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Abstract
In isopods, parental care takes the form of offspring brooding in marsupial pouches. Marsupial brooding 
was an important step towards the origin of terrestrial lifestyles among isopods, but its potential role in 
shaping isopod life histories remains unknown. It is here considered that marsupial brooding imposes 
costs and creates a temporary association between the survival of mothers and that of their offspring. 
Integrating findings from different life history models, we predicted that the effects of marsupial brood-
ing set selective conditions for the continuation of growth after maturation, which leads to indeterminate 
growth, and the production of larger offspring by larger females. Based on this perspective, a study on the 
size dependence of offspring production in the woodlouse Porcellio scaber was performed and the generali-
ty of the results was tested by reviewing the literature on offspring production in other isopods. In P. scaber 
and almost all the other studied isopods, clutch size is positively related to female size. Such dependence 
is a necessary pre-condition for the evolution of indeterminate growth. The body mass of P. scaber differed 
six-fold between the largest and smallest brooding females, indicating a high potential for post-maturation 
growth. Our review showed that offspring size is a rarely studied trait in isopods and that it correlates 
negatively with offspring number but positively with female size in nearly half of the studied species. Our 
study of P. scaber revealed similar patterns, but the positive effect of female size on offspring size occurred 
only in smaller broods, and the negative relation between clutch size and offspring size occurred only in 
larger females. We conclude that the intraspecific patterns of offspring production in isopods agree with 
theoretical predictions regarding the role of offspring brooding in shaping the adaptive patterns of female 
investment in growth, reproduction, and the parental care provided to individual offspring.
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Introduction

Most crustaceans engage in different types of parental care, which, in isopods, takes the 
form of offspring brooding in marsupia (Thiel 2000, Vogt 2016). During the moult 
preceding reproduction, the isopod female produces exoskeletal extrusions that form 
a marsupial pouch, which is used as a chamber for egg laying and carrying developing 
larvae (Hornung 2011, Appel et al. 2011). At the end of brooding, the female releases 
the offspring into the environment. In terrestrial species, individuals inside the marsu-
pium undergo the change from the aqueous to the gaseous environment (Horváthová 
et al. 2015). Marsupial brooding was crucial for the origin of terrestrial lifestyles in 
isopods (Hornung 2011, Appel et al. 2011, Horváthová et al. 2017). Interestingly, 
land colonisation occurred independently at least twice in the evolutionary history of 
this group (Lins et al. 2017). Here, we consider that marsupial brooding plays a role 
in the evolution of life history strategies, especially by affecting adaptive patterns of fe-
male investment in growth, reproduction, and the parental care provided to individual 
offspring. To the best of our knowledge, this perspective remains largely unexplored 
in isopods.

The theory of life history evolution predicts that resource availability limits im-
posed by physiological and ecological circumstances forces organisms to optimise the 
lifetime allocation of investment among growth, reproduction and other competing 
demands to ensure the highest expected fitness under given mortality and produc-
tion conditions (Stearns 1992). Adopting this basic principle, life history modelling 
has demonstrated that somatic growth is beneficial as long as one calorie invested 
in increasing body mass increases the future expected reproductive output by more 
than one calorie (Kozłowski 1992). Likewise, organisms are expected to optimise the 
amount of resources retained over unfavourable periods to fuel activities in favourable 
periods (Ejsmond et al. 2015); the timing of reproductive activity during a season, 
compromising the future prospects of offspring (Ejsmond et al. 2010); and the amount 
of resources invested in single offspring, compromising offspring number (Smith and 
Fretwell 1974). Developments in life history theory have led to an important conclu-
sion: there is a wealth of distant optima with similar fitness consequences, which ex-
plains why life histories are so enormously diverse in nature (Stearns 1992, Czarnoleski 
et al. 2003, Kozłowski 2006).

