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A NOTE ON THE WORST CASE APPROACH FOR
A MARKET WITH A STOCHASTIC INTEREST RATE

Abstract. We solve a robust optimization problem and show an example
of a market model for which the worst case measure is not a martingale
measure. In our model the instantaneous interest rate is determined by the
Hull–White model and the investor employs the HARA utility to measure his
satisfaction. To protect against the model uncertainty he uses the worst case
measure approach. The problem is formulated as a stochastic game between
the investor and the market. PDE methods are used to find a saddle point
and a precise verification argument is provided.

1. Introduction. We consider a portfolio problem embedded in a game-
theoretic problem. We assume that the investor does not trust his model
much and believes it is only the best guess based on existing data. In such a
situation we say that the investor faces the model uncertainty (or the model
ambiguity). In this work we would like to shed more light onto the portfolio
optimization problem under the assumption that the short term interest rate
exhibits some stochastic nature.

We consider a financial market consisting of n assets and a bank account.
The interest rate on the bank account follows the Hull–White model, which
is an extended version of the Vasicek model. The investor chooses between
holding cash in a bank account and holding risky assets. The same model
has been considered first by Korn and Kraft [4] but without the model un-
certainty assumption. Instead of supposing that we have an exact model, we
assume here the whole family of equivalent models, which will be described
later. To determine robust investment controls the investor maximizes the
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total expected HARA utility of the final wealth after taking the infimum
over all possible models. Robust optimization in the diffusion setting has
been popularized especially by A. Schied and his coauthors (e.g. Schied [10]
and references therein). The model ambiguity in the Vasicek model and its
extensions has been considered by Flor and Larsen [2], Sun et al. [11], Munk
and Rubtsov [6], and Wang and Li [12]. However, their objective function is
different, because it includes an expression (along the lines of Maenhout [5])
which penalizes the expected utility for divergence from the reference prob-
ability measure. Our model is in fact their limiting model, when their ambi-
guity coefficients tend to +∞ (0 respectively).

In the current paper the problem is formulated as a theoretic stochastic
game between the market and the investor, and a saddle point of this game
is determined, despite the fact that we do not include the penalizing term
into the objective function. Moreover, in addition to the aforementioned
papers we provide a correct and precise verification. First, we consider the
full problem, without any constraints on the set of uncertainty measures.
Further, we investigate what are the properties of the restricted model. To
solve the game, we use the Hamilton–Jacobi–Bellman–Isaacs equation. After
several substitutions we are able to solve the equation and use a suitable
version of the verification theorem to justify the method.

Previously the same method has been used by Zawisza [13], [14], but in
the model with a deterministic interest rate and with a different objective
function. The major motivation for considering the present model is to
provide an example in which the results of Øksendal and Sulem [7], [8] do
not hold. In their papers they have considered the jump diffusion model
but without assuming the stochastic nature of the interest rate, and have
discovered that in that game the investor should always invest only in
the bank account, and at the same time an optimal market strategy is to
choose a martingale measure. This is interesting because the martingale
measure plays a prominent role in derivative pricing. Our paper proves that
in our framework the worst case measure is different from the martingale
measure.

2. Model description. Let (Ω,F , P ) be a probability space with fil-
tration (Ft, 0 ≤ t ≤ T ) (possibly enlarged to satisfy the usual assumptions)
spanned by an n-dimensional Brownian motion (Wt = (W 1

t , . . . ,W
n
t )

T , 0 ≤
t ≤ T ). We have the initial measure P , but our investor contemplates
model uncertainty, so the measure should be treated only as a proxy for
the real life measure. Further, we will consider a whole class of equiva-
lent measures, which will describe the model uncertainty. Our agent has
access to a market with a bank account (Bt, 0 ≤ t ≤ T ) and risky assets
(St = (S1

t , . . . , S
n
t ), 0 ≤ t ≤ T ). Under the measure P the system is given
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by

(2.1)


dBt = rtBtdt,

dSt = diag(St)[(rte+Σtλ
T
t )dt+ΣtdWt],

drt = (bt − κtrt)dt+ atdWt.

