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A b strac t
In this paper we investigate the size of the fraction of tautologies of the given 
length n against the number of all formulas of length n for implicational logic. We 
are specially interested in asymptotic behavior of this fraction. We demonstrate 
the relation between a number of premises of implicational formula and asymptotic 
probability of finding formula with this number of premises. Furthermore we inves
tigate the distribution of this asymptotic probabilities. Distribution for all formulas 
is contrasted with the same distribution for tautologies only. We prove those distri
butions to be so different that enable us to estimate likelihood of truth for a given 
long formula. Despite of the fact that all discussed problems and methods in this 
paper are solved by mathematical means, the paper may have some philosophical 
impact on the understanding how much the phenomenon of truth is sporadic or 
frequent in random logical sentences.

1 In trod u ction

Probabilistic methods appear to be very powerful in combinatorics and com
puter science. A point of view of those methods is th a t we investigate the 
typical object chosen from the set. In this paper we investigate the proportion 
between the number of tautologies of the given length n against the number 
of all formulas of length n for prepositional formulas. Our interest lays in 
finding limit of th a t fraction when n oo. If the limit exists it represents 
the real number between 0 and 1 which we may call the density of truth for 
the logic investigated. In general we are interested in finding the ’’density” of 
some other classes of formulas. This paper is a part of the ongoing research 
in which we try  to estim ate the likelihood of tru th  for the given prepositional
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logic. Consult for example paper [3] for purely implicational logic of one vari
able (and at the same time a type system) and [7] for the classical logic of 
implication and negation. In the paper [8] we have found the exact proportion 
between intuitionistic and classical logics of the same language.

In this paper we investigate the language F ^  consisting of implicational 
formulas over k propositional variables.

D e fin itio n  1.1 The language F^fi^ (over k propositional variables) consists 
of propositional k variables {a i , . . . ,  a f i  and it is closed by implication —Sy i.e.

a,i G F ^  Vi < k 

<f if G F ^  i f  <f G F ^  and if G F ^

First we have to establish the way the length of formulas are measured.

D e fin itio n  1.2 By  ||</>|| we mean the length of formula (f> which we define 
as the total number of occurrences of propositional variables in the formula. 
Parenthesis which are sometimes necessary and implication sign itself are not 
included in the length of formula. Formally, 11 a* 11 =  1 and 11</>—>• V>|| =  ||</>|| +

D efin itio n  1.3 We associate the density p (A ) with a subset A  C F o f  
formulas as:

(1) M A ) = lim # { i  e  F  IWI =  ,i}
n^oo e  F l  } : | | i | |  =  n]

if  the limit exists.

The number p(A )  if exists is an asymptotic probability of finding formula
rb
fcfrom the class A  among all formulas from F ^  or it can be interpreted as the

asymptotic density of the set A  in the set F ^ . It can be seen immediately 
th a t the density p  is finitely additive so if A  and B  are disjoint classes of 
formulas such th a t p(A )  and p(B)  exist then p (A  U B) also exists and p (A  U 
B) =  p(A )  +  p{B). It is straightforward to observe th a t for any Unite set A  the 
density p{A)  exists and is 0, Dually for co-hnite sets A  the density p(A )  =  1. 
The density p  is not eountablv additive so in general the formula

(00 \  OO

L U  =
¿=0 /  ¿=0

it is not true for all pairwise disjoint classes of sets {A; j-( .. The good coun
terexample for the equation (2) is to take as Ai  the singleton consisting of
i-th formula from our language. On the left hand side of (2) we get p 
which is 1 but on right hand side p  (^4*) =  0 for all i G N.
In the paper we are specially interested in distribution of densities with respect 
of some numerical property of formulas.