A range of life history models predict the evolution of a bang-bang resource allo-
cation strategy, which is associated with the complete cessation of growth after matu-
ration and the so-called determinate growth pattern (Kozłowski and Wiegert 1987, 
Stearns 1992, Kozłowski 2006). In contrast, many isopods continue to moult after 
maturation, combining their capacity for reproduction with the capacity for somatic 
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growth. This ability results in the potential for continuation of growth for the entire 
life span and the so-called indeterminate growth pattern. Beside isopods and some oth-
er crustaceans, indeterminate growth has evolved in annelids, molluscs, fish, amphib-
ians, and reptiles (Kozłowski 1996). The prevalence of indeterminate growth in nature 
awaits explanation, but life history theory predicts that this growth strategy provides 
fitness advantages if the capacity to produce new tissue and/or survive strongly increas-
es with body mass and if these capacities change discontinuously through time (Stearns 
1992, Perrin and Sibly 1993, Kozłowski 2006). Modelling of optimal allocation has 
shown that discontinuities driven by either seasonal changes in mortality/productive 
capacity (Kozłowski and Teriokhin 1999) or unequal future prospects of offspring re-
leased into the environment at different times of the year (Ejsmond et al. 2010) lead 
to the evolution of alternating shifts between the investment in somatic growth and 
that in reproduction, resulting in the indeterminate growth pattern. For many organ-
isms, including isopods, seasonality is the primary selective force responsible for the 
evolution of indeterminate growth. Nevertheless, specific characteristics of species bi-
ology, such as the reproduction via clutches instead of via a series of single offspring, 
can elicit discontinuous changes in mortality/production capacity, similar in principle 
to the effects of seasonality (Czarnoleski and Kozłowski 1998). Such characteristics 
can help explain why indeterminate growth originated among annuals or perennials 
living in non-seasonal environments. Heino and Kaitala (1996) designed a life his-
tory model for gill-brooding unionid mussels (e.g., Sinanodonta woodiana Labecka and 
Domagala 2018) and demonstrated that an indeterminate growth pattern can evolve 
in non-seasonal environments if carrying the offspring is associated with costs, either 
decreased physiological performance or increased mortality and with a temporary as-
sociation between the fate of the offspring and the survival of the parent. Importantly, 
using a different model to explore the role of parental care in the evolution of offspring 
size among fish, Jørgensen et al. (2011) concluded that offspring brooding selects for 
the increased investment of larger females in individual offspring. For indeterminately 
growing animals, such a strategy involves constant changes in the optimal size of off-
spring as females increase their body mass. Under this strategy, the production of larger 
offspring is expected to require prolonged brooding, which temporarily links the fate 
of the offspring with that of the mother. If larger females have higher survival prob-
ability than do smaller females, then the increased investment in individual offspring 
becomes more beneficial for larger females. Overall, these theoretical considerations 
suggest that marsupial brooding might be an important driver of growth strategy and 
offspring size in isopods. To investigate this hypothesis, we performed a study on the 
common rough woodlouse (Porcellio scaber) and evaluated the generality of our results 
by analysing data from the literature on other isopods. We aimed at integrating infor-
mation on intraspecific patterns of size dependence in offspring production over as 
wide a range of isopod species as possible. In particular, we focused on the relationships 
between female size and the number and size of offspring in broods and on evidence of 
an allocation trade-off between the number and size of the offspring in broods. Gener-
ally, we expected reproductive capacity to increase as females grow in size, which is the 
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fundamental condition favouring the strategy of indeterminate growth (see above). 
Therefore, we expected a positive relationship between female body size and clutch 
mass/clutch size (hypothesis i). We also tested this relationship for non-linearity, as-
suming that a negative allometry would indicate an increased relative space limitation 
in larger females, whereas a positive allometry would indicate a decreased relative space 
limitation in larger females. Next, we examined whether the investment of females in 
individual offspring increased with the size of females, which should produce a positive 
correlation between the average offspring mass in a brood and female body mass (hy-
pothesis ii). Finally, we analysed data on the mean mass of offspring in relation to the 
number of offspring per brood, looking for an allocation trade-off between offspring 
size and number (hypothesis iii).