We assume that e = (1, . . . , 1), the coefficients κt, bt, λt = (λ1t , . . . , λ
n
t ),

at = (a1t , . . . , a
n
t ), Σt = [σi,jt ]ni,j=1 are continuous deterministic functions,

and in addition Σt is invertible. For notational convenience we omit the
term atλ

T
t dt in the dynamics for r, and we assume it is already included in

the btdt term. A representative example for the process (St, t ∈ [0, T ]) is the
mixed stock-bond model (e.g. Korn and Kraft [4, Section 2.2]):

dS1
t = (rt + λ1tσ

1,1
t + λ2tσ

1,2
t )S1

t dt+ σ1,1t S1
t dW

1
t + σ1,2t S1

t dW
2
t ,

dS2
t = (rt + λ2tσ

2,2
t )S2

t dt+ σ2,2t S2
t dW

2
t ,

drt = (bt − κrt)dt+ atdW
2
t .

Here {S2
t } is the price of the bond in the Vasicek model with maturity

T ′ > T , which means that σ2,2t = a
κ(1− e

−κ(T ′−t)).
The portfolio process evolves according to

dXπ
t = rtX

π
t dt+ πtΣtλ

T
t X

π
t dt+Xπ

t πtΣtdWt.

The symbol At denotes the class of progressively measurable processes π =
(π1, . . . , πn) such that

T�

t

|πs|2 ds <∞ a.s.

To describe the model uncertainty or model ambiguity issues we assume that
the probability measure is not precisely known and the investor considers a
whole class of possible measures. We follow the approach of Øksendal and
Sulem [7] or Schied [10] in defining the set

(2.2) QT :=

{
QηT ∼ P

∣∣∣∣ dQηTdP = E
( �
ηt dWt

)
T
, η ∈M

}
,

where E(·)t denotes the Doléans–Dade exponential and M denotes the set
of all progressively measurable processes η = (η1, . . . , ηn) such that

E
[
dQηT
dP

]2
<∞.

In the last section we assume that the process η takes values in a fixed
compact and convex set Γ . It is convenient to use the QηT -dynamics of the
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stochastic system (Xt, rt), i.e.

(2.3)

{
dXπ

t = rtX
π
t dt+ πtΣt(λ

T
t + ηTt )X

π
t dt+ πtΣtX

π
t dW

η
t ,

drt = [(bt − κtrt) + atη
T
t ]dt+ atdW

η
t .

Our investor takes into account the model ambiguity and has worst case
preferences (Gilboa and Schmeidler [3]), i.e. his aim is to maximize

(2.4) J π,η(x, r, t) = inf
η∈M

Eηx,r,tU(Xπ
T ).

The symbol Eηx,r,t is used to denote the expected value under the measure
QηT when the system starts at (x, r, t). Here we assume that U(x) = xγ/γ
with 0 < γ < 1. The solution for γ < 0 will be the same but due to the
fact that U has negative values, one has to use a few more restrictions and
technicalities to complete the proof.

Here we are interested not only in the optimal portfolio π∗, but also in
the measure Qη

∗

T for which the infimum is attained. Therefore, we are looking
for a saddle point (π∗, η∗), i.e.

J π,η∗(x, r, t) ≤ J π∗,η∗(x, r, t) ≤ J π∗,η(x, r, t), π ∈ At, η ∈M.

3. The solution. To solve the problem we will use the Hamilton–
Jacobi–Bellman–Isaacs operator given by

Lπ,ηV (x, r, t) :=Vt +
1
2 |at|

2Vrr +
1
2πΣtΣ

T
t π

Tx2Vxx + πΣtatxVxr(3.1)

+ πΣt(λ
T
t + ηT )xVx + ηaTt Vr + (bt − κtr)Vr + rxVx.

It should be considered together with the verification theorem. The rea-
soning behind its proof is standard (see for instance Zawisza [13, Theorem
3.1]). Here we only present a short sketch, just to emphasize some minor
differences.

