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Abstract

We investigate the electronic transport properties of semiconducting (1, 1) carbon nanotubes (CNTs)
on the mesoscopic length scale with arbitrarily distributed realistic defects. The study is done by
performing quantum transport calculations based on recursive Green’s function techniques and an
underlying density-functional-based tight-binding model for the description of the electronic
structure. Zigzag CNTs as well as chiral CNTs of different diameter are considered. Different defects
are exemplarily represented by monovacancies and divacancies. We show the energy-dependent
transmission and the temperature-dependent conductance as a function of the number of defects. In
the limit of many defetcs, the transport is described by stronglocalization. Corresponding localization
lengths are calculated (energy dependent and temperature dependent) and systematically compared
for alarge number of CNTs. It is shown, that a distinction by (m — n)mod 3 has to be drawn in order
to classify CNTs with different bandgaps. Besides this, the localization length for a given defect
probability per unit cell depends linearly on the CNT diameter, but not on the CNT chirality. Finally,
elastic mean free paths in the diffusive regime are computed for the limit of few defects, yielding
qualitatively same statements.

1. Introduction

Semiconducting carbon nanotubes (CNTs) are promising candidates for future microelectronic devices. Their
high aspect ratio, nanoscopic diameter, and stable structure makes them applicable as channel material in field
effect transistors [1-4]. Because of their strain dependent bandgap, CNTs can be used for mechanical sensors
[5, 6]. On the other hand, defects play an important role by influencing the tubes’ electronic properties. Under
clean laboratory conditions it is possible to grow long and defect-free CNTs [7]. However, currently this is hardly
possible in mass production processes at the wafer level. Multiple productions steps like etching and plasma
treatments favor the subsequent creation of defects [8—12], which have a large influence on the device
performance [13, 14]. Consequently, it is of great interest to know the impact of defects on the electronic
structure and transport properties.

In the following article, we describe the transmission and the conductance through semiconducting CNT's
[15, 16] with randomly positioned vacancy defects by performing quantum transport calculations based on a
density-functional tight-binding (DFTB) model. Previous experiments, in which defects were created by ion
irradiation, indicate that for long CNTs the strong localization regime can be achieved, where the conductance
decreases exponentially with the CNT length [9]. This was also studied theoretically for different defect types
[17-22], especially for vacancies [23—27], and also for other materials like silicon nanowires [28]. First analytic
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Figure 1. (a) Device configuration for the quasi-1D quantum transport theory [30]. A finite central region C is connected to two half-
infinite electrodes L and R. (b) Subdivision of C into M blocks for the application of the RGF.

derivations of White and Todorov showed that the localization exponent depends linearly on the tube diameter
[29]. Flores et al verified this for the first time with quantum transport calculations for metallic CNTs [25]. We
confirmed this by a more comprehensive analysis [30] and extended it to defect mixtures [31]. An investigation
of semiconducting zig-zag CNTs [32] showed qualitatively similar results for the localization and the diffusive
regime at fixed energy. Previous work focused mostly on the diameter dependence. The chirality dependence has
not been investigated in detail so far.

In the present work, we study a large amount of CNTs covering a wide range of diameters and all possible
chiral angles. First, we show how the localization, the diffusive, and the transition regime can be described.
Afterwards, we calculate the corresponding localization lengths and the elastic mean free paths as functions of
the tube diameter and the chiral angle. Those results are determined from the energy-dependent transmissions,
as usual. We show that similar quantities can be extracted from the temperature-dependent conductance.
Finally, we derive analytic expressions for the above results valid for all semiconducting CNTs.