Materials and methods

A case study of Porcellio scaber

In June–July 2014, individuals of P. scaber were collected in an old backyard in Kraków, 
Poland. In our study, we used females in the 3rd and 4th stages of brood development 
(classified according to Lardies et al. 2004a). Each gravid female was placed in a plastic 
box (100 ml). The boxes were perforated to provide aeration, lined with paper towel 
and supplied with a piece of moist sponge (water source), a piece of clay pot (shelter) 
and the dry leaves of the alder (Alnus glutinosa) and ash (Fraxinus excelsior), which 
served as ad libitum food source. For additional control of humidity, the boxes were 
placed inside a larger plastic container with wet sand in the bottom. The container with 
boxes was placed in a shaded patio of the Institute of Environmental Sciences, Jagiel-
lonian University in Kraków. Each day, the boxes were assessed for the presence of new 
offspring. Emerging offspring were collected, and the female was weighed to the near-
est 0.001 mg (Mettler Toledo XP26, Greifensee, Switzerland). The clutches were dried 
for one hour at 60 °C in an oven (UFE 400, Memmert GmbH + Co. KG, Germany), 
and the dry mass of each clutch was measured to the nearest 0.001 mg (Mettler Toledo 
XP26, Greifensee). The offspring in each clutch were counted under a stereoscopic 
microscope. To calculate the mean dry mass of a single offspring, we divided the clutch 
dry mass by the number of offspring.

All statistical analyses were performed with R 3.4.1 software (R Core Team 2017), 
and the rgl package of R (Adler and Duncan Murdoch 2017) was used to create graphs. 
To test whether larger females produced heavier and larger clutches (hypothesis i) and 
larger offspring (hypothesis ii), we correlated clutch dry mass, clutch size, and mean 
offspring dry mass with female body mass. To evaluate the nature of these relations, 
we fitted linear and power regression models to our data and selected the best model 
using AIC. In this way, we did not a priori assume any particular relationship between 
the studied variables. When fitting our regression functions, we used either an ordi-
nary least square (OLS) method or the weighted least square (WLS) method, which 
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allowed us to account for the observed increase in the variance of dependent variables 
at higher values of an independent variable. Note that the OLS method assumes ho-
mogeneity in the variances of the independent variables. According to Knaub (2009), 
the issue of non-homogeneity can be overcome by using the WLS method, which as-
signs decreasing weights to observations with increasing levels of variance. Following 
Knaub’s (2009) procedure, we first ordered our data according to an increasing value 
of an independent variable to identify four quartiles. For data from the first quartile, 
the weights were calculated as an inverse of the highest value of the independent vari-
able in this quartile (56.328 mg). For data from the other quartiles, the weights were 
calculated as the inverse of the actual value of the independent variable. To examine 
whether larger offspring emerged from smaller clutches (hypothesis iii), we used a 
multiple regression analysis with the mean offspring mass as a dependent variable and 
clutch size and female body mass as two independent variables. The use of a multiple 
regression allowed us to dissect the independent effects of each of the two independent 
variables. Thus, we also re-examined hypothesis (ii) regarding the link between female 
size and offspring size, with a control for the potential links between clutch size and 
offspring size. We allowed our model to consider an interaction between our two inde-
pendent variables. Therefore, to assess the independent effects of each variable (partial 
regression), we estimated and tested this effect after centring the whole model in either 
the minimum or maximum value of each independent variable (Quinn and Keough 
2002). The multiple regression analysis was performed with the use of either OLS or 
WLS, and the best model was chosen based on AIC.

Intraspecific patterns in isopods

To evaluate the generality of our hypotheses (i–iii) and the empirical results for P. sca-
ber, we reviewed the published literature on isopods for intraspecific information on at 
least one of the following relationships: clutch size with female size, offspring size with 
female size, and clutch size with offspring size. Relevant publications were identified 
by an extensive search of keywords in scientific databases, the review of reference lists 
of available publications and by personal communication with specialists in the field. 
Whenever we found relevant information regarding one of the three relationships, we 
classified the relationship as either statistically significant or non-significant; we also 
identified significant relationships as either positive or negative. If available, correla-
tion coefficient (r) values were also assigned to each relationship. Traits used to study 
the relationship between female size and either clutch size or mass varied substantially 
among authors and species; therefore, we additionally recorded information regarding 
the types of measured traits. For each type of relationship, each species was classified 
according to the nature of this relationship, integrating all the results on a species re-
ported in the literature. If a relationship for a given species was consistently reported to 
be significantly positive, significantly negative, or non-significant, the species was re-
garded as exhibiting a positive (+) or negative (-) relationship or no relationship (NS). 



