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Abstract
We investigate the electronic transport properties of semiconducting (m, n) carbon nanotubes (CNTs)
on themesoscopic length scale with arbitrarily distributed realistic defects. The study is done by
performing quantum transport calculations based on recursive Green’s function techniques and an
underlying density-functional-based tight-bindingmodel for the description of the electronic
structure. ZigzagCNTs aswell as chiral CNTs of different diameter are considered. Different defects
are exemplarily represented bymonovacancies and divacancies.We show the energy-dependent
transmission and the temperature-dependent conductance as a function of the number of defects. In
the limit ofmany defetcs, the transport is described by strong localization. Corresponding localization
lengths are calculated (energy dependent and temperature dependent) and systematically compared
for a large number of CNTs. It is shown, that a distinction by (m−n)mod 3has to be drawn in order
to classify CNTswith different bandgaps. Besides this, the localization length for a given defect
probability per unit cell depends linearly on theCNTdiameter, but not on theCNT chirality. Finally,
elasticmean free paths in the diffusive regime are computed for the limit of few defects, yielding
qualitatively same statements.

1. Introduction

Semiconducting carbon nanotubes (CNTs) are promising candidates for futuremicroelectronic devices. Their
high aspect ratio, nanoscopic diameter, and stable structuremakes them applicable as channelmaterial infield
effect transistors [1–4]. Because of their strain dependent bandgap, CNTs can be used formechanical sensors
[5, 6]. On the other hand, defects play an important role by influencing the tubes’ electronic properties. Under
clean laboratory conditions it is possible to grow long and defect-free CNTs [7]. However, currently this is hardly
possible inmass production processes at thewafer level.Multiple productions steps like etching and plasma
treatments favor the subsequent creation of defects [8–12], which have a large influence on the device
performance [13, 14]. Consequently, it is of great interest to know the impact of defects on the electronic
structure and transport properties.

In the following article, we describe the transmission and the conductance through semiconducting CNTs
[15, 16]with randomly positioned vacancy defects by performing quantum transport calculations based on a
density-functional tight-binding (DFTB)model. Previous experiments, inwhich defects were created by ion
irradiation, indicate that for longCNTs the strong localization regime can be achieved, where the conductance
decreases exponentially with theCNT length [9]. This was also studied theoretically for different defect types
[17–22], especially for vacancies [23–27], and also for othermaterials like silicon nanowires [28]. First analytic
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derivations ofWhite andTodorov showed that the localization exponent depends linearly on the tube diameter
[29]. Flores et al verified this for thefirst timewith quantum transport calculations formetallic CNTs [25].We
confirmed this by amore comprehensive analysis [30] and extended it to defectmixtures [31]. An investigation
of semiconducting zig-zagCNTs [32] showed qualitatively similar results for the localization and the diffusive
regime at fixed energy. Previouswork focusedmostly on the diameter dependence. The chirality dependence has
not been investigated in detail so far.

In the present work, we study a large amount of CNTs covering awide range of diameters and all possible
chiral angles. First, we showhow the localization, the diffusive, and the transition regime can be described.
Afterwards, we calculate the corresponding localization lengths and the elasticmean free paths as functions of
the tube diameter and the chiral angle. Those results are determined from the energy-dependent transmissions,
as usual.We show that similar quantities can be extracted from the temperature-dependent conductance.
Finally, we derive analytic expressions for the above results valid for all semiconducting CNTs.

2. Theoretical framework

The electronic transport is described by the equilibriumquantum transport theory for quasi-1D systems [33]. It
is based on the device configuration shown infigure 1(a), where afinite central region (C) is connected to two
half-infinite electrodes (left L and right R). This is an open system, where the electrodes act as reservoirs
providing the electrons. For this study, regionC contains the part of theCNTwith all the defects. L andR are
defect-free. The Schrödinger equation (within an orthonormal basis) for the device reads

E
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0
. 1

L LC

CL C CR
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

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t
t t
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Y = Y
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L C R are theHamiltonianmatrices of the corresponding region. LC CL RC CRt are the couplingmatrices
between two of the regions. RegionC is chosen large enough, i.e. larger than the interaction distance, so that the
direct coupling between the two electrodes LR RLt can be neglected. For a non-orthogonal basis with
corresponding overlapmatrices L C R and overlap couplingmatrices LC CL RC CRs the Schrödinger equation
and all subsequent equations can be obtained by substituting E   - -≔ ( ) and Et t s-≔ .  is the
identitymatrix of appropriate size.

