the	Mac-PDM.09	global	hydrological	model	26	
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provides	an	opportunity	to	assess	the	magnitude	of	uncertainty	associated	with	the	use	of	1	

alternative	hydrological	models.	As	previously	noted,	this	source	of	uncertainty	is	less	2	

frequently	considered	in	hydrological	impact	assessments	compared	to	those	associated	with	3	

alternative	GCMs	(Prudhomme	and	Davies,	2009).	This	study	demonstrates	that,	in	4	

accordance	with	other	investigations	(Dibike	and	Coulibaly,	2005;	Haddeland	et	al.,	2011;	5	

Hagemann	et	al.,	2012),	hydrological	model-related	uncertainty	should	not	be	ignored.	6	

However,	results	suggest	that,	in	general,	climate	model	uncertainty	is	larger	than	that	7	

associated	with	the	choice	of	hydrological	model.	Although	results	for	the	different	GCMs	8	

demonstrate	both	increases	and	decreases	in	mean	discharge	(runoff	for	Mac-PDM.09),	the	9	

direction	of	change	simulated	by	each	of	the	hydrological	models	for	a	particular	gauging	10	

station	is	predominantly	the	same	(differing	for	only	three	out	of	42	gauging	station	/	GCM	11	

combinations).	Where	the	direction	of	the	mean	river	flow	climate	change	signal	differs	12	

between	hydrological	models,	the	magnitude	of	change	is	relatively	small.	In	most	cases,	the	13	

smallest	changes	are	associated	with	SLURP	and	the	largest	with	Mac-PDM.09.	The	larger	14	

climate	change	signal	for	Mac-PDM.09	is	most	evident	in	those	scenarios	where	runoff	is	15	

projected	to	increase,	especially	at	upstream	gauging	stations.	The	HadCM3	GCM,	in	16	

particular,	results	in	much	larger	changes	for	the	global	hydrological	model	compared	to	the	17	

two	catchment	models.	18	

	19	

Despite	these	differences,	there	are	similarities	in	the	distribution	of	river	flows	through	the	20	

year	in	each	of	the	hydrological	models.	Many	of	the	changes	in	these	distributions	simulated	21	

by	MIKE	SHE	for	the	climate	change	scenarios	are	replicated	by	Mac-PDM.09,	although	the	22	

amplitude	of	the	annual	cycle	is	greater	for	the	latter	model.	Similarities	in	the	seasonal	flow	23	

distribution	from	the	SLURP	model	and	both	MIKE	SHE	and	Mac-PDM.09	are	also	evident.	In	24	

particular,	common	features	occur	in	the	results	for	lower	gauging	stations,	where	the	25	
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influence	of	the	earlier	rise	in	the	annual	hydrograph	in	the	far	north	that	is	simulated	by	1	

SLURP,	but	less	so	by	MIKE	SHE	and	Mac-PDM.09,	has	diminished.	2	

	3	

Quantification	of	the	relative	uncertainty	associated	with	choice	of	GCM	and	hydrological	4	

model	can	be	provided	using	the	approach	of	Gosling	et	al.	(2011a).	The	greatest	absolute	5	

differences	in	the	mean	annual	discharge	(runoff)	climate	change	signal	between	any	two	6	

GCMs	for	the	2	°C	scenarios	for	Pakse	as	simulated	by	MIKE	SHE,	SLURP	and	Mac-PDM.09	are	7	

26.7%,	24.3%	and	31.5%,	respectively.	In	comparison,	the	largest	absolute	MIKE	SHE–SLURP	8	

difference	in	the	climate	change	signal	for	this	station	for	any	GCM	is	4.7%.	The	corresponding	9	

figures	for	MIKE	SHE–Mac-PDM.09	and	SLURP–Mac-PDM.09	comparisons	are	7.0%	and	10	

10.0%,	respectively.	This	suggests	that	GCM-related	uncertainty	is	between	2.5	and	nearly	six	11	

times	that	associated	with	choice	of	hydrological	model.		12	

	13	

The	analysis	of	Gosling	et	al.	(2011a)	was	limited	to	Pakse,	the	furthest	downstream	gauging	14	

station	simulated	by	SLURP.	By	extending	the	inter-hydrological	model	analysis	to	other	15	

stations,	it	is	possible	to	identify	spatial	differences	in	the	relative	uncertainty	due	to	choice	of	16	

GCM	and	hydrological	model.	Whilst	for	downstream	gauging	stations	(Phnom	Penh	and	17	

Ubon),	the	absolute	differences	in	the	climate	change	signal	for	the	different	hydrological	18	

models	for	any	GCM	are	similar	to	those	for	Pakse,	further	upstream,	differences	between	19	

results	for	the	two	catchment	models	and	Mac-PDM.09	are	larger.	At	Chiang	Saen,	the	largest	20	

absolute	MIKE	SHE–SLURP	difference	in	the	climate	change	signal	for	any	GCM	is	7.9%.	The	21	

corresponding	figures	for	comparisons	between	MIKE	SHE–Mac-PDM.09	and	SLURP–Mac-22	

PDM.09	are	31.8%	and	38.5%.	These	compare	to	the	largest	absolute	differences	in	climate	23	

change	signal	between	any	two	GCMs	simulated	by	MIKE	SHE,	SLURP	and	Mac-PDM.09	of	24	

29.9%,	18.8%	and	43.3%,	respectively.	Inter-hydrological	model	range	in	climate	change	25	

signal	when	comparing	catchment	and	global	models	is	therefore	of	a	similar	or	even	larger	26	



49	
	

magnitude	than	that	associated	with	different	GCMs.	This	result	is	predominantly	due	to	the	1	

large	increases	in	mean	runoff	simulated	by	Mac-PDM.09	for	three	scenarios,	and	in	particular	2	

HadCM3.	Excluding	this	GCM	from	the	inter-hydrological	model	comparisons	lowers	the	3	

largest	absolute	difference	in	mean	discharge	climate	change	signal	for	any	GCM	to	11.1%	and	4	

13.6%	for	MIKE	SHE–Mac-PDM.09	and	SLURP–Mac-PDM.09,	respectively.	As	noted	above,	5	

however,	the	direction	of	change	for	each	GCM	is	the	same	for	the	three	hydrological	models.	6	

	7	

Differences	between	results	of	Mac-PDM.09	and	the	two	catchment	models	for	the	HadCM3	8	