Andrzej Antoł & Marcin Czarnoleski  /  ZooKeys 801: 337–357 (2018)342

Species for which mixed results were reported, showing either non-significant/signifi-
cantly positive relationships or non-significant/significantly negative relationships were 
classified as NS/+ or NS/-, respectively. Ultimately, we used this integrated species 
information to calculate how frequently among the studied isopods a given pattern (+, 
-, NS, NS/+ and NS/-) of each relationship occurred. In addition, we used a 1-4 scale 
to evaluate the confidence in the support for each pattern (+, -, NS, NS/+ and NS/-) to 
predict the directions of the studied relationships (hypotheses i-iii). Consistently posi-
tive/negative relationships (+/-) were treated as providing reliable evidence to support 
or oppose a hypothesis. Non-significant patterns (NS) were regarded as not support-
ing a hypothesis, but we also considered the possibility that they might represent false 
negatives due to low statistical power. The level of support given by inconsistent results 
(NS/+ and NS/-) was dependent on the context. If among the non-significant and sig-
nificant results, the significant results were consistent with our predictions, we treated 
the mixed results as weakly supporting our hypothesis. However, if the significant 
results were in conflict with the predictions, we regarded the mixed results as strongly 
opposing the hypothesis.

Results

A case study of Porcellio scaber

Among 101 brooding females of P. scaber, body mass ranged from 21.682 to 131.236 
mg, clutch sizes ranged from 7 to 106 juveniles, and the mean dry body mass of off-
spring ranged from 0.078 to 0.126 mg between clutches. Larger females produced 
heavier (r = 0.83, t1,99 = 14.9, p<0.001, Fig. 1A) and larger clutches (r = 0.83, t1,99 
= 15.09, p<0.001, Fig. 1B), but the mean offspring mass did not show a consistent 
relationship with female mass (r = 0.14, t1,99 = 1.44, p = 0.15, Fig. 1C). Comparison 
of AIC between the alternative regression models showed that a linear weighted regres-
sion produced the best fit to our data (Fig. 1). Therefore, we concluded that clutch size 
and clutch mass increased linearly with female body mass, which is consistent with our 
finding that the dry body mass of offspring did not change systematically with female 
body mass.

The results of the multiple regression analysis (Fig. 2) showed no effect of clutch 
size (t1,97 = 0.74, p = 0.46) and a positive effect of female mass (t1,97 = 2.38, p = 0.02) 
on the mean dry body mass of offspring. The interaction between the two independent 
variables was non-significant (t1,97 = -1.60, p = 0.11). When we centred the model at 
the value of the smallest broods (7 offspring), the positive link between offspring dry 
mass and female body mass was still significant (t1,97 = 2.39, p = 0.02), but the signifi-
cance disappeared when we centred the model at the value of the largest clutches (107 
offspring) (t1,97 = -0.22, p = 0.83). When we centred the model at the minimum female 
body mass (21.682 mg.), clutch size and offspring body mass appeared to be unrelated 
(t1,97=0.44, p=0.66), but centring at the maximum body mass (131.236 mg) revealed 
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Figure 1. In Porcellio scaber, the dry mass of clutches (A) and clutch size (B) increased linearly with female 
body mass, but the mean dry mass of offspring did not depend on female mass in a consistent way (C). 
Lines represent fitted regressions A y = -0.13+0.08x (r = 0.83, p<0.001) B y = -0.32+0.74x (r = 0.83, 
p<0.001) C y = 0.1+0.00006x (r = 0.14, p = 0.15).
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Figure 2. In Porcellio scaber, the heaviest offspring were released by large females that produced small 
clutches. The plane represents a multiple regression model fitted to the data; the partial slopes depicted 
on the edges were calculated by setting the other predictor value to its minimum and maximum values.

a negative relationship between clutch size and offspring body mass, though the effect 
was marginally significant (t1,97=-1.98, p=0.05). Overall, this analysis indicated that the 
largest offspring were produced by large females with small clutches.

