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ABSTRACT

Aims. Our main aim is to study the relationship between low-energy solar particles (energies below 1 MeV) and very narrow coronal 
mass ejections (“jets” with angular width <20°).
Methods. For this purpose, we considered 125 very narrow coronal mass ejections (CMEs) from 1999 to 2003 that are potentially 
associated with low-energy solar particles (LESPs). These events were chosen on the basis of their source location. We studied only 
very narrow CMEs at the western limb, which are expected to have good magnetic connectivity with Earth.
Results. We found 24 very narrow CMEs associated with energetic particles such as ions (protons and 3He), electrons, or both. 
We show that arrival times at Earth of energetic particles are consistent with onset times of the respective CMEs, and that in the 
same time intervals, there are no other potential sources of energetic particles. We also demonstrate statistical differences for the 
angular width distributions using the Kolmogorov-Smirnov test for angular widths for these 24 events. We consider a coherent 
sample of jets (mostly originating from boundaries of coronal holes) to identify properties of events that produce solar energetic 
particles (velocities, widths, and position angles). Our study presents a new approach and result: very narrow CMEs can generate 
low-energy particles in the vicinity of Earth without other activity on the Sun. The results could be very useful for space weather 
forecasting.
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1. Introduction

The first coronal mass ejection (CMEs) was detected in the 
1970s with the Orbiting Solar Observatory (Tousey 1973). 
CMEs are episodic large expulsions of magnetized plasma from 
the Sun that involve significant disturbances in the solar wind, 
and if they are directed toward Earth, can be potential sources of 
geomagnetic activity and harmful to advanced technology. Ener­
getic CMEs can generate geomagnetic storms and solar ener­
getic particles (SEPs; Gopalswamy et al. 2007). Understanding 
the mechanism by which SEPs are accelerated is a long-standing 
problem in solar physics (Cliver 2009). There is evidence for 
particle acceleration by two different processes: a flare recon­
nection process, and a CME-driven shock. Large SEP events 
are usually but not always associated with large flares and 
CME-driven shocks (Gopalswamy et al. 2015). Flare and shock 
processes both contribute to the particle flux, but the relative con­
tribution from them is unclear (Cliver 2009; Klecker et al. 2007)

The timescales for CME eruptions are from several min­
utes to several hours (Hundhausen et al. 1994). A wide diversity 
of expulsions are observed, but the events may be divided into 
at least two categories: normal and narrow CMEs. The normal 
CMEs mostly originate from closed magnetic structures such 
as erupting flux rope systems, consisting typically of a three- 
part structure: a leading front, a dark cavity, and a bright core 
(Crifo et al. 1983).

The first narrow structures were detected in 1985 
(Howard et al. 1985). Very narrow CMEs are defined as events 
whose angular width is 20° or less. This choice of an apparent

angular width is quite arbitrary: the real difference between the 
types is that the very narrow CMEs have an elongated jet-like 
shape, whereas the normal CMEs resemble closed loops. These 
differences may indicate different mechanisms of initiation of 
the two CME types. The CME width distribution appears to be 
a featureless power law (Robbrecht et al. 2009), which suggests 
that there is only one basic mechanism.

Observations made with the Solar and Heliospheric Obser­
vatory (SOHO) mission’s Large Angle and Spectrometric Coro- 
nagraphs (LASCO) suggest that very narrow events themselves 
originate from either coronal holes (jet-like CMEs) or streamers 
(blob-like CMEs). The blob-like CMEs can be divided into two 
groups: structured and unstructured. Faster (above 400 km s-1) 
and narrower jets (angular width less than 5°) usually origi­
nate from coronal holes (St. Cyr et al. 1997) although jets can 
sometimes be caused by other magnetic processes (Kahler et al. 
2001) while continous slow (300 km s-1) outflows are observed 
from streamers, and these events are similar to the solar wind. 
A mechanism for blob ejection and plasma sheet formation has 
been proposed in which a stretched helmet-streamer loop recon­
nects with neighboring open field lines in the vicinity of the cusp 
(Wang et al. 1998).