The calculation of the transmission is based on theGreen’s function approach. TheGreen’s function of the
central region is

E i . 2C C L R
1  h= - - - S - S -[( ) ] ( )

ηis a small real number to shift the singularities at certain energies away from the real axis into the complex
plane, which improves the convergence of the inversion.We use η=10−7 for the central region and η=10−4

for the electrodes. L RS are self-energymatrices for the left/right electrode leading to an energetic shift and
broadening of the electronic states of C due to the coupling to L/R. They can be calculatedwith

, . 3L CL L LC R CR R RC t t t tS = S = ( )

L R are the surfaceGreen’s functions of the electrodes. They are calculated iteratively using the renormalization
decimation algorithm (RDA) [34, 35], which treats 1D bulk-likematrices very efficiently.We use an improved
version, whichwe derived for very long unit cells like in chiral CNTs [36].With this, the transmission of
electrons at a given energyE is

Tr . 4R C L C  = G G[ ] ( )†

The broadeningmatrices iL R L R L RG = S - S( )† describe the energetic broadening of the electronic states of C
due to the coupling to L/R.

Figure 1. (a)Device configuration for the quasi-1D quantum transport theory [30]. Afinite central regionC is connected to two half-
infinite electrodes L andR. (b) Subdivision of C intoM blocks for the application of the RGF.
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Because of thefinitemaximum interaction distance, the central region of the device can be divided into
many very small blocks. This is shown infigure 1(b). The correspondingHamiltonian C is blockwise
tridiagonal. One of these blocksmust not necessarily containmultiples of whole unit cells. They can in general be
arbitrary. The larger chiral and defective CNT cells are further subdivided into asmany blocks as possible which
are not shorter than the interaction cutoff distance.With this, the transmission can be calculated recursively by
using the recursive Green’s function formalism (RGF) [37]with

Tr . 5M MR 1 L 1  = G¢ G¢[ ] ( )†

L RG¢ are the upper left and lower right blocks of L RG . M1 is the lower left block of the total Green’smatrix C .
Its dimension is smaller by a factorM. M1 can be computedwith the RGFwithout calculating the other blocks
of C , which savesmuch time concerning thematrix inversion. For the case of few randomly distributed defects,
the RGF can be improved by using RDA steps to treat the periodic parts between the defects [38].

To calculate the abovementioned quantities we use aDFTBmodel [39, 40] to describe the electronic
structure and to calculate , , t , and s instantaneously. This gives the speed of TB calculations butwithDFT
accuracy and thusmakes quantitative statements possible. For this work, the parameter set 3ob [41, 42] is used.
It is a non-orthogonal sp3 basis set for organicmolecules, which is especially suitable for aromatic carbon rings as
the parameters have been obtained fromDFT calculations for, e.g., benzene. As the parameters are rapidly
decreasingwith increasing atomdistance, a distinct interaction cutoff distance can be used.We utilize twice the
graphene carbon-carbon distance a 1.42CC = Å, which leads to a third-nearest-neighbor TBHamiltonianwith
distance-dependent hopping parameters. The smallest possible block contains exactly one unit cell of a
zigzagCNT.

The calculations within this work are done in the low bias limit. Furthermore, phonons are neglected, which
means that the results are limited toCNT lengths smaller than the coherence length. This is justified because
optical phonons have too high energies to be excited thermally at room temperature and acoustic phonons can
have coherence lengths up to a few mm [43, 44].

3.Modeling details

Todescribe the structural influencewe consider (m, n)-CNTs of different tube diameters d =
a m n mn3 CC

2 2 p+ + , different chiral angles n m narctan 3 2q = +[ ( )], and different subsets
concerning m n mod 3-( ) (this distinction is justified later). In total 38CNTs are investigated, as highlighted in
the periodic table of CNTs infigure 2, covering d4.2 22< <Å Å and 11 different chiral angles 0 30 q .
Some of the structures are shown infigure 2.