2. Theoretical framework

The electronic transport is described by the equilibrium quantum transport theory for quasi-1D systems [33]. It
is based on the device configuration shown in figure 1(a), where a finite central region (C) is connected to two
half-infinite electrodes (left L and right R). This is an open system, where the electrodes act as reservoirs
providing the electrons. For this study, region C contains the part of the CNT with all the defects. Land R are
defect-free. The Schrodinger equation (within an orthonormal basis) for the device reads

H, 7c O
Tco Hce Tr |¥ = EV. (1)
0 7re Hr

Hy/c/r are the Hamiltonian matrices of the corresponding region. 7. cL/rc/cr are the coupling matrices
between two of the regions. Region C is chosen large enough, i.e. larger than the interaction distance, so that the
direct coupling between the two electrodes 7ir /r1. can be neglected. For a non-orthogonal basis with
corresponding overlap matrices Sy /¢, and overlap coupling matrices 01 cL/rc/cr the Schrodinger equation
and all subsequent equations can be obtained by substituting H := H — E(S — Z)and 7 := 7 — Eo. Z isthe
identity matrix of appropriate size.

The calculation of the transmission is based on the Green’s function approach. The Green’s function of the
central region is

c=[E—-inZ—Hc— X — Xl (2)

7 is a small real number to shift the singularities at certain energies away from the real axis into the complex
plane, which improves the convergence of the inversion. We use ) = 10”7 for the central regionandp = 10™*
for the electrodes. 3 /g are self-energy matrices for the left/right electrode leading to an energetic shift and
broadening of the electronic states of C due to the coupling to L/R. They can be calculated with

YL =7cGinic,  Xr = TcrOrTre 3)

Gy r are the surface Green’s functions of the electrodes. They are calculated iteratively using the renormalization
decimation algorithm (RDA) [34, 35], which treats 1D bulk-like matrices very efficiently. We use an improved
version, which we derived for verylong unit cells like in chiral CNTs [36]. With this, the transmission of
electrons at a given energy E is

T = Tr[[rRGcILGE 4)

The broadening matrices I ;g = i(X1,/r — ZI /R) describe the energetic broadening of the electronic states of C
due to the coupling to L/R.
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Because of the finite maximum interaction distance, the central region of the device can be divided into
many very small blocks. This is shown in figure 1(b). The corresponding Hamiltonian H is blockwise
tridiagonal. One of these blocks must not necessarily contain multiples of whole unit cells. They can in general be
arbitrary. The larger chiral and defective CNT cells are further subdivided into as many blocks as possible which
are not shorter than the interaction cutoff distance. With this, the transmission can be calculated recursively by
using the recursive Green’s function formalism (RGF) [37] with

T = Tr[TRGnl LGyl 5

Iy s are the upper left and lower right blocks of I /r. Gy is the lower left block of the total Green’s matrix Gc.
Its dimension is smaller by a factor M. Gy, can be computed with the RGF without calculating the other blocks
of G, which saves much time concerning the matrix inversion. For the case of few randomly distributed defects,
the RGF can be improved by using RDA steps to treat the periodic parts between the defects [38].

To calculate the above mentioned quantities we use a DFTB model [39, 40] to describe the electronic
structure and to calculate H, 7, S, and o instantaneously. This gives the speed of TB calculations but with DFT
accuracy and thus makes quantitative statements possible. For this work, the parameter set 30b [41, 42] is used.
It is a non-orthogonal sp” basis set for organic molecules, which is especially suitable for aromatic carbon rings as
the parameters have been obtained from DFT calculations for, e.g., benzene. As the parameters are rapidly
decreasing with increasing atom distance, a distinct interaction cutoff distance can be used. We utilize twice the
graphene carbon-carbon distance acc = 1.42 A, which leads to a third-nearest-neighbor TB Hamiltonian with
distance-dependent hopping parameters. The smallest possible block contains exactly one unit cell of a
zigzag CNT.

The calculations within this work are done in the low bias limit. Furthermore, phonons are neglected, which
means that the results are limited to CNT lengths smaller than the coherence length. This is justified because
optical phonons have too high energies to be excited thermally at room temperature and acoustic phonons can
have coherence lengths up to a few pum [43, 44].

3. Modeling details

To describe the structural influence we consider (m, n)-CNTs of different tube diameters d =

J3accm? + n? + mn / 7, different chiral angles = arctan[</31/(2m + n)], and different subsets
concerning (m — n)mod 3 (this distinction is justified later). In total 38 CNTs are investigated, as highlighted in
the periodic table of CNTs in figure 2, covering 4.2 A < d < 22 A and 11 different chiral angles 0° < 6 < 30°.
Some of the structures are shown in figure 2.