Kahler et al. (2001) found an impulsive SEP event observed 
by the Wind spacecraft on 2000 May 1 that was associated 
with an impulsive flare and also with a narrow CME. This 
result assumed a flare is necessary to produce SEPs at 1 AU, 
and Kahler etal. (2001) did not provide detailed information 
(e.g., velocities, widths, and position angle) for the event. The 
2000 May 1 CME event has a position angle (PA) of 323°, a
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width of 54°, and a velocity of 1360 km s-1 (Wang et al. 2012). 
The angular width is sufficiently wide to exclude this CME from 
our group of very narrow CME events, according to our defi­
nition. Nitta et al. (2006) investigated the solar origin of impul­
sive SEP events generated by flares. They also demonstrated that 
these events were associated with CMEs with a range of differ­
ent widths. Wang et al. (2012) surveyed the statistical properties 
of a set of 1191 solar electron events observed by the WIND 
3DP instrument over one solar cycle (1995 through 2005). For 
a subset of the events, they also surveyed the accompanying 
low-energy ion emissions, which are highly enriched in 3He. 
They started from solar electron events and examined the pos­
sible association with Geostationary Operational Environmental 
Satellite (GOES) SXR flares, CMEs, and type II and III radio 
bursts. This sample includes a set of narrow CMEs with some 
overlap with the events we consider here, but nine very narrow 
SEP events in our group of events are not listed by Wang et al. 
(2012). This may be attributed to the different selection methods.

In comparison to previous studies, we concentrate on very 
narrow CMEs (“jets”) to show that such events (without other 
activity on the Sun, i.e., without flares) are able to produce low- 
energy solar particles (LESPs). It is possible that very narrow 
CMEs may be a source of low-energy SEPs because they are 
expected to be triggered in open magnetic structures, which may 
allow the energized particles to escape. During solar activity 
maximum, coronal holes migrate from the poles to the equa­
tor and may then generate very narrow CMEs (jets) that are 
magnetically connected to Earth. We excluded the solar mini­
mum as a period useful to investigations because large and sta­
ble streamers appear at the solar equator during solar minimum. 
Such magnetic structures produce only “blobs” (narrow but very 
slow CMEs). Therefore, SEPs produced by jets from coronal 
holes can only be detected during solar maximum. We here 
study very narrow CMEs around the maximum of solar cycle 23 
(1999-2003).

In comparison to previous investigations, in the first stage 
we consider a coherent sample of jets (mostly originating from 
the boundaries of coronal holes) to identify properties of events 
that produce SEPs (velocities, widths, and PAs). This is a new 
approach and scientific goal.

This paper is divided as follows. The data used for this study 
are described in Sect. 2. A data analysis is performed in Sect. 3. 
In Sect. 4 we present the results of our analysis, and the conclu­
sions are discussed in Sect. 5.

2. Data

For our analysis we used two databases: LASCO images, and 
the time series from the Advanced Composition Explorer (ACE) 
particle detector. The data for our study were taken from the 
SOHO/LASCO CME catalog. The list of CMEs in the catalog 
is compiled using images from the LASCO coronographs on 
board SOHO1. In our study we concentrated on fast and narrow 
CMEs originating close to the solar equator on the west side. 
These narrow CMEs can produce SEPs recorded near Earth. 
From the period of time 1999-2003, we selected events for 
which the central PAs are between 255° and 285° (the central 
PA is defined as the mid-angle with respect to the two edges 
of the CME in the sky plane and is measured anticlockwise 
from the solar north pole), the angular widths are equal to or 
below 20°, and the speeds are above 400 km s-1. We consid­
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ered only narrow CMEs originating from the western hemi­
sphere close to the solar equator. The motivation is that these 
events are likely to have good magnetic connectivity with Earth 
and so can generate energetic particles that are likely to reach 
Earth (McCracken 1962). Figure 1 presents a typical example 
of a considered jet ejection. The left panel displays the image 
from the Soft X-ray Telescope (SXT) on board the Yohkoh satel­
lite. On the right side we show the running-difference image 
from the LASCO C2 coronagraph. The Yohkoh/SXT image at 
02:01 UT shows the X-ray jet with a flare brightening at the jet 
base. This eruption is observed in the later four images. This 
event has a width of 12° and a speed of 610km s-1. Similar 
X-ray structures were also observed, in Yohkoh or Extreme ultra­
violet Imaging Telescope (EIT) images, for other considered 
ejections.