The exemplarily studied defects, namelymonovacancies (MV) and divacancies (DV), are both depicted in
the lower right offigure 2. TheMV is created by removing one atom. This defect has a small extension and fits
within one unit cell. TheDV is created removing two neighbored atoms. It is one of the commondefects created,
e.g., by ion bombardment [8]. For this defect, three different orientations exist concerning the three different
chiral carbon-carbon bond directions. For all defectsmodel structures are obtained by a geometry optimization
of the directly surrounding atoms (red infigure 2) and the directly adjacent hexagons. TheDVdefect extension is
larger than the one of theMV.Thus, for theCNT typeswith short unit cells (i.e. θ=0° and θ=10.9°) theDV
cell is two or three times larger in order to contain thewhole defect. The influence of the defect cell size and
resulting long-range deformations on the electron transport was already investigated [45].

The geometry optimization is performed using density functional theory within the implementation of
Atomistix ToolKit [46, 47]. For this, the local density approximation of Perdew andZunger [48], norm-
conserving Troullier-Martins pseudopotentials [49], and a SIESTA type double zeta plus double polarization
basis set [50] are used.

The defects are randomly distributedwithin theCNT. For this, the length of the device central region isfixed
to 852 nm for the zigzagCNTs (i.e. 2000 cells) and to similar lengths thatmatchmultiples of the unit cell length
for the chiral CNTs.Within this region,N defects of one type (MVorDV) are positioned at random lateral
positions, angular positions, and orientations. An ensemble of 1000 such configurations is created to describe
the transmission in the sense of an ensemble average and as a function of the number of defectsN. The electrodes
are defect-free CNTs of the same type as in the central region.With this we omit the influence of contact effects
and describe the pure defect influence.

3

J. Phys. Commun. 2 (2018) 105012 F Teichert et al



4. Results and discussion

4.1. Transmission and transport regimes
The transmission function E( ) for one single CNTwith randomly distributed defects depends strongly on their
exact positions and alignments. It is intuitive that the transmission should lowerwith increasing number of
defects. In fact the defect states introduce resonances into the systemdue to quantum interference. Themore
defects the systemhas, themore and the sharper the resonances are, leading to an accumulation of random
peaks, preventing a reasonable analysis of the results [51]. In the followingwe always analyze ensemble averages,
which leads to smooth curves.We omit the averaging symbol for simplicity.

Figure 3 shows the (average) transmission function for the (9,0)-CNTwith 1 up to 20 defects. A
systematically decreasing transmission can be seen as well as a defect-induced resonance for theMVaround
140 meV below the Fermi energy, which leads to a dip. Figure 4 shows the dependence on the number of defects
N, normalized to the bulk transmission 0 , which equals the number of conductance channels. Transmissions
calculated at four different energies are depicted: the valence band edge, the conduction band edge and two
energies within the bands. A clear exponential decrease can be seen for sufficiently large values ofN. This can be
explained by the strong localization regime, where the electronic states are exponentially localized due to
destructive interference with a characteristic localization lengthℓloc. For Anderson-like disorder it was shown
that 1D systems are always in the strong localization regime [52–54]. As a consequence the transport is
exponentially suppressed. For afixed defect probability and varying system length L the transport in the limit of
large L resp. small  can be described by

Figure 2. (Top)Periodic table of CNTswhere the studied ones aremarked by color. Different colors denote different subsets (m−n)
mod 3. For theCNTswith light color,MVdefects are considered, for the oneswith dark color, bothMVandDVdefects are considered
separately (Mixtures of defects were studied previously [31]). (Bottom)Unit cells of some exemplary CNTswith three different chiral
angles θ. The 2 lower right CNTs show the structure of the defects. The left one is theMVdefect, the right one theDVdefect. Atoms
which surround the defect are colored in red.
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e . 6L loc µ - ( )ℓ

The same exponential dependence holds forfixed length and varying defect probability or—in our case—
number of defects, as shown in [30, 32]:

e . 7N N loc µ - ( )

The localization exponentN loc is amaterial constant, which describes the number of additional defects needed
to lower the transmission by a factor of e. Thefluctuations visible infigure 4 for 100

3  < - aremerely caused
by the ensemble not being large enough for sampling a very high number of defects.