The exemplarily studied defects, namely monovacancies (MV) and divacancies (DV), are both depicted in
the lower right of figure 2. The MV is created by removing one atom. This defect has a small extension and fits
within one unit cell. The DV is created removing two neighbored atoms. It is one of the common defects created,
e.g., byion bombardment [8]. For this defect, three different orientations exist concerning the three different
chiral carbon-carbon bond directions. For all defects model structures are obtained by a geometry optimization
of the directly surrounding atoms (red in figure 2) and the directly adjacent hexagons. The DV defect extension is
larger than the one of the MV. Thus, for the CNT types with short unit cells (i.e. § = 0° and 6 = 10.9°) the DV
cellis two or three times larger in order to contain the whole defect. The influence of the defect cell size and
resulting long-range deformations on the electron transport was already investigated [45].

The geometry optimization is performed using density functional theory within the implementation of
Atomistix ToolKit [46, 47]. For this, the local density approximation of Perdew and Zunger [48], norm-
conserving Troullier-Martins pseudopotentials [49], and a SIESTA type double zeta plus double polarization
basis set [50] are used.

The defects are randomly distributed within the CNT. For this, the length of the device central region is fixed
to 852 nm for the zigzag CNTs (i.e. 2000 cells) and to similar lengths that match multiples of the unit cell length
for the chiral CNTs. Within this region, N defects of one type (MV or DV) are positioned at random lateral
positions, angular positions, and orientations. An ensemble of 1000 such configurations is created to describe
the transmission in the sense of an ensemble average and as a function of the number of defects N. The electrodes
are defect-free CNTs of the same type as in the central region. With this we omit the influence of contact effects
and describe the pure defect influence.
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Q(m —n)mod3 =1, MV
Q(m —n)mod3 =2, MV
Q(m —n)mod3 =0, MV
@(m —n)mod3 =0, MV, DV

0 =0°
(9,0-CNT
(10,0)-CNT

(17,0)-CNT
(18,0)-CNT

6 =10.9°
(24,6)-CNT
(20,5)-CNT
(16,4)-CNT
(12,3)-CNT
(8,2)-CNT

6 =19.1°
(6,3)-CNT
(8,4)-CNT

(10,5)-CNT
(12,6)-CNT

Figure 2. (Top) Periodic table of CNTs where the studied ones are marked by color. Different colors denote different subsets (im — n)
mod 3. For the CNTs with light color, MV defects are considered, for the ones with dark color, both MV and DV defects are considered
separately (Mixtures of defects were studied previously [31]). (Bottom) Unit cells of some exemplary CNTs with three different chiral
angles 0. The 2 lower right CNTs show the structure of the defects. The left one is the MV defect, the right one the DV defect. Atoms
which surround the defect are colored in red.

4. Results and discussion

4.1. Transmission and transport regimes
The transmission function 7(E) for one single CNT with randomly distributed defects depends strongly on their
exact positions and alignments. It is intuitive that the transmission should lower with increasing number of
defects. In fact the defect states introduce resonances into the system due to quantum interference. The more
defects the system has, the more and the sharper the resonances are, leading to an accumulation of random
peaks, preventing a reasonable analysis of the results [51]. In the following we always analyze ensemble averages,
which leads to smooth curves. We omit the averaging symbol for simplicity.