GCM	is	especially	evident	for	the	1–6	°C	scenarios	and	has	implications	for	direction	of	change	9	

in	mean	runoff.	Whilst	both	MIKE	SHE	and	Mac-PDM.09	simulate	increases	in	mean	discharge	10	

/	runoff	at	upstream	gauging	stations	(with	similar,	albeit	smaller,	increase	predicted	by	11	

SLURP	at	Chiang	Saen),	towards	the	downstream	end	of	the	catchment	the	direction	of	change	12	

for	the	two	models	almost	mirror	one	another	(small	increases	for	Mac-PDM.09,	declines	of	13	

equal	magnitude	for	MIKE	SHE).	The	much	larger	upstream	increases	simulated	by	Mac-14	

PDM.09	effectively	drown	out	the	influence	of	declining	contributions	from	tributaries	in	the	15	

southern	part	of	the	catchment	that	are	common	to	all	three	hydrological	models.	As	such,	16	

differences	between	the	results	for	the	two	catchment	hydrological	models	and	Mac-PDM.09	17	

for	HadCM3	are	a	result	of	the	spatially	variable	changes	in	projected	climate:	relatively	large	18	

(compared	to	other	GCMs)	upstream	increases	in	precipitation	and	progressively	larger	19	

reductions	in	precipitation	in	a	downstream	direction.	20	

	21	

In	contrast	to	the	HadCM3	scenarios,	differences	between	catchment	and	global	hydrological	22	

models	are	smaller	where	a	predominantly	uniform	change	in	climate	is	projected	by	a	GCM	23	

(increasing	precipitation	across	the	catchment:	e.g.	CCCMA,	MPI	and	NCAR;	declining	24	

precipitation	over	all,	or	most,	sub-catchments:	e.g.	CSIRO,	ISPL).	Results	from	this	study	25	

suggest	that	although	the	global	hydrological	model	may	provide	a	useful	tool	in	assessing	26	
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likely	changes	in	runoff	at	the	individual	catchment	scale,	care	should	be	taken	in	situations	1	

such	as	those	presented	by	the	HacCM3	scenarios	where	spatially	variable	climate	change	2	

signals	are	projected	for	a	catchment.	Differences	in	modelled	hydrological	response	from	3	

linear	changes	in	monthly	climate	introduce	uncertainty	into	the	identification	of	thresholds	4	

for	“dangerous	climate	change”.	5	

	6	

Although	a	precise	identification	of	the	reasons	for	the	differences	in	climate	change	signals	7	

from	the	three	hydrological	models	is	difficult	due	to	their	inherently	different	structures	and	8	

process	representations	(Table	1),	it	is	possible	to	highlight	some	factors	which	may	influence	9	

the	different	responses	of	simulated	discharge	/	runoff.	For	example,	the	previously	noted	10	

greater	amplitude	of	the	annual	runoff	cycle	simulated	by	Mac-PDM.09	for	the	baseline	and	11	

each	scenario	when	compared	to	discharge	results	from	MIKE	SHE	(and,	where	available,	12	

SLURP)	is	probably	due	to	the	absence	of	routing	of	runoff	within	Mac-PDM.09.	Consequently	13	

runoff	generated	in	the	far	north	of	the	catchment	is	included	within	the	total	runoff	for	that	14	

month	at	a	gauging	station	that	may	be	hundreds	or	thousands	of	kilometres	downstream.	15	

	16	

Other	differences	may	result	from	the	spatial	resolution	and	distribution	of	process	17	

computation.	For	example,	the	MIKE	SHE	model	undertakes	process	calculations,	with	the	18	

exception	of	the	saturated	zone	(for	which	the	linear	reservoirs	are	employed),	for	all	cells	19	

within	the	10	km	×	10	km	computational	grid.	The	spatial	distribution	of	catchment	20	

characteristics	at	this	scale	is	therefore	represented,	and	there	is	the	potential	for	exchange	21	

between	grid	cells	though	processes	such	as	overland	flow.	Similarly,	water	balance	22	

calculations	within	Mac-PDM.09	are	undertaken	for	each	0.5°	×	0.5°	cell	although,	as	23	

described	above,	each	cell	is	treated	as	an	independent	catchment	and	there	is	no	exchange	24	

between	neighbouring	cells.	SLURP,	in	contrast,	evaluates	vertical	balances	for	a	relatively	25	

small	number	of	elements,	with	results	being	aggregated	at	the	sub-catchment	scale.		26	
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	1	

Linked	to	the	approach	used	to	distribute	process	calculations	and	catchment	characteristics	2	

is	the	distribution	of	meteorological	inputs.	MIKE	SHE	and	SLURP	employed	the	same	sub-3	

catchments	to	define	the	distribution	of	meteorological	inputs	(albeit	with	spatial	variation	in	4	

MIKE	SHE	being	induced	through	the	inclusion	of	lapse	rates),	whereas	Mac-PDM.09	5	

employed	the	0.5°	×	0.5°	grid	used	within	the	gridded	meteorological	datasets.	As	discussed	6	

above,	the	latter	is	more	likely	to	represent	true	spatial	variability	over	the	catchment,	7	

especially	for	large	sub-catchments	such	as	the	Lancang.	The	application	of	alternative	8	

approaches	to	distribute	meteorological	inputs	has	been	highlighted	as	a	potential	9	

development	of	the	current	study.		10	

	11	

A	potential	cause	of	Mac-PDM.09	simulating	larger	increases	in	mean	runoff	at	upstream	12	

gauging	stations	for	the	HadCM3	1–6	°C	scenarios,	as	well	as	for	the	2	°C	scenarios	for	other	13	

GCMs	for	which	such	increases	occur,	may	be	related	to	the	PET	methods	employed	by	the	14	

three	hydrological	models.	Mac-PDM.09,	which	was	not	specifically	calibrated	for	the	Mekong	15	

since	it	is	typically	applied	to	assess	runoff	at	the	continental	to	global	scale,	uses	Penman-16	

Monteith	PET.	In	contrast,	Kingston	et	al.	(2011)	selected	Linacre	PET	for	the	SLURP	model	17	

and	this	dataset	was	employed	in	the	MIKE	SHE	model.	As	discussed	previously,	Linacre	PET	18	

was	used	following	unsuccessful	attempts	to	calibrate	SLURP	using	Penman-Monteith	PET.	19	

The	use	of	the	latter	PET	method	resulted	in	significant	over-estimation	of	discharge.	20	

