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ABSTRACT 

 

The human auditory system has far superior emotion 

recognition abilities compared with recent speech emotion 

recognition systems, so research has focused on designing 

emotion recognition systems by mimicking the human 

auditory system. Psychoacoustic and physiological studies 

indicate that the human auditory system decomposes speech 

signals into acoustic and modulation frequency components, 

and further extracts temporal modulation cues. Speech 

emotional states are perceived from temporal modulation 

cues using the spectral and temporal receptive field of the 

neuron. This paper proposes an emotion recognition system 

in an end-to-end manner using three-dimensional 

convolutional recurrent neural networks (3D-CRNNs) based 

on temporal modulation cues. Temporal modulation cues 

contain four-dimensional spectral-temporal (ST) integration 

representations directly as the input of 3D-CRNNs. The 

convolutional layer is used to extract high-level multiscale ST 

representations, and the recurrent layer is used to extract 

long-term dependency for emotion recognition. The proposed 

method was verified on the IEMOCAP database. The results 

show that our proposed method can exceed the recognition 

accuracy compared to that of the state-of-the-art systems. 

 

Index Terms—temporal modulation, three-dimensional 

convolutional recurrent neural networks, spectral-temporal 

representation, speech emotion recognition 

 

1. INTRODUCTION 

 

Speech contains rich linguistic, para-linguistic, and non-

linguistic information, which are important for efficient 

human-computer interaction. Enabling a computer to 

understand the linguistic information alone is not sufficient 

for the computer to fully understand the speaker's intentions. 

To understand the speaker's intentions as human beings do, 

speech systems need to be able to process the non-linguistic 

information, especially the emotional states of the speaker [1]. 

Therefore, speech emotion recognition (SER) has drawn 

more and more attention from researchers in related fields. 

The human auditory system has far superior emotion 

recognition abilities than artificial system. In the auditory 

system, sound signals are firstly analyzed by cochlear and 

then are transmitted to the auditory cortex via the auditory 

nervous systems. Finally, the auditory cortex perceives the 

emotional states from the speech. The cochlea, which is the 

main part of the peripheral auditory system, decomposes 

sound signals into multichannel acoustic frequency 

components along the length of the basilar membrane. Inner 

hair cells (IHC) detect the motion of the basilar membrane 

and transduce it into neural signals. Each transduced signal 

contains a temporal envelope that is important for speech 

perception. Temporal envelope information travels further to 

the inferior colliculus (IC) at the midbrain through the 

auditory nerve and cochlear nucleus. Physiological studies 

have revealed that the processing of temporal modulation is 

performed in the IC for high-resolution temporal information 

by tuning to certain modulation frequencies [2]. Møller [3] 

first observed that the mammalian auditory system has a 

specialized sensitivity to amplitude modulation of 

narrowband acoustic signals. Suga [4] showed that amplitude 

modulation information is maintained for different acoustic 

frequency channels. Recent psychoacoustic experiments 

showed that temporal modulation is important for human 

perception. Additionally, Chi et al. have extended the 

findings above to include combined spectral and temporal 

modulations [5]. 

Due to the importance of the auditory system in speech 

perception, research has focused on designing emotion 

recognition systems by mimicking the human auditory 

system. Two kinds of cochlear models are commonly used as 

a simulation of the cochlear in the processing of speech and 

audio. One is Lyon’s cochlear model [6], and the other is the 

Gammatone or Gammachirp filter model based on equivalent 

rectangular bandwidth (ERB) [7-9]. Furthermore, several 

methods of temporal envelope extraction from acoustic 

frequency components such as Hilbert transform or half-
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wave rectification (HWR) are modeled to effectively 

simulate IHC. A modulation filterbank is introduced to 

generate high-resolution temporal modulation cues provided 

by the temporal envelope and its modulation frequency 

components. These cues contain 4D spectral-temporal (ST) 

representations including acoustic frequency, modulation 

frequency, amplitude, and time. These representations 

contain rich information that is important for human speech 

perception. Therefore, temporal modulation cues have been 

widely used in speech recognition [10], emotion recognition 

[11, 12], and sound texture perception [13]. 

The primary auditory cortex is responsible for the 

perception of sound from temporal modulation cues using the 

ST receptive field of the neuron [14]. Inspired from biological 

neural networks, different artificial neural networks were 

designed to achieve their own unique functions. 

