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Abstract
Quantum key distribution protocols constitute an important part of quantum cryptog-
raphy, where the security of sensitive information arises from the laws of physics. In
this paper, we introduce a family of key distribution protocols which generalize the
PBC00 protcol. We compare its key with the well-known protocols such as BB84,
PBC00 and generation rate to the well-known protocols such as BB84, PBC0 and
R04. We also state the security analysis of these protocols based on the entanglement
distillation and CSS codes techniques.

Keywords Quantum key distribution · Quantum cryptography · Cryptographic
protocols

1 Introduction

Quantum cryptography is a blooming field of scientific research, where quantum phe-
nomena are applied to securing sensitive information. Usually, cryptographic systems
are based on the key distribution mechanisms and security of the systems depends
on computational complexity. The security of quantum cryptography arises from the
laws of quantum physics. Scenarios of quantum key distribution (QKD) protocols are
based on the assumption that secret key is shared by Alice and Bob. The first QKD
protocol, BB84 [1], became amotivation for expanding research in this area. As a con-
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sequence, Mayers in [2] proved the unconditional security of this protocol on a noisy
channel against a general attack. Quantum entanglement and the violation of Bell’s
theorem were introduced to the BB84 protocol by Ekert [3]. Next, Bennett proposed
a simple protocol B92 [4] based on two nonorthogonal states. Unconditional security
analysis of this protocol was performed by Tamaki et al. in [5,6] and by Quan et al. in
[7]. Subsequently, Phoenix et al. [8] introduced PBC00 protocol and they showed that
key bits can be generated more efficiently by the usage of three mutually nonorthog-
onal states. Renes developed the key creation protocols R04 [9] for two-qubit-based
spherical codes, which is a modified version of the PBC00 protocol. The R04 protocol
allows one to use all conclusive events for key extraction. In [10], Boileau et al. proved
the unconditional security of the trine spherical code QKD protocol, which concerns
also to PBC00 and R04 protocols. The experimental realization of PBC00 and R04
protocols was proposed in [11] and [12]. New results referring to asymptotic analysis
of three-state protocol can be found in [13].

In this paper, we propose a class of QKD protocols which generalize the PBC00
protocols. We perform the security analysis of this class using of techniques similar
as in [5,10]. It means that the proposed protocol was considered as entanglement
distillation protocol (EDP) [14,15]. Subsequently, similarly as in case of BB84 [16],
CSS codes [17,18] were used to the security proof.

2 Defined state protocol

Our aim is to generalize the PBC00 protocol. We will achieve this in two steps. First
generalize the well-known PBC00 protocol to an arbitrary number of states. Next, we
will introduce modifications to the measurements used by both parties which allow us
to obtain better key rates.

Let us introduce a class of QKD protocols, which generalize the PBC00 protocol
[8]. Assume that Alice and Bob would like to share N secret bits bi . Then, the protocol
is as follows.

Protocol 1 (P1)

1. Alice and Bob share N pairs of maximally entangled two-qubit states ρAB =
|φ−〉〈φ−|, where |φ−〉 = 1√

2
(|01〉 − |10〉).

2. She chooses K states |ψk〉 = cos(a + θk)|0〉 + sin(a + θk)|1〉, where a ∈ [0, 2π)

is a constant and θk = 2kπ
K for k ∈ {0, . . . , K − 1}. The states |ψk〉 are grouped

into pairs Sk = {|ψk〉, |ψk+1 mod K 〉}.
3. Subsequently, Alice measures her parts of the states ρAB using the positive

operator-valued measure (POVM) { 2
K |ψ⊥

k 〉〈ψ⊥
k |}k , where |ψ⊥

k 〉 is orthogonal to
|ψk〉. Detection of the state |ψ⊥

mi
〉 after measurement in the i th step is equivalent

to sending a state |ψmi 〉 to Bob.
4. Alice chooses each key bit bi randomly and calculates ri ∈ {0, . . . , K − 1} as

ri = mi + bi mod K . This ri determines the encoding base Sri .
5. Alice publicly announces when all of her measurements are done.
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6. Bobpreparesmeasurements describedby thePOVM { 2
K |ψ⊥

k 〉〈ψ⊥
k |}k andmeasures

his parts of the states ρAB . He announces when the measurements are done.
7. Alice sends sequences of values ri to Bob.
8. Bob detects the state |ψ⊥

ji
〉. If ji = ri , he decodes bi = 0. If ji = ri − 1 mod K ,

he decodes bi = 1. In other cases, the events are regarded as inconclusive. These
results are discarded.