Evaluation	of	mean	annual	Penman-Monteith	PET	using	the	CRU	TS	3.0	dataset	for	each	of	the	21	

meteorological	input	sub-catchments	shows	that	on	average	baseline	Penman-Monteith	PET	22	

is	71.6%	of	Linacre	PET.	The	mean	increase	in	annual	Linacre	PET	for	the	2	°C	HadCM3	23	

scenario	for	all	the	sub-catchments	is	14.4%	compared	to	8.9%	for	Penman-Monteith.	This	24	

pattern	is	repeated	for	the	other	scenarios.	Therefore,	although	Mac-PDM.09	is	responding	to	25	

the	same	changes	in	precipitation,	absolute	PET	and	scenario	increases	are	smaller.	It	is	likely	26	
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that	this	results	in	the	larger	increases	in	mean	Mac-PDM.09	runoff	for	those	scenarios	in	1	

which	precipitation	increases.	This	sensitivity	to	alternative	PET	methods,	previously	2	

demonstrated	for	Mac-PDM.09	by	Gosling	and	Arnell	(2011),	strengthens	the	argument	for	3	

using	the	MIKE	SHE	model	to	evaluate	this	additional	source	of	uncertainty	upon	climate	4	

change	projections	of	Mekong	River	discharge.	5	

	6	

This	study	has	demonstrated	that	GCM-related	uncertainty	in	climate	change	projections	for	7	

the	Mekong	is	predominantly	larger	than	that	related	to	the	use	of	three	alternative	8	

hydrological	models.	The	latter,	however,	is	not	negligible,	and	in	some	cases	hydrological	9	

model	related-uncertainty	is	of	a	similar	magnitude	to	GCM-related	uncertainty.	GCM-related	10	

uncertainty	could	be	addressed	by	the	development	of	GCM	reliability	ratings	using	11	

comparisons	between	simulated	and	observed	climate	(e.g.	Perkins	et	al.,	2007;	Maxino	et	al.,	12	

2008;	Ghosh	and	Mujumdar,	2009).	This	would	be	particularly	valuable	since	a	number	of	13	

studies	have	suggested	GCM	shortcomings	in	the	representation	of	monsoon	climate	(e.g.	14	

Kang	et	al.,	2002;	Waliser	et	al.,	2003;	Wang	et	al.,	2004).	Evaluation	of	GCM	performance	is	15	

beyond	the	scope	of	the	current	study.	However,	an	investigation	by	Kripalani	et	al.	(2007)	16	

has	demonstrated	considerable	differences	in	the	ability	of	22	GCMs,	including	the	seven	17	

employed	in	this	study,	to	reproduce	the	annual	monsoon	cycle.		CCCMA,	MPI	and	NCAR	18	

simulated	mean	monthly	precipitation	that	was	similar	in	terms	of	shape	and	magnitude	to	19	

the	observed	derived	from	the	Climate	Prediction	Center	Merged	Analysis	Precipitation	20	

(CMAP)	dataset	(Xie	and	Arkin,	1997).	HadGEM1	reproduced	the	annual	cycle	but	21	

underestimated	precipitation	amounts	whilst	CSIRO	and	HadCM3	simulated	peak	22	

precipitation	a	month	later	than	the	observed.	ISPL	was	one	of	three	models	that	did	not	23	

accurately	reproduce	the	annual	monsoon	precipitation	cycle.	This	earlier	investigation,	24	

however,	considered	the	south	Asian	region,	with	the	region	of	interest	only	just	extending	25	

into	the	far	western	part	of	the	upper	Lancang	sub-catchment.	A	similar	GCM	/	observed	26	
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precipitation	comparison	over	southeast	Asia	would	be	required	to	confirm	whether	the	1	

relative	performance	of	the	different	GCMs	extended	to	the	Mekong	catchment.	2	

	3	

5.	Conclusions	4	

	5	

The	MIKE	SHE	model	of	the	Mekong,	which	utilises	a	combination	of	physically	based,	6	

spatially	distributed	process	descriptions	and	simpler	conceptual,	semi-distributed	7	

approaches,	successfully	simulates	river	discharge	through	the	catchment.	Model	8	

performance	is	generally	classified	as	“excellent”	or	“very	good”	and	is	superior	to	the	SLURP	9	

model	from	which	most	model	data	is	derived.	The	MIKE	SHE	model	also	compares	very	10	

favourably	with	previous	hydrological	models	of	the	Mekong.		11	

	12	

The	simulation	of	two	sets	of	climate	change	scenarios	reveals	considerable	uncertainty	in	13	

projected	river	discharge.	Whilst	results	for	a	2°	C	increase	in	global	mean	temperature	using	14	

projections	from	two	GCMs	indicate	increases	in	discharge	throughout	the	catchment,	another	15	

two	GCMs	produce	consistent	decreases	in	Mekong	discharge.	Results	for	a	further	three	16	

GCMs	indicate	that	the	direction	of	change	in	discharge	varies	spatially	through	the	17	

catchment.	Variations	in	the	results	for	the	different	GCMs	are	largely	driven	by	differences	in	18	

precipitation.	Scenarios	associated	with	one	GCM	(HadCM3)	and	increases	in	global	mean	19	

temperate	of	between	1°	C	and	6°	C	demonstrate	consistent	increases	in	discharge	in	20	

upstream	parts	of	the	catchment,	where	the	climate	change	signal	is	dominated	by	increasing	21	

precipitation.	The	climate	change	signal	in	downstream	parts	of	the	catchment	is	more	22	

strongly	influenced	by	increasing	PET,	which	outweighs	the	impacts	of	elevated	upstream	23	

precipitation	and	results	in	consistent	reductions	in	discharge	for	warmer	scenarios.	24	