The systematic deviations from the exponential behavior for few defects at high transmission 100
1  > -

are caused by an increasing localization lengthℓloc. For decreasingN andfixed system length L of the central
region, the defect probability per cell decreases. Thus,ℓloc becomes of the same order or larger than L at smallN
and the system is nomore in the strong localization regime. This range of high transmission can be described by
the diffusive regime, where only elastic scattering occurs, butwithout the long-range destructive interference
effects limiting the transport. In the diffusive regime the transport can be described by a resistance, which
increases linear with the system length for fixed defect density [55]. For our case, wherewefix the system length,
we get for the transmission

L N

N
1 1 . 8

0
mfp

1

mfp

1


= + = +
- -

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ℓ

( )

ℓmfp is the elasticmean free path, whileNmfp is the dimensionless elasticmean free path.
Both the diffusive and the localized regime, can be described phenomenologically by solving the steady-state

diffusion equationwith an additional sink term,which traps the diffusing electrons and hinders them to pass
lengths larger thanℓloc: n x n x0 loc=  - ℓ( ) ( ) , where x is the position along the 1D system and n is the 1D
electron density. The local current density can be calculated using j x Dn x= - ¢( ) ( )with the diffusion constant
D v 2mfp= ℓ and the average particle velocity v. The trapped fraction of the current is jtrap =

D n x x j j Ld 0
Lloc 2

0ò = -ℓ( ) · ( ) ( ) ( )/ .With the appropriate boundary conditions n(L)v=jout and

Figure 3.Transmission spectrumof the (9, 0)-CNTwith 1, 2, 3,K, 10, 12, 14, 17, 20MVdefects (left, from top to bottom) andwith
1, 2, 3, 4, 5, 6, 8, 10DVdefects (right, from top to bottom).

Figure 4.Transmission at a fixed energy of the (9,0)-CNT as a function of the number ofMVdefects. The energies E=EF±0. 07 eV
lie near the valence/conduction band edge, E=EF±0. 2 eV lie far away from the band edges. The red dashed line is a regression in
the localization regime (7), the red dotted line in the diffusive regime (8), and the red dash-dotted line in the combined regime (9)
including the transition region. The inset shows the transmission for a few defects.
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n v j j j j j0 2in ref in out trap= + = - -( ) for the ingoing/outgoing/reflected current density jin out ref of a device

configuration and j jout in = , the transmission can be obtained [56]:

L L
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In the limit L loc ℓ this simplifies to (6), in the limit L loc ℓ to (8). The strong localization regime is
approximately valid forN>Nloc, the diffusive regime forN<N loc/25.

An example for the transmission N( ) at E E 0.2 eVF= + is shown infigure 4. Equation (9) (red dash-
dotted line) describes the general shape of the data verywell. A corresponding regression givesN loc=23 and
Nmfp=4.2. Both regimes, localization (7) and diffusion (8), are also depicted (red dashed and dotted lines) and
fit well in the appropriate limit (see footnote 5). The regressions yieldN loc=24 andNmfp=6.4. The
discrepancy concerningNmfp comes from the fact, that (9) underestimates the transition regime and gives a
systematically overestimated derivative atN=0. This can be seen in the inset of figure 4. Because of this we
determineN loc andNmfp separately using (7) and (8). In detail, we obtainN loc for each energy with a linear
regression of the logarithmic data in the range 10 103

0
1 < <- - .Nmfp is the slope of the linear dependence

N1- ( ) and is calculated in the limit N 0 .