Intraspecific patterns in isopods

Our literature search identified a total of 79 species of isopods that were studied 
with respect to at least one of the following relationships: clutch size with female size 
(Fig. 3A), offspring size with female size (Fig. 3B), and clutch size with offspring size 
(Fig. 3C). Detailed results of the review are provided in Table 1S (Suppl. material 1). 
The effect of female size on clutch size was the most frequently studied relationship (79 
species), while the relationships between female size and offspring size and between off-
spring size and clutch size were studied in only 18 and 7 species, respectively, including 
P. scaber as reported in this study. For the vast majority of the studied isopods (Fig. 3A), 
we found evidence that supports a positive relationship between female size and clutch 
size (hypothesis i). Importantly, we found no reports of the opposite pattern and only 
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Figure 3. The literature search identified 79 species of isopods that were studied with respect to at least 
one of the following relationships: clutch size with female size (A), offspring size with female size (B), and 
clutch size with offspring size (C). Each graph shows how frequently a given nature of each relationship 
was found among the studied isopod species. The exact number of species for which the relationships 
A, B, C were evaluated is given by N. For each type of the relationships A, B, C each species was clas-
sified according to the nature of this relationship. If a relationship for a given species was consistently 
reported to be significantly positive, negative, or non-significant, the species was marked by a positive (+) 
or negative (-) symbol or by NS. Species for which mixed results were reported in the literature, showing 
either non-significant/significantly positive relationships or non-significant/significantly negative relation-
ships, were marked by NS/+ or NS/-, respectively. Colour intensity indicates values along a 1–4 scale of 
confidence to the support provided by each relationship pattern (+, -, NS, NS/+ and NS/-) to hypotheses 
(i–iii). Relationship A: a positive relationship predicted between female body size and clutch mass/clutch 
size (hypothesis i). Relationship B: a positive correlation predicted between the average offspring mass in 
a brood and female body mass (hypothesis ii). Relationship C: a negative correlation predicted between 
the mean mass of offspring and the number of offspring per brood (hypothesis iii).

occasional reports of a non-significant pattern. However, the non-significant reports 
were typically found along with reports of significantly positive patterns, suggesting 
that many of the non-significant results might be false negatives. For nearly half of the 
species (Fig. 3B, C), we found evidence that supports a positive relationship between 
female size and offspring size (hypothesis ii) and a trade-off between offspring size and 
clutch size (hypothesis iii).
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Discussion