	25	
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A	comparison	of	results	for	the	two	sets	of	climate	change	scenarios	simulated	by	MIKE	SHE,	1	

the	SLURP	semi-distributed	conceptual	catchment	model	and	the	Mac-PDM.09	global	2	

hydrological	model	demonstrates	that	hydrological	model-related	uncertainty	should	not	be	3	

ignored.	However,	in	most	cases	the	magnitude	of	this	uncertainty	is	less	than	GCM	4	

uncertainty.	The	direction	of	change	in	mean	runoff	for	any	GCM	from	the	2	°C	scenario	set	is	5	

predominantly	the	same	across	the	hydrological	models,	whilst	similar	features	are	evident	in	6	

changes	in	the	seasonal	distribution	of	flows.	Mac-PDM.09	is,	however,	often	associated	with	7	

larger	changes	than	MIKE	SHE	and	SLURP,	especially	where	mean	flow	is	projected	to	8	

increase.		9	

	10	

Over	upstream	parts	of	the	catchment,	differences	between	the	catchment	and	global	11	

hydrological	models	are	of	a	similar	magnitude	to	those	associated	with	different	GCMs.	This	12	

is	probably	due	to	alternative	PET	methods	used	within	the	models.	Larger	increases	in	runoff	13	

upstream	for	Mac-PDM.09	have	implications	for	the	direction	of	change	further	downstream,	14	

especially	for	scenarios	(in	particular	HadCM3)	where	the	nature	of	projected	changes	in	15	

climate	varies	across	the	catchment.	Whilst	the	global	hydrological	model	therefore	provides	16	

a	useful	tool	for	assessing	impacts	of	climate	change	on	runoff	at	the	individual	catchment	17	

scale	and,	in	particular,	for	quantifying	climate	model	uncertainty	in	situations	where	a	18	

catchment	model	is	not	available	or	where	time	or	resources	are	inadequate	to	develop	such	a	19	

model,	care	should	be	taken	in	some	circumstances	such	as	with	applying	the	model	to	20	

individual	sub-catchments	with	large	distinct	spatial	variations	in	baseline	or	projected	future	21	

climate.	Moreover,	the	application	of	any	global	hydrological	model	to	the	sub-catchment	22	

scale	should	be	approached	carefully,	since	these	models	are	inherently	intended	for	23	

application	across	larger	spatial	domains.		24	

	25	
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Possible	extensions	of	this	research	could	include	rigorous	assessments	of	the	impacts	of	past	1	

and	future	land	cover	change	upon	runoff.	The	implications	of	using	other	precipitation	2	

datasets	and	different	PET	methods	within	the	MIKE	SHE	model,	as	well	as	alternative	3	

approaches	of	spatially	distributing	these	meteorological	inputs,	upon	projected	river	flow	for	4	

the	same	climate	change	scenarios	would	provide	additional	insights	into	hydrological	model-5	

related	uncertainty.	Finally,	assessments	of	the	implications	of	uncertainty	in	the	hydrological	6	

projections	presented	in	the	current	study	for	ecological	conditions	would	be	a	valuable	next	7	

step	for	research	on	climate	change	and	the	Mekong	River.	8	
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Tables	1	

Table	1.	Summary	of	key	attributes	of	the	MIKE	SHE,	SLURP	and	Mac-PDM.09	hydrological	2	
models	of	the	Mekong.	3	
	4	
Attribute	 MIKE	SHE	 SLURP	 Mac-PDM.09	
Model	type	 Distributed,	physically	based	

model,	with	conceptual	
linear	reservoir	saturated	
zone	component	

Semi-distributed	vertical	
water	balance	model	

Semi-distributed	conceptual	
water	balance	global	
hydrological	model	

River	routing		 Kinematic	routing	(MIKE	11)	 Muskingum		 None	
Time	step	 Variable	–	max.	48	hours	 Daily	 Daily	
Meteorological	
inputs+	

P,	T,	PET	 P,	T	 P,	T,	W,	SH,	LWnet,	SW	

PET	method	 Linacre	PET	calculated	
externally	

Linacre	PET	calculated	
within	the	model	

Penman-Monteith	PET	
calculated	within	the	model		

Snow	scheme	 Degree-day	 Degree-day		 Degree-day	
Meteorological	
inputs	spatial	
distribution	

Distributed	according	to	13	
sub-catchments	from	SLURP	
(Figure	1)	

Distributed	according	to	13	
sub-catchments	(Figure	1)	
	

0.5°	×	0.5°	grid	

Spatial	
distribution	of	
catchment	
characteristics	

Topography,	land	cover	and	
soil:	based	on	1	km	×	1	km	
gridded	data	resampled	to	a	
10	km	×	10	km	
computational	grid	

Topography,	land	cover	and	
soil:	based	on	a	1	km	×	1	km	
gridded	data	

Land	cover	and	soil:	0.5°	×	
0.5°	grid	

Spatial	
resolution	of	
process	
computation	

All	model	components	
except	the	saturated	zone:	
distributed	according	to	10	
km	×	10	km	grid.	Saturated	
zone:	distributed	according	
to	17	sub-catchments,	each	
comprising	three	interflow	
and	two	baseflow	reservoirs		
(Figure	1).	

13	sub-catchments	divided	
into	elements	for	water	
balance	calculations	based	on	
land	cover,	with	98	elements	
for	the	Mekong	catchment.	
Results	for	each	element	
aggregated	based	on	relative	
cover	within	each	sub-
catchment.	

0.5°	×	0.5°	grid	

Calibration	
parameters*	

ki,	kp,	kb,	DZfrac,	Plapse,	Tlapse,	
DD	

RC,	M,	FC,	U	 Not	calibrated	for	the	
Mekong	(see	text)	

+	P:	precipitation,	T:	air	temperature,	PET:	potential	evapotranspiration,	W:	wind	speed,	SH:	specific	humidity,	5	
LWnet:	net	longwave	radiation	flux,	SW:	shortwave	radiation	flux	(downward)	6	
*	ki:	interflow	time	constants	for	saturated	zone	interflow	reservoirs,	kp:	percolation	time	constants	for	saturated	7	
zone	interflow	reservoirs,	kb:	time	constants	for	baseflow	reservoirs,	DZfrac:	dead	storage	in	the	baseflow	8	
reservoirs,	Plapse:	precipitation	lapse	rate,	Tlapse:	temperature	lapse	rate,	DD:	snow	melt	degree-day	coefficient,	9	
RC:	retention	constants	and	capacities	of	the	fast	and	slow	soil	stores,	M:	Manning’s	n	roughness	coefficient	for	10	
overland	flow,	FC:	soil	field	capacity	coefficients,	U:	wind	factor	used	in	computation	of	Linacre	PET	11	
	12	

	 	13	
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Table	2.	MIKE	SHE	model	performance	statistics	for	twelve	gauging	stations	within	the	Mekong	1	

Basin	for	the	calibration	period	(1961-1990	unless	stated	otherwise).	Letters	after	gauging	2	

station	names	refer	to	the	labels	used	in	Figure	1.	Corresponding	statistics	from	Kingston	et	al.	3	