9. Half of randomly chosen conclusive events are used in the estimation of a bit error
rate. If the bit error rate is to high, then they abort the protocol.

10. In the end, they use a classical error correction and privacy amplification protocols.

Notice that for K = 3 and an appropriate choice of constant a, the above scenario
is equivalent to the PBC00 protocol [8]. It can also be shown that protocols of this
class achieve the highest key rate for K = 3. Note that for K = 4 the protocol
becomes trivial as there are only two unique operators |ψk〉〈ψk |. Hence, the potential
eavesdropper knows exactly which measurements to perform.

3 An enhancement

Now we consider a modification of the above protocol. Steps 1–4 are the same as in
the previous protocol.

Protocol 2 (P2)

5′. Alice publicly announces when all her measurements are done and she sends
sequences of values ri to Bob.

6′. For each ri , Bob prepares an unambiguous measurement described by the POVM

{Πri−1,Πri ,Πfill} =
{
1

λ
|ψ⊥

ri 〉〈ψ⊥
ri |,

1

λ
|ψ⊥

ri+1 mod K 〉〈ψ⊥
ri+1 mod K |

1l2 − 1

λ

(
|ψ⊥

ri 〉〈ψ⊥
ri | + |ψ⊥

ri+1 mod K 〉〈ψ⊥
ri+1 mod K |

)} (1)

where λ =
√
2
2

√
cos 4π

K + 1+ 1 = 1+ | cos( 2πK )|. The value λ is determined as a
maximal eigenvalue of

|ψ̃ri 〉〈ψ̃ri | + |ψ̃ri+1 mod K 〉〈ψ̃ri+1 mod K |. (2)

7′. This point is now redundant and can be omitted.

Steps 8, 9 and 10 are again the same as in the previous protocol. For K = 3, the
characteristics of the protocols P1 and P2 are the same and are equivalent to the
characteristics of the PBC00 protocol. In next section, we will show that we get higher
key rate in the case of protocol P2 with K = 5 than the case of PBC00 protocol.
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4 Security analysis

Similarly to [5,10,16], we consider an entanglement distillation protocol (EDP) [15]
related to quantum error-correcting codes [16], which can be reduced to a QKD pro-
tocol equivalent to the above scheme. Lo and Chau shown similarities between QKD
and EDP [15]. Notice that Alice and Bob share Bell state, which provides security
from an eavesdropper. Lo and Chau proved that existence of eavesdropping or noise
does not spoil of security of QKD protocol based on EDP [15]. Shor and Preskill used
approach proposed by Lo and Chau for analysis of security proof based on CSS codes
[16]. In contrast to classical linear error-correcting codes, quantum codes refer not
only with bit errors, but also with phase errors. It can be supposed that in Lo-Chau
protocol, Alice and Bob can use CSS codes able to correcting bit and phase errors. One
of the advantage of CSS codes is fact that bit errors and phase errors are correctable
separately. Similarly to [10], we prepare phase error estimation utilizing the Azuma’s
inequality [19].

Firstly, we transform the vectors |ψi 〉 by the rotation operator R(−η), where

Ry(θ) =
(
cos θ − sin θ

sin θ cos θ

)
and η = arccos(〈ψ1|ψ0〉)/2 + arctan

( 〈ψ0|1〉
〈ψ0|0〉

)
. After this

transformation,weget states |ψ̃i 〉 = R(−η)|ψi 〉,where |ψ̃0〉 = cos( π
K )|0〉+sin( π

K )|1〉
and |ψ̃1〉 = cos(− π

K )|0〉 + sin(− π
K )|1〉. This transformation has no impact on

the protocol, but is important in the security analysis. Assume that Alice prepares
many pairs of qubits in the entangled state |ψ〉 = 1√