Convolutional neural networks (CNNs) can extract high-

level local feature representations using the receptive field of 

the neuron [15] and have been used for acoustic modeling and 

feature extraction in speech emotion recognition systems. 

Recurrent neural networks (RNNs) including long short-term 

memory (LSTM) [16], which are closely related to the 

biological model of memory in the prefrontal cortex, are 

designed to handle long-range temporal dependencies and 

can be turned into convolutional recurrent neural networks 

(CRNN) by combining them with the output of the CNN layer 

to handle time sequence dependence.  

Many studies use a 2D convolution operation on a 

feature map and use RNN or LSTM on the segmented sub-

sequence to get the speech signal relations. Mao et al. [17] 

trained an autoencoder followed by a CNN to learn salient 

feature maps from a spectrogram. Lim et al. [18] used deep 

CRNN to extract salient features by transforming the speech 

signal to 2D representations using short time Fourier 

transform (STFT). Keren et al. [19] and Neumann et al. [20] 

presented CNN in combination with LSTM to improve the 

recognition rate based on log Mel filter-banks. Recently, end-

to-end SER from raw waveform is a new research direction 

based on significant ST feature learning abilities of neural 

networks. Trigeorgis et al. [21] used a 1D convolutional 

operation on the discrete-time waveform to predict 

dimensional emotions. However, the raw waveform is 

processed by an auditory system forming 4D representations 

rather than 1D or 2D forms. Moreover, the aforementioned 

Wu et al. [11] and Zhu et al. [12] just extracted modulation 

spectral features including centroid, skewness, kurtosis, and 

other statistical features from a modulation spectrum for 

emotion recognition but did not consider the richer original 

information. 
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Fig. 1. Signal processing steps to extract spectral-temporal 

representation  

This paper proposes an end-to-end utterance-level 

emotion recognition system using a 3D-CRNN based on 

temporal modulation cues. This method firstly extracts 

temporal modulation cues via a cochlear filter and temporal 

envelope extraction of each filter. These cues contain ST 

integration representations directly as the 3D-CRNN input. 

The originality of this paper is that it is the first attempt to put 

temporal modulation cues in speech into the CNN 

simultaneously to extract high-level ST representation and is 

the first attempt to use 3D-CRNN to recognize speech 

emotions from raw data. 

 

2. SPECTRAL-TEMPORAL REPRESENTATIONS  

 

2.1. Overview of spectral-temporal representations 

 

The ST representations are extracted using the signal 

processing steps depicted in Fig. 1. First, the emotional 

speech signal s(n) is filtered by a bank of 32 critical-band 

Gammachirp filters to emulate the processing performed by 

the cochlea (see Eq. (1)).  

   𝑠𝑗(𝑛)  =  ℎ𝑗(𝑛)  ∗  𝑠(𝑛)                               (1) 

Where hj(n) is the impulse response of the jth channel and n 

is the sample number in the time domain. Second, the 

temporal envelope is extracted using the Hilbert transform or 

HWR to calculate the instantaneous amplitude ej(n) of the jth 

channel signal. Furthermore, the modulation filterbank is 

used for the kth sub channel in the jth channel signal to extract 

the ST modulation signal Ej,k(n). Eventually, 4D ST 

representations are obtained.   

 

2.2. Cochlear filterbank 

 

Gammachirp and Gammatone filterbanks as typical cochlear 

filterbanks model the basilar membrane motion well. 

Compared to the Gammatone filter, the Gammachirp filter is 

an asymmetric and nonlinear filter that has a similar shape to 

that of the cochlear filter [7]. Hence, the Gammachirp filter is 

used in this study. The impulse response of a Gammachirp 

filter is the product of the Gamma distribution and the 

sinusoidal tone. The bandwidth of each filter is described by 

an ERB, which is a psychoacoustic measure of the width of 

the auditory filter at each point along the cochlea. 

gt(𝑡) = A𝑡𝑁−1 exp(−2π𝑏𝑓ERB(𝑓0)𝑡) cos(2𝜋𝑓0 𝑡 + 𝑐𝑙𝑛(𝑡) + φ)       (2) 

As shown in Eq. (2), where A, 𝑏𝑓, and N are parameters, 

and A𝑡𝑁−1exp (−2π𝑏𝑓ERB(𝑓0)𝑡)  is the amplitude term 

represented by the Gamma distribution, 𝑓0   is the center 

frequency of the filter, the cln(t) term is the monotonic 

frequency modulation term, φ is the original phase, and 

ERB(𝑓0)  is an equivalent rectangular bandwidth in  𝑓0(𝑡) . 