Growth patterns vary considerably in nature (Stearns 1992, Czarnoleski et al. 2003, 2005, 
Ejsmond et al. 2010), but understanding the origin of this variance is more challenging 
than it might initially appear. Our data on P. scaber suggest that this species of woodlouse 
has evolved a life history strategy with intense resource allocation to somatic growth in 
the reproductively mature stages. We found up to six-fold differences in body mass be-
tween the largest and the smallest brooding females, which suggests that only 20% of the 
body mass of a fully-grown female might be achieved before maturation, with the major-
ity of growth potentially co-occurring with reproduction in such instances. Consistent 
with the idea that species with indeterminate growth should be characterized by a strong 
dependence of reproductive capacity on body size (hypothesis i), we found that larger 
females of P. scaber carried larger and heavier broods. This evidence clearly shows that ma-
ture females can gain reproductive capacity by further increasing body mass. The results 
of our literature search indicate that such size dependence is widespread among other iso-
pod species. Interestingly, we found no reports of a negative pattern of this relationship 
and few reports of non-significant effects of female size on clutch size, which are likely to 
be false negatives. A strong size dependence of reproductive capacity promotes the evolu-
tion of iteroparous breeding with indeterminate growth, but alone, it is not sufficient to 
explain such evolution (Heino and Kaitala 1996, Czarnoleski and Kozłowski 1998). In 
fact, some isopods, such as Ligia oceanica, have evolved a semelparous breeding strategy 
with determinate growth, despite the size dependence of reproductive capacity (Sutton et 
al. 1984, Willows 1987). Given this, what might be the ultimate drivers of the evolution 
of indeterminate growth in isopods? A life history theory calls attention to the pattern of 
resource allocation among growth, reproduction and other competing demands, which 
should be optimised to ensure the highest expected lifetime fitness in given mortality and 
production conditions (Stearns 1992, Kozłowski 2006). Considering this idea, the alter-
nating allocations between growth and reproduction that lead to indeterminate growth 
reflect changes in allocation optima, with temporal shifts in the capacity to survive and/
or reproduce. The woodlouse P. scaber and many other isopod species inhabit seasonal 
environments, and life history models have demonstrated that seasonal alternations of 
the periods suitable for survival, offspring production, and growth with less favourable 
periods establish the selective forces that favour the continuation of somatic growth after 
maturation (Kozłowski and Teriokhin 1996, Czarnoleski and Kozłowski 1998, Ejsmond 
et al. 2010). However, as suggested by Heino and Kaitala (1996) and Czarnoleski and 
Kozłowski (1998), the strategy of indeterminate growth might also bring additional fit-
ness benefits if organisms engage in offspring brooding. Carrying offspring creates tem-
porary changes in mortality/physiological performance and links between the fate of 
the offspring and that of the mother, leading to shifts in the optimality of growth and 
reproduction through time. Unfortunately, the costs associated with offspring brooding 
are poorly studied in isopods, but we might expect them in the form of increased vul-
nerability to predation and/or increased energetic costs associated with locomotion and 
supplementation of offspring. For example, Kight and Ozga (2001) observed that gravid 
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females of Porcellio laevis were less mobile than were non-gravid females. In addition, 
female isopods are postulated to regulate the pH and osmolality of their marsupial fluids 
and provision their broods with necessary resources via the so-called cotyledon (Lardies 
et al. 2004a). Furthermore, Lardies et al. (2004a) showed that gravid females had lower 
ingestion rates and digestibility and higher metabolic rates than did non-gravid ones. 
Interestingly, Perrin and Sibly (1993) suggested another mechanism that favours indeter-
minate growth among offspring brooders, which is non-exclusive of the hypothesis of a 
role of discontinuities in mortality/physiological capacity. If current offspring production 
is limited by the space provided by the brooding cavities rather than by the physiologi-
cal capacity to produce new tissue, organisms are selected to direct surplus resources to 
further somatic growth, thereby increasing their fertility at the following reproductive 
event. There is some evidence to suggest that the maximal reproductive performance of 
isopods might be restricted by the volume of the marsupial pouches (Lardies et al. 2004a, 
Appel et al. 2011). Nevertheless, we found no indication that such limitations change 
with body size in females of P. scaber: The relationship between clutch size and female size 
did not deviate from linearity. In addition, we detected substantial variance in the mass 
of clutches produced by females of a given body size, which suggests that reproductive 
capacity might not be entirely dependent on the space limitation of the marsupium, un-
less the volume of the marsupium is highly variable at a given body mass.

Our data on P. scaber show that the dry body mass of offspring differed between 
broods by as much as 62%. A significant part of this variance was linked to differences 
in clutch size and female body mass, but the pattern of this dependence was complex. 
Supporting hypothesis ii, the size of offspring was positively related to female size, but 
this pattern existed only if we considered small clutches. Focusing on larger clutches, 
we found no apparent relationship between offspring size and female size. In accord 
with hypothesis iii, the size and number of offspring were inversely related, but this 
pattern existed only among larger females. In broods produced by smaller females, 
the two traits were not correlated. To date, studies of isopods have only occasionally 
addressed the question of whether offspring size changes with either female size or 
clutch size. According to our literature search, the relationships between female size 
and offspring size and between offspring size and clutch size have only been studied in 
18 and 7 species, respectively. For nearly half of these species, we found evidence that 
supports a positive relationship between female size and offspring size (hypothesis ii) 
and a trade-off between offspring size and clutch size (hypothesis iii). It is suggestive 
that all studies that failed to find evidence of such a trade-off (Fig. 3C) overlooked the 
potential effects of female size in the statistical analysis of offspring size and clutch size 
data. In effect, many of these results might represent false negatives because differences 
in clutch size driven by female size are not primarily generated by the trade-off between 
offspring size and number but rather by the higher capacity of larger animals to pro-
duce new tissue (as shown in Figs 1A, 3A). Furthermore, the positive effects of female 
size on offspring size can lead to a positive correlation between offspring size and clutch 
size. Apparently, this is the case in the isopod Bethalus pretoriensis (Telford and Dan-
gerfield 1995), which was the only species we found for which a positive association 
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between clutch size and offspring size was reported; furthermore, a positive association 
between offspring size and female size was found in this species (see Suppl. material 1).