(2011)	for	SLURP	are	shown	in	brackets	for	three	stations.	Model	performance	indicators	are	4	

taken	from	Henriksen	et	al.	(2008).	5	

	6	
		 Obs	

Mean	
Sim	
Mean	

	 	 	
Station	 (m3s-1)	 (m3s-1)	 Dv	(%)+	 NSE*	 r#	
Mekong	at	Chiang	Saen	(a)	 2711.3	 2735.3	 +0.88	 0.888	 0.943	
	 	 	 ¶¶¶¶¶	 ¶¶¶¶¶	 	
	 	 (2921.1)	 (+8.20)	 (0.78)	 	
	 	 	 (¶¶¶¶)	 (¶¶¶¶)	 	
Mekong	at	Luang	Prabang	(b)	 3980.2	 4132.4	 +3.82	 0.892	 0.947	
	 	 	 ¶¶¶¶¶	 ¶¶¶¶¶	 	
Mekong	at	Vientiane	(c)	 4521.1	 4740.9	 +4.86	 0.900	 0.951	
	 	 	 ¶¶¶¶¶	 ¶¶¶¶¶	 	
Mekong	at	Nakhon	Phanom	(d)	 7031.6	 7322.7	 +4.14	 0.910	 0.955	
	 	 	 ¶¶¶¶¶	 ¶¶¶¶¶	 	
Mekong	at	Mukdahan	(e)	 7602.4	 7874.4	 +3.58	 0.907	 0.953	
	 	 	 ¶¶¶¶¶	 ¶¶¶¶¶	 	
Mekong	at	Pakse	(f)	 9836.8	 10144.8	 +3.13	 0.901	 0.951	
	 	 	 ¶¶¶¶¶	 ¶¶¶¶¶	 	
	 	 (9876.7)	 (+0.90)	 (0.890)	 	
	 	 	 (¶¶¶¶¶)	 (¶¶¶¶¶)	 	
Mekong	at	Stung	Treng	(1961–1969)	(g)	 13381.0	 13911.8	 +3.97	 0.924	 0.963	
	 	 	 ¶¶¶¶¶	 ¶¶¶¶¶	 	
Mekong	at	Kratie	(h)	 13418.9	 13579.8	 +1.20	 0.901	 0.950	
	 	 	 ¶¶¶¶¶	 ¶¶¶¶¶	 	
Mekong	at	Kompong	Cham	(1964–Mar	1974)	(i)	 13409.5	 14237.8	 +6.18	 0.904	 0.954	
	 	 	 ¶¶¶¶	 ¶¶¶¶¶	 	
Mekong	at	Phnom	Penh	(1961–Mar	1974)	(j)	 13022.3	 14719.4	 +13.03	 0.866	 0.951	
	 	 	 ¶¶¶	 ¶¶¶¶¶	 	
Chi	at	Yasothon	(k)	 202.3	 204.1	 +0.88	 0.494	 0.712	
	 	 	 ¶¶¶¶¶	 ¶¶	 	
Mun	at	Ubon	(l)	 636.3	 638.4	 +0.34	 0.550	 0.750	
		 		 		 ¶¶¶¶¶	 ¶¶¶	 		
	 	 (899.5)	 (+41.90)	 (0.44)	 	
	 	 	 (¶)	 (¶¶)	 	
Performance	
indicator	

Excellent	
¶¶¶¶¶	

Very	good	
¶¶¶¶	

Fair	
¶¶¶	

Poor	
¶¶	

Very	poor	
¶	

Dv	 <	5%	 5–10	%	 10–20	%	 20–40%	 >40	%	
NSE	 >0.85	 0.65–0.85	 0.50–0.65	 0.20–0.50	 <0.20	

+	percentage	deviation	in	simulated	mean	flow	from	observed	mean	flow	(Henriksen	et	al.,	2003),	*	Nash-7	
Sutcliffe	coefficient	(Nash	and	Sutcliffe,	1970),	#	Pearson	correlation	coefficient	8	
	 	9	
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Table	3.	MIKE	SHE	model	performance	statistics	for	ten	gauging	stations	within	the	Mekong	1	

catchment	for	the	validation	period	(1991-1998	unless	stated	otherwise).	Letters	after	gauging	2	

station	names	refer	to	the	labels	used	in	Figure	1.	Corresponding	statistics	from	Kingston	et	al.	3	

(2011)	for	SLURP	are	shown	in	brackets	for	two	stations.	Model	performance	indicators	are	4	

taken	from	Henriksen	et	al.	(2008).	5	

	6	
		 Obs	

Mean	
Sim	
Mean	

	 	 	
Station	 (m3s-1)	 (m3s-1)	 Dv	(%)+	 NSE*	 r#	
Mekong	at	Chiang	Saen	(1991–Jun	1997)	(a)	 2490.3	 2258.7	 -9.30	 0.813	 0.850	
	 	 	 ¶¶¶¶	 ¶¶¶¶	 	
	 	 (2550.0)	 (+2.40)	 (0.810)	 	
	 	 	 (¶¶¶¶¶

)	
(¶¶¶¶)	 	

Mekong	at	Luang	Prabang	(1991–1997)	(b)	 3749.7	 3448.9	 -8.02	 0.887	 0.904	
	 	 	 ¶¶¶¶	 ¶¶¶¶¶	 	
Mekong	at	Vientiane	(1991–1996)	(c)	 4241.7	 3969.1	 -6.43	 0.901	 0.922	
	 	 	 ¶¶¶¶	 ¶¶¶¶¶	 	
Mekong	at	Nakhon	Phanom	(1991–Nov	1995)	(d)	 7063.2	 6404.3	 -9.33	 0.791	 0.853	
	 	 	 ¶¶¶¶	 ¶¶¶¶	 	
Mekong	at	Mukdahan	(1991–1995)	(e)	 7434.4	 6866.9	 -7.63	 0.812	 0.853	
	 	 	 ¶¶¶¶	 ¶¶¶¶	 	
Mekong	at	Pakse	(1991–1998)	(f)	 9168.4	 8400.5	 -8.38	 0.858	 0.877	
	 	 	 ¶¶¶¶	 ¶¶¶¶¶	 	
	 	 (8783.4)	 (-4.20)	 (0.770)	 	
	 	 	 (¶¶¶¶¶

)	
(¶¶¶¶)	 	