206



D e fin itio n  1.4 By a random variable X  we understand the function X  : 
N  which assigns a number n G N  to the implicational formula in

such a way that for any n the density p   ̂ G : X(<f) =  n exists and
moreover

OO
({<£ G : X(<f>) = n } )  =  1.

n=0

D e fin itio n  1.5 By the distribution of random variable X  we mean the func
tion I  : N (-} 1  defined by:

X  : e  : X{4>) =  n } )  G E

D e fin itio n  1.6 The expected value, variance and standard deviation are de
fined in conventional way by: E { X )  =  Y ^ L qP ' X (p ) and D 2{X) =  E ( X  ) —

(E ( X ))2 =  Y^L qP 2X { p ) ^ { E { X ) ) 2 s o  the standard deviation of X  is \ J v 2{X)

In paper [3] we showed what is the relation between the number of premises 
of implicational formula and asymptotic probability of finding formula with 
this number of premises. In this paper we are going to investigate the dis
tribution of densities with respect of the number of premises but only for 
simple tautologies, which form a huge subset of all tautologies. We prove tha t 
this distribution is so different from the previous one th a t it can be used to 
distinguish a tautology only by counting the number of its premises.

2 C ou n tin g  Form ulas

In this section we present some properties of numbers characterizing the 
amount of formulas in different classes defined in our language. For general 
technique for construction of combinatorial coefficients, called analytic com
binatorics, used in theorem and lemmas 2.2, 2.5 and 2.7 consult an excellent 
presentation in [2],

D e fin itio n  2.1 By h f  we mean the total number of formulas from of
the length n so: G : ||</>|| =  n}.

L em m a  2.2 Numbers /•’*' are given by the following recursion on n: Fq =
0, F* = k and F„* =  £ ’’=7 f* F * _ (.

P ro o f . For n = 0 and n = 1 it is obvious. Any formula of length n > 1 is the 
implication between some pair of formulas of lengths i and n — i, respectively. 
Therefore the to tal number of such pairs is Y^i=i n

L em m a  2.3 Let Cn be n-th Catalan number. Then the number /•’,*' =  knCn.

P ro o f . Proof is straightforward. □

For more elaborate treatm ent of Catalan numbers see for example [6, pp. 13 
44],
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D e fin itio n  2.4 By Ff{p)  we mean the number of formulas of length n having 
p premises, i.e. formulas which are of the form: r  =  7i —> • ( . . .—>• (tp —>• a)),  
where a  is a propositional variable.

Since numbers Ff (p)  are the cardinalities of disjoint sets of formulas for dif
ferent p ’s and since there are no formulas of length n having more then n — 1 
premises, for n > 2 we have F% = F%(1) + . . .  + F£(n — 1). Consequently by 
Cn(p) we mean Ff(p).  As in lemma 2.3 we have

L em m a  2.5 The number Ff{p)  is given by the following recursion on p:

We are going to isolate the class of simple tautologies which is an im portant 
and huge fragment of the set of tautologies. As we will see afterwards the 
class of simple tautologies is big enough to be a good approximation of the 
whole set of tautologies. Therefore investigations about behavior of the whole 
set can be estim ated by this fragment.

D e fin itio n  2.6 A simple tautology is a formula r  E on the form r  =
Ti —y ( . . .  —y (Tn —y o ) . . . )  such that there is at least one component r* identical 
with a.

Evidently, a simple tautology is a tautology. Let G£ be the number of simple 
tautologies of length n built with k propositional variables and G^(p)  be the 
number of simple tautologies of length n built with k variables with p  premises. 
Our goal is to find how big asymptotically is the fragment of simple tautologies 
within the set of all formulas.

L em m a  2 .7  The number G o f  simple tautologies is given by the recursion 
Gf =  0, G 1 =  k and G* =  i p . G f  +  (f* _ , -

P ro o f . The proof is based on two observations: First, —>• r 2 is simple 
tautology if r2 is. So for every formula n  of length n — i and every simple 
tautology r 2 of length i we have one simple tautology n  —>• r 2 of length n. 
The sum starts from i =  2 because there are no simple tautologies of length
1. This part is responsible for the component Y^i=2 F n - f iw  The only other 
simple tautologies are those for which is a propositional variable identical 
with the propositional variable the formula r2 points to. □

L em m a  2.8 The number G^fp) of simple tautologies with p premises is given 
by the following recursion on p,