Figure 3 shows the (average) transmission function for the (9,0)-CNT with 1 up to 20 defects. A
systematically decreasing transmission can be seen as well as a defect-induced resonance for the MV around
140 meV below the Fermi energy, which leads to a dip. Figure 4 shows the dependence on the number of defects
N, normalized to the bulk transmission 7, which equals the number of conductance channels. Transmissions
calculated at four different energies are depicted: the valence band edge, the conduction band edge and two
energies within the bands. A clear exponential decrease can be seen for sufficiently large values of N. This can be
explained by the strong localization regime, where the electronic states are exponentially localized due to
destructive interference with a characteristic localization length #'°, For Anderson-like disorder it was shown
that 1D systems are always in the strong localization regime [52—54]. As a consequence the transport is
exponentially suppressed. For a fixed defect probability and varying system length L the transport in the limit of
large L resp. small 7 can be described by
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Figure 3. Transmission spectrum of the (9, 0)-CNT with 1,2, 3, ..., 10, 12, 14, 17,20 MV defects (left, from top to bottom) and with
1,2,3,4,5,6,8,10 DV defects (right, from top to bottom).
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Figure 4. Transmission at a fixed energy of the (9,0)-CNT as a function of the number of MV defects. The energies E = Ep &+ 0.07 eV
lie near the valence/conduction band edge, E = Er + 0.2 eV lie far away from the band edges. The red dashed line is a regression in
the localization regime (7), the red dotted line in the diffusive regime (8), and the red dash-dotted line in the combined regime (9)
including the transition region. The inset shows the transmission for a few defects.

T ox e 1/, 6)

The same exponential dependence holds for fixed length and varying defect probability or—in our case—
number of defects, as shown in [30, 32]:

T o e N/N® )

Thelocalization exponent N loc i a material constant, which describes the number of additional defects needed
to lower the transmission by a factor of e. The fluctuations visible in figure 4 for 7/7, < 103 are merely caused
by the ensemble not being large enough for sampling a very high number of defects.

The systematic deviations from the exponential behavior for few defects at high transmission 7/7, > 10!
are caused by an increasing localization length #'°°. For decreasing N and fixed system length L of the central
region, the defect probability per cell decreases. Thus, #'°° becomes of the same order or larger than L at small N
and the system is no more in the strong localization regime. This range of high transmission can be described by
the diffusive regime, where only elastic scattering occurs, but without the long-range destructive interference
effects limiting the transport. In the diffusive regime the transport can be described by a resistance, which
increases linear with the system length for fixed defect density [55]. For our case, where we fix the system length,

we get for the transmission
T L ! N \'!
- (1 + fmfp) = (1 + Nmfp) . )

£™P s the elastic mean free path, while N™ is the dimensionless elastic mean free path.

Both the diffusive and the localized regime, can be described phenomenologically by solving the steady-state
diffusion equation with an additional sink term, which traps the diffusing electrons and hinders them to pass
lengths larger than 7'°%: 0 = n”(x) — n(x) /£, where x is the position along the 1D system and 7 is the 1D
electron density. The local current density can be calculated using j(x) = —Dn’(x) with the diffusion constant
D = ¢™Py/2 and the average particle velocity v. The trapped fraction of the current is j,_ .

D/(£%)? . fo - n(x)dx = j(0) — j(L). With the appropriate boundary conditions n(L)v = j,, and

5
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n(0)V = jiy & Jret = 2fin — Jour — Jurap 0T the ingoing/outgoing/reflected current density ji, /o /ref Ofa device
configurationand 7 = j_ . /j. . the transmission can be obtained [56]:

loc -1
Zz(cosh L + ¢ sinh L )

7‘0 £loc £mfp Lloc
loc -1
= coshi + N—sinhi . O]
Nloc Nmfp Nloc

In thelimit L > #'°° this simplifies to (6), in the limit L < #'°° to (8). The strong localization regime is
approximately valid for N > N'°¢, the diffusive regime for N < N'°</2°.

An example for the transmission 7(IN) at E = Eg + 0.2 eV is shown in figure 4. Equation (9) (red dash-
dotted line) describes the general shape of the data very well. A corresponding regression gives N'°° = 23 and
N™ = 4.2, Both regimes, localization (7) and diffusion (8), are also depicted (red dashed and dotted lines) and
fit well in the appropriate limit (see footnote 5). The regressions yield N = 24 and N™P = 6.4. The
discrepancy concerning N™P comes from the fact, that (9) underestimates the transition regime and gives a
systematically overestimated derivative at N = 0. This can be seen in the inset of figure 4. Because of this we
determine N'°° and N™ separately using (7) and (8). In detail, we obtain N lo¢ for each energy with a linear
regression of the logarithmic data in the range 10=3 < 7/7; < 10~L. N™P s the slope of the linear dependence
T-'(N) and is calculated in the limit N — 0.