The Electron, Proton, and Alpha Monitor (Gold et al. 1998; 
EPAM) on board the Advanced Composition Explorer (ACE) 
mission provides information about energetic particles appear­
ing in the vicinity of Earth. ACE contains ten instruments, but 
only the EPAM detector is used for our study. It is important to 
note that the ACE satellite is placed outside of the Earth’s mag­
netosphere, so that it only registers particles from the interplan­
etary medium. We used the EPAM Level 2 Data, which show 
ions in five channels (46-67 keV, 115-193 keV, 315-580 keV, 
795-1193 keV, and 1060-1880keV) and electrons in four 
channels (between 38-53keV, 53-103keV, 103-175keV, and 
175-315 keV).

3. Data analysis

LESPs can be produced by different phenomena (e.g., flares 
and shocks). In the study we must be very careful to asso­
ciate LESPs with narrow CMEs. For this purpose, for all con­
sidered CMEs, we applied the special procedure we describe 
below. We performed our study around the maximum of solar 
cycle 23 (1999-2003). As mentioned, the analysis was lim­
ited to fast (with speeds above 400 km s-1) and very narrow (a 
width of 20° or less) CMEs that were potentially magnetically 
connected to Earth (PAs between 255° and 285°). To ensure 
that a given ejection was really magnetically connected to the 
Earth, we inspected Yohkoh/SXT and SOHO/EIT images and 
searched for signatures of eruption from the limb of the solar 
disk. Additionally, we restricted the study to narrow events that 
are not a part of another CME. The selection criteria also include 
the requirement that there are no other west-limb CMEs in the 
LASCO images with times consistent with production of an 
SEP in the search-time window, or for some time before. This 
makes us confident that a given LESP event was not associated 
with a shock generated by another CME. For example, for the 
very narrow CME in our list that occurred on 2003 Jan 23 at 
02:54, the ACE data show an increase in the 38-53 keV flux 
after ^30 min, and an increase in the 175-315 keV flux after 
^15 min. This is consistent with the narrow CME at 02:54 pro­
ducing the SEP event, and we do not observe other activity from 
the west limb in the four hours before. Hence we associate the 
narrow CME with the SEP event. Our study includes a very 
representative sample.

For the considered period of time, we found 125 events 
that fulfilled these requirements. If narrow CMEs orginating 
from the western hemisphere fulfil these conditions, they might 
be expected to produce an SEP event. To test this hypothesis 
using data from ACE, we searched for fluxes of energetic parti­
cles associated with our sample of narrow CMEs. To determine
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Fig. 1. Example of a je t ejection. Left panel: X-ray je t (Yohkoh/SXT) on 2000/07/10 at 02:01. Right panel: this je t is later observed in the LASCO 
C2 coronagraph at 03:00.

Table 1. Travel time for protons and electrons with energies covered by 
the ACE detectors.

Particle Channel Energy M axim um M edian M inim um Difference
ranges travel travel travel between max and
(keV) tim e (h) tim e (h) time (h) min travel times (h)

e- (DE1) 3 8 -5 3 0.46 0.42 0.39 0.07
e- (DE2) 53 -103 0.39 0.33 0.30 0.09
e- (DE3) 103-175 0.30 0.27 0.25 0.05
e- (DE4) 175-315 0.25 0.23 0.21 0.04
Ion (P1) 4 6 -6 7 17 15 14 3.0
Ion (P3) 115-193 11 9.3 8.3 2.7
Ion (P5) 315-580 6.4 5.5 4.7 1.7
Ion (P7) 795-1193 4.1 3.7 3.3 0.8
Ion (FP6’) 1060-1880 3.5 3.0 2.6 0.9

whether our narrow CMEs were associated with low-energy 
solar particles, we estimated their travel times to Earth. Energetic 
particles move along spiral magnetic field lines (the combination 
of the outward motion of the solar wind and solar rotation), so 
we assume that to reach Earth, they have to travel a distance 
equal to 1.2 AU. The solar wind blows radially outward, carry­
ing with it the solar magnetic field, and it produces a classical 
Archimedean spiral magnetic field (the Parker spiral). The prop­
agation distance 1.2 AU was calculated based on a slow solar 
wind speed of about 400 km s-1, which was assumed because 
the slow solar wind appears to originate from a region around 
the Sun's equatorial belt (Feldman et al. 2005).