Examples of life history strategies in which offspring size is a function of par-
ent size are rare in nature, and their evolutionary origins are puzzling (Rollinson and 
Rowe 2016). Apart from isopods, positive relationships between offspring size and 
female size have previously been reported in some other arthropods (Fox and Czesak 
2000) and some species of snakes (Ford and Seigel 2011) and fish (Hendry et al. 
2001, Hendry and Day 2003). Interestingly, in the pipefish (Syngnathidae), the posi-
tive relationship between offspring size and female size characterized pouch-brooding 
species but not ventral-brooding species (Braga Goncalves et al. 2011). In isopods, the 
positive correlation between female size and offspring size was also demonstrated on 
the interspecific level (Sutton et al. 1984). Different phenomena have been invoked to 
understand why larger females might produce larger offspring, including competition 
between siblings (Parker and Begon 1986), unequal benefits from increased fecundity 
in small vs large females (McGinley 1989), varying efficiency of resource acquisition 
from parents (Sakai and Harada 2001), increased parental mortality during reproduc-
tion (Kindsvater and Otto 2014), and an increased capacity of larger females to meet 
the overhead costs of reproduction (Filin 2015). With different degrees of relevance, 
each of these phenomena might apply to isopods. Nevertheless, here we consider that 
in live-bearing organisms such as isopods, the survival of offspring during brooding is 
tightly linked to the survival of the parent, a concept that has helped explain the evolu-
tion of indeterminate growth pattern in isopods. According to the life history model 
of Jørgensen et al. (2011), this tight association promotes increased investment in in-
dividual offspring by larger females if larger females have improved survival compared 
to smaller females. If the development of larger offspring requires longer brooding and 
if brooding is costly, then the production of larger offspring should be more beneficial 
to larger females because brooding is relatively less costly for them. Importantly, this 
scenario can help to rationalise the complex pattern found in our data on P. scaber. 
It is suggestive that larger females produced larger offspring only if we considered 
small broods. We can expect that a small brood (several offspring in our case) is rela-
tively more costly for small females than for large females, which have much higher 
reproductive potential (more than 100 offspring in our case). If the cost of brooding 
corresponds to the risk of mortality, then larger brooding females with small broods 
should suffer relatively lower costs, which should select them for increased investment 
in individual offspring. Certainly, before drawing firm conclusions regarding this phe-
nomenon, future studies should better identify how the costs of marsupial brooding 
change with clutch size and female size.

Conclusions

Based on the integrated findings reported here, we can attempt to form conclusions 
about the most common patterns in the size dependence of isopod reproduction and 
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the significance of these patterns for understanding the evolution of isopod life histories. 
In nearly all the studied species, we found a strong size dependence of female reproduc-
tive capacity. Such a dependence is important for explaining the evolution of an indeter-
minate growth strategy in many species of isopods. Data from nearly half of the isopod 
species revealed a negative relationship between offspring size and offspring number 
and a positive relationship between mother size and offspring size. Importantly, our case 
study of P. scaber suggests that the emergence of each pattern is context-dependent: a 
positive effect of female size on offspring size was observed only in smaller broods, and a 
negative relationship between clutch size and offspring size was observed only for larger 
females. We propose that these patterns be viewed as different elements of a single phe-
nomenon: a lifetime strategy of investment in growth, reproduction and the parental 
care provided to single offspring that is shaped by selective conditions. The key message 
of this study is that to gain a better understanding of this strategy in isopods, we must 
consider the effects of marsupial brooding, especially its costs and the linkage between 
the survival of mothers and that of their offspring. We hope that our synthesis of theo-
retical ideas and data on isopods will increase the intersection of life history theory and 
empirical research in isopods and that this work will stimulate further theory develop-
ment and lead to an improved understanding of the ecology and evolution of isopods.
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Table S1
Authors: Andrzej Antoł, Marcin Czarnoleski
Data type: species data
Explanation note: Results of the literature search for reports of at least one of the fol-

lowing relationships in isopods: clutch size vs female size, offspring size vs female 
size, offspring size vs clutch size.

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.
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