When c = 0, the chirp term, cln (t), vanishes, and this equation 

represents the complex impulse response of the Gammatone. 

Accordingly, the Gammachirp is an extension of the 

Gammatone with a frequency modulation term. 



A
m

p
lit

u
d

e

A
m

p
lit

u
d

e
A

m
p

lit
u

d
e

A
m

p
lit

u
d

e
Anger Happiness

Neutral Emotion Sadness

 
Fig. 2. Time-averaged modulation representation of sounds 

 

2.3. Temporal Envelope Extraction 

 

The temporal envelope is extracted using the Hilbert 

transform or HWR to simulate the functionality of the IHC. 

The half-wave or full-wave rectification produces distorted 

frequency components in the modulation domain, whereas 

the Hilbert transform provides a clear separation between the 

signal’s temporal envelope and fine structure. Hence, the 

Hilbert transform is used for temporal envelope extraction in 

this study. 

 

2.4. Modulation filterbank 

 

A modulation filterbank is used to extract the ST modulation 

representations over the joint acoustic-modulation frequency 

plane. By incorporating the cochlear filterbank and the 

modulation filterbank, a richer 4D ST representation is 

formed and used to analyze spectral and temporal relations. 

Figure 2 shows the modulation representation for the four 

emotions with a time-averaged pattern, where each one 

shown is the average over all the time frames for an emotion. 

“AFC” and “MFC” denote the acoustic and modulation 

frequency channels, respectively.  

Such representations show that the energy of human 

vocal sound is mostly concentrated at 10 to 15 acoustic 

frequency channel for anger and happiness and at 5 to 12 

acoustic frequency channel for neutral emotion and sadness. 

The energy is mostly concentrated at the lower modulation 

frequency channel with a peak at 4 Hz for neutral emotion. 

The peak shifts to a higher modulation frequency for anger 

and happiness, suggesting a faster speaking rate for these 

emotions. Happiness, however, shows a more abundant 

energy distribution in higher acoustic channels compared to 

anger’s energy distribution. In contrast to anger and 

happiness, neutral emotion, and sadness exhibit lower 

modulation frequency more prominently, suggesting lower 

speaking rates. The neutral emotion, however, also exhibits a 

prominent energy distribution in higher acoustic channels 

between 20 and 25. Sadness exhibits a discriminative energy 

distribution in the lower acoustic frequency channels over all 

modulation frequency channels. 
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Fig. 3. Overview of 3D-CRNN model 

 

This shows that different emotions have discriminative 

ST modulation representations, which are suitable to extract 

high-level ST representations for convolutional networks. 
 

3. 3D CONVOLUTIONAL RECURRENT NEURAL 

NETWORKS 

 

3.1. 3D-CRNN model  

 

Inspired from biological neural networks, shadow or deep 

artificial neural networks were designed to extract features. 

CNNs can extract high-level multiscale ST representations 

using different receptive fields. RNNs can handle long-range 

temporal dependencies. For processing audio signals, 

CNNs/RNNs are used to achieve the function of the primary 

auditory cortex. 

We put forward a 3D-CRNN model combining a CNN 

and RNN for emotion recognition from speech. Figure 3 

shows the overview of the proposed methods. First, we feed 

the ST representations into the 3D CNN to learn high-level 

multiscale ST representations straightforwardly for a 

sequence of varied length. Nevertheless, LSTM/RNN is more 

suitable to learn the temporal information. 

 
Table 1. 3D-CRNN architecture 

Layer Input size Output size Kernel Stride 

Conv1 32x6x6000 32x6x1200 2x2x20 1x1x5 

Pool1 32x6x1200 16x3x1200 2x2x1 2x2x1 

Conv2 16x3x1200 16x3x600 2x2x20 1x1x2 

Pool2 16x3x600 8x1x300 2x3x2 2x3x2 

RNN1 10x30x160 30x128 - - 

RNN2 30x128 128 - - 

MV 128 3x128 - - 

FC 3x128 4 - - 



 
Fig. 4. First (left) and second (right) recurrent layers 

 

Eventually, fully connected features are generally used 

as the LSTM input, but keeping the spatial correlation 

information in LSTM processes enables more informative ST 

representations to be learnt. 