The travel time was estimated using the energy of the parti­
cles. We calculated travel times for ions (protons and 3He) and 
electrons observed by ACE in different energy ranges, using the 
relativistic formulas for protons and electrons. The estimates are 
presented in Table 1. The table shows the ranges of energies for 
respective detectors (Cols. 2 and 3), the respective travel times 
(Cols. 4, 5, and 6) and the differences between minimum and 
maximum travel times (Col. 7). For each channel the minimum 
travel time is calculated for the maximum energy, the maximum 
travel time is calculated for the minimum energy, and the median 
travel time is calculated for the median energy. For the five chan­

nels for ions and for the two channels for electrons, we obtained 
graphs from ACE data. Then, according to Table 1, we checked 
whether during the respective time frames the channels showed 
a visible increase in the flux above the noise level. To ensure that 
our methods were reliable, we required detection of LESPs in at 
least in two channels. It is important to mention that we assumed 
free-streaming propagation of the energetic particle. The SEPs 
along the way interact with interplanetary magnetic irregulari­
ties undergoing cross-field diffusion and changes in their kinetic 
energy (Dalla et al. 2013; Zank 2014).

Figure 2 shows the flux of electrons in the 38-53 keV and 
53-103keV energy ranges on 14 December 2001. From the 
time of observation of a narrow event at the Sun and using 
Table 1, we expect to see an increase in the electron flux after 
~20-30min for these channels. The very narrow CME on 14 
December 2001 occurred at 23:30. In the ACE data, a peak 
well above the noise at ~00:00 on 2001 Dec 15 is visible, 
which is in the expected time window. The intensity level for 
the event is >2x103 cm-2 s-1 sr-1 MeV-1 in the 38-53 keV band 
and >2x102 cm-2 s-1 sr-1 MeV-1 in the 53-103 keV band.

4. Results

4.1. Events producing energetic partic les

We found 24 LESPs that are associated with narrow CMEs. We 
considered only the very narrow events for which we observe 
an increase in the particle flux in at least two channels. These 
events are presented in Table 2. In the first three columns we 
present the number of the event, and the date and the time of 
CME appearance in the LASCO field of view. We have marked 
15 events with asterisks that are also included in Wang et al. 
(2012). The next two columns give the onset time for the CME 
obtained from linear and quadratic fits to height-time points 
based on data in the SOHO/LASCO catalog. Parameters charac­
terizing the CMEs (PA, angular width, and speed) are shown in 
Cols. 6, 7, and 8, respectively. Column 9 contains the loca­
tion of the very narrow CMEs established on the basis of 
EIT images. We determined these locations using different
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Table 2. Properties of 24 very narrow CMEs generating low-energy SEPs.

Date Time of Onset Onset Central Angular Speed Location Radio bursts e- 3H e-rich B0
appear. 1 2 PA width III type us/Wang
(UT) (UT) (UT) (deg) (deg) (km s-1) DH/metric (deg)