4.2. Energy dependent localization exponent and elastic mean free path

Like in the preceding example the localization exponent is calculated for each energy and for all the different
CNTs of figure 2. The results are shown in the left column of figure 5 for the MV (first three rows) and the DV
(last row). Here, a distinction between different subsets concerning (m — n)mod 3 must be made to qualify and
quantify further dependencies. The CNTs with (m — n)mod 3 = 0 are the semi-metallic ones with very small
bandgaps in the range (50...130)meV. The CNTs with (m — n)mod 3 = 1and (m — n)mod 3 = 2 are the true
semiconducting CNTs, the former ones with bandgaps in the range (550...1540)meV and the latter ones with
bandgaps in the range (340...1040) meV.

For each subset clear trends can be seen. The qualitative shape of N'°“(E) is mostly the same: small values at
the valence/conduction band edge and increasing values with decreasing/increasing energy up to the next band
edge with singularity-like shapes there. Furthermore, the curves follow a clear trend with varying diameter for
most of the energies. There are two exceptions: (a) near the band edges, where Nio diverges, and (b) near defect
states, which lead to peaks/dips in the transmission spectrum and in N'°%(E). The latter is the case for (m — n)
mod 3 = 0: for the MV at energies below 0.1 eV and for the DV at energies between 0.0 eV and 0.2 eV. The right
column of figure 5 depicts the diameter dependence of N'*° at selected energies not fulfilling (a) or (b). For all the
cases a very clear linear dependence can be seen with only small deviations from the linear regressions (solid
lines). This is in good agreement with [32]°. The DV and (m — n)mod3 = 0 case shows that there is a lower
limit, here approximately d = 9 nm and N'°° = 6. These deviations for smaller tube diameters can be explained
by strong curvature effects and the resulting changes of the m-bonds. Also the fact that the defect occupies alarge
part of the CNT circumference can result in additionally distorted structures and changed transport properties.
Furthermore, it is important to mention that many different chiralities are included, especially for the (m — n)
mod 3 = 0 case. As the diameter dependence matches very well, a chirality dependence can be excluded. In
conclusion, the slope of I\foc(d) only depends on the subset, energy, and defect type, but not on the chirality. The
prefactor in (7) is between 0.4 and 1.27.

N™ i calculated in dependence on the energy in the same way as done before for N'°°, The result is shown
exemplarily for the (16,0)-CNT in figure 6 in comparison to N'°°. It can be seen that N™ follows the general
trend of N'°, This is in agreement with former general studies, in which relations between the localization
length and the elastic mean free path were derived [29, 55]. Furthermore, alinear diameter dependence at fixed
energy holds for N™, too. We checked this for all studied CN'Ts with the same general result.

A way for comparing N™® and N'*“ is (9) in the limit N >> N'°%. This gives the prefactor
2/(1 + Nloc/N™), With this, the three regression parameters NP from (8), N' from (7), and the
corresponding prefactor from (7) can be compared. For all studied CNTs and energies, except near the band

5 Alower limit of the stron localization regime can be estimated comparing (7) and (9). The relative error is smaller than e if

N> N1 — ¥ lof) JVé).Fore = 10%and N'/N™® ~ 5 thisis roughly the case if N > N'°°. The same can be done for the diffusive
regime by comparin%’ (8)'and (9). The relative error is smaller than e if N < N'°*/6¢ — N™P.Fore = 10% and N'°¢/N™P ~ 5 thisis
roughly the caseif N < N'°¢/2,

6 The much larger deviations in [32] can be explained by the different bandgaps and by our subset distinction.

7 . S .
It strongly fluctuates as small changes in the localization exponent cause large changes in the prefactor. It depends less on energy, tube
diameter, and chirality.
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Figure 5. Left column: localization exponent as a function of energy for the CNTs highlighted in figure 2. Different diameters are
denoted by color. Right column: diameter dependence of the localization exponent at fixed energies, which are marked by arrows in
the left column. Different energies are denoted by color. The straight lines are linear regressions. Different rows show different subsets
(m — n)mod 3 and different defects (MV or DV).

edges, where the regressions are less trustable, we get a good agreement. The maximum deviations of
2/(1 + Nloc/N ™) compared to the regression prefactor are in the range of +£40%. Details are listed in table 1.
This comparison shows that the determination of the three parameters is consistent, (9) can be used to describe
both regimes, and the prefactor of the localization regime can be estimated using N> and N™ with acceptable
errors.