(3)

F*(0) =  i f  n = 1 then k else 0, 
F*( 1) =  i f  n =  0 then 0 else F ^ ^ ,

n —p

i=1

P ro o f . The proof is technical. □
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G^(0) =  i f  n =  1 then k else 0,

, I 0 i f  n < p
Gn(p T  1) =  S

(  E L I ,  F n - i G i ( P ) +  (F n - l ( P ) “  Gkn - l ( P )) *7 n  > P

P ro o f . The same argument as in lemma 2,7, Proof must be accompanied 
with counting the number of premises of the considered simple tautology. □

3 G en eratin g  fun ction s

The main tool we use for dealing with asymptotics of sequences of numbers 
are generating functions. A nice exposition of the method can be found in [6] 
and [1], See also the recent works on random combinatorial structures in [2], 
For the presentation of this method in logics consult also papers [7], [8] and
(3), Many questions concerning the asymptotic behavior of a sequence A  can 
be efficiently resolved by analyzing the behavior of generating function f A at 
the complex circle \z\ =  R. The key tool will be the following result due to 
Szego [5] [Thm. 8.4], see as well [6] [Thm. 5.3.2] which relates the generating 
functions of numerical sequences with limit of fractions. For the technique 
of proof described below please consult also [3], We need the following much 
simpler version of the Szego Lemma.

L em m a  3.1 (simplified Szego lemma) Let v{z) he analytic in \z\ < 1 with 
z = 1 the only singularity at the circle \z\ = 1. I f  v{z) in the vicinity of 
z = 1 has an expansion of the form v{z) =  ^2p>0vp(l — z) 2 , where p > 0, 
and the branch chosen above for the expansion equals to w(0) for z = 0, then 

W 2K - l ) "  +  0 ( r r 2).

The symbol [zn]{v(z)} stands for the coefficient of zn in the exponential series 
expansion of v(z).  For technical reasons we will need to know the rate of

growth of the function (—1)" which appears at the formula (3.1)

L em m a  3.2 For n E N we have

(4) ^  E l )n+l = 0 { n - ^ 2)

P ro o f . It can be obtained by the Stirling approximation formula
,------ / f i \  n 1 y  / 71 \ n 1

(5) v27rn J e 12̂ 1 < n! < v 2ttn J e 1̂

(see [4] for details, consult also lemma 7.5 page 589 at [3]). □

In this part of the section we are going to present the method of finding asymp
totic densities for the classes of formulas for which the generating functions 
are already calculated. The main tool used for this purpose is theorem based 
on simplified Szego lemma. The following lemma is a main tool for finding 
limits of the fraction when generating functions for sequences an and bn 
satisfies conditions of simplified Szego lemma 3.1.
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L em m a 3.3 Suppose two functions v{z) and w{z) satisfy assumptions of sim
plified Szego lemma (3.1) i.e. both v and w are analytic in \z\ < 1 with z = 1 
being the only singularity at the circle \z\ = 1. Both v{z) and w{z) in the 
vicinity of z =  1 have expansions of the form v ( z ) =  E p> o ?;p (1 “  z ) p / 2 ’ a n d

w (z) =  E p>o wp(^ ~  z )v^ i  then the limit of exists and is given by
formula:

(6) Hm =
n->-oo [zn\{w(Z)f Wi

P roof. Applying the main formula from simplified Szego lemma 3.1 and equa
tion (4) from lemma 3.2 we obtain

(7) Um AJMdi=lim aM e e e i =£i
^ [ zn] {w(z) }  n“ °Ow f l / 3 \ ,  t Wl

□

T heorem  3.4 Suppose two functions v{z) and w{z) satisfy assumptions of 
simplified Szego lemma (lemma 3.1). Suppose we have functions v and w 
satisfying v ( \ / l  — z) =  v(z) and w ( \ / l  — z) =  w(z)  then the limit of

exists and is given by formula: l i m ^ ^  =  § y |§ -

P roof. Simple consequence of lemma 3.3. New functions v and w have ex
pansions v(z)  =  Ep>o vpZPi an<i  w(z)  =  Ep>o wpZp- Therefore tq =  (h)'(0) 
and wi = (fif)'(O), □

4 C alcu latin g  gen eratin g  fun ction s

We start with calculating generating functions for all recursively defined se
quences from the section 2.