1 1999 Sep 15* 05:06 04:14 04:17 277 14 518 N14W 95 04:30/04:23 Yes Yes/Yes +7.22
2 2000 Jul 10 02:26 01:42 01:41 285 12 610 N20W 80 -/- Yes Yes/- +3.88
3 2000 Aug 07* 12:30 11:30 11:43 278 13 581 N14W 85 12:10/11:31 Yes Yes/Yes +6.25
4 2000 Oct 02 07:27 06:28 06:40 262 20 1036 N05W 95 06:50/06:45 No Yes/- +6.64
5 2000 Oct 04 04:06 03:19 02:37 261 13 597 N01W 87 03:50/03:41 No Yes/- +6.54
6 2001 M ay 01 11:54 11:07 11:17 272 19 667 S01W90 11:54/11:22 Yes Yes/- -4 .11
7 2001 Dec 14* 23:30 22:47 22:54 269 7 463 S10W83 23:30/22:53 Yes No/No -0 .92
8 2001 Dec 17* 03:30 02:53 03:03 264 6 812 S01W85 03:10/03:02 Yes Yes/Yes -1 .15
9 2002 Oct 05 12:30 11:55 12:03 272 20 723 N05W 80 no data/11:49 Yes Yes/- +6.52
10 2002 Oct 06* 06:30 05:42 05:54 266 10 860 N 10W 84 06:00/05:51 Yes Yes/Yes +6.46
11 2002 Oct 06* 15:54 15:07 15:19 269 16 792 N 10W 84 15:30 /- Yes Yes/Yes +6.43
12 2002 Oct 06* 20:06 19:17 19:18 268 12 642 N 10W 84 19:35/18:54 Yes Yes/Yes +6.42
13 2002 Oct 07* 00:30 00:02 23:51 269 12 759 N10W 90 00:20/00:13 Yes Yes/Yes +6.41
14 2002 Oct 07* 06:06 05:28 05:33 272 10 724 N12W 90 05:45/05:20 Yes Yes/Yes +6.40
15 2002 Dec 14* 09:30 08:50 09:00 272 6 697 N03W 80 09:06/09:03 Yes No/No -0 .81
16 2002 Dec 26 14:54 14:13 14:18 255 19 872 S14W91 -/- Yes No/- -2 .3 4
17 2003 Jan 22* 08:54 07:44 08:00 278 18 565 S10W70 07:54/07:50 Yes Yes/Yes -5 .22
18 2003 Jan 23* 02:54 02:20 02:25 272 12 785 S10W80 02:25/02:22 Yes Yes/Yes -5 .29
19 2003 Aug 15 02:06 01:36 01:31 262 8 814 S08W91 01:50/01:46 No No/- +4.63
20 2003 Oct 03* 15:10 14:16 14:30 273 8 417 N06W91 14:40/14:11 Yes No/Yes +6.61
21 2003 Oct 03* 20:56 20:11 - 261 8 643 S10W90 20:20/20:07 Yes No/Yes +6.60
22 2003 Oct 04* 13:31 13:05 13:11 273 17 1425 N06W91 13:31/13:11 Yes Yes/Yes +6.56
23 2003 Oct 04 21:54 21:35 21:38 285 20 1050 N06W91 21:45/21:32 Yes Yes/- +6.55
24 2003 Oct 05 01:31 00:55 00:40 276 16 895 N06W 95 01:20/01:07 Yes Yes/- +6.54

Notes. We have marked 15 events with asterisks that are included in Wang et al. (2012).

emissions. We also checked these databases for type II bursts. 
We found no type II radio bursts associated with these narrow 
events.

Columns 11 and 12 give information about the types of 
particles that are generated by the events, that is, electrons 
and 3He-rich particles, respectively. The abundance of 3He 
was determined based on data from the Ultra Low Energy 
Isotope Spectrometer (ULEIS) particle instrument on board 
ACE. ULEIS measures ion fluxes from He through Ni from 
about 20 keV nucleon-1 to 10 MeV nucleon-1. It covers both 
suprathermal and energetic particle energy ranges. Addition­
ally, we provide information about 3He-rich events obtained 
by W angetal. (2012). Almost all SEP events are 3He rich. 
This indicates that reconnection produces the energetic particles 
(N ittaetal. 2015; Bucik etal. 2016). Only six extremely nar­
row events included in our studies were not 3He-rich events. 
In the last column, we show B0-angles representing the heli- 
ographic latitude of the central point of the solar disk. This 
angle varies from -7° .23 to +7° .23 and represents the inclina­
tion of the Sun’s equatorial plane with respect to the ecliptic. 
This parameter influences the magnetic connectivity of CMEs 
(Gopalswamy et al. 2013; Gopalswamy & Makela 2014). When 
it is positive or negative for a north or south CME source loca­
tion, it improves the magnetic connectivity. This parameter can 
be important in our study because we consider very narrow 
events. Only for three CMEs, taking into account source loca­
tions, is the magnetic connectivity weaker (4 December 2002, 
15 August 2003, 3 October 2003). For the remaining events, this 
parameter improves the magnetic connectivity of the considered 
CMEs.