4.2. Energy dependent localization exponent and elasticmean free path
Like in the preceding example the localization exponent is calculated for each energy and for all the different
CNTs offigure 2. The results are shown in the left columnoffigure 5 for theMV (first three rows) and theDV
(last row). Here, a distinction between different subsets concerning (m−n)mod 3must bemade to qualify and
quantify further dependencies. TheCNTswith (m−n)mod 3=0 are the semi-metallic oneswith very small
bandgaps in the range (50K130)meV. TheCNTswith (m−n)mod 3=1 and (m−n)mod 3=2 are the true
semiconducting CNTs, the former ones with bandgaps in the range (550K1540)meV and the latter ones with
bandgaps in the range (340K1040)meV.

For each subset clear trends can be seen. The qualitative shape ofNloc(E) ismostly the same: small values at
the valence/conduction band edge and increasing valueswith decreasing/increasing energy up to the next band
edgewith singularity-like shapes there. Furthermore, the curves follow a clear trendwith varying diameter for
most of the energies. There are two exceptions: (a)near the band edges, whereNloc diverges, and (b)near defect
states, which lead to peaks/dips in the transmission spectrum and inNloc(E). The latter is the case for (m−n)
mod 3=0: for theMVat energies below 0.1 eV and for theDV at energies between 0.0 eV and 0.2 eV. The right
columnoffigure 5 depicts the diameter dependence ofNloc at selected energies not fulfilling (a) or (b). For all the
cases a very clear linear dependence can be seenwith only small deviations from the linear regressions (solid
lines). This is in good agreementwith [32] 6. TheDV and (m−n)mod3=0 case shows that there is a lower
limit, here approximately d=9 nmandN loc=6. These deviations for smaller tube diameters can be explained
by strong curvature effects and the resulting changes of theπ-bonds. Also the fact that the defect occupies a large
part of theCNT circumference can result in additionally distorted structures and changed transport properties.
Furthermore, it is important tomention thatmany different chiralities are included, especially for the (m−n)
mod 3=0 case. As the diameter dependencematches verywell, a chirality dependence can be excluded. In
conclusion, the slope ofNloc(d) only depends on the subset, energy, and defect type, but not on the chirality. The
prefactor in (7) is between 0.4 and 1.27.

Nmfp is calculated in dependence on the energy in the sameway as done before forNloc. The result is shown
exemplarily for the (16,0)-CNT infigure 6 in comparison toNloc. It can be seen thatNmfp follows the general
trend ofN loc. This is in agreement with former general studies, inwhich relations between the localization
length and the elasticmean free pathwere derived [29, 55]. Furthermore, a linear diameter dependence at fixed
energy holds forNmfp, too.We checked this for all studiedCNTswith the same general result.

Away for comparingNmfp andNloc is (9) in the limitN?Nloc. This gives the prefactor
N N2 1 loc mfp+( ).With this, the three regression parametersNmfp from (8),Nloc from (7), and the

corresponding prefactor from (7) can be compared. For all studiedCNTs and energies, except near the band

5
A lower limit of the strong localization regime can be estimated comparing (7) and (9). The relative error is smaller than ò if

N N ln 1 N

N
loc

mfp

loc > -(( ) ). For ò=10%and N N 5loc mfp » this is roughly the case ifN>Nloc. The same can be done for the diffusive
regime by comparing (8) and (9). The relative error is smaller than ò if N N N6loc mfp< - . For ò=10%and N N 5loc mfp » this is
roughly the case if N N 2loc< .
6
Themuch larger deviations in [32] can be explained by the different bandgaps and by our subset distinction.

7
It strongly fluctuates as small changes in the localization exponent cause large changes in the prefactor. It depends less on energy, tube

diameter, and chirality.
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edges, where the regressions are less trustable, we get a good agreement. Themaximumdeviations of
N N2 1 loc mfp+( ) compared to the regression prefactor are in the range of±40%.Details are listed in table 1.

This comparison shows that the determination of the three parameters is consistent, (9) can be used to describe
both regimes, and the prefactor of the localization regime can be estimated usingNloc andNmfpwith acceptable
errors.

The linear dependencies N dloc ( ) andNmfp(d) can be used to predict the transmission of large diameter
CNTs of any chirality. But as  is energy-dependent this is not very practicable.