Theorem 3.1 (Verification Theorem). Suppose there exists a positive
function

V ∈ C2,2,1((0,∞)× R× [0, T )) ∩ C([0,∞)× R× [0, T ])
and a Markov control

(π∗(x, r, t), η∗(x, r, t)) ∈ At ×M
such that

Lπ∗(x,r,t),ηV (x, r, t) ≥ 0,(3.2)

Lπ,η∗(x,r,t)V (x, r, t) ≤ 0,(3.3)

Lπ∗(x,r,t),η∗(x,r,t)V (x, r, t) = 0,(3.4)
V (x, r, T ) = xγ/γ(3.5)
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for all η ∈ R, π ∈ R, (x, r, t) ∈ (0,∞)× R× [0, T ), and

(3.6) Eηx,r,t
[
sup
t≤s≤T

|V (Xπ∗
s , rs, s)|

]
<∞

for all (x, r, t) ∈ [0,∞)× R× [0, T ], π ∈ At, η ∈M. Then

Jπ,η
∗
(x, r, t) ≤ V (x, r, t) ≤ Jπ∗,η(x, r, t) for all π ∈ At, η ∈M,

and
V (x, r, t) = Jπ

∗,η∗(x, r, t).

Proof. Let us fix first π ∈ At. Consider the Qη
∗

T -dynamics of the system
(Xt, rt) and apply the Itô formula using the function V . By using inequality
(3.3) and taking the expectation of both sides, we obtain

V (x, r, t) ≥ Eη
∗
V
(
X(T −ε)∧τn , r(T −ε)∧τn , (T − ε) ∧ τn

)
,

where (τn, n ≥ 0) is a localizing sequence of stopping times. The function V
is positive, thus the Fatou lemma implies

V (x, r, t) ≥ Eη
∗

x,r,tV (Xπ
T , rT , T ) = Eη

∗

x,r,tU(Xπ
T ) = Jπ,η

∗
(x, r, t).

To prove the reverse inequality we fix η ∈M and consider the QηT -dynamics
of the system (Xt, rt). After applying the Itô rule we get

V (x, r, t) ≤ Eηx,r,tV
(
Xπ∗

(T −ε)∧τn , r(T −ε)∧τn , (T − ε) ∧ τn
)

and the same is true with the equality

V (x, r, t) = Eη
∗

x,r,tV
(
Xπ∗

(T −ε)∧τn , r(T −ε)∧τn , (T − ε) ∧ τn
)
.

Property (3.6) and the dominated convergence theorem finish the proof.

Following Korn and Kraft [4] we predict that conditions (3.2)–(3.6) are
satisfied by the function of the form

V (x, r, t) =
xγ

γ
ef(t)r+g(t), f(T ) = 0, g(T ) = 0.

Substituting it into (3.2)–(3.4) and dividing the result by xγ

γ e
f(t)r+g(t),

we get

H(π,η∗)(r, t) ≤ H(π∗,η∗)(r, t) = 0 ≤ H(π∗,η)(r, t), π, η ∈ Rn,

where

H(π,η)(r, t) := f ′(t)r+g′(t)+ 1
2 |at|

2f2(t)+ 1
2γ(γ−1)πΣtΣ

T
t π

T +γπΣta
T
t f(t)

+γπΣt(λ
T
t +η

T )+ηaTt f(t)+(bt−κtr)f(t)+γr.
Now, we can determine the saddle point. Suppose first that we already have
the saddle point (π∗, η∗). Then

H(π,η∗)(r, t) ≤ H(π∗,η∗)(r, t), π ∈ Rn,
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and consequently

π∗t =
1

1− γ
(λt + η∗ + f(t)at)Σ

−1
t .

On the other hand,

H(π∗,η∗)(r, t) ≤ H(π∗,η)(r, t), η ∈ Rn.
We notice first that H is a linear function of η. In that case, the only chance
to find η∗ is to delete the expression with η, i.e.

γπ∗Σt + atf(t) = 0.

This means that
π∗t = −

f(t)

γ
atΣ

−1
t .