We assumed that a given particle flux is associated with 
a given CME if the particle travel time is consistent with the 
appearance times for the SEP event at Earth. Table 2 shows that 
only five CMEs generate fluxes of both electrons and ions at 
ACE. Sixteen CMEs produce only fluxes of electrons, and three

Fig. 2. Five-minute averaged solar particle flux. Electron flux in the 
ACE EPAM Level 2 data in the 38 -53  keV and 53-103 keV energy 
ranges on 14 December 2001.

ejection signatures. For events ejected behind the limb, the 
approximate longitudes are presented. Knowing the solar rota­
tion rate, we estimated the longitudes of the active area that 
the respective CMEs are associated with. Column 10 pro­
vides the onset times of associated III type radio bursts 
in decameter-hectometer (DH, based on WIND data) and 
meter wavelengths (from the Solar Geophysical Data). In 
the case of two events, we did not identify any radio
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events produce only energetic ions. One of the SEP events, on 
4 October 2003, is associated with a flare at 13:09 (N06W91). 
In comparison to previous studies (e.g., Wang etal. 2012) our 
procedure is very restrictive. If we cannot observe an increase in 
particle flux well above the noise level, or if any case is uncer­
tain, we mark “no” in Table 1.

To prove that associations between the narrow CMEs and 
SEPs are real, we conducted an additional test. We chose at ran­
dom 30 narrow and isolated events with PAs excluding their 
magnetic connection to Earth. These events were not likely to 
produce SEPs near Earth. If in our study an accidental coinci­
dence between SEPs and the very narrow CMEs was possible, 
we should also find energetic particles for these events. We did 
not find any SEPs associated with these CME events, however. 
This result clearly proves that our considerations are correct.

We checked different databases for X-ray flares associated 
with our events. Only two of the SEP events were associated 
with flares. The first occurred on 26 December 2002 at 14:38 
(S14W91, B5.1), and the second occurred on 4 October 2003 at 
13:09 (N06W91, C2.5).

We also evaluated CME speed profiles. The considered 
events are very fast and mostly reach high speeds (>600km s-1) 
very close to the Sun (20 events). This velocity is enough to 
generate interplanetary shocks (Gopalswamy et al. 2001). For 4 
events, which have only a few height-time points in the LASCO 
field of view, the velocity determination close to the Sun is 
ambiguous. Of the considered CMEs, 75% decelerate in the 
LASCO field of view.

The considered SEP events are mostly 3He-rich. This means 
that magnetic reconnection is involved in particle acceleration 
(N ittaetal. 2015). On the other hand, the associated CMEs 
attain high speed early and can produce shocks, although of very 
small width. Probably both these mechanisms, magnetic recon­
nection and shocks, must be effective to generate SEP events.

4.2. S tatistical analysis o f narrow  CMEs

Only 19% (24) of the 125 narrow CME events we identified pro­
duced energetic particles. It is interesting to compare the prop­
erties of the narrow CMEs that do and that do not produce ener­
getic particles. The CME samples are statistically different. All 
CMEs producing SEPs are limb events (longitude close to 90°) 
that were located very close to the solar equator. The CMEs with­
out SEPs can be located much closer to the solar center: about 
20% of them have a longitude lower than or equal to 70°. The 
presence of type III radio bursts is an indicator of energetic elec­
trons in the solar corona. For 21 (90%) SEPs events we found 
associated type III bursts. In Fig. 2 we show the velocity dis­
tributions of CMEs that produce (dashed line) and that do not 
produce SEPs (solid line). The diagrams suggest that the SEP 
events are associated with fast narrow CMEs. The narrow CMEs 
with SEPs have a median speed that is 100km s-1 faster than 
narrow CMEs without associated SEPs.

The second most important parameter characterizing CMEs 
is their angular width. In Fig. 3 we show the angular width 
distribution of CMEs that produce SEPs (dashed line) and that 
do not produce SEPs (solid line). The diagrams suggest that SEP 
events are more likely to be produced from slightly wider CMEs. 
It is important to note that energetic particles are observed to be 
generated by CMEs with an angular width larger than or equal 
to 6°.

To estimate the probability that the two sets of data (nar­
row CMEs with SEPs, and narrow CMEs without SEPs) are 
drawn from the same distribution, we performed a Kolmogorov-

Fig. 3. Velocity distribution for narrow CMEs associated with SEPs 
(dashed line) and without SEPs (solid line).