L em m a  4.1 The generating function fp  for the numbers h'f is f p( z )  = |  — 
| \/l - I k

P ro o f . Straightforward. See for example [3], □

As a special ease, when k =  1 the generating function f c  for Catalan numbers 
is given by f c ( z )  = 1/2 — ( \ / l  — Az)/2.

L em m a  4.2 For fixed p > 0 the generating functions f c(P) and / f ( p) f o r C n{p) 
and F*(p), respectively are the following:

(8) f c ( p ) ( z ) = z  ■ ( f c ( z ) ) p =  z - ^ --^  ~ ,

(9) fF(P) ( z )  = k • z • ( f F( z )Y = k -  z - — ^ 2  ~  4kZ)  '
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P ro o f . Let f G(p)(z) be a generating function for Cn(p). Lemma 2.5 gives 
Cn(p) =  E f c f  — 1) which becomes after a closer examination the
equality f C(p-i)(z) ■ f c (z) =  f G(p)(z). Since Cn( 1) =  Cn- 1  we get f C(i)(z) = 
z ( f c( z ) )  and consequently f c(P)(z) =  z ( f c ( z ) ) p. Thanks to equation (3) we 
get f F(p)(z) =  f c(P)(kz) which ends the proof of (9.) Notice th a t formulas (8) 
and (9) are also correct for p  =  0. □

L em m a  4.3 The generating function f G for numbers G k is:

Z f f {z) ^ z + l z V T ^ T T z
(10) f G(z) l - f F{z) + z k + ky/ i~^4~Pz + z

P ro o f . The recurrence given by equation from lemma 2.7 becomes f G =  f G • 
f F + z - f F — z - f G. Solving it gives the solution above. □

L em m a  4.4 For fixed p the generating function f G(p) f o r G k(p) can he defined 
by the following recursion on p: f G(o)(z) = 0 and

(11) fa(p+i)(z) = fF(z)  ■ f G(P)(z) + k z 2 ( fF( z ) f  -  z f Gip)(z).

P ro o f . Formula for / g ( p+ i)  is a simple encoding of the recurrence (4). Mul
tiplication f F(z) ■ fG(p)(z) is responsible for the fragment Y l "=2 
According to formula (9) (see lemma 4.2) for functions Ff (p)  we have tha t 
kz  ( f F(z))p stands for F k(p). Since the number in recurrence depends o n n - 1  
not on n it have to be additionally multiply by z. The last fragment z f G{p){z) 
is responsible for the recursion G f ^ p )  in (4). □

5 C alcu lation  o f lim its

In this section we are going to find asymptotic densities for the classes of 
formulas for which the generating functions are already calculated. The main 
tool used for this purpose is a theorem 3.4.
First we recall two results from [3], In the hrst one we consider the probability 
tha t the given formula is a simple tautology. The meaning of this theorem 
is th a t the limit of the fraction GffF'Jf while n tends to infinity exists and
the size of the set of all tautology formulas is at least as big as 0 ( l / k ) .  The
second theorem finds the probability for the given formula to has p  premises. 
Both are good examples of usefulness of theorem 3.4.

T h e o re m  5.1 The asymptotic probability of the fact that a random formula 
is a simple tautology is:

G k \k — 1
(12) lim ^  =  . \ 0

H-+0O /■ f  (2k +  1)