 

3.2. 3D convolutional layer 

 

The 3D-CRNN architecture is described in Table 1. The first 

convolutional layer (Conv1) is used to extract 3D features 

that are composed of acoustic frequency, modulation 

frequency, and short-time windows. These features are 

another time sequence, which is the input of the second 

convolutional layer (Conv2) that models ST representations. 

The data format of the input and output data is reported as 

"DxHxW", where D, H, and W are the data in the acoustic 

frequency channels (depth), modulation frequency channels 

(height), and time sequence (width), respectively. 

Specifically, the input size is 32x6x6000. Additionally, the 

shape of the kernels is [2, 2, 20] in the conv1 and conv2 layers 

following the max-pooling operation. Finally, we get the 

output of pool2 with the shape of 8x1x300 and then reshape 

it to 2D shapes. The batch size and convolution filter size are 

equal to 20. Batch normalization is used before each 

convolutional layer. Experiments in this study also 

demonstrate that there will be a substantial speedup in 

training when using batch normalization. 

  

3.3. Recurrent layer 

 

We also use two recurrent layers to obtain different scale 

dependencies using the first recurrent layer (RNN1) for 

relatively short-term dependencies and the second recurrent 

layer (RNN2) for utterance-level dependencies. 

Figure 4 shows the first and second recurrent layer. For 

RNN1, the input of the layer is 300x160, representing the 

time sequence length and feature size, respectively. The time 

sequence is divided into 30 windows, and each window 

includes 10 time frames. The time sequence is fed frame by 

frame into the first recurrent layer. Then, the hidden states of 

the recurrent layer along the different frames of the window 

are used to compute the extracted features [19].  

 
Fig. 5. Comparison of recognition accuracy of different models 

on IEMOCAP database  

 

The output of this layer for each window is the cell state 

vector of the last time frame in each window. For each 

window, each layer extracts 128 features.  Finally, we create 

a new sequence with a length of 30x128 to put into RNN2. 

For RNN2, the whole sequence is fed into the LSTM model, 

and max-pooling is used to generate 128 feature sequences. 

After applying max-pooling, the resulting sequence contains 

temporal features of the sequence and can be fed into the fully 

connected layer for classifying. 

 

3.4. Multi-view learning 

 

For RNN1, 30 time windows are obtained, and each time 

window includes 10 time frames. Moreover, we utilize multi-

view learning to obtain more information. In this study, we 

just use unidirectional LSTM because of the varied length for 

each utterance in the database. For obtaining more 

dependency information, we shift the time sequence twice, 

and each shift is equal to 3 and 6, respectively. Finally, we 

feed this shifted time sequence into RNN2 as a new sequence. 

 

4. EXPERIMENT RESULTS 

 

4.1. Experimental database of emotional speech 

 

For our experiments, we used the interactive emotional 

dyadic motion capture (IEMOCAP) database [22], which is a 

well-known dataset for speech emotion recognition 

comprising of scripted and improvised multimodal 

interactions of dyadic sessions. The dataset consists of around 

12 hours of speech from 10 human subjects and is labeled by 

three annotators for emotions such as happy, sad, angry, 

excited, and neutral, along with dimensional labels such as 

valence and arousal. All recordings have the structure of a 

dialogue between a man and a woman either scripted or 

improvised on the given topic. For this study, we merged 

happy and excited into one class: happy. We took 5,531 

utterances for all sessions. The mean length of all the turns is 

4.55 s (max.: 34.14 s, min.: 0.58 s). Since the input length for 

a CNN has to be equal for all samples, we set the maximal 

length to 7.5 s (mean duration plus standard deviation). 

Longer turns were cut at 7.5 s, and shorter ones were padded 

with zeros. 



Table 2. Setup for modulation spectral features 

Name Value 

Sampling frequency 16000 Hz 

Modulation filterbank 

sampling frequency  

800 Hz 

Gammachirp channels 32 

Modulation sub-channel 6 

Sound pressure level 60 dB 

 

4.2. Setup for modulation spectral features 

 

We first applied a pre-emphasis filter to the signal to amplify 

the high frequencies to compensate for the energy loss in the 

outer-middle ear and then used normalization to remove the 

difference of the speakers by mapping the values of signals 

to mean 0 and the standard derivation to 1.  