4.3. Conductance, effective localization exponent and effective elasticmean free path
In themesoscopic range, the zero-bias conductance of an arbitrary scattering region between two reservoirs can
be calculated using the Landauer-Büttiker formula [57]

Figure 5. Left column: localization exponent as a function of energy for theCNTs highlighted in figure 2.Different diameters are
denoted by color. Right column: diameter dependence of the localization exponent atfixed energies, which aremarked by arrows in
the left column.Different energies are denoted by color. The straight lines are linear regressions. Different rows showdifferent subsets
(m−n)mod 3 and different defects (MVorDV).
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G 2e h0
2= is the conductance quantum and f (E) is the Fermi distribution, whereby the effect of temperature is

included.
An example for the conductance as a function of the number of defects is shown infigure 7 for the (9, 0)-CNT

for different temperatures. For better comparison, all thedata are normalized to the conductance of the (9, 0)-CNT
with one defectG(N=1). A similar picture as shown infigure 4with a different effective localization exponent
N loc˜ and elasticmean free path N mfp˜ canbe seen. In contrast to the transmission in the strong localization regime,
thedependence on the defect number is not strictly exponential. If the localization exponentNloc is not energy-
dependent it is clear that N Nloc loc=˜ , as it is formetallicCNTs [31]. But as previously shown, the very large
variations inNloc(E)of the semiconductingCNTs lead to a complicated summation of conductance contributions
with different exponential dependence. In the limit of largeN, the largestNloc woulddominate, but this is not a
useful description, as itwouldbemuchabove typical numbers of defects of experimental relevance.With several
simplifications for the Landauer-Büttiker formula andNloc(E), solving the integral (10) yields an additional
prefactor 1/(1+N). But in all cases it varies not verymuch compared to the exponential dependence and canbe
treated as a slight correction of the localization exponent. Consequently, (6) can beused as a good approximation
for estimating andpredicting the conductance in the strong localization regime.

The effective localization exponent N loc˜ for the conductance is calculated forT=300 K and for all the
different CNTs offigure 2. The regressions are done aroundG/G(N=1)=10−4, where the range is extended
as far as possible, while keeping the regression inaccuracywithin certain limits. The results are shown in the left

Figure 6. Localization exponentN loc and normalizedmean free pathNmfp as a function of energy for the (16, 0)-CNTwithMV
defects.

Table 1.Deviations of N N2 1 loc mfp+( ) compared to the
regression prefactor of the localized regime (6).

MV DV

(m−n)mod 3=0 −6%K39% −5%K30%

(m−n)mod 3=1 −45%K36% –

(m−n)mod 3=2 −46%K34% –

Figure 7.Conductance of the (9, 0)-CNT as a function of the number ofMVdefects for different temperatures (denoted by color).
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columnoffigure 8 for theMV (first three rows) and theDV (last row), where N loc˜ is depicted as a function of the
tube diameter. It shows a very good linear dependence for the four cases. Linear regressions are depicted in
figure 8with straight black lines. The results are listed in table 2. As the data includes CNTswithmany different
chiral angles, a chirality dependence of the localization exponent can be excluded. These result can be used as an
approximate guideline to estimate and predict the conductance for CNTswith arbitrary diameters and chiral
angles. There are deviations for smaller tube diameters, which can be explained by strong curvature effects and

the resulting changes of theπ-bonds. TheDVdata for the m n mod3 0- =( ) case (lower row) show that N loc˜ is

limited by a lower bound, here approximately at d=9 nmand N 5loc =˜ .

Figure 8.Diameter dependence of (left column) the effective localization exponent and (right column) the effective elasticmean free
path atT=300 K.Different chiral angles are denoted by color. The straight black lines are linear regressions. Different rows show
different subsets (m−n)mod 3 and different defects (MVorDV).