P ro o f . Indeed, hrst we recall equation (10) from lemma 4.3 for f G and formula 
from lemma 4.1 for f F. In order to satisfy assumptions of theorem 3.4 let us 
normalize functions f G and f F in such a way to have only singularity located 
in \z\ < 1 at the position in z = 1. So, let us define functions f G(z) =
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f G(z/{Ak))  and f F(z) =  f F{z/(Ak)).  After cancellation we get: f G(z) =  
—k + \  — \ y / l  — z + 2 _ ^ 1_kz+2k+1 and f F(z) =  \ ~ \  \ / l  — z. This representation
reveals tha t the only singularity of f G(z) located in \z\ < 1 is indeed z = 1. The 
other singularity, located where the denominator in the last fraction becomes 
0, is achieved when \ / l  — z = 2k +  1, i.e., for z of a modulus substantially 
greater than 1, For function f F it is clear. We have to remember th a t a 
change of a caliber of the radius of convergence for functions f G and f F effects 
accordingly sequences represented by the new functions. Therefore we get 
G * =  (Ak)n ([zn]{ fG(z)})  and Ff  =  (Ak)n ([zn]{fF(z ) } ) . Now we are ready to 
use theorem 3,4, Let us define functions f F and f G so as to satisfy equalities: 
f F{ \/1 — z) =  f F(z) and f G{\/  1 — z) =  f G(z). Functions f F and f G are: 
f G(z) = -  \  2k+kl+i-l*  and f p (z ) = 2 ”  2Z- Derivatives of f F and f G are the 
following: (f G)' (z) =  —|  an<̂  (f F) '(z) =  — Finally derivatives

( /g ) , (0) =  —|  (2k+i)2 an<̂  ( / i ’),(0) =  — 2 ■ Now applying theorem 3,4 we
« r p f  l i r n  -  l i m  W F  ( W K f c b ) } )  _  ( f e ) ' ( O )  _  4 f c + l  hget iimn^oo Fg — iimn^oo — (7^)'(0) _  (2fe+l)2 wnicn enas tne
proof, □

The proof of the theorem 5,1 reveals the technique of showing the convergence 
of fractions in which both nominator and denominator are given recursively 
and both generating functions satisfy Szego lemma. The proof of the next 
theorem will use exactly the same method.

T h e o re m  5.2 The asymptotic probability of the fact that a random formula 
admits exactly p premises is:

(13) lim t M  = - f -B—5-00 h f  2Pp

P ro o f . First we recall equation (9) from lemma 4,2 describing function / f ( p)- 
All steps for denominator f F are already done in the previous theorem. Func
tion f F(p)(z) =  f F(p)(z/ (Ak)) defined to satisfy theorem 3,4 is as follows:
f F(p){z) = | ( f F(z))p = |  _ p- js ciear f F{p)(z) admits the only

singularity at z  =  1, As in previous theorem let us define function / f ( p) so  

as to satisfy the following equations: / f ( p)(V  1 — z) =  f F(p)(z).  Therefore 
f F(p)(z) = ( Y ^ Y 1 Derivative of the function f F(p)(z) is: ( f F{p))f(z) =

^  2~ Y tY ) 2 ~  } Y Y Y  1 so = ” 2 2 ^ 1  which concludes the
proof, □

The main goal of this section is to find the term  for the asymptotic density of 
classes of simple tautologies with p  premises which allows us to speak about 
distribution of probabilities.

T h e o re m  5.3 The asymptotic probability of the fact that a random formula 
is a simple tautology with exactly p premises is:
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f t  ^  r  G l { P ) P (2 k  ~  !)*
(14) llm ,•/,I f ;  2 P+1 A P kP -1

P roof. Base consequently on lemma 4,4 and the main theorem 3.4. Gener
ating functions in lemma 4.4 are defined recursively on p. Using the same 
technique as in two previous theorems we will find, also recursive on p, terms 
for appropriate limits. All steps for denominator f F are already done in theo
rem 5.1. Functions f G;p)(z) =  f G;p)(z /  (Ak)) are defined to satisfy theorem 3.4 
and are as follows: f G(o)(z) =  0 and

2

(15) f G(p+ i)(z) = f F(z) • / G(p)(u) +  (f F( z ) )P -  - ^ f G(p)(z).