Mekong	at	Stung	Treng	(1991–1993)	(g)	 12569.5	 11139.8	 -11.37	 0.508	 0.536	
	 	 	 ¶¶¶	 ¶¶¶	 	
Mekong	at	Kratie	(1991–1998)	(h)	 12505.7	 11700.8	 -6.44	 0.734	 0.759	
	 	 	 ¶¶¶¶	 ¶¶¶¶	 	
Chi	at	Yasothon	(1991–1995)	(k)	 200.4	 166.8	 -16.73	 0.581	 0.650	
	 	 	 ¶¶¶	 ¶¶¶	 	
Mun	at	Ubon	(1991–1993)	(l)	 486.8	 440.0	 -9.60	 0.820	 0.847	
		 		 		 ¶¶¶¶	 ¶¶¶¶	 		
Performance	
indicator	

Excellent	
¶¶¶¶¶	

Very	good	
¶¶¶¶	

Fair	
¶¶¶	

Poor	
¶¶	

Very	poor	
¶	

Dv	 <	5%	 5–10	%	 10–20	%	 20–40%	 >40	%	
NSE	 >0.85	 0.65–0.85	 0.50–0.65	 0.20–0.50	 <0.20	

+	percentage	deviation	in	simulated	mean	flow	from	observed	mean	flow	(Henriksen	et	al.,	2003),	*	Nash-7	
Sutcliffe	coefficient	(Nash	and	Sutcliffe,	1970),	#	Pearson	correlation	coefficient	8	
	9	
	 	10	
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Table	4.	Mean	annual	precipitation	and	potential	evapotranspiration	(PET)	for	the	baseline	1	

(mm)	and	changes	(%)	for	the	climate	change	scenarios	for	representative	sub-catchments	2	

within	the	Mekong	catchment.	(Numbers	in	brackets	refer	to	the	meteorological	inputs	sub-3	

catchments	identified	in	Figure	1.	Shaded	cells	indicate	negative	changes	compared	to	the	4	

baseline).	5	

	6	

Parameter	 Scenario	
Lancang	
(1)	

Mek.	1	
(4)	

Chi	
(5)	

Mun	
(6)	

Mek.	2	
(8)	

Se	
Kong	
(9)	

Sre	
Pok	
(10)	

Mek.	3	
(11)	

Precipitation	 Baseline	 1052.8	 1855.8	 1272.3	 1313.6	 2213.2	 2432.5	 2055.3	 1870.3	
	 CCCMA	 10.1	 10.2	 12.3	 10.2	 8.4	 5.2	 1.9	 5.3	
	 CSIRO	 -4.6	 -4.6	 -3.3	 -2.9	 -2.8	 -2.8	 -2.9	 -1.3	
	 HadCM3	 10.1	 1.0	 -0.1	 -0.4	 -1.1	 -2.1	 -4.5	 -3.0	
	 HadGEM1	 5.9	 -3.7	 -6.1	 -4.8	 -1.2	 2.9	 3.9	 1.0	
	 IPSL	 -5.2	 -1.1	 -0.1	 -0.1	 0.6	 -0.4	 1.3	 -0.4	
	 MPI	 3.6	 7.0	 10.2	 10.3	 8.8	 6.6	 7.6	 12.2	
	 NCAR	 8.5	 9.1	 5.0	 3.5	 1.9	 3.5	 3.7	 5.3	
PET	 Baseline	 1765.6	 1923.0	 2363.6	 2336.5	 1813.0	 1728.5	 1695.9	 1770.3	
	 CCCMA	 11.7	 12.3	 13.1	 12.7	 12.5	 12.7	 12.3	 12.5	
	 CSIRO	 14.6	 15.7	 15.9	 15.2	 15.2	 14.9	 14.2	 14.3	
	 HadCM3	 12.9	 13.9	 13.3	 13.2	 14.7	 14.8	 14.8	 15.1	
	 HadGEM1	 12.4	 12.1	 10.3	 10.3	 12.4	 13.0	 12.7	 12.5	
	 IPSL	 15.9	 15.7	 15.3	 14.2	 14.3	 13.9	 12.8	 13.2	
	 MPI	 13.6	 13.6	 13.3	 12.9	 13.4	 13.5	 13.1	 13.2	
	 NCAR	 11.3	 10.9	 11.1	 10.6	 11.4	 11.1	 10.7	 10.3	
Precipitation	 Baseline	 1052.8	 1855.8	 1272.3	 1313.6	 2213.2	 2432.5	 2055.3	 1870.3	
	 1°C	 5.0	 0.4	 -0.1	 -0.3	 -0.6	 -1.3	 -2.7	 -1.7	
	 2°C	 10.1	 1.0	 -0.1	 -0.4	 -1.1	 -2.1	 -4.5	 -3.0	
	 3°C	 15.2	 1.6	 0.1	 -0.4	 -1.3	 -2.6	 -5.6	 -4.2	
	 4°C	 20.2	 2.4	 0.4	 -0.2	 -1.3	 -3.0	 -6.3	 -5.1	
	 5°C	 25.3	 3.3	 0.9	 0.1	 -1.3	 -3.1	 -6.7	 -6.0	
	 6°C	 30.2	 4.3	 1.5	 0.5	 -1.1	 -3.2	 -6.9	 -6.7	
PET	 Baseline	 1765.6	 1923.0	 2363.6	 2336.5	 1813.0	 1728.5	 1695.9	 1770.3	
	 1°C	 6.3	 6.8	 6.4	 6.2	 7.3	 7.4	 7.3	 7.2	
	 2°C	 12.9	 13.9	 13.3	 13.2	 14.7	 14.8	 14.8	 15.1	
	 3°C	 19.8	 21.3	 20.6	 20.6	 22.4	 22.5	 22.6	 23.5	
	 4°C	 26.9	 29.1	 28.2	 28.3	 30.5	 30.5	 30.8	 32.2	
	 5°C	 34.4	 37.3	 36.3	 36.5	 39.0	 39.0	 39.3	 41.4	
	 6°C	 42.2	 45.9	 44.8	 45.1	 47.9	 47.8	 48.3	 51.1	
	7	
	 	8	
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Table	5.	Mean,	Q5	and	Q95	discharges	(m3s-1)	simulated	by	MIKE	SHE	for	the	baseline	and	1	

changes	(%)	for	the	2	°C,	seven	GCM	scenarios	at	eight	gauging	stations	within	the	Mekong	2	

catchment.	(Letters	in	brackets	refer	to	the	gauging	station	labels	used	in	Figure	1.	Shaded	cells	3	

indicate	negative	changes	compared	to	the	baseline).	4	

	5	

Discharge	 Scenario	

Chiang	
Saen	
(a)	