Table 2.Dependence of N loc˜ and N mfp˜ on the diameter d at 300 K,
described by linear regressions N dloc loc loca b= +˜ and N mfp =˜

dmfp mfpa b+ .

defect (m−n) αloc βloc αmfp βmfp

mod 3 [1/Å] [1/Å]

MV 0 3.2 −5.0 0.36 −1.6

MV 1 5.8 −11 0.12 −0.38

MV 2 3.6 4.8 0.14 −0.67

DV 0 3.0 −25 0.21 −1.5
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As done before for the localization regime, the diffusive regime can be described by an effective elasticmean
free path N mfp˜ at a given temperature, e.g. at 300 K. For the four studied cases, N mfp˜ is depicted as a function of
theCNTdiameter in the right columnoffigure 8. A linear trend can be seen here, too. Linear regressions are
depicted infigure 8with straight black lines. The results are listed in table 2, too. The deviations for small
diameter tubes are likely due to curvature effects. For theMVdefect with (m−n)mod 3=0 the larger
deviations are caused by themuch stronger defect features near the band gap, which are not present in the other
three cases.

Figure 9 shows some examples for the temperature dependence of N loc˜ for CNTswithMVdefects. The
complete data can be found in the supplementarymaterial. The general shape of the dependence N Tloc˜ ( ) can be
derived under some rough assumptions and simplifications by the analytical integration of (10). For this, the
diverging shape ofNloc(E) is assumed to be N E E10

loc
2-( ). The integral is restricted to the interval [E1, E2].

The derivative of the Fermi distribution is approximated for large energies by e 1 2eE E k T E E k TF B F B-- - - -( )( ) ( ) .

The effective localization exponent is calculated by N G

N

loc ln= -¶
¶

˜ . Alltogether this yields a functionwith four

free parameters, which can be used for a regression:

N T a b
d T c

d T c

1 e

1 e
11

c d T

c d T
loc = +

- -
- - -

-

-
˜ ( ) ( )( )

( )
( )

The parameters are related to the bandgap, the band edges, and themagnitude of the derivative of N Eloc ( ). For
the examples infigure 9, the corresponding regressions are shown as solid lines. For different shapes, the
regressions agreewith the data for sufficiently high temperatures. There are some deviations for low
temperatures, where the defect-induced features inNloc(E) aremore dominant compared to the general trend.

5. Summary and conclusions

We studied the influence of realistic vacancy defects on the electronic transport properties of semiconducting
carbon nanotubes on a quantum level. The influence of the vacancies is addressed by a statistical description
with randomly distributed positions and orientations inCNTswith lengths up to theμm-range. The electronic
structure is described by a density-functional-based tight-bindingmodel and a Slater-type sp3-basis suitable for
carbon structures. The transport calculations are performed using quantum transport theory and linearly
scaling recursive Green’s function techniques to treat very large systems.We systematically investigated a large
amount of different CNTs to describe the structural dependence. This extends previouswork [30, 32] to
semiconducting CNTswith arbitrary chirality, which has not been subject of theoretical studies until now.

The strong localization regime aswell as the diffusive regime are analyzed. They are described by the
dependence of the transmission as a function of the number of defects and the resultingmaterial parameters,
namely the localization length and the elasticmean free path and their dimensionless equivalents. It is shown
that a distinction concerning (m−n)mod 3 has to bemade, which discriminates three groups of CNTswith
different quantitative band gap dependencies. Besides this, the localization length aswell as the elasticmean free
path at a given energy can be described verywell by linear functions of the tube diameter, in agreement with
former studies [30, 32]. The investigation of CNTs of different chiral angles, covering the full range, shows that a
further dependence on this structural parameter can be excluded. Furthermore, both transport regimes and the
transition regime in between can be describedwithmoderate errors by the analytical formula (9) from [56].

Furthermore, it was shown that the conductancewithin the localization and diffusive regimes can be
described by effective parameters in the sameway as the transmission. Bothwere explicitly calculatedwith linear
regressions for two different vacancy examples. This description based on the conductancemay be used to
predict the electron transport of defective CNTswith arbitrary chirality and can help to describe CNT-based
devices inmicro electronics without the need of complex quantum transport computations.

Figure 9.Temperature-dependent effective localization exponent for some examples withMVdefects. The symbols are the data. The
lines are regressions according to (11). See supplementarymaterial for other CNTs and the regression parameters.
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