It is clear th a t for every p  function f G;pf z )  adm its the only singularity at 
z = 1. As in previous theorem let us define function / G(p) so as to satisfy the 
following equation: /g(p)('s/1 — z) =  /g(p)(^)- Therefore f G(o)(z) = 0 and

(16) f G(p+i){z) = (j f {z) -  +  ^  i 6fe  ̂ { f p ( z ) ) P ■

Now we define two sequences of real numbers hp =  /g(p)( 0) and gp =  ( /G(p))'(0), 
Remember tha t f F(0) =  |  and ( f F)'(0) =  (see proof of theorem 5.1). 
Therefore sequences hp and gp are given by h0 =  0 and hp+1 =  
and gQ = 0 and gp+i = ) • gp -  |  • hp + ¿ + 4- Solving the system of
m utual recursion using the standard generating functions technique we get 
hp = ^+2  -  \  )V and consequently gp = T -  1) which
concludes the proof. □

T h e o re m  5.4 The asymptotic probability of the fact that a random simple 
tautology has exactly p premises is:
( 1 7 \  ¿ t ( p )  ( 2 k  +  i f (  p  ( 2 k -  I ) - - 1

v 1 )  „  . r * k  a I,* i 1 I o n + i  Vn ^ o o  G kn A k  +  l  V2P+1 4 ? k P - 1

P roof. Combine two limit equations from theorems 5.1 and 5.3. □

6 D istr ib u tio n  o f p rob ab ilities

In this section we will discuss and compare the distribution of probabilities 
proved in previous sections. There are two main questions we wish to discuss: 

What is a probability that randomly chosen implicational formula  
admits p prem ises ?

What is a probability that randomly chosen implicational simple  
tautology admits p prem ises ?
To answer the hrst question we group together all formulas with p  premises 
and according to the definition (1) we try  to find the asymptotic probability 
of this class. But this is exactly what we have found in theorem 5.2. So let us 
s tart with analyzing the hrst distribution:
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D e fin itio n  6.1 Let us define the random variable X  which assigns to an im- 
plicational formula the number of its premises.

T h e o re m  6.2 Random variable X  has the distribution: X( p)  = Ex
pected value E ( X )  =  3, variance D 2(X)  =  4. The standard deviation of X  is
2 .

P ro o f . As we know the number of formulas of length n with the p  premises 
is Ff(p).  Therefore, according to theorem 5.2, the asymptotic probability 
is lim ^oo  E |M  =  2p+t (see theorem 5.2). This form a distribution since 

E J lo  2h t  =  1- Expected value E ( X )  = Y ^= iP  x (p) = V *  i / E ' . =  3 and 
variance D 2( X)  = E { . \ 2) -  ( E ( X) ) 2 = V *  , l>2 J ' « -  9 =  4, so the standard

deviation of X  is s JV2(X)  =  2. □

¿From the whole discussion we can see th a t surprisingly, a typical implieational 
formula is supposed to have exactly 3 premisses. For example the amount of 
formulas with number of premises between 1 and 5 ie. which are typical ±  
standard deviation is 57/64 which is about 89%.
Now we will answer the second question. First we have to isolate the class 
of all simple tautologies with p  premises and compare it to the class of all 
simple tautologies. But this is exactly what we have found in theorem 5.4. 
We will see now the substantial difference between distribution of the number 
of premises for all formulas and the same distribution for simple tautologies 
only.

D e fin itio n  6.3 For every k > 1  let us separately define the random variable 
Yk which assigns to an implieational simple tautology in the language X k^  
the number of its premises.

T h e o re m  6.4 Random variable Yk has the following distribution, expected 
value and variance: Yk(p) = (24fcfc+\)2 1 ' ) ,  E( Yk) =
n „ j  r ) 2 b V M  —  3 8 4fc4 + 2 8 8 f c 3 + 1 6 0 f c 2 + 4 8 f c + 4
a n a  u  \ i k )  (2 f c + i ) 2 ( 4 f c + i ) 2

P ro o f . Trivial technical calculations are omitted. Nevertheless notice tha t 
1 iin/, x E ( Y k) = 5 and 1 iin/, x D 2(Yk) = 6 .  □