The linear dependencies N'°¢(d) and N™ (d) can be used to predict the transmission of large diameter
CNTs of any chirality. Butas 7 is energy-dependent this is not very practicable.

4.3. Conductance, effective localization exponent and effective elastic mean free path
In the mesoscopic range, the zero-bias conductance of an arbitrary scattering region between two reservoirs can
be calculated using the Landauer-Biittiker formula [57]

7
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Figure 6. Localization exponent N'° and normalized mean free path N™ as a function of energy for the (16, 0)-CNT with MV
defects

temperature 500 K

G/G(N =1)

Figure 7. Conductance of the (9, 0)-CNT as a function of the number of MV defects for different temperatures (denoted by color).

Table 1. Deviations of 2/(1 + N'°¢/N™P) compared to the
regression prefactor of the localized regime (6).

MV DV
(m — n)mod 3 =0 —6%...39% —5%...30%
(m — n)ymod3 =1 —45% ...36% -
(m — n)ymod 3 = 2 —46% ...34% -
00 df (E
G=—G, f 163 B 4 (10)
—0 dE

Gy = 2e%/h is the conductance quantum and f(E) is the Fermi distribution, whereby the effect of temperature is
included.

An example for the conductance as a function of the number of defects is shown in figure 7 for the (9, 0)-CNT
for different temperatures. For better comparison, all the data are normalized to the conductance of the (9, 0)-CNT
with one defect G(IN = 1). A similar picture as shown in figure 4 with a different effective localization exponent
N and elastic mean free path N'™P can be seen. In contrast to the transmission in the strong localization regime,
the dependence on the defect number is not strictly exponential. If the localization exponent N'* is not energy-
dependentitis clear that N'° = N'°¢, as it is for metallic CNTs [31]. But as previously shown, the very large
variations in N'(E) of the semiconducting CNTs lead to a complicated summation of conductance contributions
with different exponential dependence. In the limit of large N, the largest N> would dominate, but this is not a
useful description, as it would be much above typical numbers of defects of experimental relevance. With several
simplifications for the Landauer-Biittiker formulaand N°Y(E), solving the integral (10) yields an additional
prefactor 1 /(1 + N). Butin all cases it varies not very much compared to the exponential dependence and can be
treated as a slight correction of the localization exponent. Consequently, (6) can be used as a good approximation
for estimating and predicting the conductance in the strong localization regime.

The effective localization exponent N'* for the conductance is calculated for T = 300 K and for all the
different CNTs of figure 2. The regressions are done around G/G(N = 1) = 10~ *, where the range is extended
as far as possible, while keeping the regression inaccuracy within certain limits. The results are shown in the left
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Table 2. Dependence of N lo¢ and K™ on the diameter d at 300 K,
described bylinear regressions N'* = qlocd + gloc and N™ =

amrd 4 gmip,

defect (m — n) aloc Jias o™ i
mod 3 [1/A] [1/A]

MV 0 3.2 —5.0 0.36 —1.6

MV 1 5.8 —11 0.12 —0.38

MV 2 3.6 4.8 0.14 —0.67

DV 0 3.0 —25 0.21 —1.5

column of figure 8 for the MV (first three rows) and the DV (last row), where N loc i depicted as a function of the
tube diameter. It shows a very good linear dependence for the four cases. Linear regressions are depicted in
figure 8 with straight black lines. The results are listed in table 2. As the data includes CNTs with many different
chiral angles, a chirality dependence of the localization exponent can be excluded. These result can be used as an
approximate guideline to estimate and predict the conductance for CNTs with arbitrary diameters and chiral
angles. There are deviations for smaller tube diameters, which can be explained by strong curvature effects and
the resulting changes of the 7-bonds. The DV data for the (m — n)mod3 = 0 case (lower row) show that N loc i
limited by a lower bound, here approximatelyatd = 9 nmand N loc — 5,
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Figure 9. Temperature-dependent effective localization exponent for some examples with MV defects. The symbols are the data. The
lines are regressions according to (11). See supplementary material for other CNTs and the regression parameters.