So, we should have
f(t)

1− γ
atΣ

−1
t +

λt + η∗

1− γ
Σ−1t = −f(t)

γ
atΣ

−1
t ,

which yields
η∗t = −λt −

f(t)

γ
at.

Substituting π∗ and η∗ into the equation and using the fact that the expres-
sion with η is equal to 0, we get

f ′(t)r + g′(t) + 1
2 |at|

2f2(t) + 1
2 |at|

2f2(t)
γ − 1

γ
− |at|2f(t)

− λtaTt f(t) + (bt − κtr)f(t) + γr = 0.

Thus,

f ′(t)− κtf(t) + γ = 0,

g′(t) + 1
2 |at|

2f2(t) + 1
2 |at|

2f2(t)
γ − 1

γ
− |at|2f(t)− λtaTt f(t) + btf(t) = 0.

More explicit forms are:

f(t) = γe−
	T
t κs ds

T�

t

e
	T
k κs ds dk,

g(t) =

T�

t

[
1

2
f2(s)|as|2+

1

2
|as|2f2(s)

γ − 1

γ
−|as|2f(s)−λsaTs f(s)+ bsf(s)

]
ds.

We can now summarize our preparatory calculations.

Proposition 3.2. The pair (π∗, η∗) given by

π∗t = −
f(t)

γ
atΣ

−1
t , η∗t = −λt −

f(t)

γ
at

is a saddle point for problem (2.4).
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Proof. Note that π∗t and Σt are deterministic functions. To complete the
proof we need only verify that

Eηx,r,t
[
sup
t≤s≤T

|V (Xπ∗
s , rs, s)|

]
<∞, η ∈M.

We have

Eηx,r,t
[
sup
t≤s≤T

|V (Xπ∗
s , rs, s)|

]
= Ex,r,t

dQη

dP

[
sup
t≤s≤T

V (Xπ∗
s , rs, s)

]
.

By the Cauchy–Schwarz inequality,

Ex,r,t
dQη

dP

[
sup
t≤s≤T

V (Xπ∗
s , rs, s)

]
≤
[
E
[
dQη

dP

]2]1/2[
Ex,r,t

[
sup
t≤s≤T

V 2(Xπ∗
s , rs, s)

]]1/2
.

The explicit formula for the function V leads to

V (Xπ
s , rs, s) =

1

γ

[
Xπ∗
s

]γ
ef(s)rs+g(s).

The portfolio process Xt is a solution to the linear equation, so

Xs = xe
	s
t [rl+π

∗
l Σlλ

T
l −

1
2
(π∗l ΣlΣ

T
l π

T∗
l )] dl+

	s
t π
∗
l Σl dWl .

Note that the process ζs = e
	s
t κl dlrs has the dynamics

dζs = e
	s
t κl dlbs ds+ e

	s
t κl dlas dWs.

We have

rs = e−
	s
t κl dl

[
r +

s�

t

bl dl +

s�

t

al dWl

]
.

By the stochastic Fubini theorem, the expression V 2(Xπ
s , rs, s) can be

rewritten in the form

V 2(Xπ
s , rs, s) = xZse

β(s)rs+ξ(s),

where the process Zs is a square integrable martingale, and β, ξ are bounded
and deterministic functions.

After applying the Cauchy–Schwarz inequality once more it is now suffi-
cient to prove that for any continuous deterministic function β̂ we have

(3.7) Er,t sup
t≤s≤T

eβ̂(s)ζs <∞.

Note that
eβ̂(s)ζs ≤ eβ̂maxζs + eβ̂minζs ,

where
β̂max = max

t≤s≤T
β̂(s), β̂min = min

t≤s≤T
β̂(s).
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Both processes eβ̂maxζs , eβ̂minζs are solutions to linear equations with bounded
coefficients, and thus the usual Lipschitz and linear growth conditions are
satisfied. Property (3.7) follows from standard estimates for stochastic dif-
ferential equations (see Pham [9, Theorem 1.3.16]).