7 L im it d istr ib u tion

The natural question is how the distribution of true sentences looks like for 
very large numbers k, or is there a uniform asymptotic distribution when 
k, the number of propositional variables in the logic, tends to infinity. The 
answers are following:

L em m a  7.1 For fixed number of premises p >  0
r  (2A; +  l ) 2 f  p (2k -  1 y - l \  _  p ( p ^  1)

^  4A; + 1  V2P+1 P APkP-1 )  2P+2 '
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P ro o f . For p  =  0 and p = 1 it is obvious. For p > 2 it is a simple limit 
exercise. □

Let us name the limit distribution by Y^f p)  =  . This is in fact dis
tribution since Y^Lo Yooip) =  Y^Lo  *2p+2̂  =  1- Expected value of Tx, is 
E( YX ) = Y lp loi> Y<x>lp) = E J E  ’’z T 1 =  5. The variance of is Tf2(F0o) =

E ( ( W - E ( W ) ) 2) =  E ( ( ! Q 2) - ( £ ( i Q ) 2̂  E p°°=0_p! . W - 25 =  3 1 -2 5  =  6.
Now it is clear th a t for every p >  0 lim ^oo Yk(p) =  Y^ f p)  and lim ^oo E ( Y k) =  
E (Y O0) and also lim ^oo D 2(Yk) =  D 2(YO0) (see the proof of theorem 6.4).
The componentwise convergence (with respect to p) presented in lemma 7.1 
and summarized by the formula lim ^oo Yk(p) =  Too(p) can be extended to 
much stronger uniform convergence. Bellow we show the uniformity of con
vergence of the sequence of distributions Yk to Tx, when k tends to infinity. 
Therefore the distribution Tx can be treated as a good model of distribution 
for simple tautologies for the language E k^  when the number k of atomic 
propositional variables is large.

T h e o re m  7.2 The sequence of distributions Yk uniformly converges to the 
distribution Y0Q.

P ro o f . It can be shown by very laborious but simple calculations of the carte
sian distance between distributions Yk and Tx . The distance between func
tions is defined by d i s ( f , g ) =  Y ^ L o ( f ( p ) ^ 9 ( p ) ) 2 - Since we have explicit 
formulas for Yk and Tx we are able to find a term  for the distance dis(Yk, Tx) 
written only in terms of k. In fact, the distance is dis(Yk,Y 00) =  0 ( l / k ) ,  so 
Yk =4 Too- n

T h e o re m  7.3 For fixed k > 0 and p > 0 

(19) U n T - W -  <2 k - 1
Tl—̂OO Fn(.P) \  2k

P ro o f . Simple calculation on limits. We are going to combine together for
mula (13) with the main result given in formula (14). □

The result shows how big asymptotically the size of the fraction of simple 
tautologies with p  premises among all formulas of p  premises is. We can see 
th a t with p  growing this fraction becomes closer and closer to 1. Of course 
the fraction of all, not only simple, tautologies with p  premises is even larger. 
So the ’’density of truth” within the classes of formulas of p  premises can be 
as big as we wish. For every e > 0 we can effectively find p  such th a t among 
formulas with p  premises almost all formulas (except a tiny fraction of the size 
e ) asymptotically are tautologies. This should be contrasted with the results 
proved in theorems 5.1. It shows th a t density of truth for all p's together is 
always of the size 0 ( 1 / k).  The result for every p  treated separately is very 
different. Based on theorem 7.3 we may try  to estim ate the probability for a 
random long implieational formula to be a tautology by the ’’fuzzy” algorithm
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bellow.

Implicational formula <f> from .

Estim ate the chances for <f to be a tautology.

Find p, the number of premises of <f which can be 
done quickly in log(n) time. Then the chances are 
about 1 — {{2k — l ) / 2 k )p^1.

The lack of precision of this ’’fuzzy” algorithm is caused by two reasons. The 
set of all tautologies is larger than  the set of simple tautologies and, moreover, 
the asymptotic density may be different than the real proportion between the 
number of simple tautologies and all formulas. We do not have right now the 
precise estimation of the accuracy of the answer given by the algorithm above.
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