2
(|+〉|ψ̃0〉 + |−〉|ψ̃1〉), where

|±〉 = 1√
2
(|0〉 ± |1〉) and the basis {|+〉, |−〉} will be denoted by ±-basis. Next, she

randomly chooses a string ri , ri ∈ {0, . . . , K − 1} of length N and applies Ry(θri ) on
the second qubit of every pair. After that, she sends qubits to Bob through a quantum
channel. Alice announces the values of ri . Next, Bob performs local filtering oper-

ations [20–22] F = 1√
2λ

(
(|ψ̃⊥

0 〉 + |ψ̃⊥
1 〉)〈0| + (|ψ̃⊥

0 〉 − |ψ̃⊥
1 〉)〈1|

)
and operation

Ry(−θri ) on the received qubits. Next, half of the states are used to determine the
number of bit errors after application of ±-basis measurements by Alice and Bob. If
the number of errors is too high, then the protocol is aborted. Remaining qubits are
used to distill Bell states by an EDP based on CSS codes. Alice and Bob perform
±-basis measurements on Bell states to obtain a secret key.

Notice that Ry(θri )|ψ̃ j 〉 = |ψ̃ri+ j mod K 〉 and Alice’s operation related to mea-
surement { 1

λ
|ψ̃⊥

i 〉〈ψ̃⊥
i |}i on her state are equivalent to ±-basis measurement on the

state
(
1l2 ⊗ Ry(θri )

)|ψ〉. The filtering operations F , rotation operation Ry(−θri )

and ±-basis measurement performed by Bob can by described by the following
POVM

{Ry(θri )F
†|+〉〈+|FRy(θri )

†,

Ry(θri )F
†|−〉〈−|FRy(θri )

†,

Ry(θri )(1l2 − F†F)Ry(θri )
†}.

(3)
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This measurement is equivalent to the POVM

{Π̃ri−1, Π̃ri , Π̃fill} =
{
1

λ
|ψ̃⊥

ri 〉〈ψ̃⊥
ri |,

1

λ
|ψ̃⊥

ri+1 mod K 〉〈ψ̃⊥
ri+1 mod K |,

1l2 − 1

λ
(|ψ̃⊥

ri 〉〈ψ̃⊥
ri | + |ψ̃⊥

ri+1 mod K 〉〈ψ̃⊥
ri+1 mod K |)

}
.

(4)

In [16], Shor and Preskill have shown that if the bound of estimations of bit and
phase error decreases exponentially as N increases, then Eve’s information on secret
key is exponentially small. This approach was used to prove the unconditional security
of the Bennet 1992 protocol, by Tamaki et al. [5], and the PBC00 and R04 protocols,
by Boileau et al. [10]. These proofs were based on the usage of reduction to an
entanglement distillation protocol initiated by a local filtering process. Subsequently,
we will prove the security of the above entanglement distillation protocol in the same
manner as in [5,10,16].

Assume that {p(i)
b }Ni=1 and {p(i)

p }Ni=1 are sets of probabilities of a bit error and a
phase error, respectively, on the i th pair after Alice and Bob have done the same
measurements on i − 1 previous pairs. Thus, p(i)

b and p(i)
p depend on previous results.

Moreover, we introduce eb and ep as rates of bit error and phase error in all conclusive
results, respectively.

Estimations of bit and phase error rates will be performed by the use of Azuma’s
inequality [19] as in [10].

Theorem 1 ([19]) Let {Xi : i = 0, 1, . . . } be a martingale sequence and for each k it
holds that |Xk − Xk−1| ≤ ck . Then for all integers N ≥ 0 and real numbers γ ≥ 0

P(|XN − X0| ≥ γ ) ≤ 2
− γ 2

2
∑N

k=1 c
2
k . (5)

Notice that for ck = 1 we get

P(|XN − X0| ≥ γ ) ≤ 2− γ 2

2N . (6)

As a result of the Azuma’s inequality, Ceb is exponentially close to ep (Ceb = ep)

for particular constant C , if Cp(i)
b = p(i)

p is satisfied for all i . Assume that Eve can
perform any coherent attack E (i) on qubits sent by Alice such that