As done before for the localization regime, the diffusive regime can be described by an effective elastic mean
free path N™P ata given temperature, e.g. at 300 K. For the four studied cases, N ™ js depicted as a function of
the CNT diameter in the right column of figure 8. A linear trend can be seen here, too. Linear regressions are
depicted in figure 8 with straight black lines. The results are listed in table 2, too. The deviations for small
diameter tubes are likely due to curvature effects. For the MV defect with (m — n)mod 3 = 0 the larger
deviations are caused by the much stronger defect features near the band gap, which are not present in the other
three cases.

Figure 9 shows some examples for the temperature dependence of N' for CNTs with MV defects. The
complete data can be found in the supplementary material. The general shape of the dependence N 1°¢(T) can be
derived under some rough assumptions and simplifications by the analytical integration of (10). For this, the
diverging shape of N'°(E) is assumed to be N&OC /(1 — E/E,). Theintegral is restricted to the interval [E;, E,].

The derivative of the Fermi distribution is approximated for large energies by e (E— £ /ksT(] — 2o~ (E-En) /ksT),
rloc O0lnG
Nloe — _2nG

The effective localization exponent is calculated by N

Alltogether this yields a function with four
free parameters, which can be used for a regression:

(1 —e~¥Nd/T - ¢)

N]OCT — +b
(D =a d/T —c— (1 —e~UT)

€3))

The parameters are related to the bandgap, the band edges, and the magnitude of the derivative of N'°(E). For
the examples in figure 9, the corresponding regressions are shown as solid lines. For different shapes, the
regressions agree with the data for sufficiently high temperatures. There are some deviations for low
temperatures, where the defect-induced features in N'“(E) are more dominant compared to the general trend.

5. Summary and conclusions

We studied the influence of realistic vacancy defects on the electronic transport properties of semiconducting
carbon nanotubes on a quantum level. The influence of the vacancies is addressed by a statistical description
with randomly distributed positions and orientations in CNTs with lengths up to the yum-range. The electronic
structure is described by a density-functional-based tight-binding model and a Slater-type sp’-basis suitable for
carbon structures. The transport calculations are performed using quantum transport theory and linearly
scaling recursive Green’s function techniques to treat very large systems. We systematically investigated a large
amount of different CNTs to describe the structural dependence. This extends previous work [30, 32] to
semiconducting CNTs with arbitrary chirality, which has not been subject of theoretical studies until now.

The stronglocalization regime as well as the diffusive regime are analyzed. They are described by the
dependence of the transmission as a function of the number of defects and the resulting material parameters,
namely the localization length and the elastic mean free path and their dimensionless equivalents. It is shown
that a distinction concerning (in — n)mod 3 has to be made, which discriminates three groups of CNTs with
different quantitative band gap dependencies. Besides this, the localization length as well as the elastic mean free
path ata given energy can be described very well by linear functions of the tube diameter, in agreement with
former studies [30, 32]. The investigation of CNTs of different chiral angles, covering the full range, shows thata
further dependence on this structural parameter can be excluded. Furthermore, both transport regimes and the
transition regime in between can be described with moderate errors by the analytical formula (9) from [56].

Furthermore, it was shown that the conductance within the localization and diffusive regimes can be
described by effective parameters in the same way as the transmission. Both were explicitly calculated with linear
regressions for two different vacancy examples. This description based on the conductance may be used to
predict the electron transport of defective CNTs with arbitrary chirality and can help to describe CNT-based
devices in micro electronics without the need of complex quantum transport computations.
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