Luang	
Prabang	
(b)	

Vientiane	
(c)	

Mukdahan	
(e)	

Pakse	
(f)	

Kratie	
(h)	

Phnom	
Penh	
(j)	

Ubon	
(l)	

Mean	 Baseline	 2735.3	 4132.4	 4740.9	 7874.4	 10144.8	 13579.8	 13942.4	 638.4	
	 CCCMA	 7.3	 6.9	 7.4	 8.3	 9.0	 7.2	 7.0	 11.0	
	 CSIRO	 -21.2	 -21.6	 -21.1	 -17.7	 -16.4	 -14.7	 -14.4	 -11.4	
	 HadCM3	 11.3	 9.9	 7.8	 3.7	 1.4	 -1.7	 -2.1	 -8.2	
	 HadGEM1	 0.2	 -3.5	 -5.6	 -8.5	 -10.4	 -9.1	 -9.0	 -20.6	
	 IPSL	 -19.7	 -18.1	 -16.8	 -12.6	 -10.6	 -9.4	 -9.4	 -3.0	
	 MPI	 -2.3	 -1.0	 0.2	 2.6	 4.9	 5.6	 5.9	 16.5	
	 NCAR	 8.7	 12.4	 12.6	 12.7	 11.2	 8.2	 8.0	 2.9	
Q5	 Baseline	 6920.5	 10523.9	 12135.5	 21635.8	 28188.2	 38302.0	 39560.1	 2037.3	
	 CCCMA	 -3.5	 0.2	 -1.1	 8.1	 10.2	 7.4	 8.0	 18.6	
	 CSIRO	 -19.6	 -19.0	 -16.4	 -13.5	 -12.8	 -10.9	 -11.0	 -1.9	
	 HadCM3	 4.9	 4.0	 3.5	 -1.4	 -2.5	 -4.9	 -5.3	 -3.7	
	 HadGEM1	 -4.8	 -6.8	 -6.8	 -11.8	 -14.9	 -15.6	 -14.8	 -11.9	
	 IPSL	 -13.7	 -7.8	 -10.2	 -6.5	 -1.6	 -3.3	 -3.8	 10.1	
	 MPI	 -4.8	 1.3	 1.0	 2.9	 6.1	 6.5	 6.5	 19.3	
	 NCAR	 6.5	 11.0	 9.2	 12.3	 7.7	 6.8	 6.2	 11.6	
Q95	 Baseline	 767.9	 1092.6	 1234.0	 1345.2	 1438.4	 1560.9	 1583.1	 23.9	
	 CCCMA	 7.5	 13.0	 13.4	 13.5	 16.3	 14.3	 13.1	 22.0	
	 CSIRO	 -23.2	 -23.5	 -21.4	 -18.2	 -17.7	 -18.2	 -19.1	 -15.0	
	 HadCM3	 12.9	 11.0	 9.0	 11.4	 9.2	 9.0	 8.2	 -6.3	
	 HadGEM1	 -1.6	 -2.6	 -2.9	 -4.4	 -4.1	 -3.9	 -4.7	 -17.5	
	 IPSL	 -21.9	 -18.3	 -16.9	 -16.4	 -15.7	 -15.9	 -16.2	 -9.4	
	 MPI	 -3.2	 -0.6	 -0.8	 -0.6	 0.3	 -0.2	 -1.3	 6.8	
	 NCAR	 11.4	 17.0	 17.7	 20.3	 19.5	 17.7	 16.6	 3.2	
	6	
	 	7	
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Table	6.	Mean,	Q5	and	Q95	discharges	(m3s-1)	simulated	by	MIKE	SHE	for	the	baseline	and	1	

changes	(%)	for	the	1-6	°C,	HadCM3	scenarios	at	eight	gauging	stations	within	the	Mekong	2	

catchment.	(Letters	in	brackets	refer	to	the	gauging	station	labels	used	in	Figure	1.	Shaded	cells	3	

indicate	negative	changes	compared	to	the	baseline).	4	

	5	

Discharge		 Scenario	

Chiang	
Saen	
(a)	

Luang	
Prabang	
(b)	

Vientiane	
(c)	

Mukdahan	
(e)	

Pakse	
(f)	

Kratie	
(h)	

Phnom	
Penh	
(j)	

Ubon	
(l)	

Mean	 Baseline	 2735.3	 4132.4	 4740.9	 7874.4	 10144.8	 13579.8	 13942.4	 638.4	
	 1°C	 6.5	 5.5	 4.5	 2.2	 1.0	 -0.7	 -0.9	 -5.1	
	 2°C	 11.3	 9.9	 7.8	 3.7	 1.4	 -1.7	 -2.1	 -8.2	
	 3°C	 14.1	 12.3	 9.4	 4.0	 0.9	 -3.1	 -3.6	 -14.1	
	 4°C	 18.1	 16.4	 12.5	 5.4	 1.5	 -3.6	 -4.2	 -14.9	
	 5°C	 22.5	 20.5	 15.7	 7.1	 2.0	 -4.2	 -5.1	 -21.6	
	 6°C	 28.7	 25.5	 19.6	 8.9	 3.0	 -4.3	 -5.3	 -24.2	
Q5	 Baseline	 6920.5	 10523.9	 12135.5	 21635.8	 28188.2	 38302.0	 39560.1	 2037.3	
	 1°C	 -1.1	 1.3	 -0.2	 -1.4	 -1.1	 -3.8	 -3.2	 1.1	
	 2°C	 4.9	 4.0	 3.5	 -1.4	 -2.5	 -4.9	 -5.3	 -3.7	
	 3°C	 6.0	 6.7	 3.0	 -2.6	 -2.2	 -7.4	 -8.0	 -8.7	
	 4°C	 9.9	 10.8	 6.5	 -3.4	 -5.7	 -7.6	 -8.0	 -9.7	
	 5°C	 16.1	 14.7	 7.3	 1.6	 -4.8	 -7.5	 -9.3	 -10.4	
	 6°C	 21.3	 20.2	 12.1	 1.0	 -2.8	 -7.5	 -8.8	 -11.0	
Q95	 Baseline	 767.9	 1092.6	 1234.0	 1345.2	 1438.4	 1560.9	 1583.1	 23.9	
	 1°C	 4.6	 6.8	 6.5	 5.8	 5.1	 4.3	 3.4	 -6.3	
	 2°C	 12.9	 11.0	 9.0	 11.4	 9.2	 9.0	 8.2	 -6.3	
	 3°C	 18.6	 19.2	 14.6	 14.3	 14.7	 10.4	 9.2	 -15.8	
	 4°C	 22.6	 21.1	 17.9	 15.4	 14.3	 10.0	 8.9	 -22.0	
	 5°C	 27.1	 28.8	 21.7	 17.3	 14.1	 9.7	 8.8	 -31.8	
	 6°C	 37.3	 33.6	 29.0	 24.1	 22.1	 16.6	 15.0	 -38.4	
	6	
	 	7	
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Figure	Captions	1	