∑
i E

(i)†E (i) ≤ 1l.
The general equation for the i th state can be described by a mixed state

ρ(i) = 1

K

K∑
k=0

|φ(i)
k 〉〈φ(i)

k |, (7)

where

|φ(i)
k 〉 = 1lA ⊗

(
FR(−θk)E

(i)R(θk)
)

|ψ〉. (8)
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Let us introduce the notation |Φ±〉 = 1√
2
(|+〉|+〉±|−〉|−〉) and |Ψ ±〉 = 1√

2
(|+〉|−〉±

|−〉|+〉). Since the probability of sharing by Alice and Bob a Bell state |Φ+〉 is equal
to the probabilities of a bit error p(i)

b and phase error p(i)
p on the i th, respectively, thus

p(i)
b = 1

Z (i)

(
〈Ψ +|ρ(i)|Ψ +〉 + 〈Ψ −

Z |ρ(i)|Ψ −〉
)

p(i)
p = 1

Z (i)

(
〈Φ−|ρ(i)|Φ−〉 + 〈Ψ −|ρ(i)|Ψ −〉

)
,

(9)

where

Z (i) =
(
〈Ψ +|ρ(i)|Ψ +〉 + 〈Ψ −|ρ(i)|Ψ −〉

+ 〈Φ+|ρ(i)|Φ+〉 + 〈Φ−|ρ(i)|Φ−〉
)

.
(10)

It can be checked that

C = p(i)
p

p(i)
b

= 1 + |〈ψ1|ψ0〉|2 = 1 + cos2
(
2π

K

)
. (11)

Similarly as in [10], we calculate the key rate S from the following formula

S = pc(eb)
(
1 − h(eb) − h(ep)

)
, (12)

where h(x) = −x log2 x − (1 − x) log2(1 − x) and pc(eb) is the probability of a
conclusive result. Since Ceb = ep, we get

S = pc(eb)
(
1 − h(eb) − h(Ceb)

)
. (13)

Notice that for a bit value b = 0 we get outcome probabilities
{0, 1

λ
|〈ψ̃⊥

ri+1mod K |ψ̃ri 〉|2, 1 − 1
λ
|〈ψ̃⊥

ri+1mod K |ψ̃ri 〉|2}, and for b = 1, we get

{ 1
λ
|〈ψ̃⊥

ri |ψ̃ri+1mod K 〉|2, 0, 1− 1
λ
|〈ψ̃⊥

ri |ψ̃ri+1mod K 〉|2}. Hence, it can be checked that
|〈ψ̃⊥

ri+1mod K |ψ̃ri 〉|2 = |〈ψ̃⊥
ri |ψ̃ri+1mod K 〉|2 = sin2

( 2π
K

)
. Thus, the probability of a

conclusive result, with the assumption that eb = 0, is equal to

pc(0) = sin2
( 2π
K

)
1 + ∣∣cos ( 2π

K

)∣∣ , (14)

which can be simplified to pc(0) = 2 sin2( π
K ) for K > 3. Note that K = 4 we have

pc(0) = 1. This is to be expected for a trivial protocol as this corresponds to sending
the key over a public channel.

Generally, pc can be expressed as

pc(eb) = sin2
( 2π
K

)
λ

(
1 − 2eb cos2

( 2π
K

)) , (15)
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Fig. 1 Comparison of key rates
depending on eb for different
setups of the P2 protocol. Notice
that for K = 5 we get the best
key rates. For K = 7, these drop
below the values of obtained for
K = 3. We also show the key
rates of the BB84 protocol for
comparison
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which was derived in “Appendix A.” Notice that for K = 3 Eq. (15) is reduced to
pc(eb) = 1

2−eb
, which corresponds to probability of conclusive results in PBC00

protocol.
In the case of BB84 protocol, bit error rate is equal to phase error rate. Thus, C = 1

and pc(eb) = 1
2 . In the case of PBC00, C = 5

4 and pc(eb) = 1
2−eb

. From Eq. (13),
we get that eb ≈ 11.0% for BB84 protocol and eb ≈ 9.81% for PBC00 protocol. It
can be checked that an interesting case is for K = 5, where C = 1

8 (11 − √
5) and

eb ≈ 10.5%. Comparison of proposed protocol with BB84 and PBC00 protocols is
shown in Fig. 1. As we can see, the best key rate is for K = 5. We plot the key rates
for K up to 7. For higher K , the key rates decrease with K and are bounded from
above by 2 sin2

(
π
K

)
.