Smirnov (K-S) test (Press et al. 1992) on the distributions shown 
in Figs. 3 and 4 . For the speed distributions (Fig. 4), the K-S test 
result is p = 0.3 (p is the computed probability at the 0.05 signif­
icance level), and for the width distributions (Fig. 3), the result 
is p = 0.01. Hence there is no evidence for a statistical differ­
ence between the velocity distributions, but there is evidence for 
a difference between the width distributions.

Finally, in Fig. 5 we consider PA distributions for the two 
CME samples. This parameter is very important because to be 
geoeffective, narrow CMEs must originate close to the solar 
equator. The distributions are very similar. The narrow SEP 
events have PAs between 255 and 290°. If CMEs are really 
associated with SEP events, they must be magnetically con­
nected to Earth. This means than the narrowest events produc­
ing SEPs should exactly originate in the regions closest to the 
solar equator. In Fig. 5 we present PA distributions, but only for 
CMEs with an angular width smaller than 8°. The CMEs produc­
ing SEPs originate only from PAs between 261° and 279°, but 
CMEs without SEPs originate from significantly wider ranges of 
PAs (249°-285°). This means that the PAs of CMEs producing 
SEPs are correlated with their widths (with a correlation coeffi­
cient equal to 0.33). The correlation coefficient is not significant, 
but we recall that wider CMEs (width >8°) producing SEPs can 
originate from the entire range of PAs, but only the narrowest 
events are limited to start exactly from the equatorial region.
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Fig. 5. PA distribution for narrow CMEs associated with SEPs (dashed 
line) and without SEPs (solid line).

5. Summary and discussion

We considered the possibility that LESPs might be produced by 
very narrow CMEs. For this purpose, we investigated narrow 
CMEs around the maximum of solar cycle 23 with PAs between 
245° and 295°, corresponding to CMEs that are more likely to 
produce SEPs that are able to reach Earth. Using data from the 
EPAM instrument on board the ACE satellite, we found 24 (19% 
of all the considered events) low-energy solar particle fluxes that 
we associated with narrow CME events. The association between 
very narrow CMEs and energetic particles was based on the con­
sistency between estimates for particle travel times from the Sun 
and the appearance times for the SEP events at Earth. To ensure 
that these associations are real, we considered only isolated nar­
row CMEs without any additional energetic phenomena on the 
Sun. To ensure that associations between the narrow CMEs and 
SEPs are real, we conducted an additional test. We chose at ran­
dom 30 narrow and isolated events with PAs that excluded a mag­
netic connection to Earth. These events were not likely to pro­
duce SEPs near Earth. If in our study an accidental coincidence 
between SEPs and the very narrow CME appeared, we should also 
find energetic particles for these events. We did not find any SEPs 
associated with these CME events, however. This result clearly 
demonstrates that our considerations are correct.

Additionally, we performed a statistical analysis of the 
narrow CMEs. We separately considered the narrow CMEs asso­
ciated with energetic particles and those without energetic par­
ticles. We demonstrated a statistical difference for the angular 
width of the SEP-related events in comparison to the other nar­
row events. This suggests that these events constitute a sepa­
rate group of very narrow CMEs that are sufficiently powerful 
to produce energetic particles that can be detected at Earth. We 
demonstrated that the velocity distributions for CMEs without 
SEPs that are associated with SEPs are very similar. However, the 
latter are on average about 100 km s-1 faster than CMEs without 
associated SEPs. Additionally, we showed that CMEs producing 
SEPs show a correlation between their PAs and widths.

We demonstrated that narrow CMEs can generate energetic 
particles in the vicinity of Earth. This new result may be impor­

Fig. 6. PA distribution for narrow CMEs associated with SEPs (dashed 
line) and without SEPs (solid line). Only CMEs with an angular width 
smaller than 8° are shown.

tant for space weather forecasting. Admittedly, low-energy par­
ticles are less dangerous for astronauts, but they are harmful for 
satellites. Our study presents a new approach and set of results, 
and confirms that very narrow CMEs can generate low-energy 
particles without other activity on the Sun.
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