	2	

Figure	1.	The	Mekong	catchment	and	its	representation	within	the	MIKE	SHE	model	including	3	

the	distribution	of	linear	reservoir	sub-catchments,	interflow	reservoirs	and	meteorological	4	

inputs.	The	gauging	stations	within	the	MIKE	11	river	network	that	were	used	for	calibration	5	

and	validation	are	also	indicated.	6	

	7	

Figure	2.	Monthly	mean	observed	and	MIKE	SHE	simulated	discharge	for	five	gauging	station	8	

along	the	Mekong	River	for	the	calibration	period	(1961–1990).	(Letters	in	brackets	refer	to	the	9	

gauging	station	labels	used	in	Figure	1).	10	

	11	

Figure	3.	Observed	and	MIKE	SHE	simulated	river	regimes	for	all	12	gauging	stations	within	the	12	

Mekong	catchment	for	the	calibration	period	(1961-1990	unless	indicated	otherwise).	Regimes	13	

simulated	by	SLURP	for	three	gauging	stations	are	also	shown.	(Letters	in	brackets	refer	to	the	14	

gauging	station	labels	used	in	Figure	1).	15	

	16	

Figure	4.	Mean	monthly	precipitation	and	PET	for	the	baseline	and	the	2	°C,	seven	GCM	climate	17	

change	scenarios	for	four	representative	sub-catchments.	(Note	different	y-axis	scales.	Numbers	18	

in	brackets	refer	to	the	meteorological	inputs	sub-catchments	identified	in	Figure	1).	19	

	20	

Figure	5.	River	regimes	simulated	by	MIKE	SHE	for	the	baseline	and	2	°C,	seven	GCM	climate	21	

change	scenarios	for	eight	gauging	stations	within	the	Mekong	catchment.	(Letters	in	brackets	22	

refer	to	the	gauging	station	labels	used	in	Figure	1).	23	

	24	

Figure	6.	Percentage	change	in	mean	annual	discharge	simulated	by	MIKE	SHE	for	four	gauging	25	

stations	within	the	Mekong	catchment	resulting	from	combined	and	individual	modifications	to	26	
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precipitation,	PET	and	temperature	for	the	2	°C,	seven	GCM	climate	change	scenarios.	(Note	the	1	

different	y-axis	scales.	Letters	in	brackets	refer	to	the	gauging	station	labels	used	in	Figure	1).	2	

	3	

Figure	7.	Change	from	baseline	mean	annual	discharge	(runoff	for	Mac-PDM.09)	for	the	2	°C,	4	

seven	GCM	climate	change	scenarios	for	six	gauging	stations	within	the	Mekong	catchment,	as	5	

simulated	by	the	three	hydrological	models.	(CC:	CCCMA;	CS:	CSIRO;	H3:	HadCM3;	H1:	HadGEM1;	6	

I:	IPSL;	M:	MPI;	N:	NCAR.	Letters	in	brackets	refer	to	the	gauging	station	labels	used	in	Figure	1).	7	

	8	

Figure	8.	Mean	monthly	discharge	(runoff	for	Mac-PDM.09)	as	a	percentage	of	the	mean	annual	9	

total	for	the	2	°C,	seven	GCM	climate	change	scenarios	for	five	gauging	stations,	as	simulated	by	10	

the	three	hydrological	models.	(Letters	in	brackets	refer	to	the	gauging	station	labels	used	in	11	

Figure	1).	12	

	13	

Figure	9.	Mean	monthly	precipitation	and	PET	for	the	baseline	and	1–6	°C,	HadCM3	climate	14	

change	scenarios.	(Note	the	different	y-axis	scales.	Numbers	in	brackets	refer	to	the	15	

meteorological	inputs	sub-catchments	identified	in	Figure	1).	16	

	17	

Figure	10.	River	regimes	simulated	by	MIKE	SHE	for	the	baseline	and	1–6	°C,	HadCM3	climate	18	

change	scenarios	for	eight	gauging	stations	within	the	Mekong	catchment.	(Letters	in	brackets	19	

refer	to	the	gauging	station	labels	used	in	Figure	1).	20	

	21	

Figure	11.	Percentage	change	in	mean	annual	discharge	simulated	by	MIKE	SHE	for	four	22	

gauging	stations	within	the	Mekong	catchment	resulting	from	combined	and	individual	23	

modifications	to	precipitation,	PET	and	temperature	for	the	1–6	°C,	HadCM3	climate	change	24	

scenarios.	(Note	the	different	y-axis	scales.	Letters	in	brackets	refer	to	the	gauging	station	labels	25	

used	in	Figure	1).	26	
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	1	

Figure	12.	Change	from	baseline	mean	annual	discharge	(runoff	for	Mac-PDM.09)	for	the	1–6	°C,	2	

HadCM3	climate	change	scenarios	for	six	gauging	stations	within	the	Mekong	catchment,	as	3	

simulated	by	the	three	hydrological	model.	(Letters	in	brackets	refer	to	the	gauging	station	4	

labels	used	in	Figure	1).	5	

	6	

Figure	13.	Mean	monthly	discharge	(runoff	for	Mac-PDM.09)	as	a	percentage	of	the	mean	7	

annual	total	for	the	1–6	°C,	HadCM3	climate	change	scenarios	for	five	gauging	stations,	as	8	

simulated	by	the	three	hydrological	models.	(Letters	in	brackets	refer	to	the	gauging	station	9	

labels	used	in	Figure	1).	10	
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Figure	12.	
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Figure	13.	
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