Furthermore, we introduced the compressive 

Gammachirp filterbank to accommodate the compressive 

characteristics. To get the data from the Gammachirp 

filterbank, the frequency distributed on the ERB scales was 

between 100 Hz and 8 kHz. The modulation filterbank was 

also used to control the envelopes of octave bands from 2 to 

64 Hz, consisting of one low-pass filter and five band-pass 

filters. The detailed setup is shown in Table 2. 

 

4.3. Hyper parameters for 3D-CRNN  

 

For all random weight initializations, we chose L2 

regularization. The parameters were learned in an end-to-end 

manner, meaning that all parameters of the model were 

optimized simultaneously using the Adam optimization 

method with a learning rate of 1e-4 to minimize the chances 

of having a cross-entropy objective. Moreover, we used a 

rectified linear unit (ReLU) as the activation function, which 

brought the non-linearity into the networks. To avoid 

overfitting when training our networks, we used a dropout 

rate of 0.5 after the second recurrent layer.  

 

4.4. Comparison Experiments  

 

There were three comparison experiments named 3D CNN, 

3D CLSTM, and 3D CRNN-sv. All these models had the 

same layers from conv1 to pool2 with the shape of 300x160.    

3D CNN: Adding two extra 2D convolutional layers and 

pooling layer (with 2x2 kernel and 2x2 stride) onto the top of 

pool2, and then was followed by a fully connected layer.  

 
Table 3. Comparison of proposed method and other methods on 

IEMOCAP database 

Method WA UA Year 

Ref [23]  54.3% 48.2% 2014 

Ref [25]  48.1% 49.09% 2016 

Ref [24] 54% 54% 2017 

Ref [20] 56.1% - 2017 

Our work 61.98% 60.93%  

 

3D CLSTM: Similar to the 3D-CRNN model except 

without the RNN1 and MV layer. For RNN2, the whole 

sequence with the shape of 300x160 was fed into the LSTM 

model, and max-pooling was used to generate 128 feature 

sequences.  

3D CRNN-sv: This was a single-view way for the 3D-

CRNN model. Similar to the 3D-CRNN model except 

without the MV layer. The output size of FC was 128.  

 

4.5. Experiments results 

 

To train the models in a speaker-independent manner, we 

used leave-one-session-out cross-validation. We used 

utterances from eight speakers to construct the training 

datasets and used the other two speakers for the test. 

We used two measures to evaluate the performance: 

weighted accuracy (WA) and unweighted accuracy (UA). 

WA is the classification accuracy of the entire test data set, 

and UA is the average of the classification accuracy for each 

emotion. The results obtained for each method are shown in 

Fig. 5. They show that the 3D-CRNN with multi-view results 

in better recognition accuracy with 61.98% and 60.93% in 

WA and UA measures. This shows that more multiscale 

information was obtained from the multi-view model. The 

results also show that the 3D CNN had poorer accuracy than 

that of the other models because of the absence of a recurrent 

layer. This also demonstrates the importance of the sequential 

dependencies information for emotion recognition from 

speech. 

Table 3 shows that the proposed method outperformed 

the other methods. Han et al. [23] firstly extracted the 

segment-level emotion state distributions utilizing the 

features (F0 and MFCC) based on the DNN model and used 

an extreme learning machine (ELM) to identify utterance-

level emotions. Chernykh et al. [24] proposed a CTC 

approach based on RNN to recognize the utterance-level 

emotions utilizing MFCC and spectrum properties like flux 

and roll-off features. The method of Ghosh et al. [25] learns 

utterance specific representations by a combination of 

stacked autoencoders and bidirectional LSTM trained on 128 

bin FFT spectrograms. Overall, the proposed approaches 

significantly outperform the previous best accuracy result 

with 5.88% (from 56.1% to 61.98%) and 6.93% (from 54% 

to 60.93%) absolute accuracy improvement in WA and UA 

measures, respectively. 

 

5. CONCLUSION 

 

In this paper, we studied auditory-inspired end-to-end 

recognition of emotional speech using a 3D-CRNN model 

based on temporal modulation cues. Convolutional networks 

can reconstruct multiscale ST representations, and recurrent 

networks can obtain the long-term dependencies for emotion 

recognition. The experimental results demonstrate that our 

method is an effective way to design an emotion recognition 

system by mimicking the human auditory system. In the 



future, we will compare Gammachirp and the Gammatone 

filter with a different number of acoustic and modulation 

channels. Furthermore, we will try to extract fundamental 

frequency information along with the ST features using 

multitask learning.   
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