Concluding remarks. To complement Proposition 3.2 we show that
the measure Qη

∗

T is not a martingale measure, i.e. the process Ste−
	t
0 rs ds is

not a Qη
∗

T -martingale. To see this, it is sufficient to write the Qη
∗

T -dynamics
of St:

dSt = diag(St)

[[
rte−

f(t)

γ
Σta

T
t

]
dt+Σt dWt

]
.

Finally, it is worth to compare the robust investment strategy

π∗t =
1

1− γ
(λt + η∗t + f(t)at)Σ

−1
t , η∗t = −λt −

f(t)

γ
at

with the solution to the traditional utility maximization problem

π∗t =
1

1− γ
(λt + f(t)at)Σ

−1
t .

Notice also that π∗ can be rewritten as

π∗t = −
f(t)

γ
atΣ

−1
t = −e−

	T
t κs ds

T�

t

e
	T
k κs ds dk

[
atΣ

−1
t

]
,

and it does not depend on the risk aversion coefficient γ. The same property
is true for η∗.

4. Model uncertainty with restrictions. From the practitioner’s
point of view, it might be interesting to solve the problem with some re-
strictions imposed on the uncertainty setM. In this section we assume that
the classM consists of all progressively measurable processes taking values
in a fixed compact and convex set Γ ⊂ Rn.

We can use the same function H:

H(π,η)(r, t) = f ′(t)r+g′(t)+ 1
2 |at|

2f2(t)+ 1
2γ(γ−1)πΣtΣ

T
t π

T +γπΣta
T
t f(t)

+γπΣt(λ
T
t +η

T )+ηaTt f(t)+(bt−κtr)f(t)+γr.

To find an explicit saddle point for the function H, we start by solving
the upper Isaacs equation

(4.1) min
η∈Γ

max
π∈Rn

H(π,η)(r, t) = 0.

We use a max-min theorem (Fan [1, Theorem 2]) to see that

min
η∈Γ

max
π∈Rn

H(π,η)(r, t) = max
π∈Rn

min
η∈Γ

H(π,η)(r, t).
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We can determine a saddle point candidate (π∗, η∗) by finding a Borel mea-
surable function η∗ such that

min
η∈Γ

max
π∈R

H(π,η)(r, t) = max
π∈R

H(π,η∗)(r, t),

and a Borel measurable function π∗ such that

min
η∈Γ

max
π∈R

H(π,η)(r, t) = min
η∈Γ

H(π∗,η)(r, t).

Because the variable η is separated from r, equation (4.1) can be split into
two equations (the first one has already been solved):

f(t) = γe−
	T
t κs ds

T�

t

e
	T
k κs ds dk

and

g′(t) + 1
2 |at|

2f2(t) + btf(t) + min
η∈Γ

[
−1

2

γ

1− γ
|λt + η + f(t)at|2

+
γ

1− γ
(λt + η + f(t)at)(λt + η)T + f(t)atη

T

]
= 0.

Therefore, to find η∗, it is sufficient to determine any Borel measurable
minimizer to the expression

(4.2) − 1

2

γ

1− γ
|λt+η+f(t)at|2+

γ

1− γ
(λt+η+f(t)at)(λt+η)

T+f(t)atη
T .

Now, let π∗ be a Borel measurable maximizer of the function

min
η∈Γ

H(π,η)(r, t).

Then (π∗, η∗) is a saddle point for the function H(π,η)(r, t). In particular,

H(π,η∗)(r, t) ≤ H(π∗,η∗)(r, t), π ∈ Rn.
The unique function π∗ which satisfies the above condition is given by

π∗t =
1

1− γ
(λt + η∗t + f(t)at)Σ

−1
t .

Proposition 4.1. Suppose that η∗ is a minimizer of (4.2) and

π∗t =
1

1− γ
(λt + η∗t + f(t)at)Σ

−1
t .

Then the pair (π∗, η∗) is a saddle point for problem (2.4) with the restrictions
imposed by the set Γ .

The proof is omitted because it is the repetition of the steps from the
proof of Proposition 3.2.

Acknowledgements. I would like to express my gratitude to the referee
for helping me to improve the first version of the paper.
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