The fact that the highest key rate is obtained for K = 5 can be explained as
follows. The POVMelements are projection operators corresponding to vectors evenly
distributed on a circle. For K = 3, we get that the angle between the vectors is 2

3π ,
and for K = 5, we get angle of 2

5π . The latter is closer to
π
2 ; hence, the probability

of distinguishing the vectors is higher which yields a higher key rate. As discussed
earlier, the case K = 4 reduces to a trivial protocol.

5 Conclusion

In this paper, we have introduced a new class of quantum key distribution protocols.
We have also provided unconditional security analysis of this protocol.We have shown
that there exists 5-state protocol with reasonably high key rate for small bit-flip error
rates.
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Appendix A: Probability of conclusive events

Notice that if Alice performs |ψ⊥
i 〉, where |ψi 〉 ∈ Sr , i = r or i = r + b mod K

and Bob chooses |ψ⊥
i 〉, then it corresponds to an error. In the case when Bob chooses

a state which corresponds to Sr but is not orthogonal to Alice’s state, then Bob can
correctly conclude the state |ψi 〉.

Let ng, ne, ni denote the numbers of good conclusive, error conclusive and incon-
clusive events, respectively. Besides that, let nt = ng + ne + ni and thus 1 =
ng
nt

+ ne
nt

+ ni
nt
. Assume that after Alice sent r to Bob, Bob performs measurement

described by POVM

{Πr ,Πr+1,Πfill} = { 1
λ
|ψ⊥

r 〉〈ψ⊥
r |, 1

λ
|ψ⊥

r+1 mod K 〉〈ψ⊥
r+1 mod K |,

1l2 − 1
λ
(|ψ⊥

r 〉〈ψ⊥
r | + |ψ⊥

r+1 mod K 〉〈ψ⊥
r+1 mod K |)} . (16)

Now, we suppose that b = 0 and Eve simulates a noisy channel, where state
|ψr 〉〈ψr | evolves as ρB = (1− p)|ψr 〉〈ψr | + p

2 1l2. Next, Bob performs measurement
and receives measurement outcomes with probabilities {TrΠrρB = p

2λ ,TrΠr+1ρB =
p
2λ + 1−p

λ
sin2( 2πK ),TrΠfillρb = 1 − p

λ
− 1−p

λ
sin2( 2πK }.

A bit error rate eb is defined as the rate of error in conclusive results. Hence

eb = ne
ne + ng

and ne = eb
1 − eb

ng. (17)

Notice that error eb can be estimated as

eb = TrΠr+1ρB

TrΠr+1ρB + Πfillρb
= p

2(1 − p) sin2
( 2π
K

) + 2p
. (18)

Now, let us determine a ratio

D = TrΠr+1ρB

TrΠfillρB
= 2(1 − p) sin2

( 2π
K

) + p

2λ − 2(1 − p) sin2
( 2π
K

) − 2p

= 2(1 − eb) sin2
( 2π
K

)
2λ

(
1 − 2eb cos2

( 2π
K

)) − 2 sin2
( 2π
K

) .

(19)

From the central limit theorem and the above calculation we get

ng
nt

= Dni
nt

+ O(ε). (20)
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Continuing we obtain

1 = ng
nt

+ ne
nt

+ ni
nt

= ng
nt

+ eb
1 − eb

ng
nt

+ ni
nt

≈ Dni
nt

+ eb
1 − eb

Dni
nt

+ ni
nt

≈ D + 1 − eb
1 − eb

ni
nt

(21)

and

pc = 1 − ni
nt

= D

D + 1 − eb
= sin2

( 2π
K

)
λ

(
1 − 2eb cos2

( 2π
K

)) . (22)
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